
Chapter 12
A Suite of Metaprogramming Techniques

OLEG KISELYOV.1

Abstract Metaprogramming may be done with just a few programming techniques:
an object-program representation (to capture the syntactical structure of object pro-
grams), pattern matching or accessors (to take apart object programs or to select
suitable parts thereof), pattern building or constructors (to construct or compose
object programs), and a computational model for tree walking (e.g., visitors in OO
programming or possibly just recursion). In this chapter, we describe some metapro-
gramming techniques on the basis of which many metaprograms can be written in
a more disciplined style. That is, we describe term rewriting, attribute grammars,
multi-stage programming, partial evaluation, and abstract interpretation.
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gramming – these labels pretty reliably map to Oleg Kiselyov without too much risk of hash-code
collision. The photo shows him while he was talking about “typed final (tagless-final) style” [7, 34]
(http://okmij.org/ftp/tagless-final/) – an advanced topic of metaprogramming
not included in this book. One may wonder what a textbook would look like if Oleg was ever to
write down a good part of his operational knowledge.
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12.1 Term Rewriting

Term rewriting can be viewed as a computational paradigm for describing transfor-
mations as a collection of rewrite rules which match on object-program patterns and
build new patterns from the matched parts in some way. Some implicit or explicit
normalization strategy takes care of applying the rules, in some sense, exhaustively.
A collection of rewrite rules together with a strategy for their application may be
referred to as a rewrite system.

In theoretical computer science, rewrite systems are formal entities in themselves
(just like grammars) and have been studied very well [16, 39, 17]. In practice,
we are interested in metaprogramming systems with support for rewriting such as
ASF+SDF [82], TXL [9, 10], Stratego [6], and Rascal [37, 36], and possibly in
declarative programming languages that support some form of rewriting. We will
exercise term rewriting in Haskell.

12.1.1 Rewrite Rules

As a running example, we will deal with optimization of expression forms; this
example was introduced in a pragmatic metaprogramming manner in Section 5.4.1.
Our objective here is to show that term rewriting provides a rigorous technique for
describing such optimizations. Term rewriting boils down to the declaration and
application of rewrite rules such as the following one:

(X ∗Y )+(X ∗Z) X ∗ (Y +Z)

This rule captures distributivity for multiplication and addition, as present in many
languages. In the rest of this section, we exercise EL (Expression Language), which
is the language of expression forms that are common to the fabricated imperative
and functional programming languages BIPL and BFPL in this book.

As a precursor to setting up a rewrite system, let us collect together several alge-
braic laws that we assume to hold for expressions. We use uppercase letters X , Y , Z,
. . . as metavariables for arbitrary expressions so that we can talk about patterns of
expressions:

X +0 = X -- Unit of addition
X ∗1 = X -- Unit of multiplication
X ∗0 = 0 -- Zero of multiplication
X +Y = Y +X -- Commutativity of addition
X ∗Y = Y ∗X -- Commutativity of multiplication
(X +Y )+Z = X +(Y +Z) -- Associativity of addition
(X ∗Y )∗Z = X ∗ (Y ∗Z) -- Associativity of multiplication
(X ∗Y )+(X ∗Z) = X ∗ (Y +Z) -- Distributivity
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We should think of applying these laws – from either left to right or from right to
left – to appropriate subterms of a given term such as an EL expression or “bigger”
program phrases such as a statement (in BIPL) or a function definition (in BFPL).
In sample expressions, we use lowercase letters a, b, c, . . . as program variables.

Here is a rewriting step applying the second equation:

a+b∗1+ c = a+b+ c

We have applied the equation from left to right. We have underlined the subex-
pressions which are instances of the left- and right-hand sides of the equation. We
may also use the term “redex” to refer to subterms to which a rewrite rule (or an
equation) is applied or applicable.

Exercise 12.1 (Additional rules for expressions) [Basic level]
Identify some additional algebraic laws for EL – specifically also some rules that
involve operators that are not exercised by the laws stated above.

When equations are readily directed so that the direction of application is speci-
fied, then we speak of rules rather than equations. That is, we use an arrow “ ” to
separate left- and right-hand side, and rules are thus to be applied from left to right.
For instance, the first law may reasonably be directed from left to right, as this direc-
tion would be useful in applying the rule for the purpose of simplification. In fact,
the first three equations can be understood as simplification rules, when directed
from left to right; in fact, we perform a transition from equations to rules:

X +0 X -- Unit of addition
X ∗1  X -- Unit of multiplication
X ∗0  0 -- Zero of multiplication

That is, a rewrite rule consists of a left- and a right-hand side; these are both pat-
terns of object programs. The assumed semantics of applying a rewrite rule is that
the left-hand side is matched with a given term, with the metavariables bound to sub-
terms if matching succeeds; the result is constructed from the bound metavariables
according to the right-hand side.

Exercise 12.2 (Semantics of term rewriting) [Intermediate level]
Specify the semantics of applying rewrite rules.

For now, let us use abstract syntax for expressions, as this makes it easy to im-
plement rewrite systems in programming languages. In abstract syntax, the earlier
simplification rules look as follows:

binary(add,X , intconst(0)) X -- Unit of addition
binary(mul,X , intconst(1))  X -- Unit of multiplication
binary(mul,X , intconst(0))  intconst(0) -- Zero of multiplication
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The abstract syntax is defined as follows.

Illustration 12.1 (Abstract syntax of expressions)

ESL resource languages/EL/as.esl

// Expressions
symbol intconst : integer → expr ;
symbol boolconst : boolean → expr ;
symbol var : string → expr ;
symbol unary : uop×expr → expr ;
symbol binary : bop×expr×expr → expr ;

// Unary operators
symbol negate : → uop ;
symbol not : → uop ;

// Binary operators
symbol add : → bop ;
symbol sub : → bop ;
symbol mul : → bop ;
symbol lt : → bop ;
symbol le : → bop ;
symbol eq : → bop ;
symbol geq : → bop ;
symbol gt : → bop ;
symbol and : → bop ;
symbol or : → bop ;

12.1.2 Encoding Rewrite Rules

We may encode rewrite rules easily in Haskell, or in any other functional program-
ming language for that matter. That is, rewrite rules become function equations.
Functions are used for grouping rewrite rules. We need to be careful to define these
functions in such a manner that function application will not throw an exception
when the underlying rules are not applicable to a given term. Instead, failure should
be communicated gracefully and, thus, we use the Maybe monad. In Section 5.4.1,
we already encoded simplification rules in this manner, as we recall here:

simplify :: Expr→ Maybe Expr
simplify (Binary Add x (IntConst 0)) = Just x
simplify (Binary Mul x (IntConst 1)) = Just x
simplify (Binary Mul x (IntConst 0)) = Just (IntConst 0)
simplify _ = Nothing

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/EL/as.esl
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We may apply the Haskell-based rewrite rules as follows.

Interactive Haskell session:

I simplify (Binary Add (Var "a") (IntConst 0))
Just (Var "a")
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I simplify (IntConst 42)
Nothing
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I simplify (Binary Add (Var "a") (Binary Add (Var "b") (IntConst 0)))
Nothing
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I simplify (Binary Add (IntConst 0) (Var "a"))
Nothing

The first application succeeds because the simplification rule for the unit of addi-
tion is applicable. The second application fails because no simplification rule applies
to the expression at hand. Failure of application is modeled by returning Nothing.
(In an alternative model, the input term could be returned as is if no rule is appli-
cable.) The third application also fails despite the presence of a subexpression to
which the simplification rule for the unit of addition would be applicable, but note
that we apply simplify directly. We do not in any way descend into the argument to
find redexes. Ultimately, we need “normalization”, as we will discuss in a second.
The fourth application also fails because the simplification rule for the unit of addi-
tion only checks for the unit on the right. We may need to combine simplification
with the rules for commutativity somehow.

In Haskell, we may also write more versatile rewrite rules taking advantage of
functional programming expressiveness. In the following examples, we use guards,
extra parameters, and function composition in the “rewrite rules”.

Illustration 12.2 (Additional rules illustrating the use of Haskell in rewriting)

Haskell module Language.EL.MoreRules

−− Cancel double negation on Ints
doubleNegate (Unary Negate (Unary Negate e)) = Just e
doubleNegate (Unary Negate (IntConst i)) | i <= 0 = Just (IntConst (−i))
doubleNegate _ = Nothing

−− Swap variable names
swap x y (Var z) | z == x = Just (Var y)
swap x y (Var z) | z == y = Just (Var x)
swap _ _ _ = Nothing

−− Compose simplification with optional commute
simplify' x = simplify x `mplus` commute x >>=simplify

That is, the doubleNegate function removes two patterns of double negation; the
first pattern models double application of the negation operator, and the second pat-
tern models application of the negation operator to a negative number. The swap

http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/MoreRules.hs
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function is parameterized by two variable names, x and y, and it replaces each oc-
currence of x by y and vice versa. The simplify' function builds a choice from the
plain simplify function such that in the case of failure of simplify, the commutativity
rules are applied prior to trying simplify again. Here we assume that we also have
“directed” laws for commutativity; the actual direction does not matter in this case,
obviously.

Illustration 12.3 (Commutativity for expressions)

Haskell module Language.EL.Rules.Commute

commute :: Expr→ Maybe Expr
commute (Binary Add x y) = Just $ Binary Add y x
commute (Binary Mul x y) = Just $ Binary Mul y x
commute _ = Nothing

We may apply the commutativity-aware definition as follows:

Interactive Haskell session:

I simplify' (Binary Add (IntConst 0) (Var "a"))
Just (Var "a")

That is, this application succeeds and returns a simplified term, whereas the ap-
plication of the original simplify function failed.

12.1.3 Normalization

Rewrite rules only model “steps” of rewriting. We need a normalization strategy
atop so that rewrite rules are applied systematically (i.e., repeatedly and exhaustively
in some sense). If we had a suitable function normalize, then we might be able to
apply the simplify function in the following manner:

Interactive Haskell session:

I normalize simplify (Binary Add (Var "a") (Binary Add (Var "b") (IntConst 0)))
Binary Add (Var "a") (Var "b")

Thus,“a+(b+0)” is simplified to “a+ b” when expressed in concrete syntax; we
underline again the redex for clarity. However, there seem to be many possible be-
haviors for normalization, for example: (i) to apply rewrite rules in top-down or
bottom-up manner; (ii) to aim at a single or an exhaustive application of the given
rules; (iii) to succeed or fail in the case of no applicable rewrite rules; or (iv) to apply
rewrite rules only to terms of suitable types or descend into terms to find subterms
of suitable types.

http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/Rules/Commute.hs
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stoptd

Fig. 12.1 Illustration of different traversal schemes. (Source: [50].) The illustration conveys which
nodes are encountered during the traversal and whether the given strategy fails (see the gray nodes)
or succeeds (see the black nodes).

Some rewriting approaches tend to favor one “built-in” normalization strategy
so that rewrite rules are applied, in some sense, exhaustively [85]. One popular
strategy is “innermost” which essentially attempts rules repeatedly in a bottom-up
manner until no rule applications are feasible anymore. Other rewriting approaches
permit programmers to define normalization strategies. This is the case for the style
of (so-called) strategic programming, as discussed below. Without such flexibility,
programmers end up controlling normalization by more complex rewrite rules.

12.1.4 Strategic Programming

Strategic programming is a discipline which enables the programmer to define and
use strategies [86, 87, 50, 51, 52, 85, 6, 49] for applying (collections of) rewrite
rules. A suite of reusable normalization strategies is provided to the programmer to
choose from, and problem-specific strategies can be defined when necessary.

The notion of strategies is language-independent; it has been realized in sev-
eral programming languages, for example, in Haskell [51, 52], Java [87], and Pro-
log [44], and it is available in different metaprogramming systems in one form or
another, without necessarily being referred to as strategies; the notion was pioneered
in Stratego/XT [86, 6].

Figure 12.1 illustrates a number of “strategic” traversal schemes. All of these
schemes are applied to an argument strategy which may be a collection of rewrite
rules or a more complex strategy. Let us explain these schemes informally and hint
at applications:
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fulltd The argument strategy is applied to all nodes in a top-down, depth-first
manner; application needs to succeed for all nodes, otherwise the entire traver-
sal fails. This scheme is used when a transformation should be applied “every-
where”. The function doubleNegate in Illustration 12.2 could be applied in this
manner; the scheme is suitable for finding and eliminating arbitrarily nested oc-
currences of double negation.

stoptd This scheme also models top-down, depth-first traversal, but traversal does
not visit subtrees for nodes at which application succeeded. This scheme is used
when either the existence of redexes below successful nodes can be ruled out to
exist or rewrites may create redexes that must not be considered in the interests of
termination, for example, when one is inlining recursive abstractions. The func-
tion swap in Illustration 12.2 could be applied in this manner. A fulltd traversal
is not necessary, as redexes for renaming cannot occur inside variables identifier
(i.e., strings or lists of characters).

oncebu The argument strategy is applied to all nodes in a bottom-up manner;
traversal stops upon the first successful application. Focusing on one redex at a
time is a testament to the overall assumption that a single traversal may be in-
sufficient to find and eliminate all redexes, as rewrites may enable new rewrites.
Thus, in general, a repeated application of given rewrite rules may be needed for
the sake of completeness. We mentioned innermost before as a common normal-
ization strategy; it can be defined by means of repeating oncebu until no more
redexes are found in this manner.

oncetd This is just like oncebu, but traversal commences in a top-down manner.

Exercise 12.3 (Nonterminating traversal) [Intermediate level]
Describe a simple, concrete scenario for which a traversal based on fulltd may fail
to terminate.

As an exercise in metaprogramming expressiveness, we would like to give pre-
cise definitions of these schemes. In fact, we would like to define the schemes as
abstractions in Haskell, thereby revealing the expressiveness that may be needed
when a strategic programmer wants to define yet other traversals or schemes for
them. We need two special primitives for what we refer to as layer-by-layer traver-
sal; see Fig. 12.2 for an illustration. Let us describe the traversal modeled by these
primitives when applied to an argument strategy:

all The argument strategy is applied to all immediate subterms of a given term;
in fact, all applications have to succeed, otherwise the all strategy fails. Thus, a
(successful) all strategy essentially rewrites the immediate subterms (the “chil-
dren”) of a term.

one The argument strategy is applied to all immediate subterms (from left to right)
until one application succeeds. If all applications fail, then the one strategy fails
too. Thus, a (successful) one strategy essentially rewrites one immediate subterm
(a “child”) of a term.
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The following code sketch illustrates how all could be defined for expressions:

all s (IntConst i) = IntConst <$> s i
all s (BoolConst b) = BoolConst <$> s b
all s (Var v) = Var <$> s v
all s (Unary o e1) = Unary <$> s o <*> s e1
all s (Binary o e1 e2) = Binary <$> s o <*> s e1 <*> s e2

That is, the argument s (which is essentially a polymorphic function) is applied
to all immediate subterms by combining the applications in the applicative func-
tor style. (We could also use a monadic bind instead.) There is one case for every
constructor.

In reality, all and one are generically defined or definable for all (at least most)
Haskell types. For instance, in Haskell’s “scrap your boilerplate” (SYB) approach
to generic functional programming [45, 46, 47], suitable type-class instances are
automatically derived. That is, the code shown would essentially be derived by a
tool (such as a compiler).

We are ready to define the earlier traversal schemes as a Haskell library of func-
tion combinators. We also provide a few more basic combinators.

Illustration 12.4 (A small strategic programming library)

Haskell module Data.Generics.Strategies

−− Strategic traversal schemes
fulltd s = s `sequ` all (fulltd s)
fullbu s = all (fullbu s) `sequ` s
stoptd s = s `choice` all (stoptd s)
oncetd s = s `choice` one (oncetd s)
oncebu s = one (oncebu s) `choice` s
innermost s = repeat (oncebu s)

−− Basic strategy combinators
s1 `sequ` s2 = λ x→ s1 x >>=s2 −− monadic function composition
s1 `choice` s2 = λ x→ s1 x `mplus` s2 x −− monadic choice
all s = ... −− magically apply s to all immediate subterms
one s = ... −− magically find first immediate subterm for which s succeeds

−− Helper strategy combinators

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/Generics/Strategies.hs
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try s = s `choice` return −− recover from failure
vary s v = s `choice` (v `sequ` s) −− preprocess term, if necessary
repeat s = try (s `sequ` repeat s) −− repeat strategy until failure

−− Strategy builders
orFail f = const mzero `extM` f −− fail for all other types
orSucceed f = return `extM` f' −− id for all other types
where f' x = f x `mplus` return x −− id in case of failure

Thus, the traversal schemes are essentially defined as recursive functions in terms
of sequential composition (sequ), left-biased choice, and the traversal primitives all
and one. There are also function definitions for “strategy builders” which are needed
to turn type-specific rewrite rules into generic functions. This transition is essential
for one to be able to process terms of arbitrary types with subterms of different
types – not all terms are of types of interest.

Let us illustrate the library in action:

Interactive Haskell session:

−− The expression "a + b * 0" with simplification potential
I let e1 = Binary Add (Var "a") (Binary Mul (Var "b") (IntConst 0))
−− The expression "((a * b) * c) * d" associated to the left
I let e2 = Binary Mul (Binary Mul (Binary Mul (Var "a") (Var "b")) (Var "c")) (Var "d")
−− The expression "0 + a'' requiring commutativity for simplification
I let e3 = Binary Add (IntConst 0) (Var "a")
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
−− Incomplete simplification with fulltd
I fulltd (orSucceed simplify) e1
Binary Add (Var "a") (IntConst 0)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
−− Complete simplification with fullbu
I fullbu (orSucceed simplify) e1
Var "a"
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
−− Incomplete association to the right with fullbu
I fullbu (orSucceed associate) e2
Binary Mul (Var "a") (Binary Mul (Binary Mul (Var "b") (Var "c")) (Var "d"))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
−− Complete association to the right with innermost
I innermost (orFail associate) e2
Binary Mul (Var "a") (Binary Mul (Var "b") (Binary Mul (Var "c") (Var "d")))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
−− Apply simplification module commutativity
I vary (orFail simplify) (orFail commute) e3
Var "a"
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Exercise 12.4 (Applicability of innermost) [Basic level]
Consider again the swap function of Illustration 12.2. Why would a traversal based
on innermost not produce the correct result with all occurrences of the two variables
consistently swapped?

The present section is summarized by means of a recipe.

Recipe 12.1 (Design of a strategic program).

Test cases Set up test cases for the strategic program, just like for any trans-
formational program (Recipe 5.2). A positive test case consists of an input
term and the expected output term. A negative test case consists of an input
term and the expectation that the strategy fails.

Rules Implement the basic units of functionality, i.e., (rewrite) rules which
match and build patterns of interest and possibly perform other computa-
tions along with matching and building.

Groups Group rules into logical units, for example, groups for simplifica-
tion, normalization, desugaring, and other things. The groups may be spe-
cific to the problem at hand. For instance, there may be several groups of
optimization rules, subject to separate phases.

Strategy Reuse (i.e., select) or define (i.e., compose) strategy combinators so
that they can be applied to the appropriate groups of rules. The combinators
may be concerned with traversal or other forms of “control” (e.g., order,
alternatives, fixed-point computation).

Testing Test the composed strategy in terms of the test cases.

12.1.5 Rewriting-Related concerns

12.1.5.1 Other Traversal Idioms

We mention in passing that we have limited ourselves here to type-preserving strate-
gies. (We refer to “type” here in terms of the syntactic category of object programs
being manipulated.) If we wanted to use rewriting or strategic programming to ex-
tract data using so-called type-unifying strategies or to perform any other kind of
non-type-preserving operations, then we would need additional machinery, but we
will not discuss this here. Traversal schemes may also need to maintain additional
arguments in the sense of environments and states, so that information is passed
down and updated along with traversal. There are also alternative models for com-
bining traversal and rewriting. For instance, traversals may also be set up as walks
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subject to performing actions that descend into the children, proceed along the sib-
lings, and return to the root [4].

12.1.5.2 Concrete Object Syntax

Rewriting on top of “large” syntaxes may, arguably, benefit from the use of concrete
object syntax, as discussed earlier (Section 7.5), because a programmer may rec-
ognize object language patterns more easily. Several metaprogramming systems do
indeed support concrete object syntax for this reason.

12.1.5.3 Graph Rewriting and Model Transformation

There is the related discipline of graph grammars and transformation [66, 23] – thus,
rewriting may instead operate on graphs rather than terms (or trees). In model trans-
formation [14, 56], one may operate on models (“graphs”) that are instances of a
metamodel with part-of, reference, and inheritance relationships. There exist ded-
icated model-transformation languages, for example, ATL [31]. These approaches
also aim to eliminate boilerplate code for controlling the overall transformation pro-
cess, including traversal. For instance, ATL provides a refining mode [80] so that
transformation rules can be limited to the model elements that need to be replaced.

12.1.5.4 Origin Tracking

In term rewriting (or model transformation), traceability may be desirable in the
sense that the “origin” of any given (sub-) term (or model element) can be traced
back to some original term (or model element). This idea is captured in a fundamen-
tal manner by the notion of origin tracking [18, 88, 65]. For instance, if a semantic
analysis was applied to an abstract or intermediate representation in a language im-
plementation, then origin tracking helps in systematically relating back the results
of the analysis (e.g., errors or warnings) to the original program. Origin tracking
relies on deep support in a metaprogramming or model-transformation system.

12.1.5.5 Layout Preservation

When transforming object programs (by means of rewriting or otherwise), it may be
desirable to retain the original layout (white space, line breaks, and even comments)
in the programs to the extent possible. For instance, when one is performing a re-
engineering transformation on legacy code, the code should be retained as much as
possible so that programmers will still recognize their code. Such layout preserva-
tion [28, 41, 29] calls for a suitable object-program representation (CST or AST)
which incorporates layout. Less obviously, a term-rewriting approach may need to



12.2 Attribute Grammars 347

manipulate object-program patterns in a special way so as to retain layout where
possible, subject also to possibly incorporating an incremental formatter that ap-
plies to fragments without inherited layout or with invalidated layout.

12.2 Attribute Grammars

Attribute grammars (AGs) [40, 3, 60, 25] can be viewed as a computational
paradigm for describing translations or analyses by means of adding attributes to
nodes in a CST or AST. An AG combines a context-free grammar with compu-
tational rules. Each computational rule relates attributes of nonterminal symbols
within the scope of a specific context-free rule. The order of computation (attribute
evaluation) is not explicitly described, but it can be inferred from the attribute de-
pendencies expressed by the computational rules. In Section 7.3.2, we discussed a
limited form of an AG, i.e., grammars enhanced by semantic actions for AST con-
struction to serve as input for a parser generator.

AGs are supported explicitly by some metaprogramming systems with dedicated
AG languages, for example, Eli [32], JastAdd [25], Silver [83], or (Aspect) Lisa [60]
and these systems support several AG extensions (see, e.g., [33, 48, 42]). The AG
style of metaprogramming and computation can also be leveraged if a sufficiently
powerful (declarative) metalanguage is used. In particular, AGs can be “encoded”
in functional programming [75, 71], as we will show below. Furthermore, a limited
form of an AG is also supported by mainstream parser generators such as ANTLR,
which we discussed earlier. In this section, we introduce the notion of AGs as a
means of approaching analysis and translation problems.

12.2.1 The Basic Attribute Grammar Formalism

We begin with a trivial problem to explain the basics of AGs. In Fig. 12.3, we show
an attributed CST for a binary number in the sense of the (“fabricated”) Binary
Number Language (BNL). Decimal values for the relevant subtrees are shown next
to the nodes. That is, the nodes for the individual bits carry attributes for values
that take into account the position of each bit. The nodes for bit sequences carry at-
tributes for values that arise as sums of values for subtrees. For instance, the decimal
value for the bit sequence 101 is 5 = 4+0+1. This trivial (illustrative) example is
due to Knuth [40].

We may need additional (auxiliary) attributes to compute the actual decimal val-
ues. In one possible model, we may assign a position (. . . , 2, 1, 0, −1, −2, . . . ) to
each bit and maintain the length of a bit sequence so as to be able to actually com-
pute the value for any bit. Table 12.1 shows all attributes that we want to compute.

As the table clarifies, attributes are assigned to nonterminals. An attribute is clas-
sified as either inherited or synthesized. We use the classifiers inherited (“I”) and
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Fig. 12.3 An attributed syntax tree for the binary number 101.01. The attributes attached to the
nodes model the decimal value of the subtree at hand.

Table 12.1 Attributes for binary to decimal number conversion

Nonterminal Attribute I/S Type
number Val S float

bits Val S float
bit Val S float
rest Val S float
bits Pos I integer
bit Pos I integer
bits Len S natural

synthesized (“S”) to express that the attribute is to be passed down or up, respec-
tively, in the tree. This classification has to do with attribute dependencies, as we
will see in a second.

An AG associates a collection of computational rules with each context-free rule
p. Each computational rule is of the following form:

x0.a0 = f (x1.a1, . . . ,xm.am)

where x0, . . . , xm are nonterminals of the context-free rule, a0, . . . , am are attributes
of the nonterminals, and f is any sort of “operation” on the attributes. Concep-
tually, the computational rules state relationships on attributes. Computationally,
these rules, when collected together for all attributes in a CST, can be evaluated to
compute all attribute values in some order, subject to respecting the attribute depen-
dencies.
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There should be exactly one computational rule for each synthesized attribute of
a context-free rule’s left-hand side and for each inherited attribute of each nontermi-
nal of a context-free rule’s right-hand side. Intuitively, this means that synthesized
attributes are indeed computed upwards in the syntax tree, whereas inherited at-
tributes are passed down. Additional constraints are needed to make the AG well
defined and, in particular, to avoid cycles [2], but we omit these details here.

We are ready to show all computational rules for number conversion.

Illustration 12.5 (An attribute grammar for number conversion)
Consider the first context-free rule and the associated computational rules:

[number] number : bits rest ;

bits.Pos = bits.Len − 1
number.Val = bits.Val + rest.Val

That is, the inherited attribute Pos of the right-hand symbol bits is equated with
the difference between the synthesized attribute Len of the right-hand symbol bits
and 1, thereby defining the position of the leading bit in the sequence. The synthe-
sized attribute Val of the left-hand side is equated with the sum of the Val attributes
of the right-hand side, thereby combining the value of the integer and the fractional
parts of the binary number.

These are the remaining context-free rules and the associated computational
rules:

[single] bits : bit ;

bit.Pos = bits.Pos
bits.Val = bit.Val
bits.Len = 1

In the following context-free rule, we assign subscripts 0 and 1 to the different oc-
currences of bits so that we can refer to the different attributes in the computational
rules accordingly:

[many] bits0 : bit bits1 ;

bit.Pos = bits0.Pos
bits1.Pos = bits0.Pos − 1
bits0.Val = bit.Val + bits1.Val
bits0.Len = bits1.Len + 1

[zero] bit : '0' ;

bit.Val = 0

[one] bit : '1' ;

bit.Val = 2bit.Pos

[integer] rest : ;
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rest.Val = 0

[rational] rest : '.' bits ;

rest.Val = bits.Val
bits.Pos = −1

Figure 12.4 shows the CST for 101.01 with the attributes of the relevant non-
terminals. We use superscripts on the attribute names to make them unique across
the tree. (The ids model path-based selection of the node. For instance, the id 1.2
states that we select the first subtree of the root and then the second subtree in turn.)
In the figure, we also show the attribute dependencies in the tree, as defined by the
computational rules; see the dotted arrows. The target of an arrow corresponds to
the left-hand side of a computational rule.

It is worth noticing how the attribute dependencies point downwards and upwards
in the tree. Consider, for example, Len1, which is computed upwards in the tree
and is used in initializing Pos1, which is then used in computing other positions
downwards the tree.

12.2.2 Attribute Evaluation

Given a CST and an AG, the process of computing all attributes for the CST is
referred to as attribute evaluation. There are various methods of attribute evalua-
tion [2]; one overall option is to perform static code generation for a tree walk so
that the computations can be performed for any given CST without any run-time
analysis. We will not discuss the corresponding technicalities here. Conceptually,
we may view attribute evaluation as a simple mathematical problem in the sense of
solving a system of equations.

Consider again Fig. 12.4 which encodes all the context-free rules involved and as-
signs unique names to all the attributes involved. For each context-free rule applied,
we instantiate its computational rules for the unique attribute names taken from the
CST. For instance, the root of the CST shown, with its two children, corresponds to
an application of the rule [number]. Accordingly, we instantiate the computational
rules as follows:

Pos1 = Len1 − 1
Val = Val1 + Val2

The left child (id 1) with its two children (ids 1.1 and 1.2) corresponds to an
application of the rule [many]. Accordingly, we instantiate the computational rules
as follows:

Pos1.1 = Pos1

Pos1.2 = Pos1 − 1
Val1 = Val1.1 + Val1.2

Len1 = Len1.2 + 1
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Once we have collected all these equations for all the applications of context-free
rules together in a CST, we can simply start replacing references to attributes by
values. The process starts with replacement for attributes with computational rules
by constant expressions on the right-hand side. The process ends when replacements
have assigned values to all attributes. The process is illustrated below.

Illustration 12.6 (Attribute evaluation)
Let us consider a much simplified example: the binary number 1 for which we face
the following equations; we also show the final value for each attribute:

// [number]
Pos1 = Len1 − 1 = 0
Val = Val1 + Val2 = 1

// [single]
Pos1.1 = Pos1 = 0
Val1 = Val1.1 = 1
Len1 = 1 = 1

// [one]
Val1.1 = 2Pos1.1

= 1
// [integer]

Val2 = 0 = 0

The solution of the equation system commences as follows:

• Replace references to Val2 and Len1 by their values.
• Compute Pos1.
• Replace the reference to Pos1 by its value.
• Replace the reference to Pos1.1 by its value.
• Compute Val1.1.
• Replace the reference to Val1.1 by its value.
• Replace the reference to Val1 by its value.
• Compute Val.

There exist various AG classes which impose constraints on attribute dependen-
cies so that attribute evaluation can be performed more easily or efficiently. We
briefly mention two such classes here:

S-attribution There are synthesized attributes only. Thus, all dependencies point
upwards in a CST. In this case, attribute evaluation can be accomplished as a
simple walk over CSTs. This scheme facilitates, for example, simple forms of
CST/AST construction.

L-attribution There are also inherited attributes, but there are no right-to-left
dependencies in a CST. This means that we can pass inherited attributes from
the left-hand side to inherited attributes on the right-hand side and we can pass
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synthesized attributes of any nonterminal on the right-hand side to inherited at-
tributes on the right-hand side if they are further to the right. In this case, attribute
evaluation can be also be accomplished by a simple walk, which can be carried
out during parsing if the CST is built from left to right.

Let us consider an S-attributed variation on the running example.

Illustration 12.7 (An S-attributed variation on number conversion)
Compared to Illustration 12.5, we do not use not any attributes for positions in

the following variation. These are the computational rules:

[number] number : bits rest ;

number.Val = bits.Val + rest.Val

[single] bits : bit ;

bits.Val = bit.Val
bits.Len = 1

[many] bits0 : bit bits1 ;

bits0.Val = bit.Val ∗ 2bits1.Len + bits1.Val
bits0.Len = bits1.Len + 1

[zero] bit : '0' ;

bit.Val = 0

[one] bit : '1' ;

bit.Val = 1

[integer] rest : ;

rest.Val = 0

[rational] rest : '.' bits ;

rest.Val = bits.Val / 2bit.Len

It should be clear by now that the computational rules in an AG are necessar-
ily tied to the underlying CST structure. That is, given two context-free grammars
that generate the same language (i.e., set of strings), the two grammars may require
different computational rules to achieve the same ultimate result. We use the term
“result” here in the sense of a dedicated synthesized attribute of the start symbol
such as the decimal value of a binary number in the running example. The depen-
dence between context-free and computational rules is illustrated below.

Illustration 12.8 (A left-recursive variation on Illustration 12.7)
The rule [many] for bit sequences was defined in right-recursive style in Illustra-
tion 12.7. If we use left-recursive style instead, then the associated computational
rules are adapted as follows:
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[many] bits0 : bits1 bit ;

bits0.Val = 2 ∗ bits1.Val + bit.Val
bits0.Len = bits1.Len + 1

12.2.3 Attribute Grammars as Functional Programs

Attribute grammars provide a declarative computational paradigm that is actually
very similar to (some form of) functional programming. That is, we may encode
AGs as disciplined functional programs [75, 71]. One encoding scheme may be
summarized as follows:

• Without loss of generality, we operate on the abstract as opposed to the concrete
syntax. That is, we interpret computational rules on top of algebraic constructors
as opposed to context-free rules.

• We associate each syntactic category (sort) with a function with one equation
per alternative (constructor) to model the associated computational rules. That
is, a function’s patterns match on the syntactic structure. The inherited attributes
of the category become function arguments, whereas the synthesized attributes
become function results. Overall, we switch from the use of attribute names to
the use of positions in argument lists and result tuples.

• Types of attribute values and operations on these types – as they are used in the
computational rules – are also modeled in the functional program.

This encoding is illustrated for the AG for binary-to-decimal number conversion;
see Illustrations 12.9 and 12.10 below.

Illustration 12.9 (Representation of binary numbers)

Haskell module Language.BNL.Syntax

data Number = Number Bits Rest
data Bits = Single Bit | Many Bit Bits
data Bit = Zero | One
data Rest = Integer | Rational Bits

Illustration 12.10 (Binary-to-decimal number conversion)

Haskell module Language.BNL.Conversion

number :: Number→ Float
number (Number bs r) = val0

where
(len1, val1) = bits bs pos1
pos1 = len1 − 1
val2 = rest r

http://github.com/softlang/yas/tree/springer/languages/BNL/Haskell/Language/BNL/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BNL/Haskell/Language/BNL/Conversion.hs
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val0 = val1 + val2

bits :: Bits→ Int→ (Int, Float)
bits (Single b) pos = (1, bit b pos)
bits (Many b bs) pos0 = (len0, val0)

where
val1 = bit b pos0
(len1, val2) = bits bs pos1
pos1 = pos0 − 1
len0 = len1 + 1
val0 = val1 + val2

bit :: Bit→ Int→ Float
bit Zero _pos = 0
bit One pos = 2^^pos

rest :: Rest→ Float
rest Integer = 0
rest (Rational bs) = val

where
(_len, val) = bits bs pos
pos = −1

Because of the generality of attribute grammars, the result of encoding may be
such that function arguments depend on results. This is indeed the case for the ex-
ample at hand; consider the function corresponding to the rule [number], which we
repeat for clarity:

number (Number bs r) = val0
where

(len1, val1) = bits bs pos1
pos1 = len1 − 1
val2 = rest r
val0 = val1 + val2

The result of applying the function bits includes the length len1 of the bit se-
quence, which is then used in setting up pos1, i.e., the position of the leading bit
in the sequence, to be passed as an argument to the same function application. This
functional program is sound only for lazy (as opposed to eager) language semantics.
Thus, AGs can be said to be declarative because no particular order of computation
is expressed directly; instead, an order must be determined which respects attribute
dependencies. Lazy evaluation happens to determine a suitable order.

Exercise 12.5 (An AG for translation) [Intermediate level]
The running example (binary-to-decimal number conversion) can be seen as a triv-
ial form of translation. Let us consider a more significant form of translation: im-
perative statements are to be mapped to bytecode (Section 5.2), just as in a real
compiler. Devise an AG for this purpose.
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12.2.4 Attribute Grammars with Conditions

AGs are routinely used to impose “context conditions” on syntactical structure, as
discussed as a general concern earlier (Section 3.3). That is, we may use AGs effec-
tively to represent the typing and name-binding rules of a software language. If we
want to model conditions, then, in principle, we can simply use computational rules
on Boolean-typed attributes. Alternatively, we may assume a more convenient AG
notation with explicit support for conditions in addition to regular computational
rules. Attribute evaluation is supposed to “fail” if any condition does not hold.

We now discuss conditions for a somewhat more complex example of an AG
specification. Specifically, we consider an imperative language with a nested block
structure: EIPL (Extended Imperative Programming Language), which is an exten-
sion of BIPL. Each block (scope) may declare variables and (parameterless) proce-
dures. The use of variables and procedures entails some nontrivial conditions to be
understood relative to an environment maintaining scopes. Consider the following
sample.

Illustration 12.11 (An imperative program with block structure)

EIPL resource languages/EIPL/sample.eipl

1 begin
2 var x = 0;
3 proc p { x = x + x; }
4 proc q { call p; }
5 begin
6 var x = 5;
7 proc p { x = x + 1; }
8 {
9 call q;

10 write x;
11 }
12 end
13 end

In particular, the sample program declares a variable x and a procedure p in two
different scopes. Thus, it is important to understand what the different references
to x and p actually resolve to. We assume lexical (static) scope here. The call to q
(line 9) in the inner block makes q call p (line 4) in the outer block, whose reference
to x (line 3) resolves to the x in the outer block (line 2). (If we assume dynamic
scope instead, then x (line 3) resolves to the x in the inner block (line 6), as the call
chain departed from there.)

We can model such conditions in an AG. In the following example, we mark
conditions with the keyword “require”.

http://github.com/softlang/yas/tree/springer/languages/EIPL
http://github.com/softlang/yas/tree/springer/languages/EIPL/sample.eipl
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Illustration 12.12 (An attribute grammar for checking block structure)
Within the conditions and computational rules, we use the following function and
condition symbols on attributes of an assumed type Env for environments:

empty This is the representation of the empty environment, i.e., an empty collec-
tion of scopes from which to start the semantic analysis.

enterScope This function modifies an environment to enter a new (nested) scope.
noClash This condition checks that a name is not yet bound in the current scope

of the given environment.
addVar This function adds a variable with a name and a type to the current scope

of the given environment.
addProc This function adds a procedure with a name to the current scope of the

given environment.
isVar This condition checks that a name can be resolved to a variable in the cur-

rent scope or an enclosing scope of the given environment.
getType The type of the variable is returned. The type is only defined if isVar holds.
isProc This condition checks that a name can be resolved to a procedure in the

current scope or an enclosing scope of the given environment.

program : scope ;

scope.EnvIn = empty

scope : 'begin' decls stmt 'end' ;

decls.EnvIn = enterScope(scope.EnvIn)
stmt.EnvIn = decls.EnvOut

decls0 : decl decls1 ;

decl.EnvIn = decls0.EnvIn
decls1.EnvIn = decl.EnvOut
decls0.EnvOut = decls1.EnvOut

decls : ;

decls0.EnvOut = decls0.EnvIn

[var] decl : 'var' name '=' expr ';' ;

require noClash(decl.EnvIn, name.id)
decl.EnvOut = addVar(decl.EnvIn, name.Id, expr.Type)
expr.EnvIn = decl.EnvIn

[proc] decl : 'proc' name stmt ;

require noClash(decl.EnvIn, name.id)
decl.EnvOut = addProc(decl.EnvIn, name.Id)
stmt.EnvIn = decl.EnvIn

[skip] stmt : ';' ;
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[assign] stmt : name '=' expr ';' ;

require isVar(stmt.EnvIn, name.Id)
require getType(stmt.EnvIn, name.Id) = expr.Type
expr.EnvIn = stmt.EnvIn

[call] stmt : 'call' name ';' ;

require isProc(stmt.EnvIn, name.Id)

[scope] stmt : scope ;

scope.EnvIn = stmt.EnvIn

// Remaining statement forms omitted for brevity
. . .

[intconst] expr : integer ;

expr.Type = intType

[var] expr : name ;

require isVar(expr.EnvIn, name.Id)
expr.Type = getType(expr.EnvIn, name.Id)

// Remaining expression forms omitted for brevity
. . .

Exercise 12.6 (Recursive procedures) [Basic level]
Does the given AG permit (model) recursive procedures? Discuss how to change the
AG so that recursive procedures are expressed or not expressed.

Exercise 12.7 (Functional encoding for block structure) [Basic level]
Exercise the functional program encoding (Section 12.2.3) for the given AG. (See
the repository for additional positive and negative test cases.) You may use Boolean-
typed attributes for the conditions or, instead, operate in the Maybe monad.

Exercise 12.8 (An interpreter for EIPL) [Intermediate level]
Implement an interpreter that includes block structure.

12.2.5 Semantic Actions with Attributes

In Section 7.3.2, we discussed semantic actions as a means of injecting statements
of the target language for parser generation into a grammar. Specifically, we used
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semantic actions for AST construction during parsing. A parser description with
semantic actions can be considered a limited form of an AG because computational
actions are associated with context-free grammar productions.

In fact, parser generators may also support proper synthesized and inherited at-
tributes. In particular, S-attribution is supported by the “typical” parser generator.
This is demonstrated for ANTLR below. That is, we transcribe the S-attributed
grammar variation on binary-to-decimal number conversion (Illustration 12.7) quite
directly to ANTLR notation.

Illustration 12.13 (Binary-to-decimal number conversion)

ANTLR resource languages/BNL/ANTLR/BnlBnfConversion.g4

grammar BnlBnfConversion;
@header {package org.softlang.bnl;}

number returns [float val]
: bits rest WS? EOF { $val = $bits.val + $rest.val; }
;

bits returns [float val, int len]
: bit { $val = $bit.val; $len = 1; }
| bits1=bits bit { $val = 2*$bits1.val + $bit.val; $len = $bits1.len + 1; }
;

bit returns [int val]
: '0' { $val = 0; }
| '1' { $val = 1; }
;

rest returns [float val]
: { $val = 0; }
| '.' bits { $val = $bits.val / (float)Math.pow(2, $bits.len); }
;

WS : [ \t\n\r]+ ;

While ANTLR does not support AGs in their full generality, ANTLR’s support
goes beyond S-attribution. That is, L-attribution (i.e., a limited form of inherited
attributes on top of S-attribution) is also supported. We demonstrate L-attribution
with a parser for FSML below. We use a synthesized attribute for the constructed
AST. We use inherited attributes to pass appropriate “context” for AST construction.

Illustration 12.14 (A parser for finite state machines)

ANTLR resource languages/FSML/Java/FsmlToObjects2.g4

grammar FsmlToObjects2;
@header {package org.softlang.fsml;}

fsm returns [Fsm result] :
{ $result = new Fsm(); }
state[$result]+
EOF

http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/BNL/ANTLR/BnlBnfConversion.g4
http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/FsmlToObjects2.g4


360 12 A Suite of Metaprogramming Techniques

;
state[Fsm result] :

{ boolean initial = false; }
('initial' { initial = true; })?
'state' stateid
{ String source = $stateid.text; }
{ $result.getStates().add(new State(source, initial)); }
'{' transition[$result, source]* '}'
;

transition[Fsm result, String source] :
event
{ String action = null; }
('/' action { action = $action.text; })?
{ String target = source; }
('−>' stateid { target = $stateid.text; })?
{ $result.getTransitions().add(new Transition(source, $event.text, action, target)); }
';'
;

. . . // Lexical syntax as before

That is, we pass the FSM to the nonterminals state and transition as context so
that states and transitions can be added to the appropriate collections in the scope
of the corresponding productions. We also pass the state id of a state declaration to
each of its transitions so that it can be used as the target state id when an explicit
target is omitted.

The parser is invoked like this:

Fsm fsm = parser.fsm().result;

Thus, the FSM is retrieved as the result of invoking the method fsm, i.e., we access
the synthesized attribute result of the nonterminal fsm.

Let us return to the more significant AG for checking imperative programs with
block structure (Section 12.2.4) and implement the AG with ANTLR. The following
ANTLR code takes advantage of the imperative nature of the host language such that
the environment is implemented as a global attribute rather than passing the object
reference for the environment with attributes and copy rules.

Illustration 12.15 (Checking block structure)

ANTLR resource languages/EIPL/ANTLR/EiplChecker.g4

1 grammar EiplChecker;
2 @header {package org.softlang.eipl;}
3 @members {
4 public boolean ok = true;
5 public Env env = new Env();
6 }
7

8 program : scope EOF ;
9 scope : { env.enterScope(); } 'begin' decl* stmt 'end' { env.exitScope(); } ;

http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/EIPL/ANTLR/EiplChecker.g4
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10 decl :
11 'var' NAME '=' expr ';'
12 { ok &= env.noClash($NAME.text); env.addVar($NAME.text, $expr.type); }
13 |
14 'proc' NAME stmt
15 { ok &= env.noClash($NAME.text); env.addProc($NAME.text); }
16 ;
17 stmt :
18 ';'
19 |
20 NAME '=' expr ';'
21 { ok &= env.isVar($NAME.text) && env.getType($NAME.text) == $expr.type; }
22 |
23 'call' NAME ';'
24 { ok &= env.isProc($NAME.text); }
25 |
26 scope
27 |
28 // Remaining statement forms omitted for brevity
29 . . .
30 ;
31 expr returns [Env.Type type] :
32 INTEGER
33 { $type = Env.Type.IntType; }
34 |
35 NAME
36 { ok &= env.isVar($NAME.text); $type = env.getType($NAME.text); }
37 |
38 expr1=expr '+' expr2=expr
39 {
40 ok &= $expr1.type == Env.Type.IntType
41 && $expr2.type == Env.Type.IntType;
42 $type = Env.Type.IntType;
43 }
44 |
45 // Remaining expression forms omitted for brevity
46 . . .

In line 9, we use a new symbol, exitScope, to exit the scope by means of a side
effect. In the original formulation of the AG, there is no counterpart because the
basic formalism is free of side effects. In various semantic actions, for example, in
lines 12 and 15, we adapt a global attribute ok, as declared in line 4, to communicate
condition failures, if any.

The use of global attributes may be acceptable if the technology-defined order of
executing semantic actions and thus the order of side effects on the global attributes
are easily understood to be correct. We mention in passing here that there exist
AG extensions that aim at avoiding laborious computational “copy rules” in a more
declarative manner [24, 33, 5].

We need a concrete realization of environments, as accessed within the condi-
tions and computational rules. That is, we assume a corresponding type Env, as
implemented below. We assume here again that ANTLR is used together with Java.
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Illustration 12.16 (The environment for checking block structure)

Java source code org/softlang/eipl/Env.java

import java.util.Stack;
import java.util.HashMap;

public class Env {
public enum Type { NoType, IntType, BoolType }
private abstract class Entry { String id; }
private class VarEntry extends Entry { Type ty; }
private class ProcEntry extends Entry { }
private Stack<HashMap<String, Entry>> stack = new Stack<>();
public void enterScope() { stack.push(new HashMap<>()); }
public void exitScope() { stack.pop(); }
public boolean noClash(String id) { return !stack.peek().containsKey(id.intern()); }
public void addVar(String id, Type ty) {

VarEntry entry = new VarEntry();
entry.ty = ty;
stack.peek().put(id.intern(), entry);

}
public void addProc(String id) { stack.peek().put(id.intern(), new ProcEntry()); }
public boolean isVar(String id) { return chase(id.intern()) instanceof VarEntry; }
public boolean isProc(String id) { return chase(id.intern()) instanceof ProcEntry; }
public Type getType(String id) {

Entry entry = (VarEntry) chase(id.intern());
return entry instanceof VarEntry ? ((VarEntry) entry).ty : Type.NoType;

}
private Entry chase(String id) {

Entry entry = null;
for (HashMap<String, Entry> map : stack)

if (map.containsKey(id)) {
entry = map.get(id);
break;

}
return entry;

}
}

In particular, lexical scopes are maintained as a stack of hash-maps – one hash-
map per scope. Variables and procedures are searched for in the environment by a
stack traversal, i.e., starting at the top of the stack, which is the current scope.

The present section is summarized by means of a recipe.

Recipe 12.2 (Design of an attribute grammar).

Syntax Define the underlying syntax, typically, by means of a context-free
grammar. (Tree grammars may be used instead of context-free grammars,
for example, in the form of algebraic data types in a functional program

http://github.com/softlang/yas/tree/springer/languages/EIPL/ANTLR/org/softlang/eipl/Env.java
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encoding.) In this manner, we can already separate valid inputs from in-
valid inputs, subject to implementing the grammar as a syntax checker
(Recipe 2.5).

Test cases Set up test case for the AG. In particular, a positive test case con-
sists of a valid input and the expected output which is to be modeled even-
tually as a dedicated attribute of the start symbol.

Attributes Associate the grammar symbols with attributes (their names and
types), thereby expressing what sort of information should be available at
what sort of node in the parse tree. Mark the attributes as either synthesized
or inherited, in accordance with attribute dependencies.

Computations and conditions Define computational rules for each context-
free grammar rule, all synthesized attributes of the left-hand side nonter-
minal and all inherited attributes of the right-hand side nonterminals. If
necessary, impose additional conditions on the attributes. (At this point,
one may need to commit to a particular AG system or to an encoding of the
AG, for example, as a functional program.)

Testing Test attribute evaluation in terms of the test cases. This may also
entail parsing.

12.3 Multi-Stage Programming

Multi-stage programming is a style of metaprogramming that is particularly use-
ful for program generation, i.e., for writing programs that generate programs or
parts thereof at compile time or runtime. A “stage” is essentially a point in time at
which programs or parts thereof are compiled, generated, or evaluated, i.e., compile
time versus runtime versus different stages at runtime [78, 76, 77]. We focus here
on compile-time metaprogramming as a form of multi-stage programming, which
means that parts of the program are executed at compile time to compute and com-
pile additional parts of the program (again at compile time).

The motivation for multi-stage programming is often performance in the pres-
ence of using more or less advanced abstraction mechanisms. In a simple case,
program generation may help to inline function applications for arguments that are
known at compile time, as we will demonstrate below. In a more advanced case, pro-
gram generation may help with providing domain-specific concepts in a performant
and possibly type-safe manner.

Multi-stage programming is clearly a form of metaprogramming, as a multi-
stage program is essentially a program generator with the metalanguage and the
object language being the same language. (In reality, the language of generated code
may be restricted compared with the full metalanguage.) Multi-stage programming
language extensions do not just strive for syntactically correct generated code, but
name-binding and typing rules may also be guaranteed (more or less) statically.
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12.3.1 Inlining as an Optimization Scenario

In the sequel, we briefly demonstrate multi-stage programming in terms of Haskell’s
Template Haskell extension [69] for compile-time metaprogramming. We discuss
a very simple scenario – essentially, programmatic inlining of recursive function
applications. Template Haskell has seen many uses, especially also in the context of
optimizations for DSLs [67].

Consider the recursive function definition as follows.

Illustration 12.17 (A power function)

Haskell module Power

power :: Int→ Int→ Int
power n x =

if n==0
then 1
else x * power (n−1) x

Now assume that within some part of our program, we need the exponent 3 time
and again. We may even define a dedicated application of the power function and
use it as illustrated below:

Interactive Haskell session:

I let power3 = power 3
I power3 3
27
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I power3 4
64

Alas, the overhead of applying the recursively defined power function is incurred,
even for applications of power3 unless we imagine a Haskell compiler that somehow
decides to inline recursive function applications in some way. Multi-stage program-
ming allows us to express explicitly that nonrecursive code is to be generated on the
basis of the known exponent.

12.3.2 Quasi-Quotation and Splicing

In Template Haskell, we may define a variation on the power function which is
recursive at compile time, and generates nonrecursive code for a fixed first argument,
as shown below.

http://github.com/softlang/yas/tree/springer/samples/Haskell/Power.hs
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Illustration 12.18 (A staged power function)

Haskell module UntypedPower

power :: Int→ Q Exp→ Q Exp
power n x =

if n==0
then [| 1 |]
else [| $x * $(power (n−1) x) |]

mk_power :: Int→ Q Exp
mk_power n = [| λ x→ $(power n [| x |]) |]

Notice that the structure of the code is very similar to the original power function.
There is an additional function, mk_power, that we will explain in a second. The
following elements of multi-stage programming are at play:

• We use quasi-quote brackets [| · · · |] (or Oxford brackets) to quote Haskell code,
thereby expressing that the corresponding expression evaluates to code. For in-
stance, for the base case of power we simply return the code 1.

• Within the brackets, we use splicing $( · · · ) to insert code that is computed when
the quasi-quoted code is constructed. For instance, for the recursive case of the
power function, we insert the code returned by the recursive application of the
code-generating function.

• We use the quotation monad Q in places where we compute code. This monad
takes care of fresh-name generation, reification (program inspection), and error
reporting.

• The type Exp stands for “Haskell expressions”. By using the quasi-quote brack-
ets, we enter a scope in which Haskell expressions are constructed (in fact, “com-
puted”) as results.

The additional function mk_power serves the purpose of applying power to an ac-
tual exponent. A lambda abstraction is constructed to receive the missing argument
x; the body of the function splices in the code generated for a given exponent n. Here
is a demonstration where we apply the generated function and inspect the generated
code for clarity:

Interactive Haskell session:

I let power3 = $(mk_power 3)
I power3 3
27
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I power3 4
64
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I runQ (mk_power 3) >>=putStrLn . pprint
λ x_0→ x_0 * (x_0 * (x_0 * 1))

http://github.com/softlang/yas/tree/springer/samples/Haskell/UntypedPower.hs
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At the last prompt, we use the “run” function of Template Haskell’s quotation
monad (i.e., runQ) to actually perform code generation in the Haskell session, and
we pretty print the code, as shown. The generated code clearly conveys that the
recursive definition of the power function was unfolded three times, ending in the
base case.

Exercise 12.9 (Fine-tuning the code generator) [Intermediate level]
The generated code clearly involves an unnecessary multiplication with “1” at the
right end of the multiplication. It is reasonable to expect that the compiler may
take care of this by implementing a unit law for multiplication. However, whether
or not a particular compiler optimization is available and applicable is generally
a complicated matter. So we might prefer to make the code generator avoid the
unnecessary multiplication in the first place. Adjust the generator accordingly so
that it returns this code instead:

λ x_0→ x_0 * (x_0 * x_0)

12.3.3 More Typeful Staging

Arguably, the staged code discussed above lacks some important type information
that might be valuable for a user of the code generator and helpful in type check-
ing. Most notably, the revised power function takes an argument of type Exp and its
result is of type Exp too. Thus, we neither document nor enforce the condition that
the power function operates on Ints. Template Haskell also provides a more typeful
model such that we can track the expected type of Haskell expressions, as demon-
strated below.

Illustration 12.19 (A more typefully staged power function)

Haskell module TypedPower

1 power :: Int→ Q (TExp Int)→ Q (TExp Int)
2 power n x =
3 if n==0
4 then [|| 1 ||]
5 else [|| $$x * $$(power (n−1) x) ||]
6

7 mk_power :: Int→ Q (TExp (Int→ Int))
8 mk_power n = [|| λ x→ $$(power n [|| x ||]) ||]

That is, we use the type constructor TExp (lines 1 and 7) instead of Exp, thereby
capturing the expected type of expression. The power function is more clearly typed
now in that it takes an Int and code that evaluates to an Int; the function returns code

http://github.com/softlang/yas/tree/springer/samples/Haskell/TypedPower.hs
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that evaluates to an Int (i.e., the actual expression for computing the power). We use
“typed” quasi-quote brackets [|| · · · ||] (e.g., in line 4) and “typed” splices $$( · · · )
(e.g., in line 5). Other than that, the program generator remains unchanged, and it
can be also used in the same manner as before. Incorrect uses would be caught by
the type system at the time of checking the quasi-quotes in the staged abstractions,
i.e., even before applying the staged abstractions.

In staging, as much as in using macro systems, one needs to be careful about
unintended name capture so that names from the generated code do not interfere in
an unintended manner with other names in scope, thereby giving rise to a notion of
hygiene [1].

Staging does not need to involve systematic quasi-quotation and splicing, as
demonstrated by the “Scala-Virtualized” approach [64]. In this approach, overload-
ing is used in a systematic manner so that the transition between regular code and
quoted code (“representations”) is expressed by type annotations. This idea, which
relies on some Scala language mechanisms, was fully developed in the body of work
on LMS (Lightweight Modular Staging) with applications of staging for the bene-
fit in performance across different domains [63, 74, 30, 38], for example, database
queries or parsing.

This concludes our brief discussion of multi-stage programming. There exist dif-
ferent language designs that support multi-stage programming. In a simple case,
macro systems may be used for program generation. In the case of the language
C++, its template system caters for a form of multi-stage programming, i.e., tem-
plate metaprogramming [84, 70, 59]. We have exercised Template Haskell [69],
thereby taking advantage of dedicated language support multi-stage programming,
including means of quotation and splicing. MetaML [79], MetaOCaml [54, 35], and
Helvetia [62] also provide such support. There exists scholarly work comparing or
surveying approaches in a broader context [15, 61, 19, 72].

Exercise 12.10 (A recipe for multi-stage programming) [Intermediate level]
Describe a recipe for the design of a multi-stage program (Recipe 12.3). Aim at
adopting the style for recipes used elsewhere in this book. In particular, you may
consult Recipe 12.4 for inspiration, as it is concerned with the problem of partial
evaluation, which is closely related to multi-stage programming. In the view of the
breadth of the field of multi-stage programming, as indicated by the discussion of
related work above, you are advised to focus your recipe on the kind of optimization
that we demonstrated above.
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Recipe 12.3 (Design of a multi-stage program). See Exercise 12.10.

12.4 Partial Evaluation

Partial evaluation2 is a style of metaprogramming where a program is systematically
“refined” on the basis of partially known program input so that a partially evaluated
(specialized) program is computed; the primary objective is optimization [27, 22].
Partial evaluation is based essentially on one simple idea: evaluate (execute) a pro-
gram to the extent possible for incomplete input. The result of partial evaluation is
a specialized program, also referred to as a residual program.

Partial evaluation has applications in, for example, modeling [81], model-driven
development [68], domain-specific language engineering [26], generic program-
ming [53], and optimization of system software [55]. The technique of partial eval-
uation is particularly useful and well understood when the program is an interpreter
and the partially known program input is the program to be interpreted. In this case,
one gets essentially a compiler.

We introduce partial evaluation (or program specialization) by means of writing
a simple partial evaluator for a simple, pure, first-order, functional programming
language. In particular, we will show that the partial evaluator can be derived as
a variation on a compositionally defined interpreter. The style of partial evaluator
developed here is called an online partial evaluator because it makes decisions about
specialization as it goes, based on whatever variables are in the environment at a
given point during evaluation [27]. (An offline partial evaluator performs a static
analysis of the program to decide which variables will be considered known versus
unknown.)

12.4.1 The Notion of a Residual Program

We pick up essentially the same example that we studied in the context of multi-
stage programming, i.e., the application of the power function with a known ex-
ponent. However, this time around, we separate the metalanguage and the object
language: Haskell versus a “fabricated” functional language (BFPL). That is, we
use an object program as follows.

2 Acknowledgment and copyright notice: This section is derived from a tutorial paper, jointly
written with William R. Cook [8], who has kindly agreed to the material being reused in this book.
The tutorial was published by EPTCS, subject to the rule that copyright is retained by the authors.
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Illustration 12.20 (A power function and an application thereof)

BFPL resource languages/BFPL/samples/power.bfpl

power :: Int −> Int −> Int
power n x =

if (==) n 0
then 1
else (*) x (power ((−) n 1) x)

main = print $ power 3 2 −− Prints 8

Now let us suppose that only the value of the exponent is given, while the base
remains a variable. A partial evaluator should return the following code:

(*) x ((*) x ((*) x 1))

In infix notation:

x * x * x * 1

That is, partial evaluation should specialize the program such that the recursive
function is essentially inlined as many times as needed for the different exponents
encountered recursively. In contrast to multi-stage programming, we do not want
to “instrument” the power function in any way (by quasi-quotation and such); in-
stead, inlining should be triggered by setting the corresponding function argument
to unknown.

We use Haskell as the meta-language for implementing the partial evaluator. We
take advantage of the fact that we have already implemented an interpreter for the
object language (BFPL) in Haskell in Section 5.1.3. The power function is easily
represented as a Haskell term as shown below.

Illustration 12.21 (The power function in abstract syntax)

Haskell module Language.BFPL.Samples.Power

power :: Function
power = (

"power",
(([IntType, IntType], IntType),
(["n", "x"],

If (Binary Eq (Arg "n") (IntConst 0))
(IntConst 1)
(Binary Mul

(Arg "x")
(Apply "power" [Binary Sub (Arg "n") (IntConst 1), Arg "x"])))))

This is the signature of a regular interpreter function (Illustration 5.8):

http://github.com/softlang/yas/tree/springer/languages/BFPL
http://github.com/softlang/yas/tree/springer/languages/BFPL/samples/power.bfpl
http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Samples/Power.hs
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eval :: Program→ Value

A “total evaluator” can handle applications of the power function only if the ar-
guments denote values; evaluation fails if missing arguments are dereferenced:

Interactive Haskell session:

I eval ([power], (Apply "power" [IntConst 3, IntConst 2]))
Left 8
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I eval ([power], (Apply "power" [IntConst 3, Arg "x"]))
*** Exception: ...

A partial evaluator is similar to an interpreter, but it returns residual code instead
of values. For now, we assume a simple scheme of partial evaluation such that a
residual expression is returned:

peval :: Program→ Expr

A partial evaluator agrees with a total evaluator, i.e., a regular interpreter, when
values for all arguments are provided. However, when an argument is a variable
without binding in the environment, some operations cannot be applied, and they
need to be transported into the residual code:

Interactive Haskell session:

I peval ([power], (Apply "power" [IntConst 3, IntConst 2]))
IntConst 8
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I peval ([power], (Apply "power" [IntConst 3, Arg "x"]))
Binary Mul (Arg "x") (Binary Mul (Arg "x") (Binary Mul (Arg "x") (IntConst 1)))

12.4.2 Interpretation with Inlining

Let us implement the envisaged partial evaluator by enhancing a regular interpreter
with inlining. In principle, the approach presented here works for any interpreter
following the scheme of, more or less closely, big-step operational or denotational
semantics.

Illustration 12.22 (An interpreter with inlining of function applications)

Haskell resource languages/BFPL/Haskell/Language/BFPL/Inliner.hs

1 type Env = Map String Expr
2

3 peval :: Program→ Expr
4 peval (fs, e) = f e empty

http://github.com/softlang/yas/tree/springer/languages/Haskell
http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Inliner.hs
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5 where
6 f :: Expr→ Env→ Expr
7 f e@(IntConst _) _ = e
8 f e@(BoolConst _) _ = e
9 f e@(Arg x) env =

10 case Data.Map.lookup x env of
11 (Just e')→ e'
12 Nothing→ e
13 f (If e0 e1 e2) env =
14 let
15 r0 = f e0 env
16 r1 = f e1 env
17 r2 = f e2 env
18 in
19 case toValue r0 of
20 (Just (Right bv))→ if bv then r1 else r2
21 Nothing→ If r0 r1 r2
22 f (Unary o e) env =
23 let r = f e env
24 in case toValue r of
25 (Just v)→ fromValue (uop o v)
26 _→ Unary o r
27 f (Binary o e1 e2) env = ...
28 f (Apply fn es) env = f body env'
29 where
30 Just (_, (ns, body)) = Prelude.lookup fn fs
31 rs = map (flip f env) es
32 env' = fromList (zip ns rs)
33

34 −− Attempt extraction of value from expression
35 toValue :: Expr→ Maybe Value
36 toValue (IntConst iv) = Just (Left iv)
37 toValue (BoolConst bv) = Just (Right bv)
38 toValue _ = Nothing
39

40 −− Represent value as expression
41 fromValue :: Value→ Expr
42 fromValue (Left iv) = IntConst iv
43 fromValue (Right bv) = BoolConst bv

The inlining partial evaluator deviates from the regular interpreter as follows:

• The partial evaluator maps expressions to residual expressions, whereas the reg-
ular interpreter maps expressions to values. Values are trivially embedded into
expressions through the constant forms of expressions, subject to the conversions
fromValue and toValue (lines 34–43).

• The partial evaluator uses an environment (line 1) which maps argument names to
expressions, whereas the regular interpreter’s environment maps argument names
to values. This is necessary when function arguments cannot be evaluated com-
pletely and, thus, residual code needs to be passed to the applied function.
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• The cases of the partial evaluator for the different expression forms (lines 7–
32) are systematically derived from the cases of the regular interpreter (Illustra-
tion 5.8) by performing regular evaluation when subexpressions are values and
returning residual code otherwise. The cases are explained one by one as follows:

IntConst/BoolConst A constant is partially evaluated to itself, just like in the
regular interpreter.

Arg An argument is partially evaluated to a value according to the variable’s
binding in the environment, just like in the regular interpreter, if there is a
binding. Otherwise, the variable is partially evaluated to itself; the regular
interpreter fails in this case.

If An if-statement can be eliminated such that one of the two branches is cho-
sen for recursive (partial) evaluation, just like in the regular interpreter, if the
condition is (partially) evaluated to a Boolean value. Partial evaluation fails
for an integer value, just like regular interpretation. If the condition is not par-
tially evaluated to a value, an if-statement is reconstructed from the partially
evaluated branches.

Unary/Binary The corresponding operation is applied to the (partially) evalu-
ated arguments, just like in the regular interpreter, if these are all values. Oth-
erwise, a unary/binary expression is reconstructed from the partially evaluated
arguments.

Apply Partial evaluation involves argument (partial) evaluation, environment
construction, and (partial) evaluation of the body in the new environment,
just like in the regular interpreter – except that expressions for the partially
evaluated arguments are passed in the environment in the case of the partial
evaluator, as opposed to values in the case of the regular interpreter.

The treatment of if-statements and function applications is naive. In particular,
partial evaluation of a function application may diverge, as illustrated by the follow-
ing example:

Interactive Haskell session:

−− Result shown in concrete BFPL/Haskell syntax for clarity
I peval ([power], (Apply "power" [Arg "n", IntConst 2]))
if ((==) n 0)

then 1
else (*) 2 (if ((==) ((−) n 1) 0)

then 1
else (*) 2 (if ((==) ((−) ((−) n 1) 1) 0 ...))

The position with ‘...’ proxies for infinite inlining. That is, in this example, the
function power is applied to a specific base, 2, but the exponent remains a variable,
n. Inlining diverges because the recursive case of power is expanded indefinitely.

Nevertheless, inlining is useful in a relatively well-defined situation. Before we
generalize from inlining to full-fledged program specialization, let us discuss some
variations on inlining by means of exercises.
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Exercise 12.11 (Inlining with pairs) [Intermediate level]
Extend the functional language to support pairs. The following expression forms
should be supported:

data Expr = ...
| Pair Expr Expr −− Construction of a pair
| Fst Expr −− 1st projection
| Snd Expr −− 2nd projection

Another form of type is needed as well:

data Type = ... | PairType Type Type

For instance, a swap function for pairs of ints is defined as follows:

−− Haskell counterpart for comparison
−− swap :: (Int, Int) −> (Int, Int)
−− swap x = (snd x, fst x)
swap :: Function
swap =

( "swap",
( ([PairType IntType IntType], PairType IntType IntType),

("x", Pair (Snd (Arg "x")) (Fst (Arg "x")))
)

)

Extend the regular interpreter to support pairs. To this end, you also need to
extend the type of values. Assume the following variant, which favors a dedicated
algebraic data type over the use of Either:

data Value = IntValue Int | BoolValue Bool | PairValue Value Value

The extended interpreter must support this application:

Interactive Haskell session:

I evaluate ([swap], (Apply "swap" [Pair (IntConst 2) (IntConst 3)]))
PairValue (IntValue 3) (IntValue 2)

Extend the inliner to cover pairs so that it supports this application:

Interactive Haskell session:

I peval ([swap], (Apply "swap" [Pair (Arg "x") (Arg "y")]))
Pair (Arg "y") (Arg "x")
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Exercise 12.12 (Loop unrolling in imperative programs) [Advanced level]
Let us consider partial evaluation in the context of an imperative language. This
exercise is concerned with an optimization which is somewhat similar to function
inlining. The optimization is to unroll loops in an imperative language. Consider
the following imperative program for exponentiation, with base x, exponent n, and
result r:

BIPL resource languages/BIPL/samples/exp-loop.bipl

{
r = 1;
while (n >= 1) {

r = r * x;
n = n − 1;

}
}

Now suppose the exponent is known: n = 3. In the absence of a known base x,
a partial evaluator may still unroll the loop three times, since the loop condition
depends only on n. This unrolling may result in code like this:

BIPL resource languages/BIPL/samples/exp-unrolled.bipl

{
r = 1;
r = r * x;
n = n − 1;
r = r * x;
n = n − 1;
r = r * x;
n = n − 1;

}

A data-flow analysis may determine that the result r does not depend on n and,
thus, all assignments to n may be removed. Such slicing may result in code like this:

BIPL resource languages/BIPL/samples/exp-sliced.bipl

{
r = 1;
r = r * x;
r = r * x;
r = r * x;

}

Implement a partial evaluator for the unrolling part of this optimization.

http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/exp-loop.bipl
http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/exp-unrolled.bipl
http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/exp-sliced.bipl
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12.4.3 Interpreter with Memoization

The proper treatment of recursive functions requires us to synthesize residual pro-
grams instead of just residual expressions. Also, we need to memoize specialization
in a certain way, as we will discuss in a second. We need a partial evaluator of the
following type:

peval :: Program→ Program

The idea here is that the incoming function definitions and the main expression
are specialized such that the resulting main expression refers to specialized function
definitions. A given function definition may be specialized several times depending
on the statically known argument values encountered. For instance, exponentiation
with the exponent 3 would be specialized as follows; the result is shown in Haskell’s
concrete syntax for the sake of readability:

power'a x = x * power'b x
power'b x = x * power'c x
power'c x = x * power'd x
power'd x = 1

The names of the specialized functions are fabricated from the original name by
some qualification scheme to account for disambiguation. Thus, specialized func-
tion definitions have been inferred for all the inductively encountered values 3, 2, 1,
and 0 for the exponent. Subject to an inlining optimization, we obtain the familiar
expression for x to the power 3. The inlining needed here is trivial, in that we would
only inline nonrecursive functions. The “heavy lifting” is due to specialization.

Here is a demonstration of the implemented specializer; it returns the same spe-
cialized program, in abstract syntax.

Interactive Haskell session:

I peval ([power], (Apply "power" [IntConst 3, Arg "x"]))
( [

("power'a", (([IntType], IntType), (["x"],
Binary Mul (Arg "x") (Apply "power'b" [Arg "x"])))),

("power'b", (([IntType], IntType), (["x"],
Binary Mul (Arg "x") (Apply "power'c" [Arg "x"])))),

("power'c", (([IntType], IntType), (["x"],
Binary Mul (Arg "x") (Apply "power'd" [Arg "x"])))),

("power'd", (([IntType], IntType), (["x"],
IntConst 1)))

],
Apply "power'a" [Arg "x"]

)
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Exercise 12.13 (Inlining nonrecursive functions) [Intermediate level]
Implement an analysis (in Haskell) to determine for a given functional (BFPL) pro-
gram the set of names of nonrecursive functions. For instance, all of the above func-
tions power'a, . . . , power'd should be found to be nonrecursive. Hint: This analysis
can be described like this:

• Start from the empty set of nonrecursive functions.
• Repeat the following step as long as new nonrecursive functions are still found:

– Include a function in the set if it only applies functions that are already known
to be nonrecursive. (Thus, initially, a function is included if it does not apply
any function – power'd in our example.)

Complement the analysis for nonrecursive functions to obtain the simple inlining
optimization discussed above.

Let us illustrate how program specialization should handle the diverging exam-
ple that we faced earlier. Program specialization should carefully track argument
lists for which specialization is under way or has been completed. This solves the
termination problem:

Interactive Haskell session:

I peval ([power], (Apply "power" [Arg "n", IntConst 2]))
( [

("power'a", (([IntType], IntType), (["n"],
If (Binary Eq (Arg "n")

(IntConst 0))
(IntConst 1) (Binary Mul

(IntConst 2)
(Apply "power'a" [Binary Sub (Arg "n") (IntConst 1)])))))

],
Apply "power'a" [Arg "n"]

)

Thus, the original definition of power has been specialized such that the argu-
ment position for the statically known base is eliminated. Note that the specialized
function is recursive.

The program specializer is derived from the inliner and thus from the regular
interpreter by making adaptations as described below. Overall, inlining is tamed so
that termination is guaranteed. During inlining (in fact, specialization), specialized
functions are aggregated in a data structure:

peval :: Program→ Program
peval (fs, e) = swap (runState (f e empty) [])

where
f :: Expr→ Env→ State [Function] Expr
...
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The state monad is applied to the result type to aggregate specialized functions along
the way. The environment is of the same type as in the regular interpreter:

type Env = Map String Value

That is, the environment binds variables to values as opposed to expressions, as in
the case of the naive inliner. Thus, the environment only serves to represent stat-
ically known arguments. Statically unknown arguments are preserved within the
definitions of the specialized functions.

The cases for all constructs but function application can be taken from the in-
liner – except that we need to convert to monadic style, which is a simple, sys-
tematic program transformation in itself [43, 20], routinely performed by functional
programmers. Thus, recursive calls to the specializer are not used directly in recon-
structing terms, but their results are sequenced in the state monad. For instance:

f (Binary o e1 e2) env = do
r1← f e1 env
r2← f e2 env
case (toValue r1, toValue r2) of

(Just v1, Just v2)→ return (fromValue (bop o v1 v2))
_→ return (Binary o r1 r2)

It remains to define the case for partial evaluation of function applications; this
case is significantly more complex than in the regular interpreter or the inliner. The
case is presented below.

Illustration 12.23 (Specializing function applications)

Haskell resource languages/BFPL/Haskell/Language/BFPL/Specializer.hs

1 f (Apply fn es) env = do
2 −− Look up function
3 let Just ((ts, t), (ns, body)) = Prelude.lookup fn fs
4 −− Partially evaluate arguments
5 rs← mapM (flip f env) es
6 −− Determine static and dynamic arguments
7 let trs = zip ts rs
8 let ntrs = zip ns trs
9 let sas = [ (n, fromJust (toValue r)) | (n, (_, r))← ntrs, isJust (toValue r) ]

10 let das = [ (n, (t, r)) | (n, (t, r))← ntrs, isNothing (toValue r) ]
11 −− Specialize body
12 let body' = f body (fromList sas)
13 −− Inlining as a special case
14 if null das then body'
15 −− Specialization
16 else do
17 −− Fabricate function name
18 let fn' = fn ++ show sas
19 −−Memoize new residual function, if necessary
20 fs'← get
21 when (isNothing (Prelude.lookup fn' fs')) (do

http://github.com/softlang/yas/tree/springer/languages/Haskell
http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Specializer.hs
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22 −− Create placeholder for memoization
23 put (fs' ++ [(fn', undefined)])
24 −− Partially evaluate function body
25 body''← body'
26 −− Define residual
27 let r = ((map (fst . snd) das, t), (map fst das, body''))
28 −− Replace placeholder by actual definition
29 modify (update (const r) fn'))
30 −− Apply the specialized function
31 return (Apply fn' (map (snd . snd) das))

Here the following steps are performed:

1. The applied function is looked up (lines 2–3) and the arguments are evaluated
(lines 4–5), just like in the regular interpreter. As a reminder, the list of function
declarations is an association list mapping function names to lists of argument
types ts, the result type t, argument names ns, and the body.

2. The partially evaluated arguments are partitioned into static arguments sas and
dynamic arguments das (lines 6–10). Static arguments are values; dynamic argu-
ments exercise other expression forms.

3. The body of the specialized function is obtained by partially evaluating the orig-
inal body in the variable environment of the static variables (lines 11–12). In
fact, we use a let-binding; the actual specialization needs to be demanded in a
monadic computation (lines 14 and 25).

4. If there are no dynamic arguments, we switch to the behavior of the interpreter
by (partially) evaluating the body of the applied function (lines 13–14).

5. The “identity” (name) of the specialized function is derived by concatenating the
name of the applied function and the string representation of the actual values of
the static arguments (lines 17–18); see Exercise 12.14 for a discussion of naming.

6. We need to remember (memoize) function specializations so that a function is not
specialized again for the same static arguments, thereby guarding against infinite
inlining (lines 19–29).

7. In order to deal with recursion, it is important that the specialized function has
already been added to the state before its body is obtained so that it is considered
known during specialization. To this end, an undefined function, except for the
name, is initially registered as a placeholder (lines 22–23), to be updated later
(lines 28–29).

8. The argument list of the specialized function (the “residual”) includes only vari-
ables for the dynamic positions (lines 26–27). The specialized function is ul-
timately applied to the dynamic arguments; the expression for that application
serves as the result of partial evaluation (lines 30–31).

Exercise 12.14 (Readable function names) [Intermediate level]
In the illustration of the specializer, we used readable names for the specialized
functions, power'a, . . . , power'd, in the specialized program. The actual implementa-
tion applies a rather crude approach to memoization:
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let fn' = fn ++ show sas

That is, it uses the string representation of the list of static arguments as part of the
fabricated function name. For instance, power'a would be rendered as "power[(\"n\",
Left 3)]". Revise the specializer so that readable (short) function names, as assumed
in the illustration, are indeed fabricated.

As a hint at a more interesting partial evaluation scenario, consider the follow-
ing problem related to the language of finite state machines (FSML), as discussed
in detail in Chapter 2. We would like to apply partial evaluation in the context of
model-driven development such that partial evaluation of a model interpreter for
a statically known model (an FSM) provides us with a code generator. That is, a
program specializer, when applied to the model interpreter with a static FSM and a
dynamic event sequence, creates essentially a compiled version of the model [21].
The tutorial notes [8] describe the development of a sufficiently powerful specializer
for an FSML-like interpreter.

The present section is summarized by means of a recipe.

Recipe 12.4 (Design of a partial evaluator).

Interpreter Pick a regular interpreter (Recipe 5.1) from which to start.
Test cases Set up test cases for the partial evaluator. A positive test case

consists of a program (to be partially or totally evaluated), the input of the
program, the partitioning thereof in terms of what parts are known versus
unknown to the partial evaluator, the output of the program, and the par-
tially evaluated program.

Code domains Extend the domains used by the regular interpreter, specifi-
cally those for results, to be able to represent code.

Code generation Complement the regular interpreter by extra cases that
cover unknown input (“dynamic variables”). That is, when subexpressions
cannot be evaluated to apply the regular interpreter’s operations (e.g., if-
then-else or addition), the corresponding expression is reconstructed from
the recursively specialized subexpressions. Memoization is needed to avoid
infinite code generation.

Testing Validate each test case as follows: the regular interpreter computes
the expected output from the given program and the input; the partial evalu-
ator computes the partially evaluated program from the given program and
the part of the input known to the partial evaluator; and the regular inter-
preter computes the expected output from the partially evaluated program
and the remaining input.
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12.5 Abstract Interpretation

Abstract interpretation is a semantics-based technique for program analysis. The
expectation is that any such analysis will soundly predict the runtime behavior at
some level of abstraction. We will describe two analyses by abstract interpretation:
a form of type checking (Chapter 9), and “sign detection” for program variables to
be used in program optimization. We will use denotational semantics or denotational
style interpreters (Chapter 11) as a starting point for abstract interpreters, because
the underlying compositional scheme of mapping syntax to semantics makes it easy
to replace systematically the semantic domains of a standard semantics and the cor-
responding combinators by versions that serve the purpose of a specific program
analysis.

12.5.1 Sign Detection as an Optimization Scenario

We would like to optimize imperative programs on the basis of knowing just the
signs but not the precise values of some program variables. Here we assume that
signs may be determined by a static analysis for “sign detection”. The following
program is amenable to such an optimization.

Illustration 12.24 (A program with an optimization opportunity)

BIPL resource languages/BIPL/samples/abs.bipl

{
. . .
y = x * x + 42;
if (y < 0)

y = −y;
. . .

}

The basic laws of arithmetic suggest that the variable y in this program must
be positive by the time it is tested by the condition of the if-statement. Thus, the
condition must evaluate to false, which implies that the then-branch will never be
executed. On the basis of such a static analysis, i.e., without knowing the exact input
x, the program could be optimized. In this example, we consider the signs Pos, Neg,
and Zero of variables in the program as properties of interest for abstract interpreta-
tion. Compare this with the standard semantics, where we care about actual numbers
stored in variables. We can calculate on signs pretty much like on numbers, as illus-
trated by the following function tables for the arithmetic and comparison operators
on signs:

http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/abs.bipl
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∗ Neg Zero Pos ?

Neg Pos Zero Neg ?
Zero Zero Zero Zero Zero
Pos Neg Zero Pos ?
? ? Zero ? ?

+ Neg Zero Pos ?

Neg Neg Neg ? ?
Zero Neg Zero Pos ?
Pos ? Pos Pos ?
? ? ? ? ?

< Neg Zero Pos ?

Neg ? True True ?
Zero False False True ?
Pos False False ? ?
? ? ? ? ?

In these tables, we use “?” to denote that the sign or truth value of an operand
or result has not been assigned. For the program in Illustration 12.24, we can assign
sign Pos to y because, for all possible signs of x, the result of x*x has sign Pos or
Zero and thus the addition of 42 implies sign Pos for x*x+42. Hence, the condition
must evaluate to False and the code in the then-branch is dead.

Abstract interpretation has found many application areas; see, for example, [13]
for an application to refactoring and [12] for an application to grammar analysis
and parsing. This section relies completely on representing abstract interpretation
in Haskell, as opposed to using any semiformal notation for semantics or analysis.
The development will be cursory and pragmatic overall. A thorough development
can be found elsewhere [58, 57]. Also, Cousot & Cousot’s line of seminal work on
the subject may be consulted; see [11] for their first paper on the subject.

12.5.2 Semantic Algebras

An abstract interpreter can be seen as a variation on a regular interpreter where
semantic domains and combinators are defined differently. In order to be able to ex-
plore such a variation in an effective manner, we revise a denotational interpreter so
that it is parameterized in the semantic domains and combinators. This is done here
for an imperative programming language (BIPL) and its direct-style denotational
semantics.

That is, we aim at factoring out the algebra (an abstract data type) of meanings;
we use the term “semantic algebra”. We begin by identifying the corresponding
signature as shown below.

Illustration 12.25 (Signature of semantic algebras)

Haskell module Language.BIPL.Algebra.Signature

−− Aliases to shorten function signatures
type Trafo sto = sto→ sto −− Store transformation
type Obs sto val = sto→ val −− Store observation
−− The signature of algebras for interpretation
data Alg sto val = Alg {

skip' :: Trafo sto,
assign' :: String→ Obs sto val→ Trafo sto,
seq' :: Trafo sto→ Trafo sto→ Trafo sto,
if’ :: Obs sto val→ Trafo sto→ Trafo sto→ Trafo sto,
while' :: Obs sto val→ Trafo sto→ Trafo sto,
intconst' :: Int→ Obs sto val,

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Algebra/Signature.hs
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var' :: String→ Obs sto val,
unary' :: UOp→ Obs sto val→ Obs sto val,
binary' :: BOp→ Obs sto val→ Obs sto val→ Obs sto val

}

That is, the signature is defined as a record type Alg. The record type carries one
member for each language construct. There are type parameters sto and val for stores
and values. These type parameters enable different type definitions for concrete and
abstract interpreters and, in fact, for different abstract interpreters implementing dif-
ferent program analyses.

Given an actual algebra of the signature, an interpreter (an analysis) can be de-
fined by simply recursing into program phrases and combining the intermediate
meanings according to the operations of the algebra, as shown below.

Illustration 12.26 (The compositional scheme)

Haskell module Language.BIPL.Algebra.Scheme

interpret :: Alg sto val→ Stmt→ sto→ sto
interpret a = execute

where
−− Compositional interpretation of statements
execute Skip = skip' a
execute (Assign x e) = assign' a x (evaluate e)
execute (Seq s1 s2) = seq' a (execute s1) (execute s2)
execute (If e s1 s2) = if’ a (evaluate e) (execute s1) (execute s2)
execute (While e s) = while' a (evaluate e) (execute s)
−− Compositional interpretation of expressions
evaluate (IntConst i) = intconst' a i
evaluate (Var n) = var' a n
evaluate (Unary o e) = unary' a o (evaluate e)
evaluate (Binary o e1 e2) = binary' a o (evaluate e1) (evaluate e2)

The interpreter is equivalent to the earlier direct-style denotational interpreter
(Illustration 11.2), except that the semantic combinators are not functions in scope,
but instead are looked up as record components from the argument algebra a. Thus,
interpretation is completely parametric at this stage.

12.5.3 Concrete Domains

The “standard semantics” can now be simply represented as a specific algebra – a
record; we also speak of “concrete domains”. The record components, as shown be-
low, directly correspond to the top-level functions modeling semantic combinators,
as defined in the underlying denotational interpreter (Illustration 11.3).

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Algebra/Scheme.hs
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Illustration 12.27 (An algebra for interpretation)

Haskell module Language.BIPL.Algebra.StandardInterpreter

1 type Value = Either Int Bool
2 type Store = Map String Value
3 algebra :: Alg Store Value
4 algebra = a where a = Alg {
5 skip' = id,
6 assign' = λ n f m→ insert n (f m) m,
7 seq' = flip (.),
8 if’ = λ f g h m→ let (Right b) = f m in if b then g m else h m,
9 while' = λ f g→ fix (λ x→ if’ a f (seq' a g x) (skip' a)),

10 intconst' = λ i→ const (Left i),
11 var' = λ n m→ m!n,
12 unary' = λ o f m→
13 case (o, f m) of
14 (Negate, Left i)→ Left (negate i)
15 (Not, Right b)→ Right (not b),
16 binary' = λ o f g m→ ...
17 }

Thus, the algebra commits to the sum of Int and Bool for values (line 1), and to
maps from strings to values for stores (line 2), and it designates the usual operations
for combining meanings. For instance, if-statements are eventually handled by a
dispatch on a condition’s two possible values, True and False (line 8).

12.5.4 Abstract Domains

An abstract interpretation devises abstract domains to analyze programs statically,
as opposed to a description of the precise semantics in terms of its so-called con-
crete domains. For instance, an abstract interpretation for type checking would use
abstract domains as follows:

data Type = IntType | BoolType −− Instead of values
type VarTypes = Map String Type −− Instead of stores

That is, abstract interpretation should compute variable-to-type maps as opposed
to proper stores, i.e., variable-to-value maps. The idea is then that the semantic com-
binators on abstract domains are defined similarly to those for the concrete domains.
In algebraic terms, we use (chain-) complete partial orders (CCPO or CPO). An ab-
stract interpretation for sign detection would use abstract domains as follows:

data Sign = Zero | Pos | Neg | BottomSign | TopSign
data CpoBool = ProperBool Bool | BottomBool | TopBool
type Property = Either Sign CpoBool
type VarProperties = Map String Property

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Algebra/StandardInterpreter.hs
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The key type is Sign, with constructors Zero, Pos, Neg for different signs of num-
bers. The type abstracts from the Int type used in the standard interpreter. The type
Sign features additional constructors BottomSign and TopSign as least and greatest
elements, which are needed for technical reasons. BottomSign (⊥) proxies for the
analysis not having identified the sign yet. TopSign (>) proxies for the analysis hav-
ing failed to identify the sign. The type CpoBool adds least and greatest elements to
Haskell’s Bool. The type Property is a sum over Sign and CpoBool, and it thus ab-
stracts from Value as a sum over Int and Bool in the standard interpreter. The type
VarProperties abstracts from Store in the concrete interpreter, i.e., it maps variables
to abstract values (“properties”) rather than concrete values.

Let us take a closer look at the abstract domain for signs. We provide an imple-
mentation as follows.

Illustration 12.28 (Signs of numbers)

Haskell module Data.CPO.Sign

1 data Sign = Zero | Pos | Neg | BottomSign | TopSign
2

3 instance Num Sign
4 where
5 fromInteger n
6 | n > 0 = Pos
7 | n < 0 = Neg
8 | otherwise = Zero
9

10 TopSign + _ = TopSign
11 _ + TopSign = TopSign
12 BottomSign + _ = BottomSign
13 _ + BottomSign = BottomSign
14 Zero + Zero = Zero
15 Zero + Pos = Pos
16 ...
17

18 instance CPO Sign where
19 pord x y | x == y = True
20 pord BottomSign _ = True
21 pord _ TopSign = True
22 pord _ _ = False
23 lub x y | x == y = x
24 lub BottomSign x = x
25 lub x BottomSign = x
26 lub _ _ = TopSign
27

28 instance Bottom Sign where
29 bottom = BottomSign

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/CPO/Sign.hs
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Fig. 12.5 Two options for an abstract domain of signs.

The excerpts given here illustrate the following aspects of signs:

• Signs are “abstract” numbers; Haskell’s library type class Num is instantiated for
type Sign (lines 3–16), paralleling the standard instance for type Int. The type-
class member fromInteger (lines 5–8) is the explicit manifestation of abstraction:
integers are mapped to signs. Further, we hint at the addition operation on signs
(lines 10–15). Several other operations on signs have been omitted for brevity.

• Signs form a partial order, and there are least and greatest elements; see the in-
stances of dedicated type classes CPO and Bottom (lines 18–29). In Fig. 12.5, we
show two options for a partial order on signs with different degrees of precision;
the algebraic data type shown earlier corresponds to the less precise option on
the left. We use Hasse diagrams for illustration. The idea is that the least element
⊥ is the initial element for any sort of approximative, fixed point-based analysis
(see below for details), whereas the greatest element > is the indicator of failure
of analysis. We show two options for the abstract domain of signs in the figure
because we want to indicate that one can make a trade-off in abstract interpreta-
tion or program analysis more generally, in terms of precision of results versus
time and space complexity required.

For an abstract interpretation to be sound with regard to a given standard seman-
tics and to enable effective computation of uniquely defined fixed points, various
properties have to be satisfied by the abstract domains [57, 73], which we mention
here only in passing. In general, abstract domains need to define chain-complete
partial orders (ccpos). Further, there also needs to be a mapping from concrete to
abstract domains (see fromInteger above) such that partial orders are preserved and
homomorphisms are defined, i.e., mapping concrete values to abstract values and
then combining abstract values with the abstract semantic combinators equals com-
bining concrete values and mapping the result.

Exercise 12.15 (More discriminative signs) [Basic level]
Implement the more precise option shown in Fig. 12.5.
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12.5.5 Examples of Abstract Interpreters

Let us work out the abstract interpreters for type checking and sign detection.

12.5.5.1 A Type-Checking Interpreter

The interpreter needs to compute types instead of values for expressions, and it
computes variable-type pairs (in fact, a map) for statements. Clearly, type checking
can fail, which happens when the given program or some phrase of it does not type-
check. As discussed earlier (Chapter 9), we do not want the type checker to “throw”
in the Haskell sense. Instead, we expect to observe failure of type checking on the
basis of wrapping the result types of the type checker in the Maybe monad.

Here is how we expect to use the type checker:

Interactive Haskell session:

I interpret TypeChecker.algebra euclideanDiv (fromList [("x", IntType), ("y", IntType)])
Just (fromList [("q", IntType), ("r", IntType), ("x", IntType), ("y", IntType)])

That is, we type-check the sample program for Euclidean division We supply
enough type context for the arguments x and y. Type checking infers that the pro-
gram variables q and r are of type IntType.

The simple signature introduced above (Illustration 12.25) does not give us con-
trol to add Maybe to the result types in semantic domains. We need a more general,
monadic signature as follows:

Illustration 12.29 (Monadic semantic algebras)

Haskell module Language.BIPL.MonadicAlgebra.Signature

−− Aliases to shorten function signatures
type Trafo m sto = sto→ m sto −− Store transformation
type Obs m sto val = sto→ m val −− Store observation
−− The signature of algebras for interpretation
data Alg m sto val = Alg {

skip' :: Trafo m sto,
assign' :: String→ Obs m sto val→ Trafo m sto,
seq' :: Trafo m sto→ Trafo m sto→ Trafo m sto,
...

}

That is, the type synonyms Trafo and Obs at the top (lines 1–2) for transformers
and observers wrap the result in a type constructor m. The compositional scheme
for monadic algebras is the same as for non-monadic ones (Illustration 12.26). We
define an algebra for type checking as follows.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/MonadicAlgebra/Signature.hs
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Illustration 12.30 (An algebra for type checking)

Haskell module Language.BIPL.MonadicAlgebra.TypeChecker

1 data Type = IntType | BoolType
2 type VarTypes = Map String Type
3 algebra :: Alg Maybe VarTypes Type
4 algebra = Alg {
5 skip' = Just,
6 assign' = λ x f m→ f m >>=λ t→
7 case lookup x m of
8 (Just t')→ guard (t==t') >> Just m
9 Nothing→ Just (insert x t m),

10 seq' = flip (<=<),
11 if’ = λ f g h m→ do
12 t← f m
13 guard (t==BoolType)
14 m1← g m
15 m2← h m
16 guard (m1==m2)
17 Just m1,
18 while' = λ f g m→ do
19 t← f m
20 guard (t==BoolType)
21 m'← g m
22 guard (m==m')
23 Just m,
24 intconst' = const (const (Just IntType)),
25 var' = λ x m→ lookup x m,
26 unary' = λ o f m→ f m >>=λ t→
27 case (o, t) of
28 (Negate, IntType)→ Just IntType
29 (Not, BoolType)→ Just BoolType
30 _→ Nothing,
31 binary' = λ o f g m→ ...
32 }

We discuss the first few record components as follows:

skip′ The transformer returns the given variable-type map as is (line 5).
assign′ The right-hand side expression is type-checked and its type, if any, is

bound to t (line 6). The variable-type map m is consulted to see whether or not
the left-hand side variable x has an associated type (line 7). If there is a type, it
must be equal to t (line 8); otherwise, the map is adapted (line 9).

seq′ Flipped monadic function composition composes type checking for the two
statements (line 10).

if′ The condition is type-checked and its type, if any, is bound to t (line 12); the
guard checks that t equals BoolType (line 13). The then- and else-branches are
type-checked for the same input map m and the result maps, if any, are bound
to m1 and m2 (lines 14–15). The two maps are checked to be equal; this is one

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/MonadicAlgebra/TypeChecker.hs
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sound option for if-statements (Section 9.7.1) (line 16), and either of them (in
fact, m1) is finally returned (line 17).

Exercise 12.16 (Fixed-point semantics of while-loops) [Basic level]
Why does the semantic combinator while' for type checking not involve a fixed-point
computation, whereas it does in the case of standard semantics?

Exercise 12.17 (Algebras with monadic binding) [Intermediate level]
Would it make sense to factor out monadic binding, as exercised extensively in the
algebra above, into the compositional scheme?

12.5.5.2 A Sign-Detection Interpreter

Let us set up a test case for sign detection first. We pick a program that involves
a while-loop so that we are bound to also discuss the intricacies of fixed-point se-
mantics. In fact, we offer two variations on a program computing the factorial of an
argument x in the hope that sign detection works equally well for these variations;
see below.

Illustration 12.31 (A program for the factorial (V1))

BIPL resource languages/BIPL/samples/factorialV1.bipl

// Assume x to be positive
y = 1;
i = 1;
while (i <= x) {

y = y * i;
i = i + 1;

}

Illustration 12.32 (A program for the factorial (V2))

BIPL resource languages/BIPL/samples/factorialV2.bipl

// Assume x to be positive
y = 1;
while (x >= 2) {

y = y * x;
x = x − 1;

}

http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/factorialV1.bipl
http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/factorialV2.bipl
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We want sign detection to infer that the variable y is positive after execution
of the program. As we will see, the minor idiomatic differences between the two
variants will cause a challenge for the program analysis. That is, an initial, more
straightforward version of the analysis will fail to predict the sign of y in the second
variant. A refined, more complex version will succeed, though.

Here is how we expect the program analysis for sign detection to work:

Interactive Haskell session:

I interpret analysis facv1 (fromList [("x", Left Pos)])
fromList [("i", Left Pos), ("x", Left Pos), ("y", Left Pos)]

That is, applying the analysis to the first variant of the factorial code (facv1) and
setting up x with sign Pos as a precondition, we find that y has sign Pos after program
execution; the signs for the other program variables also make sense.

We define an algebra for sign detection as follows.

Illustration 12.33 (An algebra for sign detection)

Haskell module Language.BIPL.Analysis.BasicAnalysis

1 type Property = Either Sign CpoBool
2 type VarProperties = Map String Property
3 algebra :: Alg VarProperties Property
4 algebra = a where a = Alg {
5 skip' = id,
6 assign' = λ n f m→ insert n (f m) m,
7 seq' = flip (.),
8 if’ = λ f g h m→
9 let Right b = f m in

10 case b of
11 (ProperBool True)→ g m
12 (ProperBool False)→ h m
13 BottomBool→ bottom
14 TopBool→ g m `lub` h m,
15 while' = λ f g→ fix' (λ x→ if’ a f (x . g) id) (const bottom),
16 intconst' = λ i→ const (Left (fromInteger (toInteger i))),
17 var' = λ n m→ m!n,
18 unary' = λ o f m→
19 case (o, f m) of
20 (Negate, Left s)→ Left (negate s)
21 (Not, Right b)→ Right (cpoNot b),
22 binary' = λ o f g m→ ...
23 }

We discuss the semantic combinators one by one as follows:

skip′, assign′, seq′ These cases (lines 5–7) are handled in the same manner as
in the standard semantics. That is, it does not matter if we operate on concrete or
abstract stores when it comes to the empty statement, assignment, and sequential
composition.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Analysis/BasicAnalysis.hs
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if′ There is a case discrimination with respect to the truth value computed for the
condition of the if-statement (lines 8–14); the first two cases correspond to those
also present in the standard semantics (True and False, lines 11–12). The third
case (line 13) applies when the truth value is not (yet) defined, in which case the
resulting variable-property map is also undefined, i.e., bottom. The fourth case
(line 14) applies when the truth value is “over-defined”, i.e., the analysis cannot
derive any precise value, in which case the least upper bound of the variable-
property maps for the then- and else-branches are computed. This is discussed in
more detail below.

while′ A fixed point is computed in a manner similar to the standard seman-
tics (line 15), except that a different fixed-point combinator fix' is assumed here,
which aims at finding a fixed point computationally and effectively by starting
from an initial approximation bottom. This is discussed in more detail below.

intconst′ The constant is mapped to a sign by plain abstraction (line 16), i.e., the
Int is first mapped to an Integer so that the fromInteger member of the type class
Num, as discussed above (Illustration 12.28), can be applied.

var′ This case (line 17) is handled in the same manner as in the standard seman-
tics.

unary′ and binary′ Just as in the standard semantics, operations are applied to
the arguments, except that we operate on the abstract domains here: Sign and
CpoBool.

One crucial aspect is the treatment of if-statements in the case where the truth
value for the condition cannot be precisely determined. In this case, the analysis
approximates the resulting property-type map by simply assuming that either of the
two branches may be executed and, thus, the least upper bound (LUB) of the two
branches is taken. Here we rely on LUBs on maps to be defined in a pointwise
manner as follows.

Illustration 12.34 (Partial order on maps with pointwise LUB)

Haskell module Data.CPO.Map

instance (Ord k, CPO v) => CPO (Map k v) where
pord x y = and (map (f y) (toList x))

where f y (k,v) = pord v (y!k)
lub x y = foldr f y (toList x)

where f (k,v) m = Data.Map.insert k (lub v (y!k)) m
instance (Ord k, CPO v) => Bottom (Map k v) where

bottom = empty

If the two branches of an if-statement disagree in the sign of a variable (Pos
versus Neg versus Zero), then the combined value is Top. This causes a precision
challenge, to be discussed in a second.

Another crucial aspect is the treatment of while-loops in terms of the required
fixed-point computation. We a dedicated fixed-point combinator as follows.

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/CPO/Map.hs
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Illustration 12.35 (Fixed-point computation with iterands)

Haskell module Language.BIPL.Analysis.Fix

fix' :: Eq a => ((a→ a)→ a→ a)→ (a→ a)→ a→ a
fix' h i x = limit (iterate h i)

where limit (b1:b2:bs) = if b1 x == b2 x then b1 x else limit (b2:bs)

This combinator is polymorphic, but let us explain it in terms of the ab-
stract domains at hand. The type variable a proxies for abstract stores (i.e., type
VarProperties). Thus, the combinator, in this instance, returns an abstract store trans-
former. It is parameterized in the “transformer transformer” h, from which we can
take a fixed point, an initial transformer i to start off the iteration, and an abstract
store x. With iterate, the combinator builds an infinite list by applying h to i 0, 1, 2,
... number of times. With the local helper limit, the combinator finds the position in
the list such that the applications of two consecutive elements b1 and b2 to x are the
same; b1 is thus the fixed point, i.e., the store transformer for the while-loop.

We are now ready to apply the program analysis:

Interactive Haskell session:

I interpret BasicAnalysis.algebra facv1 (fromList [("x", Left Pos)])
fromList [("i", Left Pos), ("x", Left Pos), ("y", Left Pos)]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I interpret BasicAnalysis.analysis facv2 (fromList [("x", Left Pos)])
fromList [("x", Left TopSign), ("y", Left TopSign)]

Our analysis finds the expected sign for the first variant (Illustration 12.31); it
fails for the second variant (Illustration 12.32), as it reports TopSign for y. Generally,
program analysis (whether based on abstract interpretation or not) may be chal-
lenged by such precision issues. In this particular case, the origin of the problem lies
in the handling of if-statements. The abstract store transformer for an if-statement
will assign TopSign all too easily to variables whenever the condition evaluates to
TopBool which may happen easily. Consider the second variant again; variable x is
decremented in the loop body and, by the rules for signs, the sign of x is going to be
TopSign. Thus, the truth value of the loop’s condition is going to be TopBool.

Let us hint at a possible improvement. Given the abstract input store m for the if-
statement, we do not simply compute the abstract output stores for the two branches
from the given map m and combine them, but instead determine a smaller abstract
store to serve as the input for each branch. For the then-branch, we determine the
largest store such that the condition evaluates to True, and likewise for the else-
branch. We revise the algebra accordingly as follows.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Analysis/Fix.hs
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Illustration 12.36 (A refined algebra for sign detection)

Haskell module Language.BIPL.Analysis.RefinedAnalysis

1 algebra :: Alg VarProperties Property
2 algebra = a where a = Alg {
3 ...
4 if’ = λ f g h m→
5 let Right b = f m in
6 case b of
7 (ProperBool True)→ g m
8 (ProperBool False)→ h m
9 BottomBool→ bottoms m

10 TopBool→ g (feasible True f m) `lub` h (feasible False f m)
11 where feasible b f m = lublist (bottoms m) [ m' |
12 m'← maps (keys m),
13 m' `pord` m,
14 Right (ProperBool b) `pord` f m' ],
15 ...
16 }

The refinement concerns the TopBool case for if’ (lines 10–14). That is, g and h
are not directly applied to m, as before. Instead, a variable-property map is computed
for each branch by the function feasible. This function generates all maps m' such
that they assign properties to the same variables as in m (line 12), they are less
defined than or equally defined as m (line 13), and they permit the evaluation of the
condition f for the given Boolean value b (line 14).

We apply the refined program analysis as follows:

Interactive Haskell session:

I interpret RefinedAnalysis.algebra facv1 (fromList [("x", Left Pos)])
fromList [("i", Left Pos), ("x", Left Pos), ("y", Left Pos)]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I interpret RefinedAnalysis.algebra facv2 (insert "x" (Left Pos) empty)
fromList [("x", Left TopSign), ("y", Left Pos)]

Thus, we infer sign Pos for y for both variants of the program now. Nevertheless,
there is room for improvement, as illustrated by the following exercises.

Exercise 12.18 (More precise domains) [Intermediate level]
As the analysis stands, when applied to the second variant of the factorial program,
it maps x to Top. Refine the analysis so that it can make a more precise prediction.
This exercise may require an adaptation of the abstract domains for signs.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Analysis/RefinedAnalysis.hs


Exercise 12.19 (Precise squaring) [Intermediate level]
The present section started with an example in which the sign of an input vari-
able x was not fixed (Illustration 12.24) and, thus, BottomSign should be as-
signed to x. The analysis, as it stands, would be too imprecise to serve for
this example. For instance, consider squaring x. Per the rules we would assign
BottomSign*BottomSign = BottomSign to x*x, even though we “know” that the result
of squaring a number x has sign Zero or Pos no matter what the sign of x. Refine the
analysis accordingly.

The present section is summarized by means of a recipe.

Recipe 12.5 (Design of an abstract interpreter).

Interpreter Pick a compositional interpreter (Recipe 11.1) from which to
start.

Abstract domains Define the abstract domains as abstraction from the con-
crete domains in the underlying interpreter so that the properties of interest
(e.g., signs) are modeled. Abstract domains include bottom (⊥ = “unde-
fined”) and top (> = “overdefined”) as abstract values, subject to a partial
order for undefinedness.

Test cases Set up test cases for the abstract interpreter. A test case consists of
an input term and the expected result of the analysis, thereby exercising the
abstract domains. A positive test case does not exercise top for the result.
Explore the precision the analysis by also incorporating negative test cases,
as variations on positive test cases, for which the analysis returns top.

Parameterization Factor the compositional interpreter to become paramet-
ric in the semantic domains and semantic combinators, thereby enabling
the use of the abstract domains for the analysis at hand.

Testing Test the abstract interpreter in terms of the test cases.

Summary and Outline

We have presented term rewriting and attribute grammars as computational
paradigms for developing certain kinds of metaprograms in a more disciplined
way. Term rewriting fits well with rule-based transformational problems, for exam-
ple, refactoring and optimization. Attribute grammars fit well with tree-annotation
problems and, specifically, with translations and analyses. We have also presented
(compile-time) multi-stage programming and partial evaluation as powerful pro-
gram optimization techniques and abstract interpretation as a semantics-based

12.5 Abstract Interpretation 393
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method for analysis. Multi-stage programming serves the purpose of program gen-
eration by allowing one to derive optimized code based on appropriately “quasi-
quoted code and splices”. Partial evaluation serves the purpose of program special-
ization by allowing one to derive optimized code based on an appropriately refined
interpreter, which, in the case we considered, combines function inlining and mem-
oization for arguments. Abstract interpretation may serve, for example, the purpose
of optimization.

This ends the technical development presented in this book. We will now wrap
up the book in the Postface.
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