
Chapter 11
An Ode to Compositionality

CHRISTOPHER STRACHEY.1

Abstract In this chapter, we complement the earlier development of operational
semantics with another approach to defining semantics, namely the higher-order
functional approach of denotational semantics. We focus here on compositionality,
which is a structuring principle for interpreters, analyses, and yet other functionality
for languages. We discuss two styles of denotational semantics: the simpler “direct”
style and the more versatile “continuation” style capable of dealing with, for exam-
ple, nonbasic control flow constructs. Denotational semantics can be implemented
easily as interpreters, for example, in Haskell, as we will demonstrate.

1 Twenty-five years after his death, two papers by Christoper Strachey appeared [13, 14]: one
on his lectures on programming language semantics and another (coauthored with Christopher
P. Wadsworth) on continuations. Domain theory would probably not exist without Strachey [11].
My supervisor’s generation would have known the work of Strachey (and Scott) through Joseph
E. Stoy’s textbook [12] and Peter D. Mosses’ thesis [5]. I would fall in love with denotational style
also, thanks to its applications to parallel and logic programming [6, 2]. Every software language
engineer, in fact, every software engineer, should understand and leverage “compositionality” [1].
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA
4.0. This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission.
This work also quotes https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Vaas_
met_tuingladiolen_en_Chinese_asters_-_Google_Art_Project.jpg, subject to the attribution
“Vincent Van Gogh: Vaas met tuingladiolen en Chinese asters (1886) [Public domain], via Wikimedia Commons.” This
work artistically morphes an image, http://www.cs.man.ac.uk/CCS/res/res43.htm, showing the person
honored, subject to the attribution “Permission granted by Camphill Village Trust for use in this book.”

319© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_11

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Vaas_met_tuingladiolen_en_Chinese_asters_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Vaas_met_tuingladiolen_en_Chinese_asters_-_Google_Art_Project.jpg
http://www.cs.man.ac.uk/CCS/res/res43.htm
https://doi.org/10.1007/978-3-319-90800-7_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_11&domain=pdf

320 11 An Ode to Compositionality

11.1 Compositionality

Denotational semantics [12, 3, 15] is not too popular in today’s language definition
culture, but the notion of compositionality is. Therefore, we will skip over the math-
ematical details of denotational semantics here and simply focus on the notion of
compositionality. That is, we speak of a compositional semantics when it is defined
as a mapping from syntax to semantics with cases for each syntactic pattern such
that the meaning of a compound construct is obtained directly and only from the
meanings of its constituent phrases (“subterms”).

Consider the following two inference rules of a big-step operational semantics
for statement sequences and while-loops in an imperative programming language,
as discussed earlier (Section 8.1.6.1):

m0 ` s1 # m1 m1 ` s2 # m2

m0 ` seq(s1,s2) # m2

[SEQ]

m ` if(e,seq(s,while(e,s)),skip) # m′

m ` while(e,s) # m′
[WHILE]

Rule [SEQ] agrees with the principle of compositionality, while rule [WHILE] does
not. That is, the rule [SEQ] for statement sequences applies the judgment for state-
ment execution simply to the two constituents s1 and s2 of the sequence seq(s1,s2).
By contrast, the rule [WHILE] for while-loops carries a premise with a newly com-
posed syntactic pattern. Thus, the meaning of a while-loop while(e,s) is not simply
composed from the meanings of its immediate constituents e and s.

Simply speaking, compositionality is good in the same sense as primitive re-
cursion is better understood and better controllable than general recursion. Com-
positionality simplifies reasoning about the semantics without relying on stepwise
computation. Compositionality also helps in separating syntax and semantics in a
language definition. Compositionality is not always straightforward to achieve for
all language constructs, as we will demonstrate below with a fixed-point semantics
of while-loops. To this end, we leverage a different approach to semantics definition:
denotational semantics. Within the framework of operational semantics, it appears
to be hard to define a compositional semantics of while-loops.

11.2 Direct Style

We develop the basic approach to denotational semantics on the basis of so-called
“direct style,” which suffices for many programming language constructs; this in-
cludes structured programming (sequence, iteration, selection) in imperative pro-
gramming languages.

11.2 Direct Style 321

11.2.1 Semantic Domains

Denotational semantics assumes that each syntactic category is associated with a
semantic domain. We have also used this term earlier in the context of ad hoc inter-
preters (Section 5.1.1) and operational semantics (Section 8.1.5.1). The difference
is that the typical semantic domain of a denotational semantics is a domain of func-
tions. Elements of domains directly represent meanings of program phrases; there
is no reference to stepwise computation. In the case of the imperative programming
language BIPL, we need these domains to be associated with the syntactic categories
of statements and expressions:

storeT = store 7→ store // Type of store transformation
storeO = store 7→ value // Type of store observation

In these type definitions, we assume the same definitions for store and value as in
the earlier operational semantics (Section 8.1.6.1). That is, value denotes the domain
of integer and Boolean values, whereas store denotes the domain of collections of
variable name-value pairs. We can read these definitions as follows. The meaning
of a statement is a store transformer, i.e., a function on stores, thereby describing
the effect of a given statement on a given store. The meaning of an expression is a
store observer, i.e., a function that takes a store and returns a value, where the store
may need to be consulted owing to the variable expression form. We assume here
that expressions do not modify the store. We deal with partial functions, as denoted
by “ 7→” above. The partiality is due to the possibility of nontermination, ill-typed
expressions, and undefined variables.

11.2.2 Semantic Functions

Denotational semantics leverages function definitions as opposed to inference rules.
The functions assign meanings (compositionally) to the different syntactic cate-
gories. In the case of BIPL’s imperative programs, we need these functions:

S : stmt→ storeT // Semantics of statements
E : expr→ storeO // Semantics of expressions

That is, the function for statements, S , maps statements to store transformers. The
function for expressions, E , maps expressions to store observers.

Compositionality is implied by the following style for defining the semantic func-
tions; in fact, we use a somewhat extreme style for clarity:

322 11 An Ode to Compositionality

S [|skip|] = skip
S [|assign(x,e)|] = assign x (E [|e|])
S [|seq(s1,s2)|] = seq (S [|s1|]) (S [|s2|])
S [|if(e,s1,s2)|] = if (E [|e|]) (S [|s1|]) (S [|s2|])
S [|while(e,s)|] = while (E [|e|]) (S [|s|])

E [|intconst(i)|] = intconst i
E [|var(x)|] = var x
E [|unary(o,e)|] = unary o (E [|e|])
E [|binary(o,e1,e2)|] = binary o (E [|e1|]) (E [|e2|])

That is:

• Applications of the semantic functions S and E to syntactical patterns or com-
ponents thereof are surrounded by the so-called Oxford brackets [| · · · |]. One can
trivially check that, in the right-hand sides of equations, the functions are really
just applied to components that have been matched on the left-hand sides.

• The intermediate meanings determined for the components are composed by
function combinators skip, assign, etc. The combinator names are the underlined
names of the constructs.

• Some primitive constituents are not mapped. That is, variable names (see the
equations for the phrases assign(x,e) and var(x)) and operator symbols (see the
equations for the phrases unary(o,e) and binary(o,e1,e2)) are directly passed to
the corresponding combinators, but no other syntax is passed on or constructed
otherwise.

• We apply “curried” notation for the combinators, i.e., function arguments are
lined up by juxtaposition as opposed to enclosing them in parentheses, for exam-
ple, f x y as opposed to f (x,y).

11.2.3 Semantic Combinators

It remains to define the combinators skip, assign, etc. Let us capture their types first,
as they are implied by the use of the combinators in the compositional scheme:

skip : storeT
assign : string→ storeO→ storeT
seq : storeT→ storeT→ storeT
if : storeO→ storeT→ storeT→ storeT
while : storeO→ storeT→ storeT

intconst : int→ storeO
var : string→ storeO
unary : uo→ storeO→ storeO
binary : bo→ storeO→ storeO→ storeO

11.2 Direct Style 323

Let us define the combinators in a semiformal, intuitive functional notation here. A
rigorous development of formal notation for denotational semantics [12, 3, 15] is
beyond the scope of this book.

// The identity function for type store
skip m = m

// Pointwise store update
assign x f m = m[x 7→ (f m)] if f m is defined

// Function composition for type storeT
seq f g m = g (f m)

// Select either branch for Boolean value

if f g h m =

g m if f m = true
h m if f m = false
undefined otherwise

We have left out the definition of while because it requires some extra effort,
as discussed below. For brevity, we have omitted the definition of the combina-
tors needed for E because the earlier operational semantics of expressions (Sec-
tion 8.1.6.1) is essentially compositional.

Exercise 11.1 (Denotational semantics of expressions) [Basic level]
Define the combinators needed for E .

11.2.4 Fixed-Point Semantics

The compositional semantics of while-loops involves a fixed-point construction, as
we will clarify now. That is, we aim at a definition of while f g with f as the meaning
of the condition and g as the meaning of the loop’s body. Let us assume, just for the
moment, that we already know the meaning of the while-loop; let us refer to it as t.
If so, then it is easy to see that the following equivalence should hold:

t ≡ if f (seq g t) skip

That is, by the choice of if , we test the loop’s condition; if the condition evaluates
to false, we use the state transformer skip; otherwise, we sequentially compose the
meaning g of the loop’s body and the assumed meaning t of the loop itself. Thus,
we explicitly construct the meaning of a while-loop, the body of which is executed
zero or one times, and we resort to t for repetitions past the first one. It is crucial
to understand that we do not use any syntax in this equivalence. Instead, we simply
compose meanings.

324 11 An Ode to Compositionality

Alas, we do not yet know t. Let us capture the right-hand side expression of the
equivalence as h and parameterize it in t:

h t = if f (seq g t) skip

Now consider the following progression of applications of h:

h undefined
h (h undefined)

h (h (h undefined))
...

Here, undefined denotes the completely undefined store transformation, which,
given any store m returns a store which maps all variable names to the undefined
value. Note that the elements in this progression correspond to approximations to
the meaning t of the while-loop that agree with t in terms of the resulting store for
the cases of 0, 1, . . . required repetitions of the body. Thus, if we can express an
unbounded number of applications of h to undefined, then we have indeed defined
t. This is essentially achieved by taking the fixed point of h. Thus:

t ≡ fix h

One way to think of fix is as being defined “computationally” according to the
fixed-point property, as discussed earlier in the context of the lambda calculus (Sec-
tion 10.1.5). Thus:

fix k = k (fix k)

That is, we assume that the fixed point of k is computed by applying k to the com-
putation of the fixed point. Another way to think of fix is as being defined as the
least upper bound of the elements in the infinite progression described above. The
least upper bound is defined here essentially in terms of being more “defined”, i.e.,
returning a less undefined or possibly fully defined store transformer.

To conclude, we define the meaning of a while-loop in terms of the while combi-
nator as a fixed point as follows:

while f g = fix h
where
h t = if f (seq g t) skip

Our discussion of fixed points has been very superficial here, and we point to
the literature on denotational semantics [12, 3, 15] and on domain theory specifi-
cally [11]. In particular, semantic domains and combinators over them must satisfy
a number of fundamental properties for such a fixed-point semantics to be well de-
fined in that the fixed point is uniquely defined. To this end, the domains are more
than just sets; they are equipped with a partial order to deal with undefinedness and

11.2 Direct Style 325

approximation. Also, the combinators need to be monotone and continuous in a spe-
cific sense to facilitate fixed-point computation by taking least upper bounds with
respect to the said partial orders.

Exercise 11.2 (Existence and uniqueness of fixed points) [Basic level]
This exercise hints at the challenge of making sure that fixed points exist and are
uniquely defined. Define functions a, b, and c on natural numbers such that a has no
fixed point, b has exactly one fixed point, and c has an infinite number of fixed points.
Use the fixed-point property to check whether a given natural number is indeed a
fixed point of a given function. That is, x0 is a fixed point of f if f x0 = x0.

Regardless of the informality of the development, it is “computationally effec-
tive,” as a discussion of denotational interpreters shows below.

Exercise 11.3 (Expression-oriented imperative language) [Intermediate level]
Define the denotational semantics of an imperative language such that the syntactic
category for expressions incorporates all statement forms. There were similar as-
signments for big- and small-step operational semantics in Chapter 8 (Exercises 8.4
and 8.9).

11.2.5 Direct-Style Interpreters

Arguably, semantic domains, functions, and combinators are easily encoded as in-
terpreters in functional programming. Such an implementation benefits from the fact
that denotational semantics is clearly a functional approach to defining semantics.
That is, domains are types of functions; semantic functions are functions anyway.
Semantic combinators are (higher-order) function combinators. The actual details
of a systematic and well-defined encoding are nontrivial [8, 9, 10], as there may be
some mismatch between the mathematical view of a metanotation for semantics and
the actual semantics of the functional metalanguage, but we skip over such details
here. We encode denotational semantics in Haskell.

Here is how we expect to use the interpreter for executing the sample program
for Euclidean division; we apply values for the variables x and y and execution
computes the variables q and r as the quotient and remainder of dividing x by y:

Interactive Haskell session:

I execute euclideanDiv (fromList [("x", Left 14), ("y", Left 4)])
fromList [("q", Left 3), ("r", Left 2), ("x", Left 14), ("y", Left 4)]

Let us start the implementation of an interpreter with a Haskell encoding of the
semantic domains as shown below.

326 11 An Ode to Compositionality

Illustration 11.1 (Semantic domains for imperative programs)

Haskell module Language.BIPL.DS.Domains

−− Results of expression evaluation
type Value = Either Int Bool
−− Stores as maps from variable ids to values
type Store = Map String Value
−− Store transformers (semantics of statements)
type StoreT = Store→ Store
−− Store observers (semantics of expressions)
type StoreO = Store→ Value

The definitions are straightforward. The definition of Store exhibits an element of
choice. We could also model stores more directly as functions of type String→ Value,
but we opt for Haskell’s library type Map to model stores as maps (say, dictionaries)
from variable names to values because the underlying representation is more conve-
nient to use for testing and debugging, as dictionaries are “observable” as a whole
whereas genuine functions can only be “queried” at specific points.

Let us continue the implementation of an interpreter with a Haskell encoding of
the compositional mapping over statements as shown below.

Illustration 11.2 (Compositional mapping)

Haskell module Language.BIPL.DS.Interpreter

execute :: Stmt→ StoreT
execute Skip = skip'
execute (Assign x e) = assign' x (evaluate e)
execute (Seq s1 s2) = seq' (execute s1) (execute s2)
execute (If e s1 s2) = if’ (evaluate e) (execute s1) (execute s2)
execute (While e s) = while' (evaluate e) (execute s)

evaluate :: Expr→ StoreO
evaluate (IntConst i) = intconst' i
evaluate (Var x) = var' x
evaluate (Unary o e) = unary' o (evaluate e)
evaluate (Binary o e1 e2) = binary' o (evaluate e1) (evaluate e2)

That is, the semantic functions S and E are called execute and evaluate for clar-
ity, and the underlined combinators of the semiformal development are modeled as
primed functions in Haskell; see, for example, skip' instead of skip. (By priming, we
also avoid clashes. For instance, if is readily taken in Haskell.) There is one equa-
tion per language construct. On the left-hand side of an equation, the construct is
matched to provide access to the constituents of the construct. On the right-hand
side of an equation, the meanings of the constituents are determined by recursive
occurrences of the interpreter functions and they are combined by the correspond-
ing semantic combinator.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/DS/Domains.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/DS/Interpreter.hs

11.2 Direct Style 327

We complete the implementation of an interpreter with a Haskell implementation
of the semantic combinators definitions as shown below.

Illustration 11.3 (Combinators of semantic meanings)

Haskell module Language.BIPL.DS.Combinators

skip' :: StoreT
skip' = id
assign' :: String→ StoreO→ StoreT
assign' x f m = insert x (f m) m
seq' :: StoreT→ StoreT→ StoreT
seq' = flip (.)
if’ :: StoreO→ StoreT→ StoreT→ StoreT
if’ f g h m = let Right v = f m in if v then g m else h m
while' :: StoreO→ StoreT→ StoreT
while' f g = fix h where h t = if’ f (seq' g t) skip'
intconst' :: Int→ StoreO
intconst' i _ = Left i
var' :: String→ StoreO
var' x m = m!x
unary' :: UOp→ StoreO→ StoreO
unary' Negate f m = let Left i = f m in Left (negate i)
unary' Not f m = let Right b = f m in Right (not b)
binary' :: BOp→ StoreO→ StoreO→ StoreO
...

In the code shown above, we make reasonable use of functional programming
idioms in Haskell. In the definition of while', we use a polymorphic fixed-point com-
binator that is readily defined in the Haskell library like this:

fix :: (a→ a)→ a
fix f = f (fix f)

Exercise 11.4 (Interpretation without throwing) [Basic level]
The interpreter may “throw” for different reasons, for example, in the case of ap-
plying Boolean negation (Not) to an integer constant. Identify all such reasons and
revise the interpreter so that statement execution and expression evaluation do not
simply throw, but Nothing of Haskell’s Maybe type is returned instead.

The present section can be summarized by means of a recipe.

Recipe 11.1 (Compositional interpretation).

Abstract syntax Implement abstract syntax, as discussed previously
(Recipe 4.1).

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/DS/Combinators.hs

328 11 An Ode to Compositionality

Semantic domains Implement the semantic domains; these are often func-
tion types. For instance, the semantic domain for expressions in a language
with variables maps variable identifiers to values.

Semantic combinators There is one combinator per language construct
with as many arguments as there are constituent phrases (“subterms”), with
the argument types equaling the semantic domains for the constituents and
the result type equaling the semantic domain for the construct’s category.

Compositional mapping Implement functions from the syntactic to the se-
mantic domains. There is one function per syntactic category. There is one
equation per construct. In each equation, apply the semantic functions to
constituents and combine the results with the combinator for the construct.

11.3 Continuation Style

We now turn from the direct to the more advanced continuation style of denotational
semantics. The main idea, when one is applying the style to imperative programs,
is to parameterize meanings in the “rest” of the program so that each meaning can
freely choose to deviate from the default continuation, whenever it may be neces-
sary for control-flow constructs such as throws of exceptions or gotos. In functional
programming, there also exists a related style, the continuation-passing style (CPS),
which helps with adding error handling to programs and with structuring functional
programs, for example, in the context of implementing web applications [4].

11.3.1 Continuations

In direct style, as assumed so far, control flow is quite limited. To see this, let us
recall that the semantic combinator for sequential composition was defined as fol-
lows:

seq : storeT→ storeT→ storeT
seq f g m = g (f m)

Thus, f applies the given store m and passes on the resulting store to g. Now suppose
that f corresponds to a phrase with a goto or a throw of an exception in which case
g should be ignored. Within the bounds of the semantic domains at hand, there is no
reasonable definition for seq such that g could be ignored if necessary.

In continuation style, we use more advanced semantic domains; we do not use
“store transformers” but we rather use “store transformer transformers” defined as
follow:

storeTT = storeT 7→ storeT

11.3 Continuation Style 329

The idea is that any meaning is parameterized by a store transformer corresponding
to what should “normally” be executed next. We refer to such parameters as con-
tinuations. The type and definition of the semantic combinator seq are revised as
follows:

seq : storeTT→ storeTT→ storeTT
seq f g c = f (g c)

That is, the sequential composition is parameterized by a continuation c for whatever
follows the statement sequence. The order of functionally composing the arguments
of seq is reversed compared with direct style. This makes sense because we are not
composing store transformers; instead, we pass store transformers as arguments.

11.3.2 Continuation-Style Interpreters

We will work out any more details of continuation style in a semiformal notation
here. Instead, we will explain details directly by means of interpreters. For now, we
just convert the earlier interpreter into continuation style – without yet leveraging
the added expressiveness. In the next section, we add gotos to leverage continuation
style proper.

We implement the new semantic domain as follows.

Illustration 11.4 (Store transformer transformers)

Haskell module Language.BIPL.CS.Domains

type StoreTT = StoreT→ StoreT

The compositional mapping does not change significantly, as shown below:

Illustration 11.5 (Compositional mapping with continuations)

Haskell module Language.BIPL.CS.Interpreter

execute :: Stmt→ StoreT
execute s = execute' s id

where
execute' :: Stmt→ StoreTT
execute' Skip = skip'
execute' (Assign x e) = assign' x (evaluate e)
execute' (Seq s1 s2) = seq' (execute' s1) (execute' s2)
execute' (If e s1 s2) = if’ (evaluate e) (execute' s1) (execute' s2)
execute' (While e s) = while' (evaluate e) (execute' s)

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/CS/Domains.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/CS/Interpreter.hs

330 11 An Ode to Compositionality

In the code shown above, the top-level function execute maps statements to store
transformers and uses the locally defined function execute' to map statements to
store transformer transformers starting from the “empty” continuation id.

The semantic combinators have to be changed as follows.

Illustration 11.6 (Combinators of semantic meanings)

Haskell module Language.BIPL.CS.Combinators

skip' :: StoreTT
skip' = id
assign' :: String→ StoreO→ StoreTT
assign' x f c sto = c (insert x (f sto) sto)
seq' :: StoreTT→ StoreTT→ StoreTT
seq' = (.)
if’ :: StoreO→ StoreTT→ StoreTT→ StoreTT
if’ f g h c = DS.if’ f (g c) (h c)
while' :: StoreO→ StoreTT→ StoreTT
while' f g = fix h where h t = if’ f (seq' g t) skip'

The combinators differ from direct style as follows:

• skip': The identity function is applied here to store transformers as opposed to
stores. The definition models that the current continuation is simply applied.

• assign': The store is transformed, just as in the case of direct style, and then
passed to the continuation received.

• seq': The definition models that (the meaning of) the second statement, once
applied to the given continuation, acts as a continuation of (the meaning of) the
first statement.

• if’ : The meaning of an if-statement is the same as in direct style, except that we
need to pass the continuation to both branches. We reuse the combinator DS.if ′

of direct style.
• while': The meaning of a while-loop is defined similarly to direct style, except

that there is an extra argument for the continuation (suppressed by currying).

11.3.3 Semantics of Gotos

As a simple exercise in leveraging continuation style, we consider an imperative
language without while-loops, but with general gotos instead. To this end, we use
the following syntax.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/CS/Combinators.hs

11.3 Continuation Style 331

Illustration 11.7 (Syntax of imperative statements with gotos)

Haskell module Language.BIPL.Goto.Syntax

data Stmt
= Skip
| Assign String Expr
| Seq Stmt Stmt
| If Expr Stmt Stmt
| Label String
| Goto String

A sample program follows.

Illustration 11.8 (Euclidean division with goto instead of while)

Haskell module Language.BIPL.Goto.Sample

euclideanDiv :: Stmt
euclideanDiv =

−− Sample operands for Euclidean division
Seq (Assign "x" (IntConst 14))

(Seq (Assign "y" (IntConst 4))

−− Compute quotient q=3 and remainder r=2
(Seq (Assign "q" (IntConst 0))
(Seq (Assign "r" (Var "x"))
(Seq (Label "a")

(If (Binary Geq (Var "r") (Var "y"))
(Seq (Assign "r" (Binary Sub (Var "r") (Var "y")))
(Seq (Assign "q" (Binary Add (Var "q") (IntConst 1)))

(Goto "a")))
Skip)))))

The denotational semantics of imperative programs with gotos relies on an extra
argument for the “goto table” in which to look up the meaning of a label upon
encountering a goto. Thus, the semantic domain for meanings of statements evolves
as follows.

Illustration 11.9 (Goto tables)

Haskell module Language.BIPL.Goto.Domains

type Gotos = [(String, StoreT)] −− Goto tables
type StoreTT' = (StoreT, Gotos)→ (StoreT, Gotos) −− Transformation with gotos

The compositional mapping is adapted to deal with goto tables, as shown below.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Sample.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Domains.hs

332 11 An Ode to Compositionality

Illustration 11.10 (Compositional mapping with gotos)

Haskell module Language.BIPL.Goto.Interpreter

execute :: Stmt→ StoreT
execute s = let (c, g) = execute' s (id, g) in c

where
execute' :: Stmt→ StoreTT'
execute' Skip = skip'
execute' (Assign x e) = assign' x (evaluate e)
execute' (Seq s1 s2) = seq' (execute' s1) (execute' s2)
execute' (If e s1 s2) = if’ (evaluate e) (execute' s1) (execute' s2)
execute' (Label l) = label' l
execute' (Goto l) = goto' l

The top-level function execute maps statements to store transformers and uses
the locally defined function execute' which takes goto tables into account. In fact,
as is evident from the definition of StoreTT', the goto table is both received as an
argument and returned as part of the result. This may be surprising at first, but in
fact the mapping needs to add to the goto table (see the combinator label' in the
following illustration) and to read from the goto table (see the combinator goto' in
the following illustration).

Illustration 11.11 (Combinators of semantic meanings with gotos)

Haskell module Language.BIPL.Goto.Combinators

skip' :: StoreTT'
skip' (c, t) = (c, [])
assign' :: String→ StoreO→ StoreTT'
assign' x f (c, t) = (λ m→ c (insert x (f m) m), [])
seq' :: StoreTT'→ StoreTT'→ StoreTT'
seq' f g (c, t) = let (c', t') = g (c, t) in let (c'', t'') = f (c', t) in (c'', t'++t'')
if’ :: StoreO→ StoreTT'→ StoreTT'→ StoreTT'
if’ f g h (c, t) = let ((c1, t1), (c2, t2)) = (g (c, t), h (c, t)) in (DS.if’ f c1 c2, t1++t2)
label' :: String→ StoreTT'
label' l (c, t) = (c, [(l, c)])
goto' :: String→ StoreTT'
goto' l (c, t) = (fromJust (lookup l t), [])

The combinators are explained one by one as follows:

• skip': The given continuation is simply preserved. The received goto table is not
consulted. The returned goto table is empty ([]).

• assign': The store is transformed and then passed to the received continuation.
The received goto table is not consulted. The returned goto table is empty ([]).

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Interpreter.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Combinators.hs

• seq': The two meanings are essentially composed by function composition, ex-
cept that the given goto table is passed to both operands and the individually
returned goto tables are combined (i.e., appended with (++)) to serve as the re-
sulting goto table for the statement sequence.

• if’ : The given goto table is passed to both the then- and the else-branch. The goto
tables for the then- and else-branches are combined as the resulting goto table.
Other than that, we reuse the semantic combinator of direct style.

• label': The current continuation is captured and associated with the label at hand
to form a goto table.

• goto': The current continuation is ignored; in fact, it is replaced by the continua-
tion associated with the given label according to the given goto table.

Exercise 11.5 (Exceptions) [Intermediate level]
Add the following two statement forms:

• Throwing an exception throw(x): A string x. An exception terminates the regular
(sequential) control-flow and propagates through the compound statement until
it is handled by a trycatch statement (see below) or to the top, where it terminates
the program irregularly.

• Catching an exception trycatch(s,x,s′): While the statement s is being executed,
any exception x is caught and s′ would be executed. If no exception occurs within
s, then the statement behaves just like s. If an exception other than x occurs within
s, then the exception is propagated as described above.

These statement forms should be added by extending the Haskell-based interpreter
while leveraging continuation style. This form of exception is developed in some
detail in [7].

Exercise 11.6 (Fixed points with gotos) [Intermediate level]
A recursive let is used in Illustration 11.11, to tie the recursive knot needed for
passing the goto table returned by the mapping back into the same mapping. Thus,
the semantics is arguably not (obviously) compositional. Revise the semantics so
that the recursive let is replaced by some explicit fixed-point construction.

Summary and Outline

We have described the denotational (functional) approach to defining semantics. In
its full beauty, denotational semantics is a mathematically elegant approach. We
focused here, though, on the key principle of the approach: compositionality, i.e.,
defining meanings of compound constructs solely in terms of recursively determined
meanings of constituent phrases, thereby achieving a full separation of syntax and

11.3 Continuation Style 333

334 11 An Ode to Compositionality

semantics. We have also touched upon continuation style, which is a sophisticated
pattern for structuring semantics definitions (and declarative programs).

In the remaining (technical) chapter, we will discuss a few nontrivial metapro-
gramming techniques – some of which are also informed by programming language
theory. In one case, we will also discuss how denotational semantics can be used to
specify program analyses by replacing the semantic algebra for composing mean-
ings by another interpretation geared towards computing program properties that
may be useful, for example, for program optimization.

References

1. Blikle, A.: Denotational engineering. Sci. Comput. Program. 12(3), 207–253 (1989)
2. Brogi, A., Lamma, E., Mello, P.: Compositional model-theoretic semantics for logic programs.

New Generation Comput. 11(1), 1–21 (1992)
3. Gunter, C.: Semantics of Programming Languages: Structures and Techniques. MIT Press

(1992)
4. Krishnamurthi, S., Hopkins, P.W., McCarthy, J.A., Graunke, P.T., Pettyjohn, G., Felleisen, M.:

Implementation and use of the PLT scheme web server. Higher Order Symbol. Comput. 20(4),
431–460 (2007)

5. Mosses, P.D.: Mathematical semantics and compiler generation. Ph.D. thesis, University of
Oxford, UK (1975)

6. Nielson, F., Nielson, H.R.: Code generation from two-level denotational meta-languages. In:
Proc. Programs as Data Objects 1985, LNCS, vol. 217, pp. 192–205. Springer (1986)

7. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergraduate Topics
in Computer Science. Springer (2007)

8. Reynolds, J.C.: Definitional interpreters for higher-order programming languages. In: Proc.
ACM Annual Conference – Volume 2, ACM ’72, pp. 717–740. ACM (1972)

9. Reynolds, J.C.: Definitional interpreters for higher-order programming languages. Higher
Order Symbol. Comput. 11(4), 363–397 (1998)

10. Reynolds, J.C.: Definitional interpreters revisited. Higher Order Symbol. Comput. 11(4), 355–
361 (1998)

11. Stoltenberg-Hansen, V., Lindström, I., Griffor, E.R.: Mathematical Theory of Domains. Cam-
bridge University Press (1994)

12. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language
Semantics. MIT Press (1977)

13. Strachey, C.: Fundamental concepts in programming languages. Higher Order Symbol. Com-
put. 13(1/2), 11–49 (2000)

14. Strachey, C., Wadsworth, C.P.: Continuations: A mathematical semantics for handling full
jumps. Higher Order Symbol. Comput. 13(1/2), 135–152 (2000)

15. Tennent, R.D.: Denotational semantics. In: Handbook of logic in computer science, vol. 3, pp.
169—-322. Oxford University Press (1994)

	Chapter 11: An Ode to Compositionality
	11.1 Compositionality
	11.2 Direct Style
	11.2.1 Semantic Domains
	11.2.2 Semantic Functions
	11.2.3 Semantic Combinators
	11.2.4 Fixed-Point Semantics
	11.2.5 Direct-Style Interpreters

	11.3 Continuation Style
	11.3.1 Continuations
	11.3.2 Continuation-Style Interpreters
	11.3.3 Semantics of Gotos

	Summary and outline
	References

