
Software
Languages

Ralf Lämmel

Syntax, Semantics,
and Metaprogramming

Software Languages

Ralf Lämmel

Software Languages
Syntax, Semantics, and Metaprogramming

Ralf Lämmel
Computer Science Department
Universität Koblenz-Landau
Koblenz, Germany

ISBN 978-3-319-90798-7 ISBN 978-3-319-90800-7 (eBook)
https://doi.org/10.1007/978-3-319-90800-7

Library of Congress Control Number:

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors
or the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

2018942228

Copyright and Attribution

Copyright for Code

The code in this book is part of the open-source YAS project:
http://www.softlang.org/yas.
YAS is licensed under the MIT license.
Copyright 2016–2018 Ralf Lämmel
Permission is hereby granted, free of charge, to any person obtaining a copy of the YAS code
including software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Soft-
ware is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Artwork Credits

Cover artwork:
Wojciech Kwasnik, The Tower of Software Languages, 2017.
With the assistance of Archina Void and Daniel Dünker.
Licensed under CC BY-SA 4.0.
Artwork DMT, acrylic, 2006 by Matt Sheehy is quoted with the artist’s permission.

Credits for per-chapter artwork:
Wojciech Kwasnik.
See the individual chapters for details.

v

http://www.softlang.org/yas
https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/

Preface

You must not fall into the trap of rejecting a surgical technique because it
is beyond the capabilities of the barber in his shop around the corner.

– Edsger W. Dijkstra, EWD 5121

Welcome to the Software Languages Book!

The Notion of a Software Language

A software language is an “artificial language,” the syntax and semantics of which
may be realized in software. Software languages are particularly omnipresent in
software and systems engineering. While a proper attempt at classification will fol-
low later, here are some illustrative categories of software languages:

• programming languages (e.g., Python, Java, and Haskell);
• modeling languages (e.g., UML, Simulink, and Modelica);
• exchange formats (e.g., JSON and XML);
• markup languages (e.g., HTML);
• domain-specific languages (DSLs) for domains such as the following:

– parsing;
– build management;
– machine control;
– documentation;
– configuration.

1 https://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/
EWD512.html

vii

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD512.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD512.html

viii Preface

Software Language Engineering (SLE)

We shall honor fundamental concepts and engineering techniques across different
use cases and forms of software languages, with different software technologies
used for realization. That is, we endorse and advertise software language engineer-
ing (SLE). To quote from the website of (an edition of) the SLE conference,2: “Soft-
ware language engineering is the application of systematic, disciplined, and quantifi-
able approaches to the development (design, implementation, testing, deployment),
use, and maintenance (evolution, recovery, and retirement) of these languages.”

A Particular SLE Book

SLE is a relatively young field. (The term “SLE” may be dated back to 2007.) The
knowledge of fundamental concepts and engineering techniques is scattered over
multiple research communities and technological spaces. Thus, there exist “knowl-
edge silos” with limited understanding of commonalities and specifics in different
contexts. The present book is aimed at collecting and organizing scattered knowl-
edge in the form of an accessible textbook. Given the breadth of the SLE field, this
book cannot claim full coverage and a balanced presentation of the SLE field. This
book is biased as follows:

• Coverage of language processors for source code analysis and manipulation in-
formed by programming language theory and implementation. There is no cov-
erage of runtime forms of metaprogramming such as reflection.

• A focus on application areas such as software analysis (software reverse engi-
neering), software transformation (software re-engineering), software composi-
tion (modularity), and domain-specific languages.

• Usage of several programming languages (Java, Python, and Haskell) for illus-
tration with Haskell taking a leading role. There are no illustrations for particular
metaprogramming systems, language workbenches, or model-driven engineering
technologies, but some of the underlying principles are discussed and pointers to
further reading are provided.

• Code blocks (programs and executable specifications) form an integral part of
the sequential text flow in this book. Code blocks are placed in non-floating “Il-
lustration” blocks, as opposed to being moved into floating figures. The code is
typically explained in subsequent text paragraphs (less so in code comments).

2 http://www.sleconf.org/2012/

http://www.sleconf.org/2012/

Preface ix

Complementary Online Material

There is a website for the book.3 All software artifacts in the book are part of YAS4

(Yet Another SLR (Software Language Repository)); The code of YAS is hosted on
GitHub. The book’s website provides complementary material, for example, lecture
slides and videos.

Structure of the Preface

The rest of this preface provides descriptions as follows: the audience targeted by
the book, the background assumed by the book, the characteristics of the book, an
outline of the book, trails offered for using the book selectively, and the style of the
exercises included throughout the book.

Audience Targeted by this Book

This book is designed as a textbook for self-organized learning and university
courses for Bachelor (advanced level) or Master of Computer Science, in the broader
context of software engineering.

This book serves those who have an intention of understanding the fundamen-
tal concepts and important engineering principles underlying software languages.
Readers will acquire much of the operational intelligence needed for dealing with
software languages in software development practice. Of course, readers may also
need to consult more technology-specific resources when addressing specific prob-
lems with the help of specific technologies.

This book is primarily targeted at people in higher education. However, because
of the book’s pragmatic (applied) approach, practitioners on a self-learning path
may also appreciate the book.

The typical developer may have encountered language design and implemen-
tation in practice and may have used technologies, as dictated by the moment.
This book raises the developer’s view to a higher level of abstraction and delivers
more advanced techniques, for example, small-step semantics, formal type systems,
quasi-quotation, term rewriting, and program analysis. The objective is that the book
will enable readers to design, implement, assess, integrate, and evolve language-
based software. This is an important skill set for software engineers, as languages
are permeating software development in an increasing manner.

3 http://www.softlang.org/book
4 http://www.softlang.org/yas

http://www.softlang.org/book
http://www.softlang.org/yas

x Preface

This book admits several different ‘trails’ (see below), thereby making it useful
for different learning objectives and different course designs on the basis of ad-
justing the level of sophistication and selective inclusion of chapters. Depending
on individual background or the local curriculum, some chapters or sections may
be skipped or processed by cursory reading or the short videos available may be
consulted instead.

Background Assumed by this Book

Required Knowledge

Moderate programming skills One needs to be fluent in an object-oriented
and a functional programming language. The illustrative examples in the book
are written in many different notations and programming languages. Chapter 2
(“A Story of a Domain-Specific Language”) uses Java and Python in going
through many aspects of language implementation in an introductory manner.
Beyond Chapter 2, the functional programming language Haskell dominates
as the language used for illustration. The book’s Haskell code is straightfor-
ward; advanced language features and idioms are avoided.

Basic software engineering knowledge A basic understanding of the soft-
ware lifecycle (analysis, design, implementation, testing, deployment, main-
tenance) is required. In particular, the reader needs to have mastered basic
aspects of software design and testing. That is, the reader should have previ-
ously leveraged and designed domain models (e.g., object models) for differ-
ent domains. Also, the reader should have some experience with unit testing
and in testing the input/output behavior of software components.

Optional Knowledge

Basic knowledge of theoretical computer science The book rehashes the rel-
evant background in a pragmatic manner and hence, such knowledge is op-
tional. This includes notions such as formal languages and computability.

Basic knowledge of metaprogramming Such knowledge is optional because
the book develops a particular (limited) view of metaprogramming from
the ground up. We focus on source code analysis and manipulation. A few
metaprogramming recipes are highlighted in the text. Runtime forms of
metaprogramming such as reflection are not discussed.

Preface xi

Characteristics of this Book

SLE concepts and techniques This book aims to identify, define, and illustrate
the fundamental concepts and engineering techniques as relevant to applications
of software languages in software development. Examples of these concepts in-
clude abstract syntax, compositionality, and type system. Examples of these tech-
niques include parser generation and template processing. Some concepts and
techniques will be explained by referring to a lifecycle for software languages or
to the architecture of a typical language implementation such as a compiler.

Software engineering perspective This book presents software languages pri-
marily from a software engineering perspective. That is, the book basically ad-
dresses the following question: how to parse, analyze, transform, generate, for-
mat, and otherwise process software artifacts in different software languages, as
they turn up in software development? This question is of interest in many areas
of software engineering, most notably software reverse engineering, software re-
engineering, model-driven engineering, program comprehension, software anal-
ysis, program generation, and mining software repositories.

Diverse languages This book covers a wide range of software languages–most
notably programming languages, domain-specific languages, modeling languages,
exchange formats, and specifically also language definition languages (notably
grammar and metamodeling notations). Several different technological spaces
are exercised, with some emphasis on grammarware and with excursions to mod-
elware, XMLware, and JSONware. Several different programming paradigms are
exercised, most notably, functional and object-oriented programming.

Polyglot illustration Different languages are leveraged to illustrate SLE concepts
and techniques. The functional programming language Haskell dominates the
book. Additionally, the mainstream programming languages Python and Java are
used for illustration. Further, XML, XML Schema, JSON, and JSON Schema are
leveraged as mainstream options for exchange formats. ANTLR is used for main-
stream parser development. A number of syntax definition formalisms (inspired
by Backus-Naur form, Ecore, and algebraic signatures) are developed and sys-
tematically used in the book. The standard notion of inference rules for deductive
systems is used for representing operational semantics and type systems.

Bits of theory A deeper understanding of software languages must take into ac-
count some fundamental concepts typically studied in the field of programming
language theory. In particular, this concerns semantics and type systems. This
book presents these topics in a pragmatic manner so that the practical value of
semantics definitions and type systems may become clear more easily and the
knowledge gained can be applied to software languages other than programming
languages; see Chapter 8–11.

Bits of language implementation The development of interpreters or compilers
for programming languages as well as runtime systems, is well understood and
covered by existing textbooks. We take a more general view of language im-
plementation, which covers languages other than programming languages and
language-based software components other than compilers and interpreters. The

xii Preface

book covers the topic of interpreters relatively well. Compiler construction is
covered only in a superficial manner. Runtime systems are not covered.

Bits of programming paradigms Just as this book is not a book on compiler
construction, it is not a book on programming paradigms either. Nevertheless,
the book exercises several paradigms to some extent. That is, languages of dif-
ferent paradigms are defined and implemented with a cursory discussion of the
underlying language concepts. Further, languages of different paradigms are used
in implementing the examples in the book. A systematic discussion of program-
ming paradigms is beyond the scope of this book.

Outline of this Book

Preface
This is the current chapter.

Chapter 1: The Notion of a Software Language
The notion of a software language is introduced broadly by means of introducing
example languages, classifying languages, discussing the language lifecycle, and
identifying the roles of languages in software engineering.

Chapter 2: A Story of a Domain-Specific Language
A domain-specific modeling language, FSML, for finite state machines (FSMs) is
discussed in terms of language concepts, lifecycle, syntax, operational semantics,
and provision of a code generator. Mainstream implementation languages and
technologies are leveraged.

Chapter 3: Foundations of Tree- and Graph-Based Abstract Syntax
The signature- and metamodel-based definitions of tree- and graph-based syn-
tax and the accompanying notion of conformance are described in a pragmatic
manner. The abstract syntaxes of several example languages are defined.

Chapter 4: Representation of Object Programs in Metaprograms
The implementation of abstract syntax is discussed, where object models in
object-oriented programming or algebraic data types in functional programming
serve the purpose of object-program representation in metaprogramming.

Chapter 5: A Suite of Metaprogramming Scenarios
Typical scenarios of metaprogramming are discussed and illustrated: interpre-
tation, semantic analysis, transformation, translation. Only the basic idioms of
metaprogramming are exercised. Concrete syntax is not considered yet.

Chapter 6: Foundations of Textual Concrete Syntax
The grammar-based definition of textual concrete syntax and the accompanying
notions of acceptance and parsing are described in a pragmatic manner. The con-
crete syntaxes of several example languages are defined.

Chapter 7: Implementation of Textual Concrete Syntax
Several aspects of the implementation of concrete syntax are discussed: parsing
(e.g., by using a parser generator or parser combinators), abstraction (i.e., the

Preface xiii

mapping of concrete to abstract syntax), formatting (e.g., by means of template
processing), and concrete object syntax.

Chapter 8: A Primer on Operational Semantics
The operational approach to semantics definition is described in a pragmatic
manner. This approach leverages inference rules (deductive systems) to model
the stepwise computation of programs in either big-step or small-step style. The
operational semantics of several example languages are defined. The formal def-
initions can be used, for example, in the implementation of interpreters.

Chapter 9: A Primer on Type Systems
The notion of type systems is described in a pragmatic manner. The approach,
again, leverages inference rules to assign properties to programs as sound, static
predictions of runtime behavior. The type systems of several example languages
are defined. The formal definitions can be used, for example, in the implementa-
tion of type checkers.

Chapter 10: An Excursion into the Lambda Calculus
The lambda calculus is described as a well-known vehicle for studying seman-
tics and type systems of programming language constructs. In fact, a number of
specific lambda calculi are discussed, and thereby we encounter polymorphism,
structural and nominal typing, and subtyping.

Chapter 11: An Ode to Compositionality
The denotational approach to semantics definition is described in a pragmatic
manner. This approach leverages functional equations to map program phrases
to elements of suitable domains in a compositional (i.e., inductive) style. The
denotational semantics of several example languages are defined.

Chapter 12: A Suite of Metaprogramming Techniques
Several metaprogramming techniques are described in a pragmatic manner: term
rewriting, attribute grammars, multi-stage programming, partial evaluation, and
abstract interpretation. The techniques are applied to different metaprogramming
scenarios and example languages.

Postface
This final chapter summarizes the key concepts covered by the book, identifies
omissions in this particular book on software languages, lists complementary
textbooks, and mentions relevant academic conferences.

Trails Offered by this Book

This book may be walked through several different trails for selective self-learning
experiences or course designs. Each trail listed below itemizes chapters to be include
at different levels of detail:

low cursory/highly selective coverage;
medium incomplete coverage;
high comprehensive coverage.

xiv Preface

All these trails, when understood as course designs, correspond to advanced Bache-
lor’s or regular Master’s courses. Based on the author’s experience, these trails can
be upgraded to research-oriented course designs for Master’s courses. To this end,
the literature references provided and specifically, also those from the Postface of
the book, and relevant technologies, for example, for metaprogramming, may be
studied by students as part of their literature research and project work.

Trail “An Introduction to Metaprogramming”

• Chapter 1: The Notion of a Software Language [none–low]
• Chapter 2: A Story of a Domain-Specific Language [high]
• Chapter 3: Foundations of Tree- and Graph-Based Abstract Syntax [medium]
• Chapter 4: Representation of Object Programs in Metaprograms [medium]
• Chapter 5: A Suite of Metaprogramming Scenarios [medium]
• Chapter 6: Foundations of Textual Concrete Syntax [medium]
• Chapter 7: Implementation of Textual Concrete Syntax [medium]

This is an introductory trail with Chapters 2 and 5 at its heart, complemented
by modest coverage of the foundations and implementation of abstract and concrete
syntax and, possibly, the notion of a software language in general. The assumption is
here that this trail should touch upon different metalanguages (including mainstream
options) and a broad variety of relatively simple metaprogramming scenarios and
techniques. The complexity of the trail could be tuned by including more or less
detail from Chapter 5.

Trail “A Primer on Programming Language Theory”

• Chapter 3: Foundations of Tree- and Graph-Based Abstract Syntax [low]
• Chapter 4: Representation of Object Programs in Metaprograms [low]
• Chapter 5: A Suite of Metaprogramming Scenarios [low]
• Chapter 8: A Primer on Operational Semantics [high]
• Chapter 9: A Primer on Type Systems [high]
• Chapter 10: An Excursion into the Lambda Calculus [medium–high]
• Chapter 11: An Ode to Compositionality [medium–high]

This trail excludes the two introductory chapters, as a broad view of software
languages is not required. The trail starts off with a short discussion of abstract
syntax. The trail skips over the topic of concrete syntax. The excursion to scenarios
of metaprogramming is recommended to introduce the notions of interpretation and
type checking without reliance on formal notation. The remaining chapters in the
trail deal with formal semantics and type systems in a pragmatic manner. Haskell
serves as the implementation language. The complexity of the trail can be tuned by
including more or less detail of the lambda calculus and denotational semantics. For
instance, abstract interpretation and structural and nominal typing and subtyping
may be considered optional.

Preface xv

Trail “Metaprogramming in Haskell”

• Chapter 1: The Notion of a Software Language [none–low]
• Chapter 3: Foundations of Tree- and Graph-Based Abstract Syntax [low]
• Chapter 4: Representation of Object Programs in Metaprograms [low]
• Chapter 5: A Suite of Metaprogramming Scenarios [high]
• Chapter 6: Foundations of Textual Concrete Syntax [low]
• Chapter 7: Implementation of Textual Concrete Syntax [low]
• Chapter 12: A Suite of Metaprogramming Techniques [high]

Chapters 5 and 12 provide the technical meat for this trail, prepared by modest
coverage of the foundations and implementation of abstract and concrete syntax
and, possibly, the notion of a software language in general.

Trail “Software Language Engineering”

This is a long trail through all chapters. This trail may be too long for an actual
course.

Exercises in the Book

Each exercise is marked with a level of difficulty:

Basic These exercises are concerned with using the relevant techniques in a basic
manner; the book’s coverage should suffice for solving these exercises.

Intermediate These exercises are concerned with aspects of techniques or sce-
narios of their usage that may go beyond the book’s coverage. Some research
(“googling”), teamwork, and advice from an instructor may be needed for solv-
ing the exercises.

Advanced These exercises are at the level of project assignments that may require
weeks of work depending on background and supervision. These exercises could
also be used for giving focus to research efforts in a course, for example.

Except for the exercises at the basic level, the formulations given intentionally
leave room for creativity. In general, solutions to the exercises will not be explicitly
published by the book’s author, although the resources for the book may provide
some relevant pieces of information.

Acknowledgments

I am grateful to my academic peers, who have helped me to learn many of the
things that I now want to pass on with this book. I list these peers in somewhat
chronological order, Günter Riedewald (my diploma and PhD supervisor to whom
I owe so much), Uwe Lämmel (an early mentor who put me on the Prolog and
grammar quest), Mark van den Brand (a mentor who helped me during my PhD
period in diverse ways), Paul Klint (my key mentor during my PostDoc and senior
researcher times at CWI, Amsterdam), Chris Verhoef (my boss at VU, Amsterdam,
who introduced me to the art of writing), Simon L. Peyton Jones (with whom I wrote
a few great papers and from whom I learned other aspects of the art of writing), Erik
Meijer (a very exciting mentor at Microsoft and, more recently, at Facebook), and
Jean-Marie Favre (an inspiring colleague and friend of whom you have one of the
kind in a lifetime).

There are yet other peers with whom I may have collaborated only more briefly,
but they also have helped me to learn things I want to pass on with this book; they are
stated here in no well-defined order: Eelco Visser, Dragan Gasevic, Simon Thomp-
son, Krzysztof Czarnecki, Jean Bézivin, James R. Cordy, Oleg Kiselyov, Peter Thie-
mann, Wolfram Schulte, Walid Taha, Tijs van der Storm, Frédéric Jouault, Robert
Hirschfeld, William R. Cook, Alfonso Pierantonio, Marjan Mernik, Dietrich Paulus,
Steffen Staab, and Jan Maluszynski.

I kindly acknowledge collaboration with Anya Helene Bagge on initial attempts
at a textbook design and continued efforts regarding education in software language
engineering. I envy people who can write a textbook in a team effort; I cannot.

Further, I am very grateful to those who provided input for or feedback on (parts
of) the book. I want to mention specifically Mahdi Derakhshanmanesh, Torsten
Grust, Bradford Larsen, Nicolas Laurent, Eliot Miranda, Friedrich Steimann, and
Vadim Zaytsev.

I kindly acknowledge collaboration on relevant subjects with current or for-
mer graduate or undergraduate students at the University of Rostock; Universiteit
van Amsterdam; the Dutch Centre of Mathematics and Computer Science, Amster-
dam (CWI); Vrije Universiteit, Amsterdam; Universität Koblenz-Landau; and other
places. I want to mention specifically Jan Kort, Joost Visser, Wolfgang Lohmann,

xvii

xviii Acknowledgments

Thiago T. Bartolomei, Markus Kaiser, Ekaterina Pek, Andrei Varanovich, Vadim
Zaytsev, Marcel Heinz, Lukas Härtel, Johannes Härtel, Kevin Klein, and Simon
Schauss.

Several editions of my courses on software language engineering and program-
ming language theory have helped in collecting and maturing the content; thanks to
all the students on these courses for bearing with me.

I kindly acknowledge the artistic work of Wojciech Kwasnik and his collabo-
rators on the book’s cover and the per-chapter artwork. I very much enjoyed the
endeavor–a “deep art” approach. The artwork on the book’s cover shows a tower
(inspired by the Tower of Babel), suggesting a notion of a “Tower of Software
Languages”. The tower is the output of a neural algorithm applied to a simpler
(computed) tower and used a style image by Matt Sheehy for “morphing”. “Tron
design” was applied at the border of the tower’s shape. The images for the per-
chapter artwork were derived based on the following pattern: the image of a com-
puter scientist to be honored was composed with artwork by Vincent van Gogh
for the person’s background; artwork by Matt Sheehy (the same as for the book’s
cover) was used to morph the person’s clothes and “Tron design” was applied at
the border of the person’s shape. Thus, there is a constructive similarity between
the “Tower of Software Languages” and the morphed images of the persons. See
http://www.softlang.org/book-art for information on the art and the
way in which computer scientists are honored in this book.

Much of the book was written in Koblenz in proximity to the Mosel and Rhine
river, perhaps, in the morning, while eating scrambled eggs and drinking coffee at
Baeckerei Hoefer (Ferdinand-Sauerbruch-Straße); in the Sunday afternoons, while
drinking Darjeeling or, possibly, Riesling at Kaffeewirtschaft (Münzplatz); or on
Saturday or Sunday evenings on Holger’s rocking chair.

Dear Olya, thank you for being there and sharing your life with me.

Ralf Lämmel (Software Language Engineer)
March 1st, 2018

http://www.softlang.org/book-art

Contents

List of Recipes . xxvii

Acronyms . xxix
Fabricated languages . xxix
Other acronyms . xxx

1 The Notion of a Software Language . 1
1.1 Examples of Software Languages . 2

1.1.1 Real-World Software Languages . 2
1.1.2 Fabricated Software Languages . 3

1.1.2.1 BNL: A Language of Binary Numbers 5
1.1.2.2 BTL: An Expression Language 5
1.1.2.3 BL: A Language for Buddy Relationships 6
1.1.2.4 BFPL: A Functional Programming Language 6
1.1.2.5 BIPL: An Imperative Programming Language 7
1.1.2.6 FSML: A Language for Finite State Machines 7
1.1.2.7 BGL: A Language for Context-Free Grammars . . . 9

1.2 Classification of Software Languages . 9
1.2.1 Classification by Paradigm . 10
1.2.2 Classification by Type System . 11
1.2.3 Classification by Purpose . 12
1.2.4 Classification by Generality or Specificity 13
1.2.5 Classification by Representation . 14
1.2.6 Classification by Notation . 15
1.2.7 Classification by Degree of Declarativeness 15

1.3 The Lifecycle of Software Languages . 17
1.3.1 Language Definition . 18
1.3.2 Language Implementation . 20

1.3.2.1 Compilation versus Interpretation 20
1.3.2.2 Architecture of a Compiler . 21
1.3.2.3 Classification of Language Processors 22

xix

xx Contents

1.3.2.4 Metaprogramming Systems . 25
1.3.2.5 Language Workbenches . 26

1.3.3 Language Evolution . 27
1.4 Software Languages in Software Engineering 28

1.4.1 Software Re-Engineering . 28
1.4.2 Software Reverse Engineering . 30
1.4.3 Software Analysis . 31
1.4.4 Technological Spaces . 33
1.4.5 Model-Driven Engineering . 36

Summary and outline . 38
References . 38

2 A Story of a Domain-Specific Language . 51
2.1 Language Concepts . 52
2.2 Internal DSL . 54

2.2.1 Baseline Object Model . 54
2.2.2 Fluent API . 57
2.2.3 Interpretation . 61
2.2.4 Well-Formedness . 63

2.3 External DSL . 66
2.3.1 Syntax Definition . 67
2.3.2 Syntax Checking . 68
2.3.3 Parsing . 71

2.4 DSL Services . 74
2.4.1 Interchange Format . 74
2.4.2 Code Generation . 76
2.4.3 Visualization . 82

Summary and outline . 84
References . 85

3 Foundations of Tree- and Graph-Based Abstract Syntax 87
3.1 Tree-Based Abstract Syntax . 88

3.1.1 Trees versus Terms . 88
3.1.2 A Basic Signature Notation . 89
3.1.3 Abstract Syntax Trees . 90
3.1.4 An Extended Signature Notation . 91
3.1.5 Illustrative Examples of Signatures . 92

3.1.5.1 Syntax of Simple Expressions 92
3.1.5.2 Syntax of Simple Imperative Programs 92
3.1.5.3 Syntax of Simple Functional Programs 93
3.1.5.4 Syntax of Finite State Machines 94

3.1.6 Languages as Sets of Terms . 95
3.1.7 Conformance to a Signature . 96

3.2 Graph-Based Abstract Syntax . 96
3.2.1 Trees versus Graphs . 97

Contents xxi

3.2.2 Languages as Sets of Graphs . 98
3.2.3 A Metamodeling Notation . 99
3.2.4 Conformance to a Metamodel . 100
3.2.5 Illustrative Examples of Metamodels . 101

3.2.5.1 Syntax of Finite State Machines 101
3.2.5.2 Syntax of Simple Functional Programs 102

3.3 Context Conditions . 102
3.4 The Metametalevel . 103

3.4.1 The Signature of Signatures . 104
3.4.2 The Signature of Metamodels . 105
3.4.3 The Metamodel of Metamodels . 106

Summary and outline . 107
References . 108

4 Representation of Object Programs in Metaprograms 109
4.1 Representation Options . 110

4.1.1 Untyped Representation . 110
4.1.2 Universal Representation . 111
4.1.3 Typeful Representation . 112

4.1.3.1 Algebraic Data Type-Based Representation 112
4.1.3.2 Object-Based Representation 114
4.1.3.3 Reference Relationships . 115
4.1.3.4 Smart Constructors . 118

4.1.4 Interchange Formats . 120
4.1.4.1 JSON Representation . 120
4.1.4.2 XML Representation . 121

4.2 Conformance Checking . 122
4.2.1 Language-Specific Conformance Checking 122
4.2.2 Generic Conformance Checking . 123
4.2.3 Schema-Based Conformance Checking 125

4.3 Serialization . 128
4.4 AST-to-ASG Mapping . 129
Summary and outline . 133
References . 133

5 A Suite of Metaprogramming Scenarios . 135
5.1 Interpretation . 136

5.1.1 Basics of Interpretation . 136
5.1.2 Interpretation with Stores . 138
5.1.3 Interpretation with Environments . 141
5.1.4 Stepwise Interpretation . 143

5.2 Compilation . 146
5.2.1 Architecture of a Compiler . 147
5.2.2 Translation to Assembly Code . 148
5.2.3 Translation to Machine Code . 151

xxii Contents

5.3 Analysis . 154
5.3.1 Type Checking . 154
5.3.2 Well-Formedness Checking . 156
5.3.3 Fact Extraction . 159

5.4 Transformation . 161
5.4.1 Optimization . 162
5.4.2 Refactoring . 164

5.5 Composition . 169
Summary and outline . 173
References . 173

6 Foundations of Textual Concrete Syntax . 177
6.1 Textual Concrete Syntax . 178

6.1.1 A Basic Grammar Notation . 178
6.1.2 Derivation of Strings . 179
6.1.3 An Extended Grammar Notation . 180
6.1.4 Illustrative Examples of Grammars . 181

6.1.4.1 Syntax of Simple Expressions 181
6.1.4.2 Syntax of Simple Imperative Programs 181
6.1.4.3 Syntax of Simple Functional Programs 183
6.1.4.4 Syntax of Finite State Machines 183

6.2 Concrete versus Abstract Syntax . 184
6.3 Languages as Sets of Strings . 186

6.3.1 Context-Free Grammars . 186
6.3.2 The Language Generated by a Grammar 187
6.3.3 Well-Formed Grammars . 187
6.3.4 The Notion of Acceptance . 188

6.4 Languages as Sets of Trees . 188
6.4.1 Concrete Syntax Trees . 189
6.4.2 The Notion of Parsing . 190
6.4.3 Ambiguous Grammars . 190

6.5 Lexical Syntax . 192
6.6 The Metametalevel . 194

6.6.1 The Signature of Grammars . 194
6.6.2 The Signature of Concrete Syntax Trees 196
6.6.3 The Grammar of Grammars . 197
6.6.4 The Grammar of Signatures . 198
6.6.5 The Grammar of Metamodels . 199

Summary and outline . 200
References . 200

7 Implementation of Textual Concrete Syntax . 201
7.1 Representations and Mappings . 202
7.2 Parsing . 204

7.2.1 Basic Parsing Algorithms . 204

Contents xxiii

7.2.1.1 Top-Down Acceptance . 204
7.2.1.2 Bottom-Up Acceptance . 209
7.2.1.3 Top-Down Parsing . 212
7.2.1.4 Bottom-Up Parsing . 213

7.2.2 Recursive Descent Parsing . 213
7.2.3 Parser Generation . 217
7.2.4 Parser Combinators . 218

7.3 Abstraction . 220
7.3.1 Recursive Descent Parsing . 221
7.3.2 Semantic Actions . 222
7.3.3 Parser Combinators . 224
7.3.4 Text-to-Model . 225

7.4 Formatting . 226
7.4.1 Pretty Printing Combinators . 226
7.4.2 Template Processing . 228

7.5 Concrete Object Syntax . 231
7.5.1 Quotation . 232
7.5.2 Antiquotation . 234

Summary and outline . 237
References . 238

8 A Primer on Operational Semantics . 241
8.1 Big-step Operational Semantics . 242

8.1.1 Metavariables . 242
8.1.2 Judgments . 242
8.1.3 Inference Rules . 243
8.1.4 Derivation Trees . 246
8.1.5 Big-Step Style Interpreters . 247

8.1.5.1 Aspects of Implementation . 247
8.1.5.2 Explicit Model of Failure . 250
8.1.5.3 Rule-by-Rule Mapping . 251

8.1.6 More Examples of Big-Step Style . 253
8.1.6.1 Semantics of Simple Imperative Programs 253
8.1.6.2 Semantics of Simple Functional Programs 257

8.2 Small-Step Operational Semantics . 258
8.2.1 Big- versus Small-Step Judgments . 259
8.2.2 Normal Form . 260
8.2.3 Derivation Sequences . 261
8.2.4 Small-Step Style Interpreters . 263
8.2.5 More Examples of Small-Step Style . 264

8.2.5.1 Semantics of Simple Imperative Programs 264
8.2.5.2 Semantics of Simple Functional Programs 267
8.2.5.3 Semantics of Finite State Machines 269

Summary and outline . 270
References . 270

xxiv Contents

9 A Primer on Type Systems . 271
9.1 Types . 272
9.2 Typing Judgments . 272
9.3 Typing Rules . 273
9.4 Typing Derivations . 274
9.5 Type Safety . 274
9.6 Type Checking . 277
9.7 More Examples of Type Systems . 278

9.7.1 Well-Typedness of Simple Imperative Programs 278
9.7.2 Well-Typedness of Simple Functional Programs 284
9.7.3 Well-Formedness of Finite State Machines 287

Summary and outline . 287
References . 288

10 An Excursion into the Lambda Calculus . 289
10.1 The Untyped Lambda Calculus . 290

10.1.1 Syntax . 290
10.1.2 Semantics . 291
10.1.3 Substitution . 292
10.1.4 Predefined Values and Operations . 294
10.1.5 Fixed-Point Computation . 295
10.1.6 Interpretation . 296
10.1.7 Turing Completeness . 298

10.2 The Simply Typed Lambda Calculus . 299
10.2.1 Syntax . 299
10.2.2 Semantics . 300
10.2.3 Type System . 300
10.2.4 Type Checking . 301
10.2.5 Type Erasure . 302

10.3 System F . 303
10.3.1 Syntax . 304
10.3.2 Semantics . 305
10.3.3 Type System . 306
10.3.4 Type Erasure . 307

10.4 Type-System Extensions . 309
10.4.1 Records and Variants . 309
10.4.2 Structural Type Equivalence . 312
10.4.3 Structural Subtyping . 312
10.4.4 Nominal Typing . 315

Summary and outline . 318
References . 318

Contents xxv

11 An Ode to Compositionality . 319
11.1 Compositionality . 320
11.2 Direct Style . 320

11.2.1 Semantic Domains . 321
11.2.2 Semantic Functions . 321
11.2.3 Semantic Combinators . 322
11.2.4 Fixed-Point Semantics . 323
11.2.5 Direct-Style Interpreters . 325

11.3 Continuation Style . 328
11.3.1 Continuations . 328
11.3.2 Continuation-Style Interpreters . 329
11.3.3 Semantics of Gotos . 330

Summary and outline . 333
References . 334

12 A Suite of Metaprogramming Techniques . 335
12.1 Term Rewriting . 336

12.1.1 Rewrite Rules . 336
12.1.2 Encoding Rewrite Rules . 338
12.1.3 Normalization . 340
12.1.4 Strategic Programming . 341
12.1.5 Rewriting-Related concerns . 345

12.1.5.1 Other Traversal Idioms . 345
12.1.5.2 Concrete Object Syntax . 346
12.1.5.3 Graph Rewriting and Model Transformation 346
12.1.5.4 Origin Tracking . 346
12.1.5.5 Layout Preservation . 346

12.2 Attribute Grammars . 347
12.2.1 The Basic Attribute Grammar Formalism 347
12.2.2 Attribute Evaluation . 350
12.2.3 Attribute Grammars as Functional Programs 354
12.2.4 Attribute Grammars with Conditions . 356
12.2.5 Semantic Actions with Attributes . 358

12.3 Multi-Stage Programming . 363
12.3.1 Inlining as an Optimization Scenario . 364
12.3.2 Quasi-Quotation and Splicing . 364
12.3.3 More Typeful Staging . 366

12.4 Partial Evaluation . 368
12.4.1 The Notion of a Residual Program . 368
12.4.2 Interpretation with Inlining . 370
12.4.3 Interpreter with Memoization . 375

12.5 Abstract Interpretation . 380
12.5.1 Sign Detection as an Optimization Scenario 380
12.5.2 Semantic Algebras . 381
12.5.3 Concrete Domains . 382

xxvi Contents

12.5.4 Abstract Domains . 383
12.5.5 Examples of Abstract Interpreters . 386

12.5.5.1 A Type-Checking Interpreter 386
12.5.5.2 A Sign-Detection Interpreter 388

Summary and outline . 393
References . 394

Postface . 399
The importance of Software Language Engineering 399
Software Languages: Key Concepts . 400
Omissions in This Book . 401
Complementary Textbooks . 403
Software Languages in Academia . 405
Feedback Appreciated . 408
References . 408

Index . 415

List of Recipes

2.1 Recipe (Development of a fluent API) . 61
2.2 Recipe (Development of an interpreter) . 63
2.3 Recipe (Development of a constraint checker) . 66
2.4 Recipe (Authoring a grammar) . 67
2.5 Recipe (Development of a syntax checker) . 69
2.6 Recipe (Development of a parser) . 73
2.7 Recipe (Development of a code generator) . 82

3.1 Recipe (Authoring an abstract syntax definition) 107

4.1 Recipe (Implementation of a conformance checker) 133

5.1 Recipe (Development of an interpreter (continued)) 138
5.2 Recipe (Development of a software transformation) 167

8.1 Recipe (Implementation of inference rules) . 247

11.1 Recipe (Compositional interpretation) . 327

12.1 Recipe (Design of a strategic program) . 345
12.2 Recipe (Design of an attribute grammar) . 362
12.3 Recipe (Design of a multi-stage program) . 368
12.4 Recipe (Design of a partial evaluator) . 379
12.5 Recipe (Design of an abstract interpreter) . 393

xxvii

Acronyms

Fabricated Languages

In this book, several software languages have been “fabricated” to capture core de-
sign aspects of diverse real-world software languages. See Section 1.1.2 for a de-
tailed discussion. Here is a summary:

BAL Basic Assembly Language
BFPL Basic Functional Programming Language
BGL Basic Grammar Language
BIPL Basic Imperative Programming Language
BL Buddy Language
BML Basic Machine Language
BNL Binary Number Language
BSL Basic Signature Language
BTL Basic TAPL Language
EFPL Extended Functional Programming Language
EGL Extended Grammar Language
EIPL Extended Imperative Programming Language
EL Expression Language
ESL Extended Signature Language
FSML Finite State Machine Language
MML MetaModeling Language
TLL Typed Lambda Language
ULL Untyped Lambda Language

xxix

xxx Acronyms

Other Acronyms

ADT abstract data type
AG attribute grammar
AOP aspect-oriented programming
ASG abstract syntax graph
AST abstract syntax tree
BNF Backus Naur form
ccpo chain complete partial order
CFG context-free grammar
COP context-oriented programming
CPS continuation-passing style
CST concrete syntax tree
DSL domain-specific language
DSML domain-specific modeling language
EBNF extended Backus Naur form
FSM finite state machine
IDE integrated development environment
IR intermediate representation
JIT just in time
LMS lightweight modular staging
MDE model-driven engineering
OO object oriented/orientation
OOP object-oriented programming
PEG parsing expression grammar
RDF resource description framework
SLR software language repository
UML unified modeling language

Chapter 1
The Notion of a Software Language

JEAN-MARIE FAVRE.1

Abstract In this chapter, we characterize the notion of “software language” in a
broad sense. We begin by setting out diverse examples of programming, modeling,
and specification languages to cover a wide range of use cases of software lan-
guages in software engineering. Then, we classify software languages along multi-
ple dimensions and describe the lifecycle of software languages, with phases such as
language definition and implementation. Finally, we identify areas in software en-
gineering that involve software languages in different ways, for example, software
reverse engineering and software re-engineering.

1 When the “Software Languages” community was formed around 2005–2007, Jean-Marie Favre
was perhaps the key pillar and visionary and community engineer. His views and interests are
captured very well in publications like these: [105, 104, 106, 100, 103].
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA 4.0.
This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This work also
quotes https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Zeegezicht_bij_
Les_Saintes-Maries-de-la-Mer_-_Google_Art_Project.jpg, subject to the attribution “Vincent van
Gogh: Seascape near Les Saintes-Maries-de-la-Mer (1888) [Public domain], via Wikimedia Commons.” This work artis-
tically morphes an image, https://www.flickr.com/photos/eelcovisser/4772847104, showing the
person honored, subject to the attribution “Permission granted by Eelco Visser for use in this book.”

1© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_1

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Zeegezicht_bij_Les_Saintes-Maries-de-la-Mer_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Zeegezicht_bij_Les_Saintes-Maries-de-la-Mer_-_Google_Art_Project.jpg
https://www.flickr.com/photos/eelcovisser/4772847104
https://doi.org/10.1007/978-3-319-90800-7_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_1&domain=pdf

2 1 The Notion of a Software Language

1.1 Examples of Software Languages

In this book, we discuss diverse software languages; we may use them for illustrative
purposes, and we may even define or implement them or some subsets thereof. For
clarity, we would like to enumerate all these languages here in one place so that the
reader will get an impression of the “language-related profile” of this book.

1.1.1 Real-World Software Languages

By “real-world language”, we mean a language that exists independently of this
book and is more or less well known. We begin with programming languages that
will be used for illustrative code in this book. We order these languages loosely in
terms of their significance in this book.

• Haskell2: The functional programming language Haskell
• Java3: The Java programming language
• Python4: The dynamic programming language Python

We will use some additional software languages in this book; these languages
serve the purpose of specification, modeling, or data exchange rather than program-
ming; we order these languages alphabetically.

• ANTLR5: The grammar notation of the ANTLR technology
• JSON6: The JavaScript Object Notation
• JSON Schema7: The JSON Schema language
• XML8: Extensible Markup Language
• XSD9: XML Schema Definition

Furthermore, we will refer to diverse software languages in different contexts, for
example, for the purpose of language classification in Section 1.2; we order these
languages alphabetically.

• Alloy10: The Alloy specification language
• CIL11: Bytecode of .NET’s CLR

2 Haskell language: https://www.haskell.org/
3 Java language: https://en.wikipedia.org/wiki/Java_(programming_language)
4 Python language: https://www.python.org/
5 ANTLR language: http://www.antlr.org/
6 JSON language: https://en.wikipedia.org/wiki/JSON
7 JSON Schema language: http://json-schema.org/
8 XML language: https://en.wikipedia.org/wiki/XML
9 XSD language: https://en.wikipedia.org/wiki/XML_Schema_(W3C)
10 Alloy language: http://alloy.mit.edu/alloy/
11 CIL language: https://en.wikipedia.org/wiki/Common_Intermediate_Language

https://www.haskell.org/
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.python.org/
http://www.antlr.org/
https://en.wikipedia.org/wiki/JSON
http://json-schema.org/
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XML_Schema_(W3C)
http://alloy.mit.edu/alloy/
https://en.wikipedia.org/wiki/Common_Intermediate_Language

1.1 Examples of Software Languages 3

• Common Log Format12: The NCSA Common log format
DocBook13: The DocBook semantic markup language for documentation

• FOAF14: The friend of a friend ontology
• INI file15: The INI file format
• Java bytecode16: Bytecode of the JVM
• make17: The make tool and its language
• OWL18: Web Ontology Language
• Prolog19: The logic programming language Prolog
• QTFF20: QuickTime File Format
• RDF21: Resource Description Framework
• RDFS22: RDF Schema
• Scala23: The functional OO programming language Scala
• Smalltalk24: The OO reflective programming language Smalltalk
• SPARQL25: SPARQL Protocol and RDF Query Language
• UML26: Unified Modeling Language
• XPath27: The XML path language for querying
• XSLT28: Extensible Stylesheet Language Transformations

1.1.2 Fabricated Software Languages

In this book, we “fabricated” a few software languages: these are small, idealized
languages that have been specifically designed and implemented for the purposes
of the book, although in fact these languages are actual or de facto subsets of real-
world software languages. The language names are typically acronyms with expan-
sions hinting at the nature of the languages. Language definitions of language-based

12 Common Log Format language: https://en.wikipedia.org/wiki/Common_Log_Format
13 DocBook language: https://en.wikipedia.org/wiki/DocBook
14 FOAF language: http://semanticweb.org/wiki/FOAF.html
15 INI file language: https://en.wikipedia.org/wiki/INI_file
16 Java bytecode language: https://en.wikipedia.org/wiki/Java_bytecode
17 make language: https://en.wikipedia.org/wiki/Make_(software)
18 OWL language: https://en.wikipedia.org/wiki/Web_Ontology_Language
19 Prolog language: https://en.wikipedia.org/wiki/Prolog
20 QTFF language: https://en.wikipedia.org/wiki/QuickTime_File_Format
21 RDF language: https://www.w3.org/RDF/
22 RDFS language: https://www.w3.org/TR/rdf-schema/
23 Scala language: https://en.wikipedia.org/wiki/Scala_(programming_language)
24 Smalltalk language: https://en.wikipedia.org/wiki/Smalltalk
25 SPARQL language: https://en.wikipedia.org/wiki/SPARQL
26 UML language: https://en.wikipedia.org/wiki/Unified_Modeling_Language
27 XPath language: https://en.wikipedia.org/wiki/XPath
28 XSLT language: https://en.wikipedia.org/wiki/XSLT

https://en.wikipedia.org/wiki/Common_Log_Format
https://en.wikipedia.org/wiki/DocBook
http://semanticweb.org/wiki/FOAF.html
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/QuickTime_File_Format
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/SPARQL
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XSLT

4 1 The Notion of a Software Language

software components are available for these languages from the book’s repository.29

The footnotes in the following list link to the repository locations for the languages.

• BAL: Basic Assembly Language
• BFPL: Basic Functional Programming Language
• BGL: Basic Grammar Language
• BIPL: Basic Imperative Programming Language
• BML: Binary Machine Language
• BNL: Binary Number Language
• BSL: Basic Signature Language
• BTL: Basic TAPL Language
• BL: Buddy Language
• EFPL: Extended Functional Programming Language
• EGL: Extended Grammar Language
• EIPL: Extended Imperative Programming Language
• EL: Expression Language
• ESL: Extended Signature Language
• FSML: Finite State Machine Language
• MML: Meta Modeling Language
• TLL: Typed Lambda Language
• Text: The “language” of text (such as Unicode 8.0 strings)
• ULL: Untyped Lambda Language

In the rest of this section, we quickly introduce some of these languages, thereby
providing a first indication of the diversity of language aspects covered by the book.

Binary Number Language (BNL) A trivial language of binary numbers with an
intended semantics that maps binary to decimal values.

Basic TAPL Language (BTL) A trivial expression language in reference to the
TAPL textbook (Types and programming languages [210]).

Buddy Language (BL) A trivial language for modeling persons in terms of their
names and buddy relationships.

Basic Functional Programming Language (BFPL) A really simple functional
programming language which is an actual syntactic subset of the established pro-
gramming language Haskell.

Basic Imperative Programming Language (BIPL) A really simple imperative
programming language which is a de-facto subset of the established program-
ming language C.

Finite State Machine Language (FSML) A really simple language for behav-
ioral modeling which is variation on statecharts of the established modeling lan-
guage UML.

Basic Grammar Language (BGL) A specification language for concrete syntax,
which can also be executed for the purpose of parsing; it is a variation on the
established Backus-Naur form (BNF).

29 http://github.com/softlang/yas

http://github.com/softlang/yas/tree/springer/languages/BAL
http://github.com/softlang/yas/tree/springer/languages/BFPL
http://github.com/softlang/yas/tree/springer/languages/BGL
http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BML
http://github.com/softlang/yas/tree/springer/languages/BNL
http://github.com/softlang/yas/tree/springer/languages/BSL
http://github.com/softlang/yas/tree/springer/languages/BTL
http://github.com/softlang/yas/tree/springer/languages/BL
http://github.com/softlang/yas/tree/springer/languages/EFPL
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/EIPL
http://github.com/softlang/yas/tree/springer/languages/EL
http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/FSML
http://github.com/softlang/yas/tree/springer/languages/MML
http://github.com/softlang/yas/tree/springer/languages/TLL
http://github.com/softlang/yas/tree/springer/languages/Text
http://github.com/softlang/yas/tree/springer/languages/ULL
http://github.com/softlang/yas

1.1 Examples of Software Languages 5

1.1.2.1 BNL: A Language of Binary Numbers

We introduce BNL (Binary Number Language). This is a trivial language whose
elements are essentially the binary numbers. Here are some binary numbers and
their associated “interpretations” as decimal numbers:

• 0: 0 as a decimal number;
• 1: 1 as a decimal number;
• 10: 2 as a decimal number;
• 11: 3 as a decimal number;
• 100: 4 as a decimal number;
• 101: 5 as a decimal number;
• 101.01: 5.25 as a decimal number.

Thus, the language contains integer and rational numbers – only positive ones,
as it happens. BNL is a trivial language that is nevertheless sufficient to discuss the
most basic aspects of software languages such as syntax and semantics. A syntax
definition of BNL should define valid sequences of digits, possibly containing a
period. A semantics definition of BNL could map binary to decimal numbers. We
will discuss BNL’s abstract syntax in Chapter 3 and the concrete syntax in Chapter 6.

1.1.2.2 BTL: An Expression Language

We introduce BTL (Basic TAPL Language). This is a trivial language whose ele-
ments are essentially expressions over natural numbers and Boolean values. Here is
a simple expression:

pred if iszero zero then succ succ zero else zero

The meaning of such expressions should be defined by expression evaluation. For
instance, the expression form iszero e corresponds to a test of whether e evaluates to
the natural number zero; evaluation of the form is thus assumed to return a Boolean
value. The expression shown above evaluates to zero because iszero zero should
compute to true, making the if-expression select the then-branch succ succ zero, the
predecessor of which is succ zero.

An interpreter of BTL expressions should recursively evaluate BTL expression
forms. BTL is a trivial language that is nevertheless sufficient to discuss basic as-
pects of interpretation (Chapter 5), semantics (Chapter 8), and type systems (Chap-
ter 9).

6 1 The Notion of a Software Language

name : ‘joe’
name : ‘bill’

buddy : ⦁
buddy : ⦁

Fig. 1.1 Illustrative graph of buddy relationships.

1.1.2.3 BL: A Language for Buddy Relationships

We introduce BL (Buddy Language). This is a trivial language whose elements are
essentially graphs of persons with their names and buddy relationships. Figure 1.1
shows an illustrative graph of buddy relationships between two persons; we leverage
an ad hoc visual, concrete syntax.

BL is a trivial ontology-like language. It can be considered a trivial variation
on FOAF, the “friend of a friend” ontology. Importantly, BL involves references
in an essential manner. Thus, BL calls for a graph-based abstract syntax, whereas
the other language examples given above (arguably) need only a tree-based abstract
syntax. BL also involves an interesting constraint: a person must not be his or her
own buddy. We will discuss BL as an example of graph-based abstract syntax in
Chapter 3.

1.1.2.4 BFPL: A Functional Programming Language

We introduce BFPL (Basic Functional Programming Language). Here is an illustra-
tion of BFPL – a sample program which defines the factorial function recursively
and applies to an actual argument:

−− The factorial function
factorial :: Int −> Int
factorial x =

if ((==) x 0)
then 1
else ((*) x (factorial ((−) x 1)))

−− Apply the function to 5
main = print $ factorial 5 −− Prints 120

(The execution of the program would print “120”.) BFPL is a trivial language
exercising basic functional programming concepts such as function application and
recursive function definition. A semantics definition of BFPL should define expres-
sion evaluation, including parameter passing for function application. We will de-
velop such a semantics in Chapter 8.

1.1 Examples of Software Languages 7

For what it matters, BFPL is a “small” syntactic subset of the established func-
tional programming language Haskell. In fact, the sample shown is a valid Haskell
program as is, and the Haskell semantics would agree on the output – 120 for the
factorial of 5. BFPL was fabricated to be very simple. Thus, BFPL lacks many
language constructs of Haskell and other real-world functional programming lan-
guages. For instance, BFPL does not feature higher-order functions and algebraic
data types.

1.1.2.5 BIPL: An Imperative Programming Language

We introduce BIPL (Basic Imperative Programming Language). Here is an illustra-
tion of BIPL – a sample program which performs Euclidean division:

{
// Sample operands for Euclidean division
x = 14;
y = 4;

// Compute quotient q=3 and remainder r=2
q = 0;
r = x;
while (r >= y) {

r = r − y;
q = q + 1;

}
}

Division is applied to specific arguments x and y. The result is returned as the
quotient q and the remainder r. The execution of the sample program would termi-
nate with the variable assignment x=14, y=4, q=3, r=2.

BIPL is a trivial language exercising basic imperative programming concepts
such as mutable variable, assignment, and control-flow constructs for sequence, se-
lection, and iteration. For what it matters, BIPL is roughly a “small” syntactic subset
of the established but much more complicated imperative programming language C.
BIPL lacks many language constructs that are provided by C and other real-world
imperative programming languages. For instance, BIPL does not feature procedures
(functions) and means of type definition such as structs. Further, C requires dec-
laration of variables, whereas BIPL does not. A semantics of BIPL should define
statement execution. We will develop such a semantics in Chapter 8.

1.1.2.6 FSML: A Language for Finite State Machines

We introduce FSML (FSM Language, i.e., Finite State Machine Language). Fig-
ure 1.2 shows an illustrative FSM (finite state machine) which models the behavior
of a turnstile or some sort of revolving door, as possibly used in a metro system. The
FSM identifies possible states of the turnstile; see the nodes in the visual notation.

8 1 The Notion of a Software Language

exception

ticket/eject

pass

mute

lockedrelease
pass/alarm

unlockedticket/collect
pass

ticket/eject

Fig. 1.2 A finite state machine for a turnstile.

The FSM also identifies possible transitions between states triggered by “events,”
possibly causing “actions”; see the edges in the visual notation.

These are these states in the turnstile FSM:

• locked: The turnstile is locked. No passenger is allowed to pass.
• unlocked: The turnstile is unlocked. A passenger may pass.
• exception: A problem has occurred and metro personnel need to intervene.

There are input symbols which correspond to the events that a user or the envi-
ronment may trigger. There are output symbols which correspond to the actions that
the state machine should perform upon a transition. These are some of the events
and actions of the turnstile FSM:

• Event ticket: A passenger enters a ticket into the card reader.
• Event pass: A passenger passes through the turnstile, as noticed by a sensor.
• Action collect: The ticket is collected by the card reader.
• Action alarm: An alarm is turned on, thereby requesting metro personnel.

The meanings of the various transitions should be clear. Consider, for example,
the transition from the source state “locked” to the target state “unlocked”, which
is annotated by “ticket/collect” to mean that the transition is triggered by entering a
ticket and the transition causes ticket collection to happen.

FSML is a domain-specific modeling language (DSML). FSML supports state-
based modeling of systems. The specification can be executed to simulate possible
behaviors of a turnstile. The specification could also be used to generate a code
skeleton for controlling an actual turnstile, as part of an actual metro system. FSML
is a trivial language that can be used to discuss basic aspects of domain-specific
language definition and implementation. For what it matters, languages for state-
based behavior are widely established in software and systems engineering. For
instance, the established modeling language UML consists, in fact, of several mod-
eling languages; UML’s state machine diagrams are more general than FSML. We
will discuss FSML in detail in Chapter 2.

1.2 Classification of Software Languages 9

1.1.2.7 BGL: A Language for Context-Free Grammars

We introduce BGL (Basic Grammar Language). This language can be used to define
the concrete textual syntax of other software languages. Thus, BGL gets us to the
metalevel. Here is an illustration of BGL – a definition of the syntax of BNL – the
language of binary numbers, as introduced earlier:

[number] number : bits rest ; // A binary number
[single] bits : bit ; // A single bit
[many] bits : bit bits ; // More than one bit
[zero] bit : '0' ; // The zero bit
[one] bit : '1' ; // The nonzero bit
[integer] rest : ; // An integer number
[rational] rest : '.' bits ; // A rational number

Each line is a grammar production (a rule) with the syntactic category (or the
so-called nonterminal) to the left of “:” and its definition to the right of “:”. For
instance, the first production defines that a binary number consists of a bit sequence
bits for the integer part followed by rest for the optional rational part. The right-hand
phrases compose so-called terminals (“0”, “1”, and “.”) and nonterminals (bit, bits,
rest, and number) by juxtaposition. The rules are labeled, thereby giving a name to
each construct.

BGL is a domain-specific modeling language in that it supports modeling (or
specifying or defining) concrete textual syntax. One may “execute” BGL in differ-
ent ways. Most obviously, one may execute a BGL grammar for the purpose of ac-
cepting or parsing input according to the syntax defined. BGL, like many other nota-
tions for syntax definition, is grounded in the fundamental formalism of context-free
grammars (CFGs). BGL is a variation on BNF [21]. There exist many real-world
notations for syntax definition [277]; they are usually more complex than BGL and
may be tied to specific technology, for example, for parsing. We will develop BGL
in detail in Chapter 6.

1.2 Classification of Software Languages

There are hundreds or even thousands of established software languages, depending
on how we count them. It may be useful to group languages in an ontological man-
ner. In particular, a classification of software languages (i.e., a language taxonomy)
is a useful (if not necessary) pillar of a definition of “software language”.

10 1 The Notion of a Software Language

Wikipedia, which actually uses the term “computer language” at the root of the
classification, identifies the following top-level classifiers:30

• data-modeling languages;
• markup languages;
• programming languages;
• specification languages;
• stylesheet languages;
• transformation languages.

Any such branch can be classified further in terms of constructs and concepts.
For instance, in the case of programming languages, there exist textbooks on pro-
gramming languages, programming paradigms, and programming language theory
such as [199, 232], which identify constructs and concepts. There is also scholarly
work on the classification of programming languages [20, 90] and the identification
of language concepts and corresponding paradigms [258].

Several classes of software languages (other than programming languages) have
been identified, for example, model transformation languages [75], business rule
modeling languages [239], visual languages [46, 49, 190], and architecture de-
scription languages [192]. There is more recent work aimed at the classification
of software languages (or computer languages) more broadly [13, 237, 3, 171]. The
101companies project31 [102, 101, 173, 166] is also aimed at a taxonomy of soft-
ware languages, but the results are of limited use, at the time of writing.

In the remainder of this section, we classify software languages along differ-
ent dimensions. A key insight here is that a single classification tree is insufficient.
Multiple inheritance may be needed, or orthogonal dimensions may need to be con-
sidered separately.

1.2.1 Classification by Paradigm

When focusing on programming languages as a category of software languages,
classification may be based on the programming paradigm. A paradigm is charac-
terized by a central notion of programming or computing. Here is an incomplete,
classical list of paradigms:

Imperative programming Assignable (updatable) variables and updatable (in-
place) data structures and sequential execution of statements of operations on
variables. Typically, procedural abstractions capture statements that describe
control flow with basic statements for updates. We exercise imperative program-
ming with the fabricated language BIPL (Section 1.1.2.5) in this book.

30 We show Wikipedia categories based on a particular data-cleaning effort [171]. This is just a
snapshot, as Wikipedia is obviously evolving continuously.
31 http://101companies.org

http://101companies.org

1.2 Classification of Software Languages 11

Functional programming The application of functions models computation with
compound expressions to be reduced to values. Functions are first-class citizens
in that functions may receive and return functions; these are higher-order func-
tions. We exercise functional programming with the fabricated language BFPL
(Section 1.1.2.4) in this book – however, though higher-order functions are not
supported.

Object-oriented (OO) programming An object is a capsule of state and behav-
ior. Objects can communicate with each other by sending messages, the same
message being implementable differently by different kinds of objects. Objects
also engage in structural relationships, i.e., they can participate in whole–part
and reference relationships. Objects may be constructed by instantiation of a
given template (e.g., a class). Java and C# are well-known OO programming
languages.

Logic programming A program is represented as a collection of logic formulae.
Program execution corresponds to some kind of proof derivation. For instance,
Prolog is a well-known logic programming language; computation is based on
depth-first, left-to-right proof search through the application of definite clauses.

There exist yet other programming or computing notions that may character-
ize a paradigm, for example, message passing and concurrency. Many program-
ming languages are, in fact, multi-paradigm languages in that they support several
paradigms. For instance, JavaScript is typically said to be both a functional and an
imperative OO programming language and a scripting language. Programming lan-
guages may be able to support programming according to a paradigm on the basis
of some encoding scheme without being considered a member of that paradigm. For
instance, in Java prior to version 8, it was possible to encode functional programs in
Java, while proper support was added only in version 8.

Van Roy offers a rich discussion of programming paradigms [258]. Program-
ming concepts are the basic primitive elements used to construct programming
paradigms. Often, two paradigms that seem quite different (for example, functional
programming and object-oriented programming) differ by just one concept. The
following are the concepts discussed by Van Roy: record, procedure, closure, con-
tinuation, thread, single assignment, (different forms of) cell (state), name (unforge-
able constant), unification, search, solver, log, nondeterministic choice, (different
forms of) synchronization, port (channel), clocked computation. Van Roy identi-
fies 27 paradigms, which are characterized as sets of programming concepts. These
paradigms can be clearly related in terms of the concepts that have to be added to
go from one paradigm to another.

1.2.2 Classification by Type System

Furthermore, languages may also be classified in terms of their typing discipline
or type system [210] (or the lack thereof). Here are some important options for
programming languages in particular:

12 1 The Notion of a Software Language

Static typing The types of variables and other abstractions (e.g., the argument
and result types of methods or functions) are statically known, i.e., without exe-
cuting the program – this is at compile time for compiled languages. For instance,
Haskell and Java are statically typed languages.

Dynamic typing The types of variables and other abstractions are determined at
runtime. A variable’s type is the type of the value that is stored in that variable.
A method or function’s type is the one that is implied by a particular method
invocation or function application. For instance, Python is a dynamically typed
language.

Duck typing The suitability of a variable (e.g., an object variable in object-
oriented programming) is determined at runtime on the basis of checking for
the presence of certain methods or properties. Python uses duck typing.

Structural typing The equivalence or subtyping relationship between types in
a static typing setting is determined on the basis of type structure, such as the
components of record types. Scala supports some form of structural typing.

Nominal typing The equivalence or subtyping relationship between types in a
static typing setting is determined on the basis of explicit type names and de-
clared relationships between them. Java’s reference types (classes and interfaces
including “extends” and “implements” relationships) commit to nominal typing.

1.2.3 Classification by Purpose

Languages may be classified on the basis of the purpose of the language (its usage)
or its elements. Admittedly, the term “purpose” may be somewhat vague, but the
illustrative classifiers in Table 1.1 may convey our intuition. We offer two views:
the purpose of the language versus that of its elements; these two views are very
similar.

Table 1.1 Classification by the purpose of language elements

Purpose
(language)

Purpose
(element) Classifier Example

Programming Program Programming language Java
Querying Query Query language XPath
Transformation Transformation Transformation language XSLT
Modeling Model Modeling language UML
Specification Specification Specification language Alloy
Data representation Data Data format QTFF (QuickTime file format)
Documentation Documentation Documentation language DocBook
Configuration Configuration Configuration language INI file
Logging Log Log format Common Log Format
.

1.2 Classification of Software Languages 13

In some cases, owing to the ambiguity of natural language, we may even end up
with (about) the same purpose for both views, language elements versus language.
These classifiers are not necessarily disjoint. For instance, it may be hard to decide
in all cases whether some artifact should be considered a model, a specification,
or a program. The classifiers can also be further broken down. For instance, “data”
may be classified further as “audio”, “image”, or “video” data; “models” may be
classified further as “structural”, “behavioral”, or “architectural” models.

Let us apply this classification to the illustrative languages of Section 1.1. The
basic functional and imperative languages (BFPL and BIPL) are programming
languages. The languages for buddy relationships (BL) and finite state machines
(FSML) are (domain-specific) modeling languages. The BNF-like grammar lan-
guage BGL is a specification language. We may also characterize BGL as a syntax-
modeling language. We may also characterize the languages for binary numbers
(BNL) and buddy relationships (BL) as data formats or data representation lan-
guages.

In many cases, when speaking of purposes, we may also speak of domains and,
more specifically, of problem or programming domains. For instance, (a) transfor-
mation may be considered as a purpose, as an artifact, and a domain. We discuss the
domain notion in more detail below.

Exercise 1.1 (Another purpose for classification) [Intermediate level]
Study the classification of languages based on the references given earlier. For in-
stance, you may study the classification of languages according to Wikipedia. Find
another classifier to serve for classification based on purpose.

1.2.4 Classification by Generality or Specificity

There is a long-standing distinction between general-purpose (programming) lan-
guages (GPLs) versus domain-specific languages (DSLs). The term “domain” may
be meant here in the sense of “problem” or “application” domain such as image ma-
nipulation, hardware design, or financial products; see [81, 157] for many examples.
The term “domain” may also be meant in the sense of “programming” or “solution”
domain such as XML, GUI, or database programming [219]. This distinction is not
clear-cut; it also depends on the point of view. We do not make much use of this
distinction in the sequel.

We quote from [81] to offer a definition of a DSL: “A domain-specific language
(DSL) is a programming language or executable specification language that offers,
through appropriate notations and abstractions, expressive power focused on, and
usually restricted to, a particular problem domain.” We also extract some distin-
guishing characteristics of GPLs and DSLs from [265]:

14 1 The Notion of a Software Language

Domain Only DSLs have a relatively small and well-defined domain.
Language size GPLs are large. DSLs are typically small.
Turing completeness DSLs may not be Turing complete.
Lifespan GPLs live for years to decades. DSLs may live for months only.
Designed by GPLs are designed by gurus or committees. DSLs are designed by

a few software engineers and domain experts.
Evolution GPLs evolve slowly. The evolution of DSLs is fast-paced.
Deprecation/incompatible changes This is almost impossible for GPLs; it is

feasible and relatively common for DSLs.

DSLs, in turn, may be subdivided into domain-specific programming versus
modeling languages; see [147] for an introduction to domain-specific modeling.
However, we argue that the distinction between programming and modeling is
somewhat vague, because many modeling languages end up being executable even-
tually and it is also not uncommon to use programming languages for modeling.
DSLs may also be subdivided based on the style of implementation: internal versus
external DSLs [265, 214, 94, 78]. An internal DSL is basically a DSL implemen-
tation inside another language (the so-called host language) – typically as a library
inside a GPL, for example, Parsec [182] is implemented as a Haskell-based combi-
nator library for parsing. The DSL user accesses the DSL by means of an API. In-
ternal style may leverage metaprogramming-related facilities of the host language.

An external DSL is a language that is implemented in its own right, for example,
make as a DSL (and a tool) for build management. There is also the notion of an
embedded DSL [214], where the DSL’s syntax and semantics are integrated into a
host language. This may be achieved by the host language’s ability to define the
DSL syntax and to model the semantics by means of a mapping from DSL syntax
to host language syntax.

There is also the related notion of language composition. That is, when multiple
languages are integrated to be used together, then their semantics may need to be
coordinated [141, 48, 95, 78]. Language composition is particularly relevant in the
context of (domain-specific) modeling languages.

1.2.5 Classification by Representation

One may distinguish three fundamental representation options: strings versus trees
versus graphs. That is, the terms “string”, “tree”, and “graph” hint at the fundamental
structure of language elements. The terms are drawn from formal language theory.
Accordingly, there are these language classifiers:

String language (See also “textual language” below.) Language elements are
represented, viewed, and edited as strings, i.e., sequences of characters. A string
language would be typically defined in terms of a string grammar in the sense of
formal language theory, as supported, for example, by the BGL grammar nota-

1.2 Classification of Software Languages 15

tion of Section 1.1.2.7. Several of the illustrative languages of Section 1.1 were
introduced as string languages.

Tree language (See also “markup language” below.) Language elements are rep-
resented, viewed, and edited as trees, for example, as XML trees or JSON dictio-
naries. A tree language is defined in terms of a suitable grammar or data modeling
notation, for example, XSD in the case of XML. As it happens, we did not present
any tree languages in Section 1.1.2.7, but we will discuss tree-based abstract syn-
tax definitions later for some of the string languages that we have already seen.
Tree languages play an important role in language implementation.

Graph language Language elements are represented, viewed, and edited as graphs,
i.e., more or less constrained collections of nodes and edges. Appropriate gram-
mar and data modeling notations exist for this case as well. The language BL
for buddy relationships (Section 1.1.2.3) was introduced as a graph language and
we hinted at a visual concrete syntax. A graph language may be coupled with
a string or tree language in the sense of alternative representations of the same
“conceptual” language. For instance, BL may be represented in a string-, tree-,
or graph-based manner.

1.2.6 Classification by Notation

One may also distinguish languages in terms of notation; this classification is very
similar to the classification by representation:

Textual (text) language This is essentially a synonym for “string language”.
Markup language Markup, as in XML, is used as the main principle for express-

ing language elements. The use of markup is one popular notation for tree lan-
guages. With an appropriate semantics of identities, markup can also be used as
a notation for graphs. Not every tree language relies on markup for the notation.
For instance, JSON provides another, more dictionary-oriented notation for tree
languages.

Visual (graphical) language A visual notation is used. The languages BL for
buddy relationships (Section 1.1.2.3) and FSML for state-based modeling (Sec-
tion 1.1.2.6) were introduced in terms of a visual notation.

1.2.7 Classification by Degree of Declarativeness

An (executable) language may be said to be (more or less) declarative. It turns out
to be hard to identify a consensual definition of declarativeness, but this style of
classification is nevertheless common. For instance, one may say that programs (or
models) of a declarative language describe more the “what” than the “how”. That
is, a declarative program’s semantics is not strongly tied to execution order.

Let us review the languages of Section 1.1:

16 1 The Notion of a Software Language

Binary Number Language (BNL) A trivial language.
Buddy Language (BL) A trivial language.
Basic Functional Programming Language (BFPL) This language is “pure”, i.e.,

free of side effects. Regardless of the evaluation order of subexpressions, com-
plete evaluation of a main expression should lead to the same result – modulo
some constraints to preserve termination. For instance, argument expressions of
a function application could be evaluated in different orders without affecting the
result. Thus, BFPL is a declarative programming language.

Basic Imperative Programming Language (BIPL) This language features im-
perative variables such that the execution order of statements affects the result of
computation. Thus, BIPL is not a declarative programming language.

Finite State Machine Language (FSML) This language models finite states and
event- and action-labeled transitions between states. Its actual semantics or exe-
cution order is driven by an event sequence. FSML would usually be regarded as
a declarative (modeling) language.

Basic Grammar Language (BGL) This grammar notation defines sets of strings
in a rule-based manner. Thus, BGL’s most fundamental semantics is “declara-
tive” in the sense that it is purely mathematical, without reference to any opera-
tional details. Eventually, we may attach a more or less constrained operational
interpretation to BGL so that we can use it for efficient, deterministic parsing.
Until that point, BGL would be usually regarded as a declarative (specification)
language.

We may also consider subcategories of declarative languages such that it is em-
phasized how declarativeness is achieved. Two examples may suffice:

Rule-based language Programs are composed from rules, where a rule typically
combines a condition and an action part. The condition part states when the rule
is applicable; the action part states the implications of rule application. Some
logic programming languages, for example, Prolog, can be very well considered
to be rule-based languages. Some schemes for using functional programming, for
example, in interpretation or program transformation, also adopt the rule-based
approach. Event-driven approaches may also use rules with an additional “event”
component, for example, the “event condition action” (ECA) paradigm, as used
in active databases [88].

Constraint-based language Programs involve constraints as means of selecting
or combining computations. These constraints are aggregated during program
execution and constraint resolution is leveraged to establish whether and how
given constraints can be solved. For instance, there exist various constraint-logic
programming languages which enrich basic logic programming with constraints
on sets of algebras for numbers [117].

1.3 The Lifecycle of Software Languages 17

Language
implementation

Language
definition

Language
design

Domain
analysis

Language
usage analysis

Language
usage

Language
retirement

Language
evolution

Fig. 1.3 The lifecycle of a software language. The nodes denote phases of the lifecycle. The edges
denote transitions between these phases. The lifecycle starts with domain analysis. The lifecycle
ends (theoretically) with language retirement. We may enter cycles owing to language evolution.

Exercise 1.2 (Classification of make) [Basic level]
Study the language used by the well-known make utility and argue that the language
is declarative and identify what subcategory of declarativeness applies.

1.3 The Lifecycle of Software Languages

The notion of a software lifecycle can be usefully adopted for languages. That is, a
language goes through a lifecycle, possibly iterating or skipping some phases; see
Fig. 1.3. These phases are described in some detail as follows:

Domain analysis A domain analysis is required to discover the domain that is
to be addressed by a new language. A domain analysis answers these questions:
What are the central concepts in the domain? For instance, the central concepts
are states and transitions between states for FSML, differential equations and
their solution in a language for weather forecasts, or layouts and their rendering
in a language for HTML/XML stylesheets. These concepts form the foundation
of language design and for everything onwards. Arguably, no domain analysis is
performed for general-purpose programming languages.

Language design The domain concepts are mapped, at the design level of ab-
straction, to language constructs and language concepts. The emerging language
should be classified in terms of paradigm, degree of declarativeness, and other
characteristics. A language may be presented as a composition of very specific
language constructs as well as reusable language constructs, for example, for
basic expressions or modules. The first samples are written so that a syntax
emerges, and the transition to the phase of language definition has then begun.

Language definition The language design is refined into a language definition.
Most notably, the syntax and semantics of the language are defined. Assuming

18 1 The Notion of a Software Language

an executable language definition, a first language implementation (a proof of
concept) is made available for experiments, so that the transition to the phases of
language implementation and usage has begun.

Language implementation The language is properly implemented. Initially, a
usable and efficient compiler or interpreter needs to provided. Eventually, ad-
ditional language processors and tool support may be provided, for example,
documentation tools, formatters, style checkers, and refactorings. Furthermore,
support for an integrated development environment (IDE) may be implemented.

Language usage The language is used in actual software development. That is,
language artifacts are “routinely” authored and a body of software artifacts ac-
quire dependencies on the language. This is not explicitly modeled in Fig. 1.3,
but the assumption is, of course, that the language implementation is continu-
ously improved and new language processors are made available.

Language evolution Language definitions may revised to incorporate new lan-
guage features or respond to experience with language usage. Obviously, changes
to language definitions imply work on language implementations. Language
changes may even break backward compatibility, in which cases these changes
will necessitate migration of existing code in those languages.

Language usage analysis Language evolution and the systematic improvement
of domain analysis as well as language design, definition, and implementation,
may benefit from language usage analysis [155, 100, 172], as an empirical ele-
ment of the lifecycle. By going through the lifecycle in cycles, the language may
evolve in different ways. For instance, the language may be extended so that a
new version becomes available, which again needs to be implemented and put to
use.

Language retirement In practice, languages, once adopted, are rarely retired
completely, because the costs and risks of retirement are severe impediments.
Retirement may still happen in the narrow scope of projects or organizations.
In theory, a language may become obsolete, i.e., there are no software artifacts
left that depend on that language. Otherwise, language migration may be con-
sidered. That is, software artifacts that depend on a language are migrated (i.e.,
transformed manually or automatically) to another language.

Many aspects of these phases, with some particular emphasis on the lifecycle
of DSLs are discussed in [133, 272, 273, 197, 214, 56, 98, 94, 78, 265, 229]. In
the present book, the focus is on language definition and implementation; we are
concerned only superficially with domain analysis, language design, evolution, and
retirement.

1.3.1 Language Definition

Let us have a deeper look at the lifecycle phase of language definition. A language is
defined to facilitate implementation and use of the language. There are these aspects
of language definition:

1.3 The Lifecycle of Software Languages 19

Syntax The definition of the syntax consists of rules that describe the valid lan-
guage elements which may be drawn from different “universes”: the set of all
strings (say, text), the set of all trees (of some form, e.g., XML-like trees), or
the set of all graphs (of some form). Different kinds of formalisms may be used
to specify the rules defining the syntax. We may distinguish concrete and ab-
stract syntax – the former is tailored towards users who need to read and write
language elements, and the latter is tailored towards language implementation.
Abstract syntax is discussed in Chapters 3and 4. Concrete syntax is discussed in
Chapters 6and 7.

Semantics The definition of semantics provides a mapping from the syntactic cat-
egories of a language (such as statements and expressions) to suitable domains of
meanings. The actual mapping can be defined in different ways. For instance, the
mapping can be defined as a set of syntax-driven inference rules which model the
stepwise execution or reduction of a program; this is known as small-step opera-
tional semantics (Chapter 8). The mapping can also be applied by a translation,
for example, by a model-to-model transformation in model-driven engineering
(MDE).

Pragmatics The definition of the pragmatics explains the purpose of language
concepts and provides recommendations for their usage. Language pragmatics is
often defined only informally through text and samples. For instance, the prag-
matics definition for a C-like language with arrays may state that arrays should be
used for efficient (constant-time) access to indices in ordered collections of val-
ues of the same type. Also, arrays should be favored over (random-access) files or
databases for as long as in-memory representation of the entire data structure is
reasonable. In modeling languages for finite state machine (e.g., FSML), events
proxy for sensors and actions proxy for actors in an embedded system.

Types Some languages also feature a type system as a part of the language defini-
tion. A type system provides a set of rules for assigning or verifying types, i.e.,
properties of language phrases, for example, different expression types such as
“int” or “string” in a program with expressions. We speak of type checking if the
type system is used to check explicitly declared types. We speak of type inference
if the type system is used additionally to infer missing type declarations. A type
system needs to be able to bind names in the sense that any use of an abstrac-
tion such as a variable, a method, or a function is linked to the corresponding
declaration. Such name binding may defined as part of the type system or they
may be defined somewhat separately. We discuss types in detail in Chapter 9.
Even when a language does not have an interesting type system, i.e., different
types and rules about their use in abstractions, the language may still feature
other constraints regarding, for example, the correct use of names. Thus, we may
also speak of well-formedness more generally, as opposed to well-typedness more
specifically. For instance, in FSML, the events handled by a given source state
must be distinct for the sake of determinism.

When definitions of syntax, types, and semantics are considered formal artifacts
such that these artifacts are treated in a formal (mathematical) manner, then we
operate within the context of programming language theory. A formal approach

20 1 The Notion of a Software Language

is helpful, for example, when approaching the question of soundness. That is: Are
the type system and semantics in alignment in that properties described by the type
system agree with the actual runtime behavior described by the semantics?

In the present book, we use semiformal language definitions and we assume them
to be useful as concise executable specifications that will help software engineers in
implementing software languages, as discussed below. For reasons of limiting the
scope and size of the book, we are not much concerned with the formal analysis
(“metatheory”) of language definitions, in the sense of soundness or otherwise.

1.3.2 Language Implementation

Let us also have a deeper look at the lifecycle phase of language implementation.
The discussion gravitates slightly towards programming languages, but most ele-
ments apply similarly to MDE and DSLs.

1.3.2.1 Compilation versus Interpretation

One may distinguish two approaches to language implementation:

Interpretation An interpreter executes elements of a software language to pro-
duce, for example, the I/O behavior of a function, the result of a database query,
or the object graph corresponding to method invocations in an OO program. We
will develop some interpreters in Chapter 5. We will relate semantics and inter-
pretation in Chapters 8 and 11.

Compilation A compiler translates (transforms) elements of an executable soft-
ware language into elements of another executable software language. This trans-
lation may or may not lower the level of abstraction. For instance, a compiler
may translate a high-level programming language into low-level assembly or vir-
tual machine code. Likewise, a compiler for a DSL may target a GPL, thereby
also lowering the level of abstraction. Alternatively, a compiler may be more of
a translator between similar languages without much lowering the level of ab-
straction. In particular, a compiler may piggyback on yet another compiler for its
target language. We will develop a simple compiler in Chapter 5.

In a formalist’s view, an interpreter would be derived more or less directly from
a suitable form of semantics definition for a language. However, this does not cover
all forms of interpretation, because a given semantics may not directly enable a
practically motivated form of interpretation. For instance, consider the semantics of
a formal grammar as a language (a set) generated by that grammar. This semantics
is not immediately usable for “interpretation” in the sense of parsing.

Executing a program by interpretation is usually assumed to be slower than exe-
cuting the target of compilation. Interpretation allows a code base to be extended as
the program runs, whereas compilation prevents this.

1.3 The Lifecycle of Software Languages 21

Semantic
analysis

Code
generatorParser

—
———
——
———-
——-

So
ur

ce
co

de
—- —-
—- —-
—- —-
—- —-
—- —-

Mac
hi

ne
co

de

Grammar Rules for type
system etc.

Rules for code
generation

Compilation

En
ric

he
d

pa
rs

e
tre

e Pa
rs

e
tre

e

Fig. 1.4 Simplified data flow in a compiler. The rectangles with rounded edges represent logical
phases of compilation. The remaining nodes (rectangles and triangles) correspond to input and
output, as expressed by the direction of the arrows.

Interpretation versus compilation is not a clear-cut dichotomy; neither do we
usually deal with a single layer of program execution. Consider the usual scheme
of compiling languages to virtual machines. For instance, Java is compiled to Java
bytecode and C# is compiled to.NET’s CIL. These target languages are implemented
in turn by virtual machines which may be regarded as interpreters of the bytecode
languages at hand or, in fact, compilers, as they may translate bytecode into native
machine code on a target platform. There is also the notion of just-in-time (JIT)
compilation which can be seen as a compilation/interpretation hybrid in that com-
pilation happens as part of interpretation such that compilation can be adjusted to
the runtime context. Virtual machines, as mentioned before, usually leverage JIT
compilation. In other words, a JIT compiler is therefore an optimization of an in-
terpreter which tries to achieve the performance of a compiler while preserving the
dynamicity of an interpreter.

In addition to the basic dichotomy of compilation versus interpretation, there
is also the specific classification of implementation strategies for domain-specific
languages – internal versus external versus embedded DSL, as discussed in Sec-
tion 1.2.4.

In MDE, one does not necessarily speak of compilation, but instead of model-to-
model transformation, code generation, or model-to-text transformation. However,
the underlying principles are very much alike.

1.3.2.2 Architecture of a Compiler

Compilers and interpreters consist of several components. The decomposition of
a compiler into standard components with the associated data flow is summarized
in Fig. 1.4; see textbooks on compiler construction [2, 186, 14] for an in-depth
discussion. Thus, the source code (“text”) is mapped to a syntax tree (i.e., a parse
tree, a concrete syntax tree (CST), or an abstract syntax tree (AST)), which is then
further enriched with attributes and links. Eventually, code for a virtual or actual
machine is generated. These conceptual phases may be properly separated (“multi-

22 1 The Notion of a Software Language

pass compilation”) or may be integrated into one phase (“single-pass compilation”).
The components are explained more in detail as follows:

Parser A parser verifies the conformance of given input (i.e., text) to the syntax
rules of a language and represents the input in terms of the structure defined by
the rules. A parser performs parsing. Compilers and interpreters begin by parsing.
Many other language processors, as discussed below, also involve parsing.

Semantic analysis A syntax tree only represents the structure of the source code.
For any sort of nontrivial treatment such as code generation, the syntax tree
needs to be enriched with attributes and links related to typing and name bind-
ing. Names with their bindings and other attributes may be aggregated in a data
structure which is referred to as a symbol table or environment.

Code generator The enriched syntax tree is translated, more or less directly, into
machine code, i.e., code of some actual or virtual machine. In particular, code
generation involves resource and storage decisions such as register allocation,
i.e., assigning program variables to processor registers of the target machine.
In this book, few technicalities of code generation are discussed; this topic is
covered perfectly by the literature on compiler construction.

Ideally, the components are described by specifications such as grammars, type
systems, name-binding rules, and rewrite systems, as indicated in Fig. 1.4. In prac-
tice, the components are often implemented in a more ad hoc fashion.

This is a simplified data flow, because actual compilers may involve additional
phases. That is, parsing may consist of several phases in itself: preprocessing; lexi-
cal analysis (scanning, lexing, or tokenization); syntax analysis including parse-tree
construction and syntax desugaring. Also, there may be extra steps preceding code
generation: translation to a (simpler) intermediate representation (IR) and IR-level
optimization. Further, code generation may also involve optimization at the level of
the target language and a separation between translation to assembly code, mapping
to machine code, and some elements of linking. Finally, code generation may actu-
ally rely on translation such that the given input language is translated into a well-
defined subset of an existing (programming) language so that an available compiler
can be used afterwards.

Exercise 1.3 (An exercise on language implementation) [Basic level]
Research the current version of the JDK (Java Development Kit) and identify and
characterize at least two language implementations that are part of it.

1.3.2.3 Classification of Language Processors

Languages are implemented in many ways other than just regular compilers and
interpreters. We use the term “language processor” to refer to any sort of function-
ality for automated processing of software artifacts in a language-aware manner,

1.3 The Lifecycle of Software Languages 23

i.e., with more or less awareness of the syntax, types, and semantics of the arti-
facts. Examples of language processors include documentation generators, refactor-
ing tools, bug checkers, and metrics calculation tools. Language processors often
consist of several components and perform processing in phases, as we discussed
above for compilers. Rather than classifying language processors directly, let us
classify language-based software components. We do not make any claim of com-
pleteness for this classification. Several of the classifiers below will reappear in the
discussion of the role of software languages across different software engineering
areas (Section 1.4):

Parser or text-to-model transformation The term “parser” has already been in-
troduced in the context of compilation and interpretation. The term “text-to-
model transformation” is specifically used in the MDE community when one
wants to emphasize that the result of parsing is not a parse tree, but rather a
model in the sense of metamodeling, thus potentially involving, for example,
references after completing name binding.

Unparser, formatter, pretty printer, or model-to-text transformation An arti-
fact is formatted as text, possibly also subject to formatting conventions for the
use of spaces and line breaks. Formatting may start from source code (i.e., text),
concrete syntax trees (i.e., parse trees), or abstract syntax trees. Formatting is
typically provided as a service in an IDE.

Preprocessor As part of parsing, code may be subject to macro expansion and
conditional compilation. Such preprocessing may serve the purpose of, for ex-
ample, configuration management in the sense of software variability and desug-
aring in the sense of language extension by macros. Interestingly, preprocessing
gives rise to a language of its own for the preprocessing syntax such that the pre-
processor can be seen as an interpreter of that language; the result type of this
sort of interpretation is, of course, text [99]. One may also assume that a base
language is extended by preprocessing constructs so that preprocessing can be
modeled as a translation from the extended to the base language. In fact, some
macro system work in that manner. In practice, preprocessing is often used in an
undisciplined (i.e., not completely syntax-aware) manner [29, 18, 184].

Software transformation or model-to-model transformation A software trans-
formation is a mapping between software languages. The term “model-to-model
transformation” is used in the model transformation and MDE community. We
may classify transformations in terms of whether the source and target languages
are the same and whether the source and target reside at the same level of ab-
straction [195]. Thus:

Exogenous transformation The source and target languages are different, as
in the case of code generation (translation) or language migration.

Endogenous transformation The source and target languages are the same,
as in the case of program refactoring or compiler optimization [116, 196].
We can further distinguish in-place and out-place transformations [195, 35] in
terms of whether the source model is “reused” to produce the target model.
(Exogenous transformations are necessarily out-place transformations.)

24 1 The Notion of a Software Language

Horizontal transformation The source and target languages reside at the
same level of abstraction, as in the case of refactoring or language migration.

Vertical transformation The source and target languages reside at different
levels of abstraction. In fact, both directions, i.e., lowering and raising the
level of abstraction, make sense. An example of lowering is code generation
or formal refinement (such as refining a specification into an implementation).
An example of raising is architectural recovery [158].

Software analysis or software analyzer A software analysis verifies or com-
putes some property of a given language element. Here are a few well-known
objectives of software analysis:

Termination analysis The termination of a program is verified or potential or
actual termination problems are detected; see, e.g., [235].

Performance analysis The performance of a program (or a model or a system)
is predicted or performance problems are detected (see, e.g., [138]).

Alias analysis It is determined whether or not a given storage cell can be ad-
dressed in multiple ways (see, e.g., [243]).

Bug analysis Bad smells and potential or actual bugs in a program (or a model
or a system) are detected (see, e.g., [19]).

Usage analysis Data about the usage of a language is collected, for example,
the frequency or presence of constructs or idioms in a corpus (see, e.g., [172,
167, 120]).

As mentioned before, compilers and interpreters perform a semantic analysis that
verifies conformance to rules for typing, naming, scoping, etc. Compilers also
perform data-flow analysis and control-flow analysis to facilitate optimizations.
Overall, software transformations often rely on software analyses to accomplish
their work. One may argue that software analysis is a form of software transfor-
mation; we avoid this discussion here.
There are many analyses in software engineering that leverage methods from
different areas of computer science, for example, search-based algorithms, text
analysis, natural language processing, model checking, and SAT solving. In this
book, we focus on the software language- and software engineering-specific as-
pects of software analysis. We will discuss simple instances of software analysis
in Chapter 5.

Software translator The notion of translation generalizes the more basic notion
of compilation. A translator implements a mapping between different software
languages. A migration tool, for example, to accommodate breaking changes
due to language evolution, is an example of a translator that is not also a com-
piler. Typically, we assume that translation is semantics-preserving. A translation
is an exogenous transformation. We will develop a simple compiler (translator)
in Chapter 5.

Software generator Generation, as in the case of program generation or gener-
ative programming [74], is very similar to translation. The key focus is here on
how the generator lowers the level of abstraction and optimizes a program by

1.3 The Lifecycle of Software Languages 25

eliminating inefficiency due to the use of abstraction mechanisms or domain-
specific concepts, subject to specialized analyses and optimizations. Software
generation is used, for example, to derive language-processing components (e.g.,
parsers, rewrite engines, pretty printers, and visitor frameworks) from gram-
mars or rule-based specifications. The implementation of software generators
may rely on dedicated language concepts, for example, multi-staged program-
ming [248, 217] (Chapter 12) and templates [236, 76, 256, 211].

Test-data generator Given a grammar or a metamodel, valid language elements
are generated in a systematic manner. Such generation may also be controlled
by additional parameters and specifications and may be tailored towards a par-
ticular use case, for example, for testing a compiler frontend, a virtual machine
implementation, or a serialization framework [174].

Program specializer As a special case of program optimization, program spe-
cializers or partial evaluators aim at simplifying a given program (or software
system) on the basis of statically available partial input [139, 129, 68]. We will
discuss partial evaluation in Chapter 12.

Additional details regarding the classification of transformations (software trans-
formations, software analyses, model transformations, source-to-source transforma-
tions) can be found elsewhere [59, 195, 75, 249, 121, 8].

Exercise 1.4 (Classification of conference papers) [Intermediate level]
Study the most recent edition of the International Conference on Model Transfor-
mation (ICMT) and extract the forms of transformations that are discussed in the
papers. Classify these forms according to the classifiers given above. (You may want
to follow some of the guidelines for a systematic mapping study [206, 207].)

With reference to “language usage” (as in Fig. 1.3), we should mention another
category of language implementation: IDEs integrate a basic language implemen-
tation (e.g., a compiler) with other language services for editing, code completion,
refactoring, formatting, exploration, etc. Thus, an IDE is an integrated system of
components supporting language users.

1.3.2.4 Metaprogramming Systems

Language implementations, including all kinds of language processors, are imple-
mented by means of metaprogramming. A metaprogram is a program that consumes
or produces (object) programs. To this end, “normal” programming environments
may be used. However, there also exist dedicated metaprogramming systems that
incorporate expressiveness or tool support for transformation, analysis, and possi-
bly concrete object syntax, for example, Rascal [151, 150], TXL [69, 70], Stratego
XT [262, 47], Converge [255], and Helvetia [215, 214].

In the neighborhood of metaprogramming systems, there are also language def-
inition or executable semantic frameworks (e.g., the K semantic framework [221]

26 1 The Notion of a Software Language

Helvetia integrates multiple embedded languages with existing tools by leveraging
and intercepting the existing toolchain and the underlying representation of the host
language. Helvetia provides hooks to intercept parsing, AST transformation and
semantic analysis of the standard compilation toolchain.

...

Rules

.

<parse>

.

<transform>

.

<attribute>

.

Source
Code

.

Smalltalk
Parser

.

Semantic
Analysis

.

Bytecode
Generator

.

Executable
Code

.Traditional Smalltalk Compiler....

Pidgin

.

Creole

.

Argot

Figure 3.1: The code compilation pipeline showing multiple interception paths: Hel-
vetia provides hooks to intercept parsing <parse>, AST transformation <transform>

and semantic analysis <attribute>.

Whenever a source artifact is compiled the standard host language compiler con-
sults the Helvetia rule engine before and after each compilation step. As depicted
in Figure 3.1 this enables us to intercept and modify the data passed from one step to
the other. We are able to perform source-to-source transformations or to bypass the

32

Fig. 1.5 The code compilation pipeline of Helvetia, showing multiple interception paths; there
are hooks to intercept parsing <parse>, AST transformation <transform>, and semantic analysis
<attribute>. Source: [215]. Additional capabilities of Helvetia support editing (coloring), debug-
ging, etc. © 2010 Springer.

and PLT Redex [107]), compiler frameworks (e.g., LLVM [180]), and modeling
frameworks (e.g., AM3 [24]).

Metaprogramming and software language engineering efforts may be “adver-
tised” through software language repositories (SLRs) [165], i.e., repositories with
components for language processing (interpreters, translators, analyzers, transform-
ers, pretty printers, etc.). Further examples of SLRs include the repositories for
Krishnamurthi’s textbook on programming languages [160], Batory’s Prolog-based
work on teaching MDE [28], Zaytsev et al.’s software language processing suite
(SLPS) [278], and Basciani et al.’s extensible web-based modeling platform MDE-
Forge [26].

1.3.2.5 Language Workbenches

Metaprogrammers may also be supported in an interactive and integrated fashion.
Accordingly, the notion of language workbenches [96, 97, 144, 143, 267, 266, 269,
263] encompasses enhanced metaprogramming systems that are, in fact, IDEs for
language implementation. A language workbench assumes specialized language
definitions that cater for IDE services such as syntax-directed, structural, or pro-
jectional editing, coloring, synthesis of warnings and errors, package exploration,
quick fixes, and refactorings.

Figure 1.5 illustrates the compilation pipeline of the metaprogramming system
Helvetia [214, 215]. In fact, Helvetia is an extensible development environment for
embedding DSLs into a host language (Smalltalk) and its tools such as the editor
and debugger. Thus, Helvetia is a language workbench.

1.3 The Lifecycle of Software Languages 27

1.3.3 Language Evolution

Let us briefly discuss more concrete scenarios of language evolution; see also [48]
for more background:

Language extension A language construct or concept is added to the language
design. The language definition (syntax, semantics, pragmatics) and implemen-
tation, as well as the documentation are to be extended accordingly.

Language restriction Some language construct or concept has been found to be
problematic in terms of, for example, its semantics or implementation. The lan-
guage definition (syntax, semantics, pragmatics) and implementation, as well as
the documentation need to be restricted accordingly. A migration path may need
to be offered to users.

Language revision A language extension can be formally seen as moving to a
superset, when looking at languages in a set-theoretic manner. A language re-
striction is then seen as moving to a subset. We speak of language revision when
neither of these clear-cut cases applies. A migration path may need to be offered
to users.

Language integration The scenarios named above are concerned with a single
language on the time line. We use the term “language integration” here for sit-
uations when more than one language needs to be somehow combined. For in-
stance, one language may need be embedded into another language (e.g., SQL is
embedded into Java) or multiple variants of a given language need to be unified
or handled in an interoperable manner.

In the context of language revision and integration, we face challenges in terms
of coupling between language definitions and existing artifacts. For instance, the
evolution of a concrete syntax needs to be complemented by the evolution of the
corresponding abstract syntax and vice versa; also, the existing language elements
may need to be co-evolved [260, 176].

Exercise 1.5 (Extension of the Java language) [Intermediate level]
Research the available documents on the evolution of the Java language and iden-
tify a language extension added in a specific language version. Demonstrate the
extension with a sample and argue what syntactic categories of the Java language
are affected.

Exercise 1.6 (Restriction of the Haskell language) [Intermediate level]
Research the available documents on the evolution of the Haskell language and
identify a language restriction in a specific language version. Demonstrate the re-
striction with a sample and summarize the reasoning behind the restriction. Why
was the restriction considered reasonable? What is the migration path, if any?

28 1 The Notion of a Software Language

1.4 Software Languages in Software Engineering

Various software engineering areas, and, in fact, more broadly, many areas in com-
puter science, involve software languages in an essential manner, i.e., these areas
necessitate parsing, analysis, transformation, generation, and other forms of pro-
cessing software language-based artifacts. Several software engineering areas are
discussed in the sequel. For each area, we identify a few typical application do-
mains for software languages. This will give us a good sense of the omnipresence
of software languages in software engineering, software development, and IT.

1.4.1 Software Re-Engineering

We quote: “re-engineering . . . is the examination and alteration of a subject system
to reconstitute in a new form” [59]. These are some application domains for software
languages in the re-engineering area:

Refactoring The improvement (in fact, the possibly automated transformation)
of the design of code or models without changing its “behavior” [116, 196]. In
particular, the “functional” behavior has to to preserved; some nonfunctional as-
pects such as execution time may be modified. Refactorings are often meant to
be performed interactively, for example, by means of an IDE integration. Refac-
torings may also be recorded and “replayed” to propagate changes, for example,
from a refactored library to client code [130, 227]. Ultimately, refactorings may
be as complex as system restructuring to serve a different architecture [6].

Migration A migration can be viewed as a more or less automated transforma-
tion of a program or a software system to conform to a different API, language,
or architectural requirement. For instance, a language migration is concerned
with rewriting a system written in one high-level language to use another high-
level language instead [250, 44, 241]. Language migrations may be challenging
because of an array of aspects, for example, different platforms for source and
target, or different type systems or primitive types.

Wrapping A wrapper is a form of adaptor that provides a different interface for
existing functionality. The interfaces involved may be essentially object-oriented
APIs [227, 25]. We may also wrap a legacy system in terms of its user interface or
procedural abstractions as a service [242, 63, 240, 55]. In many cases, wrappers
may be semiautomatically generated or vital information may be gathered by an
automated analysis.

Figure 1.6 illustrates a very simple refactoring scenario in an OO programming
context: the boxed statements at the top are to be extracted into a new method, as
shown in completed form at the bottom of the figure. In terms of the structural rules
for transforming source code, refactorings may be relatively simple, but they often
involve nontrivial preconditions and constraints to be met for correctness’ sake [253,

1.4 Software Languages in Software Engineering 29

void printOwing(double amount) {
 printBanner();
 System.out.println("name: " + name);
 System.out.println("amount: " + amount);
}

void printOwing(double amount) {
 printBanner();
 printDetails(amount);
}
void printDetails(double amount) {
 System.out.println ("name: " + name);
 System.out.println ("amount: " + amount);
}

Fig. 1.6 Illustration of the “extract method” refactoring.

Re-engineering

Semantic
analysis

Trans-
formationParser

—
———
——
———-
——-

So
ur

ce
co

de

Grammar Rules for type
system etc.

Rules for
transformation

En
ric

he
d

pa
rs

e
tre

e Pa
rs

e
tre

e

Tr
an

sf
or

m
ed

pa
rs

e
tre

e

Fig. 1.7 Overall data flow for a re-engineering transformation. We have marked the phase which
replaces code generation in the standard data flow for compilation.

228]. Even in the simple example at hand, some constraints have to be met; for
example, the extracted statements must not return.

Figure 1.7 shows the overall data flow for a re-engineering transformation as
needed, for example, for refactoring or restructuring. This data flow should be com-
pared with the data flow for compilation; see Fig. 1.4. The two data flows share
the phases of parsing and semantic analysis. The actual transformation is described
(ideally) by declarative rules of a transformation language. Not every re-engineering
use case requires a full-blown semantic analysis, which is why we have grayed out
slightly the corresponding phase in Fig. 1.7. In fact, not even a proper syntax-aware
transformation is needed in all cases, but instead a lexical approach may be applica-
ble [152].

30 1 The Notion of a Software Language

Fig. 1.8 An API-usage map for an open-source Java project. The complete rectangle (in terms of
its size) models the references to all APIs made by all developers. The nested rectangles partition
references by domain (e.g., GUI rather than Swing or AWT). The rectangles nested further partition
references by API; one color is used per API. Within each such rectangle, the contributions of
distinct developers (1, . . . , 8 for the top-eight committers and “R” for the rest) are shown. Source:
[4].

1.4.2 Software Reverse Engineering

We quote: “reverse engineering is the process of analyzing a subject system to iden-
tify the system’s components and their interrelationships and create representations
of the system in another form or at a higher level of abstraction” [59]. For instance,
we may extract a call graph from a system, thereby identifying call sites (such as
packages, files, classes, methods, or functions) and actual calls (such as method or
function calls). Reverse engineering may also be concerned with architecture recov-
ery [126, 128, 158, 33], for example, the identification of components in a legacy
system. Overall, reverse engineering is usually meant to help with program compre-
hension and to prepare for software re-engineering or to otherwise facilitate software
development.

Figure 1.8 shows the visual result of a concrete reverse engineering effort aimed
at understanding API usage in Java projects [4]. The tree map groups API references
(i.e., source code-level references to API methods) so that we can assess the contri-
butions of different APIs and of individual developers for each API to the project.

Figure 1.9 shows the overall data flow for a reverse engineering component that
is based on the paradigm of fact extraction [109, 201, 185, 27]. Just as in the cases of
compilation or transformation for re-engineering, we begin with parsing and (pos-
sibly customized) semantic analysis. The data flow differs in terms of last phase for
fact extraction. The extracted facts can be thought of as sets of tuples, for example,
pairs of caller/callee sites to be visualized eventually as a call graph.

Reverse engineering often starts from some sort of fact extraction. Reverse en-
gineering may also involve data analysis based, for example, on relational alge-

1.4 Software Languages in Software Engineering 31

Fact engineering

Semantic
analysis

Fact
extractionParser

—
———
——
———-
——-

So
ur

ce
co

de

Grammar Rules for type
system etc.

Rules for fact
extraction

En
ric

he
d

pa
rs

e
tre

e Pa
rs

e
tre

e

Ex
tra

ct
ed

fa
ct

s

Relation(s)

Fig. 1.9 Overall data flow for fact extraction in reverse engineering. We have marked the phase
which replaces code generation in the standard data flow for compilation. The resulting tables
represent “projections” of the source code, for example, call relationships between functions.

bra [134, 38, 37, 135]. Reverse engineering is by no means limited to source code
artifacts, but may also involve, for example, documentation, models, and commits.
The results are often communicated to software engineers or other stakeholders by
means of software visualization [148, 187, 177, 1, 178]. In the earlier example con-
cerned with API-usage analysis, fact extraction from Java source code was used
to extract API references, commits were analyzed to associate API references with
developers, and visualization as a tree map was used to communicate the result.

1.4.3 Software Analysis

There exist diverse forms of software analysis that support software reverse engi-
neering, software maintenance, software evolution, and program comprehension.
Here are some forms:

Program slicing This is the computation of a simplified program, for example,
the statements which affects the state or the result at some point of interest [271,
136, 252, 43, 10].

Feature location This is the semiautomated process of locating features or spe-
cific program functionality in software systems or product lines, based on dif-
ferent forms of source-code analysis, helping ultimately with code refactoring,
software maintenance, clone detection, and product-line engineering [224, 86,
270, 111, 34, 191, 12, 166].

Clone detection This is the largely automated process of determined duplicated
source code, using various means of attesting the presence of equal or similar
code at a textual, lexical, syntactic, or semantic level [22, 30, 222, 223].

Traceability recovery This is the largely automated process of recovering trace
links between different kinds of artifacts, for example, documentation and source
code, to attest that the linked artifacts or fragments thereof are related [64, 145,
118, 188, 233].

32 1 The Notion of a Software Language

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Fig. 6.
The x-axis represents the 48 development versions.

are present from the first grammar version onward.

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

VAR

HAL (K)

CLEV

�ce

Fig. 1.10 Three different grammar metrics over time for the versions of an industrial-strength
parser for a specification language. Source: [7]. © 2008 Springer.

Design-pattern detection This is the automated process of detecting instances of
design patterns in actual code, subject to checking structural and behavioral con-
straints [218, 114, 112, 154, 153, 276]. This area also relates to the detection and
analysis of micro-patterns, for example, in bytecode [120], decompilation [110],
and disassembly, for example, for the purpose of detecting security issues [9].

Change-impact analysis This is the semiautomated process of “identifying the
potential consequences of a change, or estimating what needs to be modified to
accomplish a change” [15]; see also [246, 183, 119, 87, 212, 213].

Code smell This is an automatically checkable symptom in source code that pos-
sibly indicates a deeper problem such as abnormal complexity or insufficient
modularity [92, 257, 275, 205, 113, 115]. The corresponding checking or detec-
tion activity is accordingly referred to as code smell detection.

Software metric This is a computable standard measure of the degree to which
given source code or a complete software system possesses some property, for
example, complexity in terms of lines-of-code (LOC) or McCabe (i.e., Cyclo-
matic complexity) [108, 179, 209, 79, 50, 198, 259, 57].

Coding convention This is a mechanized (executable and checkable) convention
for authoring code in a language, possibly also specific to a project; such con-
ventions are checked by corresponding tools that are typically integrated into an
IDE so that developers receive continuous feedback on the code’s compliance
with the conventions [123].

Software analysis is often combined with software visualization; for example,
the values of computed software metrics are typically visualized [177, 23] to better
access the distribution of metrics over a system or changes in the metrics over time.

1.4 Software Languages in Software Engineering 33

Figure 1.10 gives an example of how metrics and simple visualization can be com-
bined to analyze a software process – in this case, a process for the improvement of
a grammar [7]. The changes of the values of the metrics can be explained as con-
sequences of the specific grammar revisions applied at the corresponding commit
points.

1.4.4 Technological Spaces

We quote: “A technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities. It is often
associated to a given user community with shared know-how, educational support,
common literature and even workshop and conference regular meetings” [161].

For instance, there are the following technological spaces, which we characterize
in a keyword style by pointing out associated languages, technologies, and concepts:

Grammarware string, grammar, parsing, CST, AST, term, rewriting, . . .
XMLware XML, XML infoset, DOM, DTD, XML Schema, XPath, XQuery,

XSLT, . . .
JSONware JSON, JSON Schema, . . .
Modelware UML, MOF, EMF, class diagram, modeling, metamodeling, model

transformation, MDE, . . .
SQLware table, SQL, relational model, relational algebra, . . .
RDFware resource, triple, Linked Data, WWW, RDF, RDFS, OWL, SPARQL,

. . .
Objectware objects, object graphs, object models, state, behavior, . . .
Javaware Java, Java bytecode, JVM, Eclipse, JUnit, . . .

We refer to [40] for a rather detailed discussion of one technological space – mod-
elware (MDE). We refer to [89] for a discussion of multiple technological spaces
with focus on Modelware and RDFware centric and cursory coverage of grammar-
ware, Javaware, and XMLware and the interconnections between these spaces.

Technological spaces are deeply concerned with software languages:

Data models The data in a space conforms to some data model, which can be
viewed as a “semantic domain” in the sense of semantics in the context of lan-
guage definition. For instance, the data model of XML is defined by a certain set
of trees, according to the XML infoset [274]; the data model JSON is a dictio-
nary format that is a simple subset of Javascript objects; and the data model of
SQLware is the relational model [67].

Schema languages Domain- or application-specific data can be defined by ap-
propriate schema-like languages. Schemas are to tree- or graph-based data what
(context-free) grammars are to string languages [149]. For instance, the schema
language of JSON is JSON Schema [208]; the schema language of grammarware
is EBNF [137] in many notational variations [277]; and the schema languages of

34 1 The Notion of a Software Language

Fig. 1.11 A few technological spaces with their instance (data) level and the schema level. The
thin arrows model “conformance” such as an XML document conforming to an XML schema.
The thick arrows hint at expected “bridges” between the spaces as needed for technological space
travel. Inspired by [161].

RDF are RDFS and OWL. Schemas and their instances give rise to a confor-
mance relationships; see Fig. 1.11 for a few examples.

Query languages A technological space tends to offer one or more languages for
querying data in that space. For instance, the query languages of XMLware are
XPath and XQuery; the query language of RDFware is SPARQL; and the query
language of SQLware is SQL (specifically, the SELECT part of it).

Transformation languages A technological space tends to offer one or more
languages for transforming data in that space. For instance, the transformation
language of XMLware is XSLT; the transformation language of RDFware is
SPARQL with updates; and the transformation language of SQLware is SQL
(specifically, the DELETE, UPDATE, and CREATE parts of it).

Programming language integration Technological spaces may be integrated into
programming languages by either appropriate APIs for the underlying query and
transformation languages, or some form of mapping (see below), or proper lan-
guage integration. The JDBC approach in the Java platform is a basic example of
the API option for integrating SQLware (SQL) into Java.

Mapping There is a recurrent need to map across technological spaces such as
objectware, XMLware, and SQLware [169], leading to what we refer to as tech-
nological space travel; this is also referred to as operational bridges in [161]; see
Fig. 1.11 for a few examples. For instance, object/relational mapping allows one
to make objects persistent in a database and to access a database in an object-

Modelware

XMLware
Grammarware

SQLware RDFware
Model

Metamodel

Tables

Relational schema

Document

XML schema

Triples

OWL ontology

String

Grammar

1.4 Software Languages in Software Engineering 35

Fig. 1.13 Mapping in an XML context at the instance (XML), the type (XSD), and the stylesheet
(XSLT) level.

oriented program. Mapping, as such, is a translation problem – thus the link to
software languages.

Coupling Mapping, as just explained, may need to be accomplished at multiple
levels: the data level, the schema level, and the processing level (i.e., queries
and transformations). Depending on the space, each level may be challenging in
itself. For instance, mapping schema languages is complicated in the presence
of space-specific constraint forms. However, mapping is specifically challenging
because all the levels need to be mapped in a coupled (“synchronized”) man-
ner [162, 149, 73, 164].

Figure 1.12 illustrates the XMLware instance of mapping at the schema level; we
assume that the XML type on the left may be mapped to the Java/C# class on the
right and vice versa. Of course, such a mapping is not straightforward, because of
the many differences in the underlying data models and schema languages, giving
rise to an impedance mismatch [170].

Figure 1.13 illustrates three levels of mapping for the XMLware space. Consider
the following scenario. There is an XML document meant to conform to an XML
schema; there is also a document processor (an XSLT stylesheet) that is used to
process the XML document. Now assume that the schema is changed to refactor

<element name=“point">  
 <complexType>  
 <sequence>  
 <element name="x" type=“xs:int"/> 
 <element name="y" type="xs:int"/>  
 </sequence>  
 </complexType>  
</element>

public class Point {
 public int x;
 public int y;
 }

XML-to-object

object-to-XML

Fig. 1.12 Mapping object models to XML schemas and vice versa

Old XML document

Old XML schema

Old XSLT stylesheet

New XML document

New XML schema

New XSLT stylesheet

conformsTo conformsTo

inputOf inputOf

Primary
transformation

Coupled
transformation

Coupled
transformation

36 1 The Notion of a Software Language

the format. Existing documents must be converted (“mapped”) to conform to the
new schema. Also, the existing document processor must be converted to be able to
process converted documents.

We refer below to examples of work on mappings:

• XML/object mapping [170, 163, 251, 5];
• XML/grammar mapping [202];
• object/relational mapping [52, 51, 53, 200, 36, 254, 238];
• XML/relational mapping [58];
• relational/RDF+OWL mapping [234];
• XML/relational with support for queries and constraints [32, 264].

We also refer to examples of work on coupling:

• schema/instance mapping for databases [124, 261];
• metamodel/model mapping for modelware [268, 60, 62];
• program/schema mapping for databases and applications [65, 66, 125];
• document/schema mapping for XML [168, 72];
• string/grammar mapping [260, 176];
• co-evolution of GMF editor models [225];
• refactoring of object/relational mapping [230].

1.4.5 Model-Driven Engineering

MDE [39, 40, 231] (see also some related model-based approaches [247, 181]) com-
bines the broad notions of modeling, metamodeling [203], modeling languages, and
model transformation. This area constitutes an important space for language defini-
tion, implementation, usage, processing, and evolution. We identify the key notions
of the MDE (modelware) space as follows:

Modeling languages Models (artifacts, programs, etc.) are elements of suitable
modeling languages, of which there are many. For instance, the mainstream UML
approach offers a family of modeling notations for behavioral and structural mod-
eling.

Domain-specific modeling languages (DSMLs) On the basis of metamodeling
and other modeling concepts, DSMLs are modeled and enable the application of
modeling to specific domains. The semantics of these DSMLs are also developed
in the modelware space, for example, by means of model transformation [16].

Model transformation Foremost, there are model-to-model transformations. Ad-
ditionally, there are special kinds of transformations to import and export text-
based artifacts, i.e., text-to-model and model-to-text transformations. There are
dedicated model-transformation languages [194, 75, 140, 8, 142].

Model evolution Models are subject to evolution. Specifically, metamodels and
model transformations are also subject to evolution [204]. There are a number of

1.4 Software Languages in Software Engineering 37

concepts (see below) which help in understanding or automating evolution, for
example, model comparison and model co-evolution.

Model management With the increase in the numbers of models, metamodels,
model transformations, versions of models, and relationships, some sort of man-
agement needs to be applied to systematically maintain repositories of models.
Such model management gives rise to yet another form of model – megamod-
els [41, 42, 103, 84, 175, 165, 127].

Model comparison In the context of model evolution, models also need to be
compared [244, 122, 146] to extract differences also on the basis of suitable diff
models [61, 60].

Model merging We quote: “merging is the action of combining two models, such
that their common elements are included only once and the other ones are pre-
served” [189]; see also [156, 93, 45, 189, 220, 77]. Model merging can be viewed
as a form of model synchronization; see below.

Model weaving We quote: “weaving involves two actors: an aspect and a base
model. The aspect is made of two parts, a pointcut, which is the pattern to match
in the base model, and an advice, which represents the modification made to the
base model during the weaving” [189]; see also [226, 193, 159]. Model weaving
helps with, for example, crosscutting concerns to be addressed by models.

Model synchronization Software systems may involve multiple models to be re-
lated by some consistency relation. Model synchronization is the process of es-
tablishing consistency in response to changes in individual models, for example,
by means of propagating changes in the form of a difference (a “delta”) from one
model to another; see [11, 82, 85, 83].

Models@run.time This notion applies when any sort of model is used during the
operation of a system. We quote: “the key property of models@run.time systems
is their use and provision of manageable reflection, which is characterized to
be tractable and predictable and by this overcomes the limitation of reflective
systems working on code” ([17] which was part of the seminar [31]). In different
terms, the program and model become essentially united or integrated [71, 80].
Arguably, reflective language infrastructures (e.g., Smalltalk-based ones) may
also provide manageable reflection and other aspects of models@run.time [91,
54, 245].

Model co-evolution When multiple modeling languages are used simultaneously,
the models may involve common entities and, thus, coupled with respect to
evolution; see, for example, the coupled evolution of the models of GMF-
based editors [225]. Language evolution, as mentioned earlier, is a special
case of model co-evolution. That is, language evolution is model/metamodel
co-evolution. Language evolution is a particularly important problem in the
context of domain-specific (modeling) languages because these languages may
evolve rapidly and significantly without being limited by backward compatibil-
ity [268, 131, 132, 216].

38 1 The Notion of a Software Language

Summary and Outline

We have argued that software languages permeate software engineering, software
development, and IT. We have classified software languages in different ways. We
have presented a lifecycle for software languages; the lifecycle covers, for example,
language implementation in a compiler or language processor for re- and reverse
engineering. Software languages deserve to be treated in an engineering manner,
thereby giving rise to the discipline of software language engineering (SLE). All of
the example languages and most of the SLE scenarios introduced in this chapter will
play a role in the rest of the book.

References

1. Abdeen, H., Ducasse, S., Pollet, D., Alloui, I., Falleri, J.: The Package Blueprint: Visually an-
alyzing and quantifying packages dependencies. Sci. Comput. Program. 89, 298–319 (2014)

2. Aho, A., Monica S., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools.
Addison Wesley (2006). 2nd edition

3. Akinin, A., Zubkov, A., Shilov, N.: New developments of the computer language classi-
fication knowledge portal. In: Proc. Spring/Summer Young Researchers’ Colloquium on
Software Engineering (2012)

4. Aksu, H., Lämmel, R., Kwasnik, W.: Visualization of API experience. Softwaretechnik-
Trends 36(2) (2016)

5. Alagic, S., Bernstein, P.A., Jairath, R.: Object-oriented constraints for XML schema. In:
Proc. ICOODB, LNCS, vol. 6348, pp. 100–117. Springer (2010)

6. Almonaies, A.A., Alalfi, M.H., Cordy, J.R., Dean, T.R.: A framework for migrating web
applications to web services. In: Proc. ICWE, LNCS, vol. 7977, pp. 384–399. Springer
(2013)

7. Alves, T.L., Visser, J.: A case study in grammar engineering. In: Proc. SLE 2008, LNCS, vol.
5452, pp. 285–304. Springer (2009)

8. Amrani, M., Combemale, B., Lucio, L., Selim, G.M.K., Dingel, J., Traon, Y.L., Vangheluwe,
H., Cordy, J.R.: Formal verification techniques for model transformations: A tridimensional
classification. J. Object Technol. 14(3), 1–43 (2015)

9. Andriesse, D.: Analyzing and Securing Binaries Through Static Disassembly. Ph.D. thesis,
Vrije Universiteit Amsterdam (2017)

10. Androutsopoulos, K., Clark, D., Harman, M., Krinke, J., Tratt, L.: State-based model slicing:
A survey. ACM Comput. Surv. 45(4), 53 (2013)

11. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. In: GTTSE
2007, Revised Papers, LNCS, vol. 5235, pp. 3–46. Springer (2008)

12. Antkiewicz, M., Ji, W., Berger, T., Czarnecki, K., Schmorleiz, T., Lämmel, R., Stanciulescu,
S., Wasowski, A., Schaefer, I.: Flexible product line engineering with a virtual platform. In:
Proc. ICSE, pp. 532–535. ACM (2014)

13. Anureev, I.S., Bodin, E., Gorodnyaya, L., Marchuk, A.G., Murzin, A.G., Shilov, N.V.: On
the problem of computer language classification. Joint NCC&IIS Bulletin, Series Computer
Science 27, 1–20 (2008)

14. Appel, A., Palsberg, J.: Modern Compiler Implementation in Java. Cambridge University
Press (2002). 2nd edition

15. Arnold, R., Bohner, S.: Software Change Impact Analysis. Wiley-IEEE Computer Society
(1996)

References 39

16. Aßmann, U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heidenreich, F., Johannes, J.,
Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert, M., Thiele, M., Wende, C.,
Wilke, C.: DropsBox: the Dresden Open Software Toolbox – Domain-specific modelling
tools beyond metamodels and transformations. SoSyM 13(1), 133–169 (2014)

17. Aßmann, U., Götz, S., Jézéquel, J., Morin, B., Trapp, M.: A reference architecture and
roadmap for models@run.time systems. In: Bencomo et al. [31], pp. 1–18

18. Aversano, L., Penta, M.D., Baxter, I.D.: Handling preprocessor-conditioned declarations. In:
Proc. SCAM, pp. 83–92. IEEE (2002)

19. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.: Using static analysis to
find bugs. IEEE Software 25(5), 22–29 (2008)

20. Babenko, L.P., Rogach, V.D., Yushchenko, E.L.: Comparison and classification of program-
ming languages. Cybern. Syst. Anal. 11, 271–278 (1975)

21. Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Perlis, A.J., Rutishauser, H.,
Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaarden, A., Woodger, M.: Revised
report on the Algorithm Language ALGOL 60. Commun. ACM 6(1), 1–17 (1963)

22. Baker, B.S.: On finding duplication and near-duplication in large software systems. In: Proc.
WCRE, pp. 86–95. IEEE (1995)

23. Balogh, G.: Validation of the city metaphor in software visualization. In: Proc. ICCSA,
LNCS, vol. 9159, pp. 73–85. Springer (2015)

24. Barbero, M., Jouault, F., Bézivin, J.: Model driven management of complex systems: Imple-
menting the macroscope’s vision. In: Proc. ECBS 2008, pp. 277–286. IEEE (2008)

25. Bartolomei, T.T., Czarnecki, K., Lämmel, R.: Swing to SWT and back: Patterns for API
migration by wrapping. In: Proc. ICSM, pp. 1–10. IEEE (2010)

26. Basciani, F., Rocco, J.D., Ruscio, D.D., Salle, A.D., Iovino, L., Pierantonio, A.: MDEForge:
An extensible web-based modeling platform. In: Proc. CloudMDE@MoDELS, CEUR Work-
shop Proceedings, vol. 1242, pp. 66–75. CEUR-WS.org (2014)

27. Basten, H.J.S., Klint, P.: DeFacto: Language-parametric fact extraction from source code. In:
Proc. SLE 2008, LNCS, vol. 5452, pp. 265–284. Springer (2009)

28. Batory, D.S., Latimer, E., Azanza, M.: Teaching model driven engineering from a relational
database perspective. In: Proc. MODELS, LNCS, vol. 8107, pp. 121–137. Springer (2013)

29. Baxter, I.D., Mehlich, M.: Preprocessor conditional removal by simple partial evaluation. In:
Proc. WCRE, pp. 281–290. IEEE (2001)

30. Baxter, I.D., Yahin, A., de Moura, L.M., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: Proc. ICSM, pp. 368–377. IEEE (1998)

31. Bencomo, N., France, R.B., Cheng, B.H.C., Aßmann, U. (eds.): Models@run.time – Foun-
dations, Applications, and Roadmaps, Dagstuhl Seminar 11481, November 27 – December
2, 2011, LNCS, vol. 8378. Springer (2014)

32. Berdaguer, P., Cunha, A., Pacheco, H., Visser, J.: Coupled schema transformation and data
conversion for XML and SQL. In: Proc. PADL, LNCS, vol. 4354, pp. 290–304. Springer
(2007)

33. Berger, B.J., Sohr, K., Koschke, R.: Extracting and analyzing the implemented security ar-
chitecture of business applications. In: Proc. CSMR, pp. 285–294. IEEE (2013)

34. Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., Chechik, M., Czar-
necki, K.: What is a feature?: A qualitative study of features in industrial software product
lines. In: Proc. SPLC, pp. 16–25. ACM (2015)

35. Bergmayr, A., Troya, J., Wimmer, M.: From out-place transformation evolution to in-place
model patching. In: Proc. ASE, pp. 647–652. ACM (2014)

36. Bernstein, P.A., Jacob, M., Pérez, J., Rull, G., Terwilliger, J.F.: Incremental mapping compi-
lation in an object-to-relational mapping system. In: Proc. SIGMOD, pp. 1269–1280. ACM
(2013)

37. Beyer, D.: Relational programming with CrocoPat. In: Proc. ICSE, pp. 807–810. ACM
(2006)

38. Beyer, D., Noack, A., Lewerentz, C.: Efficient relational calculation for software analysis.
IEEE Trans. Softw. Eng. 31(2), 137–149 (2005)

40 1 The Notion of a Software Language

39. Bézivin, J.: On the unification power of models. SoSyM 4(2), 171–188 (2005)
40. Bézivin, J.: Model driven engineering: An emerging technical space. In: GTTSE 2005, Re-

vised Papers, LNCS, vol. 4143, pp. 36–64. Springer (2006)
41. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and modeling in the

small. In: European MDA Workshops MDAFA 2003 and MDAFA 2004, Revised Selected
Papers, LNCS, vol. 3599, pp. 33–46. Springer (2005)

42. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proc. OOPSLA/G-
PCE: Best Practices for Model-Driven Software Development Workshop (2004)

43. Binkley, D., Harman, M., Krinke, J. (eds.): Beyond Program Slicing, Dagstuhl Seminar Pro-
ceedings, vol. 05451. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany (2006)

44. Blasband, D.: Compilation of legacy languages in the 21st century. In: GTTSE 2011, Revised
Papers, LNCS, vol. 7680, pp. 1–54. Springer (2013)

45. Boronat, A., Carsí, J.A., Ramos, I., Letelier, P.: Formal model merging applied to class dia-
gram integration. ENTCS 166, 5–26 (2007)

46. Bottoni, P., Grau, A.: A suite of metamodels as a basis for a classification of visual languages.
In: Proc. VL/HCC, pp. 83–90. IEEE (2004)

47. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language and
toolset for program transformation. Sci. Comput. Program. 72(1-2), 52–70 (2008)

48. Bryant, B.R., Jézéquel, J., Lämmel, R., Mernik, M., Schindler, M., Steinmann, F., Tolva-
nen, J., Vallecillo, A., Völter, M.: Globalized domain specific language engineering. In:
Globalizing Domain-Specific Languages – International Dagstuhl Seminar, Dagstuhl Castle,
Germany, October 5–10, 2014 Revised Papers, LNCS, vol. 9400, pp. 43–69. Springer (2015)

49. Burnett, M.M., Baker, M.J.: A classification system for visual programming languages. J.
Vis. Lang. Comput. 5(3), 287–300 (1994)

50. Byelas, H., Telea, A.: The metric lens: Visualizing metrics and structure on software dia-
grams. In: Proc. WCRE, pp. 339–340. IEEE (2008)

51. Cabibbo, L.: A mapping system for relational schemas with constraints. In: Proc. SEBD, pp.
237–244. Edizioni Seneca (2009)

52. Cabibbo, L.: On keys, foreign keys and nullable attributes in relational mapping systems.
In: Proc. EDBT, ACM International Conference Proceeding Series, vol. 360, pp. 263–274.
ACM (2009)

53. Cabibbo, L., Carosi, A.: Managing inheritance hierarchies in object/relational mapping tools.
In: Proc. CAiSE, LNCS, vol. 3520, pp. 135–150. Springer (2005)

54. Callaú, O., Robbes, R., Tanter, É., Röthlisberger, D.: How (and why) developers use the
dynamic features of programming languages: The case of Smalltalk. Empir. Softw. Eng.
18(6), 1156–1194 (2013)

55. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.: A wrapping approach for migrat-
ing legacy system interactive functionalities to service oriented architectures. J. Syst. Softw.
81(4), 463–480 (2008)

56. Ceh, I., Crepinsek, M., Kosar, T., Mernik, M.: Ontology driven development of domain-
specific languages. Comput. Sci. Inf. Syst. 8(2), 317–342 (2011)

57. Chaparro, O., Bavota, G., Marcus, A., Penta, M.D.: On the impact of refactoring operations
on code quality metrics. In: Proc. ICSME, pp. 456–460. IEEE (2014)

58. Chen, L.J., Bernstein, P.A., Carlin, P., Filipovic, D., Rys, M., Shamgunov, N., Terwilliger,
J.F., Todic, M., Tomasevic, S., Tomic, D.: Mapping XML to a wide sparse table. IEEE
Trans. Knowl. Data Eng. 26(6), 1400–1414 (2014)

59. Chikofsky, E.J., II, J.H.C.: Reverse engineering and design recovery: A taxonomy. IEEE
Softw. 7(1), 13–17 (1990)

60. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-
driven engineering. In: Proc. ECOC, pp. 222–231. IEEE (2008)

61. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: A metamodel independent approach to differ-
ence representation. J. Object Technol. 6(9), 165–185 (2007)

62. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing dependent changes in coupled evolu-
tion. In: Proc. ICMT, LNCS, vol. 5563, pp. 35–51. Springer (2009)

References 41

63. Cimitile, A., de Carlini, U., Lucia, A.D.: Incremental migration strategies: Data flow analysis
for wrapping. In: Proc. WCRE, pp. 59–68. IEEE (1998)

64. Cleland-Huang, J., Gotel, O., Zisman, A. (eds.): Software and Systems Traceability. Springer
(2012)

65. Cleve, A.: Automating program conversion in database reengineering: A wrapper-based ap-
proach. In: Proc. CSMR, pp. 323–326. IEEE (2006)

66. Cleve, A., Hainaut, J.: Co-transformations in database applications evolution. In: GTTSE
2005, Revised Papers, LNCS, vol. 4143, pp. 409–421. Springer (2006)

67. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),
377–387 (1970)

68. Cook, W.R., Lämmel, R.: Tutorial on online partial evaluation. In: Proc. DSL, EPTCS,
vol. 66, pp. 168–180 (2011)

69. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61(3), 190–
210 (2006)

70. Cordy, J.R.: Excerpts from the TXL cookbook. In: GTTSE 2009, Revised Papers, LNCS,
vol. 6491, pp. 27–91. Springer (2011)

71. Cuadrado, J.S., Guerra, E., de Lara, J.: The Program Is the Model: Enabling transforma-
tions@run.time. In: Proc. SLE 2012, LNCS, vol. 7745, pp. 104–123. Springer (2013)

72. Cunha, A., Oliveira, J.N., Visser, J.: Type-safe two-level data transformation. In: Proc. FM,
LNCS, vol. 4085, pp. 284–299. Springer (2006)

73. Cunha, A., Visser, J.: Strongly typed rewriting for coupled software transformation. ENTCS
174(1), 17–34 (2007)

74. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley Professional (2000)

75. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Syst. J. 45(3), 621–646 (2006)

76. Czarnecki, K., O’Donnell, J.T., Striegnitz, J., Taha, W.: DSL implementation in MetaOCaml,
Template Haskell, and C++. In: Domain-Specific Program Generation, International Sem-
inar, Dagstuhl Castle, Germany, March 23-28, 2003, Revised Papers, LNCS, vol. 3016, pp.
51–72. Springer (2004)

77. Dam, H.K., Egyed, A., Winikoff, M., Reder, A., Lopez-Herrejon, R.E.: Consistent merging
of model versions. J. Syst. Softw. 112, 137–155 (2016)

78. Degueule, T.: Composition and interoperability for external domain-specific language engi-
neering. Ph.D. thesis, Université de Rennes 1 (2016)

79. Demeyer, S., Ducasse, S., Lanza, M.: A hybrid reverse engineering approach combining
metrics and program visualization. In: Proc. WCRE, pp. 175–186. IEEE (1999)

80. Derakhshanmanesh, M., Ebert, J., Iguchi, T., Engels, G.: Model-integrating software compo-
nents. In: Proc. MODELS, LNCS, vol. 8767, pp. 386–402. Springer (2014)

81. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated bibliography.
SIGPLAN Not. 35(6), 26–36 (2000)

82. Diskin, Z.: Model synchronization: Mappings, tiles, and categories. In: GTTSE 2009, Re-
vised Papers, LNCS, vol. 6491, pp. 92–165. Springer (2011)

83. Diskin, Z., Gholizadeh, H., Wider, A., Czarnecki, K.: A three-dimensional taxonomy for
bidirectional model synchronization. J. Syst. Softw. 111, 298–322 (2016)

84. Diskin, Z., Kokaly, S., Maibaum, T.: Mapping-aware megamodeling: Design patterns and
laws. In: Proc. SLE 2013, LNCS, vol. 8225, pp. 322–343. Springer (2013)

85. Diskin, Z., Wider, A., Gholizadeh, H., Czarnecki, K.: Towards a rational taxonomy for in-
creasingly symmetric model synchronization. In: Proc. ICMT, LNCS, vol. 8568, pp. 57–73.
Springer (2014)

86. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code: A taxon-
omy and survey. J. Softw.: Evol. Process 25(1), 53–95 (2013)

87. Dit, B., Wagner, M., Wen, S., Wang, W., Vásquez, M.L., Poshyvanyk, D., Kagdi, H.H.: Im-
pactMiner: A tool for change impact analysis. In: Proc. ICSE, pp. 540–543. ACM (2014)

88. Dittrich, K.R., Gatziu, S., Geppert, A.: The active database management system manifesto:
A rulebase of ADBMS features. In: Proc. RIDS, LNCS, vol. 985, pp. 3–20. Springer (1995)

42 1 The Notion of a Software Language

89. Djuric, D., Gasevic, D., Devedzic, V.: The tao of modeling spaces. J. Object Technol. 5(8),
125–147 (2006)

90. Doyle, J.R., Stretch, D.D.: The classification of programming languages by usage. Int. J.
Man–Machine Stud. 26(3), 343–360 (1987)

91. Ducasse, S., Gîrba, T., Kuhn, A., Renggli, L.: Meta-environment and executable meta-
language using Smalltalk: An experience report. SoSyM 8(1), 5–19 (2009)

92. Emden, E.V., Moonen, L.: Java quality assurance by detecting code smells. In: Proc. WCRE,
p. 97. IEEE (2002)

93. Engel, K., Paige, R.F., Kolovos, D.S.: Using a model merging language for reconciling model
versions. In: Proc. ECMDA-FA, LNCS, vol. 4066, pp. 143–157. Springer (2006)

94. Erdweg, S.: Extensible languages for flexible and principled domain abstraction. Ph.D. the-
sis, Philipps-Universität Marburg (2013)

95. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Proc. LDTA,
p. 7. ACM (2012)

96. Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W.R., Gerritsen,
A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: The state of the art in language workbenches – conclusions from the
language workbench challenge. In: Proc. SLE, LNCS, vol. 8225, pp. 197–217. Springer
(2013)

97. Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W.R., Gerritsen,
A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: Evaluating and comparing language workbenches: Existing results
and benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47 (2015)

98. Erwig, M., Walkingshaw, E.: Semantics first! – rethinking the language design process. In:
Proc. SLE 2011, LNCS, vol. 6940, pp. 243–262. Springer (2012)

99. Favre, J.: Preprocessors from an abstract point of view. In: Proc. WCRE, pp. 287–296. IEEE
(1996)

100. Favre, J., Gasevic, D., Lämmel, R., Pek, E.: Empirical language analysis in software linguis-
tics. In: Proc. SLE 2010, LNCS, vol. 6563, pp. 316–326. Springer (2011)

101. Favre, J., Lämmel, R., Leinberger, M., Schmorleiz, T., Varanovich, A.: Linking documen-
tation and source code in a software chrestomathy. In: Proc. WCRE, pp. 335–344. IEEE
(2012)

102. Favre, J., Lämmel, R., Schmorleiz, T., Varanovich, A.: 101companies: A community project
on software technologies and software languages. In: Proc. TOOLS, LNCS, vol. 7304, pp.
58–74. Springer (2012)

103. Favre, J., Lämmel, R., Varanovich, A.: Modeling the linguistic architecture of software prod-
ucts. In: Proc. MODELS, LNCS, vol. 7590, pp. 151–167. Springer (2012)

104. Favre, J.M.: Foundations of meta-pyramids: Languages vs. metamodels – Episode II: Story
of Thotus the baboon. In: Language Engineering for Model-Driven Software Development,
no. 04101 in Dagstuhl Seminar Proceedings (2005)

105. Favre, J.M.: Foundations of model (driven) (reverse) engineering: Models – Episode I: Sto-
ries of the Fidus Papyrus and of the Solarus. In: Language Engineering for Model-Driven
Software Development, no. 04101 in Dagstuhl Seminar Proceedings (2005)

106. Favre, J.M., Gasevic, D., Lämmel, R., Winter, A.: Guest editors’ introduction to the special
section on software language engineering. IEEE Trans. Softw. Eng. 35(6), 737–741 (2009)

107. Felleisen, M., Findler, R., Flatt, M.: Semantics Engineering with PLT Redex. MIT Press
(2009)

108. Fenton, N.E., Pfleeger, S.L.: Software metrics – A practical and rigorous approach. Interna-
tional Thomson (1996). 2nd edition

109. Ferenc, R., Siket, I., Gyimóthy, T.: Extracting facts from open source software. In: Proc.
ICSM, pp. 60–69. IEEE (2004)

110. Fokin, A., Derevenetc, E., Chernov, A., Troshina, K.: SmartDec: Approaching C++ decom-
pilation. In: Proc. WCRE, pp. 347–356. IEEE (2011)

References 43

111. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Leveraging variability modeling to address meta-
model revisions in model-based software product lines. Comput. Lang. Syst. Struct. 48,
20–38 (2017)

112. Fontana, F.A., Caracciolo, A., Zanoni, M.: DPB: A benchmark for design pattern detection
tools. In: CSMR 2012, pp. 235–244. IEEE (2012)

113. Fontana, F.A., Ferme, V., Marino, A., Walter, B., Martenka, P.: Investigating the impact of
code smells on system’s quality: An empirical study on systems of different application do-
mains. In: Proc. ICSM, pp. 260–269. IEEE (2013)

114. Fontana, F.A., Zanoni, M.: A tool for design pattern detection and software architecture re-
construction. Inf. Sci. 181(7), 1306–1324 (2011)

115. Fontana, F.A., Zanoni, M., Marino, A., Mäntylä, M.: Code smell detection: Towards a ma-
chine learning-based approach. In: Proc. ICSM, pp. 396–399. IEEE (2013)

116. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley (1999)
117. Frühwirth, T., Abdennadher, S.: Essentials of constraint programming. Springer (2003)
118. Galvão, I., Goknil, A.: Survey of traceability approaches in model-driven engineering. In:

Proc. EDOC, pp. 313–326. IEEE (2007)
119. Gethers, M., Dit, B., Kagdi, H.H., Poshyvanyk, D.: Integrated impact analysis for managing

software changes. In: Proc. ICSE, pp. 430–440. IEEE (2012)
120. Gil, J., Maman, I.: Micro patterns in Java code. In: Proc. OOPSLA, pp. 97–116. ACM (2005)
121. Gomes, C., Barroca, B., Amaral, V.: Classification of model transformation tools: Pattern

matching techniques. In: Proc. MODELS, LNCS, vol. 8767, pp. 619–635. Springer (2014)
122. Gonçales, L., Farias, K., Scholl, M., Veronez, M., de Oliveira, T.C.: Comparison of design

models: A systematic mapping study. Int. J. Softw. Eng. Knowl. Eng. 25(9-10), 1765–1770
(2015)

123. Goncharenko, B., Zaytsev, V.: Language design and implementation for the domain of coding
conventions. In: Proc. SLE, pp. 90–104. ACM (2016)

124. Hainaut, J.: The transformational approach to database engineering. In: GTTSE 2005, Re-
vised Papers, LNCS, vol. 4143, pp. 95–143. Springer (2006)

125. Hainaut, J., Cleve, A., Henrard, J., Hick, J.: Migration of legacy information systems. In:
Software Evolution, pp. 105–138. Springer (2008)

126. Han, M., Hofmeister, C., Nord, R.L.: Reconstructing software architecture for J2EE web
applications. In: Proc. WCRE, pp. 67–79. IEEE (2003)

127. Härtel, J., Härtel, L., Heinz, M., Lämmel, R., Varanovich, A.: Interconnected linguistic ar-
chitecture. The Art, Science, and Engineering of Programming Journal 1 (2017). 27 pages.
Available at http://programming-journal.org/2017/1/3/

128. Hassan, A.E., Jiang, Z.M., Holt, R.C.: Source versus object code extraction for recovering
software architecture. In: Proc. WCRE, pp. 67–76. IEEE (2005)

129. Hatcliff, J.: Foundations of partial evaluation and program specialization (1999). Available
at http://people.cis.ksu.edu/~hatcliff/FPEPS/

130. Henkel, J., Diwan, A.: CatchUp!: capturing and replaying refactorings to support API evolu-
tion. In: Proc. ICSE, pp. 274–283. ACM (2005)

131. Herrmannsdoerfer, M., Benz, S., Jürgens, E.: Automatability of coupled evolution of meta-
models and models in practice. In: Proc. MoDELS, LNCS, vol. 5301, pp. 645–659. Springer
(2008)

132. Herrmannsdoerfer, M., Benz, S., Jürgens, E.: COPE – Automating coupled evolution of
metamodels and models. In: Proc. ECOOP, LNCS, vol. 5653, pp. 52–76. Springer (2009)

133. Hoare, C.A.R.: Hints on programming language design. Tech. rep., Stanford University
(1973)

134. Holt, R.C.: Structural manipulations of software architecture using Tarski relational algebra.
In: Proc. WCRE, pp. 210–219. IEEE (1998)

135. Holt, R.C.: WCRE 1998 most influential paper: Grokking software architecture. In: Proc.
WCRE, pp. 5–14. IEEE (2008)

136. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence graphs. ACM
Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

http://programming-journal.org/2017/1/3/
http://people.cis.ksu.edu/~hatcliff/FPEPS/

44 1 The Notion of a Software Language

137. ISO/IEC: ISO/IEC 14977:1996(E). Information Technology. Syntactic Metalanguage.
Extended BNF. (1996). Available at http://www.cl.cam.ac.uk/~mgk25/
iso-14977.pdf

138. Jin, G., Song, L., Shi, X., Scherpelz, J., Lu, S.: Understanding and detecting real-world per-
formance bugs. In: Proc. PLDI, pp. 77–88. ACM (2012)

139. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program generation.
Prentice-Hall, Inc. (1993)

140. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci.
Comput. Program. 72(1-2), 31–39 (2008)

141. Jouault, F., Vanhooff, B., Brunelière, H., Doux, G., Berbers, Y., Bézivin, J.: Inter-DSL co-
ordination support by combining megamodeling and model weaving. In: Proc. SAC, pp.
2011–2018. ACM (2010)

142. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model transforma-
tion by-example: A survey of the first wave. In: Conceptual Modelling and Its Theoretical
Foundations – Essays Dedicated to Bernhard Thalheim on the Occasion of His 60th Birthday,
LNCS, vol. 7260, pp. 197–215. Springer (2012)

143. Kats, L.C.L., Visser, E.: The Spoofax language workbench. In: Companion SPLASH/OOP-
SLA, pp. 237–238. ACM (2010)

144. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative specification
of languages and IDEs. In: Proc. OOPSLA, pp. 444–463. ACM (2010)

145. Keenan, E., Czauderna, A., Leach, G., Cleland-Huang, J., Shin, Y., Moritz, E., Gethers, M.,
Poshyvanyk, D., Maletic, J.I., Hayes, J.H., Dekhtyar, A., Manukian, D., Hossein, S., Hearn,
D.: TraceLab: An experimental workbench for equipping researchers to innovate, synthesize,
and comparatively evaluate traceability solutions. In: Proc. ICSE, pp. 1375–1378. IEEE
(2012)

146. Kehrer, T., Kelter, U., Pietsch, P., Schmidt, M.: Operation-based model differencing meets
state-based model comparison. Softwaretechnik-Trends 32(4) (2012)

147. Kelly, S., Tolvanen, J.: Domain-Specific Modeling. IEEE & Wiley (2008)
148. Kienle, H.M., Müller, H.A.: Rigi – An environment for software reverse engineering, explo-

ration, visualization, and redocumentation. Sci. Comput. Program. 75(4), 247–263 (2010)
149. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammarware. ACM

Trans. Softw. Eng. Methodol. 14(3), 331–380 (2005)
150. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language for source

code analysis and manipulation. In: Proc. SCAM, pp. 168–177. IEEE (2009)
151. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming with Rascal. In: GTTSE

2009, Revised Papers, LNCS, vol. 6491, pp. 222–289. Springer (2011)
152. Klusener, A.S., Lämmel, R., Verhoef, C.: Architectural modifications to deployed software.

Sci. Comput. Program. 54(2-3), 143–211 (2005)
153. Kniesel, G., Binun, A.: Standing on the shoulders of giants – A data fusion approach to

design pattern detection. In: Proc. ICPC, pp. 208–217. IEEE (2009)
154. Kniesel, G., Binun, A., Hegedüs, P., Fülöp, L.J., Chatzigeorgiou, A., Guéhéneuc, Y., Tsan-

talis, N.: DPDX–towards a common result exchange format for design pattern detection tools.
In: Proc. CSMR, pp. 232–235. IEEE (2010)

155. Knuth, D.E.: An empirical study of FORTRAN programs. Softw., Pract. Exper. 1(2), 105–
133 (1971)

156. Kolovos, D.S., Paige, R.F., Polack, F.: Merging models with the Epsilon Merging Language
(EML). In: Proc. MoDELS, LNCS, vol. 4199, pp. 215–229. Springer (2006)

157. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: A systematic mapping study.
Inf. Softw. Technol. 71, 77–91 (2016)

158. Koschke, R.: Architecture reconstruction. In: Software Engineering, International Summer
Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures, LNCS, vol. 5413, pp.
140–173. Springer (2009)

159. Kramer, M.E., Klein, J., Steel, J.R.H., Morin, B., Kienzle, J., Barais, O., Jézéquel, J.: Achiev-
ing practical genericity in model weaving through extensibility. In: Proc. ICMT, LNCS, vol.
7909, pp. 108–124. Springer (2013)

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

References 45

160. Krishnamurthi, S.: Programming Languages: Application and Interpretation. Brown
University (2007). https://cs.brown.edu/~sk/Publications/Books/
ProgLangs/

161. Kurtev, I., Bézivin, J., Akşit, M.: Technological spaces: An initial appraisal. In: Proc. CoopIS,
DOA 2002, Industrial track (2002)

162. Lämmel, R.: Coupled software transformations. In: Proc. SET, pp. 31–35 (2004). Extended
Abstract. Available at http://post.queensu.ca/~zouy/files/set-2004.
pdf#page=38

163. Lämmel, R.: LINQ to XSD. In: Proc. PLAN-X, pp. 95–96 (2007)
164. Lämmel, R.: Coupled software transformations revisited. In: Proc. SLE, pp. 239–252. ACM

(2016)
165. Lämmel, R.: Relationship maintenance in software language repositories. The Art, Sci-

ence, and Engineering of Programming Journal 1 (2017). 27 pages. Available at http:
//programming-journal.org/2017/1/4/

166. Lämmel, R., Leinberger, M., Schmorleiz, T., Varanovich, A.: Comparison of feature imple-
mentations across languages, technologies, and styles. In: Proc. CSMR-WCRE, pp. 333–337.
IEEE (2014)

167. Lämmel, R., Linke, R., Pek, E., Varanovich, A.: A framework profile of .NET. In: Proc.
WCRE, pp. 141–150. IEEE (2011)

168. Lämmel, R., Lohmann, W.: Format evolution. In: Proc. RETIS, vol. 155, pp. 113—-134.
OCG, books@ocg.at (2001)

169. Lämmel, R., Meijer, E.: Mappings make data processing go ’round. In: GTTSE 2005, Re-
vised Papers, LNCS, vol. 4143, pp. 169–218. Springer (2006)

170. Lämmel, R., Meijer, E.: Revealing the X/O impedance mismatch – (changing lead into gold).
In: Datatype-Generic Programming – International Spring School, SSDGP 2006, Revised
Lectures, LNCS, vol. 4719, pp. 285–367. Springer (2007)

171. Lämmel, R., Mosen, D., Varanovich, A.: Method and tool support for classifying software
languages with Wikipedia. In: Proc. SLE, LNCS, vol. 8225, pp. 249–259. Springer (2013)

172. Lämmel, R., Pek, E.: Understanding privacy policies – A study in empirical analysis of lan-
guage usage. Empir. Softw. Eng. 18(2), 310–374 (2013)

173. Lämmel, R., Schmorleiz, T., Varanovich, A.: The 101haskell chrestomathy: A whole bunch
of learnable lambdas. In: Proc. IFL, p. 25. ACM (2013)

174. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based testing. In:
Proc. TestCom, LNCS, vol. 3964, pp. 19–38. Springer (2006)

175. Lämmel, R., Varanovich, A.: Interpretation of linguistic architecture. In: Proc. ECMFA,
LNCS, vol. 8569, pp. 67–82. Springer (2014)

176. Lämmel, R., Zaytsev, V.: Recovering grammar relationships for the Java language specifica-
tion. Softw. Qual. J. 19(2), 333–378 (2011)

177. Lanza, M., Ducasse, S.: Polymetric views – A lightweight visual approach to reverse engi-
neering. IEEE Trans. Softw. Eng. 29(9), 782–795 (2003)

178. Lanza, M., Ducasse, S., Demeyer, S.: Reverse engineering based on metrics and program
visualization. In: ECOOP 1999 Workshop Reader, LNCS, vol. 1743, pp. 168–169. Springer
(1999)

179. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice – Using Software Metrics
to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer
(2006)

180. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: Proc. CGO, pp. 75–88. IEEE (2004)

181. Lédeczi, Á., Bakay, A., Maroti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing domain-specific design environments. IEEE Computer 34(11), 44–51 (2001)

182. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinators for the real world.
Tech. Rep. UU-CS-2001-27, Department of Computer Science, Universiteit Utrecht (2001)

183. Li, B., Sun, X., Leung, H., Zhang, S.: A survey of code-based change impact analysis tech-
niques. Softw. Test., Verif. Reliab. 23(8), 613–646 (2013)

https://cs.brown.edu/~sk/Publications/Books/ProgLangs/
https://cs.brown.edu/~sk/Publications/Books/ProgLangs/
http://post.queensu.ca/~zouy/files/set-2004.pdf#page=38
http://post.queensu.ca/~zouy/files/set-2004.pdf#page=38
http://programming-journal.org/2017/1/4/
http://programming-journal.org/2017/1/4/

46 1 The Notion of a Software Language

184. Liebig, J., Kästner, C., Apel, S.: Analyzing the discipline of preprocessor annotations in 30
million lines of C code. In: Proc. AOSD, pp. 191–202. ACM (2011)

185. Lin, Y., Holt, R.C.: Formalizing fact extraction. ENTCS 94, 93–102 (2004)
186. Louden, K.: Compiler Construction: Principles and Practice. Cengage Learning (1997)
187. Lungu, M., Lanza, M., Gîrba, T., Robbes, R.: The small project observatory: Visualizing

software ecosystems. Sci. Comput. Program. 75(4), 264–275 (2010)
188. Mäder, P., Egyed, A.: Do developers benefit from requirements traceability when evolving

and maintaining a software system? Empir. Softw. Eng. 20(2), 413–441 (2015)
189. Marchand, J.Y., Combemale, B., Baudry, B.: A categorical model of model merging and

weaving. In: Proc. MiSE, pp. 70–76. IEEE (2012)
190. Marriott, K., Meyer, B.: On the classification of visual languages by grammar hierarchies. J.

Vis. Lang. Comput. 8(4), 375–402 (1997)
191. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Automating the extraction of

model-based software product lines from model variants (T). In: Proc. ASE, pp. 396–406.
IEEE (2015)

192. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93 (2000)

193. Mehner, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented model weaving. In: Trans.
Aspect-Oriented Software Development, vol. 5, pp. 235–263 (2009)

194. Mens, T.: Model Transformation: A Survey of the State of the Art, pp. 1–19. John Wiley &
Sons, Inc. (2013)

195. Mens, T., Gorp, P.V.: A taxonomy of model transformation. ENTCS 152, 125–142 (2006)
196. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng. 30(2),

126–139 (2004)
197. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.

ACM Comput. Surv. 37(4), 316–344 (2005)
198. Mordal-Manet, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., Ducasse, S.: Soft-

ware quality metrics aggregation in industry. J. Softw.: Evol. Process 25(10), 1117–1135
(2013)

199. Mosses, P.D.: Action Semantics. Cambridge University Press (1992)
200. Murakami, T., Amagasa, T., Kitagawa, H.: DBPowder: A flexible object-relational mapping

framework based on a conceptual model. In: Proc. COMPSAC, pp. 589–598. IEEE (2013)
201. Murphy, G.C., Notkin, D.: Lightweight lexical source model extraction. ACM Trans. Softw.

Eng. Methodol. 5(3), 262–292 (1996)
202. Neubauer, P., Bergmayr, A., Mayerhofer, T., Troya, J., Wimmer, M.: XMLText: from XML

schema to Xtext. In: Proc. SLE, pp. 71–76. ACM (2015)
203. Paige, R.F., Kolovos, D.S., Polack, F.A.C.: A tutorial on metamodelling for grammar re-

searchers. Sci. Comput. Program. 96, 396–416 (2014)
204. Paige, R.F., Matragkas, N.D., Rose, L.M.: Evolving models in model-driven engineering:

State-of-the-art and future challenges. J. Syst. Softw. 111, 272–280 (2016)
205. Palomba, F., Bavota, G., Penta, M.D., Oliveto, R., Poshyvanyk, D., Lucia, A.D.: Mining

version histories for detecting code smells. IEEE Trans. Softw. Eng. 41(5), 462–489 (2015)
206. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software

engineering. In: Proc. EASE, Workshops in Computing. BCS (2008)
207. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping

studies in software engineering: An update. Inf. Softw. Technol. 64, 1–18 (2015)
208. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoc, D.: Foundations of JSON schema. In:

Proc. WWW, pp. 263–273. ACM (2016)
209. Pfleeger, S.L.: Software metrics: Progress after 25 years? IEEE Softw. 25(6), 32–34 (2008)
210. Pierce, B.: Types and Programming Languages. MIT Press (2002)
211. Porkoláb, Z., Sinkovics, Á., Siroki, I.: DSL in C++ template metaprogram. In: CEFP 2013,

Revised Selected Papers, LNCS, vol. 8606, pp. 76–114. Springer (2015)
212. Rajlich, V.: A model and a tool for change propagation in software. ACM SIGSOFT Software

Engineering Notes 25(1), 72 (2000)

References 47

213. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.C.: Chianti: A tool for change impact
analysis of Java programs. In: Proc. OOPSLA, pp. 432–448. ACM (2004)

214. Renggli, L.: Dynamic language embedding with homogeneous tool support. Ph.D. thesis,
Universität Bern (2010)

215. Renggli, L., Gîrba, T., Nierstrasz, O.: Embedding languages without breaking tools. In: Proc.
ECOOP, LNCS, vol. 6183, pp. 380–404. Springer (2010)

216. Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.: Dealing with the coupled evolution of
metamodels and model-to-text transformations. In: Proc. Workshop on Models and Evolu-
tion, CEUR Workshop Proceedings, vol. 1331, pp. 22–31. CEUR-WS.org (2015)

217. Rompf, T.: The essence of multi-stage evaluation in LMS. In: A List of Successes That Can
Change the World – Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday,
LNCS, vol. 9600, pp. 318–335. Springer (2016)

218. Roover, C.D.: A logic meta-programming foundation for example-driven pattern detection
in object-oriented programs. In: Proc. ICSM, pp. 556–561. IEEE (2011)

219. Roover, C.D., Lämmel, R., Pek, E.: Multi-dimensional exploration of API usage. In: Proc.
ICPC 2013, pp. 152–161. IEEE (2013)

220. Rosa, M.L., Dumas, M., Uba, R., Dijkman, R.M.: Business process model merging: An ap-
proach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 11
(2013)

221. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Log. Algebr. Program.
79(6), 397–434 (2010)

222. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. Sci. Comput. Program. 74(7), 470–495 (2009)

223. Roy, C.K., Zibran, M.F., Koschke, R.: The vision of software clone management: Past,
present, and future (keynote paper). In: Proc. CSMR-WCRE, pp. 18–33. IEEE (2014)

224. Rubin, J., Chechik, M.: A survey of feature location techniques. In: Domain Engineering,
Product Lines, Languages, and Conceptual Models, pp. 29–58. Springer (2013)

225. Ruscio, D.D., Lämmel, R., Pierantonio, A.: Automated co-evolution of GMF editor models.
In: Proc. SLE 2010, LNCS, vol. 6563, pp. 143–162. Springer (2011)

226. Sánchez, P., Fuentes, L., Stein, D., Hanenberg, S., Unland, R.: Aspect-oriented model weav-
ing beyond model composition and model transformation. In: Proc. MoDELS, LNCS, vol.
5301, pp. 766–781. Springer (2008)

227. Savga, I., Rudolf, M., Goetz, S., Aßmann, U.: Practical refactoring-based framework up-
grade. In: Proc. GPCE, pp. 171–180. ACM (2008)

228. Schäfer, M., Thies, A., Steimann, F., Tip, F.: A comprehensive approach to naming and ac-
cessibility in refactoring Java programs. IEEE Trans. Softw. Eng. 38(6), 1233–1257 (2012)

229. Schauss, S., Lämmel, R., Härtel, J., Heinz, M., Klein, K., Härtel, L., Berger, T.: A
chrestomathy of DSL implementations. In: Proc. SLE. ACM (2017). 12 pages

230. Schink, H., Kuhlemann, M., Saake, G., Lämmel, R.: Hurdles in multi-language refactoring
of Hibernate applications. In: Proc. ICSOFT, pp. 129–134. SciTePress (2011)

231. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Computer
39(2), 25–31 (2006)

232. Sebesta, R.W.: Concepts of Programming Languages. Addison-Wesley (2012). 10th edition
233. Seibel, A., Hebig, R., Giese, H.: Traceability in model-driven engineering: Efficient and scal-

able traceability maintenance. In: Software and Systems Traceability., pp. 215–240. Springer
(2012)

234. Sequeda, J., Arenas, M., Miranker, D.P.: On directly mapping relational databases to RDF
and OWL. In: Proc WWW 2012, pp. 649–658. ACM (2012)

235. Sereni, D., Jones, N.D.: Termination analysis of higher-order functional programs. In: Proc.
APLAS, LNCS, vol. 3780, pp. 281–297. Springer (2005)

236. Sheard, T., Peyton Jones, S.L.: Template meta-programming for Haskell. SIGPLAN Not.
37(12), 60–75 (2002)

237. Shilov, N.V., Akinin, A.A., Zubkov, A.V., Idrisov, R.I.: Development of the computer lan-
guage classification knowledge portal. In: Perspectives of Systems Informatics – 8th Inter-
national Andrei Ershov Memorial Conference, PSI 2011, Novosibirsk, Russia, June 27–July
1, 2011, Revised Selected Papers, LNCS, vol. 7162, pp. 340–348. Springer (2012)

48 1 The Notion of a Software Language

238. Singh, R., Bezemer, C., Shang, W., Hassan, A.E.: Optimizing the performance-related con-
figurations of object-relational mapping frameworks using a multi-objective genetic algo-
rithm. In: Proc. ICPE, pp. 309–320. ACM (2016)

239. Skalna, I., Gawel, B.: Model driven architecture and classification of business rules mod-
elling languages. In: Proc. FedCSIS, pp. 949–952 (2012)

240. Sneed, H.M.: Wrapping legacy COBOL programs behind an XML-interface. In: Proc.
WCRE, p. 189. IEEE (2001)

241. Sneed, H.M.: Migrating PL/I code to Java. In: Proc. CSMR, pp. 287–296. IEEE (2011)
242. Sneed, H.M., Majnar, R.: A case study in software wrapping. In: Proc. ICSM, pp. 86–93.

IEEE (1998)
243. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., Yahav, E.: Alias analysis for object-oriented

programs. In: Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
LNCS, vol. 7850, pp. 196–232. Springer (2013)

244. Stephan, M., Cordy, J.R.: A survey of model comparison approaches and applications. In:
Proc. MODELSWARD, pp. 265–277. SciTePress (2013)

245. Stinckwich, S., Ducasse, S.: Introduction to the Smalltalk special issue. Comput. Lang. Syst.
Struct. 32(2-3), 85–86 (2006)

246. Sun, X., Li, B., Leung, H., Li, B., Zhu, J.: Static change impact analysis techniques: A com-
parative study. J. Syst. Softw. 109, 137–149 (2015)

247. Sztipanovits, J., Karsai, G.: Model-integrated computing. IEEE Computer 30(4), 110–111
(1997)

248. Taha, W.: A gentle introduction to multi-stage programming, part II. In: GTTSE 2007, Re-
vised Papers, LNCS, vol. 5235, pp. 260–290. Springer (2008)

249. Tamura, G., Cleve, A.: A comparison of taxonomies for model transformation languages.
Paradigma 4(1), 1–14 (2010)

250. Terekhov, A.A., Verhoef, C.: The realities of language conversions. IEEE Softw. 17(6), 111–
124 (2000)

251. Terwilliger, J.F., Bernstein, P.A., Melnik, S.: Full-fidelity flexible object-oriented XML ac-
cess. PVLDB 2(1), 1030–1041 (2009)

252. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3) (1995)
253. Tip, F., Fuhrer, R.M., Kiezun, A., Ernst, M.D., Balaban, I., Sutter, B.D.: Refactoring using

type constraints. ACM Trans. Program. Lang. Syst. 33(3), 9 (2011)
254. Torres, A., de Matos Galante, R., Pimenta, M.S.: ENORM: An essential notation for object-

relational mapping. SIGMOD Record 43(2), 23–28 (2014)
255. Tratt, L.: Domain specific language implementation via compile-time meta-programming.

ACM Trans. Program. Lang. Syst. 30(6) (2008)
256. Trujillo, S., Azanza, M., Díaz, O.: Generative metaprogramming. In: Proc. GPCE, pp. 105–

114. ACM (2007)
257. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Penta, M.D., Lucia, A.D., Poshyvanyk, D.:

When and why your code starts to smell bad. In: Proc. ICSE, pp. 403–414. IEEE (2015)
258. van Roy, P.: Programming paradigms for dummies: What every programmer should know.

In: New Computational Paradigms for Computer Music, IRCAM/Delatour, France, pp. 9–38
(2009)

259. Vasilescu, B., Serebrenik, A., van den Brand, M.: You can’t control the unfamiliar: A study
on the relations between aggregation techniques for software metrics. In: ICSM 2011, pp.
313–322. IEEE (2011)

260. Vermolen, S., Visser, E.: Heterogeneous coupled evolution of software languages. In: Proc.
MoDELS, LNCS, vol. 5301, pp. 630–644. Springer (2008)

261. Vermolen, S.D., Wachsmuth, G., Visser, E.: Generating database migrations for evolving web
applications. In: Proc. GPCE, pp. 83–92. ACM (2011)

262. Visser, E.: Stratego: A language for program transformation based on rewriting strategies.
In: Proc. RTA, LNCS, vol. 2051, pp. 357–362. Springer (2001)

263. Visser, E., Wachsmuth, G., Tolmach, A.P., Neron, P., Vergu, V.A., Passalaqua, A., Konat, G.:
A language designer’s workbench: A one-stop-shop for implementation and verification of
language designs. In: Proc. SPLASH, Onward!, pp. 95–111. ACM (2014)

References 49

264. Visser, J.: Coupled transformation of schemas, documents, queries, and constraints. ENTCS
200(3), 3–23 (2008)

265. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,
Wachsmuth, G.: DSL Engineering – Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013)

266. Voelter, M., Ratiu, D., Kolb, B., Schätz, B.: mbeddr: instantiating a language workbench in
the embedded software domain. Autom. Softw. Eng. 20(3), 339–390 (2013)

267. Völter, M., Visser, E.: Language extension and composition with language workbenches. In:
Companion SPLASH/OOPSLA, pp. 301–304. ACM (2010)

268. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Proc. ECOOP, LNCS,
vol. 4609, pp. 600–624. Springer (2007)

269. Wachsmuth, G., Konat, G.D.P., Visser, E.: Language design with the Spoofax language work-
bench. IEEE Softw. 31(5), 35–43 (2014)

270. Wang, J., Peng, X., Xing, Z., Zhao, W.: How developers perform feature location tasks:
A human-centric and process-oriented exploratory study. J. Softw.: Evol. Process 25(11),
1193–1224 (2013)

271. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)
272. Wile, D.S.: Lessons learned from real DSL experiments. In: Proc. HICSS-36, p. 325. IEEE

(2003)
273. Wile, D.S.: Lessons learned from real DSL experiments. Sci. Comput. Program. 51(3), 265–

290 (2004)
274. WWW: XML Information Set (2004). https://www.w3.org/TR/xml-infoset/
275. Yamashita, A.F., Moonen, L.: Do code smells reflect important maintainability aspects? In:

Proc. ICSM, pp. 306–315. IEEE (2012)
276. Zanoni, M., Fontana, F.A., Stella, F.: On applying machine learning techniques for design

pattern detection. J. Syst. Softw. 103, 102–117 (2015)
277. Zaytsev, V.: BNF WAS HERE: What have we done about the unnecessary diversity of nota-

tion for syntactic definitions. In: Proc. SAC, pp. 1910–1915. ACM (2012)
278. Zaytsev, V., et al.: Software language processing suite (2008). http://slps.github.

io/

https://www.w3.org/TR/xml-infoset/
http://slps.github.io/
http://slps.github.io/

Chapter 2
A Story of a Domain-Specific Language

MARTIN FOWLER.1

Abstract In this chapter, several fundamental concepts and engineering techniques
for software languages are explained by means of an illustrative domain-specific
language. In particular, we exercise the internal and external styles of DSL im-
plementation, textual and visual syntax, parsing, interpretation, and code genera-
tion. As a running example, we deal with a DSL for finite state machines FSML
(FSM Language). In addition to implementing FSML with mainstream languages
and technologies, we discuss design and implementation options and concerns over-
all and we describe a number of “recipes” for DSL development.

1 There is no “Greek” in Martin Fowler’s textbooks on refactoring [4] and DSLs [5], both ad-
dressing important topics in software language engineering. These accessible textbooks triggered
research on these topics and connected research better with “mainstream” software development.
Martin Fowler was again visionary when he asked in 2005 “Language Workbenches: The Killer-
App for Domain Specific Languages?” (https://www.martinfowler.com/articles/
languageWorkbench.html), thereby fueling the development of and research on language
workbenches [2, 3, 9, 8, 16, 15, 17, 13].
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA
4.0. This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission.
This work also quotes https://en.wikipedia.org/wiki/Wheat_Field_with_Cypresses#/media/
File:Wheat-Field-with-Cypresses-(1889)-Vincent-van-Gogh-Met.jpg, subject to the attribu-
tion “Vincent van Gogh: Wheat Field with Cypresses (1889) [Public domain], via Wikipedia.” This work artistically
morphes an image, https://en.wikipedia.org/wiki/Martin_Fowler, showing the person honored, sub-
ject to the attribution “By Webysther Nunes - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/
w/index.php?curid=39594469.”

51© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_2

https://www.martinfowler.com/articles/languageWorkbench.html
https://www.martinfowler.com/articles/languageWorkbench.html
http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://en.wikipedia.org/wiki/Wheat_Field_with_Cypresses#/media/File:Wheat-Field-with-Cypresses-(1889)-Vincent-van-Gogh-Met.jpg
https://en.wikipedia.org/wiki/Wheat_Field_with_Cypresses#/media/File:Wheat-Field-with-Cypresses-(1889)-Vincent-van-Gogh-Met.jpg
https://en.wikipedia.org/wiki/Martin_Fowler
https://commons.wikimedia.org/w/index.php?curid=39594469
https://commons.wikimedia.org/w/index.php?curid=39594469
https://doi.org/10.1007/978-3-319-90800-7_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_2&domain=pdf

52 2 A Story of a Domain-Specific Language

Fig. 2.1 A turnstile FSM in visual notation on the whiteboard.

2.1 Language Concepts

We assume an imaginary business context: a company Acme2, which develops em-
bedded systems.3 Acme is an international leader in embedded systems development.
Over the last 50 years, Acme has matured a number of development techniques that
are specifically tailored to the area of embedded systems development. For instance,
Acme uses FSMs4 in the development of embedded systems. In this chapter, we
discuss a corresponding language for FSMs, FSML (FSM Language). FSML is a
domain-specific language that was grown at Acme over many years; the language
and its implementation have emerged and evolved in various ways, as described
below.

FSML is introduced here by means of an example. In an ongoing project, Acme
is developing a turnstile component, as part of a bigger contract to modernize the
metro system in an undisclosed city. Metro passengers need to pass through the
turnstile (a hub or spider) and insert a valid ticket into the turnstile’s card reader
when they want to reach the platform in a legal manner. The Acme architects and
the customer agree on the basic functionality for turnstiles in a meeting, where they
draw an FSM on the whiteboard as shown in Fig. 2.1.

2 http://en.wikipedia.org/wiki/Acme_Corporation
3 http://en.wikipedia.org/wiki/Embedded_system
4 http://en.wikipedia.org/wiki/Finite-state_machine

http://en.wikipedia.org/wiki/Acme_Corporation
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Finite-state_machine

2.1 Language Concepts 53

FSML is quickly explained in terms of its visual notation with the example at
hand. FSMs comprise states (nodes) and transitions (directed edges). The initial
state of the machine is indicated by a bolder border. These are these states in the
turnstile FSM:

• locked: The turnstile is locked. No passenger is allowed to pass.
• unlocked: The turnstile is unlocked. A passenger may pass.
• exception: A problem has occurred and metro personnel need to intervene.

Each transition connects two states and is annotated by two parts, e/a, an event
e and an action a, where the latter is optional. The event may be triggered by the
user; this may involve sensors in an embedded system. An event causes a transition.
An action corresponds to functionality to be performed upon a transition; this may
involve actors in an embedded system. The source of a transition is the source state;
the target of a transition is the target state. The turnstile FSM involves these events:

• ticket: A passenger inserts a ticket into the card reader.
• pass: A passenger passes through the turnstile as noticed by a sensor.
• mute: Metro personnel turn off the alarm after an exception.
• release: Metro personnel turn on normal operation again.

The turnstile FSM involves these actions:

• collect: The ticket is collected by the card reader.
• eject: The ticket is ejected by the card reader.
• alarm: An alarm is turned on, thereby requesting metro personnel.

Based on such an understanding of states, events, and actions, the meaning of the
different transitions in Fig. 2.1 should be obvious by now. Consider, for example,
the transition from the source state “locked” to the target state ‘unlocked’, which is
annotated by “ticket/collect” to mean that the transition is triggered by the event of
inserting a ticket and the transition causes the action of collecting the ticket.

The idea is now that architects and customers can validate their intuitions about
turnstiles by starting from some input (a sequence of events) and determine the
corresponding output (a sequence of actions), as illustrated below.

Illustration 2.1 (Sample input for the turnstile FSM)
The input is a sequence of the following events:

ticket A ticket is inserted. (The turnstile is thus unlocked.)
ticket Another ticket is inserted. (The superfluous ticket is ejected.)
pass Someone passes through the turnstile. (This is OK.)
pass Someone else passes through the turnstile. (This triggers an alarm.)
ticket A ticket is inserted. (The ticket is ejected in the exceptional state.)
mute The alarm is muted.
release Metro personnel switch back to normal.

54 2 A Story of a Domain-Specific Language

Illustration 2.2 (Sample output for the sample input of Illustration 2.1)
The output is a sequence of the following actions:

collect The inserted ticket is collected.
eject A ticket inserted in the unlocked state is ejected.
alarm An attempt to pass in the locked state triggers an alarm.
eject A ticket inserted in the exceptional state is ejected.

2.2 Internal DSL

Over the years, the Acme engineers increasingly appreciated the FSM notation.
There was growing interest in handling FSMs as proper software engineering ar-
tifacts, as opposed to simply passing down whiteboard drawings from architects to
developers.

DSL implementation efforts were sparked off within the company. One engineer
implemented FSML as an internal DSL [5, 14, 1, 12] in Java. In this manner, a
machine-checked and executable notation for FSMs was obtained without much
effort, and also without the need for special tools.

In the internal style of DSL implementation, DSL programs are represented and
their behavior is implemented in a host language. The idea is that the language con-
cepts of the DSL are implemented as a library and the DSL programmer is provided
with an API for manipulating DSL programs. We demonstrate the use of Java and
Python as host languages for FSML here. We should mention that the details of in-
ternal DSL style depend significantly on the host language. If we were using C++,
Scheme, Haskell, Scala, or some other language as the host language, additional or
different techniques could be leveraged, for example, operator overloading, macros,
or templates.

2.2.1 Baseline Object Model

Let us begin with a very simple object model for FSML. We assume classes
Fsm, State, and Transition for the representation of FSMs, states, and transitions.
Setter/getter-based Java code for FSM construction may take the form as shown
below.

2.2 Internal DSL 55

Note: Most “code snippets” (from Chapter 2 onwards) in this book are enclosed into
“Illustration” blocks and contain a clickable URL so that the corresponding source
file can be looked up in the underlying online repository. Many source files are
shown with elisions and, thus, by following the link, one can inspect the complete
file and also observe the context of the file in the repository. The following illustra-
tion contains the URL above the actual source code; see the underlined string.

Illustration 2.3 (Imperative style of constructing FSML objects)

Java source code org/softlang/fsml/ImperativeSample.java

turnstile = new Fsm();
State s = new State();
s.setStateid("locked");
s.setInitial(true);
turnstile.getStates().add(s);
s = new State();
s.setStateid("unlocked");
turnstile.getStates().add(s);
s = new State();
s.setStateid("exception");
turnstile.getStates().add(s);
Transition t = new Transition();
t.setSource("locked");
t.setEvent("ticket");
t.setAction("collect");
t.setTarget("unlocked");
turnstile.getTransitions().add(t);
t = new Transition();
. . . // add more transitions

That is, various objects are to be constructed and initialized with setters and other
accessors. This style may be slightly improved if functional constructors are put to
work as shown below.

Illustration 2.4 (Functional construction of FSML objects)

Java source code org/softlang/fsml/FunctionalSample.java

turnstile = new Fsm();
turnstile.getStates().add(new State("locked", true));
turnstile.getStates().add(new State("unlocked"));
turnstile.getStates().add(new State("exception"));
turnstile.getTransitions().add(new Transition("locked", "ticket", "collect", "unlocked"));
turnstile.getTransitions().add(new Transition("locked", "pass", "alarm", "exception"));
. . . // add more transitions

The code is still littered with object construction, container manipulation, and
the repetition of source states for transitions. We will discuss below a more “fluent”
API. As a baseline, we implement a simple baseline as follows.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/ImperativeSample.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/FunctionalSample.java

56 2 A Story of a Domain-Specific Language

Illustration 2.5 (Object model with functional constructors)

Java source code org/softlang/fsml/Fsm.java

public class Fsm {
private List<State> states = new LinkedList<>();
private List<Transition> transitions = new LinkedList<>();
public List<State> getStates() { return states; }
public List<Transition> getTransitions() { return transitions; }

}

Java source code org/softlang/fsml/State.java

public class State {
private String id;
private boolean initial;
public String getStateid() { return id; }
public void setStateid(String state) { this.id = state; }
public boolean isInitial() { return initial; }
public void setInitial(boolean initial) { this.initial = initial; }
public State() { }
public State(String id) { this.id = id; }
public State(String id, boolean initial) { this.id = id; this.initial = initial; }

}

Java source code org/softlang/fsml/Transition.java

public class Transition {
private String source;
private String event;
private String action;
private String target;
. . . // getters and setters omitted
public Transition() { }
public Transition(String source, String event, String action, String target) {

this.source = source;
this.event = event;
this.action = action;
this.target = target;

}
}

Exercise 2.1 (Object model with references) [Basic level]
Implement an alternative object model where the target state of a transition is mod-
eled as a proper object reference to a state object, as opposed to the use of strings
in the baseline model.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/Fsm.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/State.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/Transition.java

2.2 Internal DSL 57

2.2.2 Fluent API

Let us aim at a more “fluent” API, which is focused on language concepts, elimi-
nates sources of redundancy, and hides the object-oriented representation, as shown
for the host languages Java and Python below.

Illustration 2.6 (Fluent style of representing an FSM in Java)

Java source code org/softlang/fsml/fluent/Sample.java

turnstile = fsm()
.addState("locked")

.addTransition("ticket", "collect", "unlocked")

.addTransition("pass", "alarm", "exception")
.addState("unlocked")

.addTransition("ticket", "eject", "unlocked")

.addTransition("pass", null, "locked")
.addState("exception")

.addTransition("ticket", "eject", "exception")

.addTransition("pass", null, "exception")

.addTransition("mute", null, "exception")

.addTransition("release", null, "locked");

Illustration 2.7 (Fluent style of representing an FSM in Python)

Python module FsmlSample

turnstile = \
Fsm() \

.addState("locked") \
.addTransition("ticket", "collect", "unlocked") \
.addTransition("pass", "alarm", "exception") \

.addState("unlocked") \
.addTransition("ticket", "eject", "unlocked") \
.addTransition("pass", None, "locked") \

.addState("exception") \
.addTransition("ticket", "eject", "exception") \
.addTransition("pass", None, "exception") \
.addTransition("mute", None, "exception") \
.addTransition("release", None, "locked")

The construction of the FSM is expressed in a relatively concise and readable
manner. The choice of Java or Python as a host language does not influence the no-
tation much. The fluent API style is achieved by applying a few simple techniques:

Factory methods Rather than invoking regular constructors, any sort of DSL pro-
gram fragment is constructed by appropriate factory methods. In this manner, we
effectively abstract from the low-level representation of DSL programs. Also,
the DSL concepts map more systematically to API members and the verbosity of
constructor invocation is avoided.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/Sample.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlSample.py

58 2 A Story of a Domain-Specific Language

Method chaining A DSL program is represented as a chain of object mutations
such that each step returns a suitable object on which to perform the next step. For
the simple DSL at hand, the returned object is the FSM to add transitions. In this
manner, DSL programs can be represented as expressions instead of statement
sequences on local variables.

Implicit parameters The API for DSL program construction may maintain im-
plicit parameters so that they do not need to be repeated explicitly. For FSML, it
is natural to group all transitions by source state and, thus, the API maintains a
“current” state.

Conventions (defaults) Some details may be omitted by the programmer if rea-
sonable defaults can be assumed, subject to conventions. For FSML, it makes
sense to assume that the first state is the initial state and, thus, the flag “initial”
can be omitted universally.

Let us illustrate the fluent API in Java.

Illustration 2.8 (A fluent Java API for FSMs)

Java source code org/softlang/fsml/fluent/Fsm.java

public interface Fsm {
public Fsm addState(String state);
public Fsm addTransition(String event, String action, String target);
public String getInitial();
public ActionStatePair makeTransition(String state, String event);

}

Java source code org/softlang/fsml/fluent/ActionStatePair.java

// Helper class for "makeTransition"
public class ActionStatePair {

public String action;
public String state;

}

The API does not just feature members for construction; it also provides access
to the initial state and the transitions, thereby preparing for the ‘interpretation’ of
FSMs, as discussed later in detail (Section 2.2.3). Let us illustrate one option of
implementing the fluent API such that we use a cascaded map to maintain states
and transitions as shown below.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/Fsm.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/ActionStatePair.java

2.2 Internal DSL 59

Illustration 2.9 (A fluent API implementation for FSML in Java)

Java source code org/softlang/fsml/fluent/FsmImpl.java

public class FsmImpl implements Fsm {
private String initial; // the initial state
private String current; // the "current" state
// A cascaded map for maintaining states and transitions
private HashMap<String, HashMap<String, ActionStatePair>> fsm =

new HashMap<>();
private FsmImpl() { }
// Construct FSM object
public static Fsm fsm() { return new FsmImpl(); }
// Add state and set it as current state
public Fsm addState(String id) {

// First state is initial state
if (initial == null) initial = id;
// Remember state for subsequent transitions
this.current = id;
if (fsm.containsKey(id)) throw new FsmlDistinctIdsException();
fsm.put(id, new HashMap<String, ActionStatePair>());
return this;

}
// Add transition for current state
public Fsm addTransition(String event, String action, String target) {

if (fsm.get(current).containsKey(event)) throw new FsmlDeterministismException();
ActionStatePair pair = new ActionStatePair();
pair.action = action;
pair.state = target;
fsm.get(current).put(event, pair);
return this;

}
// Getter for initial state
public String getInitial() {

return initial;
}
// Make transition
public ActionStatePair makeTransition(String state, String event) {

if (!fsm.containsKey(state)) throw new FsmlResolutionException();
if (!fsm.get(state).containsKey(event)) throw new FsmlInfeasibleEventException();
return fsm.get(state).get(event);

}
}

The implementation makes the assumption that the first state corresponds to the
initial state. Also, when a transition is added, the most recently added state (current)
serves as the source state. The implementation also shields against some program-
ming errors when describing an FSM; see the exceptions raised. We will discuss the
related constraints later on (Section 2.2.4).

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/FsmImpl.java

60 2 A Story of a Domain-Specific Language

Exercise 2.2 (Fluent API on baseline object model) [Basic level]
Provide an alternative implementation of the fluent API such that the API is realized
on top of the baseline object model of Section 2.2.1.

We also exercise Python as the host language for API implementation as follows.

Illustration 2.10 (A fluent API implementation for FSML in Python)

Python module FsmlModel

class Fsm():
def __init__(self):

self.fsm = defaultdict(list)
self.current = None

def addState(self, id):
return self.addStateNoDefault(self.current is None, id)

def addStateNoDefault(self, initial, id):
if id in self.fsm[id]: raise FsmlDistinctIdsException;
self.stateObject = dict()
self.stateObject['transitions'] = defaultdict(list)
self.stateObject['initial'] = initial
self.fsm[id] += [self.stateObject]
self.current = id
return self

def addTransition(self, event, action, target):
if event in self.stateObject['transitions']: raise FsmlDeterminismException;
self.stateObject['transitions'][event] += \

[(action, self.current if target is None else target)]
return self

When comparing the Python implementation with the earlier Java implementa-
tion, we note that the Python class does not feature members for “observation”; re-
member the methods getInitial and makeTransition in Illustration 2.9. This is a matter
of choice; we assume here that the programmer can simply access the dictionary-
based representation of FSMs in the case of Python.

Note: We summarize some important workflows in this book by means of “recipes”
such as the one below. The frontmatter of the book features a list of recipes.

http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlModel.py

2.2 Internal DSL 61

Recipe 2.1 (Development of a fluent API).

Samples Pick some sample DSL “programs” and represent them as expres-
sions in the host language. Strive for fluency by adopting techniques such
as method chaining.

API Extract the fluent API from the samples. You may represent the API
literally as an interface or capture the API by starting the implementation
of an object model with empty method bodies.

Implementation Identify suitable representation types for the DSL “pro-
grams” (e.g., objects with suitable attributes or data structures such as
maps). Implement the fluent API in terms of the representation types.

2.2.3 Interpretation

An obvious aspect of implementing a DSL for FSMs is the simulation of FSMs in
the sense of processing some input (a sequence of events) to experience the resulting
state transitions and to derive the corresponding output (a sequence of actions). At
Acme, engineers appreciated the possibility of simulation because it would allow
them to “play” with the FSMs and to document and verify traces of expected system
behavior without yet implementing the FSMs proper on the target platform.

FSM simulation is an instance of what is generally referred to as interpretation.
An interpreter processes a “program” (i.e., an FSM in the running example), it takes
possibly additional input (namely a sequence of events in the running example), and
it returns an output (namely a sequence of actions in the running example). We may
also use streams to enable “interactive” as opposed to “batch-oriented” simulation.

Let us capture an expected “run” of the turnstile FSM as a (JUnit) testcase.

Illustration 2.11 (Test case for simulation of turnstile execution)

Java source code org/softlang/fsml/tests/FluentTest.java

public class FluentTest {

private static final String[] input =
{"ticket", "ticket", "pass", "pass", "ticket", "mute", "release"};

private static final String[] output =
{"collect", "eject", "alarm", "eject"};

@Test
public void runSample() {

assertArrayEquals(output, run(Sample.turnstile, input));
}

}

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/tests/FluentTest.java

62 2 A Story of a Domain-Specific Language

In this test case, we invoke a run method with a sequence of events as input (i.e.,
as a method argument) and with a sequence of actions as output (i.e., as the method
result). Both actual input and expected output are set up as string arrays accordingly.
The run method (i.e., the FSML interpreter) can be implemented in Java as follows.

Illustration 2.12 (An interpreter for FSML hosted by Java)

Java source code org/softlang/fsml/fluent/FsmlInterpreter.java

public class FsmlInterpreter {
public static String[] run(Fsm fsm, String[] input) {

ArrayList<String> output = new ArrayList<>();
String state = fsm.getInitial();
for (String event : input) {

ActionStatePair pair = fsm.makeTransition(state, event);
if (pair.action != null) output.add(pair.action);
state = pair.state;

}
return output.toArray(new String[output.size()]);

}
}

That is, the semantics of an FSM is essentially modeled by the API members
getInitial and makeTransition so that it just remains to loop over the input and accu-
mulate the output.

Let us implement an interpreter in Python.

Illustration 2.13 (An interpreter for FSML hosted by Python)

Python module FsmlInterpreter

def run(fsm, input):
Determine initial state
for id, [decl] in fsm.iteritems():

if decl["initial"]:
current = decl
break

Consume input; produce output
output = []
while input:

event = input.pop(0)
if event not in current["transitions"]: raise FsmlInfeasibleEventException
else:

[(action, target)] = current["transitions"][event]
if action is not None: output.append(action)
if target not in fsm: raise FsmlResolutionException
[current] = fsm[target]

return output

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/FsmlInterpreter.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlInterpreter.py

2.2 Internal DSL 63

In this implementation, the underlying data structure is accessed directly; this
also entails an extra loop to identify the initial state.

The present section is summarized by means of a recipe.

Recipe 2.2 (Development of an interpreter).

Program representation Set up representation types for the programs to be
interpreted. For instance, you may rely on the representation types used by
a more or less fluent API (Recipe 2.1).

Arguments Identify types of interpretation arguments. In the case of FSML,
the interpreter takes a sequence of events, i.e., strings.

Results Identify types of interpretation results. In the case of FSML, the in-
terpreter returns a sequence of actions, i.e., strings. The interpreter could
also expose intermediate states encountered during the transitions – even
though this was not demonstrated earlier.

Test cases Set up test cases for the interpreter. A positive test case consists
of a program to be interpreted, additional arguments, and the expected re-
sult(s). A negative test case does not provide an expected result; instead it
is marked with the expectation that interpretation terminates abnormally.

Case discrimination Implement interpretation as case discrimination on the
syntactic constructs. The interpretation of compound constructs commences
recursively or by list processing.

Testing Test the interpreter in terms of the test cases.

We will refine the interpreter recipe in Chapter 5.

Exercise 2.3 (Irregular interpreter completion for FSML) [Basic level]
Implement a test case which illustrates irregular completion. Hint: Design an event
sequence such that simulation ends up in a state where a given event cannot be
handled.

2.2.4 Well-Formedness

An FSM should meet certain well-formedness constraints to “make sense”, i.e., so
that we can expect interpretation of the FSM to be feasible. For instance, each tar-
get state mentioned in a transition of an FSM should also be declared in the FSM.
Clearly, it is important that language users at Acme have a good understanding of
these constraints so that they use the language correctly. New Acme employees at-
tend an FSML seminar, where they are trained according to the principle “language
by example”, i.e., understanding the language by means of complementary, illustra-
tive examples. This includes both well-formed (useful) examples and simple illus-
trations of constraint violation.

64 2 A Story of a Domain-Specific Language

Here is a list of some conceivable constraints; we assign names to the constraints
for later reference:

• distinctStateIds: The state ids of the state declarations must be distinct.
• singleInitialState: An FSM must have exactly one initial state.
• deterministicTransitions: The events must be distinct per state.
• resolvableTargetStates: The target state of each transition must be declared.
• reachableStates: All states must be reachable from the initial state.

Yet more constraints could be identified. For instance, we could require that all
states offer transitions for all possible events; this constraint is not met by the turn-
stile FSM. Let us demonstrate violation of a constraint with an FSM. In the follow-
ing code, we use the fluent Python API (Section 2.2.2).

Illustration 2.14 (A violation of the resolvableTargetStates constraint)

Python module FsmlResolutionNotOk

resolutionNotOk = \
Fsm() \

.addState("stateA") \
.addTransition("eventI", "actionI", "stateB") \
.addTransition("eventII", "actionII", "stateC") \

.addState("stateB")

Exercise 2.4 (Violation of constraints) [Basic level]
Construct an FSM which violates the distinctStateIds constraint. Construct another
FSM which violates the reachableStates constraint.

FSMs exercising constraint violation can be turned into negative test cases for
the implementation of the DSL. In implementing the fluent API (Section 2.2.2), we
have already shielded against some problems related to the aforementioned con-
straints. That is, the addState method throws if the given state id has been added
before, thereby addressing the constraint distinctStateIds. Also, the addTransition
method throws if the given event has already occurred in another transition for the
current state, thereby addressing the constraint deterministicTransitions. The con-
straints may be implemented by predicates as shown below.

Illustration 2.15 (Constraint checking for FSMs)

Python module FsmlConstraints

def ok(fsm):
for fun in [

distinctStateIds,
singleInitialState,
deterministicTransitions,
resolvableTargetStates,

http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlResolutionNotOk.py
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlConstraints.py

2.2 Internal DSL 65

reachableStates] : fun(fsm)

def distinctStateIds(fsm):
for state, decls in fsm.iteritems():

if not len(decls) == 1: raise FsmlDistinctIdsException()

def singleInitialState(fsm):
initials = [initial for initial, [decl] in fsm.iteritems() if decl["initial"]]
if not len(initials) == 1: raise FsmlSingleInitialException()

def deterministicTransitions(fsm):
for state, [decl] in fsm.iteritems():

for event, transitions in decl["transitions"].iteritems():
if not len(transitions) == 1: raise FsmlDeterminismException()

def resolvableTargetStates(fsm):
for _, [decl] in fsm.iteritems():

for _, transitions in decl["transitions"].iteritems():
for (_, target) in transitions:

if not target in fsm: raise FsmlResolutionException()

def reachableStates(fsm):
for initial, [decl] in fsm.iteritems():

if decl["initial"]:
reachables = set([initial])
chaseStates(initial, fsm, reachables)

if not reachables == set(fsm.keys()): raise FsmlReachabilityException()

Helper for recursive closure of reachable states
def chaseStates(source, fsm, states): . . .

Arguably, some constraints do not need to be checked if we assume a fluent
API implementation as discussed before, because some constraint violations may
be caught during construction. However, we do not assume necessarily that all DSL
samples are constructed by means of the fluent API. For instance, DSL samples
may also be represented in interchange formats, thereby calling for well-formedness
checking atop serialization.

We mention in passing that additional constraints apply, when all arguments are
considered for interpretation. In the case of FSML, we must require that the events
in the input can always be handled in the corresponding transition. This sort of
problem is caught by the interpreter.

66 2 A Story of a Domain-Specific Language

The present section is summarized by means of a recipe.

Recipe 2.3 (Development of a constraint checker).

Negative test cases Designate one negative test case for each constraint that
should be checked. Ideally, each such test case should violate just one con-
straint and not several at once.

Reporting Choose an approach to “reporting”. The result of constraint vi-
olation may be communicated either as a Boolean value, as a list of error
messages, or by throwing an exception.

Modularity Implement each constraint in a separate function, thereby sup-
porting modularity and testing.

Testing The constraint violations must be correctly detected for the negative
test cases. The positive test cases, for example, those for the interpreter
(Recipe 2.2), must pass.

2.3 External DSL

The developers at Acme were happy with the internal DSL implementation, as it
helped them to experiment with FSMs in a familiar programming language. How-
ever, the programming-language notation implied a communication barrier between
developers and other stakeholders, who could not discuss matters in terms of pro-
grams or did not want to.

An Acme developer with competence in language implementation therefore pro-
posed a concise and machine-checkable domain-specific textual syntax for FSMs as
exercised below.

Illustration 2.16 (Turnstile FSM in textual syntax)

FSML resource languages/FSML/sample.fsml

initial state locked {
ticket/collect −> unlocked;
pass/alarm −> exception;

}
state unlocked {

ticket/eject;
pass −> locked;

}
state exception {

ticket/eject;
pass;
mute;
release −> locked;

}

http://github.com/softlang/yas/tree/springer/languages/FSML
http://github.com/softlang/yas/tree/springer/languages/FSML/sample.fsml

2.3 External DSL 67

In the textual notation, all state declarations group together the transitions with
the given state as the source state. The target state of a transition appears to the right
of the arrow “−>”. If the arrow is missing, this is taken to mean that the target state
equals the source state.

2.3.1 Syntax Definition

An Acme developer with competence in software language engineering suggested a
grammar-based syntax definition as follows.

fsm : state+ EOF ;
state : 'initial'? 'state' stateid '{' transition* '}' ;
transition : event ('/' action)? ('−>' target=stateid)? ';' ;
stateid : NAME ;
event : NAME ;
action : NAME ;
NAME : ('a'..'z'|'A'..'Z')+ ;

A variation of the EBNF [7] notation for context-free grammars [6] is used here.
The grammar rules define the syntactic categories (“nonterminals”): state machines
(fsm), state declarations (state), transitions (transition), and more basic categories for
state ids, events, and actions. Each rule consists of the name of the being defined
(on the left), a separator (“:”), and the actual definition (on the right) in terms of
other grammar symbols. For instance, the rule defining fsm models the fact that an
FSM consists of a non-empty sequence of state declarations followed by the EOF
(end-of-file) character. The rule defining state models the fact that a state declaration
starts with the optional keyword ‘initial’, followed by the keyword “state”, followed
by a state id, followed by a sequence of transitions enclosed in braces.

Let us provide a general recipe for authoring a grammar.

Recipe 2.4 (Authoring a grammar).

Samples Sketch the intended language in terms of a few simple samples (i.e.,
strings) without trying to design a grammar at the same time. If you have
carried out a domain analysis (Section 1.3), then your samples should cover
the concepts identified by the analysis.

Categories Identify the syntactic categories exercised in your samples (and
possibly suggested by your domain analysis), for example, state declara-
tions and transitions in the case of FSML. Assign names to these categories.
These names are referred to as nonterminals, to be defined by the grammar;
they show up on the left-hand sides of grammar rules.

Alternatives Identify the alternatives for each category. (Again, a domain
analysis may readily provide such details.) FSML is so simple that there is

68 2 A Story of a Domain-Specific Language

only a single alternative per category, but think of different expression forms
in a language with arithmetic and comparison expressions. Assign names
to these alternatives; these names may be used to label grammar rules.

Structure Describe the structure of each alternative in terms of nontermi-
nals, terminals (keywords and special characters), sequential composition
(juxtaposition), repetition (“*” or “+”), and optionality (“?”).

Validation Ultimately, check that the language samples comply with the au-
thored grammar, as discussed later (Recipe 2.5).

2.3.2 Syntax Checking

A grammar can be used directly for implementing a syntax checker so that everyone
can easily check conformance of given text to the rules of the textual syntax. By im-
plementing such a checker, the Acme engineers started a transition from an internal
to an external DSL. That is, there was a dedicated frontend for FSML to permit the
representation of FSMs in a language-specific notation without making any conces-
sions to an existing programming language. The Acme developer in charge chose
the popular technology ANTLR5 [11] for implementing the syntax checker. That
is, ANTLR includes a parser generator which generates code for syntax checking
(or parsing) from a given syntax definition (a grammar). The grammar, which was
shown above, can be trivially completed into actual ANTLR input so that most of
the code for a syntax checker can be generated by ANTLR, as shown below.

Illustration 2.17 (An ANTLR input for FSML)

ANTLR resource languages/FSML/Java/Fsml.g4

1 grammar Fsml;
2 @header {package org.softlang.fsml;}
3 fsm : state+ EOF ;
4 state : 'initial'? 'state' stateid '{' transition* '}' ;
5 transition : event ('/' action)? ('−>' target=stateid)? ';' ;
6 stateid : NAME ;
7 event : NAME ;
8 action : NAME ;
9 NAME : ('a'..'z'|'A'..'Z')+ ;

10 WS : [\t\n\r]+ −> skip ;

The earlier grammar appears in lines 3–9. Otherwise, the ANTLR input features
the following details.

• The grammar is given a name: Fsml (line 1). This name is used in names of
generated Java classes such as FsmlParser and FsmlLexer.

5 http://www.antlr.org/

http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/Fsml.g4
http://www.antlr.org/

2.3 External DSL 69

• By means of a header pragma, a Java package name is specified: org.softlang.fsml
(line 2). The generated Java classes are put into this package.

• A special grammar symbol for white space is declared: WS (line 10). Such white
space is to be skipped in the input, as controlled by the skip action.

• Two of the nonterminals use uppercase identifiers: NAME and WS (lines 9–10).
This is a hint to ANTLR that these nonterminals model lexical syntax. That is,
the input text is first converted into a sequence NAME and WS tokens as well as
keywords or special tokens from the other rules, before parsing commences.

The present section is summarized by means of a recipe.

Recipe 2.5 (Development of a syntax checker).

Grammar It is assumed that you have authored a grammar and samples
according to Recipe 2.4.

Approach Choose an approach to grammar implementation. In this section,
we favored the use of a parser generator (ANTLR). In Chapter 7, we will
also discuss programmatic implementation (recursive descent and parser
combinators).

Driver Develop driver code for applying the implemented grammar to input.
Testing Apply the syntax checker to language samples to confirm their con-

formance to the grammar. One should also author samples with syntax er-
rors to test that the syntax checker catches the errors and communicates
them appropriately.

In the running example, we still need the driver code for applying the ANTLR-
based checker to samples, as shown below.

Illustration 2.18 (Driver code for the generated syntax checker (parser))

Java source code org/softlang/fsml/FsmlSyntaxChecker.java

public class FsmlSyntaxChecker {
public static void main(String[] args) throws IOException {

FsmlParser parser =
new FsmlParser(

new CommonTokenStream(
new FsmlLexer(

new ANTLRFileStream(args[0]))));
parser.fsm();
System.exit(parser.getNumberOfSyntaxErrors()−Integer.parseInt(args[1]));

}
}

The code is idiosyncratic to ANTLR; it entails the following steps:

• An ANTLRFileStream object is constructed and applied to a filename; this is es-
sentially an input stream to process a text file.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/FsmlSyntaxChecker.java

70 2 A Story of a Domain-Specific Language

• An FsmlLexer object is wrapped around the stream; this is a lexer (scanner) object
as an instance of a class that was generated from the grammar.

• A CommonTokenStream object is wrapped around the lexer; thereby allowing the
lexer to communicate with the parser in a standardized manner.

• An FsmlParser object is wrapped around the token stream; this is a parser object
as an instance of a class that was generated from the grammar.

• The parser is invoked; in fact, the nonterminal (the method) fsm is selected. As
a side effect, a parse tree (CST) is associated with the parser object and parse
errors, if any, can be retrieved from the same object.

• Finally, there is an assertion to check for parse errors.

The driver code shown is used by a test suite. We have set up the main method in
such a way that we can check positive and negative examples through a command-
line interface. That is, two arguments are expected: the name of the input file and
the expected number of syntax errors. The main method exits with “0”, if the ac-
tual number of syntax errors equals the expected number, otherwise it exits with a
nonzero code. Let us provide a sample for which syntax checking should fail.

Illustration 2.19 (A syntactically incorrect FSML sample)

FSML resource languages/FSML/tests/syntaxError.fsml

initial state stateA {

The ANTLR-based parser should report a syntax error as follows:

..line 2:0 missing '}' at '<EOF>'

For the sake of completeness, let us describe the build process of the ANTLR-
and Java-based syntax checker, as it combines code generation and compilation. We
may capture the involved steps by means of a Makefile6, as shown below.

Illustration 2.20 (Makefile for the FSML syntax checker)

Makefile resource languages/FSML/Java/Makefile

1 cp = −cp .:../../../lib/Java/antlr−4.5.3−complete.jar
2 antlr = java ${cp} org.antlr.v4.Tool −o org/softlang/fsml
3 fsmlSyntaxChecker = java ${cp} org.softlang.fsml.FsmlSyntaxChecker
4

5 all:
6 make generate
7 make compile
8 make test
9

10 generate:
11 ${antlr} Fsml.g4

6 http://en.wikipedia.org/wiki/Makefile

http://github.com/softlang/yas/tree/springer/languages/FSML
http://github.com/softlang/yas/tree/springer/languages/FSML/tests/syntaxError.fsml
http://github.com/softlang/yas/tree/springer/languages/Makefile
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/Makefile
http://en.wikipedia.org/wiki/Makefile

2.3 External DSL 71

12

13 compile:
14 javac ${cp} org/softlang/fsml/*.java
15

16 test:
17 ${fsmlSyntaxChecker} ../sample.fsml 0
18 ${fsmlSyntaxChecker} ../tests/syntaxError.fsml 1

That is:

• Java’s classpath is adjusted to incorporate the ANTLR tool and runtime (line 1).
• The invocation of the ANTLR tool for parser generation boils down to running

the main method of the Java class org.antlr.v4.Tool from the ANTLR jar with some
option (“-o”) for the output directory (line 2 for the command line and line 11
for the actual application).

• The invocation of the syntax checker for FSML boils down to running the main
method of the Java class org.softlang.fsml.FsmlSyntaxChecker (line 3 for the com-
mand line and lines 17–18 for the actual application). Each invocation involves
the input file to be checked and the number of expected syntax errors.

By performing syntax checking at Acme, some level of quality assurance regard-
ing the DSL for FSMs was supported. Language users could make sure that their
samples conformed to the intended syntax.

2.3.3 Parsing

Now let us suppose that we want to process the textual input on the basis of its
grammar-based structure. Thus, we need to make a transition from syntax check-
ing (or “acceptance”) to parsing. Classically, the output of parsing is a parse tree
or concrete syntax tree (CST), the structure of which is aligned with the underly-
ing grammar. A parser may also perform abstraction to eliminate details that are
not relevant for assigning semantics to the input. In this case, the output of parsing
is an abstract syntax tree (AST) or an abstract syntax graph (ASG), if the parser
additionally performs resolution to discover references in the otherwise tree-based
syntactical structure. The output of parsing is also referred to as a “model” in the
context of model-driven engineering (MDE). The term “text-to-model” (transfor-
mation) may be used instead of “parsing” in the MDE context.

At Acme, it was decided that the parser should construct ASTs such that an exist-
ing object model for FSMs was used for the representation of ASTs. In this manner,
one would be able also to apply well-formedness checking and interpretation (indi-
rectly) to FSMs that are represented as text. This gives rise to the notion of “text-to-
objects”. The grammar of the ANTLR-based syntax checker was reused. ANTLR
support for so-called parse-tree listeners was leveraged to attach functionality to the
grammar for the construction of suitable objects.

72 2 A Story of a Domain-Specific Language

An ANTLR listener is a collection of programmer-definable handler methods
that are invoked by the parsing process at well-defined points. There are, basically,
methods for entering and exiting parse-tree nodes for any nonterminal of the gram-
mar. In fact, the methods are invoked during a generic walk over a parse tree that
ANTLR constructs during its generic parsing process. Given a grammar, ANTLR
generates a suitable listener class (FsmlBaseListener in the present example) with
empty handler methods. A programmer may extend the base listener by implement-
ing handler methods that perform object construction. Let us present a listener which
facilitates parsing FSMs into objects according to the baseline object model for
FSML (Section 2.2.1). The corresponding Java code follows.

Illustration 2.21 (A parse-tree listener for text-to-objects)

Java source code org/softlang/fsml/FsmlToObjects.java

public class FsmlToObjects extends FsmlBaseListener {
private Fsm fsm;
private State current;
public Fsm getFsm() { return fsm; }
@Override public void enterFsm(FsmlParser.FsmContext ctx) {

fsm = new Fsm();
}
@Override public void enterState(FsmlParser.StateContext ctx) {

current = new State();
current.setStateid(ctx.stateid().getText());
fsm.getStates().add(current);

}
@Override public void enterTransition(FsmlParser.TransitionContext ctx) {

Transition t = new Transition();
fsm.getTransitions().add(t);
t.setSource(current.getStateid());
t.setEvent(ctx.event().getText());
if (ctx.action() != null) t.setAction(ctx.action().getText());
t.setTarget(ctx.target != null ? ctx.target.getText() : current.getStateid());

}
}

Thus, the listener extends FsmlBaseListener and it overrides enterFsm, enterState,
and enterTransition – these are the events of entering parse-tree nodes rooted in the
rules for the nonterminals fsm, state, and transition. The methods construct an FSM
object, which is stored in the attribute fsm of the listener.

We also need driver code to compose syntax checking, parse-tree construction
(done transparently by the ANTLR runtime), and parse-tree walking with the lis-
tener at hand, as shown below.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/FsmlToObjects.java

2.3 External DSL 73

Illustration 2.22 (Parsing with an ANTLR listener)

Java source code org/softlang/fsml/tests/FsmlToObjectsTest.java

1 public Fsm textToObjects(String filename) throws IOException {
2 FsmlParser parser = new FsmlParser(
3 new CommonTokenStream(
4 new FsmlLexer(
5 new ANTLRFileStream(filename))));
6 ParseTree tree = parser.fsm();
7 assertEquals(0, parser.getNumberOfSyntaxErrors());
8 FsmlToObjects listener = new FsmlToObjects();
9 ParseTreeWalker walker = new ParseTreeWalker();

10 walker.walk(listener, tree);
11 return listener.getFsm();
12 }

This process consists of these phases:

• We construct an FsmlParser object and thus also objects for a file stream, a lexer,
and a token stream (lines 2–5). We use the same ANTLR grammar and the same
generated code as for the syntax checker.

• We invoke the parser (line 6). During parsing the parse tree is constructed and is
returned as the result of the method call parser.fsm().

• We check that parsing has completed without errors (line 7), as it would not be
sound to access the parse tree otherwise.

• We construct an FsmlToObjects object for listening (line 8), as explained earlier.
• We construct a ParseTreeWalker object (line 9) and we invoke the walker’s walk

method while passing the listener and the parse tree as arguments (line 10).
• Ultimately, we can extract the constructed AST from the listener object (line 11).

Let us summarize the development steps for obtaining a parser (i.e., a text-to-
model or text-to-objects transformation); the recipe given below mentions ANTLR
and its listener-based approach while it characterizes the underlying steps also more
generally.

Recipe 2.6 (Development of a parser).

Syntax checker Develop a syntax checker for the language according to
Recipe 2.5.

Representation Design a representation for parse trees, unless a suitable
representation is readily provided by the underlying technology such as a
parser generator. The representation may be defined, for example, in terms
of an object model, by means of JSON, or by other means of abstract syntax
implementation (Recipe 4.1).

Parse trees Implement functionality for the construction of parse trees, un-
less a suitable representation is readily constructed by the underlying tech-

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/tests/FsmlToObjectsTest.java

74 2 A Story of a Domain-Specific Language

nology. For instance, in the case where ANTLR is used, you may implement
a listener for mapping generic ANTLR-specific parse trees to a designated
object model.

Driver Generalize the driver code of the underlying syntax checker to per-
form parsing, i.e., mapping text to parse trees.

Testing Generalize the test suite of the underlying syntax checker to perform
parsing, including the validation of the returned parse trees by comparison
with baselines.

Exercise 2.5 (Validation of text-to-objects) [Intermediate level]
How would you validate that the parser obtained according to Recipe 2.6 constructs
reasonable ASTs? To this end, assume that there are a large number of valid textual
inputs available. You need to find a scalable approach that takes into account all
these inputs.

2.4 DSL Services

Arguably, we have reached the “minimum” of a language implementation: represen-
tation (internal style and grammar-based textual syntax), parsing, interpretation, and
well-formedness checking. In practice, a DSL is likely to call for yet other language-
based components or “services”. For the running example, we are going to discuss
briefly an interchange format for serializing FSMs, a visual syntax for FSML, and
(C) code generation to represent FSMs directly as executable code. Examples of yet
other language services, which, however, are not discussed here, include these: a
refactoring tool for FSMs (e.g., for renaming state ids), a generator tool for FSMs
that could be used to test language services, a language-specific editor, other IDE
services, and a verification tool that could be used to prove equivalence or subsump-
tion for FSMs.

2.4.1 Interchange Format

At Acme, the developers wanted to implement language-based components in dif-
ferent programming languages while permitting integration of the services on the
basis of an interchange format for serialization. For instance, it should be possible
to use the output of a Java-based parser in a Python-based well-formedness checker.
An interchange format would also make it possible to distribute the language im-
plementation, for example, in a web application. The Acme developers agreed on a
JSON7-based representation as follows.

7 http://json.org/

http://json.org/

2.4 DSL Services 75

Illustration 2.23 (A JSON-based model of the turnstile FSM)

JSON resource languages/FSML/Python/tests/baselines/sample.json

{"exception": [{
"initial": false,
"transitions": {

"release": [[null, "locked"]],
"ticket": [["eject", "exception"]],

"mute": [[null, "exception"]],
"pass": [[null, "exception"]]}}],

"locked": [{
"initial": true,
"transitions": {

"ticket": [["collect", "unlocked"]],
"pass": [["alarm", "exception"]]}}],

"unlocked": [{
"initial": false,
"transitions": {

"ticket": [["eject", "unlocked"]],
"pass": [[null, "locked"]]}}]}

JSON is suitable for language-agnostic representation of (nested) dictionary-like
data with support for lists and some data types. JSON-based serialization is sup-
ported for most, if not all, popular programming languages. In the JSON-based rep-
resentation of an FSM, as shown above, an FSM is a nested dictionary with the state
ids as keys at the top, with keys “initial” and “transitions” per state, and with the
events as keys per transition. For each event, a pair consisting of an action (“null”
when missing) and a target state is maintained. In fact, each event is mapped to a
list of action-state pairs; see the following exercise.

Exercise 2.6 (Lists of action-state pairs) [Basic level]
What “expressiveness” is gained by mapping events to lists of action-state pairs?
Hint: Think of the separation of parsing and well-formedness checking.

The rules underlying the JSON format may be understood as defining the abstract
syntax of FSML. The engineers at Acme did not bother to define the format explicitly
by means of a schema, but this would be possible; see the following exercise.

Exercise 2.7 (A JSON schema for FSML) [Intermediate level]
Using the example model in Illustration 2.23 and the informal explanations of the
format, define a schema in JSON Schema8 for FSML. Perform schema-based vali-
dation on the example.

8 http://json-schema.org/

http://github.com/softlang/yas/tree/springer/languages/JSON
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/tests/baselines/sample.json
http://json-schema.org/

76 2 A Story of a Domain-Specific Language

Exercise 2.8 (A JSON exporter for Java objects) [Intermediate level]
Implement an object-to-JSON mapping in Java. Start from the baseline object model
for FSML (Section 2.2.1). Check that the mapping results in the expected JSON
output for the turnstile example.

Exercise 2.9 (Integrating Java and Python components) [Intermediate level]
Use the Java-based parser of Illustration 2.22 to parse text into objects. Use the
Java-based JSON exporter of Exercise 2.8 to serialize objects as JSON. It turns out
that the JSON format, when deserialized into Python with the “standard” load func-
tion, fits exactly the representation type of the fluent API implementation in Illustra-
tion 2.7. Validate the suitability of the Python objects, thus obtained, by applying
the Python-based components for interpretation and well-formedness checking, as
discussed earlier.

There are various alternatives to a JSON-based interchange format. Other possi-
ble options include XML9 and ASN.1.10

2.4.2 Code Generation

In the recent past, Acme engineers discovered that they could use FSMs for gen-
erating part of the ultimate implementation. In fact, as FSMs are used at Acme for
many different purposes and on many different devices and platforms, several code
generators were developed over time. Prior to using code generation, FSMs were
manually implemented in a more or less idiomatic manner.

In principle, one could “execute” FSMs on the target platform by means of some
form of (interactive) interpretation. However, code generation complements inter-
pretation in several ways:

Efficiency The generated code may potentially be more efficient than interpreta-
tion, just in the same way as compiled code typically runs faster than interpreted
code. The execution of the compiled code may also require less runtime resources
than interpretation. In particular, the interpreter itself, including its data structures
would not be needed for running the generated code.

Pluggability Developers may need to plug actual functionality into FSM execu-
tion. For instance, events and actions are merely “symbols” in FSML, but actual
functionality needs to be executed on the target platform so that FSM execution
interacts with sensors and actors. Such pluggability is also feasible with interpre-
tation, but perhaps even more straightforward with generated code.

9 http://www.w3.org/XML/
10 http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

2.4 DSL Services 77

Customizability The actual implementation of behavior, as specified by the
FSM, may need customization in some way. For instance, specific conditions
may need to be added on transitions and extra housekeeping may need to be ar-
ranged to this end. By representing FSMs within a programming language, the
programmers may customize functionality in a familiar manner.

Let us develop a simple code generator. Let us assume here that neither Python
nor Java is supported on the target platform, which may be a lower-level platform for
embedded systems, but there exists a C compiler emitting code for the target plat-
form. Thus, our code generator must generate target code in the C language (rather
than in Java or Python). Before looking at the implementation of the generator, let
us agree on a baseline for the generated code, as shown below.

Illustration 2.24 (Generated code for the turnstile FSM)

C resource languages/FSML/Python/generated/Turnstile.c

1 enum State { EXCEPTION, LOCKED, UNDEFINED, UNLOCKED };
2 enum State initial = LOCKED;
3 enum Event { RELEASE, TICKET, MUTE, PASS };
4 void collect() { }
5 void alarm() { }
6 void eject() { }
7 enum State next(enum State s, enum Event e) {
8 switch(s) {
9 case EXCEPTION:

10 switch(e) {
11 case RELEASE: return LOCKED;
12 case TICKET: eject(); return EXCEPTION;
13 case PASS: return EXCEPTION;
14 case MUTE: return EXCEPTION;
15 default: return UNDEFINED;
16 }
17 case LOCKED:
18 switch(e) {
19 case TICKET: collect(); return UNLOCKED;
20 case PASS: alarm(); return EXCEPTION;
21 default: return UNDEFINED;
22 }
23 case UNLOCKED:
24 switch(e) {
25 case TICKET: eject(); return UNLOCKED;
26 case PASS: return LOCKED;
27 default: return UNDEFINED;
28 }
29 default: return UNDEFINED;
30 }
31 }

http://github.com/softlang/yas/tree/springer/languages/C
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/generated/Turnstile.c

78 2 A Story of a Domain-Specific Language

The C code contains these elements:

• An enumeration type for the state ids (line 1).
• A declaration for the initial state (line 2).
• An enumeration type for the events (line 3).
• Functions for the actions with empty bodies (lines 4–6).
• A function next (lines 7–31) which takes the current state s and an event e, per-

forms the corresponding action, if any, and returns the new state. This function
is defined by a nested switch-statement that dispatches on s and e.

It is up to the developer of the embedded system to wire up the generated code
to the functionality for accessing sensors (to observe events) and actors (to perform
actions).

Exercise 2.10 (Representation options) [Intermediate level]
There are several options for code-level representations of FSM transitions: (i) a
cascaded switch-statement, as in Illustration 2.24; (ii) a data structure using ap-
propriate data types for collections, as used in the Java-based implementation of
the fluent API in Illustration 2.9; and (iii) an OO approach with an abstract base
type for states and one concrete subtype per state so that a polymorphic method for
state transitions takes the current event and selects an action as well as the target
state. What are the tradeoffs of these options, when using the following dimensions
for comparison: runtime efficiency, runtime adaptiveness, type safety for generated
code, and simplicity of the code generator? (You may need to actually experiment
with code generators for the options.)

Let us leverage template processing to generate the required C code. The pattern
of the code to be generated is represented by a template. Template processing boils
down to instantiation of templates, i.e., parameterized text, in a program.

One Acme developer decided to exercise template processing in Python and to
leverage the template engine Jinja211. The template is shown below.

Illustration 2.25 (Jinja2-based template for C code for FSM)

Jinja2/C resource languages/FSML/Python/templates/Fsm.jinja2

1 enum State { {{states|join(', ')|upper()}} };
2 enum State initial = {{initial|upper}};
3 enum Event { {{events|join(', ')|upper()}} };
4 {% for a in actions %}void {{a}}() { }
5 {% endfor %}
6 enum State next(enum State s, enum Event e) {
7 switch(s) {
8 {% for (s, ts) in transitions %}
9 case {{s|upper()}}:

11 http://jinja.pocoo.org/

http://github.com/softlang/yas/tree/springer/languages/Jinja2/C
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/templates/Fsm.jinja2
http://jinja.pocoo.org/

2.4 DSL Services 79

10 switch(e) {
11 {% for (e, a, t) in ts %}
12 case {{e|upper()}}: {% if a %}{{a}}(); {% endif %}return {{t|upper()}};
13 {% endfor %}
14 default: return UNDEFINED;
15 }
16 {% endfor %}
17 default: return UNDEFINED;
18 }
19 }

It is best to compare the template with an instance; see again Illustration 2.24.
The following concepts are used:

• For as long as the template does not involve templating-specific constructs, the
template’s text is literally copied to the output. For instance, the header of the
method next (line 6) is directly copied from the template to the output.

• A template is parameterized by (Python) data structures that the template may
refer to. For instance, there are Jinja2-level for-loops (lines 8 and 11) in the tem-
plate which loop over parameters such as actions and transitions to generate simi-
lar code for all elements of these collection-typed parameters.

• The text content of a parameter, say x, can be inlined by using the notation
“{{x}} where x” is a parameter. Parameters either are directly passed to the
template or are extracted from other parameters, for example, within for-loops.

• Some parameters are processed by so-called filters; see the occurrences of upper
and join. In this manner, the raw text of parameters is manipulated. That is, join
composes a list of strings by interspersing another string (here, a comma); upper
turns a string into uppercase.

There is more expressiveness for template processing, but we omit a detailed
discussion here. The only missing part of the code generator is the functionality for
template instantiation as shown below.

Illustration 2.26 (Template instantiation)

Python module FsmlCGenerator

def generateC(fsm):
Initialize data structures
states = set()
states.add("UNDEFINED")
events = set()
actions = set()
transitions = list()
Aggregate data structures
for source, [statedecl] in fsm.iteritems():

ts = list()
transitions.append((source, ts))
states.add(source)
if statedecl["initial"]:

http://github.com/softlang/yas/tree/springer/languages/fsml/Python/FsmlCGenerator.py

80 2 A Story of a Domain-Specific Language

initial = source
for event, [(action, target)] in statedecl["transitions"].iteritems():

events.add(event)
if action is not None: actions.add(action)
ts.append((event, action, target))

Look up template
env = Environment(loader=FileSystemLoader('templates'), trim_blocks=True)
fsmTemplate = env.get_template('Fsm.jinja2')
Instantiate template
return fsmTemplate.render(\

states = states,\
initial = initial,\
events = events,\
actions = actions,\
transitions = transitions)

Thus, the template parameters states, events, actions, and transitions are trivially
synthesized from the Python objects. Other than that, the code for template instan-
tiation loads the template and renders it.

Another Acme developer decided to exercise template processing in Java and to
leverage the template engine StringTemplate12 [10]. StringTemplate encourages the
use of template groups, that is, templates that invoke each other, as shown for FSML
below.

Illustration 2.27 (StringTemplate-based templates for C code for FSM)

StringTemplate/C resource languages/FSML/Java/templates/Fsm.stg

1 main(states, initial, events, actions, tgroups) ::= <<
2 enum State { <states; format="upper", separator=", "> };
3 enum State initial = <initial; format="upper">;
4 enum Event { <events; format="upper", separator=", "> };
5 <actions:action(); format="lower", separator="\n">
6 enum State next(enum State s, enum Event e) {
7 switch(s) {
8 <tgroups:tgroup(); separator="\n">
9 default: return UNDEFINED;

10 }
11 }>>
12

13 action(a) ::= "void <a>() { }"
14

15 tgroup(g) ::= <<
16 case <g.stateid; format="upper">:
17 switch(e) {
18 <g.ts:transition(); separator="\n">
19 default: return UNDEFINED;
20 }>>
21

22 transition(t) ::= <%

12 http://www.stringtemplate.org/

http://github.com/softlang/yas/tree/springer/languages/StringTemplate/C
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/templates/Fsm.stg
http://www.stringtemplate.org/

2.4 DSL Services 81

23 case <t.event; format="upper">:
24 <if(t.action)><t.action; format="lower">(); <endif>
25 return <t.target; format="upper">;%>

Let us explain the StringTemplate notation.

• We use a definition form templ(p) ::= ” . . .” to define named templates with pa-
rameters (such as p) that can invoke each other, just like possibly recursive func-
tions. There is a main template (lines 1–11) to start template processing with.
There is an action template (line 13) for the C code for each action function.
There is a tgroup template (lines 15–20) for the transitions grouped by source
state. There is also a transition template (lines 22–25) for the code for a single
transition.

• We use < %. . . .% > instead of ” . . .” to define multi-line instead of single-line
templates.

• We use << ... >> instead to define multi-line templates. Compared to <
%. . . .% >, indentation and line breaks are transported from the template to the
output.

• We use the form < p > to refer to a parameter p, i.e., to inline it as text. We use
the form p : templ() to invoke a template templ and to pass the parameter p. We
use the form < p.x > to refer to the property x of p.

• There are also format and separator controls that are similar to the filters of
Jinja2. There is also expressiveness (if . . . endif) for conditional parts, just as in
the case of Jinja2.

We omit the Java code for template instantiation; it is very similar to the Python
code discussed earlier.

Exercise 2.11 (A more advanced code generator) [Basic level]
Revise the code generator so that the generated methods for the FSM actions get
access to the initiating event, the source state, and the target state. The idea here
is that the plugged code for actions may use these additional parameters for richer
behavior. This context should be passed by regular arguments to the methods for the
actions.

Exercise 2.12 (An object model for C code) [Intermediate level]
Set up an object model for the subset of C needed in the FSML example. Implement
a template-processing component for rendering C code. Implement a mapping be-
tween the object models of FSML and C. In this manner, you could implement the
code generator in an alternative manner.

82 2 A Story of a Domain-Specific Language

The present section is summarized by means of a recipe.

Recipe 2.7 (Development of a code generator).

Test cases Develop code samples to be generated and complete them into
test cases by also listing the corresponding inputs (programs) from which
the code samples are to be generated. Strive for simplicity – certainly in
the beginning so that code generation is more easily set up. Test that the
samples compile and run on the target platform.

Templates Parameterize the code samples to obtain templates with appro-
priate parameters, loops, etc.

Data structure Design the data structure for the template parameters. The
basic assumption is that some existing representation types (e.g., an object
model) may be appropriate.

Instantiation Implement the template instantiation functionality such that
the data structure for the template parameters is synthesized, templates are
loaded, template parameters are assigned, and rendering is done.

Testing Test the code generator to return the expected code according to the
test cases. Some fine tuning of the templates or the expected output may be
required, for example, if spaces, line breaks, and indentation are taken into
account.

2.4.3 Visualization

While the Acme engineers agreed on using textual notation for maintaining FSMs
throughout the development cycle, some Acme employees insisted that a visual no-
tation would still be needed. In particular, several architects made the point that the
visual notation was more suitable for meetings with customers. Accordingly, it was
decided to provide visualization functionality such that FSMs could be rendered ac-
cording to a visual syntax; see Fig. 2.2. The notation is inspired by the whiteboard
notation of Section 2.1 (Fig. 2.1). It was also decided that no graphical editor was
required, because just rendering FSMs would be sufficient. We mention in passing
that some competitors of Acme use graphical editors for FSMs, as visual syntax is
favored in those companies.

The Acme engineer in charge decided that the visualization should be based on
the popular technology Graphviz.13 Graphviz processes input which conforms to
the so-called DOT language, with language elements for describing graphs in terms
of nodes and edges, as well as various attributes that control details of appearance,
as shown below.

13 http://www.graphviz.org/

http://www.graphviz.org/

2.4 DSL Services 83

exception

ticket/eject

pass

mute

lockedrelease
pass/alarm

unlockedticket/collect
pass

ticket/eject

Fig. 2.2 A turnstile FSM in visual notation.

Illustration 2.28 (DOT representation of turnstile FSM)

DOT resource languages/FSML/Python/dot/sample.dot

digraph {
graph [nodesep=0.5,

rankdir=LR,
title="Sample FSM"

];
exception [shape=ellipse];
exception −> exception [label="ticket/eject"];
exception −> exception [label=pass];
exception −> exception [label=mute];
locked [shape=ellipse,

style=filled];
exception −> locked [label=release];
locked −> exception [label="pass/alarm"];
unlocked [shape=ellipse];
locked −> unlocked [label="ticket/collect"];
unlocked −> locked [label=pass];
unlocked −> unlocked [label="ticket/eject"];

}

As FSMs are essentially also just node- and edge-labeled graphs, the visualiza-
tion functionality should be straightforward. Nevertheless, this functionality is in-
teresting in that it allows us to revisit some of the DSL concepts discussed earlier.

Different techniques may be employed for generating the Graphviz input for
FSMs. An obvious option is to leverage templates (Section 2.4.2) such that the DOT
graph is obtained by instantiating a template that represents the relevant DOT pat-
terns. Another option is to leverage a DOT API, in fact, an implementation of DOT
as an internal DSL such that the DOT graph is constructed by a sequence of API
calls. Some pros (“+”) and cons (“-”) may be identified:

http://github.com/softlang/yas/tree/springer/languages/DOT
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/dot/sample.dot

84 2 A Story of a Domain-Specific Language

• Use template processing for DOT-graph construction:

+ Relevant DOT constructs are clearly depicted in the template.
− DOT’s syntax may be violated by the template or the instantiation.

• Use a DOT API instead:

+ The resulting DOT graphs are syntactically correct by construction.
− One needs to understand a specific API.

The following code illustrates the API option. The functionality is straightfor-
ward in that it simply traverses the FSM representation and adds nodes and edges to
a graph object.

Illustration 2.29 (A visualizer for FSML)

Python module FsmlVisualizer

import pygraphviz

def draw(fsm):
Create graph
graph = pygraphviz.AGraph(title="Sample FSM", directed=True, strict=False, rankdir

='LR', nodesep=.5)
Create nodes
for fromState, [stateDeclaration] in fsm.iteritems():

if stateDeclaration["initial"]:
graph.add_node(n=fromState, shape='ellipse', style='filled')

else:
graph.add_node(n=fromState, shape='ellipse')

Create edges
for fromState, [stateDeclaration] in fsm.iteritems():

for symbol, [(action, toState)] in stateDeclaration["transitions"].iteritems():
graph.add_edge(fromState, toState, label=symbol + ("" if action is None else

"/"+action))
return graph

Exercise 2.13 (Template-based visualization) [Basic level]
Reimplement the visualizer in Illustration 2.29 with template processing instead of
using an API for DOT graphs.

Summary and Outline

We have developed the domain-specific language FSML for modeling, simulat-
ing, and otherwise supporting finite state machines. Several aspects of language
design and implementation were motivated by reference to language users and im-
plementers whom we envisaged, as well as possible changes to requirements over

http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlVisualizer.py

References 85

time. The implementation leveraged the programming languages Java, Python, and
C as well as additional tools, namely the parser generator ANTLR, the template
processors Jinja2 and StringTemplate, and Graphviz with its DOT language.

Clearly, FSML, or any other DSL for that matter, could be implemented in
many other ways, within different technological spaces, leveraging different kinds
of metaprogramming systems. The online resources of the book come with several
alternative implementations. FSML is going to serve as a running example for the
remainder of the book.

FSML’s language design could be modified and enhanced in many ways. For
instance, FSML is clearly related to statecharts in the widely adopted modeling lan-
guage UML. The statecharts of UML are much more expressive. There is also ex-
isting support for statecharts, for example, in terms of code generators in the MDE
context. This may suggest a critical discussion to identify possibly additional ex-
pressiveness that would also be useful at Acme. Also, perhaps, existing UML tooling
could provide a more standardized replacement for Acme’s proprietary DSL.

In the remaining chapters of this book, we will study the foundations and engi-
neering of syntax, semantics, types, and metaprogramming for software languages.
FSML will show up as an example time and again, but we will also discuss other
software languages.

References

1. Erdweg, S.: Extensible languages for flexible and principled domain abstraction. Ph.D. thesis,
Philipps-Universität Marburg (2013)

2. Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W.R., Gerritsen,
A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: The state of the art in language workbenches – conclusions from the
language workbench challenge. In: Proc. SLE, LNCS, vol. 8225, pp. 197–217. Springer (2013)

3. Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W.R., Gerritsen, A.,
Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: Evaluating and comparing language workbenches: Existing results and
benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47 (2015)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley (1999)
5. Fowler, M.: Domain-Specific Languages. Addison-Wesley (2010)
6. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Com-

putation. Pearson (2013). 3rd edition
7. ISO/IEC: ISO/IEC 14977:1996(E). Information Technology. Syntactic Metalanguage.

Extended BNF. (1996). Available at http://www.cl.cam.ac.uk/~mgk25/
iso-14977.pdf

8. Kats, L.C.L., Visser, E.: The Spoofax language workbench. In: Companion SPLASH/OOP-
SLA, pp. 237–238. ACM (2010)

9. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative specification
of languages and IDEs. In: Proc. OOPSLA, pp. 444–463. ACM (2010)

10. Parr, T.: A functional language for generating structured text (2006). Draft. http://www.
stringtemplate.org/articles.html

11. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013). 2nd edition

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.stringtemplate.org/articles.html
http://www.stringtemplate.org/articles.html

86 2 A Story of a Domain-Specific Language

12. Renggli, L.: Dynamic language embedding with homogeneous tool support. Ph.D. thesis,
Universität Bern (2010)

13. Visser, E., Wachsmuth, G., Tolmach, A.P., Neron, P., Vergu, V.A., Passalaqua, A., Konat, G.:
A language designer’s workbench: A one-stop-shop for implementation and verification of
language designs. In: Proc. SPLASH, Onward!, pp. 95–111. ACM (2014)

14. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,
Wachsmuth, G.: DSL Engineering – Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013)

15. Voelter, M., Ratiu, D., Kolb, B., Schätz, B.: mbeddr: instantiating a language workbench in
the embedded software domain. Autom. Softw. Eng. 20(3), 339–390 (2013)

16. Völter, M., Visser, E.: Language extension and composition with language workbenches. In:
Companion SPLASH/OOPSLA, pp. 301–304. ACM (2010)

17. Wachsmuth, G., Konat, G.D.P., Visser, E.: Language design with the Spoofax language work-
bench. IEEE Softw. 31(5), 35–43 (2014)

Chapter 3
Foundations of Tree- and Graph-Based

RICHARD PAIGE.1

Abstract A software language can be regarded as a set of structured elements with
some associated meaning. A language’s syntax defines its elements and their struc-
ture. We may speak of string, tree, and graph languages – to convey the nature of the
elements’ structure. One may distinguish two forms of syntax: concrete versus ab-
stract syntax. The former is tailored towards processing (reading, writing, editing)
by humans who are language users; the latter is tailored towards processing (pars-
ing, analyzing, transforming, generating) by programs that are authored by language
implementers. In this chapter, we cover the foundations of abstract syntax. This in-
cludes the notion of conformance of terms (trees) or models (graphs) to signatures
or metamodels. The proposed notations for signatures and metamodels correspond
to proper software languages in themselves, giving rise to a metametalevel that we
develop as well. We defer implementation aspects of abstract syntax, coverage of
concrete syntax, and semantics of languages to later chapters.

1 The software language engineering community aims to integrate more specialized communities.
Richard Paige is a modelware “stronghold”; he has contributed to pretty much everything model-
ware, for example, model merging and composition [6, 1], model evolution [9], model to text and
vice versa [10, 5], and visual syntax [7]. Richard Paige definitely advances community integration
in his work, as exemplified by his tutorial on metamodeling for grammar researchers [8] or his
Twitter persona.
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA 4.0. This
artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This work also quotes
https://commons.wikimedia.org/wiki/File:Irises-Vincent_van_Gogh.jpg, subject to the at-
tribution “Vincent van Gogh: Irises (1889) [Public domain], via Wikimedia Commons.” This work artistically morphes
an image, https://www.cs.york.ac.uk/people/paige, showing the person honored, subject to the attribu-
tion “Permission granted by Richard Paige for use in this book.”

87© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_3

Abstract Syntax

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Irises-Vincent_van_Gogh.jpg
https://www.cs.york.ac.uk/people/paige
https://doi.org/10.1007/978-3-319-90800-7_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_3&domain=pdf

88 3 Foundations of Tree- and Graph-Based Abstract Syntax

number

many

integer

one

single

zero

Fig. 3.1 The binary number “10” as a tree.

3.1 Tree-Based Abstract Syntax

The abstract syntax of a language is concerned with the tree- or graph-like structure
of language elements. Abstract syntax definitions define languages as sets of trees
or graphs. We need a membership test to decide whether a given tree or graph is
actually an element of the language of interest. To this end, we also speak of confor-
mance of a tree or a graph to a syntax definition, such as a signature or a metamodel.
In this section, we focus on tree-based abstract syntax. In the next section, we focus
on graph-based abstract syntax.

3.1.1 Trees versus Terms

Let us define the abstract syntax of binary numbers in the sense of a dedicated
language: BNL (Binary Number Language). We begin by exercising the abstract
syntactical representation of numbers; see Fig. 3.1 for a tree-based representation.
That is, we use node-labeled rose trees, i.e., trees with any number of subtrees;
symbols serve as infos of nodes. The symbols used in a such a tree classify the
subtrees at hand. Each symbol has an associated arity (i.e., number of children).
The following symbols (with the arity given next to each symbol) are used in the
figure:

• number/2: The two children are the integer and fractional parts.
• integer/0: In fact, there is no fractional part.
• many/2: The first child is a digit; the second child is a sequence of digits.
• single/1: The child is a digit.
• one/0: The digit “1”.
• zero/0: The digit “0”.

3.1 Tree-Based Abstract Syntax 89

For most of this book, we will prefer term-based representations of such trees,
but we assume that it is obvious how to go back and forth between the term- and
tree-based views. The term-based counterpart to Fig. 3.1 is shown below.

Illustration 3.1 (The binary number “10” as a term)

Term resource languages/BNL/samples/10.term

number(
many(

one,
single(

zero)),
integer).

That is, a simple prefix notation is used here for terms. A function symbol serves
as the prefix (e.g., number or many) and the arguments (say, subterms or subtrees)
are enclosed in parentheses. Indentation is used here as a visual hint at the tree-like
structure.

3.1.2 A Basic Signature Notation

One could use informal text to define (abstract) syntax. We prefer more formal
means. We use (many-sorted algebraic) signatures [11, 4] for defining tree (term)
languages. We propose a specific notation here: BSL (Basic Signature Language).
This is a “fabricated” language of this book, but similar notations are part of es-
tablished languages for formal specification, algebraic specification, term rewriting,
and functional programming. Let us apply BSL to BNL as follows.

Illustration 3.2 (Abstract syntax of BNL)

BSL resource languages/BNL/as.bsl

symbol number: bits × rest → number ; // A binary number
symbol single: bit → bits ; // A single bit
symbol many: bit × bits → bits ; // More than one bit
symbol zero: → bit ; // The zero bit
symbol one: → bit ; // The nonzero bit
symbol integer: → rest ; // An integer number
symbol rational: bits → rest ; // A rational number

A (BSL-based) many-sorted algebraic signature is a list of types of function sym-
bols. Each type (or profile) consists of the function symbol, a list of argument sorts
(say, argument types), and a result sort (say, the result type). A function symbol
with zero argument sorts is also called a constant symbol. Sorts are not separately
declared; they are implicitly introduced, as they appear in types of function symbols.

http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BNL/samples/10.term
http://github.com/softlang/yas/tree/springer/languages/BSL
http://github.com/softlang/yas/tree/springer/languages/BNL/as.bsl

90 3 Foundations of Tree- and Graph-Based Abstract Syntax

An abstract syntax abstracts from representational details that surface in a con-
crete syntax. That is, an abstract syntax definition does not necessarily cover all
notational variations and details that may just be part of the concrete syntax for
language users’ convenience. In a very limited manner, such abstraction can be ob-
served even in the trivial signature for BNL. That is, no separator between integer
and fractional parts is expressed. We will consider more interesting forms of ab-
straction later, when we study concrete syntax (Chapter 6).

The intended interpretation of a signature is the set of terms that can be built
recursively from the function symbols with the constants as base cases. Of course,
such term construction must obey the types of the symbols.

Simply because we can switch back and forth between trees and terms, as illus-
trated above, we can also view a signature as a tree grammar [3], i.e., a grammar
that defines (generates) a set of trees.

3.1.3 Abstract Syntax Trees

When terms are generated by a signature meant for abstract syntax definition, then
we refer to these terms also as abstract syntax trees (ASTs). Given a signature and a
term, there is a simple way to show that the term is indeed a valid AST with regard
to the signature, i.e., a term “generated” by the signature. This is the case if each
function symbol of the term is declared by the signature and it is used with the
declared arity (i.e., number of subterms), and each subterm is built from a function
symbol, with the result sort agreeing with the argument sort of the position in which
the subterm occurs, as illustrated for binary numbers and their syntax below.

Illustration 3.3 (A term generated by a signature)
The term of Illustration 3.1 is a term generated by the signature of Illustration 3.2
in accordance with the following evidence:

• number(symbol number: bits × rest → number ;

– many(symbol many: bit × bits → bits ;
· one, symbol one: → bit ;
· single(symbol single: bit → bits ;

· zero)), symbol zero: → bit ;
– integer). symbol integer : → rest ;

Exercise 3.1 (BNL with negative numbers) [Basic level]
Extend the signature of Illustration 3.2 to enable negative binary numbers.

3.1 Tree-Based Abstract Syntax 91

Exercise 3.2 (Redundancy in an abstract syntax) [Intermediate level]
The obvious solution to Exercise 3.1 would enable a redundant representation of
“0” (i.e., zero) with a positive and a negative zero. Further, the initial abstract syn-
tax definition in Illustration 3.2 permits a form of redundancy. That is, bit sequences
with leading zeros before “.” or bit sequences with trailing zeros after “.” can be
represented, for example, “0010” instead of just “10”. Define an abstract syntax
that avoids both forms of redundancy.

3.1.4 An Extended Signature Notation

Consider again the signature in Illustration 3.2. There are issues of conciseness. That
is, optionality of the fractional part is encoded by the function symbols integer and
rational, subject to an “auxiliary” sort rest. Sequences of bits are encoded by the func-
tion symbols single and many, subject to an “auxiliary” sort bits. These are recurring
idioms which can be expressed more concisely in an extended signature notation.
We propose a specific notation here: ESL (Extended Signature Language). This is a
“fabricated” language of this book, but the notation is again inspired by established
languages for algebraic specification, term rewriting, and functional programming.
We begin by exercising a more concise representation of numbers. Let us apply ESL
to BNL as follows.

Illustration 3.4 (More concise abstract syntactical representation of “10”)

Term resource languages/BNL/ESL/samples/10.term

([one, zero], []).

We use standard notation for tuples (“(· · ·)”) and lists (“[· · ·]”). Numbers are
pairs of integer and fractional parts; both parts are simply sequences of bits, as
captured by the following signature.

Illustration 3.5 (More concise abstract syntax of BNL)

ESL resource languages/BNL/ESL/as.esl

type number = bit+×bit* ;
symbol zero: → bit ;
symbol one: → bit ;

These are all the constructs of ESL:

• symbol declarations as in BSL;

http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BNL/ESL/samples/10.term
http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BNL/ESL/as.esl

92 3 Foundations of Tree- and Graph-Based Abstract Syntax

• type declarations to define (say, alias) types in terms of other types;
• list types t∗ and t+ for a given type t;
• optional types t? for a given type t;
• tuple types t1× . . .× tn for given types t1, . . . , tn;
• primitive types:

– boolean;
– integer;
– float;
– string;
– term (“all conceivable terms”; see Definition 3.3).

3.1.5 Illustrative Examples of Signatures

We define the tree-based abstract syntax of a few more languages here. We revisit
(“fabricated”) languages that were introduced in Chapter 1.

3.1.5.1 Syntax of Simple Expressions

Let us define the abstract syntax of the expression language BTL.

Illustration 3.6 (Abstract syntax of BTL)

BSL resource languages/BTL/as.bsl

symbol true : → expr ; // The Boolean "true"
symbol false : → expr ; // The Boolean "false"
symbol zero : → expr ; // The natural number zero
symbol succ : expr → expr ; // Successor of a natural number
symbol pred : expr → expr ; // Predecessor of a natural number
symbol iszero : expr → expr ; // Test for a number to be zero
symbol if : expr × expr × expr → expr ; // Conditional

It may be interesting to reflect on the conceivable differences between abstract
and concrete syntax. In particular, a concrete syntax may favor “mixfix” syntax
“if . . . then . . . else . . .” for the conditional form. In an abstract syntax, we use
prefix notation universally.

3.1.5.2 Syntax of Simple Imperative Programs

Let us define the abstract syntax of the imperative programming language BIPL.

http://github.com/softlang/yas/tree/springer/languages/BSL
http://github.com/softlang/yas/tree/springer/languages/BTL/as.bsl

3.1 Tree-Based Abstract Syntax 93

Illustration 3.7 (Abstract syntax of BIPL)

ESL resource languages/BIPL/as.esl

// Statements
symbol skip : → stmt ;
symbol assign : string×expr → stmt ;
symbol seq : stmt×stmt → stmt ;
symbol if : expr×stmt×stmt → stmt ;
symbol while : expr×stmt → stmt ;

// Expressions
symbol intconst : integer → expr ;
symbol var : string → expr ;
symbol unary : uop×expr → expr ;
symbol binary : bop×expr×expr → expr ;

// Unary operators
symbol negate : → uop ;
symbol not : → uop ;

// Binary operators
symbol or : → bop ;
symbol and : → bop ;
symbol lt : → bop ;
symbol leq : → bop ;
symbol eq : → bop ;
symbol geq : → bop ;
symbol gt : → bop ;
symbol add : → bop ;
symbol sub : → bop ;
symbol mul : → bop ;

Thus, there are symbols for the empty statement (“skip”), assignment, if-then-
else, while-loops, and sequences of statements. There are symbols for expression
forms and operator symbols. We use the primitive type integer for integer literals
in the abstract syntax. We use the primitive type string for variable names in the
abstract syntax.

3.1.5.3 Syntax of Simple Functional Programs

Let us define the abstract syntax of the functional programming language BFPL.

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BIPL/as.esl

94 3 Foundations of Tree- and Graph-Based Abstract Syntax

Illustration 3.8 (Abstract syntax of BFPL)

ESL resource languages/BFPL/as.esl

// Program = typed functions + main expression
type program = functions×expr ;
type functions = function* ;
type function = string× funsig× fundef ;
type funsig = simpletype*×simpletype ;
type fundef = string*×expr ;

// Simple types
symbol inttype : → simpletype ;
symbol booltype : → simpletype ;

// Expressions
symbol intconst : integer → expr ;
symbol boolconst : boolean → expr ;
symbol arg : string → expr ;
symbol if : expr×expr×expr → expr ;
symbol unary : uop×expr → expr ;
symbol binary : bop×expr×expr → expr ;
symbol apply : string×expr* → expr ;

// Unary and binary operators
...

3.1.5.4 Syntax of Finite State Machines

Let us define the abstract syntax of the domain-specific modeling language FSML.

Illustration 3.9 (Abstract syntax of FSML)

ESL resource languages/FSML/as.esl

type fsm = state* ;
type state = initial×stateid× transition* ;
type initial = boolean ;
type transition = event×action?×stateid ;
type stateid = string ;
type event = string ;
type action = string ;

Because FSMs have such a simple structure, we can define the abstract syntax
solely in terms of lists, tuples, optional elements, and primitive types – without in-
troducing any FSML-specific function symbols. We represent the familiar turnstile
example according to this signature as follows.

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BFPL/as.esl
http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/FSML/as.esl

3.1 Tree-Based Abstract Syntax 95

Illustration 3.10 (Abstract syntactical representation of a turnstile FSM)

Term resource languages/FSML/sample.term

[
(true,locked,[
(ticket,[collect],unlocked),
(pass,[alarm],exception)]),

(false,unlocked,[
(ticket,[eject],unlocked),
(pass,[],locked)]),

(false,exception,[
(ticket,[eject],exception),
(pass,[],exception),
(mute,[],exception),
(release,[],locked)])

].

3.1.6 Languages as Sets of Terms

We may complement the informal explanation of tree-based abstract syntax, given
so far, with formal definitions.

Definition 3.1 ((Many-sorted algebraic) signature) A signature Σ is a triple
〈F,S,P〉, where F is a finite set of function symbols, S is a finite set of sorts, and P is
a finite set of types of function symbols (“profiles”) as a subset of F×S∗×S. There
are no distinct types 〈 f1,a1,s1〉, 〈 f2,a2,s2〉 ∈ P with f1 = f2. For any 〈c,〈〉,s〉 ∈ P
(i.e., a type with the empty sequence of argument sorts), we say that c is a constant
symbol.

Definition 3.2 (Terms of a sort) Given a signature Σ = 〈F,S,P〉, the set of terms of
a given sort s ∈ S, also denoted by Φs, is defined as the smallest set closed under
these rules:

• If c is a constant symbol of sort s ∈ S, i.e., 〈c,〈〉,s〉 ∈ P, then c ∈Φs.
• If 〈 f ,〈s1, . . . ,sn〉,s〉 ∈ P, n > 0, s, s1, . . . , sn ∈ S, t1 ∈ Φs1 , . . . , tn ∈ Φsn , then

f (t1, . . . , tn) ∈Φs.

http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/FSML/sample.term

96 3 Foundations of Tree- and Graph-Based Abstract Syntax

3.1.7 Conformance to a Signature

We will now set out the concept of conformance to decide whether a given term is
actually an element of a certain sort for a given signature. To this end, we assume a
possibly infinite set FU of candidate function symbols, and we define a set Σ(FU)
of all terms that can be built from FU so that we can refer to Σ(FU) as the universe
on which to define conformance. As the terms in Σ(FU) are constructed “before”
distinguishing any sorts, we also call them pre-terms.

Definition 3.3 (Pre-terms) Given a set FU of candidate function symbols, the set
of all pre-terms, also denoted by Σ(FU), is defined as the smallest set closed under
these rules:

• FU ⊂ Σ(FU).
• For all f ∈ FU ,n > 0, if t1, . . . , tn ∈ Σ(FU), then f (t1, . . . , tn) ∈ Σ(FU).

Conformance is easily defined in an algorithmic manner.

Definition 3.4 (Conformance of a pre-term to a signature) Given a set FU of can-
didate function symbols, a pre-term t ∈ Σ(FU) and a signature Σ = 〈F,S,P〉 with
F ⊆ FU , we say that t is of sort s ∈ S and conforms to Σ , also denoted by Σ ` t : s,
if:

• t ∈ FU and 〈t,〈〉,s〉 ∈ P, or
• t is of the form f (t1, . . . , tn) such that

– f ∈ FU , and
– t1, . . . , tn ∈ Σ(FU), and
– 〈t,〈s1, . . . ,sn〉,s〉 ∈ P for some s1, . . . ,sn ∈ S, and
– Σ ` t1 : s1, . . . , Σ ` tn : sn.

Operationally, given a pre-term, its sort is the result sort of the outermost function
symbol, while the sorts of the subterms must be checked recursively to ensure that
they are equal to the argument sorts of the function symbol.

3.2 Graph-Based Abstract Syntax

Many if not most software languages involve conceptual references in that one may
want to refer in one position of a compound element to another position. Thus, one
may need to model reference relationships. Tree-based abstract syntax is limited

3.2 Graph-Based Abstract Syntax 97

in this respect, as language elements are simply decomposed into parts in a tree-
like manner; references need to be encoded and resolved programmatically. Graph-
based abstract syntax distinguishes whole-part and referencing relationships. In this
section, we use a simple metamodeling notation for defining graph languages.

3.2.1 Trees versus Graphs

We illustrate graph-based abstract syntax here with the Buddy Language (BL) for
modeling persons with their names and buddy relationships. This is a “fabricated”
language of this book, but it can be viewed as a simple variant of the popular exam-
ple FOAF (“friends of a friend”). We begin with a tree-based variant of the Buddy
Language, as illustrated below.

Illustration 3.11 (Two buddies as a term)

Term resource languages/BL/samples/small-world.term

[(joe, [bill]), (bill, [joe])].

Joe’s buddy is Bill. Bill’s buddy is Joe. Thus, the idea is that persons’ names
function as “ids” of persons. We use these ids in the term-based representation to
refer to buddies. Arguably, names are not necessarily unique. Thus, in practice, we
should use other means of identification, for example, social security numbers, but
we will keep things simple here. Thus, the tree-based abstract syntax of the Buddy
Language may be defined as follows.

Illustration 3.12 (Tree-based abstract syntax of BL)

ESL resource languages/BL/as.esl

type world = person* ;
type person = string×string? ;

The expected meaning of the names as acting as references is not captured by the
signature. We may be able to define a separate analysis that checks names for consis-
tent use, but such an analysis is not prescribed by the signature and not standardized
as part of conformance.

Once we use a graph-based syntax we can model references explicitly. This is
demonstrated now for a graph-based variant of the Buddy Language. The following
illustration shows a graph rather than a tree for Joe and Bill’s buddy relationships.

http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BL/samples/small-world.term
http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BL/as.esl

98 3 Foundations of Tree- and Graph-Based Abstract Syntax

Illustration 3.13 (Two buddies as a graph)

Graph resource languages/BL/samples/small-world.graph

0 & { class : world,
persons : [

1 & { class : person, name : 'joe', buddy : [#2] },
2 & { class : person, name : 'bill', buddy : [#1] }] }.

Thus, a graph is essentially a container of potentially labeled sub-graphs with
base cases for references (such as “#2”) or primitive values (such as “joe”). In the
example, the complete graph models a “world”; there are two subgraphs for persons.
List brackets “[· · ·]” are used here to deal with optionality of buddies. (In general,
list brackets may also be used to deal with list cardinalities, i.e., “+” and “*”.) In the
example, the references to buddies are optional. A (sub-) graph is made referable
by assigning an id to it, as expressed by the notation “1& . . .” above. The labels for
sub-graphs (such as “name” or “buddy”) can be thought of as selectors for those
sub-graphs. We use a special label “class” to record the type of a sub-graph. Types
are to be described eventually by a metamodel.

3.2.2 Languages as Sets of Graphs

Let us define the set of (resolvable) pre-graphs, i.e., all as yet “untyped” graphs, akin
to the pre-terms of Definition 3.3 for tree-based abstract syntax. For simplicity, the
definition does not cover primitive values and lists.

Definition 3.5 (Pre-graphs) Given sets LU and RU , referred to as (universes of)
labels (for sub-graphs) and ids (for referencing), the set of all pre-graphs, also de-
noted by M(LU ,RU), is defined as the smallest set closed under this rule:

• If r ∈ RU and
g1, . . . ,gn ∈M(LU ,RU)∪RU and
distinct l1, . . . , ln ∈ LU ,
then 〈r,{〈l1,g1〉, . . . ,〈ln,gn〉}〉 ∈M(LU ,RU).

The component r of the pre-graph is referred to as its id.

Thus, pre-graphs are essentially sets of labeled pre-graphs with an id for the
collection. There is the special case in which a sub-pre-graph is not a collection (not
even an empty collection), but it is a reference, which is why the gi may also be
drawn from RU in the definition.

We should impose an important constraint on pre-graphs: they should be resolv-
able, such that assigned ids are distinct, and, for each id used as a reference, there

http://github.com/softlang/yas/tree/springer/languages/Graph
http://github.com/softlang/yas/tree/springer/languages/BL/samples/small-world.graph

3.2 Graph-Based Abstract Syntax 99

should be a sub-pre-graph with that assigned id. Let us first define sets of sub-pre-
graphs and references of a given pre-graph which we need to refer to when formu-
lating the constraint described above.

Definition 3.6 (Sub-pre-graphs and pre-graph references) Given a pre-graph g ∈
M(LU ,RU), the multi-set of its sub-pre-graphs, also denoted by SPG(g), is defined
as the smallest multi-set closed under these rules:

• g ∈ SPG(g).
• If 〈r,{〈l1,g1〉, . . . ,〈ln,gn〉}〉 ∈ SPG(g) for appropriate r, l1, . . . , ln, and g1, . . . ,gn,

then SPG(gi)⊂ SPG(g) for 1≤ i≤ n and gi is a pre-graph (and not a reference).

The set of pre-graph references, also denoted by PGR(g), is defined as the smallest
set closed under this rule:

• If 〈r,{〈l1,g1〉, . . . ,〈ln,gn〉}〉 ∈ SPG(g) for appropriate r, l1, . . . , ln, and g1, . . . ,gn,
then gi ∈ PGR(g) for 1≤ i≤ n and gi is a reference (and not a pre-graph).

We use a multi-set rather than a plain set when gathering sub-pre-graphs because,
in this manner, we can “observe” identical sub-pre-graphs (with also the same id);
see the following definition.

Definition 3.7 (Resolvable pre-graph) A pre-graph g ∈ M(LU ,RU) is said to be
resolvable if the following conditions hold:

• For all distinct g1,g2 ∈ SPG(g), the ids of g1 and g2 are distinct.
• SPG(g) is a set (rather than a proper multi-set).
• For all r ∈ PGR(g), there exists a g′ ∈ SPG(g) such that its id equals r.

The first condition condition requires that all sub-pre-graphs have a distinct id.
Additionally, the second rules out (completely) identical sub-pre-graphs. The third
condition requires that each reference used equals the id of one sub-pre-graph.

3.2.3 A Metamodeling Notation

On top of this basic formal model, we can define metamodels for describing sets of
graphs in the same way as signatures describe sets of terms.

We propose a specific notation here: MML (MetaModeling Language). This is
a “fabricated” language of this book, but the notation is inspired by established
metamodeling frameworks such as EMF’s metamodeling language Ecore2. Let us

2 https://eclipse.org/modeling/emf/

https://eclipse.org/modeling/emf/

100 3 Foundations of Tree- and Graph-Based Abstract Syntax

reapproach the Buddy Language; see the following metamodel for graph-based as
opposed to tree-based abstract syntax.

Illustration 3.14 (Graph-based abstract syntax of BL)

MML resource languages/BL/gbl.mml

class world { part persons : person* ; }
class person {

value name : string ;
reference buddy : person? ;

}
datatype string ;

That is, a metamodel describes a set of classes with members for values, parts,
and references with an associated cardinality (“?” for optional members, “*” and
“+” for lists). In the metamodel shown, the persons of a world are modeled as parts,
whereas the buddy of a person is modeled as a reference. While it is not demon-
strated by the simple metamodel at hand, classes may also be related by inheritance
so that a sub-class inherits all members from its super-class. Classes may also be
abstract to express the fact that they cannot be instantiated.

Let us also show a metamodel for BL which does not involve references, but it
encodes references by means of persons’ names, just like in the case of the earlier
signature-based model.

Illustration 3.15 (A metamodel for BL without references)

MML resource languages/BL/tbl.mml

class world { part persons : person* ; }
class person {

value name : string ;
value buddy : string? ;

}
datatype string ;

3.2.4 Conformance to a Metamodel

We omit the definition of conformance of a pre-graph to a metamodel; it is relatively
straightforward and easy to define and implement; it is similar to conformance of a
pre-term to a signature. In particular, each sub-graph would need to conform to its
class in terms of the members of the class, as prescribed by the metamodel.

http://github.com/softlang/yas/tree/springer/languages/MML
http://github.com/softlang/yas/tree/springer/languages/BL/gbl.mml
http://github.com/softlang/yas/tree/springer/languages/MML
http://github.com/softlang/yas/tree/springer/languages/BL/tbl.mml

3.2 Graph-Based Abstract Syntax 101

Exercise 3.3 (Pre-graph-to-metamodel conformance) [Intermediate level]
Define pre-graph-to-metamodel conformance.

When graphs conform to a metamodel meant for abstract syntax definition, then
we refer to these graphs as abstract syntax graphs (ASGs). We may also say “model”
instead of “graph”.

Exercise 3.4 (Metamodeling with EMF) [Intermediate level]
Study the Eclipse Modeling Framework (EMF) and define an Ecore-based abstract
syntax of BL.

3.2.5 Illustrative Examples of Metamodels

Many software languages involve references conceptually once we take into ac-
count the meaning of language elements or the assumed result of checking well-
formedness.

3.2.5.1 Syntax of Finite State Machines

The target state ids in FSML’s transitions may be viewed as references to states.
Accordingly, we may also define a graph-based abstract syntax for FSML as shown
below. We begin with a corresponding metamodel, followed by a model (a graph)
for the turnstile FSM.

Illustration 3.16 (A metamodel for FSML with references)

MML resource languages/FSML/mm.mml

class fsm { part states : state* ; }
class state {

value initial : boolean ;
value stateid : string ;
part transitions : transition* ;

}
class transition {

value event : string ;
value action : string? ;
reference target : state ;

}
datatype boolean ;
datatype string ;

http://github.com/softlang/yas/tree/springer/languages/MML
http://github.com/softlang/yas/tree/springer/languages/FSML/mm.mml

102 3 Foundations of Tree- and Graph-Based Abstract Syntax

Illustration 3.17 (Graph-based representation of a turnstile FSM)

Graph resource languages/FSML/sample.graph

{
class : fsm,
states : [
1 & {
class : state,
initial : true,
stateid : 'locked',
transitions : [
{
class : transition,
event : 'ticket',
action : ['collect'],
target : #2

},
. . .

]
},
2 & { . . .
},
3 & { . . .
}

]
}.

3.2.5.2 Syntax of Simple Functional Programs

Exercise 3.5 (A metamodel for BFPL) [Basic level]
Consider function applications in the functional language BFPL. The name in a
function application can be understood as a reference to the corresponding function
declaration. Accordingly, devise a graph-based abstract syntax for BFPL by turning
the signature of Illustration 3.8 into a metamodel with references for functions used
in function applications.

3.3 Context Conditions

The abstract syntax definitions discussed thus far do not capture all the constraints
that one would want to assume for the relevant languages. Here are a few examples:

http://github.com/softlang/yas/tree/springer/languages/Graph
http://github.com/softlang/yas/tree/springer/languages/FSML/sample.graph

3.4 The Metametalevel 103

Imperative programs (BIPL) We may require that a program should only use a
variable in an expression once the variable has been assigned a value. Also, when
operators are applied to subexpressions, the types of the latter should agree with
the operand types of the former. These are name binding or typing constraints
that are not captured by BIPL’s signature.

Functional programs (BFPL) We may require that the function name of a func-
tion application can actually be resolved to a function declaration with a suitable
type. Again, when operators are applied to subexpressions, the types of the latter
should agree with the operand types of the former. These are typing constraints
that are not captured by BFPL’s signature.

Finite state machines (FSML) We may require, for example, that, in a given
state, for a given event, at most one transition is feasible. Also, each state id ref-
erenced as a target of a transition must be declared. These are well-formedness
constraints that are not captured by FSML’s signature. The consistent referencing
of (target) states is modeled by FSML’s metamodel.

Buddy relationships (BL) We may require that a buddy graph (i.e., a BL world)
should not contain any person whose buddy is that person themselves. This is a
well-formedness constraint that is not captured by BL’s metamodel.

Typical formalisms used for syntax definition – such as those leveraged in this
chapter, but also context-free grammars, as leveraged in the context of concrete syn-
tax definition (Chapter 6) – do not permit the capture of all constraints that one may
want to assume for software languages. It is not uncommon to differentiate between
context-free and context-sensitive syntax. The former refers to the more structural
part of syntax, as definable by signatures, metamodels, or context-free grammars
(Chapter 6). The latter assumes a definition that includes constraints requiring “con-
text sensitivity” in terms of, for example, using names. One can model such typing
or well-formedness constraints either by a metaprogram-based analysis (Chapter 5,
specifically Section 5.3) or by means of dedicated formalisms, for example, type
systems (Chapter 9) and attribute grammars (Chapter 12).

3.4 The Metametalevel

The notations for syntax definition (BSL, ESL, and MML) correspond to proper
software languages in themselves. In this section, tree- or graph-based syntaxes
of these syntax definition languages are defined. Accordingly, we operate at the
metametalevel. In this manner, we advise on a representation of syntax definitions
and thereby prepare for metaprograms that operate on the representation. For in-
stance, we will eventually be able to approach conformance checking as a simple
metaprogramming problem (Section 4.2).

104 3 Foundations of Tree- and Graph-Based Abstract Syntax

3.4.1 The Signature of Signatures

To facilitate understanding, we look at the basic signature notation first. Its abstract
syntax is modeled in the extended signature notation, as specified below.

Specification 3.1 (The ESL signature of BSL signatures)

ESL resource languages/BSL/as.esl

type signature = profile* ;
type profile = sym×sort*×sort ;
type sym = string ;
type sort = string ;

Thus, any signature can be represented as a term, as illustrated below.

Illustration 3.18 (BNL’s signature in abstract syntax)

Term resource languages/BNL/as.term

[(number, [bits, rest], number),
(single, [bit], bits),
(many, [bit, bits], bits),
(zero, [], bit),
(one, [], bit),
(integer, [], rest),
(rational, [bits], rest)].

BSL cannot be described in itself, i.e., there is no BSL signature of BSL sig-
natures because BSL lacks ESL’s strings needed for the representation of function
symbols and sorts. However, ESL can be described in itself as shown below.

Specification 3.2 (The ESL signature of ESL signatures)

ESL resource languages/ESL/as.esl

type signature = decl* ;
symbol type : sort× typeexpr → decl ;
symbol symbol : fsym× typeexpr*×sort → decl ;
symbol boolean : → typeexpr ;
symbol integer : → typeexpr ;
symbol float : → typeexpr ;
symbol string : → typeexpr ;
symbol term : → typeexpr ;
symbol sort : sort → typeexpr ;
symbol star : typeexpr → typeexpr ;
symbol plus : typeexpr → typeexpr ;
symbol option : typeexpr → typeexpr ;
symbol tuple : typeexpr* → typeexpr ;

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BSL/as.esl
http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BNL/as.term
http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/ESL/as.esl

3.4 The Metametalevel 105

type sort = string ;
type fsym = string ;

The signature does not capture several constraints that we may want to assume
for a signature to be well-formed:

• The function symbols of the declared function types are distinct.
• The names of declared types are distinct.
• There is no name that is declared both as a type and as a sort (i.e., as a result type

of a function symbol).

One may also expect a constraint that all referenced type and sort names are
actually declared. More strongly, one could require that all sorts are “reachable”
from a designated top-level sort and that all sorts are “productive” in that there exist
terms of each sort. We do not commit to these extra constraints, however, because we
may want to deal with incomplete signatures or modules, which could, for example,
reference names (types or sorts) that are not declared in the same file.

3.4.2 The Signature of Metamodels

We can devise a signature for the tree-based abstract syntax of metamodels.

Specification 3.3 (The ESL signature of MML metamodels)

ESL resource languages/MML/as.esl

type metamodel = classifier* ;
symbol class : abstract×cname×extends?×member* → classifier ;
symbol datatype : cname → classifier ;
type member = kind×mname×cname×cardinality ;
symbol value : → kind ;
symbol part : → kind ;
symbol reference : → kind ;
symbol one : → cardinality ;
symbol option : → cardinality ;
symbol star : → cardinality ;
symbol plus : → cardinality ;
type abstract = boolean ;
type extends = cname ;
type cname = string ;
type mname = string ;

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/MML/as.esl

106 3 Foundations of Tree- and Graph-Based Abstract Syntax

3.4.3 The Metamodel of Metamodels

We can devise a metamodel for the graph-based abstract syntax of metamodels.

Specification 3.4 (The MML metamodel of MML metamodels)

MML resource languages/MML/mm.mml

abstract class base { value name : string; }
class metamodel { part classifiers : classifier*; }
abstract class classifier extends base { }
class datatype extends classifier { }
class class extends classifier {

value abstract : boolean;
reference super : class?;
part members : member*;

}
abstract class member extends base { part cardinality : cardinality; }
class value extends member { reference type : datatype; }
class part extends member { reference type : class; }
class reference extends member { reference type : class; }
abstract class cardinality { }
class one extends cardinality { }
class option extends cardinality { }
class star extends cardinality { }
class plus extends cardinality { }
datatype string;
datatype boolean;

The metamodel of metamodels can also be represented as a model – in fact, as
an instance of itself. This underlines its status as a metametamodel.

Specification 3.5 (Excerpt of the metametamodel)

Graph resource languages/MML/mm.graph

{ class:metamodel,
classifiers:[

(base & { class:class, name:base,
abstract:true,
super:[],
members:[{class:value, name:name, type: #string, cardinality:{class:one}}]}),

(metamodel & { class:class, name:metamodel, . . .
(classifier & { class:class, name:classifier, . . .
(class & { class:class, name:class, . . .
(member & { class:class, name:member, . . .
. . .

] }.

http://github.com/softlang/yas/tree/springer/languages/MML
http://github.com/softlang/yas/tree/springer/languages/MML/mm.mml
http://github.com/softlang/yas/tree/springer/languages/Graph
http://github.com/softlang/yas/tree/springer/languages/MML/mm.graph

Just as in the case of the language of signatures, we may also impose constraints
on the language of metamodels, such as that the names of declared classes should
be distinct; we omit a discussion of these routine details.

Summary and Outline

Some of the content of this chapter can be summarized in a recipe as follows.

Recipe 3.1 (Authoring an abstract syntax definition).

Syntactic categories Identify the syntactic categories of the language such
as state declarations and transitions in the case of FSML. Assign names to
these categories. This identification process may also have been completed
as part of a domain analysis (Section 1.3). The assigned names are also
referred to as sorts in an algebraic signature or as classes in a metamodel.

Trees versus graphs Make a choice as to whether tree- or graph-based ab-
stract syntax should be defined. You may prefer trees if the metaprogram-
ming approach at hand favors trees or if references within the software
language artifacts are easily resolved on top of trees.

Alternatives Identify the alternatives for each category. (Again, a domain
analysis may readily provide such details.) Assign names to these alterna-
tives; these names may be used as function symbols in a signature or as
class names in a metamodel.

Structure Describe the structure of each alternative in terms of, for example,
part-whole relationships or reference relationships, while making appropri-
ate use of cardinalities (optionality, repetition), as supported by the syntax
definition formalism at hand.

Validation Author samples so that the abstract syntax is exercised. Ulti-
mately, you will want to check that the samples conform to the authored
signature or metamodel, as discussed in a later recipe (Recipe 4.1).

We have explained how trees and graphs may be used for abstract syntactical rep-
resentation. We have also explained how signatures and metamodels may be used for
modeling abstract syntax. The syntax definition formalisms described are inspired
by notations used in practice, although some conveniences and expressiveness may
be missing. In metamodeling, in particular, one may use a richer formalism with
coverage of constraints (e.g., OCL constraints [2]).

In the next chapter, we will discuss the implementation of abstract syntax. After-
wards, we will engage in metaprogramming on top of abstract syntax. We are also
prepared for metaprograms that process syntax definitions, since we have described
the signature of signatures and other such metametalevel definitions in this chapter.
A few chapters down the road, we will complement abstract syntax with concrete
syntax for the purpose of defining, parsing, and formatting string languages.

3.4 The Metametalevel 107

108 3 Foundations of Tree- and Graph-Based Abstract Syntax

References

1. Bézivin, J., Bouzitouna, S., Fabro, M.D.D., Gervais, M., Jouault, F., Kolovos, D.S., Kurtev, I.,
Paige, R.F.: A canonical scheme for model composition. In: Proc. ECMDA-FA, LNCS, vol.
4066, pp. 346–360. Springer (2006)

2. Clark, T., Warmer, J. (eds.): Object Modeling with the OCL, The Rationale behind the Object
Constraint Language, LNCS, vol. 2263. Springer (2002)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications. Available at http://www.grappa.
univ-lille3.fr/tata (2007)

4. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The Syntax Definition Formalism SDF.
reference manual. SIGPLAN Not. 24(11), 43–75 (1989)

5. Herrera, A.S., Willink, E.D., Paige, R.F.: An OCL-based bridge from concrete to abstract
syntax. In: Proc. International Workshop on OCL and Textual Modeling, CEUR Workshop
Proceedings, vol. 1512, pp. 19–34. CEUR-WS.org (2015)

6. Kolovos, D.S., Paige, R.F., Polack, F.: Merging models with the Epsilon Merging Language
(EML). In: Proc. MoDELS, LNCS, vol. 4199, pp. 215–229. Springer (2006)

7. Kolovos, D.S., Rose, L.M., bin Abid, S., Paige, R.F., Polack, F.A.C., Botterweck, G.: Taming
EMF and GMF using model transformation. In: Proc. MODELS, LNCS, vol. 6394, pp. 211–
225. Springer (2010)

8. Paige, R.F., Kolovos, D.S., Polack, F.A.C.: A tutorial on metamodelling for grammar re-
searchers. Sci. Comput. Program. 96, 396–416 (2014)

9. Paige, R.F., Matragkas, N.D., Rose, L.M.: Evolving models in model-driven engineering:
State-of-the-art and future challenges. J. Syst. Softw. 111, 272–280 (2016)

10. Rose, L.M., Matragkas, N.D., Kolovos, D.S., Paige, R.F.: A feature model for model-to-text
transformation languages. In: Proc. MiSE, pp. 57–63. IEEE (2012)

11. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Devel-
opment (Monographs in Theoretical Computer Science. An EATCS Series). Springer (2011)

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Chapter 4
Representation of Object Programs in
Metaprograms

JEAN BÉZIVIN.1

Abstract This chapter discusses different representation options for abstract syn-
tax in the context of implementing programming languages or language-based soft-
ware components. This is an important foundation for metaprogramming. That is,
we assume that one language – the metalanguage – is used for writing programs
that analyze, manipulate, translate, generate, or otherwise consume or produce pro-
grams in another language – the object language. In this context, abstract syntax
thus plays the role of defining the object-program representation in metaprograms.
This chapter also discusses other implementation aspects of abstract syntax: confor-
mance checking, serialization, and resolution (AST-to-ASG mapping).

1 Technological spaces are not dictated by natural laws, but once they are observed, named, and
promoted, they add structure to the computer science landscape. Jean Bézivin has been prominent
in observing, characterizing, and promoting the move from objects and components to models [3].
His projects have been aimed at practical and relevant languages and tools, for example, ATL [13].
He has mediated between academia and practice (such as OMG) in the field of model-driven en-
gineering/architecture (MDE/MDA) [5]. He has helped to give birth to the very notion of techno-
logical space, explained the MDE instance [18, 4], integrated it into the broader software language
engineering community, and pushed MDE to a more macroscopic level [7, 6, 2].
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA 4.0.
This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This work also
quotes https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Almond_Blossom_
-_VGM_F671.jpg, subject to the attribution “Vincent van Gogh: Almond Blossom (1890) [Public domain], via Wiki-
media Commons.” This work artistically morphes an image, https://plus.google.com/+JeanBezivin,
showing the person honored, subject to the attribution “Permission granted by Jean Bézivin for use in this book.”

109© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_4

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Almond_Blossom_-_VGM_F671.jpg
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Almond_Blossom_-_VGM_F671.jpg
https://plus.google.com/+JeanBezivin
https://doi.org/10.1007/978-3-319-90800-7_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_4&domain=pdf

110 4 Representation of Object Programs in Metaprograms

4.1 Representation Options

Terms (in the sense of tree-based abstract syntax) and graphs (in the sense of graph-
based abstract syntax) can be represented more or less directly in programming
languages. This is essential for programs that process or produce abstract syntac-
tical representations. We use the term “object-program representation” because we
view the representation problem from the perspective of metaprogramming, with a
distinction between a metalanguage in which to write metaprograms and an object
language for the representations processed or produced.

The term “object program” should be understood here broadly because the object
language does not need to be a normal programming language; it could be any
software language, for example, a specification language or a markup language.
Object programs are essentially data from the metaprogram’s point of view. To this
end, we need a representation of object programs within metaprograms which is
based on the object language’s abstract syntax.

Terms are native to many languages, for example, Scheme, Haskell, and Pro-
log. Graphs can be easily represented in languages with “reference semantics” for
data structures and objects, for example, C, Java, C#, Scala, Python, and JavaScript.
We will discuss different representation options in the sequel. This also includes a
discussion of interchange formats.

4.1.1 Untyped Representation

In most dynamically typed languages, arbitrary terms (or graphs) can be natively ex-
pressed directly – without dedicated, language-specific data structures. For instance,
a (BTL) expression can be represented easily in Prolog as follows.

Illustration 4.1 (Untyped, Prolog-based representation of a BTL expression)

Term resource languages/BTL/sample.term

pred(if(iszero(zero), succ(succ(zero)), zero)).

Metaprogramming on untyped representations may be straightforward, except
for the lack of static type checking, which could catch some metaprogramming er-
rors early on.

In this context, the notion of a homoiconic language may be worth mentioning.
A language is homoiconic when the concrete and abstract syntactical structures are
essentially isomorphic. Examples include Prolog and Scheme (Lisp). A homoiconic
language may easily access code of the same language – without any representation
mappings.

http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BTL/sample.term

4.1 Representation Options 111

4.1.2 Universal Representation

A data structure for “untyped” terms or graphs can be implemented in pretty much
any general-purpose programming language – whether or not the language is stati-
cally typed. This can be demonstrated for Haskell as follows.

Illustration 4.2 (Universal term representation type)

Haskell module Data.TermRep

data TermRep = TermRep ConstrId [TermRep]
type ConstrId = String

Illustration 4.3 (Universal representation of a BTL expression)

Haskell module Language.BTL.Universal.Sample

sampleExpr :: TermRep
sampleExpr =

TermRep "pred" [
TermRep "if" [

TermRep "iszero" [TermRep "zero" []],
TermRep "succ" [TermRep "succ" [TermRep "zero" []]],
TermRep "zero" []]]

Essentially, we encode arbitrary abstract syntactical representations as Haskell
terms of a designed TermRep type for universal representation. We have only cov-
ered the expressiveness of the basic signature notation (BSL), but it would be
straightforward to cover the extended notation (ESL) as well.

Exercise 4.1 (Universal representation in ESL) [Basic level]
Revise the type TermRep to cover the expressiveness of ESL. Thus, you need to add
cases for lists, tuples, and primitive types.

Exercise 4.2 (Universal representation in Java) [Basic level]
Implement a type for universal representation so that Illustration 4.3 can be ported
to Java. (You may also pick another statically typed object-oriented or a C-like
programming language.)

Universal representation is used in metaprogramming when it is convenient to
operate on a universal (i.e., generic, de facto untyped) representation as opposed to
a language-specific representation. We refer to the ATerms library [8] as an example
of universal representation in Java and C.

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/TermRep.hs
http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Universal/Sample.hs

112 4 Representation of Object Programs in Metaprograms

4.1.3 Typeful Representation

When the metalanguage is statically typed, static typing may also be used for object
representation so that metaprograms can be type-checked in terms of accessing or
constructing object-language constructs.

4.1.3.1 Algebraic Data Type-Based Representation

Let us focus here on tree-based abstract syntax first. We will look at graphs later.
The expressiveness of signatures is available in many functional programming lan-
guages. We dedicate one “type” in the metalanguage to each sort of the object lan-
guage’s syntax. We dedicate one “variant” in the metalanguage to each function
symbol of the object language’s syntax.

Of course, it depends on the metalanguage what exactly constitutes a type and
a variant. In Haskell, we model sorts as algebraic data types, with each function
symbol corresponding to a data-type constructor, as illustrated below for BTL as
the object language.

Illustration 4.4 (Types for BTL representation)

Haskell module Language.BTL.Syntax

data Expr
= TRUE −− True taken by Haskell Prelude
| FALSE −− False taken by Haskell Prelude
| Zero
| Succ Expr
| Pred Expr
| IsZero Expr
| If Expr Expr Expr

We exercise the Haskell types for object-program representation as follows.

Illustration 4.5 (Typeful representation of a BTL expression)

Haskell module Language.BTL.Sample

sampleExpr :: Expr
sampleExpr = Pred (If (IsZero Zero) (Succ (Succ Zero)) Zero)

Exercise 4.3 (Reuse of primitive types) [Basic level]
Revise the type Expr in Illustration 4.4 to use Haskell’s Bool type instead of the
constructors TRUE and FALSE.

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Sample.hs

4.1 Representation Options 113

Let us also look at more complex illustrations of typeful representation. That
is, we will deal with abstract syntaxes that involve more than just one sort; also,
we will exercise tuples, lists, and primitive types. The Haskell-based abstract syn-
taxes of BIPL (Basic Imperative Programming Language), BFPL (Basic Functional
Programming Language), and FSML (Finite State Machine Language) are defined
below; see Section 3.1.5 for the ESL-based abstract syntax definitions.

Illustration 4.6 (Types for BFPL representation)

Haskell module Language.BFPL.Syntax

−− Program = typed functions + main expression
type Program = (Functions, Expr)
type Functions = [Function]
type Function = (String, (FunSig, FunDef))
type FunSig = ([SimpleType], SimpleType)
type FunDef = ([String], Expr)

−− Simple types
data SimpleType = IntType | BoolType

−− Expressions
data Expr

= IntConst Int
| BoolConst Bool
| Arg String
| If Expr Expr Expr
| Unary UOp Expr
| Binary BOp Expr Expr
| Apply String [Expr]

−− Unary and binary operators
data UOp = Negate | Not
data BOp = Add | Sub | Mul | Lt | Leq | Eq | Geq | Gt | And | Or

Illustration 4.7 (Types for BIPL representation)

Haskell module Language.BIPL.Syntax

−− Statements
data Stmt

= Skip
| Assign String Expr
| Seq Stmt Stmt
| If Expr Stmt Stmt
| While Expr Stmt

−− Expressions
data Expr

= IntConst Int
| Var String
| Unary UOp Expr

http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Syntax.hs

114 4 Representation of Object Programs in Metaprograms

| Binary BOp Expr Expr

−− Unary and binary operators
data UOp = Negate | Not
data BOp = Add | Sub | Mul | Lt | Leq | Eq | Geq | Gt | And | Or

Illustration 4.8 (Types for FSML representation)

Haskell module Language.FSML.Syntax

data Fsm = Fsm { getStates :: [State] }
data State = State {

getInitial :: Initial,
getId :: StateId,
getTransitions :: [Transition]

}
data Transition = Transition {

getEvent :: Event,
getAction :: (Maybe Action),
getTarget :: StateId

}
type Initial = Bool
type StateId = String
type Event = String
type Action = String

4.1.3.2 Object-Based Representation

As a particular approach to typed representation, we may map an abstract syntax
definition to an object model: sorts become abstract classes, and function symbols
become concrete subclasses of the classes for the result sorts with attributes for the
arguments. This option is illustrated below for Java as the metalanguage.

Illustration 4.9 (Classes for BTL representation)

Java source code org/softlang/btl/Syntax.java

public class Syntax {
public static abstract class Expr { }
public static class True extends Expr { }
public static class False extends Expr { }
public static class Zero extends Expr { }
public static class Succ extends Expr {

public Expr e;
public Succ(Expr e) { this.e = e; }

}
public static class Pred extends Expr {

public Expr e;
public Pred(Expr e) { this.e = e; }

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BTL/Java/org/softlang/btl/Syntax.java

4.1 Representation Options 115

}
public static class IsZero extends Expr {

public Expr e;
public IsZero(Expr e) { this.e = e; }

}
public static class If extends Expr {

public Expr e0;
public Expr e1;
public Expr e2;
public If(Expr e0, Expr e1, Expr e2) {

this.e0 = e0; this.e1 = e1; this.e2 = e2;
}

}
}

For the sake of convenience, we place all the classes in a single class Syntax.
There are nondefault constructors so that instances can be populated conveniently by
nested constructor application as opposed to just using setters, as illustrated below.

Illustration 4.10 (Object-based representation of a BTL expression)
Java source code org/softlang/btl/Sample.java

static final Expr sample =
new Pred(

new If(
new IsZero(new Zero()),
new Succ(new Succ(new Zero())),
new Zero()));

There are various additional options regarding such object models, some of
which we mention here briefly. One may want to provide getters and setters in-
stead of permitting public access to attributes for phrases. One also may want to
enrich the object model to provide a “fluent” interface so that object construction
and access are more convenient (Section 2.2.2). Further, one faces several differ-
ent options for authoring metaprograms on top of the object representation. That is,
one may model such functionality as regular methods within the classes for object-
program representation, as (static) methods outside the classes, or as a visitor subject
to visitor support by the classes. The pros and cons of these options are relatively
well understood; see, for example, the literature on visitors and the “expression
problem” [26, 32, 10, 24].

4.1.3.3 Reference Relationships

When going from tree- to graph-based abstract syntax, an additional requirement
for typeful representation arises: we may leverage the expressiveness of the meta-
language for references, for example, pointers or references, so that references in
the abstract syntax correspond to references in the metalanguage.

http://github.com/softlang/yas/tree/springer/languages/BTL/Java/org/softlang/btl/Sample.java

116 4 Representation of Object Programs in Metaprograms

TBL GBL
package org.softlang.gbl;
public class Syntax {
 public static class World {
 public Person[] persons;
 }
 public static class Person {
 public String name;
 public Person buddy;
 }
}

package org.softlang.tbl;
public class Syntax {
 public static class World {
 public Person[] persons;
 }
 public static class Person {
 public String name;
 public String buddy;
 }
}

Fig. 4.1 Object models for tree- and graph-based BL in Java.

Graph-based abstract syntax can be encoded conveniently in an OO program-
ming language with reference semantics. In Fig. 4.1, we show two Java-based ob-
ject models for the Buddy Language. One object model assumes tree-shaped objects
(TBL); another object model relies on proper object graphs (GBL). The difference
is highlighted.

In contrast to BL’s metamodel (Illustration 3.14), the Java types do not distin-
guish part-of from reference relationships, because Java does not cater for such a
distinction. This may be a problem in metaprogramming because a Java-based ob-
ject model allows us to construct objects that would not conform to a metamodel
which distinguishes part-of from reference relationships.

The construction of a graph is illustrated below.

Illustration 4.11 (Object-based representation of BL example)

Java source code org/softlang/gbl/Sample.java

public class Sample {
public World smallWorld() {

World w = new World();
Person p1 = new Person();
Person p2 = new Person();
w.persons = new Person[] {p1, p2};
p1.name = "joe";
p1.buddy = p2;
p2.name = "bill";
p2.buddy = p1;
return w;

}
}

That is, we first construct person objects and then we tie up the object graph with
the setters for buddies. These two steps must be separated, because the references
relationships are cyclic. More generally, objects must clearly exist before their ref-

http://github.com/softlang/yas/tree/springer/languages/BL/Java/org/softlang/gbl/Sample.java

4.1 Representation Options 117

newtype World = World {
 getPersons :: [Person]
}

data Person = Person {
 getName :: String,
 getBuddy :: Maybe String
}

newtype World = World {
 getPersons :: [IORef Person]
}

data Person = Person {
 getName :: String,
 getBuddy :: Maybe (IORef Person)
}

}

data Person = Person {
 getName :: String,
 getBuddy :: Maybe String
}

newtype World = World {
 getPersons :: [IORef Person]
}

data Person = Person {
 getName :: String,
 getBuddy :: Maybe (IORef Person)
}

TBL GBL

Fig. 4.2 Data models for BL in Haskell.

erences can be assigned for the purpose of tying up the graph. This is a consequence
of using an imperative metalanguage.

Graph-based abstract syntax can also be encoded in a language without native
reference semantics. This is shown here for Haskell and its IO references as provided
by the IO monad [27].

In Fig. 4.2, we show Haskell-based data models for the Buddy Language. In fact,
there is one data model for tree-based abstract syntax (TBL) without use of the
IO monad, and there is another data model for graph-based abstract syntax (GBL)
which uses IORefs in two places. The differences are highlighted.

This data model is special in that the buddy component is of type
Maybe (IORef Person). Hence, buddies are accessed by dereferencing IORefs. We
have also set up the data type World with references to person terms. In this manner,
programming on these graphs becomes more uniform (in Haskell).

The construction of a graph is illustrated below.

Illustration 4.12 (IORef-based representation of a BL graph)

Haskell module Language.GBL.Sample

mkSmallWorld :: IO World
mkSmallWorld = do

r1← newIORef undefined
r2← newIORef undefined
writeIORef r1 Person { getName = "joe", getBuddy = Just r2 }
writeIORef r2 Person { getName = "bill", getBuddy = Just r1 }
return $ World [r1, r2]

The code above is similar to the earlier Java code. That is, we create references
before we tie up the graph. The functional and OO approaches differ as follows. In
the functional approach, the references are initialized with undefined persons to be
modified eventually to refer to proper persons. In the OO approach, proper person
objects are created right from the start, and setters are used to fill in all attributes.

Despite the ability in principle to represent references, this sort of representation
is not too common. Functional programmers tend to prefer to operate on tree-based

http://github.com/softlang/yas/tree/springer/languages/BL/Haskell/Language/GBL/Sample.hs

118 4 Representation of Object Programs in Metaprograms

abstract syntactical representations, while using extra functionality (traversals) to
look up and propagate bindings when necessary.

4.1.3.4 Smart Constructors

Object-program representation may be “opaque” in that functions of an abstract data
type (ADT) or a library are used for object-program manipulation. This is helpful,
for example, when the construction of object-program fragments may be subject to
constraints that are to be enforced by ADT functions for construction as opposed to
regular data-type constructors (Section 4.1.3.1). Constrained constructor functions
are also referred to as smart constructors.

For instance, we may want to enforce the “type-correct” construction of (BTL)
expressions evaluating to numbers or Booleans. Thus, we would need smart con-
structors which examine their arguments and wrap their results in a Maybe type so
that they can detect and communicate unsatisfied constraints, as illustrated below.

Interactive Haskell session:

−− Construct 1
I zero >>=succ
Just (Succ Zero)
- -
−− Fail at applying successor function to true
I true >>=succ
Nothing
- -
−− Construct a well−typed If
I true >>=λ e1→ zero >>=λ e2→ ifthenelse e1 e2 e2
Just (If TRUE Zero Zero)

As it can be seen from the illustration above, the use of the Maybe monad makes
us describe construction of compound phrases as a sequence. (One could also con-
sider using applicative functors to better retain the structure of compound phrases.)
The smart constructors are easily implemented as follows.

Illustration 4.13 (Smart constructors for BTL expressions)

Haskell module Language.BTL.SmartSyntax

true, false, zero :: Maybe Expr
true = Just TRUE
false = Just FALSE
zero = Just Zero
succ, pred, iszero :: Expr→ Maybe Expr
succ e = if isNat e then Just (Succ e) else Nothing
pred e = if isNat e then Just (Pred e) else Nothing
iszero e = if isNat e then Just (IsZero e) else Nothing
ifthenelse :: Expr→ Expr→ Expr→ Maybe Expr
ifthenelse e1 e2 e3 =

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/SmartSyntax.hs

4.1 Representation Options 119

if isBool e1 && (isNat e2 && isNat e3 || isBool e2 && isBool e3)
then Just (If e1 e2 e3)
else Nothing

isNat, isBool :: Expr→ Bool
isNat Zero = True
isNat (Succ _) = True
isNat (Pred _) = True
isNat (If _ e _) = isNat e
isNat _ = False
isBool = not . isNat

Thus, the smart constructors examine their arguments to “guess” at their types.
To this end, two auxiliary functions, isNat and isBool, are used. These functions do
not fully traverse (“type-check”) arguments; they only look as deep into the term
as it is necessary to distinguish the two types at hand. This sort of type derivation
(“inference”) for BTL terms is correct if terms are constructed exclusively by the
smart constructors.

Strictly speaking, we are starting a transition from abstract syntax to type check-
ing or semantic analysis, as we are modeling constraints that were not even present
in the original abstract syntax definition. However, one may also take the position
that the constraints should be part of the abstract syntax definition to start with.
Type systems of programming languages and, most notably, those of advanced func-
tional languages such as Haskell provide yet other means of imposing constraints
on object-program representations (Chapter 9).

Exercise 4.4 (Advanced typeful representation) [Intermediate level]
Study one of the following notions: generalized algebraic data types [33, 16], liquid
types [28], or refinement types [31]. Exercise any of these notions for the purpose
of modeling additional constraints like those discussed above.

Let us briefly mention another example of the use of smart constructors or an
ADT for syntax manipulation. Template Haskell [29] (TH) is a Haskell extension for
metaprogramming, with Haskell as both the metalanguage and the object language.
In particular, TH can be used to analyze or synthesize Haskell code at compile time.
To this end, there are Haskell data types for representing Haskell programs. Here is
a fragment of an algebraic data type for representing Haskell expressions:

data Exp
= VarE Name
| LamE [Pat] Exp
| ConE Name
| LitE Lit
| AppE Exp Exp
| ...

120 4 Representation of Object Programs in Metaprograms

TH assumes that these constructors are not used directly – especially not for
constructing program fragments. Instead, one is supposed to use smart constructors
as follows:

varE :: Name→ Q Exp
lamE :: [Q Pat]→ Q Exp→ Q Exp
conE :: Name→ Q Exp
litE :: Lit→ Q Exp
appE :: Q Exp→ Q Exp→ Q Exp
...

The smart constructors use a so-called quotation monad Q. Among other things,
this monad serves to enforce name hygiene [1] in the sense that names of constructed
program fragments do not accidentally capture the enclosing program context. This
is a concern, as TH is used in a context in which constructed program fragments con-
tribute to (i.e., are “spliced” into) a given Haskell program. Thus, TH’s smart con-
structors are not concerned with type checking, but they handle scopes for names.

4.1.4 Interchange Formats

Abstract syntax may also be encoded in interchange formats such as JSON2 and
XML.3 Many programming languages may consume, produce, or directly operate
on such formats; this opens up a path towards persistence of object programs and
interchange (exchange) between metaprogram components, even if written in dif-
ferent languages. While we only discuss JSON and XML here, there are a myriad
of other formats4, for example, Protocol buffers5 and Thrift.6 For now, we only
discuss the mere representation of object programs in JSON and XML, but later
(Section 4.2.3) we will also discuss the transcription of abstract syntax definitions
to JSON and XML schemas for appropriate forms of conformance checking.

4.1.4.1 JSON Representation

Let us begin with the turnstile FSM encoded in JSON.

2 http://www.json.org/
3 https://www.w3.org/XML/
4 https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
5 https://developers.google.com/protocol-buffers/
6 http://thrift.apache.org/

http://www.json.org/
https://www.w3.org/XML/
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://developers.google.com/protocol-buffers/
http://thrift.apache.org/

4.1 Representation Options 121

Illustration 4.14 (JSON representation of a BTL expression)

JSON resource languages/BTL/JSON/sample.json

{
"pred": {

"if": {
"cond": { "iszero": { "zero": { } } },
"then": { "succ": { "succ": { "zero": { } } } },
"else": { "zero": { } }

}
}

}

JSON is tailored towards nested collections of labeled components as opposed to
trees (terms) with positional arguments, which is what we assumed for tree-based
abstract syntax before. The encoding is based on the following assumptions:

• Terms are mapped to JSON objects. We do not use JSON’s lists (arrays) or prim-
itive types, because the abstract syntax at hand also does not use such expressive-
ness.

• More precisely, terms are mapped to JSON objects, with one name/value pair
with the name being the function symbol of the term and the JSON value v mod-
eling the arguments of the term:

– If the function symbol is, in fact, a constant, then v is the empty object “{ }”.
– If the function symbol is unary, i.e., there is one argument, then v is the JSON

encoding of the argument term.
– If the function symbol has more than one argument, then the argument posi-

tions are encoded by several name/value pairs. In the case of “if”, we use the
names cond, then, and else.

4.1.4.2 XML Representation

The turnstile FSM is encoded in XML as follows.

Illustration 4.15 (XML representation of a BTL expression)

XML resource languages/BTL/XML/sample.xml

<pred xmlns="http://www.softlang.org/BTL">
<if>

<iszero><zero/></iszero>
<succ><succ><zero/></succ></succ>
<zero/>

</if>
</pred>

http://github.com/softlang/yas/tree/springer/languages/JSON
http://github.com/softlang/yas/tree/springer/languages/BTL/JSON/sample.json
http://github.com/softlang/yas/tree/springer/languages/XML
http://github.com/softlang/yas/tree/springer/languages/BTL/XML/sample.xml

122 4 Representation of Object Programs in Metaprograms

There is a good fit between XML trees and terms that what we assumed for
tree-based abstract syntax before. The XML encoding is based on the following
assumptions:

• Terms are mapped to XML elements. We do not use XML attributes because
XML elements are generally sufficient in terms of expressiveness. We do not use
elements of primitive types (i.e., elements with text content), because the abstract
syntax at hand also does not use primitive types.

• More precisely, terms are mapped to XML elements with the element name being
the function symbol of the term and the children elements corresponding to the
arguments of the term. The order of arguments in the signature carries over into
the order of XML children.

As an example of a metaprogramming technology based on an interchange for-
mat, we mention the srcML toolkit [9]; srcML is based on an XML representation
of source code and it supports C/C++, C#, and Java.

4.2 Conformance Checking

When a typeful representation is employed, then, ideally, object program represen-
tations can be assumed to conform to the abstract syntax. Practically, the underly-
ing mapping of signatures or metamodels to programming language types may be
lossy [30, 22, 23], but we do not discuss this challenge here. When an untyped or
a universal representation is employed, then it is worthwhile to implement confor-
mance checking so that representations can be checked to be valid at runtime. For
instance, a metaprogram may check conformance on arguments and results as pre-
and post-conditions. We may also rely on existing means of schema-based valida-
tion when leveraging interchange formats. Let us discuss several options for confor-
mance checking in detail.

4.2.1 Language-Specific Conformance Checking

We may encode an abstract syntax definition directly as functionality in a meta-
language so that the functionality is specific to the object language at hand. The
following Haskell predicate tests terms to represent BTL expressions. We represent
terms according to the Haskell data type TermRep that we introduced earlier (Illus-
tration 4.2).

4.2 Conformance Checking 123

Illustration 4.16 (Conformance checking for the universal representation of BTL)

Haskell module Language.BTL.Dynamics

expr :: TermRep→ Bool
expr (TermRep "true" []) = True
expr (TermRep "false" []) = True
expr (TermRep "zero" []) = True
expr (TermRep "succ" [e]) = expr e
expr (TermRep "pred" [e]) = expr e
expr (TermRep "iszero" [e]) = expr e
expr (TermRep "if" es@[_,_,_]) = and (map expr es)
expr _ = False

That is, we dedicate a function to each sort of the abstract syntax. (There is only
one sort in the BTL example at hand.) There is one case (equation) for each function
symbol of a sort; each such case checks the function symbol, including its arity, and
it recursively checks arguments.

4.2.2 Generic Conformance Checking

We may implement the general notion of conformance (Definition 3.4) as a relation
between pre-terms or pre-graphs and signatures or metamodels within the metalan-
guage. We focus here on pre-term-to-signature conformance. The implementation
requires the following ingredients:

• a representation of pre-terms;
• a representation of signatures according to the signature of signatures;
• an implementation of actual conformance.

Let us develop a Haskell-based implementation of conformance checking. We
choose a typeful representation for signatures (Section 4.1.3). That is, we provide
Haskell data types that correspond to the signature of signatures (Section 3.4.1). We
begin with a representation of signatures as follows.

Illustration 4.17 (Typeful representation of signatures)

Haskell module Language.BSL.Syntax

type Signature = [Profile]
type Profile = (Sym, [Sort], Sort)
type Sym = String
type Sort = String

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Dynamics.hs
http://github.com/softlang/yas/tree/springer/languages/BSL/Haskell/Language/BSL/Syntax.hs

124 4 Representation of Object Programs in Metaprograms

Illustration 4.18 (The signature of BTL expressions)

Haskell module Language.BTL.Universal.Signature

btlSignature :: Signature
btlSignature =

[("true", [], "expr"),
("false", [], "expr"),
("zero", [], "expr"),
("succ", ["expr"], "expr"),
("pred", ["expr"], "expr"),
("iszero", ["expr"], "expr"),
("if", ["expr", "expr", "expr"], "expr")

]

We assume the universal representation (Section 4.1.2) for pre-terms. To this end,
we use the Haskell data type TermRep that we introduced earlier (Illustration 4.2).
We expect to check for conformance with a Haskell predicate termOfSort as follows:

Interactive Haskell session:

I termOfSort btlSignature sampleExpr "Expr"
- -

True

Let us implement the predicate termOfSort for conformance checking as a recur-
sive function which follows closely the formal definition of conformance (Defini-
tion 3.4).

Illustration 4.19 (Conformance checking for BSL)

Haskell module Language.BSL.Conformance

termOfSort :: [Profile]→ TermRep→ Sort→ Bool
termOfSort ps (TermRep c ts) s =

case [ss | (c', ss, s')← ps, c==c', s==s'] of
[ss]→ and (map (uncurry (termOfSort ps)) (zip ts ss))
_→ False

Exercise 4.5 (Conformance checking for ESL) [Intermediate level]
Pick a programming language of your choice. Devise a representation of ESL sig-
natures and pre-terms and implement conformance checking.

Exercise 4.6 (Conformance checking for MML) [Intermediate level]
Pick a programming language of your choice. Devise a representation of MML
metamodels and pre-graphs and implement conformance checking.

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Universal/Signature.hs
http://github.com/softlang/yas/tree/springer/languages/BSL/Haskell/Language/BSL/Conformance.hs

4.2 Conformance Checking 125

Incidentally, we have started to write metaprograms. In fact, a metaprogram for
generic conformance checking can be viewed as an “interpreter”, as it interprets
signatures or metamodels in a manner which realizes the meaning of these syntax
definitions in an operational manner. Here is the I/O behavior: the input of confor-
mance checking is a signature (or a metamodel) and a pre-term (or a pre-graph); the
output is a Boolean value stating whether conformance holds.

4.2.3 Schema-Based Conformance Checking

Interchange formats provide their own schema languages (say, type systems), for
example, JSON Schema7 for JSON and XML Schema8 (XSD) for XML. Abstract
syntax definitions may be mapped to schemas, as illustrated below. For what it mat-
ters, these schema languages are also subsets of the respective JSON and XML
universes. There even exist corresponding schemas of schemas, thereby providing a
metametalevel for the interchange formats. Given a JSON file and a JSON schema
(or an XML file and an XML schema), we may leverage existing technologies for
schema-based validation to provide conformance checking.

The JSON representation exercised in Illustration 4.14 can be modeled by a
JSON schema as follows.

Illustration 4.20 (JSON Schema for BTL expressions)

JSON resource languages/BTL/JSON/schema.json

{
"$schema": "http://json−schema.org/draft−04/schema#",
"description": "schema for BTL syntax",
"type": "object",
"oneOf": [

{
"properties": { "true" : { "additionalProperties": false } },
"additionalProperties": false

},
{

"properties": { "false" : { "additionalProperties": false } },
"additionalProperties": false

},
{

"properties": { "zero" : { "additionalProperties": false } },
"additionalProperties": false

},
{

"properties": { "succ" : { "$ref": "" } },
"additionalProperties": false

},

7 http://json-schema.org/
8 https://www.w3.org/XML/Schema

http://github.com/softlang/yas/tree/springer/languages/JSON
http://github.com/softlang/yas/tree/springer/languages/BTL/JSON/schema.json
http://json-schema.org/
https://www.w3.org/XML/Schema

126 4 Representation of Object Programs in Metaprograms

{
"properties": { "pred" : { "$ref": "" } },
"additionalProperties": false

},
{

"properties": { "iszero" : { "$ref": "" } },
"additionalProperties": false

},
{

"properties": {
"if": {

"properties": {
"cond": { "$ref": "" },
"then": { "$ref": "" },
"else": { "$ref": "" }

},
"required": ["x", "y", "z"],
"additionalProperties": false

}
},
"additionalProperties": false

}
]

}

JSON Schema is sophisticated, and there exist different mapping options – even
more so when one is handling the extended signature notation. Let us briefly charac-
terize the schema encoding at hand. Each function symbol is mapped to a designated
sub-schema. Each sort is mapped to a designated sub-schema, which combines the
sub-schemas for the function symbols by means of JSON Schema’s “oneOf”. (There
is only one sort in the BTL example at hand.) Argument positions are also mapped to
sub-schemas; these are references (see “$ref”) to the schema for the relevant sort. In
the present example, with just one sort at hand, the references point to the top-level
object type. The schema contains some elements that control optionality and rule
out additional name/value pairs that are not explicitly declared; we omit a detailed
discussion here.

The XML representation exercised in Illustration 4.15 can be modeled by an
XML schema as follows.

Illustration 4.21 (XML Schema for BTL expressions)

XSD resource languages/BTL/XML/schema.xsd

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.softlang.org/BTL"
xmlns:tns="http://www.softlang.org/BTL"
elementFormDefault="qualified">

<element name="true"><complexType/></element>
<element name="false"><complexType/></element>

http://github.com/softlang/yas/tree/springer/languages/XSD
http://github.com/softlang/yas/tree/springer/languages/BTL/XML/schema.xsd

4.2 Conformance Checking 127

<element name="zero"><complexType/></element>
<element name="succ" type="tns:expr"/>
<element name="pred" type="tns:expr"/>
<element name="iszero" type="tns:expr"/>
<element name="if">

<complexType>
<group ref="tns:expr" minOccurs="3" maxOccurs="3"/>

</complexType>
</element>
<complexType name="expr">

<group ref="tns:expr"/>
</complexType>
<group name="expr">

<choice>
<element ref="tns:true"/>
<element ref="tns:false"/>
<element ref="tns:zero"/>
<element ref="tns:succ"/>
<element ref="tns:pred"/>
<element ref="tns:iszero"/>
<element ref="tns:if"/>

</choice>
</group>

</schema>

XML Schema is quite sophisticated, and there exist different mapping options –
even more so when one is handling the extended signature notation. Let us briefly
characterize the schema encoding at hand. Each function symbol is mapped to a
designated root-element declaration. Each sort is mapped to a designated model
group, which constructs a “choice” over the different elements for the sort. (There
is only one sort in the BTL example at hand.) There is also a complex type for
each sort, which simply refers to the aforementioned model group. This duplication
allows us to refer to “sorts” in argument positions without wrapping arguments in
extra element open/close tags.

Exercise 4.7 (Metamodeling with XML Schema) [Intermediate level]
Study the expressiveness for identity constraints,9 as provided by XML Schema. Use
identity constraints in an XML-based abstract syntax for the Buddy Language.

While interchange formats help with persistence and language interoperability,
their use comes at a cost, especially when mapping is involved [30, 22, 23]: the map-
ping may be idiosyncratic, imprecise, and prone to round-tripping problems. The
illustrations given above certainly involve issues of idiosyncrasies of mapping sig-
natures to schemas; we would face yet other problems when mapping programming-
language types to schemas or vice versa.

9 https://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions

https://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions

128 4 Representation of Object Programs in Metaprograms

4.3 Serialization

Universal representations are suited for interchange and storage, since one may pro-
vide the corresponding functionality once and for all for the universal representation
type. By contrast, a typeful representation calls for type-specific support for seri-
alization if data interchange and persistence are required. Programming language
ecosystems routinely support some form of XML- or JSON-based serialization for
programming language types. Let us briefly discuss serialization here.

We could target JSON or XML for serialization, but let us exercise a different,
illustrative option here. That is, we provide a bidirectional mapping between univer-
sal and typeful representations. We assume that this mapping can be easily comple-
mented by another bidirectional mapping between universal and JSON- or XML-
based representations. Thus, we only consider the mapping between universal and
typeful representations here. In Haskell, we capture such serialization with a type
class as follows.

Illustration 4.22 (A type class for serialization)

Haskell module Data.Term

class Term a where
toTermRep :: a→ TermRep
fromTermRep :: TermRep→ a

Deserialization should be the inverse of serialization. Thus, the following law
should hold:

fromTermRep (toTermRep x) = x

Serializing terms to term representations (“toTermRep”) should always succeed;
deserializing term representations to terms (“fromTermRep”) necessarily entails
conformance checking and, thus, may fail. We assume here that the function for
de-serialization may be undefined, but we could use the Maybe monad too. Each
typeful representation type needs to instantiate the type class Term, as illustrated for
the representation type for BTL expressions below.

Illustration 4.23 (Serialization for BTL expressions)

Haskell module Language.BTL.Universal.Term

instance Term Expr where
toTermRep TRUE = TermRep "true" []
toTermRep FALSE = TermRep "false" []
toTermRep Zero = TermRep "zero" []
toTermRep (Succ e) = TermRep "succ" [toTermRep e]
...
fromTermRep (TermRep "true" []) = TRUE
fromTermRep (TermRep "false" []) = FALSE

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/Term.hs
http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Universal/Term.hs

4.4 AST-to-ASG Mapping 129

fromTermRep (TermRep "zero" []) = Zero
fromTermRep (TermRep "succ" [t]) = Succ (fromTermRep t)
...

Incidentally, such a mapping between typeful and universal representations
makes it possible for both representations to coexist in metaprogramming. The idea
is that metaprograms use a typeful representation where possible and escape to a
universal representation where necessary, for example, for serialization.

Exercise 4.8 (Generic serialization) [Advanced level]
Consider again the difference between language-specific and generic conformance
checking (Section 4.2). Applying this distinction to serialization suggests that the
Haskell illustration, as given above, is language-specific, because the serializa-
tion function is specific to a language; it actually encodes the underlying signa-
ture in the equations of the fromTermRep function. Devise a generic serialization
approach. Hint: If you pick Haskell as the metalanguage, then you may want to
employ Haskell’s “scrap your boilerplate” (SYB) approach to generic functional
programming [19, 20, 21].

4.4 AST-to-ASG Mapping

In practice, mappings between different syntaxes are frequently needed. For in-
stance, a language implementation may involve two abstract syntaxes: one which
includes some extra constructs in the sense of syntactic sugar and another desug-
ared one. Basic means of metaprogramming may be sufficient for such mappings.
Later, we will also need to map from concrete to abstract syntax and vice versa
(Chapter 7). In this section, we focus on a particular problem: resolution, i.e., map-
ping tree- to graph-based abstract syntax, i.e., from trees or terms (ASTs) to graphs
(ASGs). Such mappings are not straightforward, which is why we discuss the prob-
lem here.

Resolution is based on the identification of encoded references (e.g., names)
and their replacement by actual references. The techniques for resolution depend
significantly on the metaprogramming and metamodeling approaches at hand. In
the literature, the problem of resolution, which is also related to “name bind-
ing” [15, 12, 14, 17, 11, 25], is often discussed in the context of relatively specific
setups for declarative language specification. Let us discuss resolution as a metapro-
gramming problem here.

We will demonstrate resolution for the Buddy Language as the object language
and for Java and Haskell as metalanguages. We have already considered tree- and
graph-based abstract syntax for the Buddy Language (Section 4.1.3.3). Thus, we
face the problem of mapping persons with string-based encoding of buddies to per-
sons with references to buddies.

130 4 Representation of Object Programs in Metaprograms

Resolution can be implemented in Java as follows — we operate on the object
models of Fig. 4.1.

Illustration 4.24 (Resolution of buddies)

Java source code org/softlang/gbl/Resolution.java

1 package org.softlang.gbl;
2 public class Resolution {
3 public static Syntax.World resolve(org.softlang.tbl.Syntax.World tree) {
4 Syntax.World graph = new Syntax.World();
5 graph.persons = new Syntax.Person[tree.persons.length];
6 for (int i=0; i<tree.persons.length; i++) {
7 graph.persons[i] = new Syntax.Person();
8 graph.persons[i].name = tree.persons[i].name;
9 }

10 for (int i=0; i<tree.persons.length; i++)
11 for (int j=0; j<tree.persons.length; j++)
12 if (tree.persons[i].buddy==tree.persons[j].name) {
13 graph.persons[i].buddy = graph.persons[j];
14 break;
15 }
16 return graph;
17 }
18 }

Thus, resolution is modeled as a mapping from a tree-based world of tree-based
persons to a graph-based world of graph-based persons. The types of the mapping
source (package “. . . .tbl” for trees) are qualified to avoid name clashes with the type
of the mapping target (“. . . .gbl” for graphs). The mapping consists of these steps:

• A world object graph is constructed (line 4).
• The persons array of graph is initialized by a new array, which is of the same

length as the incoming persons array of tree (line 5).
• The individual persons are initialized with newly constructed person objects and

each person’s name is copied from the input (lines 6–9).
• In a separate loop, the buddy names are mapped to actual person references (lines

10–15); we perform a linear search on tree to find the right index and then assign
the located object as the buddy.

The phases of initialization and lookup + assignment need to be separated for
the same reasons as we had to separate the initial construction and the tying up of
objects in object construction (Section 4.1.3.3).

http://github.com/softlang/yas/tree/springer/languages/BL/Java/org/softlang/gbl/Resolution.java

4.4 AST-to-ASG Mapping 131

Exercise 4.9 (Resolution with visitors) [Intermediate level]
Based on a metamodel for functional programs (BFPL) with function application
involving references to declared functions (Exercise 3.5), implement an object model
for both the tree-based and the graph-based syntax of BFPL. Further, implement
resolution as a mapping between the two syntaxes. Use the visitor design pattern to
make the mapping concise and structured.

We also attempt resolution in Haskell. The Haskell-based mapping, as described
below, operates on the data models of Fig. 4.2. Overall, the Haskell approach is a
little tedious because of the purity of the language and the monadic types involving
IORefs.

Illustration 4.25 (Resolution of buddies)

Haskell module Language.GBL.Resolution

1 −− Helper types for resolution
2 type PersonRef = IORef GBL.Person
3 type PersonMap = Map String PersonRef
4

5 −−Map tree− to graph−based world
6 resolve :: TBL.World→ IO GBL.World
7 resolve (TBL.World ps) = do
8 rs← termsToRefs personToRef empty ps
9 return (GBL.World rs)

10 where
11 −− Store person as IORef
12 personToRef :: TBL.Person→ PersonMap→ IO (PersonRef, PersonMap)
13 personToRef p m = do
14 let n = TBL.getName p
15 let b = TBL.getBuddy p
16 (r, m')← keyToRef n m
17 (b', m'')← (case b of
18 Nothing→ return (Nothing, m')
19 (Just n')→ do
20 (r', m'')← keyToRef n' m'
21 return (Just r', m''))
22 writeIORef r (
23 GBL.Person {
24 GBL.getName = n,
25 GBL.getBuddy = b' })
26 return (r, m'')

We use a map PersonMap to keep track of references that have been assigned to
person names. We use a reusable helper function termsToRefs for mapping over the
list of tree-based persons to derive a reference to a graph-based person according to
the function personToRef , subject to the following steps:

http://github.com/softlang/yas/tree/springer/languages/BL/Haskell/Language/GBL/Resolution.hs

132 4 Representation of Object Programs in Metaprograms

• We extract the person’s name n and the optional buddy b (lines 14–15) .
• We retrieve or generate the reference r for n using the reusable helper function

keyToRef (line 16). The reference may have been assigned already, if n has served
as the name of a buddy of a person that was mapped earlier.

• We examine the optional buddy b so that we can retrieve or generate the refer-
ence for the buddy’s name n', if present (lines 17–21). Thus, b' holds an optional
reference for the buddy.

• We compose the person from the name and the optional buddy and write it to the
IORef (lines 22–25).

The reusable helper functions are shown below.

Illustration 4.26 (Mini-framework for resolution)

Haskell module Data.Graph

−−Map list of terms to a list of refs
termsToRefs :: (a→ s→ IO (IORef b, s))→ s→ [a]→ IO [IORef b]
termsToRefs f z ts = termsToRefs' z ts

where
termsToRefs' _ [] = return []
termsToRefs' _ (t:ts) = do

(r, z')← f t z
rs← termsToRefs' z' ts
return (r:rs)

−−Map key to ref, use map for housekeeping
keyToRef :: Ord a => a→ Map a (IORef b)→ IO (IORef b, Map a (IORef b))
keyToRef k m =

case lookup k m of
Nothing→ do

r← newIORef undefined
return (r, insert k r m)

Just r→ return (r, m)

The function termsToRefs is little more than a monadic map, except that it also
incorporates an “accumulator” which is used in our example for the map which
keeps track of references for persons’ names. The function keyToRef tries to look
up a reference for a key (such as a name), and allocates a new reference if the key is
not yet in the given map. When allocating a reference, undefined content is assigned;
we assume that the content will eventually be overridden.

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/Graph.hs

References 133

Summary and Outline

Some of the content of this chapter can be summarized in a recipe as follows.

Recipe 4.1 (Implementation of a conformance checker).

Abstract syntax It is assumed that you have authored abstract syntax and
samples according to Recipe 3.1.

Representation Identify the representation that you plan to use for program-
ming and serialization. Represent the samples accordingly. Consider JSON,
XML, or code – the latter based on an assumed API or a concrete data type-
based representation within a programming language.

Conformance Implement conformance for the chosen representation. To this
end, the authored abstract syntax may be used directly or it may need to be
implemented in a different formalism or language, for example, as a JSON
schema, an XML schema, or a suite of language-specific types. Serialization
may be leveraged to apply the implemented syntax definition to the preferred
representation of samples.

Testing Apply the conformance checker to language samples to confirm their
conformance to the rules of the signature or metamodel. One should also
author samples that violate the abstract syntax to test that the conformance
checker catches the errors and communicates them appropriately.

We have discussed various options for representing object programs according to
an abstract syntax. In this manner, we are prepared for metaprogramming in differ-
ent programming languages with more or less static typing and interchangeability.
We have also demonstrated the implementation of the fundamental notion of con-
formance in different settings.

We will now engage in actual metaprogramming on top of abstract syntax. We
will later cover concrete syntax for the purpose of defining, parsing, and formatting
string languages.

References

1. Adams, M.: Towards the essence of hygiene. In: Proc. POPL, pp. 457–469. ACM (2015)
2. Barbero, M., Jouault, F., Bézivin, J.: Model driven management of complex systems: Imple-

menting the macroscope’s vision. In: Proc. ECBS 2008, pp. 277–286. IEEE (2008)
3. Bézivin, J.: On the unification power of models. SoSyM 4(2), 171–188 (2005)
4. Bézivin, J.: Model driven engineering: An emerging technical space. In: GTTSE 2005, Re-

vised Papers, LNCS, vol. 4143, pp. 36–64. Springer (2006)
5. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework. In: Proc.

ASE, pp. 273–280. IEEE (2001)
6. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and modeling in the

small. In: European MDA Workshops MDAFA 2003 and MDAFA 2004, Revised Selected
Papers, LNCS, vol. 3599, pp. 33–46. Springer (2005)

134 4 Representation of Object Programs in Metaprograms

7. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proc. OOPSLA/GPCE:
Best Practices for Model-Driven Software Development Workshop (2004)

8. van den Brand, M., Klint, P.: ATerms for manipulation and exchange of structured data: It’s
all about sharing. Inf. Softw. Technol. 49(1), 55–64 (2007)

9. Collard, M.L., Decker, M.J., Maletic, J.I.: Lightweight transformation and fact extraction with
the srcML toolkit. In: Proc. SCAM, pp. 173–184. IEEE (2011)

10. van Deursen, A., Visser, J.: Source model analysis using the JJTraveler visitor combinator
framework. Softw., Pract. Exper. 34(14), 1345–1379 (2004)

11. Fors, N., Cedersjö, G., Hedin, G.: JavaRAG: a Java library for reference attribute grammars.
In: Proc. MODULARITY, pp. 55–67. ACM (2015)

12. Hedin, G.: An overview of door attribute grammars. In: Proc. CC, LNCS, vol. 786, pp. 31–51.
Springer (1994)

13. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci. Com-
put. Program. 72(1-2), 31–39 (2008)

14. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete syntaxes
in model engineering. In: Proc. GPCE, pp. 249–254. ACM (2006)

15. Kastens, U., Waite, W.M.: Modularity and reusability in attribute grammars. Acta Inf. 31(7),
601–627 (1994)

16. Kennedy, A., Russo, C.V.: Generalized algebraic data types and object-oriented programming.
In: Proc. OOPSLA, pp. 21–40. ACM (2005)

17. Konat, G.D.P., Kats, L.C.L., Wachsmuth, G., Visser, E.: Declarative name binding and scope
rules. In: Proc. SLE 2012, LNCS, vol. 7745, pp. 311–331. Springer (2013)

18. Kurtev, I., Bézivin, J., Akşit, M.: Technological spaces: An initial appraisal. In: Proc. CoopIS,
DOA 2002, Industrial track (2002)

19. Lämmel, R., Jones, S.L.P.: Scrap your boilerplate: a practical design pattern for generic pro-
gramming. In: Proc. TLDI, pp. 26–37. ACM (2003)

20. Lämmel, R., Jones, S.L.P.: Scrap more boilerplate: reflection, zips, and generalised casts. In:
Proc. ICFP, pp. 244–255. ACM (2004)

21. Lämmel, R., Jones, S.L.P.: Scrap your boilerplate with class: extensible generic functions. In:
Proc. ICFP, pp. 204–215. ACM (2005)

22. Lämmel, R., Meijer, E.: Mappings make data processing go ’round. In: GTTSE 2005, Revised
Papers, LNCS, vol. 4143, pp. 169–218. Springer (2006)

23. Lämmel, R., Meijer, E.: Revealing the X/O impedance mismatch – (changing lead into gold).
In: Datatype-Generic Programming – International Spring School, SSDGP 2006, Revised Lec-
tures, LNCS, vol. 4719, pp. 285–367. Springer (2007)

24. Lämmel, R., Ostermann, K.: Software extension and integration with type classes. In: Proc.
GPCE, pp. 161–170. ACM Press (2006)

25. Neron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.: A theory of name resolution. In: Proc.
ESOP, LNCS, vol. 9032, pp. 205–231. Springer (2015)

26. Palsberg, J., Jay, C.B.: The essence of the Visitor pattern. In: Proc. COMPSAC, pp. 9–15.
IEEE (1998)

27. Peyton Jones, S.: Tackling the awkward squad: monadic input/output, concurrency, excep-
tions, and foreign-language calls in Haskell. In: Engineering theories of software construction
– Marktoberdorf Summer School 2000, NATO ASI Series, pp. 47–96. IOS Press (2001)

28. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proc. PLDI, pp. 159–169. ACM
(2008)

29. Sheard, T., Peyton Jones, S.L.: Template meta-programming for Haskell. SIGPLAN Not.
37(12), 60–75 (2002)

30. Thomas, D.A.: The impedance imperative – Tuples + objects + infosets = too much stuff! J.
Object Technol. 2(5), 7–12 (2003)

31. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refinement types for Haskell.
In: Proc. ICFP, pp. 269–282. ACM (2014)

32. Visser, J.: Visitor combination and traversal control. In: Proc. OOPSLA, pp. 270–282. ACM
(2001)

33. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: Proc. POPL, pp.
224–235. ACM (2003)

Chapter 5
A Suite of Metaprogramming Scenarios

JAMES CORDY.1

Abstract This chapter is a basic introduction to metaprogramming. A metaprogram
is a program that processes (i.e., takes as input or produces as output) programs.
Metaprogramming is at the heart of software language implementation and process-
ing. The processed programs or artifacts are also referred to as object programs. The
language in which the metaprograms are written is referred to as the metalanguage.
The language of the processed programs or artifacts is referred to as the object lan-
guage. The following are all important scenarios of metaprogramming: interpreta-
tion, compilation, transformation, analysis, and code generation. In this chapter, we
exercise several metaprogramming scenarios using Haskell as the metalanguage.

1 At its heart, this book focuses on metaprogramming in the sense of source-code analysis and ma-
nipulation (as opposed to run-time reflection or adaptive systems). James Cordy may be regarded as
a representative of the discipline – he has developed languages and systems for metaprogramming
(notably TXL [12]), and he has carried out or overseen major industrial projects, important case
studies, or surveys in many application areas of metaprogramming [13, 45]. James Cordy started
his career with influential work on language design and compiler technology, focused eventually
on legacy systems [14], and is nowadays an authority on program comprehension, software trans-
formation, code analysis (e.g., clone detection), and various other areas in empirical and automated
software engineering.
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA 4.0. This art-
work quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This work also quotes https:
//commons.wikimedia.org/wiki/File:Sunset_at_Montmajour_1888_Van_Gogh.jpg, subject to
the attribution “Vincent Van Gogh: Sunset at Montmajour (1888) [Public domain], via Wikimedia Commons.” This work
artistically morphes an image, https://en.wikipedia.org/wiki/James_Cordy, showing the person hon-
ored, subject to the attribution “By Cordyj (talk) (Uploads) - Own work, CC BY-SA 3.0, https://en.wikipedia.
org/w/index.php?curid=31348050.”

135© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_5

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Sunset_at_Montmajour_1888_Van_Gogh.jpg
https://commons.wikimedia.org/wiki/File:Sunset_at_Montmajour_1888_Van_Gogh.jpg
https://en.wikipedia.org/wiki/James_Cordy
https://en.wikipedia.org/w/index.php?curid=31348050
https://en.wikipedia.org/w/index.php?curid=31348050
https://doi.org/10.1007/978-3-319-90800-7_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_5&domain=pdf

136 5 A Suite of Metaprogramming Scenarios

5.1 Interpretation

Interpretation means, essentially, program execution. An interpreter is a meta-
program which executes or evaluates a given object program. An interpreter returns
some result such as a value, a variable assignment, or a “reduced” (simplified) ob-
ject program. An interpreter may take arguments in addition to the object program,
such as a stream of input values, and it may have access to the object program’s
“environment”, for example, the file system. In metaprogramming, in general, and
in interpretation, in particular, the metalanguage and the object language can be the
same language, in principle, but we will not specifically look at this case.

At this stage, we cover the topic of interpretation in a pragmatic manner. Later
on (starting with Chapter 8), we adopt a more formal approach towards interpreta-
tion and, in fact, semantics. We use Haskell as the metalanguage for the illustrative
implementation of interpreters of different languages. Functional programming is
indeed quite suited for interpreter implementation.

5.1.1 Basics of Interpretation

We will demonstrate interpretation for the trivial expression language BTL, the (ab-
stract) syntax of which we introduced earlier. (See Illustration 4.4 for the Haskell-
based abstract syntax.) A BTL interpreter evaluates expressions and returns their
values. Let us set up an informal semantics for BTL which will guide us in imple-
menting an interpreter. For each kind of BTL expression, we need to characterize
the corresponding value:

• TRUE and FALSE: These constant forms of expressions evaluate to the Boolean
values True and False.

• Zero: This constant form evaluates to the natural number 0.
• Succ e: The subexpression e must evaluate to a natural number, say n. The eval-

uation result of the compound expression is then n+1.
• Pred e: The subexpression e must evaluate to a natural number, say n. The evalua-

tion result of the compound expression is either 0, if n equals 0, or n−1 otherwise.
This part of the semantics involves an element of choice, in that we could also
assume that the operation is undefined if e evaluates to the natural number 0.

• IsZero e: The subexpression e must evaluate to a natural number, say n. The eval-
uation result of the compound expression is either True, if n equals 0, or False, if
n is greater than 0.

• If e0 e1 e2: The subexpression e0 must evaluate to a Boolean value, say b. If b
equals True, then e1 is evaluated as the result of the compound expression. If b
equals False, then e2 is evaluated as the result of the compound expression.

Overall, the interpreter could return an Int or a Bool. In fact, the result could be
undefined too. To deal with the choice between Int and Bool, we model the result
type of interpretation as an Either type, as shown below.

5.1 Interpretation 137

Illustration 5.1 (Result type for BTL expression evaluation)

Haskell module Language.BTL.Value

−− Results of evaluation
type Value = Either Int Bool

Here is how we expect to use the interpreter:

Interactive Haskell session:

I evaluate (Pred (If (IsZero Zero) (Succ (Succ Zero)) Zero))
Left 1
- -
I evaluate (Pred TRUE)
Left *** Exception: ... Irrefutable pattern failed for pattern ...

The first example evaluates the expression to Left 1 because IsZero Zero is evalu-
ated to True and thus the first branch of the “if” is selected, thereby applying “Pred”
to Succ (Succ Zero) resulting in Succ Zero (i.e., “1”). The second example illustrates
failing interpretation – the predecessor of a Boolean value is not defined. Failure is
manifested here by run-time pattern-match failure.

The following interpreter directly implements the informal BTL semantics given
above. The Haskell code shown below is completely straightforward.

Illustration 5.2 (A BTL interpreter)

Haskell module Language.BTL.Interpreter

evaluate :: Expr→ Value
evaluate TRUE = Right True
evaluate FALSE = Right False
evaluate Zero = Left 0
evaluate (Succ e) = Left (n+1) where Left n = evaluate e
evaluate (Pred e) = Left (n − if n==0 then 0 else 1) where Left n = evaluate e
evaluate (IsZero e) = Right (n==0) where Left n = evaluate e
evaluate (If e0 e1 e2) = evaluate (if b then e1 else e2) where Right b = evaluate e0

Exercise 5.1 (Interpretation without throwing) [Basic level]
The interpreter “throws” when the operand of Succ, Pred, or IsZero does not evalu-
ate to a number or when the first subterm of If does not evaluate to a Boolean value.
Revise the interpreter so that it returns Nothing of Haskell’s Maybe type in these
cases.

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Value.hs
http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Interpreter.hs

138 5 A Suite of Metaprogramming Scenarios

Let us refine an earlier (simpler) recipe for interpreters (Recipe 2.2).

Recipe 5.1 (Development of an interpreter (continued)).

Metalanguage Pick the metalanguage for the interpreter.
Object-program representation Implement the abstract syntax of the inter-

preted object language within the metalanguage (Recipe 4.1).
Semantic domains Define all types that are needed for additional inputs,

and for the final and intermediate results of interpretation. We refer to these
types as semantic domains. Identify relevant operations on the semantic
domains, for example, arithmetic operations on number types or lookup
and update operations on maps.

Informal semantics Describe the semantics of interpretation informally.
Cover each abstract language construct (i.e., each syntactical pattern) in-
dividually.

Test cases Set up test cases that explain how one expects to use the inter-
preter. That is, provide object programs and interpretation results and all
additional details needed.

Case discrimination Implement interpretation as case discrimination on the
syntactic constructs. There is going to be one code block per language con-
struct. There is a recursive function (procedure or method) per syntactic
category.

Testing Test the interpreter in terms of the test cases.

Exercise 5.2 (Interpreter in an OO language) [Basic level]
Implement the BTL interpreter in an OO language such as Java. You may use the
Interpreter Pattern or the Visitor Pattern [18].

Exercise 5.3 (Interpretation in a scripting language) [Basic level]
Implement the BTL interpreter in a scripting language such as Python.

In the sequel, we apply the interpreter recipe to a few more languages. We will
encounter additional aspects of interpretation: stores, environments, and stepwise
interpretation.

5.1.2 Interpretation with Stores

Let us now discuss interpretation of imperative programs, thereby encountering con-
cepts such as assignment and control flow. We pick the fabricated imperative pro-
gramming language BIPL for this purpose. (See Illustration 4.7 for the Haskell-

5.1 Interpretation 139

based abstract syntax.) Consider the following sample program represented as a
Haskell term; concrete syntax is shown for clarity in the Haskell comment.

Illustration 5.3 (An imperative program for Euclidean division)

Haskell module Language.BIPL.Sample

−− // Compute quotient q and remainder r for dividing x by y
−− q = 0; r = x; while (r >= y) { r = r − y; q = q + 1; }
euclideanDiv :: Stmt
euclideanDiv =

Seq (Assign "q" (IntConst 0)) (Seq (Assign "r" (Var "x"))
(While

(Binary Geq (Var "r") (Var "y"))
(Seq (Assign "r" (Binary Sub (Var "r") (Var "y")))

(Assign "q" (Binary Add (Var "q") (IntConst 1))))))

An interpreter for an imperative language such as BIPL needs to maintain a store
(i.e., a map from variable names to values). The execution of statements may mod-
ify the store, as assignment statements may be performed. The evaluation of expres-
sions observes the store. The simple BIPL language does not permit side effects in
the scope of expressions. The notion of a store is generally important in interpreta-
tion; it is needed whenever imperative programs are being interpreted. Here is the
informal semantics for BIPL:

Statement execution:

• Skip: The given store is returned, as is.
• Assign x e: The right-hand-side expression e is evaluated to a value, which is

then assigned to the variable x in the given store.
• Seq s1 s2: Statement s1 is interpreted first. Statement s2 is interpreted second.

Thus, the effects are incurred from left to right.
• If e s1 s2: The expression e must evaluate to a Boolean value, say b. If b equals

True, then statement execution proceeds with s1; if b equals False, then state-
ment execution proceeds with s2.

• While e s: The while-loop is executed as If e (Seq s (While e s)) Skip. That is, if
the condition e holds, then the body s is executed, followed by the same while-
loop again. If the condition does not hold, then a skip-statement is executed.

Expression evaluation:

• IntConst i: The literal i is returned as an integer value.
• Var x: The given store must map the variable name x to a value; this value is

the result of evaluation.
• Unary o e and Binary o e1 e2: The operands must be evaluated to values of suit-

able types and the symbol o is interpreted as an operation of the metalanguage
that is applied to the operands’ values.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Sample.hs

140 5 A Suite of Metaprogramming Scenarios

To this end, we need semantic domains as follows.

Illustration 5.4 (Semantic domains of a BIPL interpreter)

Haskell module Language.BIPL.Domains

−− Results of expression evaluation
type Value = Either Int Bool
−− Stores as maps from variable names to values
type Store = Map String Value

Thus, we use Haskell’s library type Map to model stores as maps (say, dictionar-
ies) from variable names to values. Here is how we expect to use the interpreter:

Interactive Haskell session:

I execute euclideanDivision (fromList [("x", Left 13), ("y", Left 4)])
fromList [("q", Left 3), ("r", Left 2), ("x", Left 14), ("y", Left 4)]

Thus, we start from a store with suitable arguments "x" and "y" for division; inter-
pretation returns a store with "x" and "y" unchanged and with "q" and "r" bound to the
computed quotient and remainder. We are ready to present the interpreter.

Illustration 5.5 (A BIPL interpreter)

Haskell module Language.BIPL.Interpreter

−− Execution of statements
execute :: Stmt→ Store→ Store
execute Skip m = m
execute (Assign x e) m = insert x (evaluate e m) m
execute (Seq s1 s2) m = execute s2 (execute s1 m)
execute (If e s1 s2) m = execute (if b then s1 else s2) m where Right b = evaluate e m
execute (While e s) m = execute (If e (Seq s (While e s)) Skip) m

−− Evaluation of expressions
evaluate :: Expr→ Store→ Value
evaluate (IntConst i) _ = Left i
evaluate (Var x) m = m!x
evaluate (Unary o e) m = uop o (evaluate e m)
evaluate (Binary o e1 e2) m = bop o (evaluate e1 m) (evaluate e2 m)

−− Interpretation of unary operators
uop :: UOp→ Value→ Value
uop Negate (Left i) = Left (negate i)
uop Not (Right b) = Right (not b)

−− Interpretation of binary operators
bop :: BOp→ Value→ Value→ Value
bop Add (Left i1) (Left i2) = Left (i1+i2)
...

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Domains.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Interpreter.hs

5.1 Interpretation 141

Exercise 5.4 (Interpretation without throwing) [Basic level]
The interpreter “throws” when (i) a variable is used in an expression without a
value in the current store, (ii) a unary or binary operation finds an operand of
an unexpected type, or (iii) a condition of an if-statement does not evaluate to a
Boolean value. Revise the interpreter so that it uses Haskell’s Maybe type instead.

Exercise 5.5 (Parameterless procedures) [Basic level]
Extend the BIPL interpreter of Section 5.1.2 to incorporate procedures without pa-
rameters. A procedure is a named abstraction of a statement. There is a new state-
ment form for calling a procedure. For simplicity, assume that procedures can only
be declared at the top level of a program.

5.1.3 Interpretation with Environments

Let us now discuss the interpretation of functional programs, thereby encountering
function application or, more generally, application of a named and parameterized
abstraction, as a concept. We pick the fabricated functional programming language
BFPL for this purpose. (See Illustration 4.6 for the Haskell-based abstract syntax.)
Consider the following sample program represented as a Haskell term; concrete
syntax is shown for clarity in the Haskell comment.

Illustration 5.6 (A BFPL program for the factorial)

Haskell module Language.BFPL.Samples.Factorial

−− factorial :: Int −> Int
−− factorial x = if ((==) x 0) then 1 else ((*) x (factorial ((−) x 1)))
−− main = print $ factorial 5
factorial :: Program
factorial = ([(

"factorial",
(([IntType], IntType),
(["x"],

If (Binary Eq (Arg "x") (IntConst 0))
(IntConst 1)
(Binary Mul

(Arg "x")
(Apply "factorial" [Binary Sub (Arg "x") (IntConst 1)])))))],

(Apply "factorial" [IntConst 5]))

An interpreter for a functional language such as BFPL may maintain an environ-
ment for binding function arguments to values. Thus, we expect that BFPL expres-
sions will be evaluated in the presence of an environment and function application

http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Samples/Factorial.hs

142 5 A Suite of Metaprogramming Scenarios

will set up an environment on the basis of actual arguments. The notion of an envi-
ronment is generally important in interpretation; it is needed whenever names will
need to bound within a scope of interpretation. Here is the informal semantics for
BFPL:

• IntConst i: The literal i is returned as an integer value.
• BoolConst b: The literal b is returned as a Boolean value.
• Arg x: The binding of the argument x is looked up in the environment.
• If e0 e1 e2: The subexpression e0 must evaluate to a Boolean value, say b. If b

equals True, then e1 is evaluated as the result of the compound expression. If b
equals False, then e2 is evaluated as the result of the compound expression.

• Apply fn es: In the program with its collection of functions, the function of name
fn is looked up – specifically the formal arguments xs and the body. The actual
arguments es are evaluated, resulting in a list vs of values. A new environment
is formed as a list of pairs, with elements drawn from xs and vs. The body is
ultimately evaluated in the new environment.

• Evaluation of the main expression starts from an empty environment.

To this end, we need semantic domains as follows.

Illustration 5.7 (Semantic domains of a BFPL interpreter)

Haskell module Language.BFPL.Domains

−− Results of expression evaluation
type Value = Either Int Bool
−− Environments as maps from argument names to values
type Env = Map String Value

When defining the type Env, we again use Haskell’s library type Map to model
environments as maps (say, dictionaries) from argument names to values. Here is
how we expect to use the interpreter:

Interactive Haskell session:

I evaluate factorial
Left 120

Thus, in the main function, we apply the factorial function to 5, thereby comput-
ing 120. We are ready to present the interpreter.

http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Domains.hs

5.1 Interpretation 143

Illustration 5.8 (A BFPL interpreter)

Haskell module Language.BFPL.Interpreter

−− Evaluation of a program's main expression
evaluate :: Program→ Value
evaluate (fs, e) = f e empty
where
−− Evaluation of expressions
f :: Expr→ Env→ Value
f (IntConst i) _ = Left i
f (BoolConst b) _ = Right b
f (Arg x) m = m!x
f (If e0 e1 e2) m = f (if b then e1 else e2) m where Right b = f e0 m
f (Unary o e) m = uop o (f e m)
f (Binary o e1 e2) m = bop o (f e1 m) (f e2 m)
f (Apply x es) m = f body m'

where
Just (_, (xs, body)) = lookup x fs
vs = map (flip f m) es
m' = fromList (zip xs vs)

−− Interpretation of unary operators
uop :: UOp→ Value→ Value
uop Negate (Left i) = Left (negate i)
uop Not (Right b) = Right (not b)

−− Interpretation of binary operators
bop :: BOp→ Value→ Value→ Value
bop Add (Left i1) (Left i2) = Left (i1+i2)
...

Exercise 5.6 (Parameterized procedures) [Intermediate level]
Exercise 5.5 is extended to go beyond parameterless procedures. That is, a proce-
dure declares variables for formal parameters and the statement form for calling
a procedure includes a list of expressions as actual arguments. Extend the BIPL
interpreter to incorporate such procedures.

5.1.4 Stepwise Interpretation

Let us now discuss interpretation for finite state machines according to the fabricated
language FSML; as introduced earlier. (See Illustration 4.8 for the Haskell-based
abstract syntax.) In contrast to the previous examples, FSML is a modeling language
rather than a programming language. Perhaps more importantly, interpretation of
FSMs intrinsically calls for stepwise execution, as we will see in a second. Here is
the recurring turnstile FSM represented as a Haskell term.

http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Interpreter.hs

144 5 A Suite of Metaprogramming Scenarios

Illustration 5.9 (An FSM for a turnstile in a metro system)

Haskell module Language.FSML.Sample

turnstileFsm :: Fsm
turnstileFsm = Fsm [

State True "locked" [
(Transition "ticket" (Just "collect") "unlocked"),
(Transition "pass" (Just "alarm") "exception")],

State False "unlocked" [
(Transition "ticket" (Just "eject") "unlocked"),
(Transition "pass" Nothing "locked")],

State False "exception" [
(Transition "ticket" (Just "eject") "exception"),
(Transition "pass" Nothing "exception"),
(Transition "mute" Nothing "exception"),
(Transition "release" Nothing "locked")]]

We expect that interpretation will consume events one by one. In each step, the
corresponding action, if any, is produced as output and the machine makes a transi-
tion to the next state. Here is the informal semantics:

• To start the simulation, we need to determine the initial state of the FSM.
• For a given state and a given event, we need to look up the applicable transition,

if any. We assume here that the FSM is deterministic, i.e., there is at most one
applicable transition. The transition identifies the optional action to contribute to
the output and the new state.

• The process of looking up transitions is to be repeated “step by step” until the
input has been consumed, if possible. If there is no applicable transition at any
point, then the FSM “gets stuck” and the remaining input is not consumed.

To this end, we need semantic domains as follows.

Illustration 5.10 (Semantic domains of an FSML interpreter)

Haskell module Language.FSML.Domains

−− Input of FSM simulation
type Input = [Event]
−− Output of FSM simulation
type Output = [Action]

The sample FSM can be exercised with input and output as follows.

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Sample.hs
http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Domains.hs

5.1 Interpretation 145

Illustration 5.11 (Input and expected output for the turnstile FSM)

Haskell module Language.FSML.SampleIO

−− Sample input for sample FSM
sampleInput :: Input
sampleInput =

[
"ticket", −− Regular insertion of a ticket in locked state
"ticket", −− Irregular insertion of a ticket in unlocked state
"pass", −− Regular passage through turnstile in unlocked state
"pass", −− Irregular attempt to pass through turnstile in locked state
"ticket", −− Irregular insertion of a ticket in exceptional state
"mute", −−Mute exceptional state alarm
"release" −− Return from exceptional to locked state

]

−− Expected output
sampleOutput :: Output
sampleOutput = ["collect", "eject", "alarm", "eject"]

We assume a top-level function simulate which takes an FSM as well as a se-
quence of events and returns the corresponding sequence of actions. Here is how we
expect to use the interpreter:

Interactive Haskell session:

I simulate turnstileFsm sampleInput == sampleOutput
True

We limit ourselves to a “batch-oriented” interpretation here. That is, we assume
the complete input to be available upfront and that the complete output will become
available at once. One may also think of “interactive” interpretation such that we
would consume an input stream, event by event, and we would produce an output
stream, action by action. The simple batch-oriented interpreter follows.

Illustration 5.12 (An FSML interpreter)

Haskell module Language.FSML.Interpreter

1 −− FSM simulation starting from initial state
2 simulate :: Fsm→ Input→ Output
3 simulate (Fsm ss) xs = snd (foldl makeTransition (getInitial, []) xs)
4 where
5 −− Look up initial state
6 getInitial :: StateId
7 getInitial = ini
8 where [State _ ini _] = [s | s@(State initial _ _)← ss, initial]
9

10 −− Process event; extent output

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/SampleIO.hs
http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Interpreter.hs

146 5 A Suite of Metaprogramming Scenarios

11 makeTransition :: (StateId, Output)→ Event→ (StateId, Output)
12 makeTransition (source, as) x = (target, as ++ maybeToList a)
13 where (Transition _ a target) = getTransition source x
14

15 −− Look up transition
16 getTransition :: StateId→ Event→ Transition
17 getTransition sid x = t
18 where
19 [t] = [t | t@(Transition x' _ _)← ts, x == x']
20 [(State _ _ ts)] = [s | s@(State _ sid' _)← ss, sid == sid']

The interpreter folds over the entire input (line 3). We use list comprehensions to
identify the initial state ini (line 8), the transition t for the given event (line 19), and
the transitions ts of a state identified by its id (line 20).

Exercise 5.7 (Interpretation without throwing) [Basic level]
The interpreter “throws” when a transition to an undeclared state is attempted,
when a given event is not handled in a given state, or it is not handled deterministi-
cally. Revise the interpreter so that it uses Haskell’s Maybe type instead.

Exercise 5.8 (A more abstract FSML syntax) [Intermediate level]
There is an opportunity for a more abstract syntax for FSML. Note that the ids of the
declared states must be distinct. Further, assume that only deterministic FSMs are
to be represented, which implies that the events for the transitions of each state are
distinct too. Thus, collections of both declared states and transitions per state can
be modeled as maps. Revise FSML’s Haskell-based abstract syntax (Illustration 4.8)
and interpreter (Illustration 5.12) accordingly.

Exercise 5.9 (An interactive FSML interpreter) [Intermediate level]
Implement an interactive FSML interpreter, as discussed above. For instance, you
may represent the input and output as streams or message queues so that events are
handled and actions are communicated as they become available.

5.2 Compilation

Compilation is alternative form of language implementation. In contrast to interpre-
tation, programs are not “directly” executed, but are translated first. Thus, a compiler
is a metaprogram which translates one language into another language. More gen-
erally, a translation is a description of a mapping (or the execution thereof) from
one software language to another software language. The translation of a compiler
is assumed to be semantics-preserving, that is, if we had interpreters (semantics) for

5.2 Compilation 147

the input and output languages of the translation, then interpretation of the input and
output would return the same result.

The topic of compilation will be covered here only superficially. There is no
shortage of good textbooks on compilation (e.g., [1, 32, 3]). We will briefly summa-
rize the architecture of a “classic” compiler and develop a simple, two-phase com-
piler for translating imperative programs first to an assembly language and second
to a machine language.

5.2.1 Architecture of a Compiler

A compiler breaks down into a frontend and a backend with subordinate phases or
components as follows:

Frontend

Syntactic analysis This phase, which is also referred to as parsing, essentially
determines the syntactical structure of the input. To this end, parsing is typi-
cally guided by a grammar which defines the input language.

Preprocessing A preprocessor may be applied prior to actual parsing. This
is, for example, the case for the C and C++ languages. Other languages may
use more syntax-aware macro mechanisms which are readily integrated with
parsing.

Lexical analysis Parsing may involve an extra phase, scanning, for processing
text at the level of lexical syntax for units such as white space, comments,
identifiers, and literals. There are scannerless and non-scannerless parsers.

Semantic analysis Name-binding and typing rules are checked. Appropriate
data structures (i.e., a symbol table or an attributed parse tree) are built to
represent semantic information about program identifiers that is also to be
used in subsequent phases.

Backend

Program analysis The control and data flow in the program are analyzed to
find nontrivial problems (such as dead code), and to enable optimizations
(such as dead-code elimination) and efficient code generation. An extended
development of the topic can be found in a dedicated textbook [37]; textbooks
on compiler construction also cover the topic to some extent.

Optimization The code is optimized, for example, by dead-code elimination,
constant folding, common-subexpression elimination, or loop unfolding. Op-
timizations may be applied at different levels of abstraction, i.e., at the level
of parse trees, intermediate representations (abstracting from input syntax),
dedicated representations provided by program analysis (e.g., control-flow
graphs), or target code (assembly or machine code).

148 5 A Suite of Metaprogramming Scenarios

Code generation The source language or some language for intermediate rep-
resentation is translated into a target language such as a virtual machine lan-
guage. This translation is also referred to as code generation. The translation
may be described in different ways, for example, by simple rules or by a re-
cursive function that composes target code from parts of source code. Code
generation may also use constraints on the size of the target code or other
“cost functions” on code [38]. Further, code generation can also commence
in phases, for example, a phase of translation from a high-level language to
bytecode, followed by a phase completing translation to machine code.

Among all these components of a real compiler, we focus below on the core
component for code generation. Parsing (syntactic analysis) is covered separately
(Chapter 7) because it is such a recurring phase in many metaprogramming sce-
narios. Some other components will be touched upon later, i.e., semantic analysis
(Section 5.3) and optimization (Section 5.4); these aspects are also relevant beyond
the scope of compilation.

5.2.2 Translation to Assembly Code

We use a fabricated assembly language: BAL (Basic Assembly Language). BAL
is stack-based, as far as primitive operations (Add, Not, . . .) are concerned; it is
symbol-based, as far as addressing memory cells is concerned; and it is jump- and
label-based in terms of control flow (i.e., there are labels, and unconditional and con-
ditional jumps, but no structured if-statements or while-loops). Let us illustrate the
language with the following sample program for Euclidean division; the underlying
imperative code is shown in the Haskell comments.

Illustration 5.13 (Euclidean division in assembly code)

Haskell module Language.BAL.Sample

euclideanDiv = [
Const 14, Store "x", −− x = 14;
Const 4, Store "y", −− y = 4;
Const 0, Store "q", −− q = 0;
Load "x", Store "r", −− r = x;
Label "0", −− Beginning of while loop
Load "r", Load "y", Geq, −− (r >= y)
Not, CJump "1", −− Skip while loop
Load "r", Load "y", Sub, Store "r", −− r = r − y;
Load "q", Const 1, Add, Store "q", −− q = q + 1;
Jump "0", −− Next iteration of loop
Label "1" −− Label to goto when skipping loop

]

The type for BAL instructions is defined as follows.

http://github.com/softlang/yas/tree/springer/languages/BAL/Haskell/Language/BAL/Sample.hs

5.2 Compilation 149

Illustration 5.14 (Abstract syntax of BAL assembly code)

Haskell module Language.BAL.Syntax

data Instr
= Const Int −− Push a constant onto the stack
| Store String −− Store TOS in storage and pop TOS
| Load String −− Push a storage cell's content onto stack
| Label String −− Place a label as an address for jumps
| Jump String −− Jump to a label
| CJump String −− Jump to a label, if TOS is nonzero; also pop TOS
| Not −− Apply negation to TOS and replace it by result
| Add −− Apply addition to the two topmost stack elements; pop them; push result
...

For each BAL instruction form, we have also included its informal semantics as
a comment. We have elided several primitive operations for brevity. Importantly,
there are instruction forms for accessing the memory in a symbol-based (i.e., name-
based) manner. There are instruction forms for jumping both conditionally and un-
conditionally to a label.

The translation of imperative programs (BIPL) to assembly code (BAL) is a func-
tion which maps each statement or expression to a corresponding sequence of as-
sembly instructions, as shown below.

Illustration 5.15 (Translation to assembly code)

Haskell module Language.BIPL.Compiler

compile :: Stmt→ [Instr]
compile s = fst (stmt s 0)

stmt :: Stmt→ Int→ ([Instr], Int)
stmt Skip l = ([], l)
stmt (Assign x e) l = (expr e ++ [Store x], l)
stmt (Seq s1 s2) l0 =

let
(zs1, l1) = stmt s1 l0
(zs2, l2) = stmt s2 l1

in (zs1 ++ zs2, l2)
stmt (If e s1 s2) l0 =
let l1 = l0+1

(zs1, l2) = stmt s1 (l1+1)
(zs2, l3) = stmt s2 l2

in (expr e
++ (CJump (show l0) : zs2)
++ (Jump (show l1) : (Label (show l0) : zs1))
++ [Label (show l1)], l3)

stmt (While e s) l0 =
let l1 = l0+1

(zs, l2) = stmt s (l1+1)

http://github.com/softlang/yas/tree/springer/languages/BAL/Haskell/Language/BAL/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Compiler.hs

150 5 A Suite of Metaprogramming Scenarios

in ([Label (show l0)] ++ expr e
++ (Not : (CJump (show l1) : zs))
++ [Jump (show l0), Label (show l1)], l2)

expr :: Expr→ [Instr]
expr (IntConst i) = [Const i]
expr (Var x) = [Load x]
expr (Unary BIPL.Negate e) = expr (Binary BIPL.Sub (IntConst 0) e)
expr (Unary BIPL.Not e) = expr e ++ [BAL.Not]
expr (Binary o e1 e2) = expr e1 ++ expr e2 ++

[case o of
BIPL.Add→ BAL.Add
...

The function above models a recursive walk over BIPL’s syntactical patterns such
that the resulting BAL instruction sequences are composed from recursive results.
Labels need to be introduced along the way, subject to some housekeeping. That is,
an Int is passed around to represent the next “available” label.

We explain the translation rules for the statement forms as follows:

• Skip: The empty instruction sequence “[]” is returned with the unmodified label
counter.

• Assign x e: A Store x instruction is added to the instruction sequence for the ex-
pression e; the label counter is not modified, as e cannot involve control flow.

• Seq s1 s2: The instruction sequences for the two statements s1 and s2 are simply
concatenated; the label counter is threaded through the two recursive applications
of the translation function.

• If e s1 s2: Two labels are used: label l0 is for the instructions of the else-branch;
and label l1 is for the end of the if-statement, as the then-branch needs to skip over
the else-branch. The overall instruction sequence is obtained by concatenating
the sequences for the condition, then-branch, and else-branch with appropriate
insertions for labels and jumping.

• While e s: This case is similar to the one for if-statements, as it involves label
placement and jumps.

The translation of expressions is even more straightforward and will not be ex-
plained here further for brevity. To summarize, each statement and each expres-
sion are mapped to zero, one, or more instructions while recursing into compound
statements and expressions and composing the recursively computed instruction se-
quences in appropriate ways. Along the way, house keeping is done so that labels
can be introduced consistently.

Exercise 5.10 (Compilation of functional programs) [Intermediate level]
The translation of function applications requires stack-based subroutines and pa-
rameter passing. Extend BAL to provide enough expressiveness and devise a trans-
lation from BFPL to the extended assembly language.

5.2 Compilation 151

5.2.3 Translation to Machine Code

The assembly language, as discussed above, makes some assumptions that necessi-
tate another phase of translation if we want to arrive at the low level of a machine
language. Firstly, in BAL, labels are explicitly placed and arbitrary names can be as-
signed to labels. In a low-level language, there are no labels, but instead one needs to
deal with instruction addresses. Secondly, in BAL, memory access is symbol-based.
In a low-level language, one needs to deal with addresses of memory cells.

We use a fabricated machine language: BML (Basic Machine Language). BML
is very similar to BAL, but memory access leverages integers for addresses, and
jumping leverages integers for the instruction pointer; there is no label operation.
Here is a sample program.

Illustration 5.16 (Euclidean division in machine code)

Haskell module Language.BML.Sample

euclideanDiv = [Const 14,Store 0,Const 4,Store 1,Const 0,Store 2,Load 0,Store 3,Load
3,Load 1,Geq,Not,CJump 22,Load 3,Load 1,Sub,Store 3,Load 2,Const 1,Add,Store
2,Jump 8]

The type for BML instructions is defined as follows.

Illustration 5.17 (Abstract syntax of BML machine code)

Haskell module Language.BML.Syntax

data Instr
= Const Int −− Push a constant onto the stack
| Store Int −− Store TOS in storage and pop TOS
| Load Int −− Push a storage cell's content onto stack
| Jump Int −− Jump to an address
| CJump Int −− Jump to an address, if TOS is nonzero; also pop TOS
| Not −− Apply negation to TOS and replace it by result
| Add −− Apply addition to the two topmost stack elements; pop them; push result
...

A translator from BAL to BML may also be referred to as an assembler. The
following translator essentially translates BAL instruction sequences to BML in-
struction sequences, one by one.

http://github.com/softlang/yas/tree/springer/languages/BML/Haskell/Language/BML/Sample.hs
http://github.com/softlang/yas/tree/springer/languages/BML/Haskell/Language/BML/Syntax.hs

152 5 A Suite of Metaprogramming Scenarios

Illustration 5.18 (BAL to BML assembler)

Haskell module Language.BAL.Assembler

assemble :: [BAL.Instr]→ [BML.Instr]
assemble zs = concat (map f zs)

where
f (BAL.Const i) = [BML.Const i]
f (BAL.Store x) = [BML.Store (cell x)]
f (BAL.Load x) = [BML.Load (cell x)]
f (BAL.Label x) = []
f (BAL.Jump x) = [BML.Jump (instruction x)]
f (BAL.CJump x) = [BML.CJump (instruction x)]
f BAL.Not = [BML.Not]
f BAL.Add = [BML.Add]
...

−−Map symbol to memory cell
cell :: String→ Int
cell x = fromJust (findIndex (==x) symbols)

where
symbols = nub (concat (map symbol zs))
symbol (BAL.Store x) = [x]
symbol _ = []

−−Map label to instruction address
instruction :: String→ Int
instruction x = instruction' 0 zs

where
instruction' i (BAL.Label x' : zs) = if x==x' then i else instruction' i zs
instruction' i (_ : zs) = instruction' (i+1) zs

The translation is largely trivial because the instruction forms of BAL and BML
are so similar. However, we need to take a closer look at the instructions for memory
access, label placement, and jumps. We explain the corresponding translation rules
in detail as follows:

• BAL.Label x: No corresponding BML instruction is generated. The label is only
used when resolving jumps; see the helper function instruction.

• BAL.Store x: A corresponding BML.Store instruction is generated, where the sym-
bol x is mapped to an address for the memory cell; see the helper function cell
which collects all symbols, “nubs” them (i.e., makes them unique), and deter-
mines a symbol’s address as the position in the resulting list.

• BAL.Load x: A corresponding BML.Load instruction is generated. The symbol x is
mapped in the same way as in the case of BAL.Store x.

• BAL.Jump x: A corresponding BML.Jump instruction is generated. The symbol x
is mapped to an address for an instruction; see the helper function instruction,
which determines the position of x in the input sequence zs while not counting
label instructions, as they will not end up in the machine code.

http://github.com/softlang/yas/tree/springer/languages/BAL/Haskell/Language/BAL/Assembler.hs

5.2 Compilation 153

• BAL.CJump x: A corresponding BML.CJump instruction is generated. The symbol
x is mapped in the same way as in the case of BAL.Jump x.

For the sake of completeness, we need to provide an interpreter for the BML
language, thereby making sure that we fully understand the translation in terms of
the semantics of the languages involved. The interpreter is illustrated by applying it
to the instructions for Euclidean division:

Interactive Haskell session:

I run Language.ML.Sample.euclideanDivision
(fromList [(0,14),(1,4),(2,3),(3,2)],[])

This result is basically a “memory dump”; the key “0” corresponds to the original
variable "x", the key “1” to "y", and so on. The underlying interpreter uses a stack for
operands and a map for the memory as shown below.

Illustration 5.19 (Interpretation of BML machine code)

Haskell module Language.BML.Machine

1 type Memory = Map Int Int
2 type Stack = [Int]
3

4 run :: [Instr]→ (Memory, Stack)
5 run zs0 = run' zs0 empty []
6 where
7 run' :: [Instr]→ Memory→ Stack→ (Memory, Stack)
8 run' [] sto sta = (sto, sta)
9 run' (z:zs) sto sta = let (zs', sto', sta') = step z in run' zs' sto' sta'

10 where
11 step :: Instr→ ([Instr], Memory, Stack)
12 step (Const i) = (zs, sto, i : sta)
13 step (Store i) = (zs, insert i (head sta) sto, tail sta)
14 step (Load i) = (zs, sto, sto!i : sta)
15 step (Jump i) = (drop i zs0, sto, sta)
16 step (CJump i) = (if head sta /= 0 then drop i zs0 else zs, sto, tail sta)
17 step Not = (zs, sto, uop (λ i→ if i == 0 then 1 else 0) sta)
18 step Add = (zs, sto, bop (+) sta)
19 ... −− other operations omitted
20

21 −− Apply unary operation on ints on stack
22 uop :: (Int→ Int)→ Stack→ Stack
23 uop f (i1:sta) = f i1 : sta
24

25 −− Apply binary operation on ints on stack
26 bop :: (Int→ Int→ Int)→ Stack→ Stack
27 bop f (i2:i1:sta) = f i1 i2 : sta

Thus, the run function takes an instruction sequence and returns a memory and
a stack; the initial memory is assumed to be the “empty” map from Ints to Ints; and

http://github.com/softlang/yas/tree/springer/languages/BML/Haskell/Language/BML/Machine.hs

154 5 A Suite of Metaprogramming Scenarios

the initial stack is empty. The function uses a tail-recursive helper function run' to
execute instruction sequences until the empty sequence is left (line 8). When facing
a nonempty sequence (line 9), the helper function step is used to execute the heading
instruction. Most of the cases of step return the remaining instruction sequence zs,
while the cases for jump instructions (lines 15–16) identify an alternative “continu-
ation”, that is, the instruction sequence corresponding to the jump address. (We will
discuss continuations again in Section 11.3.)

Exercise 5.11 (Compilation to Java bytecode) [Intermediate level]
Implement a translation from BIPL to Java bytecode. To this end, you may use
ASM,2 a framework for Java bytecode analysis and manipulation.

5.3 Analysis

We are concerned here with the static analysis of software artifacts such as source
code. We are not concerned with the analysis of programs at runtime or with traces
of program execution. We use the term “(static) analysis” here in a broad sense to
include well-formedness checking, type checking, other forms of program checking
and analysis [44], type inference, and fact or model extraction, thereby encompass-
ing areas as different as language implementation, program verification, software
quality assurance, and software reverse engineering.

We develop analyses here as more or less disciplined metaprograms without
much discussion of the underlying foundations of type systems [40] and (formal)
program analysis [37], and also without employing specification languages such as
attribute grammars [25, 2] or Object Constraint Language (OCL) [11].

There are several different kinds of analysis results. In the basic case, an anal-
ysis may consist of a predicate checking for constraint satisfaction, as in well-
formedness or type checking. In other cases, an analysis computes a data struc-
ture such as a collection of metrics or facts for program abstractions. Ultimately, an
analysis may return nontrivial software language artifacts, for example, a recovered
architectural model. We cover such diversity only in a sketchy manner.

5.3.1 Type Checking

A type checker is a metaprogram which checks that all language constructs are used
correctly in terms of the types of operands or arguments. Along the way, a type
checker also checks that each name used (e.g., for variables) can be associated with
a declaration (e.g., a variable declaration). We demonstrate type checking here for

2 asm.ow2.org

asm.ow2.org

5.3 Analysis 155

the trivial expression language BTL. This language features natural numbers and
Boolean values, as well as operations on these types of values.

Here is how we expect to use BTL’s type checker:

Interactive Haskell session:

I wellTyped (Succ Zero)
True
- -
I wellTyped (Succ TRUE)
False

That is, the expression Succ Zero is well-typed because the Succ operation is cor-
rectly applied to an expression that is of the type of natural numbers. In contrast,
the expression Succ TRUE is ill-typed because the Succ operation is incorrectly ap-
plied to an expression that is of the type of Boolean values. The type checker is
implemented as follows.

Illustration 5.20 (A type checker for BTL expressions)

Haskell module Language.BTL.TypeChecker

1 −− Types of expressions
2 data Type = NatType | BoolType
3

4 −−Well−typedness of expressions
5 wellTyped :: Expr→ Bool
6 wellTyped e = isJust (typeOf e)
7

8 −− Types of expressions
9 typeOf :: Expr→ Maybe Type

10 typeOf TRUE = return BoolType
11 typeOf FALSE = return BoolType
12 typeOf Zero = return NatType
13 typeOf (Succ e) = do { NatType← typeOf e; return NatType }
14 typeOf (Pred e) = do { NatType← typeOf e; return NatType }
15 typeOf (IsZero e) = do { NatType← typeOf e; return BoolType }
16 typeOf (If e0 e1 e2) = do
17 BoolType← typeOf e0
18 t1← typeOf e1
19 t2← typeOf e2
20 guard (t1==t2)
21 return t1

Thus, the type checker is a simple syntax-driven metaprogram with one equation
per syntactical pattern and the use of recursion for checking types of subexpressions.
In this sense, metaprograms for type checking and interpretation (Section 5.1) lever-
age a similar program structure. The type checker designates the type Type (lines
1–2) to represent the different types of BTL expressions. The type checker returns
a Boolean value (lines 4–6) to report whether or not a BTL expression is well-
typed, i.e., the type of the expression can be determined. The central function of

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/TypeChecker.hs

156 5 A Suite of Metaprogramming Scenarios

the type checker is typeOf (lines 8-21), which maps expressions to types; the re-
sult is wrapped in the Maybe monad so that type-checking failure is communicated
gracefully. We consider all the equations of the type checker:

• TRUE, FALSE, and Zero (lines 10–12): These cases of constant forms of expres-
sions simply return the corresponding type of the constant.

• Succ e, Pred e, and IsZero e (lines 13–15): These cases of unary operations check
the type of the operand by a monadic bind and return the result type of the oper-
ation.

• If e0 e1 e2 (lines 16–21): The first operand must be of type Bool. The second and
third operands must be of the same type – this common type is also returned as
the type of the if-expression.

The complexity of type checking obviously increases with the complexity of the
object language. For instance, a type checker for a functional programming language
(e.g., BFPL) would need to check that the types of the actual arguments in function
applications agree with the declared types of the formal arguments. In Chapter 9,
we will see several more interesting type checkers.

Exercise 5.12 (Graceful failure) [Basic level]
We decided to wrap the result of type checking in the Maybe monad (Illustra-
tion 5.20), whereas we did not wrap the result of interpretation (Illustration 5.2).
Argue why it is more “important” to deal gracefully with failure in type checking
than in interpretation.

5.3.2 Well-Formedness Checking

A well-formedness checker is a metaprogram which checks language-specific con-
straints on top of the abstract syntax of object programs. In fact, a type checker,
as discussed before, can also be referred to as a well-formedness checker – except
that well-formedness is also applicable without direct reference to types. A well-
formedness checker may be implemented as a predicate modeling the underlying
constraints.

We demonstrate well-formedness checking here for the domain-specific mod-
eling language FSML. For instance, it makes sense to check that all referenced
state ids (i.e., ids appearing as targets of transitions) are actually declared by a state
declaration – no types are involved here. Such matching of name references and
declarations is also referred to as name binding. Here is how we expect to use a
well-formedness checker for FSML:

5.3 Analysis 157

Interactive Haskell session:
I check turnstileFsm
True
- -
I check (Fsm [State False "x" []])
False

In the first check, we confirm that the turnstile FSM is well-formed. In the second
check, we face an FSM without an initial state and it is thus confirmed to be ill-
formed. We are ready to present the well-formedness checker.

Illustration 5.21 (Well-formedness for finite state machines)
Haskell module Language.FSML.BoolChecker

check :: Fsm→ Bool
check fsm = and (map ($ fsm) [

distinctStateIds,
singleInitialState,
resolvableTargetStates,
deterministicTransitions,
reachableStates])

distinctStateIds :: Fsm→ Bool
distinctStateIds (Fsm ss) = sids == nub sids

where sids = [sid | (State _ sid _)← ss]

singleInitialState :: Fsm→ Bool
singleInitialState (Fsm ss) = length inis == 1

where inis = [sid | s@(State initial sid _)← ss, initial]

resolvableTargetStates :: Fsm→ Bool
resolvableTargetStates (Fsm ss) = and (map (λ (State _ _ ts)→ and (map f ts)) ss)

where f (Transition _ _ target) =
not (null [s | s@(State _ source _)← ss, source == target])

deterministicTransitions :: Fsm→ Bool
deterministicTransitions (Fsm ss) = and (map (λ (State _ _ ts)→ f ts) ss)

where f ts = events == nub events
where events = [event | (Transition event _ _)← ts]

reachableStates :: Fsm→ Bool
reachableStates (Fsm ss) = ...

The analysis (i.e., the checker) combines several constraints (distinctStateIds,
singleInitialState, etc.) by conjunction – meaning that all the individual constraints
must hold for an FSM to be well-formed. We describe the constraints and their
implementation in Haskell in some detail as follows:

• distinctStateIds: The state ids of the different state declarations which an FSM
consists of need to be distinct. This is checked by extracting the state ids from all
the declarations and checking that the result is a proper set (by means of nub).

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/BoolChecker.hs

158 5 A Suite of Metaprogramming Scenarios

• singleInitialState: There is supposed to be exactly one initial state. A list compre-
hension is used to extract the list of initial states, which is then checked to ensure
that it is of length 1.

• resolvableTargetStates: All the target state ids are supposed to be resolvable to
declared states. This is checked for each target state id by trying to find the cor-
responding state declaration by means of a list comprehension.

• deterministicTransitions: The per-state transitions are supposed to involve distinct
events. This is checked for each state by extracting the events from the transitions
and checking that the result is a proper set (by means of nub).

• reachableStates: All states are supposed to be reachable from the initial state. We
omit a description of the implementation of this constraint for brevity.

Exercise 5.13 (Resolution of target states) [Basic level]
Consider the implementation of resolvableTargetStates and identify an aspect of un-
necessarily inefficient implementation; improve the implementation accordingly.

When an analysis is supposed to check artifacts and thus potentially identify
problems, then it may be practically important to return errors or warnings that will
be helpful for better understanding and locating problems. Thus, we should make
a transition from predicates to functions that return collections of error messages.
Here is how we expect to use an accordingly revised well-formedness checker for
FSML:

Interactive Haskell session:

I check turnstileFsm
[]
- -
I check (Fsm [State False "x" []])
["Missing initial state","Unreachable state x"]

In the first check, we confirm that the turnstile FSM is well-formed; an empty
list of error messages proxies for well-formedness. In the second check, we face
an FSM without an initial state. Ill-formedness is explained in terms of two error
messages: the initial state is missing, and the declared state is unreachable, as a
consequence of the missing initial state. The revised checker looks as follows.

Illustration 5.22 (Analysis with error messages)

Haskell module Language.FSML.StringChecker

1 check :: Fsm→ [String]
2 check fsm = concatMap ($ fsm) [
3 distinctStateIds,
4 singleInitialState,
5 resolvableTargetStates,
6 deterministicTransitions,

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/StringChecker.hs

5.3 Analysis 159

7 reachableStates]
8

9 distinctStateIds :: Fsm→ [String]
10 distinctStateIds (Fsm ss) = map ("Multiple declarations of state " ++) doubles
11 where
12 doubles = (\\) sids (nub sids)
13 sids = [sid | (State _ sid _)← ss]
14 ...

The error messages returned by the individual constraints are concatenated to-
gether (line 2). Compare the Boolean version of the distinctStateIds constraint with
the version returning error messages. In the former case, there is simply a test for
whether there are any doubles. In the latter case, the set of doubles is precisely
determined (lines 12–13) and then we map over the doubles to generate one error
message per double (line 10).

Exercise 5.14 (Avoiding duplicate error messages) [Basic level]
Analyze the above checker and identify potential sources of duplicate error mes-
sages; revise the checker so that duplicates are never returned to the user.

5.3.3 Fact Extraction

A fact extractor is a metaprogram which extracts certain “facts” from given software
artifacts. The idea is that a fact is essentially a property of a well-defined part of the
input or a relationship between parts; see [35, 31, 6] for many scenarios and fact
extraction techniques. Fact extraction is often used in the context of software reverse
engineering. We may take the view that collections of facts, as extracted by a fact
extractor, form elements of a dedicated software language.

We use trivial metric-like examples to illustrate fact extraction. Let us consider
the problem of determining the number of inbounds and outbounds for each state
in an FSM — this may be viewed as some sort of “complexity metric”. A state is
an inbound for another state if there is a transition from the former to the latter.
Likewise, a state is an outbound for another state if there is a transition from the
latter to the former. Such fact extraction is implemented as a function inouts, which
we use as follows.

Interactive Haskell session:

I inouts turnstileFsm
fromList [("exception",(1,1)),("locked",(2,2)),("unlocked",(1,1))]

For instance, there is only one state with a transition to exception; there is also
just one state that is directly reachable by a transition from exception. In both cases,
we do not count “self-transitions”. The implementation of inouts follows.

160 5 A Suite of Metaprogramming Scenarios

Illustration 5.23 (Counting inbound and outbound states for FSMs)

Haskell module Language.FSML.Extraction

inouts :: Fsm→ Map StateId (Int, Int)
inouts (Fsm ss) = fromList (map f ss)

where
−− Per−state fact extraction
f (State _ sid ts) = (sid, (ins, outs))

where
−− Number of states from which sid is reached directly
ins = length (filter g ss)

where g (State _ sid' ts') =
elem sid [sid'' | Transition _ _ sid''← ts', sid'' /= sid']

−− Number of states reached directly from sid
outs = length (nub [sid' | Transition _ _ sid'← ts, sid /= sid'])

That is, list comprehensions are used to collect states ins from which a given
state sid is reached directly, and states out which are reached directly from sid. The
collection is performed per state, and the per-state results are combined into a map
from state ids to inbounds and outbounds.

As another example of fact extraction, let us consider the problem of measur-
ing the frequency of unary and binary operator usage in a program — this may be
viewed as some sort of “language-usage analysis”. We apply such fact extraction to
imperative BIPL programs. We assume that this fact extraction is implemented as a
function ops, which we expect to use as follows:

Interactive Haskell session:

I ops euclideanDiv
fromList [("Add",1),("Geq",1),("Sub",1)]

That is, addition, comparison (“≥”), and subtraction are all used once in the
sample program; no other operators are used. The implementation of ops follows.

Illustration 5.24 (Counting operator applications in BIPL programs)

Haskell module Language.BIPL.Extraction

ops :: Stmt→ Map String Int
ops s = foldr (λ o m→ insertWith (+) o 1 m) empty os

where
os = everything (++) ([] `mkQ` f) s
f (Unary o _) = [showConstr (toConstr o)]
f (Binary o _ _) = [showConstr (toConstr o)]
f _ = []

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Extraction.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Extraction.hs

5.4 Transformation 161

In the code above, we use a generic functional programming scheme everything to
go over a BIPL program and extract operator uses; we rely on Haskell’s “scrap your
boilerplate” (SYB) approach to generic functional programming [28, 29, 30]. We
use the traversal scheme everything in such a manner that we reach each and every
expression – including those statements – and we extract all operators (their string
representations) from unary and binary expressions. Each occurrence counts as one
when we build up the frequency map for operator usage; see the use of insertWith.

Exercise 5.15 (Function application graph) [Basic level]
In a functional program, functions can of course apply other functions and they may
be directly and indirectly recursive. Devise a fact extraction for BFPL which results
in a graph with a node for each function and with an edge between functions f and
g if there is an application of g within the definition of f .

5.4 Transformation

We are concerned here with the static transformation of software artifacts such as
source code. We are not concerned with the transformation (adaptation) of programs
at runtime, for example, in the sense of self-adaptive systems. The term “transfor-
mation” is highly overloaded in software engineering. We assume here that a trans-
formation is a description of changes or replacements to be applied to elements
of a given software language. The result may be in the same or a different soft-
ware language; see also the established classifiers for endogenous versus exogenous
transformations [33].

We use the term “(static) transformation” here in a broad sense to include pro-
gram optimization, program refactoring, model transformation, and technological
space mapping, thereby encompassing areas as different as language implementa-
tion, model-driven engineering, and software re-engineering. Arguably, translation
and analysis, as discussed above, can be viewed as exogenous transformations [33],
i.e., the source and target languages differ. We focus below on endogenous transfor-
mations, i.e., transformations with the same source and target language.

In practice, especially in the areas of software re-engineering, reverse engineer-
ing, and model-driven engineering, transformations may be implemented with the
help of dedicated frameworks or even metaprogramming systems or transformation
languages (e.g., ASF+SDF [49], TXL [12, 13], Stratego [10], Rascal [23, 22], or
ATL [21]). We will continue to use Haskell for illustration here; we do not use any
advanced frameworks at this point.

162 5 A Suite of Metaprogramming Scenarios

5.4.1 Optimization

Optimization is a recurring issue in language implementation. For instance, a com-
piler performs optimizations at various stages on the basis of different program rep-
resentations. A DSL implementation may provide good performance compared with
a general-purpose language because of domain-specific optimizations.

Let us consider expression simplification as a simple instance of optimization
here. More specifically, we will deal with the expression forms that are common to
the fabricated imperative and functional programming languages BIPL and BFPL,
as used throughout this book. We refer to these shared expression forms as EL
(Expression Language) with the abstract syntax defined as follows.

Illustration 5.25 (Abstract syntax of EL expressions)

Haskell module Language.EL.Syntax

−− Expressions
data Expr =

IntConst Int | BoolConst Bool | Var String | Unary UOp Expr | Binary BOp Expr Expr
−− Unary operators
data UOp = Negate | Not
−− Binary operators
data BOp = Add | Sub | Mul | Lt | Le | Eq | Geq | Gt | And | Or

One can think of various simplification rules that cater for optimization. For in-
stance, the algebraic units of addition and multiplication can be used for simplifica-
tion. We assume a function simplify to this end:

Interactive Haskell session:

I simplify (Binary Add (Var "a") (IntConst 0))
Just (Var "a")
- -
I simplify (IntConst 42)
Nothing

An application of the function simplify succeeds only if a rule is applicable. The
first application succeeds because “0” is a (right) unit of addition and thus we can
simplify the addition expression to the remaining (left) operand. The second applica-
tion fails because no simplification rule is applicable. The simplify function collects
a number of simplification rules together as shown below.

http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/Syntax.hs

5.4 Transformation 163

Illustration 5.26 (Simplification rules for expressions)

Haskell module Language.EL.Rules.Simplify

simplify :: Expr→ Maybe Expr
simplify (Binary Add x (IntConst 0)) = Just x
simplify (Binary Mul x (IntConst 1)) = Just x
simplify (Binary Mul x (IntConst 0)) = Just (IntConst 0)
simplify _ = Nothing

In order to fully define the intended optimization, a little more work is needed be-
cause our simplification rules are encoded in such a way that, so far, they only apply
at the top of the input term. Consider the following failing attempt of simplification:

Interactive Haskell session:

I simplify (Binary Add (Var "a") (Binary Add (Var "b") (IntConst 0)))
Nothing

That is, the application fails despite a simplification opportunity in a subterm
position; see the right operand of the outermost binary expression. Let us devise a
normalization function for expressions which exhaustively applies a given function
to a term and all its subterms recursively, as many times as needed for this process
to arrive at a fixed point, as shown below.

Illustration 5.27 (Normalization of expressions)

Haskell module Language.EL.Normalizer

normalize :: (Expr→ Maybe Expr)→ Expr→ Expr
normalize f e = let e' = pass e in if e==e' then e else normalize f e'

where
−− Apply one pass of normalization
pass e = sub (maybe e id (f e))
−− Push normalization into subexpressions
sub (Unary o e) = Unary o (pass e)
sub (Binary o e1 e2) = Binary o (pass e1) (pass e2)
sub e = e

The function recursively traverses into the given expression and applies the argu-
ment f to the root and all subexpressions. When f fails, then we maintain the input
term as is; see the application of maybe. Careful inspection suggests that normaliza-
tion commences in a top-down manner, as f is applied to an expression e before re-
cursive application. Recursive passes are performed until the term does not change
anymore. Thus, we can apply the higher-order function normalize to the function
simplify to perform exhaustive simplification:

http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/Rules/Simplify.hs
http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/Normalizer.hs

164 5 A Suite of Metaprogramming Scenarios

Interactive Haskell session:

I normalize simplify (Binary Add (Var "a") (Binary Add (Var "b") (IntConst 0)))
Binary Add (Var "a") (Var "b")

More effort would be needed to be able also to optimize expressions that are part
of bigger program phrases, for example, imperative statements. The normalize func-
tion at hand can only deal with expressions. Ultimately, we need a more powerful
metaprogramming technique: term rewriting [15, 24, 16], as discussed later in this
book (Section 12.1).

Exercise 5.16 (Positive test cases for optimization) [Basic level]
State positive test cases for all of the simplification rules in Illustration 5.26 which
have not yet been tested above.

5.4.2 Refactoring

A refactoring is a transformation that changes a program’s “design” without chang-
ing its behavior [17, 34]. A very simple example of a refactoring in an object-
oriented program is renaming of classes or methods. Refactorings can be automated
(see Opdyke’s seminal work [39]), and they make sense across all kinds of software
languages [27]. For instance, some form of renaming can be applied to abstractions
in different kinds of programming languages or other kinds of software languages,
as we will demonstrate in this section.

Let us demonstrate renaming for the FSML language. In particular, we may want
to rename state ids in finite state machines. The FSML instance is illustrated in
Fig. 5.1; the illustration provides a positive test case for renaming such that the state
id “locked” is renamed to “closed” and “unlocked” is renamed to “open”.

Before discussing the actual transformation, let us identify the precondition and
the postcondition for a “proper” renaming, as described below.

Illustration 5.28 (Pre/postconditions for state-id renaming)

Haskell module Language.FSML.Rename.Condition

pre, post :: StateId→ StateId→ Fsm→ Bool
pre i i' x = elem i (states x) && not (elem i' (states x))
post i i' y = not (elem i (states y)) && elem i' (states y)
states :: Fsm→ [StateId]
states fsm =

concatMap (λ s→
getId s : map getTarget (getTransitions s))

(getStates fsm)

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Rename/Condition.hs

5.4 Transformation 165

initial state locked {

 ticket / collect -> unlocked;

 pass / alarm -> exception;

}

state unlocked {

 ticket / eject;

 pass -> locked;

}

…

initial state closed {

 ticket / collect -> open;

 pass / alarm -> exception;

}

state open {

 ticket / eject;

 pass -> closed;

}

…

Input Output

Fig. 5.1 Illustration of rename refactoring for FSML’s state ids: the input and the output of the
transformation are shown; the related state ids are highlighted by edges.

That is, the precondition for renaming state id i to i' in an FSM x is that i must be
in use in x and i' must not be in use in x. The postcondition is that i must not be in
use in the resulting FSM y (anymore) and i' must be (now) in use in y.

In implementing pre/postconditions, we interpret the notion of a state id being
“in use” in an FSM as meaning that the id occurs either as the name assigned to a
state (a declaration thereof) or in the target location of a transition.

Exercise 5.17 (Postcondition for state-id renaming) [Basic level]
Argue that the postcondition stated above is not as strong as possible. Attempt a
stronger formulation.

Exercise 5.18 (Negative test cases for state-id renaming) [Basic level]
Devise negative test cases for the precondition stated above.

For any transformation, it is useful to understand the laws obeyed by the transfor-
mation. As far as renaming is concerned, we may state that renaming can be reverted
as follows; we gloss over the detail here that renaming returns a “maybe”.

rename i' i . rename i i' = id

We are ready to present the actual transformation.

166 5 A Suite of Metaprogramming Scenarios

Illustration 5.29 (State-id renaming for FSML)

Haskell module Language.FSML.Rename.Transformation

rename :: StateId→ StateId→ Fsm→ Maybe Fsm
rename i i' x = do

guard $ pre i i' x
guard $ post i i' y
return y

where
y = Fsm (map perState (getStates x))
perState s =

State
(getInitial s)
(if getId s == i then i' else getId s)
(map perTransition (getTransitions s))

perTransition t =
Transition

(getEvent t)
(getAction t)
(if getTarget t == i then i' else getTarget t)

Thus, the code describes a traversal over the structure of an FSM while replacing
state ids systematically.

Let us consider another instance of renaming, i.e., renaming variables in an
imperative program. This is a much simplified variation on what IDEs provide
for mainstream programming languages. The pre/postconditions are similar to the
FSML instance – except that “names in use” are determined differently, as shown
below.

Illustration 5.30 (Pre/postconditions for variable renaming)

Haskell module Language.BIPL.Rename.Condition

pre, post :: String→ String→ Stmt→ Bool
pre i i' x = elem i (vars x) && not (elem i' (vars x))
post i i' y = not (elem i (vars y)) && elem i' (vars y)
vars :: Data a => a→ [String]
vars z = nub (everything (++) (const [] `extQ` f `extQ` g) z)

where
f (Assign i _) = [i]
f _ = []
g (Var i) = [i]
g _ = []

That is, we leverage Haskell’s “scrap your boilerplate” (SYB) approach to
generic functional programming [28, 29, 30] to collect variables in statements and
expressions. The traversal scheme everything extracts names from each and every
subterm – either the empty list or a singleton list for a variable which appears on

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Rename/Transformation.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Rename/Condition.hs

5.4 Transformation 167

the left-hand side of an assignment (see the helper function f) or as a variable in the
sense of the corresponding expression form (see the helper function g).

We are ready to present the actual transformation.

Illustration 5.31 (Variable renaming for BIPL)

Haskell module Language.BIPL.Rename.Transformation

rename :: String→ String→ Stmt→ Maybe Stmt
rename i i' x = do

guard $ pre i i' x
guard $ post i i' y
return y

where
y = everywhere (id `extT` f `extT` g) x

where
f (Assign i'' e) | i'' == i = Assign i' e
f s = s
g (Var i'') | i'' == i = Var i'
g e = e

Thus, the code uses the traversal scheme everywhere to reach each and every
subterm and to possibly replace variable names in patterns of the same kind as those
from which we extracted variable names in implementing pre/postconditions.

The two instances of the rename refactoring, as discussed above, are deliberately
simple, but it should be clear that even renaming can be much more involved, for
instance, when the object language features possibly nested scopes. Still, renaming
is a rather simple refactoring; we refer to the literature for the correctness challenges
for refactoring more generally [5, 46, 47].

Generally, the development (the design and implementation) of a software trans-
formation, in the sense of a transformational program for optimization, refactor-
ing, or yet other purposes, breaks down into the steps summarized by the following
recipe.

Recipe 5.2 (Development of a software transformation).

Positive test cases Devise one or more examples of input-output pairs that
demonstrate the expected input/output behavior of the intended transfor-
mation in a meaningful way. These examples can be used as positive test
cases eventually. In the earlier optimization scenario, a test case consisted
of an expression and the predicted result of its optimization. A test case may
encompass additional arguments, for example, the old and new names in
the case of renaming.

Negative test cases A transformation’s applicability and correctness may
depend on a precondition to be met. Devise inputs that violate the precondi-
tion. Assuming that the implementation should check the precondition, these
inputs form test cases with the expected behavior that the transformation

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Rename/Transformation.hs

168 5 A Suite of Metaprogramming Scenarios

will reject them. For instance, in the case of renaming, the transformation
is superfluous, and thus worth rejecting, if the “old” name is not in use in
the input artifact. More obviously, renaming must not cause name clashes,
and thus the “new” name must not be in use in the input.

Pre/postconditions Formulate the precondition (see above) and the postcon-
dition (i.e., condition to hold for the output of the transformation).

Laws Identify transformation laws which may be helpful for better under-
standing the transformation. For instance, one may identify the inverse of a
transformation. Renaming is obviously reversible, while optimizations gen-
erally are not, but other laws may be relevant, for example, idempotence.

Implementation Implement the actual transformation including the pre/-
postconditions. In fact, an implementation of the postcondition is not neces-
sary if the transformation “guarantees” that the postcondition will hold. In
principle, the precondition can always be set up in a strong enough manner
that no postcondition checking is needed. In practice, it is sometimes con-
venient to leave the precondition underspecified and to constrain the output
instead. Also, postcondition checking may be helpful during debugging. For
instance, the issue of superfluous renaming, as mentioned above, could be
checked either by the precondition or by a comparison of the input and
output to show that they are different.

Testing Test the transformation in terms of the test cases. Test the validity of
the laws for some inputs, such as those from the positive test cases.

5.5 Composition 169

initial state locked {

 ticket / collect -> unlocked;

}

state unlocked {

 ticket / eject;

 pass -> locked;

}

+
state locked {

 pass / alarm -> exception;

}

state exception {

 ticket / eject;

 pass;

 mute;

 release -> locked;

}

initial state locked {

 ticket / collect -> unlocked;

 pass / alarm -> exception;

}

state unlocked {

 ticket / eject;

 pass -> locked;

}

state exception {

 ticket / eject;

 pass;

 mute;

 release -> locked;

}

Fig. 5.2 Illustration of the merging of FSMs. On the left-hand side, the two operands (FSMs) for
merging are shown; on the right-hand side, the result of merging is shown – this is the recurring
turnstile FSM. The upper operand shows the non-exceptional behavior, whereas the lower operand
shows the exceptional behavior.

5.5 Composition

A (software) composition combines multiple input artifacts into one. Any compo-
sition is essentially a transformation, except that multiple inputs are transformed
into one output. In particular, modularity mechanisms [19] and forms of special-
ization and overriding [9, 8] for programs may be considered instances of com-
position; see [4, 43] for a broad discussion of software composition concepts. We
also refer to related notions such as invasive software composition [4], aspect weav-
ing [41, 20], stepwise enhancement and related metaprogramming extension or com-
position techniques [36, 26], and feature-oriented programming [42, 48]. The notion
of composition is by no means restricted to programming languages, but it applies
rather generally to software languages; we mention model composition [7] as an
example.

We demonstrate composition here for finite state machines by merging (think
of “adding” or “combining”) two FSMs; see Fig. 5.2 for an illustration. The actual
composition, in the sense of the input for a positive test case, is shown in code form
below.

170 5 A Suite of Metaprogramming Scenarios

Illustration 5.32 (Composition of the sample FSM)

Haskell module Language.FSML.Merge.Sample

turnstileFsm :: Maybe Fsm
turnstileFsm = sampleFsmRegular `merge` sampleFsmException

sampleFsmRegular, sampleFsmException :: Fsm
sampleFsmRegular = Fsm [

State True "locked" [
(Transition "ticket" (Just "collect") "unlocked")],

State False "unlocked" [
(Transition "ticket" (Just "eject") "unlocked"),
(Transition "pass" Nothing "locked")]

]
sampleFsmException = Fsm [

State True "locked" [
(Transition "pass" (Just "alarm") "exception")],

State False "exception" [
(Transition "ticket" (Just "eject") "exception"),
(Transition "pass" Nothing "exception"),
(Transition "mute" Nothing "exception"),
(Transition "release" Nothing "locked")]

]

Just as in the case of transformation, we need to identify the pre/postconditions
for a composition. This is slightly involved for the merging of FSMs. We begin by
pointing out that the composition at hand does not involve any additional inputs
other than the FSMs themselves. Thus, it appears to make sense to consider well-
formedness of FSMs (Section 5.3.2) as a starting point for both pre/postconditions.
However, well-formedness would be both too weak and too strong in practice. Here
are some considerations:

• When two or more FSMs are composed, the well-formedness constraint
singleInitialState is arguably too weak. Even if each of the operands has exactly
one initial state, the operands may still fail to share the ultimate initial state. Thus,
we may need to actually check the constraint with the postcondition, unless we
strengthen the precondition so that the operands, in combination, have at most
one initial state.

• The well-formedness constraint singleInitialState is also too strong if we assume
that operands and intermediate results of merging are acceptable without an ini-
tial state. Along the same lines, the well-formedness constraint reachableStates
should not be part of the pre/postconditions.

• We should include the well-formedness constraint resolvableTargetStates in the
pre/postconditions because each operand, as much as the result, should never
describe a transition to a state that is not explicitly declared in the FSM at hand.
(One may argue differently.)

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Merge/Sample.hs

5.5 Composition 171

We are ready to implement the pre/postconditions. In fact, we define one predi-
cate, ok, which models both the precondition and the postcondition.

Illustration 5.33 (Pre/postconditions for merging of FSMs)

Haskell module Language.FSML.Merge.Condition

ok :: Fsm→ Bool
ok fsm = and $ map ($fsm) [

zeroOrOneInitialState,
distinctStateIds,
resolvableTargetStates,
deterministicTransitions]

zeroOrOneInitialState :: Fsm→ Bool
zeroOrOneInitialState fsm = ...

length inis < 2
where

inis = [getId s | s← getStates fsm, getInitial s]

...

The actual composition is implemented as a union-like operation at several levels
as shown below.

Illustration 5.34 (FSM composition)

Haskell module Language.FSML.Merge.Transformation

merge :: Fsm→ Fsm→ Maybe Fsm
merge x y = do

guard $ ok x && ok y
let z = fromMap (unionWith f (toMap x) (toMap y))
guard $ ok z
return z

where
−− Per−state composition
f sx sy = State

(getInitial sx || getInitial sy)
(getId sx)
(getTransitions sx ++ getTransitions sy)

toMap = fromList . map (λ s→ (getId s, s)) . getStates
fromMap = Fsm . map snd . toList

That is:

• We represent FSMs as “maps” from state ids to the actual state declarations, i.e.,
groups of transitions with the same source state.

• In this manner, we can use a unionWith operation on maps which is parameterized
by a helper f that combines two state declarations for the same state id.

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Merge/Condition.hs
http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Merge/Transformation.hs

172 5 A Suite of Metaprogramming Scenarios

• A composed state is initial if it is initial in at least one operand. The composed
transitions are obtained by concatenating the operands’ transitions.

In terms of laws, we may commit to associativity and commutativity of the merge
composition:

x `merge` (y `merge` z) = x `merge` (y `merge` z)
x `merge` y = y `merge` x

Here, we gloss over the detail here that merge returns a “maybe”. More interest-
ingly, for these laws to hold, we need to “normalize” FSMs in such a way that the
order of states and transitions does not need to matter, as modeled by the following
function.

Illustration 5.35 (Normalization of FSMs)

Haskell module Language.FSML.Normalization

normalize :: Fsm→ Fsm
normalize =

Fsm
. sortOn getId
. map (λ s→ State (getInitial s) (getId s) (sort (getTransitions s)))
. getStates

We may also define equality on FSMs in such a manner that normalization pre-
cedes testing for plain structural equality.

Illustration 5.36 (Equality of FSMs)

Haskell module Language.FSML.Eq

instance Eq Fsm where
x == y = getStates (normalize x) == getStates (normalize y)

Such aspects of normalization and relaxed equality are not uncommon in imple-
menting software transformations.

Exercise 5.19 (Precondition for merging of FSMs) [Intermediate level]
If the operands define different initial states, then the postcondition does not hold,
and thus it needs to be checked. Identify all remaining issues of underspecification
and implement a stronger precondition so that no postcondition would be needed.

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Normalization.hs
http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Eq.hs

References 173

Summary and Outline

We have discussed a number of metaprogramming scenarios: interpretation, com-
pilation, analysis, transformation, and composition. We have exercised instances of
these scenarios (“problems”) with Haskell as the metalanguage and simple object
languages for illustration.

All of the metaprograms operated on top of abstract syntax. In the next two chap-
ters, we will describe the foundations and implementation of concrete syntax. In
this manner, we will also be able to use concrete object syntax in metaprograms.
Afterwards, we will discuss semantics and types of software languages, thereby
contributing to the foundations of metaprogramming in general, and of interpreta-
tion and analysis in particular. Towards the end of the book, in Chapter 12, we will
discuss a few metaprogramming techniques that could also be used in addressing
the scenarios of the present chapter in a more advanced manner.

References

1. Aho, A., Monica S., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools. Ad-
dison Wesley (2006). 2nd edition

2. Alblas, H., Melichar, B. (eds.): Attribute Grammars, Applications and Systems, International
Summer School SAGA, 1991, Proceedings, LNCS, vol. 545. Springer (1991)

3. Appel, A., Palsberg, J.: Modern Compiler Implementation in Java. Cambridge University
Press (2002). 2nd edition

4. Aßmann, U.: Invasive software composition. Springer (2003)
5. Bannwart, F., Müller, P.: Changing programs correctly: Refactoring with specifications. In:

Proc. FM, LNCS, vol. 4085, pp. 492–507. Springer (2006)
6. Basten, H.J.S., Klint, P.: DeFacto: Language-parametric fact extraction from source code. In:

Proc. SLE 2008, LNCS, vol. 5452, pp. 265–284. Springer (2009)
7. Bézivin, J., Bouzitouna, S., Fabro, M.D.D., Gervais, M., Jouault, F., Kolovos, D.S., Kurtev, I.,

Paige, R.F.: A canonical scheme for model composition. In: Proc. ECMDA-FA, LNCS, vol.
4066, pp. 346–360. Springer (2006)

8. Bracha, G., von der Ahé, P., Bykov, V., Kashai, Y., Maddox, W., Miranda, E.: Modules as
objects in Newspeak. In: Proc. ECOOP, LNCS, vol. 6183, pp. 405–428. Springer (2010)

9. Bracha, G., Lindstrom, G.: Modularity meets inheritance. In: Proc. ICCL, pp. 282–290. IEEE
(1992)

10. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language and
toolset for program transformation. Sci. Comput. Program. 72(1-2), 52–70 (2008)

11. Clark, T., Warmer, J. (eds.): Object Modeling with the OCL, The Rationale behind the Object
Constraint Language, LNCS, vol. 2263. Springer (2002)

12. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61(3), 190–210
(2006)

13. Cordy, J.R.: Excerpts from the TXL cookbook. In: GTTSE 2009, Revised Papers, LNCS, vol.
6491, pp. 27–91. Springer (2011)

14. Dean, T.R., Cordy, J.R.: A syntactic theory of software architecture. IEEE Trans. Softw. Eng.
21(4), 302–313 (1995)

15. Dershowitz, N.: A taste of rewrite systems. In: Functional Programming, Concurrency, Simu-
lation and Automated Reasoning: International Lecture Series 1991-1992, McMaster Univer-
sity, Hamilton, Ontario, Canada, LNCS, vol. 693, pp. 199–228. Springer (1993)

174 5 A Suite of Metaprogramming Scenarios

16. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer
Science B: Formal Methods and Semantics, pp. 243–320. North-Holland (1990)

17. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley (1999)
18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley (1994)
19. Henriksson, J., Johannes, J., Zschaler, S., Aßmann, U.: Reuseware – Adding modularity to

your language of choice. J. Object Technol. 6(9), 127–146 (2007)
20. Hilsdale, E., Hugunin, J.: Advice weaving in AspectJ. In: Proc. AOSD, pp. 26–35. ACM

(2004)
21. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci. Com-

put. Program. 72(1-2), 31–39 (2008)
22. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language for source code

analysis and manipulation. In: Proc. SCAM, pp. 168–177. IEEE (2009)
23. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming with Rascal. In: GTTSE

2009, Revised Papers, LNCS, vol. 6491, pp. 222–289. Springer (2011)
24. Klop, J.W.: Term rewriting systems. In: Handbook of Logic in Computer Science, pp. 1–117.

Oxford University Press (1992)
25. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory 2(2), 127–

145 (1968)
26. Lämmel, R.: Declarative aspect-oriented programming. In: Proc. PEPM, pp. 131–146. Uni-

versity of Aarhus (1999)
27. Lämmel, R.: Towards generic refactoring. In: Proc. RULE, pp. 15–28. ACM (2002)
28. Lämmel, R., Jones, S.L.P.: Scrap your boilerplate: a practical design pattern for generic pro-

gramming. In: Proc. TLDI, pp. 26–37. ACM (2003)
29. Lämmel, R., Jones, S.L.P.: Scrap more boilerplate: reflection, zips, and generalised casts. In:

Proc. ICFP, pp. 244–255. ACM (2004)
30. Lämmel, R., Jones, S.L.P.: Scrap your boilerplate with class: extensible generic functions. In:

Proc. ICFP, pp. 204–215. ACM (2005)
31. Lin, Y., Holt, R.C.: Formalizing fact extraction. ENTCS 94, 93–102 (2004)
32. Louden, K.: Compiler Construction: Principles and Practice. Cengage Learning (1997)
33. Mens, T., Gorp, P.V.: A taxonomy of model transformation. ENTCS 152, 125–142 (2006)
34. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng. 30(2), 126–

139 (2004)
35. Murphy, G.C., Notkin, D.: Lightweight lexical source model extraction. ACM Trans. Softw.

Eng. Methodol. 5(3), 262–292 (1996)
36. Naish, L., Sterling, L.: Stepwise enhancement and higher-order programming in Prolog. J.

Funct. and Log. Program. 2000(4) (2000)
37. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, corrected 2nd printing

edn. Springer (2004)
38. Nymeyer, A., Katoen, J., Westra, Y., Alblas, H.: Code generation = A* + BURS. In: Proc. CC,

LNCS, vol. 1060, pp. 160–176. Springer (1996)
39. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University of Illinois at

Urbana-Champaign (1992)
40. Pierce, B.: Types and Programming Languages. MIT Press (2002)
41. Popovici, A., Alonso, G., Gross, T.R.: Just-in-time aspects: efficient dynamic weaving for

java. In: Proc. AOSD, pp. 100–109. ACM (2003)
42. Prehofer, C.: Feature-oriented programming: A fresh look at objects. In: Proc. ECOOP, LNCS,

vol. 1241, pp. 419–443. Springer (1997)
43. Pulvermüller, E., Goos, G., Aßmann, U.: New software composition concepts. Sci. Comput.

Program. 56(1-2), 1–4 (2005)
44. Renggli, L., Ducasse, S., Gîrba, T., Nierstrasz, O.: Domain-specific program checking. In:

Proc. TOOLS, LNCS, vol. 6141, pp. 213–232. Springer (2010)
45. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone detection tech-

niques and tools: A qualitative approach. Sci. Comput. Program. 74(7), 470–495 (2009)

References 175

46. Schäfer, M., Ekman, T., de Moor, O.: Challenge proposal: Verification of refactorings. In:
Proc. PLPV, pp. 67–72. ACM (2009)

47. Soares, G., Gheyi, R., Massoni, T.: Automated behavioral testing of refactoring engines. IEEE
Trans. Softw. Eng. 39(2), 147–162 (2013)

48. Trujillo, S., Batory, D.S., Díaz, O.: Feature oriented model driven development: A case study
for portlets. In: Proc. ICSE, pp. 44–53. IEEE (2007)

49. van den Brand, M., Sellink, M.P.A., Verhoef, C.: Generation of components for software reno-
vation factories from context-free grammars. Sci. Comput. Program. 36(2-3), 209–266 (2000)

Chapter 6
Foundations of Textual Concrete Syntax

AVRAM NOAM CHOMSKY.1

Abstract In this chapter, we consider the notion of concrete syntax of software
languages thereby complementing the earlier discussion of abstract syntax (Chap-
ters 3and 4). Concrete syntax is tailored towards processing (reading, writing, edit-
ing) by humans who are language users, while abstract syntax is tailored towards
processing by programs that are authored by language implementers. In this chap-
ter, we focus on the concrete syntax of string languages as defined by context-free
grammars (CFGs). In fact, we cover only textual concrete syntax; we do not cover
visual concrete syntax. We introduce the algorithmic notion of acceptance for a
membership test for a language. We also introduce the algorithmic notion of parsing
for recovering the grammar-based structure of input. We defer the implementation
aspects of concrete syntax, including actual parsing approaches, to the next chapter.

1 There is clearly nothing wrong with the notion of a Turing machine – after all it is Turing-
complete, but the way it is described and discussed is clearly very reminiscent of how we think
of actual (early) computing machines working operationally, if not mechanically. Personally, I
have always felt more attracted to the lambda calculus, with its high level of abstraction, much
more focused on computation than on operation. Likewise, I admire the Chomsky hierarchy [4],
as it defines grammars in a fundamental manner, including a semantics that makes no operational
concessions. There is a need for well-engineered grammar forms, such as parsing expression gram-
mars [5], but all such work stands on the shoulders of Chomsky.
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA
4.0. This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This
work also quotes https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_
Google_Art_Project.jpg, subject to the attribution “Vincent van Gogh: The Starry Night (1889) [Public do-
main], via Wikimedia Commons.” This work artistically morphes an image, https://en.wikipedia.org/
wiki/Noam_Chomsky, showing the person honored, subject to the attribution “By culturaargentinai - This file has
been extracted from another file: Noam Chomsky .jpg, CC BY-SA 2.0, https://commons.wikimedia.org/w/
index.php?curid=48394900.”

177© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_6

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Noam_Chomsky
https://commons.wikimedia.org/w/index.php?curid=48394900
https://commons.wikimedia.org/w/index.php?curid=48394900
https://doi.org/10.1007/978-3-319-90800-7_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_6&domain=pdf

178 6 Foundations of Textual Concrete Syntax

6.1 Textual Concrete Syntax

A grammar is a collection of rules defining the syntax of a language’s syntactic cat-
egories such as statements and expressions. We introduce a basic grammar notation
and a convenient extension here. We also show that a grammar can be understood
in a “generative” sense, i.e., a grammar derives (“generates”) language elements as
strings.

6.1.1 A Basic Grammar Notation

Let us study the concrete syntax of BNL (Binary Number Language). This is the lan-
guage of unsigned binary numbers, possibly with decimal places, for example, “10”
(2 as a decimal number) and “101.01” (5.25 as a decimal number). Let us define the
concrete syntax of BNL. To this end, we use “fabricated” grammar notation: BGL
(Basic Grammar Language).

Illustration 6.1 (Concrete syntax of BNL)

BGL resource languages/BNL/cs.bgl

[number] number : bits rest ; // A binary number
[single] bits : bit ; // A single bit
[many] bits : bit bits ; // More than one bit
[zero] bit : '0' ; // The zero bit
[one] bit : '1' ; // The nonzero bit
[integer] rest : ; // An integer number
[rational] rest : '.' bits ; // A rational number

BGL is really just a notational variation on the classic Backus-Naur form
(BNF) [1]. A grammar is a collection of rules (say, productions). Each rule con-
sists of a label such as [number] for better reference, a left-hand side which is a
grammar symbol such as number in the first rule, and a right-hand side which is a
sequence of grammar symbols. There are two kinds of grammar symbols:

Terminals These are quoted symbols such as “0” and “1”; they must not appear
on the left-hand side of context-free rules. The terminals constitute the “alphabet”
from which to build strings.

Nonterminals These are alphabetic symbols such as number, bits, and rest; they
may appear on both the left- and the right-hand side of rules. In fact, the left-hand
side of a context-free rule is a single nonterminal. Nonterminals correspond to
syntactic categories.

http://github.com/softlang/yas/tree/springer/languages/BGL
http://github.com/softlang/yas/tree/springer/languages/BNL/cs.bgl

6.1 Textual Concrete Syntax 179

6.1.2 Derivation of Strings

The intended meaning of a grammar is that rules can be applied from left to right
to derive (say, “generate”) strings composed of terminals such that nonterminals
are replaced by right-hand sides of rules and terminals remain. We often assume
that a grammar identifies a distinguished nonterminal – the start symbol – from
which to start derivation. We may also just assume that the left-hand side of the first
production is simply the start symbol. Derivation is illustrated below for a binary
number.

Illustration 6.2 (Derivation of a string)
The following sequence of steps derives the terminal string “10” from the nonter-
minal number:

• number Apply rule [number]
• bits rest Apply rule [integer] to rest
• bits Apply rule [many] to bits
• bit bits Apply rule [zero] to bit
• ‘1’ bits Apply rule [single] to bits
• ‘1’ bit Apply rule [zero] to bit
• ‘1’ ‘0’

We assume that a “well-formed” grammar must permit derivation of terminal se-
quences for each of its nonterminals and that each nonterminal should be exercised
by some of the derivations, starting from the start symbol. Such well-formedness is
meant to rule out “nonsensical” grammars.

Exercise 6.1 (An alternative derivation) [Basic level]
There is actually more than one way to derive the terminal sequence in Illustra-
tion 6.2. Identify an alternative derivation.

Exercise 6.2 (Derivation of a string) [Basic level]
Present the derivation sequence for “101.01” in the style of Illustration 6.2.

Exercise 6.3 (BNL with signed numbers) [Basic level]
Extend the grammar in Illustration 6.1 to enable signed binary numbers.

180 6 Foundations of Textual Concrete Syntax

6.1.3 An Extended Grammar Notation

Consider again the grammar in Illustration 6.1. Optionality of the fractional part is
encoded by the rules [integer] and [rational], subject to an “auxiliary” nonterminal
rest. Sequences of bits are encoded by the rules [single] and [many], subject to
an “auxiliary” nonterminal bits. These are recurring idioms which can be expressed
more concisely in the extended Backus-Naur form [7] (EBNF). We propose a related
grammar notation here: EGL (Extended Grammar Language). Let us illustrate EGL
here with a concise syntax definition for BNL.

Illustration 6.3 (EBNF-like concrete syntax of BNL)

EGL resource languages/BNL/EGL/cs.egl

[number] number : { bit }+ { '.' { bit }+ }? ;
[zero] bit : '0' ;
[one] bit : '1' ;

Optionality of a phrase is expressed by the form “{ . . .}?”. Repetition zero, one,
or more times is expressed by the form “{ . . .}∗”. Repetition one or more times is
expressed by the form “{ . . .}+”. Rule labels are optional in EGL. In particular, we
tend to leave out labels for nonterminals with only one alternative.

The extended notation (EGL) can be easily reduced (“desugared”) to the basic
notation (BGL) by modeling the EGL-specific phrases through additional rules, also
subject to extra (fresh) nonterminals. There are these cases:

• Given one or more occurrences of a phrase {s1 · · · sn}? with grammar symbols
s1, . . . , sn and a fresh nonterminal x, each occurrence is replaced by x and two
rules are added:

– x : ;
– x : s1 · · · sn ;

• Given one or more occurrences of a phrase {s1 · · · sn}∗ and a fresh nonterminal
x, each such occurrence is replaced by x and two rules are added:

– x : ;
– x : s1 · · · sn x ;

• Given one or more occurrences of a phrase {s1 · · · sn}+ and a fresh nonterminal
x, each such occurrence is replaced by x and two rules are added:

– x : s1 · · · sn ;
– x : s1 · · · sn x ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BNL/EGL/cs.egl

6.1 Textual Concrete Syntax 181

Exercise 6.4 (Grammar notation translation) [Intermediate level]
The full EBNF notation [7] supports nested groups of alternatives. If such grouping
was expressible in (an extended) EGL, then we could use grammar rules such as
“s : a { b | c }? d ;” where the group of alternatives is “b | c”. Reduce (“desugar”)
this group form to the basic notation.

6.1.4 Illustrative Examples of Grammars

We define the concrete syntax of a few more languages here. We revisit (“fabri-
cated”) languages for which we already defined the abstract syntax in Chapter 3.

6.1.4.1 Syntax of Simple Expressions

Let us define the concrete syntax of the expression language BTL.

Illustration 6.4 (Concrete syntax of BTL)

BGL resource languages/BTL/cs.bgl

[true] expr : "true" ;
[false] expr : "false" ;
[zero] expr : "zero" ;
[succ] expr : "succ" expr ;
[pred] expr : "pred" expr ;
[iszero] expr : "iszero" expr ;
[if] expr : "if" expr "then" expr "else" expr ;

That is, we assume “curried” notation (juxtaposition) for function application,
i.e., for applying the operators 'pred', 'succ', and 'iszero'. That is, we write succ zero
instead of succ(zero). Curried notation is also used, for example, in the functional
programming language Haskell.

6.1.4.2 Syntax of Simple Imperative Programs

Let us define the concrete syntax of the imperative programming language BIPL.

http://github.com/softlang/yas/tree/springer/languages/BGL
http://github.com/softlang/yas/tree/springer/languages/BTL/cs.bgl

182 6 Foundations of Textual Concrete Syntax

Illustration 6.5 (Concrete syntax of BIPL)

EGL resource languages/BIPL/cs.egl

// Statements
[skip] stmt : ';' ;
[assign] stmt : name '=' expr ';' ;
[block] stmt : '{' { stmt }* '}' ;
[if] stmt : 'if' '(' expr ')' stmt { 'else' stmt }? ;
[while] stmt : 'while' '(' expr ')' stmt ;

// Expressions
[or] expr : bexpr { '||' expr }? ;
[and] bexpr : cexpr { '&&' bexpr }? ;
[lt] cexpr : aexpr { '<' aexpr }? ;
[leq] cexpr : aexpr { '<=' aexpr }? ;
[eq] cexpr : aexpr { '==' aexpr }? ;
[geq] cexpr : aexpr { '>=' aexpr }? ;
[gt] cexpr : aexpr { '>' aexpr }? ;
[add] aexpr : term { '+' aexpr }? ;
[sub] aexpr : term { '−' aexpr }? ;
[mul] term : factor { '*' term }? ;
[negate] factor : '−' factor ;
[not] factor : '!' factor ;
[intconst] factor : integer ;
[var] factor : name ;
[brackets] factor : '(' expr ')' ;

There are several different statement and expression forms. For instance, the first
rule ([skip]) defines the syntax of an empty statement; the second rule ([assign]) de-
fines the syntax of assignment with a variable to the left of “=” and an expression
to the right of “=”. The rule for if-statements makes the ’else’ branch optional, as in
the C and Java languages.

The rules for expression forms are layered with extra nonterminals bexpr (for
“Boolean expressions”), cexpr (for “comparison expressions”), etc. to model opera-
tor priorities such as that “*” to bind more strongly than “+”. We note that the syntax
of names and integers is left unspecified here.

Exercise 6.5 (Priorities of alternatives) [Intermediate level]
Practical grammar notations and the corresponding parsing approaches support a
more concise approach to the modeling of priorities, not just of operators but pos-
sibly of alternatives (rules) in general. Study some grammar notation, for example,
YACC [8], SDF [12], or ANTLR [11], with regard to priorities and sketch a possible
extension of EGL, illustrated with a revision of the BIPL grammar.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BIPL/cs.egl

6.1 Textual Concrete Syntax 183

6.1.4.3 Syntax of Simple Functional Programs

Let us define the concrete syntax of the functional programming language BFPL.

Illustration 6.6 (Concrete syntax of BFPL)

EGL resource languages/BFPL/cs.egl

// Program = functions + main expression
program : { function }* main ;
function : funsig fundef ;
funsig : name '::' funtype ;
fundef : name { name }* '=' expr ;
funtype : simpletype { '−>' simpletype }* ;
main : 'main' '=' 'print' '$' expr ;

// Simple types
[inttype] simpletype : 'Int' ;
[booltype] simpletype : 'Bool' ;

// Expressions
[unary] expr : uop subexpr ;
[binary] expr : '(' bop ')' subexpr subexpr ;
[subexpr] expr : subexpr ;
[apply] expr : name { subexpr }+ ;
[intconst] subexpr : integer ;
[brackets] subexpr : '(' expr ')' ;
[if] subexpr : 'if' expr 'then' expr 'else' expr ;
[arg] subexpr : name ;

// Unary and binary operators
[negate] uop : '−' ;
[not] uop : 'not' ;
[add] bop : '+' ;
. . .

The syntax of BFPL is focused on expression forms. There are further syntactic
categories for programs (as lists of functions combined with a “main” expression)
and function signatures. The central expression form is that of function application.
Curried notation is assumed. Operators are applied in (curried) prefix notation too.
Thus, operator priorities are not modeled. We note that the syntax of names and
integers is left unspecified here.

6.1.4.4 Syntax of Finite State Machines

Let us define the concrete syntax of the DSML FSML.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BFPL/cs.egl

184 6 Foundations of Textual Concrete Syntax

Illustration 6.7 (Concrete syntax of FSML)

EGL resource languages/FSML/cs.egl

fsm : {state}* ;
state : {'initial'}? 'state' stateid '{' {transition}* '}' ;
transition : event {'/' action}? {'−>' stateid}? ';' ;
stateid : name ;
event : name ;
action : name ;

That is, an FSM is a collection of state declarations, each of which groups state
transitions together. Each transition identifies an event (say, an input symbol), an
optional action (say, an output symbol), and an optional target stateid. An omitted
target state is taken to mean that the target state equals the source state. We note that
the syntax of names is left unspecified here.

Exercise 6.6 (EGL to BGL reduction) [Basic level]
Apply the EGL-to-BGL reduction to the definition of the syntax of FSML in Illustra-
tion 6.7.

6.2 Concrete versus Abstract Syntax

The definitions of concrete and abstract syntax differ in that they model text-based
versus tree- or graph-based languages. In addition, concrete and abstract syntax also
differ in terms of intention – they are targeted towards the language user and the
language implementer, respectively. This difference in intention affects the level of
abstraction in the definitions. Abstraction potential arises from constructs that have a
rich concrete syntax, but where fewer details or variations are sufficient to ultimately
assign meaning to the constructs. We look at such differences in the sequel.

At the most basic level, concrete and abstract syntax differ just in terms of repre-
sentation or notation. Here are some definition fragments of the expression language
BTL:

−− Concrete syntax of BTL
[zero] expr : "zero" ;
[succ] expr : "succ" expr ;

−− Abstract syntax of BTL
symbol zero : → expr ;
symbol succ : expr → expr ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/FSML/cs.egl

6.2 Concrete versus Abstract Syntax 185

In the concrete syntax, "succ" is modeled as a prefix symbol because it precedes
its operand in the grammar rule. In the abstract syntax, succ is a prefix symbol sim-
ply because all symbols are prefix symbols in such a basic, signature-based abstract
syntax. In the concrete syntax, we have full control over the notation. For instance,
the rule [succ] favors curried notation for function application, i.e., using juxtapo-
sition instead of parentheses and commas. Again, however, in the abstract syntax,
uncurried notation is cemented into the formalism as the assumed representation of
terms (trees).

Exercise 6.7 (Uncurried notation for BTL expressions) [Basic level]
Revise the concrete syntax of BTL to use uncurried notation instead.

Let us also consider the differences between concrete and abstract syntax for the
imperative language BIPL. We have already pointed out earlier (Section 6.1.4.2)
that the grammar of BIPL models expression forms with a dedicated nonterminal
for each operator priority. Such layering makes no sense in the tree-based abstract
syntax and it is indeed missing from the earlier signature (Section 3.1.5.2). Another
difference concerns the if-statement:

−− Concrete syntax of BIPL
[if] stmt : 'if' '(' expr ')' stmt { 'else' stmt }? ;

−− Abstract syntax of BIPL
symbol if : expr×stmt×stmt → stmt ;

That is, the else-part is optional in the concrete syntax, whereas it is mandatory
in the abstract syntax. An optional else-part is convenient for the language user
because no empty statement (“skip”) needs to be filled in to express the absence
of an else-part. A mandatory else-part is convenient for the language implementer
because only one pattern of the if-statement needs to be handled.

There is another major difference we should point out:

−− Concrete syntax of BIPL
[block] stmt : '{' { stmt }* '}' ;

−− Abstract syntax of BIPL
symbol seq : stmt×stmt → stmt ;

That is, in the concrete syntax, sequences of statements are formed as statement
blocks with enclosing braces. This notation was chosen to resemble the syntax of
C and Java. In the abstract syntax, there is a binary combinator for sequential com-
position. This simple model is convenient for the language implementer. For this
correspondence between concrete and abstract syntax to be sound, we must assume
that statement blocks have here no meaning other than sequential composition. By
contrast, in C and Java, statement blocks actually define scopes with regard to local
variables.

186 6 Foundations of Textual Concrete Syntax

Exercise 6.8 (Abstraction for FSML) [Basic level]
Identify the differences between the concrete and the abstract syntax of FSML.

Exercise 6.9 (Abstraction for BFPL) [Basic level]
Identify the differences between the concrete and the abstract syntax of BFPL.

We mention in passing that some metaprogramming systems, for example, Ras-
cal [10, 9] and Stratego XT [13, 3], advertise the view that, under certain conditions,
there may not even be an abstract syntax for a language; all language processing is
implemented on top of the concrete syntax, subject to suitable support for concrete
object syntax, as we will discuss later (Section 7.5). The assumption is here that a
metaprogrammer may prefer using the familiar, concrete syntactical patterns of the
object language as opposed to the more artificial patterns according to an abstract
syntax definition.

6.3 Languages as Sets of Strings

Let us complement the informal explanations of concrete syntax definitions given
so far with formal definitions drawn from formal language theory [6]. In particular,
we will define the meaning of grammars in a set-theoretic sense, i.e., a grammar
“generates” a language as a set of strings.

6.3.1 Context-Free Grammars

BGL (or BNF) and EGL (or EBNF) are grammar notations for the fundamental
formalism of context-free grammars (CFGs).

Definition 6.1 (Context-free grammar) A CFG G is a quadruple 〈N,T,P,s〉 where
N is a finite set of nonterminals, T is a finite set of terminals, with N∩T = /0, P is a
finite set of rules (or productions) as a subset of N× (N∪T)∗, and s ∈ N is referred
to as the start symbol.

As noted before, in the BGL and EGL grammar notations, we use the convention
that the left-hand side of a grammar’s first rule is considered the start symbol. Also,
we note that BGL and EGL rules may be labeled whereas no labels are mentioned
in the formal definition. Labels are simply to identify rules concisely.

6.3 Languages as Sets of Strings 187

6.3.2 The Language Generated by a Grammar

Rules can be applied in a “generative” sense: replace a nonterminal by a correspond-
ing right-hand side. By many such replacements, one may eventually derive terminal
strings. This is the foundation for interpreting a grammar as the definition of a lan-
guage, namely the set of all terminal strings that are derivable from the grammar’s
start symbol.

Definition 6.2 (Context-free derivation) Given a CFG G = 〈N,T,P,s〉 and a se-
quence p n q with n ∈ N, p,q ∈ (N ∪T)∗, the sequence p r q with r ∈ (N ∪T)∗ is
called a derivation, as denoted by p n q⇒ p r q, if there is a production 〈n,r〉 ∈ P.

The transitive closure of “⇒” is denoted by “⇒+”. The reflexive closure of
“⇒+” is denoted by “⇒∗”.

Definition 6.3 (Language generated by a CFG) Given a CFG G = 〈N,T,P,s〉, the
language L(G) generated by G is defined as the set of all the terminal sequences
that are derivable from s. That is:

L(G) =
{

w ∈ T ∗ | s⇒+ w
}

6.3.3 Well-Formed Grammars

Well-formedness constraints on grammars for ruling out nonsensical grammars are
defined formally as follows.

Definition 6.4 (Well-formed CFG)
A CFG G = 〈N,T,P,s〉 is called well-formed if the following two conditions hold
for each n ∈ N:

Productivity There exists w ∈ T ∗ such that n⇒+ w.
Reachability There exist p,q ∈ (N∪T)∗ such that s⇒∗ p n q.

Exercise 6.10 (Productivity of CFG) [Basic level]
Give a simple grammar that violates productivity defined in Definition 6.4.

188 6 Foundations of Textual Concrete Syntax

Exercise 6.11 (Reachability of CFG) [Basic level]
Give a simple grammar that violates reachability defined in Definition 6.4.

Exercise 6.12 (Well-formed signature) [Intermediate level]
Consider again Definition 6.4 for well-formed CFGs. Transpose this definition, with
its components for productivity and reachability, to signatures as used in abstract
syntax definition (Chapter 3).

6.3.4 The Notion of Acceptance

Suppose we want to decide whether a given terminal string is an element of L(G).
We cannot perform a direct membership test because the set L(G) is infinite for any
nontrivial syntax definition. We need a computable kind of membership test instead.
To this end, we introduce the algorithmic notion of acceptance. The term “recogni-
tion” is also used instead. Further, we may speak of an “acceptor” or “recognizer”
instead, when we want to refer to the actual functionality for acceptance.

Definition 6.5 (Acceptor) Given a CFG G = 〈N,T,P,s〉, an acceptor for G is a
computable predicate aG on T ∗ such that for all w ∈ T ∗, aG(w) holds iff s⇒+ w.

The process of applying an acceptor is referred to as acceptance. In practice, we
are interested in “descriptions” of such predicates. For instance, the grammar itself
may serve as a description and the predicate may be obtained by “interpreting” the
grammar. It is known from formal language theory that the membership problem for
CFGs is decidable and, thus, a computable predicate such as the one in the definition
can be assumed to exist. We will discuss some options later (Section 7.2).

6.4 Languages as Sets of Trees

An acceptor only answers the question whether a given string w is an element of
the language generated by some grammar G. A parser, in addition, reports on the
structure of w based on the rules of G. The structure is represented as a concrete
syntax tree (CST). We may also say “parse tree” instead of “CST”. Success of pars-
ing means that at least one CST is returned. Failure of parsing means that no CST is
returned. In this manner, we assign meaning to grammars in a second manner.

6.4 Languages as Sets of Trees 189

[number] number : bits rest ;

[many] bits : bit bits ; [integer] rest : ;

[one] bit : '1' ; [single] bits : bit ;

[zero] bit : '0' ;

‘1’ ‘0’

Fig. 6.1 CST for the binary number “10”.

number

many integer

one single

zero

‘1’ ‘0’

Fig. 6.2 Alternative CST representation.

6.4.1 Concrete Syntax Trees

A CST for a terminal string w contains the terminals of w as leaf nodes in the same
order. Each CST node with its subtrees represents the application of a grammar rule
except for some leaf nodes that simply represent terminals. The root node corre-
sponds to a rule application for the start symbol. Before formalizing this intuition,
let us look at some examples.

CSTs can be represented or visualized in different ways. The representation in
Fig. 6.1 uses rules as node infos. In the figure, we circled right-hand side grammar
symbols to better emphasize the correspondence between them and the subtrees.
The visualization in Fig. 6.2 is more concise. BGL’s rule labels are used as node
infos here.

190 6 Foundations of Textual Concrete Syntax

We are ready to define the CST notion formally.

Definition 6.6 (Concrete syntax tree) Given a CFG G = 〈N,T,P,s〉 and a string
w ∈ T ∗, a CST for w according to G is a tree as follows:

• Nodes hold a rule or a terminal as info.
• The root holds a rule with s on the left-hand side as info.
• If a node holds a terminal as info, then it is a leaf.
• If a node holds rule n→ v1 · · · vm with n ∈ N, v1, . . . ,vm ∈ N∪T as info, then the

node has m branches with subtrees ti for i = 1, . . . ,m as follows:

– If vi is a terminal, then ti is a leaf with terminal vi as info.
– If vi is a nonterminal, then ti is a tree with a rule as info such that vi is the

left-hand side of the rule.

• The concatenated terminals at the leaf nodes equal w.

6.4.2 The Notion of Parsing

Let us make the transition from acceptance to parsing.

Definition 6.7 (Parser) Given a CFG G = 〈N,T,P,s〉, a parser for G is a partial
function pG from T ∗ to CSTs such that for all w ∈ L(G), pG(w) returns a CST of w
and for all w /∈ L(G), pG(w) is not defined.

The process of applying a parser is referred to as parsing. A parser returns no
CST for a given input exactly in the same cases as when an acceptor fails.

6.4.3 Ambiguous Grammars

If a parser has a choice of what CST to return, then this means that the grammar is
ambiguous, as formalized by the following definition.

Definition 6.8 (Ambiguous grammar) A CFG G = 〈N,T,P,s〉 is called ambiguous,
if there exists a terminal string w ∈ T ∗ with multiple CSTs.

6.4 Languages as Sets of Trees 191

binary

binary const

const

‘2’

const

‘3’ ‘4’

add

‘+’ ‘*’

mul

binary

binaryconst

const

‘2’

const

‘3’ ‘4’

mul

‘+’ ‘*’

add

Fig. 6.3 Alternative CSTs for an arithmetic expression.

Let us consider a simple example for ambiguities.

Illustration 6.8 (Ambiguous grammar for arithmetic expressions)

EGL resource languages/EGL/samples/ambiguity.egl

[binary] expr : expr bop expr ;
[const] expr : integer ;
[add] bop : '+' ;
[mul] bop : '*' ;

In the grammar shown above, the syntax of binary expression is defined am-
biguously. This is demonstrated in Fig. 6.3 by showing two CSTs for the expres-
sion “2+ 3 ∗ 4”. The tree on the right meets our expectation that “*” binds more
strongly than “+”. The grammar for BIPL (Illustration 6.5) addresses this problem
by describing layers of expressions with dedicated nonterminals for the different
priorities.

We mention in passing that Definition 6.7 could be revised to make a parser
possibly return a collection of CSTs, i.e., a parse-tree forest. This may be useful
in practice and may require an extra phase of filtering to identify a preferred tree
eventually [2].

Exercise 6.13 (Ambiguous grammar) [Basic level]
Consider the rule for if-statements taken from Illustration 6.5:

[if] stmt : 'if' '(' expr ')' stmt { 'else' stmt }? ;

Demonstrate that this rule implies an ambiguous grammar.

While both concrete and abstract syntax, as discussed thus far, provide a tree-
based definition of a software language, there is an important difference. In the case
of concrete syntax, the trees arise as a secondary means: to represent the derivation
of language elements, which are strings. In the case of abstract syntax, the trees
correspond to the language elements themselves.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/EGL/samples/ambiguity.egl

192 6 Foundations of Textual Concrete Syntax

[number] number : { bit }+ { '.' { bit }+ }? ;

[one] bit : '1' ; [zero] bit : '0' ;

{ bit }+

bit

{ '.' { bit }+ }?

bit

‘1’ ‘0’

Fig. 6.4 A CST with extra nodes due to EGL expressiveness.

Definition 6.6 (CST) applies to the basic grammar notation of BGL only. CSTs
for the extended grammar notation of EGL require extra nodes:

• Each occurrence of “?”, “*”, and “+” within a rule is subject to an extra node
with 0, 1, or more branches.

• Each branch of these extra nodes is rooted in an extra node with the list of sym-
bols that are optional or to be repeated.

These extra nodes are visualized by ellipses in Fig. 6.4. The example in the figure
is a variation on Fig. 6.1.

6.5 Lexical Syntax

In the illustrative grammars presented earlier, we left out some details: the syntax
of names (FSML, BIPL, and BFPL) and integers (BIPL and BFPL). Such details are
usually considered to be part of what is called the lexical syntax. That is, the lexical
syntax covers the syntactic categories that correspond to syntactical units without
any “interesting” tree-based structure. The approach of defining a separate lexical
syntax is something of a dogma, but we give in on this dogma for now.

Let us define the lexical syntax of FSML. The earlier grammar contained rules
for redirecting several nonterminals for different kinds of names or symbols to the
nonterminal name. Thus:

6.5 Lexical Syntax 193

stateid : name ;
event : name ;
action : name ;

The nonterminal name can be defined by a rule as follows:

name : { alpha }+ ;

Here, alpha is a predefined nonterminal for uppercase and lowercase letters2.
Thus, FSML’s name is defined as nonempty sequences of letters. Generally, the lex-
ical syntax of a language can be defined by grammar rules too. In practice, different
grammar notations of varying expressiveness are used for this purpose.

There is a pragmatic reason for not having included the above rule in the earlier
grammar. In one way (by separation, as done here) or another, we need to describe
the indivisible lexical units of the language as opposed to divisible syntactical units
that may contain white space (space, tab, newline, line feed) or comments. In the
case of FSML, we want to admit white space everywhere – except, of course, within
names or the terminals such as 'state' and '−>'. Further, we may also want to declare
the lexical syntax of white space and comments. To this end, we define a special
nonterminal layout, which, by convention, defines the lexical syntax of strings to be
skipped anywhere in the input between (but not within) lexical units. Let us provide
the complete lexical syntax of FSML.

Illustration 6.9 (Lexical syntax of finite state machines (FSML))

EGL resource languages/FSML/ls.egl

name : { alpha }+ ;
layout : { space }+ ;

Here, space is a “predefined” nonterminal which subsumes “white space”, i.e.,
space, tab, newline, and line feed. Thus, FSML’s layout is defined as a non-empty
sequence of such white space characters.

Let us consider another example.

Illustration 6.10 (Lexical syntax of imperative programs (BIPL))

EGL resource languages/BIPL/ls.egl

1 name : { alpha }+ ;
2 integer : { digit }+ ;
3 layout : { space }+ ;
4 layout : '//' { { end_of_line }~ }* end_of_line ;

2 In the rules for the lexical syntax, we assume predefined nonterminals for common character
classes such as alpha, space, digit, and end_of _line.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/FSML/ls.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BIPL/ls.egl

194 6 Foundations of Textual Concrete Syntax

BIPL’s name is defined in the same way as in FSML (line 1). BIPL’s integer is
defined as nonempty sequence of digits (line 2). There are two rules for layout. The
first one models white space in the same way as in FSML (line 3); the second one
models C/Java-style line comments (line 4). In the last rule, we use negation “’̃’ to
express that no “end-of line” character is admitted in a given position.

Let us consider yet another example.

Illustration 6.11 (Lexical syntax of functional programs (BFPL))

EGL resource languages/BFPL/ls.egl

name : lower { alpha }* ;
integer : { digit }+ ;
layout : { space }+ ;
layout : '−−' { { end_of_line }~ }* end_of_line ;

BFPL’s name is defined as non-empty sequence of letters starting in lowercase.
BFPL’s integer is defined in the same way as in BIPL. There are two rules for layout.
The first one captures white space in the same way as before; the second one models
Haskell-style line comments.

Exercise 6.14 (Primitive types in syntax definitions) [Intermediate level]
Provide a convincing hypothesis that explains why the extended signature notation
(ESL) features primitive types such as string and integer whereas EGL does not.

6.6 The Metametalevel

The grammar notations BGL and EGL correspond to proper software languages in
themselves. In this section, the concrete and abstract syntaxes of these syntax def-
inition languages are defined. Accordingly, we operate at the metametalevel. This
development enables, for example, a systematic treatment of acceptance and pars-
ing. We also revisit the abstract syntax definition languages BSL, ESL, and MML
and define their concrete syntaxes, as we have only defined their abstract syntaxes
previously (Section 3.4).

6.6.1 The Signature of Grammars

Let us define the abstract syntax of concrete syntaxes. In this manner, concrete syn-
taxes can be processed programmatically, for example, when implementing (“gen-
erating”) parsers. To make the presentation more approachable, the basic grammar
notation (BGL) is covered first.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BFPL/ls.egl

6.6 The Metametalevel 195

Specification 6.1 (The ESL signature of BGL grammars)

ESL resource languages/BGL/as.esl

type grammar = rule* ;
type rule = label×nonterminal×gsymbols ;
type gsymbols = gsymbol* ;
symbol t : terminal → gsymbol ;
symbol n : nonterminal → gsymbol ;
type label = string ;
type terminal = string ;
type nonterminal = string ;

The abstract syntactical representation of grammars can be illustrated as follows.

Illustration 6.12 (BNL’s grammar in abstract syntax)

Term resource languages/BNL/cs.term

[
(number,number,[n(bits),n(rest)]),
(single,bits,[n(bit)]),
(many,bits,[n(bit),n(bits)]),
(zero,bit,[t('0')]),
(one,bit,[t('1')]),
(integer,rest,[]),
(rational,rest,[t('.'),n(bits)])

].

Let us now provide the signature for the extended grammar notation.

Specification 6.2 (The ESL signature of EGL grammars)

ESL resource languages/EGL/as.esl

type grammar = rule* ;
type rule = label?×nonterminal×symbols ;
type symbols = symbol* ;
symbol t : terminal → symbol ;
symbol n : nonterminal → symbol ;
symbol star : symbols → symbol ;
symbol plus : symbols → symbol ;
symbol option : symbols → symbol ;
symbol not : symbols → symbol ;
type label = string ;
type terminal = string ;
type nonterminal = string ;

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BGL/as.esl
http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BNL/cs.term
http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/EGL/as.esl

196 6 Foundations of Textual Concrete Syntax

We should impose constraints on the language of grammars, such as that the rule
labels are distinct and that the conditions of productivity and reachability (Defini-
tion 6.4) are met, but we omit a discussion of these routine details.

6.6.2 The Signature of Concrete Syntax Trees

On top of the signature of grammars, we can also define a signature for CSTs, which
is useful, for example, as a fundamental representation format for parsing results.
We cover only the basic grammar notation (BGL) here. We introduce a correspond-
ing language: BCL (BGL CST Language).

Specification 6.3 (Signature of BGL-based CSTs)

ESL resource languages/BCL/as.esl

symbol leaf : terminal → ptree ;
symbol fork : rule×ptree* → ptree ;
// Rules as in BGL
...

Thus, there is a leaf symbol for a terminal, and there is a fork symbol which
combines a rule and a list of subtrees for the nonterminals on the right-hand side of
the rule. An actual CST, which conforms to the signature, is shown below.

Illustration 6.13 (CST for the binary number “10”)

Term resource languages/BNL/samples/10.tree

fork(
(number,number,[n(bits),n(rest)]), % rule
[% list of branches

fork(% 1st branch
(many,bits,[n(bit),n(bits)]), % rule
[% list of branches

fork(% 1st branch
(one,bit,[t('1')]), % rule
[leaf('1')]), % leaf

fork(% 2nd branch
(single,bits,[n(bit)]), % rule
[% list of branches

fork(% 1st branch % rule
(zero,bit,[t('0')]),
[leaf('0')])])]), % leaf

fork(% 2nd branch
(integer,rest,[]), % rule
[])]). % empty list of branches

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BCL/as.esl
http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BNL/samples/10.tree

6.6 The Metametalevel 197

Exercise 6.15 (CSTs for EGL) [Basic level]
Devise a signature for CSTs for the extended grammar notation EGL.

The signature as stated above is underspecified. For a CST to be well-formed, it
must use only rules from the underlying grammar and it must combine them in a
correct manner, as constrained by Definition 6.6.

6.6.3 The Grammar of Grammars

We can also devise a grammar of grammars, which is useful, for example, for pars-
ing grammars. To make the presentation more approachable, the basic grammar
notation (BGL) is covered first.

Specification 6.4 (The EGL grammar of BGL grammars)

EGL resource languages/BGL/cs.egl

grammar : {rule}* ;
rule : '[' label ']' nonterminal ':' gsymbols ';' ;
gsymbols : {gsymbol}* ;
[t] gsymbol : terminal ;
[n] gsymbol : nonterminal ;
label : name ;
terminal : qstring ;
nonterminal : name ;

Let us now provide the grammar for the extended grammar notation.

Specification 6.5 (The EGL grammar of EGL grammars)

EGL resource languages/EGL/cs.egl

grammar : {rule}* ;
rule : {'[' label ']'}? nonterminal ':' gsymbols ';' ;
gsymbols : {gsymbol}* ;
[t] gsymbol : terminal ;
[n] gsymbol : nonterminal ;
[star] gsymbol : '{' gsymbols '}' '*' ;
[plus] gsymbol : '{' gsymbols '}' '+' ;
[option] gsymbol : '{' gsymbols '}' '?' ;
[not] gsymbol : '{' gsymbols '}' '~' ;
label : name ;
terminal : qstring ;
nonterminal : name ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BGL/cs.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/EGL/cs.egl

198 6 Foundations of Textual Concrete Syntax

We also provide a separate grammar for the lexical syntax.

Illustration 6.14 (Lexical syntax of EGL)

EGL resource languages/EGL/ls.egl

qstring : quote { { quote }~ }+ quote ;
name : { csymf }+ ;
layout : { space }+ ;
layout : '//' { { end_of_line }~ }* end_of_line ;

6.6.4 The Grammar of Signatures

Let us also define the concrete syntax of tree-based abstract syntaxes, as useful, for
example, for parsing signatures. The basic signature notation (BSL) is covered first.

Specification 6.6 (The EGL grammar of BSL signatures)

EGL resource languages/BSL/cs.egl

signature : { symbol ';' }* ;
symbol : 'symbol' name ':' args '−>' name ;
args : { name { '#' name }* }? ;

Let us now provide the grammar for the extended signature notation.

Specification 6.7 (The EGL grammar of ESL signatures)

EGL resource languages/ESL/cs.egl

signature : { decl ';' }* ;
[type] decl : 'type' name '=' typeexprs ;
[symbol] decl : 'symbol' name ':' { typeexprs }? '−>' name ;
typeexprs : typeexpr { '#' typeexpr }* ;
typeexpr : factor cardinality ;
[boolean] factor : 'boolean' ;
[integer] factor : 'integer' ;
[float] factor : 'float' ;
[string] factor : 'string' ;
[term] factor : 'term' ;
[tuple] factor : '(' typeexpr { '#' typeexpr }+ ')' ;
[sort] factor : name ;
[star] cardinality : '*' cardinality ;
[plus] cardinality : '+' cardinality ;
[option] cardinality : '?' cardinality ;
[none] cardinality : ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/EGL/ls.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BSL/cs.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/ESL/cs.egl

6.6 The Metametalevel 199

We also provide a separate grammar for the lexical syntax.

Illustration 6.15 (Lexical syntax of ESL)

EGL resource languages/ESL/ls.egl

name : { csymf }+ ;
layout : { space }+ ;
layout : '//' { { end_of_line }~ }* end_of_line ;

6.6.5 The Grammar of Metamodels

It remains to provide the grammar of metamodels (MML) which is useful, for ex-
ample, for parsing metamodels.

Specification 6.8 (The EGL grammar of MML metamodels)

EGL resource languages/MML/cs.egl

metamodel : { classifier }* ;
[datatype] classifier : 'datatype' name ';' ;
[enum] classifier : 'enum' name '{' name {',' name}* '}' ;
[class] classifier : abstract 'class' name super members ;
super : { 'extends' name }? ;
[abstract] abstract : 'abstract' ;
[concrete] abstract : ;
members : '{' { member }* '}' ;
member : kind name ':' type ';' ;
[value] kind : 'value' ;
[part] kind : 'part' ;
[reference] kind : 'reference' ;
type : name cardinality ;
[plus] cardinality : '+' ;
[star] cardinality : '*' ;
[option] cardinality : '?' ;
[one] cardinality : ;

We also provide a separate grammar for the lexical syntax.

Illustration 6.16 (Lexical syntax of MML)

EGL resource languages/MML/ls.egl

name : { csymf }+ ;
layout : { space }+ ;
layout : '//' { { end_of_line }~ }* end_of_line ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/ESL/ls.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/MML/cs.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/MML/ls.egl

200 6 Foundations of Textual Concrete Syntax

Summary and Outline

We have explained how (context-free) grammars (or different notations for them)
may serve for modeling string-based concrete syntax. We have defined two differ-
ent semantics of grammars: (i) a set-theoretic semantics, defining a software lan-
guage as a set of strings; and (ii) a tree-oriented semantics, defining the structure
of language elements in terms of the productions of a grammar. Further, we have
defined the fundamental notions of acceptance and parsing, which ultimately have
to be complemented by algorithms for parsing.

In the next chapter, we will discuss the implementation of concrete syntax, in-
cluding basic parsing algorithms and practical approaches to parsing, formatting,
and mapping between concrete and abstract syntax, as well as the use of concrete
syntax in metaprograms.

References

1. Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Perlis, A.J., Rutishauser, H.,
Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaarden, A., Woodger, M.: Revised re-
port on the Algorithm Language ALGOL 60. Commun. ACM 6(1), 1–17 (1963)

2. van den Brand, M., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters for scannerless
generalized LR parsers. In: Proc. CC 2002, LNCS, vol. 2304, pp. 143–158. Springer (2002)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language and
toolset for program transformation. Sci. Comput. Program. 72(1-2), 52–70 (2008)

4. Chomsky, N.: Three models for the description of language. IRE Transactions on Information
Theory 2(3), 113–124 (1956)

5. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation. In: Proc.
POPL, pp. 111–122. ACM (2004)

6. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Pearson (2013). 3rd edition

7. ISO/IEC: ISO/IEC 14977:1996(E). Information Technology. Syntactic Metalanguage.
Extended BNF. (1996). Available at http://www.cl.cam.ac.uk/~mgk25/
iso-14977.pdf

8. Johnson, S.C.: YACC—Yet Another Compiler Compiler. Computer Science Technical Report
32, AT&T Bell Laboratories (1975)

9. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language for source code
analysis and manipulation. In: Proc. SCAM, pp. 168–177. IEEE (2009)

10. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming with Rascal. In: GTTSE
2009, Revised Papers, LNCS, vol. 6491, pp. 222–289. Springer (2011)

11. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013). 2nd edition
12. Visser, E.: Syntax definition for language prototyping. Ph.D. thesis, University of Amsterdam

(1997)
13. Visser, E.: Stratego: A language for program transformation based on rewriting strategies. In:

Proc. RTA, LNCS, vol. 2051, pp. 357–362. Springer (2001)

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

Chapter 7
Implementation of Textual Concrete Syntax

PAUL KLINT.1

Abstract This chapter discusses implementation aspects of textual concrete syntax:
parsing, abstraction, formatting, and the use of concrete as opposed to abstract ob-
ject syntax in metaprograms. We focus on how parsers, formatters, etc. are actually
implemented in practice, subject to using appropriate libraries, tools, and metapro-
gramming techniques.

1 Paul Klint’s contributions to computer science are not limited to the implementation (or the
practice or the application) of concrete syntax, but this is an area in which he has continuously
driven the state of the art over the years. Some of his work on concrete syntax has focused on sup-
porting it in interactive programming environments and language workbenches such as ASF+SDF
and Rascal [21, 55, 31, 30]. In other work, he has been addressing practical challenges regarding
parsing, for example, in terms of scannerless parsing and ambiguity detection in generalized (LR)
parsing [13, 3]. Paul Klint loves grammars [29].
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA 4.0. This art-
work quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This work also quotes https:
//commons.wikimedia.org/wiki/File:Sunset_at_Montmajour_1888_Van_Gogh.jpg, subject to
the attribution “Vincent van Gogh: Sunset at Montmajour (1888) [Public domain], via Wikimedia Commons.” This
work artistically morphes an image, http://homepages.cwi.nl/~paulk, showing the person honored, subject
to the attribution “Permission granted by Paul Klint for use in this book.”

201© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_7

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Sunset_at_Montmajour_1888_Van_Gogh.jpg
https://commons.wikimedia.org/wiki/File:Sunset_at_Montmajour_1888_Van_Gogh.jpg
http://homepages.cwi.nl/~paulk
https://doi.org/10.1007/978-3-319-90800-7_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_7&domain=pdf

202 7 Implementation of Textual Concrete Syntax

Input
text

Output
text

AST

CST

ASG

Text-to-
model

Model-
to-text

Parsing

Parsing

Abstraction

Resolution
Formatting

Token
streams

Scanning

Formatting

Parsing

Fig. 7.1 Mappings (edges) between different representations (nodes) of language elements. For
instance, “parsing” is a mapping from text or tokens to CSTs or ASTs.

7.1 Representations and Mappings

The big picture of concrete syntax implementation, as covered by this chapter, is
shown in Fig. 7.1 with the exception of the special topic of concrete object syntax
(Section 7.5). The nodes in the figure correspond to different representations of lan-
guage elements; these representations have already been discussed, to some extent,
but we summarize them here for clarity:

Text (String) Text is an important format for representing language elements.
Text may serve as input or may arise as the output of language-processing ac-
tivities. We do not discuss visual languages in this chapter.

Token stream Parsing may involve an extra phase, scanning, for processing text
at the level of lexical syntax for units such as white space, comments, identi-
fiers, and literals. The resulting units are referred to as tokens (or, more precisely,
token-lexeme pairs). That is, a token is a classifier of a lexical unit. For instance,
in FSML, we are concerned with “name” tokens as well as tokens for special
characters, operators, and keywords (e.g., “/” and “state”). We use the term “lex-
eme” to refer to the string (text) that makes up a lexical unit. For instance, we may
encounter the lexemes “locked”, “unlocked”, etc. in the input; we classify them
as “name” tokens. In practice, the term “token” is also used to include lexemes.

CST Concrete syntax trees typically arise as the result of parsing text. These trees
follow the structure of the underlying grammar; each node, with its subtrees,

7.1 Representations and Mappings 203

represents the application of a grammar rule, except for some leaf nodes that
simply represent terminals.

AST Abstract syntax trees may arise as the result of abstraction, i.e., a map-
ping from concrete to abstract syntax trees; they may also arise as the result
of metaprograms such as transformers and generators.

ASG Abstract syntax graphs may be used to directly represent references on top
of ASTs. In metamodeling, references are commonly used in models. Text-to-
model transformations may also map text directly to graphs (models), without
going through CSTs or ASTs explicitly. In other contexts, the explicit use of
graphs is less common. For instance, in term rewriting, references are expressed
only indirectly, for example, by means of traversals that look up subtrees or by
an extra data structure for an environment.

The edges in the figure correspond to common forms of mapping:

Parsing This is a mapping from text or token streams to CSTs or ASTs.
Scanning This is a mapping from text to token streams, as an optional phase of

parsing. It is the process of recognizing tokens. Scanning is like parsing, but at the
level of lexical syntax. The input of scanning is text; the output is a token stream
(to be precise, a stream of token-lexeme pairs), possibly enriched by position
information. Scanning is performed by a scanner (a lexer). The underlying lexical
syntax may be defined by regular or context-free grammars; see the examples in
Section 6.1.4.

Abstraction This is a mapping from concrete to abstract syntax, i.e., from CSTs
to ASTs.

Resolution This is a mapping from tree- to graph-based abstract syntax, i.e., from
ASTs to ASGs.

Text-to-model This is about mapping from text that is an element of a language
generated by a grammar to a model that conforms to a metamodel. Here, the
grammar and metamodel are viewed as alternative syntax definitions for the same
language.

Formatting This is a mapping from ASTs to text. We may expect that unparsing
will produce textual output that follows some formatting conventions in terms
of adding space, indentation, line breaks, and appropriate use of parentheses.
As indicated in the figure, formatting can also be taken to mean that CSTs are
mapped to text, in which case we may also speak of unparsing. Such a mapping
should be straightforward because the leaf nodes of a CST should represent the
text except that space, indentation, line breaks, and comments may be missing.
Formatting may also operate at a lexical level such that token streams are mapped
to text. Generally, we may also speak of “pretty printing” instead of formatting.

Model-to-text This is the opposite of “text-to-model”. In different terms, if “text-
to-model” is the metamodeling-centric variation on parsing, then “model-to-text”
is the metamodeling-centric variation on formatting or pretty printing.

204 7 Implementation of Textual Concrete Syntax

7.2 Parsing

A parser maps text to concrete or possibly abstract syntax trees or graphs. Parsing
is a prerequisite for metaprogramming on object programs with a textual syntax.
We will discuss different approaches to the implementation of parsers; we assume
that parsers are systematically, if not mechanically, derived from context-free gram-
mars. To this end, we illustrate mainstream parsing technologies: ANTLR [46] and
Parsec [37]. We also discuss parsing algorithms briefly.

7.2.1 Basic Parsing Algorithms

A grammar can be interpreted in a systematic, algorithmic manner so that one ob-
tains an acceptor (Definition 6.5) or a parser (Definition 6.7) directly. We discuss
here some simple, fundamental algorithms for top-down and bottom-up parsing.
There are many options and challenges associated with parsing [20]; we only aim
to convey some basic intuitions here.

7.2.1.1 Top-Down Acceptance

In top-down acceptance (or parsing), we maintain a stack of grammar symbols,
which we initialize with the start symbol; we process the input from left to right. In
each step, we either “consume” or “expand”. In the “consume” case, we consume a
terminal from the input if it is also at the top of the stack. In the “expand” case, we
replace a nonterminal on the stack by a corresponding right-hand side.

Definition 7.1 (Algorithm for top-down acceptance)

Input:

• a well-formed context-free grammar G = 〈N,T,P,s〉;
• a string (i.e., a list) w ∈ T ∗.

Output:

• a Boolean value.

Variables:

• a stack z maintaining a sequence of grammar symbols;
• a string (i.e., a list) i maintaining the remaining input.

Steps:

1. Initialize z with s (i.e., the start symbol) as the top of the stack.
2. Initialize i with w.

7.2 Parsing 205

3. If both i and z are empty, then return true.
4. If z is empty and i is nonempty, then return false.
5. Choose an action:

Consume: If the top of z is a terminal, then:
a. If the top of z equals the head of i, then:

i. Remove the head of i.
ii. Pop the top of z.

b. Return false otherwise.
Expand: If the top of z is a nonterminal, then:

a. Choose a p ∈ P with the top of z on the left-hand side of p.
b. Pop the top of z.
c. Push the symbols of the right-hand side of p onto z.

6. Go to 3.

Table 7.1 Illustration of top-down acceptance

Step Remaining input Stack (TOS left) Action
1 ‘1’, ‘0’ number Expand rule [number]
2 ‘1’, ‘0’ bits rest Expand rule [many]
3 ‘1’, ‘0’ bit bits rest Expand rule [one]
4 ‘1’, ‘0’ ‘1’ bits rest Consume terminal ‘1’
5 ‘0’ bits rest Expand rule [single]
6 ‘0’ bit rest Expand rule [zero]
7 ‘0’ ‘0’ rest Consume terminal ‘0’
8 – rest Expand rule [integer]
9 – – –

In the strict sense, the description is not a proper algorithm owing to nondeter-
minism (see the choice of action) and nontermination (think of infinite expansion
for grammars with left recursion, as we will discuss more in detail below). Actual
acceptance algorithms arise as refinements that constrain the choice or the grammar.
In the sequence of steps shown in Table 7.1, we assume an oracle which tells us the
“right” choice.

Exercise 7.1 (Nondeterminism of top-down acceptance) [Basic level]
Identify the steps in Table 7.1 that make a choice, and identify alternative actions.
How do these alternatives reveal themselves as inappropriate?

Let us implement top-down acceptance based on the pseudo-algorithm in Defi-
nition 7.1. We aim only at a very basic implementation, meant to be useful for un-
derstanding parsing conceptually. We implement top-down acceptance in Haskell.

206 7 Implementation of Textual Concrete Syntax

Assuming a suitable representation of BNL’s BGL grammar, we expect to perform
acceptance for binary numbers as follows:

Interactive Haskell session:

I accept bnlGrammar "101.01"
True
- -
I accept bnlGrammar "x"
False

We assume a typeful representation (Section 4.1.3) of the signature of BGL gram-
mars (Section 6.6.1) as Haskell data types, as shown below.

Illustration 7.1 (Datatypes for grammar representation)

Haskell module Language.BGL.Syntax

type Grammar = [Rule]
type Rule = (Label, Nonterminal, [GSymbol])
data GSymbol = T Terminal | N Nonterminal
type Label = String
type Terminal = Char
type Nonterminal = String

Illustration 7.2 (The grammar of BNL represented in Haskell)

Haskell module Language.BGL.Sample

bnlGrammar :: Grammar
bnlGrammar = [

("number", "number", [N "bits", N "rest"]),
("single", "bits", [N "bit"]),
("many", "bits", [N "bit", N "bits"]),
("zero", "bit", [T '0']),
("one", "bit", [T '1']),
("integer", "rest", []),
("rational", "rest", [T '.', N "bits"])

]

Top-down acceptance is implemented in Haskell as follows.

http://github.com/softlang/yas/tree/springer/languages/BGL/Haskell/Language/BGL/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BGL/Haskell/Language/BGL/Sample.hs

7.2 Parsing 207

Illustration 7.3 (Implementation of top-down acceptance)

Haskell module Language.BGL.TopDownAcceptor

1 accept :: [Rule]→ String→ Bool
2 accept g = steps g [N s]
3 where
4 −− Retrieve start symbol
5 ((_, s, _):_) = g
6

7 steps :: [Rule]→ [GSymbol]→ String→ Bool
8 −− Acceptance succeeds (empty stack, all input consumed)
9 steps _ [] [] = True

10 −− Consume terminal at top of stack from input
11 steps g (T t:z) (t':i) | t==t' = steps g z i
12 −− Expand a nonterminal; try different alternatives
13 steps g (N n:z) i = or (map (λ rhs→ steps g (rhs++z) i) rhss)
14 where
15 rhss = [rhs | (_, n', rhs)← g, n == n']
16 −− Otherwise parsing fails
17 steps _ _ _ = False

The implementation is based on these ideas:

• The start symbol is determined within the main function accept as the left-hand
side of the first rule (line 5).

• The program maintains a parser stack, which is represented simply as a list of
grammar symbols. The head of the list is the top of the stack. The stack is initial-
ized with the start symbol (line 2).

• The regular termination case is that both the input and the stack are empty and,
thus, True is returned (line 9).

• The case where a terminal t is the top of stack requires that the input starts with
the same terminal (see the guard t==t'), in which case the terminal is removed
from both the stack and the input before continuing with the remaining stack and
input (line 11).

• The case where a nonterminal n is the top of stack forms a disjunction over all the
possible right-hand sides for n; these options are collected in a list comprehen-
sion; and the right-hand sides replace n in the different attempts (lines 13–15).

• In all other cases, acceptance fails (line 17), i.e., when the terminal at the top of
the stack is not met by the head of the input, or the stack is empty while the input
is not empty.

This implementation is naive because it tries all alternatives without considering
the input. More seriously, the implementation may exhibit nonterminating behav-
ior if applied to a left-recursive grammar. Instead of defining left recursion here
formally, let us just look at an example. The BNL grammar does not involve left
recursion, but consider the following syntax of simple arithmetic expressions:

http://github.com/softlang/yas/tree/springer/languages/BGL/Haskell/Language/BGL/TopDownAcceptor.hs

208 7 Implementation of Textual Concrete Syntax

Illustration 7.4 (A left-recursive grammar for arithmetic expressions)

EGL resource languages/EGL/samples/left-recursion.egl

[add] expr : expr '+' expr ;
[const] expr : integer ;

The grammar is left-recursive owing to the first rule because, if we apply the
first rule, then expr is replaced by a sequence of grammar symbols that again starts
with expr. Thus, such a derivation or expansion process could go on forever without
consuming any input. There are various techniques for dealing with or removing left
recursion (see, e.g., [20, 1, 42, 38, 18, 19, 43]).

Thanks to the way in which alternatives are handled in the Haskell code for top-
down acceptance, we do not commit to a particular choice, but all alternatives are
potentially tried. In principle, there are two major options for combining the alter-
natives:

Local backtracking When a nonterminal is being expanded, the different alter-
natives are tried in the grammar-specified order; we commit to the first alternative
for which acceptance succeeds, if there is any.

Global backtracking There is no commitment to an alternative. That is, we may
consider yet other alternatives even after successful completion of an alternative
triggered by failure in the enclosing scope.

These two options differ in terms of efficiency and completeness. An incomplete
acceptor corresponds to the situation where some proper language elements would
not be accepted. Local backtracking is more efficient, but less complete than global
backtracking. The Haskell-based implementation in Illustration 7.3, as discussed
above, facilitates global backtracking because the disjunction does not just model
choice over alternatives; rather it models choice over all possible continuations of
acceptance.

Exercise 7.2 (Backtracking variations) [Intermediate level]
Implement top-down acceptance with local backtracking.

The incompleteness of local backtracking can easily be observed on the basis
of the BNL example. That is, consider the order of the rules [single] and [many] in
Illustration 7.2. Local backtracking would commit us [single] even for the case of
an input string with more than one digit. The rules [integer] and [rational] expose the
same kind of order issue. Local backtracking is sufficient once we reorder the rules
as follows.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/EGL/samples/left-recursion.egl

7.2 Parsing 209

Illustration 7.5 (BNL grammar for which local backtracking suffices)

Haskell module Language.BGL.SampleWithGreediness

bnlGrammar :: Grammar
bnlGrammar = [

("number", "number", [N "bits", N "rest"]),
("many", "bits", [N "bit", N "bits"]),
("single", "bits", [N "bit"]),
("zero", "bit", [T '0']),
("one", "bit", [T '1']),
("rational", "rest", [T '.', N "bits"]),
("integer", "rest", [])

]

There are various algorithms and grammar classes that cater for efficient top-
down parsing without the issues at hand [20, 1].

7.2.1.2 Bottom-Up Acceptance

In bottom-up acceptance (or parsing), we maintain a stack of grammar symbols,
starting from the empty stack; we process the input from left to right. In each step,
we either “shift” or “reduce”. In the “shift” case, we move a terminal from the input
to the stack. In the “reduce” case, we replace a sequence of grammar symbols on
the stack with a nonterminal, where the removed sequence must form the right-hand
side and the added nonterminal must be the left-hand side of some grammar rule.

Definition 7.2 (Algorithm for bottom-up acceptance)

Input:

• a well-formed context-free grammar G = 〈N,T,P,s〉;
• a string (i.e., a list) w ∈ T ∗.

Output:

• a Boolean value.

Variables:

• a stack z maintaining a sequence of grammar symbols;
• a string (i.e., a list) i maintaining the remaining input.

Steps:

1. Initialize z with the empty stack.
2. Initialize i with w.
3. If i is empty and z consists of s alone, then return true.

http://github.com/softlang/yas/tree/springer/languages/BGL/Haskell/Language/BGL/SampleWithGreediness.hs

210 7 Implementation of Textual Concrete Syntax

4. Choose an action:
Shift: Remove the head of i and push it onto z.
Reduce:

a. Pop a sequence x of symbols from z.
b. Choose a p ∈ P such that x equals the right-hand side of p.
c. Push the left-hand side of p onto z.

Return false, if no action is feasible.
5. Go to 3.

Table 7.2 Illustration of bottom-up acceptance

Step Remaining input Stack (TOS right) Action
1 ‘1’, ‘0’ – Shift terminal ‘1’
2 ‘0’ ‘1’ Reduce rule [one]
3 ‘0’ bit Reduce rule [single]
4 ‘0’ bits Shift terminal ‘0’
5 – bits ‘0’ Reduce rule [one]
6 – bits bit Reduce rule [many]
7 – bits Reduce rule [integer]
8 – bits rest Reduce rule [number]
9 – number –

It is insightful to notice how top-down acceptance (Table 7.1) and bottom-up
acceptance (Table 7.2) are opposites of each other in some sense. The top-down
scheme starts with s on the stack; the bottom-up scheme ends with s on the stack.
The top-down scheme ends with an empty stack; the bottom-up scheme starts from
an empty stack.

Exercise 7.3 (Nondeterminism of bottom-up acceptance) [Basic level]
Identify the steps in Table 7.2 that make a choice, and identify alternative actions.
How does the inappropriateness of the options reveal itself?

Let us implement bottom-up acceptance based on the pseudo-algorithm in Defi-
nition 7.2. We aim again at a very basic implementation, meant to be useful for un-
derstanding parsing conceptually. We implement bottom-up acceptance in Haskell
as follows.

7.2 Parsing 211

Illustration 7.6 (Implementation of bottom-up acceptance)

Haskell module Language.BGL.BottomUpAcceptor

1 accept :: [Rule]→ String→ Bool
2 accept g = steps g [] −− Begin with empty stack
3

4 steps :: [Rule]→ [GSymbol]→ String→ Bool
5 −− Acceptance succeeds (start symbol on stack, all input consumed)
6 steps g [N s] [] | s == s' = True
7 where
8 −− Retrieve start symbol
9 ((_, s', _):_) = g

10 −− Shift or reduce
11 steps g z i = shift || reduce
12 where
13 −− Shift terminal from input to stack
14 shift = not (null i) && steps g (T (head i) : z) (tail i)
15 −− Reduce prefix on stack to nonterminal
16 reduce = not (null zs) && or (map (λ z→ steps g z i) zs)
17 where
18 −− Retrieve relevant reductions
19 zs = [N n : drop l z
20 | (_, n, rhs)← g,
21 let l = length rhs,
22 take l z == reverse rhs]

The implementation is based on these ideas:

• The program maintains a parser stack, which is represented simply as a list of
grammar symbols. The head of the list is the top of the stack. We start from the
empty stack (line 2).

• The regular termination case is that the input is empty and the start symbol is the
sole element on the stack and, thus, True is returned (line 6). The start symbol is
assumed here to be the left-hand side of the first rule (line 9).

• Otherwise, shift and reduce actions are tried and combined by “||” (line 11). The
shift action is tried first (line 14) and all possible reduce actions are tried after-
wards (line 16), as encoded in the order of the operands of “||”.

• Possible reduce actions are determined by trying to find (reversed) right-hand
sides of rules on the stack; see the list comprehension computing zs (lines 19–
22). The options are combined by “or”.

This implementation is naive, just as much as the earlier implementation of top-
down acceptance. For one thing, the options for shift and reduce are tried in a way
that a huge search space is explored. More seriously, we face the potential of nonter-
mination again. Left recursion is not a problem this time around, but nontermination
may be caused by epsilon productions – this is when a rule has an empty right-hand
side. Nontermination can arise because any stack qualifies for application of a reduce
action with an empty list of grammar symbols. The original grammar for BNL does

http://github.com/softlang/yas/tree/springer/languages/BGL/Haskell/Language/BGL/BottomUpAcceptor.hs

212 7 Implementation of Textual Concrete Syntax

indeed contain an epsilon production [integer]. The following variation is needed to
be able to use the naive implementation of bottom-up acceptance.

Illustration 7.7 (BNL grammar without epsilon productions)

Haskell module Language.BGL.SampleWithoutEpsilon

bnlGrammar :: Grammar
bnlGrammar = [

("integer", "number", [N "bits", N "rest"]),
("integer", "number", [N "bits", T '.', N "bits"]),
("single", "bits", [N "bit"]),
("many", "bits", [N "bit", N "bits"]),
("zero", "bit", [T '0']),
("one", "bit", [T '1'])

]

There are various algorithms and grammar classes that cater for efficient bottom-
up parsing without termination issues [20, 1].

7.2.1.3 Top-Down Parsing

We move now from acceptance to parsing. Thus, we need to construct CSTs during
acceptance. CSTs are represented in Haskell as follows.

Illustration 7.8 (CSTs for BGL)

Haskell module Language.BGL.CST

type Info = Either Char Rule
type CST = Tree Info

We use Haskell’s library type Tree for node-labeled rose trees, i.e., trees with
any number of subtrees. The labels (infos) are either characters for the leaf nodes
or grammar rules for inner nodes. Top-down parsing is implemented in Haskell as
follows.

Illustration 7.9 (Implementation of top-down parsing)

Haskell module Language.BGL.TopDownParser

parse :: [Rule]→ String→ Maybe CST
parse g i = do

(i', t)← tree g (N s) i
guard (i'==[])
return t

where
−− Retrieve start symbol

http://github.com/softlang/yas/tree/springer/languages/BGL/Haskell/Language/BGL/SampleWithoutEpsilon.hs
http://github.com/softlang/yas/tree/springer/languages/BGL/Haskell/Language/BGL/CST.hs
http://github.com/softlang/yas/tree/springer/languages/BGL/Haskell/Language/BGL/TopDownParser.hs

7.2 Parsing 213

((_, s, _):_) = g

tree :: [Rule]→ GSymbol→ String→ Maybe (String, CST)
−− Consume terminal at top of stack from input
tree _ (T t) i = do

guard ([t] == take 1 i)
return (drop 1 i, Node (Left t) [])
−− Expand a nonterminal
tree g (N n) i = foldr mplus mzero (map rule g)

where
−− Try different alternatives
rule :: Rule→ Maybe (String, CST)
rule r@(_, n', rhs) = do

guard (n==n')
(i', cs)← trees g rhs i
return (i', Node (Right r) cs)

−− Parse symbol by symbol, sequentially
trees :: [Rule]→ [GSymbol]→ String→ Maybe (String, [CST])
trees _ [] i = return (i, [])
trees g (s:ss) i = do

(i', c)← tree g s i
(i'', cs)← trees g ss i'
return (i'', c:cs)

In this implementation, we do not model the parser stack explicitly, but we lever-
age Haskell’s stack for function applications. This happens to imply that we are
limited here to local backtracking. Thus, the parser is less complete than the accep-
tor implemented earlier (Section 7.2.1.1).

7.2.1.4 Bottom-Up Parsing

Exercise 7.4 (Bottom-up parsing in Haskell) [Intermediate level]
Implement bottom-up parsing in Haskell.

7.2.2 Recursive Descent Parsing

Grammars can be implemented programmatically in a systematic manner. Recursive
descent parsing [1, 20] is a popular encoding scheme where grammars are imple-
mented as recursive “procedures”. Recursive descent parsing is relatively popular, as
(some form of) it is often used, when a handwritten parser is implemented. Further,
the overall scheme is also insightful, as it may be used for program generation – this

214 7 Implementation of Textual Concrete Syntax

is when the code for a top-down parser implementation is generated directly from a
grammar (Section 7.2.3).

In Java, some grammar rules for numbers in the BNL language would be repre-
sented by procedures (methods) as follows:
// [number] number : bits rest ;
void number() {

bits();
rest();

}
// [zero] bit : '0' ;
// [one] bit : '1' ;
void bit() {

if (next == '0') match('0'); else match('1');
}
. . .

That is, there is a method for each nonterminal. Occurrences of nonterminals on
right-hand sides of grammar rules are mapped to method calls. Occurrences of ter-
minals are mapped to “match” actions on the input. When selecting alternatives (see
bit), we may look ahead into the input.

Here is a more detailed description:

• Each nonterminal of the grammar is implemented as a possibly recursive pro-
cedure (a function). Success or failure of parsing may be communicated by the
return value or by means of an exception. (The exception-based approach is as-
sumed in the illustrative Java source code shown above.)

• A sequence of grammar symbols is mapped to a sequence of “actions” as follows.

– A terminal is mapped to a “match” action to examine the head of the input
stream. If the terminal is present, then it is removed and the action completes
successfully. If the terminal is not present, then parsing fails.

– A nonterminal is mapped to a procedure call (a function application). This call
(application) may succeed or fail in the same sense as matching may succeed
or fail.

• It remains to deal with alternatives.

– Parsing with look-ahead: The procedures contain conditions on the prefix of
the input stream to select the alternative to be tried. This technique can be
used, for example, with LL(k) [20] or LL(∗) [47] grammars.

– Parsing with backtracking: The different alternatives are tried until one suc-
ceeds, if any does; the pointer in the input stream is reset to where it was when
a failing branch was entered.

The following Haskell code represents a recursive descent parser for BNL where
backtracking is supported with the help of the Maybe monad. The original grammar
rules are shown as Haskell comments next to the corresponding Haskell functions.

7.2 Parsing 215

Illustration 7.10 (Recursive descent with backtracking for BNL)

Haskell module Language.BNL.BacktrackingAcceptor

−− Accept and enforce complete input consumption
accept :: String→ Bool
accept i = case number i of

Just []→ True
_→ False

−− Functions for nonterminals
number, bits, bit, rest :: String→ Maybe String

−− [number] number : bits rest ;
number i = bits i >>=rest

−− [single] bits : bit ;
−− [many] bits : bit bits ;
bits i = many `mplus` single

where
single = bit i
many = bit i >>=bits

−− [zero] bit : '0' ;
−− [one] bit : '1' ;
bit i = zero `mplus` one

where
zero = match '0' i
one = match '1' i

−− [integer] rest : ;
−− [rational] rest : '.' bits ;
rest i = rational `mplus` integer

where
integer = Just i
rational = match '.' i >>=bits

−−Match a terminal (a character)
match :: Char→ String→ Maybe String
match t (t':i) | t == t' = Just i
match _ _ = Nothing

The parser can be used as follows:

Interactive Haskell session:

I accept "101.01"
True

The encoding is based on just a few ideas:

http://github.com/softlang/yas/tree/springer/languages/BNL/Haskell/Language/BNL/BacktrackingAcceptor.hs

216 7 Implementation of Textual Concrete Syntax

• Each nonterminal is modeled as a function that takes the input string and returns,
maybe, the remaining input string. If a function returns Nothing, then this models
failure of parsing.

• Sequential composition of grammar symbols, as prescribed by the grammar
rules, is modeled by the bind combinator “>>=” of the Maybe monad; in this
manner, input strings are processed from left to right.

• There is a general match function which just tries to match a given terminal with
the head of the input and either succeeds or fails, as described earlier for the
terminal case in recursive descent parsing.

• Different alternatives for a nonterminal are combined by the mplus combinator
of the Maybe monad; this implies left-biased choice, i.e., the left operand is tried
first and the right operand is tried only in the case of failure for the left operand.

The implementation, as it stands, is limited to local backtracking because alter-
natives are combined by mplus. As noted before (Section 7.2.1.1), acceptance may
be thus incomplete depending on the order of the rules. For comparison, let us also
look at an acceptor that uses look-ahead instead of backtracking.

Illustration 7.11 (Recursive descent with look-ahead for BNL)

Haskell module Language.BNL.LookAheadAcceptor

−− [single] bits : bit ;
−− [many] bits : bit bits ;
bits i = if lookahead 2 (flip elem ['0','1']) i

then many
else single

where
single = bit i
many = bit i >>=bits

−− [zero] bit : '0' ;
−− [one] bit : '1' ;
bit i = if lookahead 1 ((==) '0') i

then zero
else one

where
zero = match '0' i
one = match '1' i

−− [integer] rest : ;
−− [rational] rest : '.' bits ;
rest i = if lookahead 1 ((==) '.') i then rational else integer

where
integer = Just i
rational = match '.' i >>=bits

−− Look ahead in input; avoid looking beyond end of input
lookahead :: Int→ (Char→ Bool)→ String→ Bool
lookahead l f i = length i >= l && f (i!!(l−1))

http://github.com/softlang/yas/tree/springer/languages/BNL/Haskell/Language/BNL/LookAheadAcceptor.hs

7.2 Parsing 217

MyLang.g4

MyLangParser
.java

MyLangLexer
.java

MyLangDriver
.java Parse

tree
MySample

Code generation-time data flow

Runtime data flow
Code-level dependencies

java
org.antlr.v4.Tool

Parser generator (ANTLR)
Programmer-provided artifacts

Generated code

Fig. 7.2 Parser generation with ANTLR with Java as the target language: the data flow at parser-
generation time and at runtime of a generated parser is shown.

That is, the functions use an additional function lookahead to perform tests on
the input, thereby guarding the different branches for nonterminals with multiple
alternatives.

7.2.3 Parser Generation

A popular approach to parser implementation is parser generation. The overall idea
is to generate code or data structures from a (possibly enriched) grammar such that
the generation process can perform some amount of grammar checking and manip-
ulation, for example, with regard to grammar-class restrictions. Also, extra services
may be provided, for example, handling parser errors by means of error messages
and error recovery. We briefly discuss ANTLR here as an example of a parser gen-
erator. In Chapter 2, we have already applied ANTLR to FSML, thereby deriving a
syntax checker and a parser based on walking ANTLR’s CST with a listener.

Figure 7.2 summarizes the data flow for generating a parser with ANTLR [46]
and using the generated parser. We focus here on Java as the target language for code
generation; ANTLR also provides other backends. The input for parser generation
is an ANTLR grammar (see the “.g4” file in the figure). Parser generation returns
several files; we only care here about the parser and lexer files (see the “.java” files
marked as generated code in the figure). Subject to some routine driver code to
be provided by the developer, the generated code can be used to parse text into an

218 7 Implementation of Textual Concrete Syntax

ANTLR-style parse tree (CST). In Section 7.3.2, we will revisit ANTLR and discuss
how to add semantic actions to a grammar for constructing ASTs.

7.2.4 Parser Combinators

Another popular approach to parser implementation is based on parser combina-
tors [52, 26, 24]. The simple (intriguing) idea is to model parsers as instances of an
abstract data type (ADT) with function combinators that correspond to “constructs”
for syntax definition. In particular, we need combinators to cover these cases:

• Terminals
• Sequential composition
• Choice (composition of alternatives)
• EBNF constructs (“?”, “*”, “+”)

Nonterminals are modeled as (possibly recursive) functions – pretty much in the
same way as in the case of recursive descent parsing (Section 7.2.2).

Let us demonstrate the use of the popular parser-combinator library Parsec2 [37]
in the Haskell context. Here is an acceptor for the FSML language.

Illustration 7.12 (A parser combinator-based acceptor for FSML)

Haskell module Language.FSML.Acceptor

fsm = many state
state =

optional (reserved "initial")
>> reserved "state"
>> stateid
>> braces (many transition)

transition =
event

>> optional (op "/" >> action)
>> optional (op "−>" >> stateid)
>> semi

stateid = name
event = name
action = name

These combinators are used in the example:

• >>: Sequential composition
• many: EBNF’s “*”;
• optional: EBNF’s “?”;
• reserved: reserved keywords (provided by scanner);

2 https://wiki.haskell.org/Parsec

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Acceptor.hs
https://wiki.haskell.org/Parsec

7.2 Parsing 219

• braces: constructs enclosed in { · · · };
• op: operator symbols (provided by scanner);
• semi: “;” (provided by scanner);
• name: names or identifiers (provided by scanner).

Choice (composition of alternatives) is not present in this simple example, but
there is, of course, a corresponding binary combinator “<|>” for left-biased choice.

In the case of Parsec, scanners (lexers) are also just parsers, in terms of the un-
derlying ADT. Technically, scanning and parsing are separated. This simplifies the
process of skipping white space, recognizing (and skipping) comments, and han-
dling reserved keywords and special characters in a special manner – also in the
interest of enabling “good” error messages. The lexer for FSML is derived from a
default lexer as follows.

Illustration 7.13 (A lexer for FSML)

Haskell module Language.FSML.Lexer

fsmlDef :: Token.LanguageDef ()
fsmlDef = emptyDef

{ Token.commentStart = "/*"
, Token.commentEnd = "*/"
, Token.commentLine = "//"
, Token.identStart = letter
, Token.identLetter = alphaNum
, Token.nestedComments = True
, Token.reservedNames = ["initial", "state"]
, Token.reservedOpNames = ["/", "−>"]
}

lexer :: Token.TokenParser ()
lexer = Token.makeTokenParser fsmlDef

braces :: Parser p→ Parser p
braces = Token.braces lexer

semi :: Parser String
semi = Token.semi lexer

reserved :: String→ Parser ()
reserved = Token.reserved lexer

op :: String→ Parser ()
op = Token.reservedOp lexer

name :: Parser String
name = Token.identifier lexer

Thus, the definition of the lexer entails the provision of certain parameters such as
the start and end sequences for comments, the initial characters of an identifier, and

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/Lexer.hs

220 7 Implementation of Textual Concrete Syntax

the list of reserved names. Thereby, several lexical categories are readily defined,
such as those used in the earlier acceptor.

The ADT for parsing provides a special operation, runParser, for applying the
parser to an actual input string. This is demonstrated here at the lexical level:

Interactive Haskell session:

−− Recognize a name; this is Ok.
I runParser name () "" "foo"
Right "foo"
- -
−− Recognize two names in a sequence; this is Ok.
I runParser (name >> name) () "" "foo bar"
Right "bar"
- -
−− Try to recognize a name; this fails because "state'' is reserved.
I runParser name () "" "state"
Left (line 1, column 6):
unexpected reserved word "state"
expecting letter or digit

The function runParser takes four arguments of which we are only interested here
in the first one (i.e., the actual parser) and the last one (the input string). Running
a parser returns either an error message (see Left · · ·) or a parse tree (see Right · · ·)
such as a string in the two examples above.

In Section 7.3.3, we will return to the parser-combinator approach and discuss
how the construction of ASTs can be accomplished with this approach. Until now
we have limited ourselves to acceptance.

Exercise 7.5 (Layout in practice) [Intermediate level]
Study some grammar notation, for example, YACC/LEX [25], SDF [57], or
ANTLR [46], with regard to the definition of lexical units and the handling of layout
(white space and comments). Explain and illustrate your findings.

7.3 Abstraction

We turn now to the problem of how to construct appropriate ASTs during parsing.
In this manner, we effectively model relationships between concrete and abstract
syntax, as discussed earlier (Section 6.2). To this end, we will revisit the grammar
implementation approaches that we have seen above and enhance them accordingly.
Such a mapping is a diverse and complex topic in software language engineering
(see, e.g., [28, 27, 48, 62, 22]).

7.3 Abstraction 221

7.3.1 Recursive Descent Parsing

Here we generalize the scheme presented in Section 7.2.2. The key idea is that
“procedures” (in our case, “functions”) are assumed to construct and return ASTs of
the appropriate type. In our Haskell-based approach, we capture a type constructor
for the signature of functions that model nonterminals:

type Parser a = String→ Maybe (a, String)

That is, the input string is mapped either to Nothing or to a pair consisting of an AST
(of type a) and the remaining input string. Here is the parser for FSML.

Illustration 7.14 (A recursive descent parser for BNL in Haskell)

Haskell module Language.BNL.Parser

−− [number] number : bits rest ;
number :: Parser Number
number i = do

(bs, i')← bits i
(r, i'')← rest i'
Just (Number bs r, i'')

−− [single] bits : bit ;
−− [many] bits : bit bits ;
bits i = many `mplus` single

where
single = do (b, i')← bit i; Just (Single b, i')
many = do (b, i')← bit i; (bs, i'')← bits i'; Just (Many b bs, i'')

−− [zero] bit : '0' ;
−− [one] bit : '1' ;
bit i = zero `mplus` one

where
zero = do i'← match '0' i; Just (Zero, i')
one = do i'← match '1' i; Just (One, i')

−− [integer] rest : ;
−− [rational] rest : '.' bits ;
rest i = rational `mplus` integer

where
integer = Just (Integer, i)
rational = do

i'← match '.' i
(bs, i'')← bits i'
Just (Rational bs, i'')

The differences between a parser and an acceptor (Section 7.2.2) can be summa-
rized as follows. A parser may return an AST; an acceptor is just a predicate. In the
parser, we use “do” notation for convenience of sequential composition of actions.

http://github.com/softlang/yas/tree/springer/languages/BNL/Haskell/Language/BNL/Parser.hs

222 7 Implementation of Textual Concrete Syntax

In particular, we bind intermediate ASTs in this way. The encoding of each rule ends
in an expression of the form “Just · · ·” to explicitly compose and return the AST of
interest. For instance, consider this:

−− [number] number : bits rest ;
number :: Parser Number
number i = do

(bs, i')← bits i
(r, i'')← rest i'
Just (Number bs r, i'')

That is, the rule for the nonterminal is encoded by a sequential composition so that
we bind ASTs bs and r and construct the AST “Number bs r”. Along the way, we
thread the input (see i, i', and i'').

Exercise 7.6 (A parser monad) [Intermediate level]
Define an appropriate parser monad (or an applicative functor for parsing) which
includes tracking of input and potential failure. Rewrite the recursive descent parser
in Illustration 7.14 to use this monad. In this manner, we should arrive at more
factored code so that the functions for the nonterminals do not need to pass the
input explicitly; this would be taken care of by the bind operation of the monad.

7.3.2 Semantic Actions

In Section 2.3.3, we have already discussed the use of object-oriented listeners for
walking a CST such that functionality for AST construction can be defined. We
adopted ANTLR accordingly. It is common that parser generators also provide the
option of injecting so-called semantic actions into a grammar so that computations
can be performed during parsing. A major use case of semantic actions is indeed
AST construction. A semantic action is basically some statement of the target lan-
guage for parser generation; the statement is to be executed when parsing reaches
the position of the semantic action within the grammar rule.

Let us inject Java code for AST construction into an ANTLR-based syntax defi-
nition.

Illustration 7.15 (An ANTLR-based parser description for FSML)

ANTLR resource languages/FSML/Java/FsmlToObjects.g4

1 grammar FsmlToObjects;
2 @header {package org.softlang.fsml;}
3 @members {public Fsm fsm = new Fsm();}
4

5 fsm : state+ EOF ;
6 state :

http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/FsmlToObjects.g4

7.3 Abstraction 223

7 { boolean initial = false; }
8 ('initial' { initial = true; })?
9 'state' stateid

10 { fsm.getStates().add(new State($stateid.text, initial)); }
11 '{' transition* '}'
12 ;
13 transition :
14 { String source = fsm.getStates().get(fsm.getStates().size()−1).getStateid(); }
15 event
16 { String action = null; }
17 ('/' action { action = $action.text; })?
18 { String target = source; }
19 ('−>' stateid { target = $stateid.text; })?
20 { fsm.getTransitions().add(new Transition(source, $event.text, action, target)); }
21 ';'
22 ;
23 stateid : NAME ;
24 event : NAME ;
25 action : NAME ;
26 NAME : ('a'..'z'|'A'..'Z')+ ;
27 WS : [\t\n\r]+ −> skip ;

ANTLR’s semantic actions can be briefly explained as follows:

• Semantic actions are injected into the grammar by escaping them with braces. For
instance, the semantic action {boolean initial=true;} (line 7) declares and initializes
a local Java variable (local to the generated code for the state rule).

• Nonterminals are associated with the text consumed by parsing. If n is a nonter-
minal in a given rule, then $n.text can be used to access the text within semantic
actions; see, for example, {. . . $stateid.text . . . } (line 10).

The semantic actions in the example build objects of a basic, influent object
model for FSML (Section 2.2.1). The following members are used in the seman-
tic actions:

• The constructor for Fsm is invoked to construct an FSM object and keep track of
it through an attribute fsm that is injected into the generated class (line 3).

• The observer members getStates and getTransitions are invoked to access collec-
tions of states and transitions (lines 10 and 20).

• The constructors for State and Transition are invoked to construct objects for states
and transitions and to add them to the FSM object (line 10 and line 20).

ANTLR and other parser generators have more sophisticated mechanisms for
semantic actions. In particular, ANTLR makes it possible to declare arguments and
results for nonterminals. These mechanisms are inspired by the attribute grammar
paradigm [32, 40] which we discuss in Section 12.2.

224 7 Implementation of Textual Concrete Syntax

7.3.3 Parser Combinators

Parser combinators, as discussed in Section 7.2.4, can be used to represent grammars
as systems of recursive functions for parsing. The body of each function is basically
an expression over parser combinators for sequential composition, choice (compo-
sition of alternatives), EBNF operators for optionality and iteration, and constants
for scanning.

Let us demonstrate the use of the popular parser-combinator library Parsec [37]
in the Haskell context. Parsers composed by combinators are of an abstract data type
Parser a, where a is the type of representation (AST) constructed by the parser. The
Parser type constructor is a monad [60] and the bind operator “>>=” is immediately
the parser combinator for sequential composition.

AST construction basically boils down to the application of appropriate data con-
structors to “smaller” ASTs. In basic monadic style, this means that the ASTs for
phrases are bound via “>>=” or monadic do-notation with a final return to compose
an AST, as shown below.

Illustration 7.16 (A monadic style parser for FSML)

Haskell module Language.FSML.MonadicParser

fsm :: Parser Fsm
fsm = many state >>=return . Fsm

state :: Parser State
state = do

ini← option False (reserved "initial" >> return True)
source← reserved "state" >> stateid
ts← braces (many (transition source))
return (State ini source ts)

transition :: StateId→ Parser Transition
transition source = do

e← event
a← optionMaybe (op "/" *> action)
t← option source (op "−>" *> stateid)
semi
return (Transition e a t)

The functions fsm, state, and transition are parsers with corresponding algebraic
data types Fsm, State, and Transition for the ASTs. The function Transition is param-
eterized by a state id for the source state to which the transition belongs; the state id
is used as the target state id if the id was omitted in the FSM.

We may also use the more restrained applicative functor style [41] where applica-
ble. That is, we leverage the fact that the parser monad is also an applicative functor
and thus, an AST constructor can essentially be applied to the computations for the
phrases. Arguably, this leads to more “functional” code as shown below.

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/MonadicParser.hs

7.3 Abstraction 225

Illustration 7.17 (An applicative functor style parser for FSML)

Haskell module Language.FSML.ApplicativeParser

fsm :: Parser Fsm
fsm = Fsm <$> many state

state :: Parser State
state = do

ini← option False (reserved "initial" >> return True)
source← reserved "state" >> stateid
ts← braces (many (transition source))
return (State ini source ts)

transition :: StateId→ Parser Transition
transition source =

Transition
<$> event
<*> optionMaybe (op "/" *> action)
<*> option source (op "−>" *> stateid)
<* semi

The functions fsm and transition are defined in applicative functor style whereas
we resort to monadic style (do-notation) in the case of state because we need to
intercept the state id so that it can be passed as an argument to transition.

7.3.4 Text-to-Model

For brevity, we will not discuss in any detail the problem of text-to-model transfor-
mations [27, 22], a parsing-like phase in the MDE. Conceptually, a text-to-model
transformation can be viewed as consisting of parsing followed by abstraction and
resolution (AST-to-ASG mapping), as discussed previously (Section 4.4). Techni-
cally or technologically, this is an involved and interesting problem.

Exercise 7.7 (Text-to-model with Xtext) [Intermediate level]
Study Xtext3 [4] and implement a mapping from text-based syntax for the Buddy
Language to a graph-based representation.

3 http://www.eclipse.org/Xtext/

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/ApplicativeParser.hs
http://www.eclipse.org/Xtext/

226 7 Implementation of Textual Concrete Syntax

initial state locked {

 ticket/collect -> unlocked;

 pass/alarm -> exception;

}

state unlocked {

 ticket/eject;

 pass -> locked;

}

…

horizontal composition

vertical composition

indentation

Legend

Fig. 7.3 Formatting with pretty-printer combinators: the FSM on the left-hand side is readily for-
matted. The boxes explain how the format has emerged from the composition of boxes by horizon-
tal and vertical alignment and by indentation.

7.4 Formatting

We now switch from parsing to the opposite direction: formatting (or unparsing or
pretty printing). Formatting is needed in the context of code generation, for example,
in web programming; it also shows up as part of source-code transformation if we
assume that the actual transformation is implemented at the level of ASTs and, thus,
the transformation is complemented by parsing and formatting.

We describe two overall options for formatting: the combinator- versus the
template-based approach. Both of these approaches are syntax-driven: formatting
is essentially accomplished by recursing into an AST-like data structure. We do not
discuss more lexical approaches to formatting any further here (see, e.g., [44, 2]).
We also omit coverage of the interesting notion of invertible syntax descriptions
such that parsing and formatting (pretty printing) can be unified [49].

7.4.1 Pretty Printing Combinators

The overall idea of the combinator-based approach is to view the output as a docu-
ment that is composed from smaller documents, down to the level of pieces of text,
by means of combinators for horizontal and vertical composition as well as inden-
tation [5]; see Fig. 7.3 for an illustration. This approach is fundamentally different
from the more ad hoc approach where a programmer takes care of line breaks and
indentation in, say, an imperative manner, i.e., by maintaining the indentation level
in a variable and producing textual output by means of “printf”.

7.4 Formatting 227

Let us demonstrate such pretty printing in Haskell with the help of a suitable
combinator library [23]. There are combinators such as this:

Interactive Haskell session:

I −− Switch to the module for formatting
I :m Text.PrettyPrint.HughesPJ
- -
I −− The empty box
I :t empty
empty :: Doc
- -
I −− A box exactly containing some given text
I :t text
text :: String→ Doc
- -
I −− Horizontal composition of two boxes
I :t (<>)
(<>) :: Doc→ Doc→ Doc
- -
I −− Space−separated horizontal composition
I :t (<+>)
(<+>) :: Doc→ Doc→ Doc
- -
I −− Vertical composition of two boxes
I :t ($$)
($$) :: Doc→ Doc→ Doc
- -
I −− Vertical composition of a list of boxes
I :t vcat
vcat :: [Doc]→ Doc
- -
I −− Indentation of a box by a number of spaces
I :t nest
nest :: Int→ Doc→ Doc

The type Doc is an abstract data type; one may turn documents into text:

Interactive Haskell session:

I show $ text "hello"
"hello"

The combinators satisfy some convenient algebraic laws. For instance, an empty
box is a left and right unit of (even space-separated) horizontal composition. Thus:

empty <> x = x
x <> empty= x
empty <+> x = x
x <+> empty = x

We are ready to present a formatter (a pretty printer) for FSML. In the following
Haskell code, we assume that an FSM is given in the abstract syntactical represen-
tation, as introduced earlier.

228 7 Implementation of Textual Concrete Syntax

Illustration 7.18 (Formatting FSML with pretty printer combinators)

Haskell module Language.FSML.CombinatorFormatter

1 fsm :: Fsm→ Doc
2 fsm (Fsm ss) = vcat (map state ss)
3

4 state :: State→ Doc
5 state (State initial source ts) =
6 (if initial then text "initial" else empty)
7 <+> text "state"
8 <+> text source
9 <+> text "{"

10 $$ nest 2 (vcat (map (transition source) ts))
11 $$ text "}"
12

13 transition :: String→ Transition→ Doc
14 transition source (Transition ev ac target) =
15 text ev
16 <> maybe empty (λ ac'→ text "/" <> text ac') ac
17 <+> (if source == target
18 then empty
19 else text "−>" <+> text target)
20 <> text ";"

Thus, we designate a function for each type of the abstract syntax. The states are
formatted independently and the resulting boxes are vertically composed; see the use
of vcat in the function fsm (line 2). Each state is formatted by a mix of horizontal
and vertical composition. The vertically composed transitions are indented; see the
use of nest in the function state (line 10). The function transition is parameterized by
the source state id so that it can leave out the target state id if it equals the source
state id (lines 17–19).

7.4.2 Template Processing

A template is essentially a parameterized text (a string). Several related templates
may be organized into groups of named templates so that they can invoke each other
along with parameter passing. More abstractly, a group of templates can be viewed
as a mutually recursive system of functions that map parameter data to text on the
basis of filling parameters or projections thereof into “holes” in the templates. This
process may also be controlled by conditions and may involve “loops” to iterate
over parameters that represent lists. In Section 2.4.2s, we already discussed the use
of template processing for code generation, i.e., mapping one language (e.g., FSML)
to another language (e.g., C). In the present section, we discuss the use of template
processing for formatting, i.e., mapping the abstract syntax of a language to the
concrete syntax of the same language.

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/CombinatorFormatter.hs

7.4 Formatting 229

I/O behavior of template processing for FSML

initial state locked {
 ticket/collect -> unlocked;
 pass/alarm -> exception;
}
state unlocked {
 ticket/eject;
 pass -> locked;
}
…

Fsm [
 State {
 initial=True,
 stateid="locked",
 transitions=[
 Transition { event="ticket", action=Just "collect", target=Just "unlocked" },
 Transition { event="pass", action=Just "alarm", target=Just "exception" }
]
 },
 State {
 initial=False,
 stateid="unlocked",
 transitions=[
 Transition { event="ticket", action=Just "eject", target=Nothing },
 Transition { event="pass", action=Nothing, target=Just "locked" }
]
 },
 ...
]

[
 ("main", "$fsm.states:state()…$"),
 (“state", "… state …”),
 (“transition", "… -> …”)
]

Data

TextTemplates

Rendering

Fig. 7.4 I/O behavior of template processing for FSML.

A template processing-based formatter for FSML is illustrated in Fig. 7.4. Let us
make some assumptions about the template-processing problem at hand:

• We assume the abstract syntactical representation for FSMs, as introduced ear-
lier. This abstract representation provides the initial parameter for template pro-
cessing.

• We need templates for the FSM as a whole, for states, and for transitions, as
an FSM breaks down into many states, each of which breaks down into many
transitions.

• Lines breaks and indentation are captured by the templates. Alternatively, a lexi-
cal formatter [44, 2] could be applied for postprocessing.

• Template parameters should be set up in such a way that no computations need to
be performed during formatting, thereby separating the concerns of computation
and formatting.

We are going to leverage the template processor HStringTemplate4 for Haskell;
this is a Haskell port of the well-known template processor StringTemplate5 [45]
which we used in Section 2.4.2.

4 https://hackage.haskell.org/package/HStringTemplate
5 http://www.stringtemplate.org/

https://hackage.haskell.org/package/HStringTemplate
http://www.stringtemplate.org/

230 7 Implementation of Textual Concrete Syntax

Illustration 7.19 (Formatting FSML with template processing)

Haskell module Language.FSML.TemplateFormatter

1 templates :: STGroup String
2 templates = groupStringTemplates [
3 ("main", newSTMP "$fsm.states:state(); separator='\n'$"),
4 ("state", newSTMP $ unlines [
5 "$if(it.initial)$initial $endif$state $it.stateid$ {",
6 "$it.transitions:transition(); separator='\n'$",
7 "}"
8]
9),

10 ("transition", newSTMP (
11 " $it.event$\
12 \$if(it.action)$/$it.action$$endif$\
13 \$if(it.target)$ −> $it.target$$endif$\
14 \;"
15)
16)
17]
18

19 format :: Fsm→ String
20 format fsm =
21 let Just t = getStringTemplate "main" templates
22 in render $ setAttribute "fsm" fsm t

The formatter captures the template group (lines 1–17) as a list of name-value
pairs. The values are strings which are spread out over multiple lines for readability
(see the multiline strings in the "state" template in line 4) or for insertion of line
breaks (see the use of unlines in the "transition" template in lines 10–15). The format
function retrieves the "main" template, sets the "fsm" attribute, and starts rendering
(lines 19-22). Within the templates, the following idioms are used:

• Parameter references and template invocations are included within “$ · · ·$”.
• Components of parameters are selected by member-like access; see the use of

“.”.
• A template t is invoked by the idiom “$. . . t(· · ·)$”; parameters, if any, are passed

between the parentheses.
• Lists can be processed by an idiom “$l : t(· · ·);separator = · · ·$” where l denotes

access to a list-typed parameter, t is the name of the template to be invoked on
each element, and the separator declaration can be used for injecting line breaks
or other separators between the rendered elements. Within the template t, the
element is referable to as the parameter “it”; see the uses of “it” in the templates.

• Conditional text may be modeled by the “$if(· · ·)$ · · ·$endif$” idiom. There are
these forms of condition: test of a Boolean parameter, test for the presence of an
“optional” parameter (a Maybe in Haskell), and possibly others.

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/TemplateFormatter.hs

7.5 Concrete Object Syntax 231

A general discussion of the features of template processing can be found else-
where [50]; the discussion is systematic and technology-neutral, but it assumes the
perspective of model-to-text transformation.

A valuable property of templates is that they encourage a separation between
“model” and “view” (say, computation and formatting) by means of a simple map-
ping of a data structure, passed as a parameter, to text – as opposed to perform-
ing “arbitrary” computations along with text generation. A problematic property of
(mainstream) template processing is that there is no static guarantee that the re-
sulting text will be syntactically correct, and even less so that the result will be
well-typed. Syntactic correctness can be achieved by constraining template systems
in such a manner that templates are derived from a given grammar in a systematic
manner [59].

7.5 Concrete Object Syntax

So far, we have basically assumed that metaprograms operate at the level of abstract
syntactical object program representations. In this setting, if the concrete syntax of
the object language is to be used, then metaprograms need to be complemented by
parsing and formatting. Alternatively, subject to suitable metaprogramming support,
metaprograms can operate directly at the level of concrete object syntax. In this case,
the metaprogrammer can use the patterns of the object language in metaprograms.
For instance, a translator from metamodels to database schemas would directly use
metamodeling and SQL syntax. Likewise, the implementation of a refactoring suite
for a given programming language such as Java would directly use programming
language syntax of that language.

The notion of concrete object syntax has been developed in specialized metapro-
gramming systems over the last 30+ years (see [55, 58, 9, 10] for somewhat more
recent accounts).

There is a poor man’s approach towards using concrete object syntax in which
object programs are encoded as strings in the metalanguage. This approach is used,
for instance, in low-level database APIs such as JDBC for Java. Consider this illus-
tration, quoted from [6, 7]; the Java code runs an SQL query to check a username/-
password pair:

String userName = getParam("userName");
String password = getParam("password");
String query = "SELECT id FROM users "

+ "WHERE name = '" + userName + "' "
+ "AND password = '" + password + "'";

if (executeQuery(query).size() == 0)
throw new Exception("bad user/password");

An obvious drawback of this poor man’s approach is that the proper use of the
object language’s syntax is not checked at compile time. Syntax errors and issues
with conformance of the query to the underlying database schema would only be

232 7 Implementation of Textual Concrete Syntax

found at runtime. Perhaps a less obvious consequence of such poor checking is that
programs become vulnerable to injection attacks [6, 7].

In this section, we focus on proper syntax-aware embedding of the object lan-
guage into the metalanguage. In an extended Java language with SQL embedded,
the above example may look as follows; this code is again adopted from [6, 7]:

SQL q = <| SELECT id FROM users WHERE
name = ${userName} AND password = ${password} |>;

if (executeQuery(q.toString()).size() == 0) . . .

The key idea is that, within the metalanguage (here: Java), we can embed object
program fragments (here: SQL) by means of an appropriate escaping or quoting
mechanism (see the brackets “<| · · · |>”) and we can escape back to the metalanguage
to fill in details computed in the metaprogram (see the access to Java variables such
as “${userName}”. Thus, the syntax of the object language and the metalanguage
are amalgamated in a certain manner.

7.5.1 Quotation

We will discuss here an approach to concrete object syntax which combines so-
called quasi-quotation and language or syntax embedding [39, 53, 61]. We begin
with a trivial example. Consider the following Haskell code which exercises em-
bedding FSML syntax into Haskell.

Illustration 7.20 (Embedding of FSML into Haskell)

Haskell module Language.FSML.QQ.Sample

turnstileFsm :: Fsm
turnstileFsm = [fsml|

initial state locked {
ticket / collect→ unlocked;
pass / alarm→ exception;

}
state unlocked {

ticket / eject;
pass→ locked;

}
state exception {

ticket / eject;
pass;
mute;
release→ locked;

}
|]

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/QQ/Sample.hs

7.5 Concrete Object Syntax 233

We use so-called quasi-quote brackets “[fsml| · · · |]” (or Oxford brackets) to quote
an FSM within the Haskell code. Quasi-quotation is realized (in Haskell) such that
the quoted text is actually parsed at compile time. What happens underneath is that
the parser synthesizes an AST based on the algebraic data type-based, abstract syn-
tactical representation of the parsed language and the resulting expression is then
mapped to a Haskell expression (AST) and inserted into the AST of the module.
Thus, the shown binding has exactly the same meaning as if we had written Haskell
code for FSM construction instead. This can be compared with storing the FSM
in a file and parsing it at runtime – except that quasi-quotation allows us to em-
bed the FSM directly into the Haskell code and parsing (syntax checking) happens
transparently at compile time.

The quasi-quote brackets specify the language to be used; this is fsml in the ex-
ample. The name is, in fact, the name of a binding of type QuasiQuoter, subject to
Haskell’s extension for quasi-quotation [39] based also on Template Haskell [51].
A quasi-quoter essentially describes how to map strings to Haskell expressions or
elements of other categories of Haskell’s syntax. We are ready to present the quasi-
quote for FSML.

Illustration 7.21 (A quasi-quoter for FSML)

Haskell module Language.FSML.QuasiQuoter

1 fsml :: QuasiQuoter
2 fsml = QuasiQuoter
3 { quoteExp = quoteFsmlExp
4 , quotePat = undefined
5 , quoteType = undefined
6 , quoteDec = undefined
7 }
8

9 quoteFsmlExp :: String→ Q Exp
10 quoteFsmlExp str = do
11 x← parseQ fsm str
12 case check x of
13 []→ dataToExpQ (const Nothing) x
14 errs→ error $ unlines errs

Thus, the quasi-quoter (lines 1–7) is a record with four components, each one
applying to a different syntactic category. We are only concerned with expressions
here (see quoteExp = · · · in line 3) and we leave the components for patterns, types,
and declarations undefined. Let us describe the actual binding for quoteFsmlExp
(lines 9–14) in terms of three phases:

Parsing The expression parseQ fsm str (line 11) parses the string str between the
quasi-quote brackets; it uses a standard parser fsm (Section 7.3.3). The function
parseQ is a convenience wrapper around the normal run function of the parser
monad; it sets up location and error reporting in a uniform manner.

http://github.com/softlang/yas/tree/springer/languages/FSML/Haskell/Language/FSML/QuasiQuoter.hs

234 7 Implementation of Textual Concrete Syntax

Analysis The expression check x (line 12) checks that the parsed FSM satisfies
the usual constraints that we set up for the FSML language earlier. If the check
returns any error messages, then they are communicated to the user by the in-
vocation of the error function. Such checking is performed inside the quotation
monad and, thus, errors will be communicated to the language user in the same
way as type errors for the metalanguage.

Quoting The expression dataToExp (const Nothing) x (line 13) maps an FSM (rep-
resented in the established abstract syntax) to a Haskell expression, which con-
structs a Haskell AST. The function dataToExp is a generic function in that it
can be applied to the different types that are used in an FSM representation. The
always-failing component const Nothing expresses that the generic behavior is
appropriate for all relevant types.

The first two phases, parsing and analysis, are relatively obvious. The last phase,
quoting, may require some extra reflection. That is, one may expect that the quasi-
quoter should somehow be able to use the AST representation of the FSM directly,
as this is exactly the AST that we want to process in a metaprogram anyway. In-
stead, we seem to detour through Haskell expressions only to recover the same AST
at runtime. This approach is appropriate because it is more general and uniform. The
uniformity assumption here is that the contents of the quasi-quote brackets denote
Haskell code (expressions, patterns, types, or declarations) as opposed to ASTs of
another language. Thus, the object language is integrated by translation to the meta-
language. We will demonstrate generality in a moment with another quasi-quotation
experiment.

Exercise 7.8 (Parsing FSMs into Haskell expressions) [Intermediate level]
Implement an FSML parser which directly constructs Haskell expressions as op-
posed to the present separation of parsing FSMs into FSM ASTs and converting
those ASTs into Haskell expressions.

7.5.2 Antiquotation

When quasi-quoted phrases escape back to the metalanguage, then we also speak
of antiquotation. Let us consider program optimization for EL expressions again.
In contrast to the earlier discussion (Section 5.4.1), we would like to use concrete
object syntax to author simplification rules for EL in Haskell. In Fig. 7.5, we show
some simplification rules (or laws), we recall the encoding of rules as functions on
abstract syntax, and we show a new encoding which relies on concrete object syntax
for EL in Haskell.

Between the quasi-quote brackets, we use antiquotation in terms of “$”-prefixed
identifiers to denote metavariables of the metalanguage (i.e., Haskell). For instance,

7.5 Concrete Object Syntax 235

Fig. 7.5 Comparison of simplification rules (or laws) with an encoding as a function on abstract
syntax and an encoding as a function on concrete syntax based on quasi-quotation.

the regular Haskell pattern Binary Add x (IntConst 0) is written in concrete object syn-
tax as [el| $x + 0|] with $x as a metavariable (i.e., Haskell variable). We need this
special syntax for metavariables because, without the “$” sign, we would denote
an object variable, i.e., a variable of the expression language EL according to its
concrete syntax. Thus, we need an extended syntax for EL with a new case for
metavariables, as defined below.

Illustration 7.22 (EL syntax extension for metavariables)

Haskell module Language.EL.QQ.Syntax

data Expr
= ... −− The same syntax as before
| MetaVar String −− An additional constructor for the abstract syntax

Haskell module Language.EL.QQ.Parser

factor :: Parser Expr
factor

= ... −− The same syntax as before
<|> (MetaVar <$> (op "$" >> identifier)) −− An additional choice in parsing

In the quasi-quoter, metavariables need to be mapped from the EL representation
to proper Haskell variables as shown below.

-- Laws on expressions
x + 0 = x
x * 1 = x
x * 0 = 0

-- Implementation based on abstract object syntax
commute :: Expr -> Maybe Expr
commute (Binary Add x y) = Just $ Binary Add y x
commute (Binary Mul x y) = Just $ Binary Mul y x
commute _ = Nothing

-- Implementation based on concrete object syntax
commute :: Expr -> Maybe Expr
commute [el| $x + $y |] = Just [el| $y + $x |]
commute [el| $x * $y |] = Just [el| $y * $x |]
commute _ = Nothing

-- Laws on expressions
x + 0 = x
x * 1 = x
x * 1 = 0

-- Implementation based on abstract object syntax
simplify :: Expr -> Maybe Expr
simplify (Binary Add x (IntConst 0)) = Just x
simplify (Binary Mul x (IntConst 1)) = Just x
simplify (Binary Mul x (IntConst 0)) = Just $ IntConst 0
simplify _ = Nothing

-- Implementation based on concrete object syntax
simplify :: Expr -> Maybe Expr
simplify [el| $x + 0 |] = Just [el| $x |]
simplify [el| $x * 1 |] = Just [el| $x |]
simplify [el| $x * 0 |] = Just [el| 0 |]
simplify _ = Nothing

http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/QQ/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/QQ/Parser.hs

236 7 Implementation of Textual Concrete Syntax

Illustration 7.23 (A quasi-quoter for EL)

Haskell module Language.EL.QuasiQuoter

1 el :: QuasiQuoter
2 el = QuasiQuoter
3 { quoteExp = quoteElExp
4 , quotePat = quoteElPat
5 , quoteType = undefined
6 , quoteDec = undefined
7 }
8

9 quoteElExp :: String→ Q Exp
10 quoteElExp str = do
11 x← parseQ expr str
12 dataToExpQ (const Nothing `extQ` f) x
13 where
14 f :: Expr→ Maybe (Q Exp)
15 f (MetaVar v) = Just $ varE (mkName v)
16 f _ = Nothing
17

18 quoteElPat :: String→ Q Pat
19 quoteElPat str = do
20 x← parseQ expr str
21 dataToPatQ (const Nothing `extQ` f) x
22 where
23 f :: Expr→ Maybe (Q Pat)
24 f (MetaVar v) = Just $ varP (mkName v)
25 f _ = Nothing

We point out the following aspects of the quasi-quoter:

• The quasi-quoter instantiates the components for both Haskell expressions (line
3) and patterns (line 4) because, as demonstrated in Fig. 7.5, we would like to use
concrete EL syntax in the positions of both pattern matching and the right-hand
sides of equations. Accordingly, the component quoteElExp returns an expression
(Exp) within the quotation monad, whereas the component quoteElPat returns a
pattern (Pat).

• Both of the quasi-quotation components (lines 9–25) use the same convenience
function parseQ as before.

• When mapping (“quoting”) the EL AST, the generic mapping functions
dataToExpQ and dataToPatQ are properly customized (lines 15 and 24) so that
EL’s metavariables are mapped to Haskell variables. We use the constructor VarE
for names in an expression context and the constructor VarP in a pattern context.

The situation at hand is more general than that for FSML above because we
have properly amalgamated the syntaxes of Haskell and EL. That is, one can use
EL within Haskell and one can also use Haskell (its variables) within EL. See the
following exercise for a generalized amalgamation.

http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/QuasiQuoter.hs

Exercise 7.9 (Comprehensive antiquotation) [Intermediate level]
Extend the quasi-quoter so that antiquotation can be used with arbitrary Haskell ex-
pressions as opposed to just metavariables. To this end, you need to replace the case
for metavariables with one for arbitrary Haskell expressions; the Haskell parser
needs to be invoked from within the EL parser.

Exercise 7.10 (Automated object syntax embedding) [Advanced level]
Metaprogramming systems such as ASF+SDF [54], TXL [10, 11], Stratego [8], the
Sugar* line of systems [14, 15, 16], and Rascal [31, 30] support metaprogramming
with concrete object syntax without the efforts of setting up (the equivalent of) a
quasi-quoter. Develop a related infrastructure on top of Haskell’s quasi-quotation
on the basis of the following ideas:

• The grammar of the object language is extended automatically to accom-
plish splicing according to Exercise 7.9. To this end, an alternative for meta-
expressions (patterns) has to be added for each nonterminal.

• The grammar is interpreted by a generic component to construct a uni-
form, Haskell-based CST presentation. Alternatively, Template Haskell-based
metaprogramming could be used to generate a parser. A parser combinator li-
brary would be used underneath.

• The actual quasi-quoter is essentially boilerplate code, as demonstrated for EL.
One may define it as a generic abstraction that is refined into a language-specific
quasi-quote by simple parameter passing for the language name and the gram-
mar.

Test your development by implementing simple metaprograms for different lan-
guages.

Summary and Outline

We have catalogued the different representations and mappings that arise in dealing
with concrete syntax in language-based software components. We have described
practical techniques for scanning, parsing, abstraction, and formatting. The list of
techniques included parser generation, parser combinators, pretty printing combina-
tors, and template processing. We have also described the quasi-quotation technique
for integrating the concrete syntax of an object language into the metalanguage. The
topic of parsing, in particular, could only be covered in a selective manner. There
exist many different parsing approaches and technologies and they all come with
their specific peculiarities. The topic of formatting was also not covered completely.
In particular, lexical formatting [44, 2] was not exercised. The topic of concrete

7.5 Concrete Object Syntax 237

238 7 Implementation of Textual Concrete Syntax

object syntax was also covered in just one specific manner. We have not covered
several aspects of concrete syntax implementation, for example, grammar-based
testing [34, 35, 17] and grammar transformation, for example, in the context of
language evolution [33, 12, 56, 36].

We will now turn away from syntax and discuss semantics and types. For what it
matters, we are going to use abstract object syntax again in most of what follows.

References

1. Aho, A., Monica S., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools. Ad-
dison Wesley (2006). 2nd edition

2. Bagge, A.H., Hasu, T.: A pretty good formatting pipeline. In: Proc. SLE, LNCS, vol. 8225,
pp. 177–196. Springer (2013)

3. Basten, H.J.S., Klint, P., Vinju, J.J.: Ambiguity detection: Scaling to scannerless. In: Proc.
SLE 2011, LNCS, vol. 6940, pp. 303–323. Springer (2012)

4. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt Publish-
ing (2013)

5. van den Brand, M., Visser, E.: Generation of formatters for context-free languages. ACM
Trans. Softw. Eng. Methodol. 5(1), 1–41 (1996)

6. Bravenboer, M., Dolstra, E., Visser, E.: Preventing injection attacks with syntax embeddings.
In: Proc. GPCE, pp. 3–12. ACM (2007)

7. Bravenboer, M., Dolstra, E., Visser, E.: Preventing injection attacks with syntax embeddings.
Sci. Comput. Program. 75(7), 473–495 (2010)

8. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language and
toolset for program transformation. Sci. Comput. Program. 72(1-2), 52–70 (2008)

9. Bravenboer, M., Visser, E.: Concrete syntax for objects: Domain-specific language embedding
and assimilation without restrictions. In: Proc. OOPSLA, pp. 365–383. ACM (2004)

10. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61(3), 190–210
(2006)

11. Cordy, J.R.: Excerpts from the TXL cookbook. In: GTTSE 2009, Revised Papers, LNCS, vol.
6491, pp. 27–91. Springer (2011)

12. Dean, T.R., Cordy, J.R., Malton, A.J., Schneider, K.A.: Grammar programming in TXL. In:
SCAM, pp. 93–104. IEEE (2002)

13. Economopoulos, G., Klint, P., Vinju, J.J.: Faster scannerless GLR parsing. In: Proc. CC,
LNCS, vol. 5501, pp. 126–141. Springer (2009)

14. Erdweg, S.: Extensible languages for flexible and principled domain abstraction. Ph.D. thesis,
Philipps-Universität Marburg (2013)

15. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: SugarJ: Library-based syntactic language
extensibility. In: Proc. OOPSLA, pp. 391–406. ACM (2011)

16. Erdweg, S., Rieger, F., Rendel, T., Ostermann, K.: Layout-sensitive language extensibility with
SugarHaskell. In: Proc. Haskell, pp. 149–160. ACM (2012)

17. Fischer, B., Lämmel, R., Zaytsev, V.: Comparison of context-free grammars based on parsing
generated test data. In: Proc. SLE 2011, LNCS, vol. 6940, pp. 324–343. Springer (2012)

18. Frost, R.A., Hafiz, R.: A new top-down parsing algorithm to accommodate ambiguity and left
recursion in polynomial time. SIGPLAN Not. 41(5), 46–54 (2006)

19. Frost, R.A., Hafiz, R., Callaghan, P.: Parser combinators for ambiguous left-recursive gram-
mars. In: Proc. PADL, LNCS, vol. 4902, pp. 167–181. Springer (2008)

20. Grune, D., Jacobs, C.: Parsing Techniques: A Practical Guide. Monographs in Computer
Science. Springer (2007). 2nd edition

21. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The Syntax Definition Formalism SDF.
reference manual. SIGPLAN Not. 24(11), 43–75 (1989)

References 239

22. Herrera, A.S., Willink, E.D., Paige, R.F.: An OCL-based bridge from concrete to abstract
syntax. In: Proc. International Workshop on OCL and Textual Modeling, CEUR Workshop
Proceedings, vol. 1512, pp. 19–34. CEUR-WS.org (2015)

23. Hughes, J.: The design of a pretty-printing library. In: Spring School on Advanced Functional
Programming Techniques, Båstad, Sweden, May 24-30, 1995, Tutorial Text, LNCS, vol. 925,
pp. 53–96. Springer (1995)

24. Izmaylova, A., Afroozeh, A., van der Storm, T.: Practical, general parser combinators. In:
Proc. PEPM, pp. 1–12. ACM (2016)

25. Johnson, S.C.: YACC—Yet Another Compiler Compiler. Computer Science Technical Report
32, AT&T Bell Laboratories (1975)

26. Jonnalagedda, M., Coppey, T., Stucki, S., Rompf, T., Odersky, M.: Staged parser combinators
for efficient data processing. In: Proc. OOPSLA, pp. 637–653. ACM (2014)

27. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete syntaxes
in model engineering. In: Proc. GPCE, pp. 249–254. ACM (2006)

28. Kadhim, B.M., Waite, W.M.: Maptool – supporting modular syntax development. In: Proc.
CC, LNCS, vol. 1060, pp. 268–280. Springer (1996)

29. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammarware. ACM
Trans. Softw. Eng. Methodol. 14(3), 331–380 (2005)

30. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language for source code
analysis and manipulation. In: Proc. SCAM, pp. 168–177. IEEE (2009)

31. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming with Rascal. In: GTTSE
2009, Revised Papers, LNCS, vol. 6491, pp. 222–289. Springer (2011)

32. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory 2(2), 127–
145 (1968)

33. Lämmel, R.: Grammar adaptation. In: Proc. FM, LNCS, vol. 2021, pp. 550–570. Springer
(2001)

34. Lämmel, R.: Grammar testing. In: Proc. FASE, LNCS, vol. 2029, pp. 201–216. Springer
(2001)

35. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based testing. In:
Proc. TestCom, LNCS, vol. 3964, pp. 19–38. Springer (2006)

36. Lämmel, R., Zaytsev, V.: Recovering grammar relationships for the Java language specifica-
tion. Softw. Qual. J. 19(2), 333–378 (2011)

37. Leijen, D.: Parsec, a fast combinator parser. Tech. Rep. 35, Department of Computer Science,
University of Utrecht (RUU) (2001)

38. Lohmann, W., Riedewald, G., Stoy, M.: Semantics-preserving migration of semantic rules
during left recursion removal in attribute grammars. ENTCS 110, 133–148 (2004)

39. Mainland, G.: Why it’s nice to be quoted: quasiquoting for Haskell. In: Proc. Haskell, pp.
73–82. ACM (2007)

40. Maluszynski, J.: Attribute grammars and logic programs: A comparison of concepts. In: Proc.
SAGA, LNCS, vol. 545, pp. 330–357. Springer (1991)

41. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Program. 18(1),
1–13 (2008)

42. Moore, R.C.: Removing left recursion from context-free grammars. In: Proc. ANLP, pp. 249–
255 (2000)

43. Nederhof, M.: A new top-down parsing algorithm for left-recursive DCGs. In: Proc. PLILP,
LNCS, vol. 714, pp. 108–122. Springer (1993)

44. Oppen, D.C.: Prettyprinting. ACM Trans. Program. Lang. Syst. 2(4), 465–483 (1980)
45. Parr, T.: A functional language for generating structured text (2006). Draft. http://www.

stringtemplate.org/articles.html
46. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013). 2nd edition
47. Parr, T., Fisher, K.: LL(*): The foundation of the ANTLR parser generator. In: Proc. PLDI,

pp. 425–436. ACM (2011)
48. Quesada, L., Berzal, F., Talavera, J.C.C.: A domain-specific language for abstract syn-

tax model to concrete syntax model mappings. In: Proc. MODELSWARD, pp. 158–165.
SciTePress (2014)

http://www.stringtemplate.org/articles.html
http://www.stringtemplate.org/articles.html

240 7 Implementation of Textual Concrete Syntax

49. Rendel, T., Ostermann, K.: Invertible syntax descriptions: Unifying parsing and pretty print-
ing. In: Proc. Haskell, pp. 1–12. ACM (2010)

50. Rose, L.M., Matragkas, N.D., Kolovos, D.S., Paige, R.F.: A feature model for model-to-text
transformation languages. In: Proc. MiSE, pp. 57–63. IEEE (2012)

51. Sheard, T., Peyton Jones, S.L.: Template meta-programming for Haskell. SIGPLAN Not.
37(12), 60–75 (2002)

52. Swierstra, S.D.: Combinator parsing: A short tutorial. In: International LerNet ALFA Summer
School 2008, Piriapolis, Uruguay, February 24 – March 1, 2008, Revised Tutorial Lectures,
LNCS, vol. 5520, pp. 252–300. Springer (2009)

53. Tratt, L.: Domain specific language implementation via compile-time meta-programming.
ACM Trans. Program. Lang. Syst. 30(6) (2008)

54. van den Brand, M., Sellink, M.P.A., Verhoef, C.: Generation of components for software reno-
vation factories from context-free grammars. Sci. Comput. Program. 36(2-3), 209–266 (2000)

55. van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M., Kuipers, T., Klint,
P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser, E., Visser, J.: The ASF+SDF
Meta-Environment: A component-based language development environment. ENTCS 44(2),
3–8 (2001)

56. Vermolen, S., Visser, E.: Heterogeneous coupled evolution of software languages. In: Proc.
MoDELS, LNCS, vol. 5301, pp. 630–644. Springer (2008)

57. Visser, E.: Syntax definition for language prototyping. Ph.D. thesis, University of Amsterdam
(1997)

58. Visser, E.: Meta-programming with concrete object syntax. In: Proc. GPCE, LNCS, vol. 2487,
pp. 299–315. Springer (2002)

59. Wachsmuth, G.: A formal way from text to code templates. In: Proc. FASE, LNCS, vol. 5503,
pp. 109–123. Springer (2009)

60. Wadler, P.: The essence of functional programming. In: Proc. POPL, pp. 1–14. ACM (1992)
61. Wielemaker, J., Hendricks, M.: Why it’s nice to be quoted: Quasiquoting for Prolog. CoRR

abs/1308.3941 (2013)
62. Zaytsev, V., Bagge, A.H.: Parsing in a broad sense. In: Proc. MODELS, LNCS, vol. 8767, pp.

50–67. Springer (2014)

Chapter 8
A Primer on Operational Semantics

ISABELLE ATTALI.1

Abstract The semantics of a software language assigns meanings to the elements
of the language. The field of programming language theory provides rigorous tech-
niques for the definition of semantics which are based on mathematical and logi-
cal tools. In this chapter, we introduce the method of operational semantics: infer-
ence rules are used to model the stepwise computation of a program. We do not
go into the details of the underlying theoretical underpinnings, but the level of for-
mality may help in developing and reasoning about interpreters and other semantics-
aware language processing components (e.g., analyzers, optimizers, or refactorings)
more systematically. We demonstrate the implementation of operational semantics
in Haskell.

1 The 2004 tsunami took Isabelle Attali and her sons Ugo and Tom from her family and friends.
She was in Sri Lanka at the time. Isabelle Attali may be credited with helping launch the field of
software languages as she was working on making formal and declarative language definitions – in
particular, attribute grammars and operational semantics – practically useful by addressing issues
of scalability, tool support, integration, and case studies [1, 3, 4, 2, 5]. She was involved in WAGA
(Workshop on Attribute Grammars and Applications) and LDTA (Language Descriptions, Tools,
and Applications) – both predecessors of the SLE conference. Isabelle, you are missed (http:
//www.labri.fr/perso/chaumett/attalicaromel/).
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA 4.0.
This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This work
also quotes https://commons.wikimedia.org/wiki/File:Wheat_Stacks_with_Reaper_1888_
Vincent_van_Gogh.jpg, subject to the attribution “Vincent Van Gogh: Wheat Stacks with Reaper (1888) [Pub-
lic domain], via Wikimedia Commons.” This work artistically morphes an image, http://www-sop.inria.fr/
oasis/personnel/Isabelle.Attali/images/ia2002.jpg, showing the person honored, subject to the
attribution “Permission granted by Isabelle Attali’s husband Denis Caromel for use in this book.”

241© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_8

http://www.labri.fr/perso/chaumett/attalicaromel/
http://www.labri.fr/perso/chaumett/attalicaromel/
http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Wheat_Stacks_with_Reaper_1888_Vincent_van_Gogh.jpg
https://commons.wikimedia.org/wiki/File:Wheat_Stacks_with_Reaper_1888_Vincent_van_Gogh.jpg
http://www-sop.inria.fr/oasis/personnel/Isabelle.Attali/images/ia2002.jpg
http://www-sop.inria.fr/oasis/personnel/Isabelle.Attali/images/ia2002.jpg
https://doi.org/10.1007/978-3-319-90800-7_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_8&domain=pdf

242 8 A Primer on Operational Semantics

8.1 Big-step Operational Semantics

The general idea underlying operational semantics is to model the stepwise com-
putation (or execution or evaluation) of program phrases, for example, statements
and expressions. Specifications of operational semantics leverage inference rules for
natural deduction, as common in logic and proof theory.

Depending on how the steps are “exposed” by the rules, there are two major
styles – big-step versus small-step operational semantics. In big-step style, the in-
ference rules model complete execution or evaluation of a given program phrase,
while the intermediate steps are implicit in the proof trees for applying inference
rules. In small-step style, the inference rules model single computational steps.

We begin with a detailed discussion of big-step style. We introduce the basic con-
cepts of operational semantics and exercise big-step style for a number of languages.
We also demonstrate how operational semantics specifications can be implemented
as interpreters in Haskell. Later we will cover small-step style.

8.1.1 Metavariables

In the context of semantics specifications, it is common practice to declare (short)
metavariables to range over syntactic categories and other types needed in the spec-
ification. The use of these metavariables (possibly with subscripts or quotes) helps
with conciseness and clarity; it also adds a simple typing discipline, as we will clar-
ify in a second. We are ready to present the metavariables for the semantics of the
simple expression language BTL:

• expressions e according to the abstract syntax;
• natural numbers n, i.e., zero, succ(zero), . . . ;
• Boolean values b, i.e., true and false;
• values v, i.e., Boolean values and natural numbers.

The type of expressions was readily defined according to the abstract syntax of BTL.
The remaining types are subsets of expressions and we will define them shortly.

8.1.2 Judgments

In operational semantics, we are concerned with relations over program phrases
(statements, expressions, etc.) and other data structures such as values (i.e., results
of evaluation) and stores (i.e., maps from variable names to values). In operational
semantics specifications, claims of relationships are referred to as judgments. That
is, a judgment is a basic formula – a claim to be proved on the basis of the oper-
ational semantics specification. A judgment is thus formed from a relation symbol

8.1 Big-step Operational Semantics 243

and some arguments. An argument is either a metavariable or an “instance” thereof
such as a syntactical pattern. For instance:

• evaluate(e,v): a judgment about the evaluation of an expression e to a value v;
• execute(s,m,m′): a judgment about the execution of an imperative statement s

for an initial store m and a resulting store m′; a store is viewed as a map from
variable names to values;

• evaluate(fs,m,e,v): a judgment about the evaluation of an expression e in a func-
tional program to a value v relative to a given collection of defined functions fs
and an environment m (i.e., a map from argument names to values).

In the literature, as a matter of convention, relation symbols are often not alpha-
betical, nor are they applied in prefix fashion. Instead, some infix or mixfix notation
is used instead. For instance:

• e # v instead of evaluate(e,v);
• m ` s # m′ instead of execute(s,m,m′);
• fs,m ` e # v instead of evaluate(fs,m,e,v).

8.1.3 Inference Rules

An operational semantics specification, at its heart, consists of inference rules, as
known from natural deduction in logic and proof theory. These rules are of the
following format:

P1 · · · Pn

C
[l]

P1, . . . , Pn, and C are judgments and l is simply a label of the rule that can be used
to refer to the rule conveniently. We refer to P1, . . . , Pn as premises and to C as the
conclusion because the idea is that the rules can be applied to perform proofs of
judgments such that the truth of C can be concluded, once the truth of P1, . . . , Pn
has been established. For n = 0, we speak of an axiom and omit the separator line.
Thus:

C [l]

The rules of an operational semantics are syntax-driven. That is, the conclusion
applies to a specific syntactic construct (or pattern), while the premises may apply
to subterms of the conclusion’s construct or terms formed over it.

Here is an axiom for the evaluation of the expression form zero:

zero # zero [ZERO]

244 8 A Primer on Operational Semantics

Here is the inference rule for the successor construct:

e # n

succ(e) # succ(n)
[SUCC]

This rule models that if e evaluates to a natural number n, then the compound ex-
pression evaluates to the successor of n, i.e., succ(n). Note that we are relying on
metavariables being constrained in terms of type. That is, n is a placeholder for
natural numbers rather than arbitrary evaluation results. This is the kind of typing
discipline provided by the use of metavariables.

We are ready to discuss the rules for all expression forms.

Specification 8.1 (Operational semantics of BTL (big-step style))

true # true [TRUE]

false # false [FALSE]

zero # zero [ZERO]

e # n

succ(e) # succ(n)
[SUCC]

e # zero

pred(e) # zero
[PRED1]

e # succ(n)

pred(e) # n
[PRED2]

e # zero

iszero(e) # true
[ISZERO1]

e # succ(n)

iszero(e) # false
[ISZERO2]

e0 # true e1 # v1

if(e0,e1,e2) # v1

[IF1]

8.1 Big-step Operational Semantics 245

e0 # false e2 # v2

if(e0,e1,e2) # v2

[IF2]

That is, there are three axioms, [TRUE], [FALSE], and [ZERO], for all the con-
stant forms of expressions. There is one rule, [SUCC], to construct the successor of
a given natural number. There are two rules, [PRED1] and [PRED2], to cover the
zero and nonzero argument options for the predecessor. There are also two rules,
[ISZERO1] and [ISZERO2], to cover the zero and nonzero argument options for the
test for zero. Finally, there are two rules, [IF1] and [IF2], to cover selection of the
then- and the else-branch, respectively.

Exercise 8.1 (A BTL extension) [Basic level]
Define the syntax and semantics of the operations odd and even to determine
whether a given argument expression evaluates to an odd or an even number and to
return a Boolean value accordingly.

We mention in passing that inference rules can also be applied to formalize
abstract syntax. We do not really need such a formalization, because the earlier
signature-based definition is perfectly sufficient for our purposes, but this alterna-
tive style of definition of abstract syntax may help to explain the notion of inference
rules. Thus, let us provide a judgment u ∈ expr for testing whether a given term u is
an expression. Here we assume that the metavariable u ranges over the “universe”
of prefix terms (Section 3.1.7), i.e., terms with arbitrary function symbols and any
number of argument terms.

Specification 8.2 (Inference rules defining the abstract syntax of BTL)

true ∈ expr [expr1]

false ∈ expr [expr2]

zero ∈ expr [expr3]

u ∈ expr

succ(u) ∈ expr
[expr4]

u ∈ expr

pred(u) ∈ expr
[expr5]

246 8 A Primer on Operational Semantics

u ∈ expr

iszero(u) ∈ expr
[expr6]

u0 ∈ expr u1 ∈ expr u2 ∈ expr

if(u0,u1,u2) ∈ expr
[expr7]

Likewise, we can define the precise (trivial) meaning of the types for number
and Boolean values as subsets of expr, subject to judgments e ∈ nat, e ∈ bool, and
e ∈ value as follows.

Specification 8.3 (Inference rules for BTL’s values)

zero ∈ nat [nat1]

e ∈ nat

succ(e) ∈ nat
[nat2]

true ∈ bool [bool1]

false ∈ bool [bool2]

e ∈ nat

e ∈ value
[value1]

e ∈ bool

e ∈ value
[value2]

8.1.4 Derivation Trees

The proof of a (big-step) judgment commences in a tree-like shape. These trees are
referred to as derivation trees. Figure 8.1 shows a derivation tree for a judgment
related to the evaluation of a BTL expression.

Each node in a derivation tree is an instance of a conclusion of an inference rule.
The subtrees of a node are instances of the premises of the same rule. The leaf
nodes of the tree are instances of axioms. By “instance” we mean that metavariables
in the rules applied are consistently replaced by phrases or data structures of the
appropriate sort.

8.1 Big-step Operational Semantics 247

zero # zero [ZERO]

iszero(zero) # true

[ISZERO1]

zero # zero [ZERO]

succ(zero) # succ(zero)

[SUCC]

if(iszero(zero),succ(zero),zero) # succ(zero)

[IF1]

pred(if(iszero(zero),succ(zero),zero)) # zero

[PRED2]

Fig. 8.1 A derivation tree for evaluating a BTL expression (see at the bottom).

8.1.5 Big-Step Style Interpreters

Operational semantics specifications can be implemented as programs that serve the
purpose of interpretation. Depending on any additional notational constraints that
may be imposed on the operational semantics, and also depending on the choice
of metalanguage, such an implementation can be more or less straightforward. In
fact, there exist executable metalanguages that are essentially dedicated to inference
rule systems for operational semantics and, possibly, type systems, for example,
TYPOL [7] and RML [14]. Further, operational semantics can also be represented
and thereby executed well in various logics in theorem provers or proof assistants,
for example, Agda [13], Coq [6], Isabelle/HOL [12], and Twelf [15].

8.1.5.1 Aspects of Implementation

Implementing operational semantics specifications in declarative programming lan-
guages is relatively straightforward, as we will demonstrate with Haskell as imple-
mentation language. Regardless of the concrete metalanguage or paradigm, imple-
mentation of operational semantics specifications involves several aspects giving
rise to a recipe as follows:

Recipe 8.1 (Implementation of inference rules).
The following explanation is tailored towards the implementation of big-step
operational semantics, but we will see later that about the same scheme applies
also to the implementation of small-step operational semantics, type checking,
and potentially other applications of inference rule-based specifications.

Abstract syntax Implement abstract syntax, as discussed previously
(Recipe 4.1).

248 8 A Primer on Operational Semantics

Semantic domains Define semantic domains such as values and stores – in
the same way as such domains are needed for any interpreter implementa-
tion (Recipe 2.2).

Judgments Given a metalanguage, pick a primary abstraction form for mod-
eling judgments. In functional programming, pick functions. In OO pro-
gramming, pick methods.

I/O An operational semantics defines mathematical relations. In contrast,
an interpreter needs to be computationally effective with well-defined I/O
behavior. Classify and implement the argument positions of judgments as
either input or output positions. For instance, in a functional programming
encoding, the input positions become function arguments and the output
positions become function results.

Inference rules Map each inference rule to a well-defined program phrase
of the metalanguage, thereby supporting modularity and clarity. For in-
stance, inference rules can be modeled as equations in functional program-
ming.

Conjunctions Logically, the premises of inference rules correspond to con-
junctions. Computationally, these conjunctions correspond to sequences of
subcomputations with some potential data flow from the conclusion to the
premises, among the premises, and again from the premises back to the
conclusion. Model such a sequence of computations and the correspond-
ing data flow in the metalanguage accordingly. For instance, in functional
programming, the premises can be arranged in a nested let-expression.

Failure and backtracking Inference rules “fail” when the premises “fail”.
Such failures may be “fatal” meaning that proof derivation (interpretation)
must be aborted or may be “recoverable” meaning that other inference
rules should be tried. Model failure and recovery from it in the implemen-
tation. (To this end, backtracking may be leveraged.)

Let us instantiate this recipe to interpret the expression language BTL in the func-
tional programming language Haskell. We have already implemented BTL’s abstract
syntax in Haskell (Section 4.1.3.1) and thus, we move immediately to defining value
forms of expressions that correspond to results of interpretation. We do not use alge-
braic data types here, because these value forms correspond to subsets of the existing
type Expr. Instead, we leverage predicates on Expr.

Illustration 8.1 (Value forms of expressions)

Haskell module Language.BTL.ValueExpr

−− Boolean values
isBool :: Expr→ Bool
isBool TRUE = True
isBool FALSE = True
isBool _ = False

−− Natural numbers

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/ValueExpr.hs

8.1 Big-step Operational Semantics 249

isNat :: Expr→ Bool
isNat Zero = True
isNat (Succ e) = isNat e
isNat _ = False

−− Values
isValue :: Expr→ Bool
isValue e = isBool e || isNat e

The judgment for expression evaluation can be modeled as a function with Expr
both as the domain and the range:

evaluate :: Expr→ Expr

The assumption is here that undefinedness of Haskell functions is used to model
failure of derivation. Here is how we expect to use the interpreter.

Interactive Haskell session:

I evaluate Pred (If (IsZero Zero) (Succ Zero) Zero)
Zero
- -
I evaluate (Pred TRUE)
*** Exception: ... Irrefutable pattern failed for pattern ...

The first example evaluates the expression to Zero because IsZero Zero is evalu-
ated to True and thus, the first branch of the if is selected, thereby applying Pred to
Succ Zero, resulting in Zero. The second example illustrates failing interpretation –
the predecessor of a Boolean value is not defined. Failure is manifested here by
runtime pattern-match failure.

We are ready to present the Haskell equations corresponding to the inference
rules for the big-step semantics of BTL.

Illustration 8.2 (Interpretation of expressions)

Haskell module Language.BTL.BigStep

1 evaluate :: Expr→ Expr
2 evaluate TRUE = TRUE
3 evaluate FALSE = FALSE
4 evaluate Zero = Zero
5 evaluate (Succ e) =
6 let n = evaluate e in
7 if isNat n then Succ n else undefined
8 evaluate (Pred e) =
9 case evaluate e of

10 Zero→ Zero
11 (Succ n)→ if isNat n then n else undefined
12 evaluate (IsZero e) =
13 case evaluate e of
14 Zero→ TRUE

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/BigStep.hs

250 8 A Primer on Operational Semantics

15 (Succ n)→ if isNat n then FALSE else undefined
16 evaluate (If e0 e1 e2) =
17 case evaluate e0 of
18 TRUE→ evaluate e1
19 FALSE→ evaluate e2

That is:

• Failure of derivation (proof) is readily modeled by Haskell’s undefined. For in-
stance, the evaluation Succ e fails with undefined if e does not evaluate to a result
n for which the predicate isNat holds (lines 5–7).

• The use of metavariables is encoded by additional type tests such as the applica-
tion of the predicate isNat, as just discussed above.

• A mapping is applied for now such that there is one equation per expression form
of BTL, as opposed to one equation per inference rule. For instance, the two in-
ference rules for the predecessor construct are combined in one equation with a
case-expression (lines 8–11). This mapping is simple in terms of functional pro-
gramming style, but it slightly obfuscates the correspondence between the formal
semantics and the interpreter. We will revisit this decision in Section 8.1.5.3.

8.1.5.2 Explicit Model of Failure

Let us provide a variation such that we model the potential for failure explicitly in
the type of the function for expression evaluation by means of applying the type
constructor Maybe to the result:

evaluate :: Expr→ Maybe Expr

Here is how we expect to use the interpreter:

Interactive Haskell session:

I evaluate Pred (If (IsZero Zero) (Succ Zero) Zero)
Just Zero
- -
I evaluate (Pred TRUE)
Nothing

That is, the first evaluation is successful; it returns Just Zero. The second evaluation
fails with Nothing because Pred cannot be applied to TRUE. The mapping of infer-
ence rules to equations contains dedicated cases to explicitly return Nothing in the
case of inappropriate intermediate results or failing premises.

8.1 Big-step Operational Semantics 251

Illustration 8.3 (Explicit model of failure in encoding big-step rules)

Haskell module Language.BTL.BigStepMaybe

evaluate :: Expr→ Maybe Expr
evaluate TRUE = Just TRUE
evaluate FALSE = Just FALSE
evaluate Zero = Just Zero
evaluate (Succ e) =

case evaluate e of
(Just n)→

if isNat n
then Just (Succ n)
else Nothing

Nothing→ Nothing
evaluate (Pred e) =

case evaluate e of
(Just Zero)→ Just Zero
(Just (Succ n))→

if isNat n
then Just n
else Nothing

_→ Nothing
evaluate (IsZero e) =

case evaluate e of
(Just Zero)→ Just TRUE
(Just (Succ n))→

if isNat n
then Just FALSE
else Nothing

_→ Nothing
evaluate (If e0 e1 e2) =

case evaluate e0 of
(Just TRUE)→ evaluate e1
(Just FALSE)→ evaluate e2
_→ Nothing

Exercise 8.2 (Distinguished result types) [Basic level]
The interpreters so far use value forms of expressions in the result position. How-
ever, the metalanguage readily provides primitive types for numbers and Booleans.
Revise the previous interpreter to use Either Int Bool instead of Expr.

8.1.5.3 Rule-by-Rule Mapping

Let us now strive for a 1:1 correspondence between inference rules and function
equations, as opposed to mapping multiple rules for one construct to a single equa-
tion. Such a rule-by-rule mapping arguably better conveys the structure of the formal
definition in the implementation.

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/BigStepMaybe.hs

252 8 A Primer on Operational Semantics

To this end, we may leverage Haskell 2010’s pattern guards, which allow us to
constrain equations more than by pattern matching and regular guards. That is, a
regular guard is simply a Boolean expression over variables bound in the left-hand
side patterns. By contrast, a pattern guard can perform more matching based on the
results computed for the guard’s expression. Consider this code pattern:

f (C x) | D y← g x = h x y

This equation will be selected for an argument that is of the form C x, but only if
the application g x returns a result that can be matched with D y. This expressiveness
is sufficient to achieve a 1:1 correspondence between inference rules and function
equations, as shown below.

Illustration 8.4 (Rule-by-rule mapping for big-step style)

Haskell module Language.BTL.BigStepWithGuards

evaluate :: Expr→ Expr
evaluate TRUE = TRUE
evaluate FALSE = FALSE
evaluate Zero = Zero
evaluate (Succ e)

| n← evaluate e
, isNat n
= Succ n

evaluate (Pred e)
| Zero← evaluate e
= Zero

evaluate (Pred e)
| Succ n← evaluate e
, isNat n
= n

evaluate (IsZero e)
| Zero← evaluate e
= TRUE

evaluate (IsZero e)
| Succ n← evaluate e
, isNat n
= FALSE

evaluate (If e0 e1 e2)
| TRUE← evaluate e0
= evaluate e1

evaluate (If e0 e1 e2)
| FALSE← evaluate e0
= evaluate e2

For instance, the first equation for the pattern Pred e applies only if the evaluation
of e results in Zero, whereas the second equation for the same pattern applies if the
evaluation of e matches the pattern Succ n and isNat n holds.

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/BigStepWithGuards.hs

8.1 Big-step Operational Semantics 253

8.1.6 More Examples of Big-Step Style

Let us define the semantics of a few more “fabricated” languages.

8.1.6.1 Semantics of Simple Imperative Programs

Let us define the semantics of the imperative programming language BIPL.

Specification 8.4 (Big-step operational semantics of BIPL)

Metavariables:

• statements s according to abstract syntax;
• expressions e according to abstract syntax;
• unary operators uo according to abstract syntax;
• binary operators bo according to abstract syntax;
• variable names x;
• integer values i;
• Boolean values b;
• integer and Boolean values v;
• stores m as collections of variable name-value pairs.

Judgments:

• m ` s # m′: execution of statement s with m and m′ as the stores before and
after execution, respectively;

• m ` e # v: evaluation of expression e with v as the evaluation result and m as
the observed store;

• unary(uo,v) # v′: interpretation of unary operator uo on an argument value v
with the result value v′;

• binary(bo,v1,v2) # v′: interpretation of binary operator bo on argument values
v1 and v2 with the result value v′.

Statement execution

m ` skip # m [SKIP]

m ` e # v

m ` assign(x,e) # m[x 7→ v]
[ASSIGN]

m0 ` s1 # m1 m1 ` s2 # m2

m0 ` seq(s1,s2) # m2

[SEQ]

254 8 A Primer on Operational Semantics

m ` e # true m ` s1 # m′

m ` if(e,s1,s2) # m′
[IF1]

m ` e # false m ` s2 # m′

m ` if(e,s1,s2) # m′
[IF2]

m ` if(e,seq(s,while(e,s)),skip) # m′

m ` while(e,s) # m′
[WHILE]

Expression evaluation

m ` intconst(i) # i [INTCONST]

m(x) 7→ v

m ` var(x) # v
[VAR]

m ` e # v unary(uo,v) # v′

m ` unary(uo,e) # v′
[UNARY]

m ` e1 # v1 m ` e2 # v2 binary(bo,v1,v2) # v′

m ` binary(bo,e1,e2) # v′
[BINARY]

The inference rules leverage some special notation:

• m(x) 7→ v: This form of premise, as exercised in rule [VAR], applies a store m in
the sense of function application. The premise fails, if the store does not map the
given variable identifier x to any value v.

• m[x 7→ v]: This form of argument, as exercised in rule [ASSIGN], denotes the
store m updated in the position x to associate with value v while being identical
to m in all other positions.

The inference rules can be explained as follows:

• [SKIP]: The “empty” statement is executed without any effect on the store.
• [ASSIGN]: The right-hand side expression is evaluated to a value v and the store

m is updated in the left-hand position x to map to v.
• [SEQ]: The statements s1 and s2 of the sequential composition are executed in

the given order, which is expressed by “threading” the store via the variables m0,
m1, and m2.

8.1 Big-step Operational Semantics 255

• [IF1]: If the condition e of the if-statement evaluates to true, then the then-branch
s1 is executed.

• [IF2]: If the condition e of the if-statement evaluates to false, then the else-branch
s2 is executed.

• [WHILE]: The statement if(e,seq(s,while(e,s)),skip) is executed instead. Thus,
the condition is tested by an if-statement with a then-branch for the sequential
composition of the loop’s body s and the entire loop again; the else-branch is the
empty statement.

• [INTCONST]: An integer constant i evaluates to an integer, as is.
• [VAR]: A variable identifier x evaluates to the value v if the given store m asso-

ciates x with v.
• [UNARY]: The operand e is evaluated to v and we assume that the result v of the

operation’s application is computed by a judgment of the form unary(uo,v) #
v′; the routine rules for unary are omitted here.

• [BINARY]: This is similar to [UNARY].

Illustration 8.5 (Derivation tree for a BIPL statement) Consider the following
statement, which computes the maximum c of two values a and b:

if(binary(geq,var(a),var(b)),assign(c,var(a)),assign(c,var(b)))

In the derivation tree shown in Fig. 8.2, m is a store such that 〈a,7〉 ∈m and 〈b,42〉 ∈
m. Thus, the statement given above should result in a store m′ such that 〈c,42〉 ∈m′.

Exercise 8.3 (Implementation of derivation trees) [Intermediate level]
Devise an object program representation of inference rules and derivation trees. Im-
plement a metaprogram for mechanically verifying the conformance (correctness)
of a derivation tree with regard to a set of inference rules. Your implementation
should be tested with the examples in this chapter.

Exercise 8.4 (Expression-oriented imperative language) [Basic level]
Define the big-step semantics of a variation of BIPL such that the syntactic category
for expressions incorporates all statement forms. This requires a reasonable hypoth-
esis as to what the evaluation result should be for any given “morphed” statement
form. For instance, in the language C, assignments can be used in expression po-
sitions. It may happen that some statement form fails to return a proper value. For
instance, skip cannot possibly return a proper value. Thus, the semantic domain for
values should be extended to be able to express the “lack of value”.

256 8 A Primer on Operational Semantics

〈a
,7
〉∈

m

m
`

va
r(

a)
#

7

[V
AR

]
〈b
,4

2〉
∈

m

m
`

va
r(

b)
#

42

[V
AR

]

bi
na

ry
(g

eq
,7
,4

2)
#

fa
lse

m
`

bi
na

ry
(g

eq
,v

ar
(a
),

va
r(

b)
)
#

fa
lse

[B
IN

AR
Y

]

〈b
,4

2〉
∈

m

m
`

va
r(

b)
#

42

[V
AR

]

m
`

as
sig

n(
c,

va
r(

b)
)
#

m
[c
7→

42
]

[A
SS

IG
N

]

m
`

if(
bi

na
ry
(g

eq
,v

ar
(a
),

va
r(

b)
),

as
sig

n(
c,

va
r(

a)
),

as
sig

n(
c,

va
r(

b)
))
#

m
[c
7→

42
]

[IF
2]

Fi
g.

8.
2

A
de

riv
at

io
n

tr
ee

fo
rs

ta
te

m
en

te
xe

cu
tio

n.

8.1 Big-step Operational Semantics 257

8.1.6.2 Semantics of Simple Functional Programs

Let us define the big-step operational semantics of the functional programming lan-
guage BFPL.

Specification 8.5 (Big-step operational semantics of BFPL)

Metavariables:

• programs p according to abstract syntax;
• function collections fs according to abstract syntax;
• function signatures sig according to abstract syntax;
• expressions e according to abstract syntax;
• unary operators uo according to abstract syntax;
• binary operators bo according to abstract syntax;
• function and argument names x;
• integer values i;
• Boolean values b;
• integers and Boolean values v;
• collections m of argument name-value pairs.

Judgments:

• fs,m ` e # v: expression evaluation with e as the expression to be evaluated, v
as the evaluation result, fs as the list of defined functions, and m as the current
argument binding (“environment”);

• p # v: evaluation of the main expression of a program p.

Evaluation of programs

fs, /0 ` e # v

〈fs,e〉 # v
[PROG]

Evaluation of expressions

fs,m ` intconst(i) # i [INTCONST]

fs,m ` boolconst(b) # b [BOOLCONST]

〈x,v〉 ∈ m

fs,m ` arg(x) # v
[ARG]

fs,m ` e0 # true fs,m ` e1 # v

fs,m ` if(e0,e1,e2) # v
[IF1]

258 8 A Primer on Operational Semantics

fs,m ` e0 # false fs,m ` e2 # v

fs,m ` if(e0,e1,e2) # v
[IF2]

fs,m ` e # v unary(uo,v) # v′

fs,m ` unary(uo,e) # v′
[UNARY]

fs,m ` e1 # v1 fs,m ` e2 # v2 binary(bo,v1,v2) # v′

fs,m ` binary(bo,e1,e2) # v′
[BINARY]

fs,m ` e1 # v1 · · · fs,m ` en # vn

〈x,sig,〈〈x1, . . . ,xn〉,e〉〉 ∈ fs

fs, [x1 7→ v1, . . . ,xn 7→ vn] ` e # v

fs,m ` apply(x,〈e1, . . . ,en〉) # v
[APPLY]

The first rule concerns the evaluation of a program’s main expression; “ /0” de-
notes the empty (initial) environment. The rule of particular interest is the one for
function application ([APPLY]). The premises model the following aspects of func-
tion application. The actual arguments (expressions) e1, . . . , en are evaluated to val-
ues v1, . . . , vn. For the given function name x of the function application, a function
is looked up from the collection fs; the function signature sig is not used any further,
but the list of formal arguments (names) x1, . . . , xn and the body e of the definition
are of interest. That is, a new environment is assembled from the formal arguments
and the values of the actual arguments and the body is evaluated in this environment,
thereby defining the value v of the function application.

Exercise 8.5 (A derivation tree for BFPL) [Basic level]
Construct a derivation tree for an expression with a function application.

8.2 Small-Step Operational Semantics

We turn now to small-step style. For comparison, in big-step style, judgments relate
program phrases directly to final “results”. By contrast, in small-step style, judg-
ments relate program phrases to intermediate results, as they arise from performing
“one step” of computation. For clarity, we use different arrows in judgments:

8.2 Small-Step Operational Semantics 259

• “→”: small-step semantics;
• “#”: big-step semantics.

We mention in passing that an operational semantics specification in general, and
perhaps more specifically one in small-step style, can also be viewed as a model of
the semantics of programs as computations in terms of steps of a formal machine
with its transition relation specified by the inference rules. The different conceiv-
able inputs of a judgment, such as program phrases combined with additional data
structures, form the set of states (“configurations”) of the machine.

8.2.1 Big- versus Small-Step Judgments

Let us illustrate small-step style for the expression language BTL. The two contrast-
ing judgments for BTL are these:

• big step: e # v;
• small step: e → e′.

In the first case, an expression is associated with a value, which cannot be evaluated
any further. In the second case, an expression is associated with another expression,
which may or may not be a value.

Consider this valid big-step judgment:

pred(if(iszero(zero),succ(zero),zero)) # zero

The small-step judgment covers only one step:

pred(if(iszero(zero),succ(zero),zero)) → pred(if(true,succ(zero),zero))

That is, the condition has been reduced from iszero(zero) to true, but the if has still
to be reduced further in subsequent steps.

Let us complement the big-step semantics of BTL, as shown above in Specifica-
tion 8.1, with its small-step counterpart, as shown below. (We use lowercase labels
such as [if1] for the rules in small-step style as opposed to uppercase labels such as
[IF1] for the rules in big-step style.)

Specification 8.6 (Operational semantics of BTL (small-step style))

e → e′

succ(e) → succ(e′)
[succ]

e → e′

pred(e) → pred(e′)
[pred1]

260 8 A Primer on Operational Semantics

pred(zero) → zero [pred2]

pred(succ(n)) → n [pred3]

e → e′

iszero(e) → iszero(e′)
[iszero1]

iszero(zero) → true [iszero2]

iszero(succ(n)) → false [iszero3]

e0 → e′0

if(e0,e1,e2) → if(e′0,e1,e2)
[if1]

if(true, t1, t2) → t1 [if2]

if(false, t1, t2) → t2 [if3]

8.2.2 Normal Form

We say that e is in normal form if no further small-step inference rules are appli-
cable. That is, there is no e′ such that e → e′ holds. This notion of normal form is
easily generalized to other forms of judgments, for example, judgments of the form
Γ ` p → p′ with Γ being some context used by the judgment and p, p′ standing
for any sort of program phrases. In such a case, we say that p is in normal form for
context Γ if there is no p′ such that Γ ` p → p′.

Illustration 8.6 (Normal form for BTL expressions)

• true, false, zero, succ(zero), succ(succ(zero)), . . . are in normal form. These val-
ues indicate the successful completion of expression evaluation.

• if(zero,e,e′) for all expressions e and e′ is in normal form because there is no rule
that applies to zero in the condition position of an if. The semantics assumes that
the expression in the condition position must be evaluated to a Boolean value.

As the illustration shown above reveals, there are basically two kinds of normal
forms:

8.2 Small-Step Operational Semantics 261

Proper results The derivation sequence ends in a program phrase that we con-
sider a proper (final) result. For instance, in the case of an expression-oriented
language, we would consider a value a proper result.

Stuck phrases The derivation sequence ends in a program phrase that we con-
sider not to be a proper result, but no step is feasible. In the case of BTL, the
pattern if(zero,e,e′), as discussed above, is a stuck expression. There are more
stuck expressions; see the following exercise.

Exercise 8.6 (Stuck expressions) [Basic level]
Provide a complete description of all “stuck” expressions for BTL.

8.2.3 Derivation Sequences

In small-step style, stepwise computation is represented as a derivation sequence,
where each step is a (“small”) derivation tree. We speak of a complete derivation
sequence if the sequence ends in normal form, as demonstrated below.

Illustration 8.7 (A complete derivation sequence for an expression)

Step 1

iszero(zero) → true [iszero2]

if(iszero(zero),succ(zero),zero) → if(true,succ(zero),zero)

[if1]

pred(if(iszero(zero),succ(zero),zero)) → pred(if(true,succ(zero),zero))

[pred1]

Step 2

if(true,succ(zero),zero) → succ(zero) [if2]

pred(if(true,succ(zero),zero)) → pred(succ(zero))

[pred1]

262 8 A Primer on Operational Semantics

Step 3

pred(succ(zero)) → zero [pred3]

Summary of all steps

pred(if(iszero(zero),succ(zero),zero))

→ pred(if(true,succ(zero),zero))

→ pred(succ(zero))

→ zero

We may also take the reflexive, transitive closure of the one-step relation so that
we can reduce a program phrase to normal form, just as in the case of big-step style.
In the case of BTL, we may use a judgment as follows:

e #
∗

e′

However, we may not be interested in arbitrary normal forms e′. Instead, we may
prefer to look only at complete derivation sequences which end in proper results.
Thus, the following judgment is more appropriate and also better in line with the
big-step judgment:

e #
∗

v

The difference between small- and big-step operational semantics can be visu-
alized very well. Let us consider small-step style first with a sequence of multiple
derivation trees, starting from an initial program phrase p1, going through interme-
diate phrases p2, . . . , pn−1, and ending in a proper result such as a value v:

· · ·

p1 → p2

[l1] · · ·
· · ·

pn−1 → v

[ln]

In the case of big-step style, we face a single derivation tree mapping a phrase p
to a proper result such as a value v; the steps are subsumed by the subtrees of the
derivation tree; subterms and other constituent phrases p1, . . . , pm are evaluated in
subtrees to intermediate values v1, . . . , vm, ultimately contributing to the final value
symbolized as a term f (v1, . . . ,vm):

8.2 Small-Step Operational Semantics 263

· · ·

p1 # v1

[L1] · · ·
· · ·

pm # vm

[Lm]

p # f (v1, . . . ,vm)
[L0]

Small-step style is intrinsically more versatile than big-step style. That is, there
are language constructs that are conveniently modeled in small-step style but with
no obvious model in big-step style. For instance, the semantics of jump constructs
or interleaving parallel execution can be modeled conveniently only in small-step
style [10]. However, as long as we are facing no “challenging” constructs, big-step
style appears to be more straightforward than small-step style.

8.2.4 Small-Step Style Interpreters

Everything we have said about the implementation of big-step operational semantics
(Section 8.1.5) remains valid for small-step style. However, two additional aspects
arise:

• A reflexive, transitive closure of the single-step relation should be implemented
so that a small-step semantics can be still used to reduce a program phrase to a
normal form, in fact, a proper (final) result.

• When the inference rules are applied computationally, they will fail intention-
ally on any input in normal form. Failure due to reaching a value should not be
mapped to abnormal program termination.

Let us implement the small-step operational semantics for BTL’s expressions in
Haskell. We commit to a rule-by-rule mapping, as discussed in Section 8.1.5.3.

Illustration 8.8 (Rule-by-rule mapping for small-step style)

Haskell module Language.BTL.SmallStepWithGuards

step :: Expr→ Maybe Expr
step (Succ e) | Just e'← step e = Just (Succ e')
step (Pred e) | Just e'← step e = Just (Pred e')
step (Pred Zero) = Just Zero
step (Pred (Succ n)) | isNat n = Just n
step (IsZero e) | Just e'← step e = Just (IsZero e')
step (IsZero Zero) = Just TRUE
step (IsZero (Succ n)) | isNat n = Just FALSE
step (If e0 e1 e2) | Just e0'← step e0 = Just (If e0' e1 e2)
step (If TRUE e1 e2) = Just e1
step (If FALSE e1 e2) = Just e2
step _ = Nothing

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/SmallStepWithGuards.hs

264 8 A Primer on Operational Semantics

The Maybe monad is used systematically so that the step function may commu-
nicate failure due to reaching a normal form. Pattern guards model premises. The
reflexive, transitive closure of the one-step relation is easily expressed as a dedicated
function steps as follows.

Illustration 8.9 (Reflexive, transitive closure of one-step relation)

Haskell module Language.BTL.Closure

steps :: (Expr→ Maybe Expr)→ Expr→ Maybe Expr
steps f e =

if isValue e
then Just e
else case f e of

Just e'→ steps f e'
Nothing→ Nothing

We mention in passing that the steps function is actually parameterized by a func-
tion f for making single steps. Thus, the closure could be also applied to alternative
implementations of the one-step relation. The closure fails with Nothing if a stuck
phrase, as opposed to a proper result, is encountered.

Exercise 8.7 (Small steps for values) [Basic level]
The definition of the steps function in Illustration 8.9 does not attempt the argument
f in case where the argument e is a value. Argue rigorously that no steps are feasible
anyway in this case.

8.2.5 More Examples of Small-Step Style

Let us define the small-step operational semantics of a few more “fabricated” lan-
guages.

8.2.5.1 Semantics of Simple Imperative Programs

Let us define the small-step operational semantics of the imperative programming
language BIPL. The metavariables are the same as in the case of big-step style (Sec-
tion 8.1.6.1). As far as expression evaluation is concerned, we also adopt the big-step
judgment and the corresponding inference rules. That is, expression evaluation re-
mains in big-step style; we apply small-step style to statement execution only. Thus,
we use the following arrows for judgments below:

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/Closure.hs

8.2 Small-Step Operational Semantics 265

• “→”: small-step semantics (used for statements here);
• “#”: big-step semantics (used for expressions here).

There is the following small-step judgment:

〈m,s〉 → 〈m′,s′〉

Given a store m, statement s is executed in one step, resulting in statement s′ and
store m′. For instance, if s was a sequence of two assignments, then s′ would be
the second assignment because the first assignment is performed in one step. The
desired normal form is 〈m,skip〉 for any store m. Obviously, there is no rule for skip.

Specification 8.7 (Small-step operational semantics of BIPL)

Statement execution

m ` e # v

〈m,assign(x,e)〉 → 〈m[x 7→ v],skip〉
[assign]

〈m,seq(skip,s)〉 → 〈m,s〉 [seq1]

〈m,s1〉 → 〈m′,s′1〉

〈m,seq(s1,s2)〉 → 〈m′,seq(s′1,s2)〉
[seq2]

m ` e0 # true

〈m, if(e0,s1,s2)〉 → 〈m,s1〉
[if1]

m ` e0 # false

〈m, if(e0,s1,s2)〉 → 〈m,s2〉
[if2]

〈m,while(e,s)〉 → 〈m, if(e,seq(s,while(e,s))),skip)〉 [while]

We now explain the inference rules one by one:

• [assign]: This is essentially the same semantics as in the big-step case because
an assignment is not a composed statement form and we continue to evaluate the
right-hand side expression in big-step style. The modified store and the normal
form skip are returned.

• [seq1]: A sequential composition with an empty statement in front can be simpli-
fied to just the second statement of the sequence; the store remains unchanged.

266 8 A Primer on Operational Semantics

• [seq2]: A sequential composition may perform one step of computation by per-
forming one step with the statement in front, possibly changing the store.

• [if1]: If the condition e of the if-statement evaluates to true, the statement s1 of
the then-branch combined with the unaffected store m is the result of the step. In
contrast to big-step style, s1 is not immediately executed.

• [if2]: Likewise for false and the else-branch.
• [while]: Just as in the big-step semantics, the semantics of a while-loop is redi-

rected to if(e,seq(s,while(e,s)),skip), except that the composed statement is not
immediately executed; rather, it is combined with the unaffected store m and re-
turned as the result of the step.

Exercise 8.8 (A derivation sequence for a BIPL statement) [Basic level]
Consider the derivation tree in Fig. 8.2 which illustrated the computational process
for big-step style. Provide the small-step counterpart, i.e., a complete derivation
sequence for the same initial statement and store.

Exercise 8.9 (Expression-oriented imperative language) [Intermediate level]
This is the small-step variation of Exercise 8.4. That is, define a small-step semantics
for the same language.

Exercise 8.10 (Nondeterminism) [Intermediate level]
Add the statement form choose(s1,s2) for nondeterministic statement execution to
BIPL. The expectation is that either of the two statements s1 and s2 is executed. This
form of nondeterminism for an imperative language is developed in some detail
in [11].

Exercise 8.11 (Parallelism) [Advanced level]
Add a statement form par(s1,s2) for parallel statement execution to BIPL. The ex-
pectation is that the possibly compound statements s1 and s2 are executed in an
interleaving manner. That is, any step performed by s1 could be followed by a step
performed by s2 or vice versa. Either of the two statements could actually perform
any number of steps before the other statement proceeds. Consider the following
compound statement; we use an infix operator “par” for the sake of readability:

x = 1; par x = 2; x = x+2

The interleaving semantics would assign either of these final results to x. We can
explain these results by presenting the assumed sequential order of statements for
each interleaving order:

Result = 1; Order: x = 2; x = x+2; x = 1
Result = 3; Order: x = 2; x = 1; x = x+2

8.2 Small-Step Operational Semantics 267

Result = 4; Order: x = 1; x = 2; x = x+2

This form of parallelism for an imperative language is developed in some detail
in [11].

8.2.5.2 Semantics of Simple Functional Programs

Let us define the small-step operational semantics of the functional programming
language BFPL. The small-step judgment takes this form:

fs ` e → e′

That is, a one-step computation is performed starting from expression e, resulting
in expression e′ while possibly making use of the collection fs of defined functions.
In contrast to big-step style, there is no component for the current argument binding
because we leverage the notion of substitution instead. That is, formal argument
names are consistently replaced by actual argument values as part of the semantics
of function application.

We are ready to present the inference rules.

Specification 8.8 (Small-step operational semantics of BFPL)

Evaluation of expressions

fs ` e0 → e0
′

fs ` if(e0,e1,e2) → if(e0
′,e1,e2)

[if1]

fs ` if(boolconst(true),e1,e2) → e1 [if2]

fs ` if(boolconst(false),e1,e2) → e2 [if3]

fs ` e → e′

fs ` unary(uo,e) → unary(uo,e′)
[unary1]

unary(uo,v) → v′

fs ` unary(uo,v) → v′
[unary2]

fs ` e1 → e′1

fs ` op(bo,e1,e2) → binary(bo,e′1,e2)
[binary1]

268 8 A Primer on Operational Semantics

fs ` e2 → e′2

fs ` op(bo,v1,e2) → binary(bo,v1,e′2)
[binary2]

binary(bo,v1,v2) → v′

fs ` binary(bo,v1,v2) → v′
[binary3]

fs ` ei+1 → e′i+1

fs ` apply(x,〈v1, . . . ,vi,ei+1, . . . ,en〉) → apply(x,〈v1, . . . ,vi,e′i+1, . . . ,en〉)
[apply1]

〈x,sig,〈〈x1, . . . ,xn〉,e〉〉 ∈ fs

fs ` apply(x,〈v1, . . . ,vn〉) → [v1/x1, . . . ,vn/xn]e
[apply2]

New notation for substitution is used in the last rule ([apply2]). The phrase
[v1/x1, . . . ,vn/xn]e means that all the occurrences of x1, . . . , xn within e are simulta-
neously replaced by v1, . . . , vn, respectively.

Overall, the rules follow a common scheme. There are rules that bring subex-
pressions into value form. For some constructs, there are rules to perform the final
step once all subexpressions are in value form. There are no rules for the constant
forms of expressions, because they are readily in value form. Rule [apply1] models
the evaluation of arguments of function applications by performing steps for the ar-
gument expressions. Rule [apply2] applies once all arguments are in value form; the
formal argument names are then substituted by the actual argument values within
the body of the function.

Exercise 8.12 (Argument substitution for BFPL) [Basic level]
Define substitution as a recursive function over expressions such that names are
replaced by expressions (in fact, values).

Exercise 8.13 (Simultaneous substitution) [Basic level]
Demonstrate that simultaneous substitution of multiple names by expressions cannot
be trivially represented by a sequence of substitutions such that each name/expres-
sion replacement is performed individually.

Exercise 8.14 (Context versus substitution) [Intermediate level]
In small-step style, we leveraged substitution. In contrast, in big-step style, we lever-
aged an argument context. Argue why it would be hard to replace the use of substi-
tution by the use of a context in small-step style.

8.2 Small-Step Operational Semantics 269

8.2.5.3 Semantics of Finite State Machines

Let us define the small-step operational semantics of FSML – the domain-specific
modeling language for finite state machines. FSML is quite different from imper-
ative and functional programming languages. In particular, FSML is a language
without statement- and expression-based constructs. In fact, the one-step relation
consists of only two axioms: one with an action, and another one without an action
for the applicable transition.

Specification 8.9 (Small-step operational semantics of FSML)

Metavariables:

• FSMs f according to abstract syntax;
• state declarations s according to abstract syntax;
• Boolean values b (status of states to be initial);
• state ids x;
• transitions t according to abstract syntax;
• events e (input symbols);
• actions a (output symbols);
• inputs in (event sequences);
• outputs out (action sequences).

Judgments:

• f ` 〈x,e〉 → 〈x′,out〉: the FSM f is interpreted (“simulated”) to make a tran-
sition from a state with id x to a state with id x′ while handling an event e, and
possibly producing some output out (zero or one actions);

• f ` 〈in〉 →∗ 〈x,out〉: the reflexive, transitive closure starting from the initial
state and an input in, consuming the complete input, and ending in a state with
id x and the output out.

Interpretation of FSMs (one-step relation)

〈. . . ,〈b,x,〈. . . ,〈e,〈a〉,x′〉, . . .〉〉, . . .〉 ` 〈x,e〉 → 〈x′,〈a〉〉 [action]

〈. . . ,〈b,x,〈. . . ,〈e,〈〉,x′〉, . . .〉〉, . . .〉 ` 〈x,e〉 → 〈x′,〈〉〉 [no−action]

In both axioms, we simply decompose the FSM from the context to locate a
suitable transition, i.e., one with event e within a suitable state declaration, i.e., the
one for the current state x. The located transition provides the new state id x′ and,
optionally, an action a.

Exercise 8.15 (Closure for FMSL) [Basic level]
Using the notation of inference rules, define the closure for FSML’s small-step judg-
ment. Further, explain how interpretation could get stuck.

270 8 A Primer on Operational Semantics

Summary and Outline

We have described the established operational semantics approach to defining the
semantics of programs. This approach is based on inference rules for modeling the
stepwise computation of programs in two different styles – big- and small-step style.
These styles differ in terms of how the computational steps are exposed when the
inference rules are applied. We have focused on the basics of operational seman-
tics, but we mention in passing that there exist refinements and variations such as
reduction semantics [8] and modular operational semantics [9].

In the next chapter, we will discuss type systems which enable static typing of
programs, thereby ruling out “programs that go wrong” from even being considered
for assigning semantics to them or, in fact, running them. Type systems are modeled
by inference rules, just like operational semantics. Afterwards, we consider an al-
ternative, more functional (less operational) approach to defining semantics, that is,
denotational semantics.

References

1. Attali, I.: Compiling TYPOL with attribute grammars. In: Proc. PLILP 1988, LNCS, vol. 348,
pp. 252–272. Springer (1989)

2. Attali, I., Caromel, D., Ehmety, S.O.: A natural semantics for Eiffel dynamic binding. ACM
Trans. Program. Lang. Syst. 18(6), 711–729 (1996)

3. Attali, I., Chazarain, J.: Functional evaluation of strongly non circular Typol specifications.
In: Proc. WAGA, LNCS, vol. 461, pp. 157–176. Springer (1990)

4. Attali, I., Chazarain, J., Gilette, S.: Incremental evaluation of natural semantics specification.
In: Proc. PLILP, LNCS, vol. 631, pp. 87–99. Springer (1992)

5. Attali, I., Courbis, C., Degenne, P., Fau, A., Parigot, D., Pasquier, C.: SmartTools: A generator
of interactive environments tools. In: Proc. CC, LNCS, vol. 2027, pp. 355–360. Springer
(2001)

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS
Series. Springer (2004)

7. Despeyroux, T.: TYPOL: A formalism to implement natural semantics. Tech. Rep. 94, INRIA
(1988)

8. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control and
state. Theor. Comput. Sci. 103(2), 235–271 (1992)

9. Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Program. 60-61, 195–
228 (2004)

10. Nielson, F., Nielson, H.R.: Type and effect systems. In: Correct System Design, Recent Insight
and Advances, LNCS, vol. 1710, pp. 114–136. Springer (1999)

11. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergraduate Topics
in Computer Science. Springer (2007)

12. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

13. Norell, U.: Dependently typed programming in Agda. In: AFP 2008, Revised Lectures, LNCS,
vol. 5832, pp. 230–266. Springer (2009)

14. Pettersson, M.: Compiling Natural Semantics, LNCS, vol. 1549. Springer (1999)
15. Pfenning, F., Schürmann, C.: System description: Twelf – A meta-logical framework for de-

ductive systems. In: Proc. CADE-16, LNCS, vol. 1632, pp. 202–206. Springer (1999)

Chapter 9
A Primer on Type Systems

BENJAMIN C. PIERCE.1

Abstract Types are semantic properties of program phrases. For instance, the type
of an expression may model what type of value the expression would be evaluated to
eventually, for example, the type of natural numbers or of Boolean values in an ex-
pression language. Types may be assigned to program phrases statically by means of
a type system – this is a formal system consisting of inference rules, very much like
a semantics definition. Assigned types (“properties”) must predict runtime behavior
in a sound manner, i.e., the properties should never be violated by the actual runtime
behavior. This is also referred to as type safety (or soundness). The rules making up
a type system are easily implemented as type checkers, for example, in Haskell, as
we will demonstrate. In this chapter, we provide a (very) basic introduction to type
systems.

1 I bet that if you were to ask a programming language researcher for recommendations for text-
books on “programming language theory” with good coverage of “type systems”, most lists would
start with Benjamin C. Pierce’s “Types and Programming Languages” [2]. Modest insiders just call
it the “TAPL” book. This book and, even more so, the more specialized book “Advanced . . . ” [3]
capture an incredibly thorough and comprehensive discussion of the broad topic of (mostly static)
types, taking advantage of Pierce’s distinguished academic career in the programming language
field.
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA
4.0. This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission.
This work also quotes https://en.wikipedia.org/wiki/File:The_Mulberry_Tree_by_Vincent_
van_Gogh.jpg, subject to the attribution “Vincent Van Gogh: The Mulberry Tree (1889) [Public domain], via
Wikipedia.” This work artistically morphes an image, https://www.cis.upenn.edu/~bcpierce/bio.
html, showing the person honored, subject to the attribution “Permission granted by Benjamin C. Pierce for use in
this book.”

271© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_9

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://en.wikipedia.org/wiki/File:The_Mulberry_Tree_by_Vincent_van_Gogh.jpg
https://en.wikipedia.org/wiki/File:The_Mulberry_Tree_by_Vincent_van_Gogh.jpg
https://www.cis.upenn.edu/~bcpierce/bio.html
https://www.cis.upenn.edu/~bcpierce/bio.html
https://doi.org/10.1007/978-3-319-90800-7_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_9&domain=pdf

272 9 A Primer on Type Systems

9.1 Types

A type system is a set of rules that assigns types to programs and parts thereof. Types
are descriptions of properties that are meant to be abstractions over the runtime
behavior of programs. For instance, the type of an expression may model what type
of value the expression would be evaluated to at runtime, such that there are different
types for numbers, truth values, and other things.

The type system of the simple expression language BTL distinguishes two types:

• nattype: the property of an expression that it evaluates to an element of nat, i.e.,
a natural number;

• booltype: the property of an expression that it evaluates to an element of bool,
i.e., a Boolean value.

Types may be assigned to expressions, variables, functions, procedures, and so
on. Not every syntactic category gives rise to a notion of type by itself. For instance,
the statements in an imperative language may not have types themselves, but a type
system would still apply to statements in that the well-typed use of variables and
operators needs to be checked. Also, the type of a statement in a programming
language with exceptions may model what sort of exceptions may be thrown by the
statement.

9.2 Typing Judgments

A type system is meant to distinguish well-typed programs, i.e., programs with good
properties, from ill-typed programs, i.e., programs that are incorrect or unreasonable
in some sense. To this end, one leverages relations over program phrases (state-
ments, expressions, etc.), types, and possibly other data structures such as collec-
tions of variable-type pairs. We refer to claims of such relationships as judgments,
in fact as typing judgments, to distinguish them from judgments in operational se-
mantics. For instance:

• typeOf (e,T): The expression e is of type T . This judgment may be suitable, for
example, for the type system of an expression language like BTL.

• typeOf (m,e,T): The expression e is of type T in the context m, where the context
may correspond to, for example, a collection of variable-type pairs. This judg-
ment may be suitable, for example, for the type system of an imperative language
like BIPL.

• wellTyped(m,s): The statement s is well-typed in the context m. This judgment
may be suitable, for example, for the type system of an imperative language like
BIPL.

In the literature, as a matter of convention, relation symbols are often not alpha-
betical, nor are they applied in prefix fashion. Instead, some infix or mixfix notation
is used. For instance:

9.3 Typing Rules 273

• e : T instead of typeOf (e,T).
• m ` e : T instead of typeOf (m,e,T).
• m ` s instead of wellTyped(m,s).

9.3 Typing Rules

We use inference rules to describe type systems, just as in operational semantics.
The rule labels start with t−. . . (“t” for typing) to distinguish them from the rules
for operational semantics. Each typing rule states the conditions (premises) under
which program phrases according to a given syntactic pattern are well-typed. In the
case of expressions, the typing rules also state the actual type of a given expression.

We are ready to complete the type system for BTL.

Specification 9.1 (Typing rules for BTL expressions)

true : booltype [t−true]

false : booltype [t−false]

zero : nattype [t−zero]

e : nattype

succ(e) : nattype
[t−succ]

e : nattype

pred(e) : nattype
[t−pred]

e : nattype

iszero(e) : booltype
[t−iszero]

e0 : booltype e1 : T e2 : T

if(e0,e1,e2) : T
[t−if]

We read out the rules in the specification above for clarity:

• [t−true], [t−false]: The constants true and false are of type booltype.
• [t−zero]: The constant zero is of type nattype.

274 9 A Primer on Type Systems

• [t−succ], [t−pred]: A term of the form succ(e) or pred(e) is of type nattype,
provided e is of type nattype.

• [t−iszero]: A term of the form iszero(e) is of type booltype, provided e is of type
nattype.

• [t−if]: A term of the form if(e0,e1,e2) is of type T (either nattype or booltype),
provided e0 is of type booltype and both e1 and e2 are of type T .

The big-step style of operational semantics and type systems are very similar. In
the case of semantics, the rules state how the constituents of a program phrase (e.g.,
an expression) are to be evaluated or executed to complete evaluation or execution
of the phrase as a whole. In the case of typing, the rules state what conditions have
to be satisfied by the constituents for the phrase to be well-typed as a whole.

9.4 Typing Derivations

To attest a certain type for an expression or, more generally, well-typedness for
a given phrase, we need to build a derivation tree, in the same way as we used
derivation trees for the evaluation or execution of phrases in the context of big-step
operational semantics. We use the term “typing derivation” for clarity. Let us prove
the following judgment:

pred(if(iszero(zero),succ(zero),zero)) : nattype

The typing derivation is shown in Fig. 9.1. Each node in the tree is an instance of a
conclusion of an inference rule. The subtrees of a node are instances of the premises
of the same rule. The leaf nodes of the tree are instances of axioms. By “instance”
we mean that metavariables in the rules are consistently replaced by phrases or data
structures, or patterns thereof.

When a given typing judgment cannot be proven, then we speak of a type error.
For instance, the following judgment cannot be proven:

succ(true) : nattype

The type error is that succ must not be applied to a Boolean value.

9.5 Type Safety

A type system can be thought of as rejecting programs that may “go wrong”. Such
rejection happens ahead of running the program and hence the term “static typing”
is used. Any semantics should need to cover only well-typed programs. That is, a se-
mantics does not need to define a possibly nonintuitive semantics for programs that

9.5 Type Safety 275

ze
ro

:
na

tt
yp

e
[t
−

ze
ro

]

isz
er

o(
ze

ro
)

:
bo

ol
ty

pe

[t
−

isz
er

o]

ze
ro

:
na

tt
yp

e
[t
−

ze
ro

]

su
cc
(z

er
o)

:
na

tt
yp

e

[t
−

su
cc

]

ze
ro

:
na

tt
yp

e
[t
−

ze
ro

]

if(
isz

er
o(

ze
ro
),

su
cc
(z

er
o)
,z

er
o)

:
na

tt
yp

e

[t
−

if]

pr
ed
(if

(is
ze

ro
(z

er
o)
,s

uc
c(

ze
ro
),

ze
ro
))

:
na

tt
yp

e

[t
−

pr
ed

]

Fi
g.

9.
1

A
ty

pi
ng

de
riv

at
io

n
fo

rB
T

L
.

276 9 A Primer on Type Systems

we wish to rule out anyway. Derivation according to a small-step operational se-
mantics would be allowed to get “stuck” for ill-typed programs, as discussed earlier
(Section 8.2.2).

Accordingly, a type system must be understood relative to a given semantics
since we think of the type system as making predictions about the runtime behavior
of program phrases. Thus, a combination of semantics and type system must be
consistent in a certain way, giving rise to the notion of type safety or soundness.

We explain type safety in terms of the situation for the expression language BTL.
Without loss of generality, we relate a type system to a small-step rather than a big-
step operational semantics. Type safety consists of two aspects:

Preservation For all expressions e, if there exists a type T such that e : T and
an expression e′ such that e → e′, then e′ : T . That is, if the one-step relation
returns a new expression, then the new expression has the same type as the initial
expression.

Progress For all expressions e, if there exists a type T such that e : T , then either
e ∈ value or there exists an expression e′ such that e → e′. As a corollary, stuck
expressions are not well-typed.

Illustration 9.1 (Preservation for BTL)
For instance, consider the following elements of a complete derivation sequence for
evaluating a BTL expression; the elements are all of type nattype, as one can easily
verify with the help of the typing rules. Thus, the type nattype is indeed preserved:

pred(if(iszero(zero),succ(zero),zero))

⇒ pred(if(true,succ(zero),zero))

⇒ pred(succ(zero))

⇒ zero

A proof of type safety would thus show that all well-typed expressions preserve
their type in derivation sequences and that the semantics never gets “stuck” for well-
typed expressions. The definition of type safety may need some adjustment for more
complex languages, but the general idea remains the same.

Because of how syntax-driven both semantics and typing rules are, the proofs of
these properties are relatively straightforward – at least for simple languages. An
essential technique is induction on typing derivations. We refer interested readers to
TAPL [2].

9.6 Type Checking 277

Exercise 9.1 (Type safety for functional programs) [Basic level]
The above formulation is specific to the simple situation of the expression language
BTL without context in judgments. Define type safety for the functional program-
ming language BFPL.

Exercise 9.2 (Type safety for big-step style) [Intermediate level]
The above formulation assumes a small-step semantics. Can you reformulate type
safety so that it applies to the setting of big-step operational semantics?

9.6 Type Checking

We have already discussed type checking in an informal manner in Section 5.3.1.
Let us now discuss how to implement the inference rules of a type system directly
(systematically) for the purpose of type checking. Such an implementation can com-
mence in a manner similar to that for operational semantics (Section 8.1.5). While
“executable” operational semantics serve the purpose of interpretation, “executable”
type systems do so for type checking. That is, a type checker is used to verify that
the rules of the type system are obeyed by a given program, i.e., the program is
well-typed.

Here is how we expect to use a type checker for BTL expressions:

Interactive Haskell session:

I typeOf (Succ Zero)
Just NatType
- -
I typeOf (Succ TRUE)
Nothing

We are ready to present the code for the type checker.

Illustration 9.2 (Type checking of expressions)

Haskell module Language.BTL.TypeCheckerWithGuards

−− Types of expressions
data Type = NatType | BoolType

−−Well−typedness of expressions
wellTyped :: Expr→ Bool
wellTyped e | Just _← typeOf e = True
wellTyped e | otherwise = False

http://github.com/softlang/yas/tree/springer/languages/BTL/Haskell/Language/BTL/TypeCheckerWithGuards.hs

278 9 A Primer on Type Systems

−− Types of expressions
typeOf :: Expr→ Maybe Type
typeOf TRUE = Just BoolType
typeOf FALSE = Just BoolType
typeOf Zero = Just NatType
typeOf (Succ e) | Just NatType← typeOf e = Just NatType
typeOf (Pred e) | Just NatType← typeOf e = Just NatType
typeOf (IsZero e) | Just NatType← typeOf e = Just BoolType
typeOf (If e0 e1 e2) |

Just BoolType← typeOf e0,
Just t1← typeOf e1,
Just t2← typeOf e2,
t1 == t2 = Just t1

typeOf _ = Nothing

The implementation shown above is based on systematic mapping of typing rules
to functional program equations implementing a type checker. That is, the inference
rules of the type system are mapped to Haskell equations in a one-to-one manner;
this ideal was set out for operational semantics earlier (Section 8.1.5.3).

With reference to the earlier recipe for implementing inference rules (Recipe 8.1)
and the “I/O” aspect in particular, the underlying inference rules allow us to imple-
ment the type checker in such a manner that it returns the type of an expression as a
result, i.e., the type must not be stated upfront.

9.7 More Examples of Type Systems

We define the type systems of a few more “fabricated” languages here.

9.7.1 Well-Typedness of Simple Imperative Programs

Let us define the type system for the imperative programming language BIPL. There
are two expression types T : inttype and booltype. As BIPL does not assume explicit
variable declarations, we need to somehow “infer” the types of variables. We decide
here that the type of a variable is undefined prior to the first assignment, which
defines the type for subsequent statements.

The typing judgments for expressions and statements carry a context for the types
of variables. (In compilation, we would speak of symbol tables instead of contexts.)
We also require auxiliary judgments to describe valid operand and result types for
unary and binary operators. Thus:

• ` s: The program, which is a sequence s of statements, is well-typed.
• m ` s : m′: The statement s in the context m is of type m′. Both m and m′

are collections of variable-type pairs. The first collection, m, models types of

9.7 More Examples of Type Systems 279

variables prior to statement execution. The second collection, m′, models types
of variables after execution.

• m ` e : T : The expression e is of type T in the context m for the collection of
variable-type pairs.

• unary(uo,T) : T ′: The unary operator uo requires the argument type T and the
result type T ′.

• binary(bo,T1,T2) : T ′: The binary operator bo requires the argument types T1
and T2 and the result type T ′.

We are ready to complete the type system for BIPL by listing the actual typing
rules.

Specification 9.2 (Typing rules for simple imperative programs)

Well-typedness of programs

/0 ` s : m

` s
[t−program]

Types of statements

m ` e : T x /∈ m

m ` assign(x,e) : m[x 7→ T]
[t−assign1]

m ` e : T 〈x,T 〉 ∈ m

m ` assign(x,e) : m
[t−assign2]

m0 ` s1 : m1 m1 ` s2 : m2

m0 ` seq(s1,s2) : m2

[t−seq]

m1 ` e : booltype m1 ` s1 : m2 m1 ` s2 : m2

m1 ` if(e,s1,s2) : m2

[t−if]

m ` e : booltype m ` s : m

m ` while(e,s) : m
[t−while]

280 9 A Primer on Type Systems

Types of expressions

m ` intconst(i) : inttype [t−intconst]

m(x) 7→ T

m ` var(x) : T
[t−var]

m ` e : T unary(uo,T) : T ′

m ` unary(uo,e) : T ′
[t−unary]

m ` e1 : T1 m ` e2 : T2 binary(bo,T1,T2) : T ′

m ` binary(bo,e1,e2) : T ′
[t−binary]

Signatures of operators

unary(negate, inttype) : inttype [t−negate]

unary(not,booltype) : booltype [t−not]

binary(or,booltype,booltype) : booltype [t−or]

binary(and,booltype,booltype) : booltype [t−and]

binary(lt, inttype, inttype) : booltype [t−lt]

binary(le, inttype, inttype) : booltype [t−le]

binary(eq, inttype, inttype) : booltype [t−eq]

binary(geq, inttype, inttype) : booltype [t−geq]

binary(gt, inttype, inttype) : booltype [t−gt]

binary(add, inttype, inttype) : inttype [t−add]

binary(sub, inttype, inttype) : inttype [t−sub]

binary(mul, inttype, inttype) : inttype [t−mul]

9.7 More Examples of Type Systems 281

The inference rules leverage some special notation:

• x /∈ m: This form of premise, as exercised in rule [t−assign1], should be read to
mean that there is no type T ′ such that 〈x,T ′〉 ∈ m.

• m[x 7→ T]: This form of premise, as exercised in rule [t−assign1], denotes the
variable-type pairs m updated in the position x to be associated with type T while
being identical to m in all other positions.

• m(x) 7→ T : This form of premise, as exercised in rule [t−var], applies a map m
for variable-type pairs in the sense of function application. The premise fails if
the given variable identifier x is not mapped to any type T .

Thus, a program, i.e., in fact, a statement s, is well-typed if there exists some
collection m of variable-type pairs such that s, when considered as a statement, is of
“type” m starting from the empty collection /0.

The typing rules for statements track variable types during execution for the rea-
sons discussed above. That is, variable types are inferred from assignments. The first
typing rule for assignments applies when variable x has no type assigned yet. This
rule assigns the type of the right-hand side expression to the left-hand side variable.
The second typing rule for assignments applies when the left-hand side variable is
readily assigned to the right-hand side expression’s type; the variable-type pairs are
preserved in this case. This also means that a variable cannot change its type.

The typing rule for a statement sequence seq(s1,s2) infers context m1 from s1
starting from context m0 and then it infers context m2 from s2 starting from context
m1. The typing rule for if-statements assumes that then- and else-branches agree on
the resulting variable-type pairs. The typing rule for while-statements is restrictive
in the interest of simplifying the discussion of soundness. That is, no additional
variables can have a type assigned within the body of a while-loop.

The typing rules for expressions assign suitable types to the constant forms; the
type of a variable is looked up from the context and the operand and result types of
unary and binary operators are checked against suitable operator signatures.

Here is how we expect to use the type checker on the sample program for Eu-
clidean division; we supply enough type context for the arguments x and y and type
checking determines that the program variables q and r are of type IntType:

Interactive Haskell session:

I okStmt euclideanDiv (fromList [("x", IntType), ("y", IntType)])
Just (fromList [("q", IntType), ("r", IntType), ("x", IntType), ("y", IntType)])

282 9 A Primer on Type Systems

We are ready to present the code for the type checker.

Illustration 9.3 (Type checking of imperative programs)

Haskell module Language.BIPL.TypeChecker

−− Types of expressions
data Type = IntType | BoolType

−− Variable−type pairs (maps)
type VarTypes = Map String Type

−−Well−typedness of statements
okStmt :: Stmt→ VarTypes→ Maybe VarTypes
okStmt Skip ctx = Just ctx
okStmt (Assign x e) ctx =

case typeOfExpr e ctx of
Nothing→ Nothing
(Just ty)→ case lookup x ctx of

Nothing→ Just (insert x ty ctx)
(Just ty')→ if ty==ty' then Just ctx else Nothing

okStmt (Seq s1 s2) ctx =
case okStmt s1 ctx of

(Just ctx')→ okStmt s2 ctx'
Nothing→ Nothing

okStmt (If e s1 s2) ctx =
case typeOfExpr e ctx of

(Just BoolType)→
case (okStmt s1 ctx, okStmt s2 ctx) of

(Just ctx1, Just ctx2)→
if ctx1==ctx2 then Just ctx1 else Nothing

_→ Nothing
_→ Nothing

okStmt (While e s) ctx =
case typeOfExpr e ctx of

(Just BoolType)→
case okStmt s ctx of

(Just ctx')→
if ctx==ctx' then Just ctx else Nothing

_→ Nothing
_→ Nothing

−− Types of expressions
typeOfExpr :: Expr→ VarTypes→ Maybe Type
typeOfExpr (IntConst i) _ = Just IntType
typeOfExpr (Var x) ctx = lookup x ctx
typeOfExpr (Unary o e) ctx =

case (o, typeOfExpr e ctx) of
(Negate, Just IntType)→ Just IntType
(Not, Just BoolType)→ Just BoolType
_→ Nothing

typeOfExpr (Binary o e1 e2) ctx = ...

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/TypeChecker.hs

9.7 More Examples of Type Systems 283

With reference to the earlier recipe for implementing inference rules (Recipe 8.1)
and the “I/O” aspect in particular, the variable-type pairs serve both as the argument
and the result of the function okStmt for checking well-typedness of statements.

Exercise 9.3 (Local variables in while-loops) [Basic level]
Suggest a less restrictive typing rule for while-loops such that local variables can
be used within loops.

Exercise 9.4 (Variable declarations) [Basic level]
Revise BIPL to feature explicit variable declarations preceding the statement part
so that the types of all variables are declared for the statement part of a program.
You may assume the following abstract syntax:

// Programs
type program = vardecl*×stmt ;
// Variable declarations
type vardecl = string×expr ;
// Statements
symbol skip : → stmt ;
symbol assign : string×expr → stmt ;
symbol seq : stmt×stmt → stmt ;
symbol if : expr×stmt×stmt → stmt ;
symbol while : expr×stmt → stmt ;
// Expressions
...

As evident from the syntax, it is assumed here that a variable declaration includes
initialization; the initializing expression defines the type of the variable.

Specify the semantics and type system for the revised language. A variable may
only be used in the statement part if it has been declared. As before, a variable
cannot change its type. It should be clear that the revised typing judgment for state-
ments is no longer expected to assign “types” to variables. We show the original
judgment and the intended one for the revision next to each other for clarity:

• m ` s : m′: type assignment in the original type system;
• m ` s: well-typedness in the revised type system.

Exercise 9.5 (Gotos) [Intermediate level]
Define a type system for BIPL with gotos and without while-loops. (While-loops
can be encoded in such a language by means of if-statements and gotos.) The type
system must model consistent declaration and referencing of labels. That is, each
label can only be placed once in a program. Further, each label referred to in a
goto statement must be declared.

284 9 A Primer on Type Systems

9.7.2 Well-Typedness of Simple Functional Programs

Let us define the type system for the functional programming language BFPL.

Specification 9.3 (The type system of simple functional programs)

Metavariables:

• expression types T : inttype and booltype.

Judgments:

• ` 〈fs,e〉: the program, which consists of a list fs of functions and a main expres-
sion e, is well-typed;

• fs ` f : the function f is well-typed while assuming the list fs of functions as
context (to be able to type-check function applications in the body of f);

• fs,m ` e : T : the expression e is of type T in the context fs for the applicable
functions and m for argument-type pairs;

• auxiliary judgments for signatures of unary and binary operators, as introduced
for BIPL.

Well-typedness of programs

fs = 〈 f1, . . . , fn〉 fs ` f1 · · · fs ` fn fs, /0 ` e : T

` 〈fs,e〉
[t−program]

Well-typedness of functions

fs, [x1 7→ T1, . . . ,xn 7→ Tn] ` e : T0

fs ` 〈x,〈〈T1, . . . ,Tn〉,T0〉,〈〈x1, . . . ,xn〉,e〉〉
[t−function]

Types of expressions

fs,m ` intconst(i) : inttype [t−intconst]

fs,m ` boolconst(b) : booltype [t−boolconst]

〈x,T 〉 ∈ m

fs,m ` arg(x) : T
[t−arg]

9.7 More Examples of Type Systems 285

fs,m ` e0 : booltype fs,m ` e1 : T fs,m ` e2 : T

fs,m ` if(e0,e1,e2) : T
[t−if]

fs,m ` e : T unary(uo,T) : T ′

fs,m ` unary(uo,e) : T ′
[t−unary]

fs,m ` e1 : T1 fs,m ` e2 : T2 binary(bo,T1,T2) : T ′

fs,m ` binary(bo,e1,e2) : T ′
[t−binary]

fs,m ` e1 : T1 · · · fs,m ` en : Tn

〈x,〈〈T1, . . . ,Tn〉,T0〉,〈〈x1, . . . ,xn〉,e〉〉 ∈ fs

fs,m ` apply(x,〈e1, . . . ,en〉) : T0

[t−apply]

Thus, a program is well-typed if all its defined functions are well-typed and the
main expression is of some type T for the empty collection of variable-type pairs. A
function is well-typed if its body is of the type T0 prescribed by its signature while
assuming an appropriate context for the function’s arguments, as prescribed by the
signature as well.

Let us implement a type checker. We aim at making good use of the metalan-
guage to arrive at concise and idiomatic Haskell code.

Illustration 9.4 (Type checking of functional programs)

Haskell module Language.BFPL.TypeChecker

−− Argument−type pairs
type Context = [(String, SimpleType)]

−−Well−typedness of programs
okProgram :: Program→ Bool
okProgram (fs, e) = okFunctions && okMain

where
okFunctions = and (map (okFunction fs) fs)
okMain = maybe False (const True) (typeOfExpr fs [] e)

−−Well−typedness of a function
okFunction :: [Function]→ Function→ Bool
okFunction fs (_, ((ts, res), (ns, body))) = okLength && maybe False (==res) okBody

where
okLength = length ns == length ts
okBody = typeOfExpr fs m body
m = zip ns ts

http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/TypeChecker.hs

286 9 A Primer on Type Systems

−− Types of expressions
typeOfExpr :: [Function]→ Context→ Expr→ Maybe SimpleType
typeOfExpr _ _ (IntConst _) = Just IntType
typeOfExpr _ _ (BoolConst _) = Just BoolType
typeOfExpr fs m (Arg x) = lookup x m
typeOfExpr fs m (If e0 e1 e2)

= do
t0← typeOfExpr fs m e0
t1← typeOfExpr fs m e1
t2← typeOfExpr fs m e2
if t0 == BoolType && t1 == t2 then Just t1 else Nothing

typeOfExpr fs m (Unary o e)
= do

t← typeOfExpr fs m e
case (o, t) of

(Negate, IntType)→ Just IntType
(Not, BoolType)→ Just BoolType
_→ Nothing

typeOfExpr fs m (Binary o e1 e2)
= do

...
typeOfExpr fs m (Apply fn es)

= do
((ts, r), _)← lookup fn fs
ts'← mapM (typeOfExpr fs m) es
if ts == ts' then Just r else Nothing

That is, we make good use of list-processing functions in the Haskell code (see
the uses of map and mapM, for example) to process lists of functions, argument
names, values, etc. Also, we use monad notation (see do · · ·) for the Maybe monad
to compose the typing derivations for expressions.

Exercise 9.6 (Type system versus implementation) [Basic level]
Identify specific idiomatic differences between the original type system of BFPL
and the type checker given above. That is, how does the type checker deviate from a
mechanical translation of the original inference rules into Haskell?

Exercise 9.7 (Local binding groups) [Intermediate level]
Define the syntax, the semantics, and the type system for an extended BFPL lan-
guage with local binding groups based on Haskell’s familiar “where” syntax. Con-
sider the following example:

−− The factorial function
factorial :: Int −> Int
factorial x =

if (==) x 0
then 1
else (*) x (factorial y)

where

y :: Int
y = (−) x 1

−− Apply the factorial function
main = print $ factorial 5 −− Prints 120

That is, y is declared locally to factorial and it can therefore refer to x, which is bound
by factorial.

9.7.3 Well-Formedness of Finite State Machines

Not every software language explicitly involves distinct types of expressions of
other syntactic categories. Still, the correct use of the language may be subject to
constraints that can be formalized and implemented in ways that are similar to type
systems and type checking. In this context, we remind the reader of the earlier dis-
cussion of context conditions (Section 3.3).

Exercise 9.8 (Well-formedness of FSMs) [Intermediate level]
As discussed earlier (Section 5.3.2), FSMs need to satisfy several constraints. De-
vise inference rules for checking that (i) there is exactly one initial state; (ii) all
state declarations have distinct names; (iii) all state ids for targets of transition are
resolvable to a state declaration with the same id; and (iv) the transitions of each
state are concerned with distinct events.

Summary and Outline

We have given a basic introduction to type systems – these are formal systems for as-
signing properties to programs and program phrases statically such that these prop-
erties correctly and usefully predict the runtime behavior of programs. We have
leveraged inference rules for the definition of type systems, just as in the case of
operational semantics. Further, we have demonstrated how type systems are imple-
mented as type checkers for rejecting programs that may “go wrong”. We have only
considered very simple languages. We have not considered type inference (except
for tracking variable types in simple imperative programs in Section 9.7.1). A type
inference algorithm is supposed to infer types of variables, functions, or other ab-
stractions that lack explicit type declarations – typically with the involvement of
polymorphism. To this end, an algorithmic constraint system on non-ground type
expressions is leveraged.

In the next chapter, we will discuss the lambda calculus and thereby touch upon
some less basic aspects of type systems: scoping rules, polymorphism, structural and

9.7 More Examples of Type Systems 287

288 9 A Primer on Type Systems

nominal typing, and subtyping. Afterwards, we will study denotational semantics as
an alternative approach to defining semantics.

In-depth coverage of type systems can be found in the “TAPL” textbook [2].
We also refer to Cardelli and Wegner’s seminal text on type systems [1] for an
introduction to type systems.

References

1. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymorphism. ACM
Comput. Surv. 17(4), 471–522 (1985)

2. Pierce, B.: Types and Programming Languages. MIT Press (2002)
3. Pierce, B.: Advanced Topics in Types and Programming Languages. MIT Press (2004)

Chapter 10
An Excursion into the Lambda Calculus

HENK BARENDREGT.1

Abstract The lambda calculus is an idealized programming language which cap-
tures the core of functional programming and serves as a notion of computability.
The lambda calculus is also a good foundation for studying programming language
concepts generally by means of adding dedicated extensions to the basic calculus.
Our excursion into the lambda calculus is meant here to let us briefly visit a number
of language concepts and aspects of semantics and typing that are of general inter-
est in language design, definition, and implementation. This includes the notions of
substitution, fixed-point computation, encoding, and type variance.

1 The lambda calculus (or, in fact, the lambda calculi or the lambda cube [1]) is a beautiful pillar
(a formal tool) of theoretical computer science, logic, and programming language theory [2, 3]. It
has taken much more than its initial introduction by Alonzo Church to remain relevant to today’s
research and to have become a standard tool in programming language design and type theory.
Henk Barendregt deserves much credit in this regard.
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA
4.0. This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This
work also quotes https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_
Google_Art_Project.jpg, subject to the attribution “Vincent Van Gogh: The Starry Night (1889) [Public do-
main], via Wikimedia Commons.” This work artistically morphes an image, https://en.wikipedia.org/
wiki/Henk_Barendregt, showing the person honored, subject to the attribution “By Jan Benda - Own work,
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19135230.”

289© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_10

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://en.wikipedia.org/wiki/Henk_Barendregt
https://en.wikipedia.org/wiki/Henk_Barendregt
https://commons.wikimedia.org/w/index.php?curid=19135230
https://doi.org/10.1007/978-3-319-90800-7_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_10&domain=pdf

290 10 An Excursion into the Lambda Calculus

10.1 The Untyped Lambda Calculus

We will describe several progressions of the lambda calculus: the pure untyped cal-
culus as a starting point, an extension which adds predefined values and operations
(comparable to BTL or BFPL expressions, as discussed earlier), a fixed-point com-
binator (comparable to recursive functions in BFPL, as discussed earlier), a sim-
ply typed calculus, a calculus with support for polymorphism (as present in many
languages including Haskell), an extension for records (comparable to, for exam-
ple, structs in C) and variants (or sums), subtyping for records and variants, and an
extension for nominal typing (comparable to algebraic data types in Haskell). We
begin with the untyped lambda calculus; this is arguably the simplest calculus in the
lambda cube [1].

10.1.1 Syntax

The syntax of the (untyped) lambda calculus is extremely simple. There are three
constructs (lambda, var, and apply). Let us look at examples.

The following lambda expression denotes the identity function:

lambda(x,var(x))

That is, the identity function is represented as a lambda abstraction, i.e., an anony-
mous function. The first occurrence of x binds the function’s argument. The second
occurrence of x is in the body of the function, i.e., var(x), thereby referring to the
argument. Thus, x is “bound” and x is “returned” – which is why this is the identity
function.

The following lambda expression denotes function composition:

lambda(f , lambda(g, lambda(x,apply(var(f),apply(var(g),var(x))))))

This expression binds three arguments, f , g, and x, by means of a nested lambda
abstraction. In the final body, g is applied to x and f is applied on top – which is
why this is function composition.

Thus, the constructs of the lambda calculus are these: variable (reference),
lambda abstraction, and function application. In the literature, it is common to use
a concrete syntax for lambda expressions such as the following:

• x instead of var(x);
• e1 e2 instead of apply(e1,e2);
• λx. e instead of lambda(x,e).

This notation goes with the convention that application associates to the left, for
example, e1 e2 e3 = (e1 e2) e3. We may also abbreviate nested lambda abstractions,
for example, λx1 x2. e = λx1. (λx2. e).

10.1 The Untyped Lambda Calculus 291

In this concrete syntax, we represent the earlier examples as follows:

// Identity function
λx. x
// Function composition
λ f g x. f (g x)

Lambda abstractions are viewed as “values” (normal forms) in the sense of re-
duction, as we will see below. We use metavariables as follows:

• lambda expressions e;
• variable identifiers x;
• values (lambda abstractions) v.

The lambda calculus is indeed the core of functional programming and, thus,
functional programming languages may express lambda expressions. For instance,
the identity function and function composition are expressed in Haskell as follows:

Interactive Haskell session:

I let id = λ x→ x
I let (.) = λ f g x→ f (g x)
I id 42
42
I (not . not) True
True

The concrete syntax of Haskell is slightly different from the proposed notation,
but all constructs – lambda abstraction, variable reference, and function applica-
tion – show up in the session’s code. We have leveraged some additional language
constructs, let and primitive values, for the purpose of a more accessible and mean-
ingful illustration.

10.1.2 Semantics

Let us discuss the semantics of the untyped lambda calculus – in fact, one specific
option such that function arguments are normalized before the function is applied.
This option is also referred to as call-by-value as opposed to call-by-need, which
would essentially imply that function arguments are evaluated only when they are
actually “needed” by the function. The following rules commit to the small-step
style of operational semantics.

292 10 An Excursion into the Lambda Calculus

Specification 10.1 (Call-by-value semantics of untyped lambda calculus)

Reduction of lambda expressions

e1 → e′1

e1 e2 → e′1 e2

[app1]

e2 → e′2

v1 e2 → v1 e′2
[app2]

(λx. e) v → [v/x]e [beta]

Values

λx. e ∈ value [v−lambda]

Rule [app1] performs a step on the function position of an application. Rule
[app2] assumes a value for the function position and performs a step on the argu-
ment position of an application. Rule [beta] leverages a special notation, [v/x]e,
which denotes the substitution of x by v in e. We will discuss substitution in more
detail below. Overall, rule [beta] models what is called beta reduction – a function
application with a lambda abstraction λx. e on the function position and a value v on
the argument position performs a step by substituting x by v in e. Rule [v−lambda]
describes the value form, i.e., the intended normal form.

10.1.3 Substitution

As simple as this semantics may seem, there is some hidden complexity in how
exactly substitution (beta reduction) works. Substitution is not specific to the lambda
calculus. Substitution is also needed for the binding constructs of other languages.
That is, we need to fully understand substitution.

Before we define substitution, we need to discuss the auxiliary notion of free
variables, as the distinction between free and bound variables is an important detail
constraining substitution. The following recursive function maps a lambda expres-
sion to the set of free variables.

10.1 The Untyped Lambda Calculus 293

Specification 10.2 (Free variables of a lambda expression)

FREE(x) = {x}
FREE(e1 e2) = FREE(e1)∪FREE(e2)
FREE(λx. e) = FREE(e)\{x}

Thus, all variables occurring in an expression are free unless they are bound in a
lambda expression, in which case the variable is bound in the scope of the lambda
expression. An expression without free variables is called a closed expression; oth-
erwise, it is called an open expression. When normalizing a lambda expression, we
usually assume that we start from a closed expression. Substitution is defined below.

Specification 10.3 (Substitution for the lambda calculus)
Given expressions e, e′, and a variable x, substitution of x by e within e′ is denoted
by [e/x]e′ and defined by case discrimination over e′ as follows:

[e/x]x = e
[e/x]y = y if x 6= y
[e/x]e1 e2 = ([e/x]e1) ([e/x]e2)
[e/x]λx. e′ = λx. e′

[e/x]λy. e′ = λy. [e/x]e′ if x 6= y and y /∈ FREE(e)

The first two cases are base cases such that substitution is applied to a vari-
able, which is either the variable x to be replaced or a different variable y. The case
for function applications simply pushes substitution into subexpressions. The first
case for lambda abstractions cancels substitution, as the variable x in question is
re-bound. That is, the substitution does not continue into the body of the lambda
abstraction. The second case for lambda abstractions, i.e., the last case, pushes sub-
stitution into the body of the lambda abstraction with a bound variable y different
from the variable x to be replaced.

Importantly, the last case carries an extra condition which states that y must not
be free in the expression e that is meant to replace x. Without this condition, we
would allow the free variable y in e to be “captured” by the lambda abstraction. In
order to make substitution a total operation, we assume that we apply what is called
alpha conversion whenever the extra condition is not met. That is, the locally bound
y is renamed to another variable so that the last rule can be applied.

In fact, variable identifiers in the lambda calculus can be consistently renamed
without changing the semantics of lambda expressions. Expressions that can be con-
verted into each other by alpha conversion are called alpha-equivalent. For instance,
λa. a and λb. b, both denoting the identity function, are alpha-equivalent. Such con-
sistent renaming is also valid for some binding constructs of many other program-
ming languages.

294 10 An Excursion into the Lambda Calculus

Exercise 10.1 (Alpha equivalence) [Basic level]
Implement alpha equivalence in a declarative program. That is, given two expres-
sions, return true if they can be alpha-converted into each other; otherwise, return
false.

Exercise 10.2 (Substitution as a total operation) [Intermediate level]
Implement substitution as a total operation in a declarative program. In order to
achieve totality, you will need to implement the last case in Specification 10.3 such
that alpha conversion is applied if necessary. A robust scheme is needed to identify
a “fresh” variable identifier to be used for alpha conversion.

10.1.4 Predefined Values and Operations

We extend the untyped lambda calculus here to incorporate the expression language
BTL, which essentially provides predefined values and operations for natural num-
bers and Boolean values. The result is also referred to as an applied lambda calculus.
This extension is supposed to provide us with a more practically useful calculus. Ta-
ble 10.1 summarize the abstract and concrete syntax of the calculus.

Table 10.1 Syntax of the applied lambda calculus

Abstract syntax Concrete syntax
var(x) x
lambda(x,e) λx. e
apply(e1,e2) e1 e2
true true
false false
zero zero
succ(e) succ e
pred(e) pred e
iszero(e) iszero e
if(e1,e2,e3) if e1 then e2 else e3

The small-step operational semantics of the applied lambda calculus is also just
the trivial combination of the semantics of the contributing languages. Arguably, this
style of composing the untyped lambda calculus and BTL leads to some redundancy
because the rules for the constructs succ, pred, iszero, and if involve some elements
of function application, which is already present in the untyped lambda calculus.

10.1 The Untyped Lambda Calculus 295

Exercise 10.3 (Predefined values and operations) [Intermediate level]
Suggest a more compact applied lambda calculus which addresses the aforemen-
tioned redundancy issue.

10.1.5 Fixed-Point Computation

We seem to have arrived at a simple functional programming language. If only we
had expressiveness for recursive functions, then we could define, for example, the
factorial function on top of addition and multiplication:

add = λn m. if iszero n then m else succ (add (pred n) m)
mul = λn m. if iszero n then zero else add m (mul (pred n) m)
factorial = λn. if iszero n then succ zero else mul n (factorial (pred n))

However, recursive definitions like this are not expressible in the lambda calculus
developed thus far; there is no recursive binding construct. As a canny remedy, let
us add expressiveness for fixed-point computation. That is, we assume the existence
of a fixed-point combinator; it is easily characterized by the following fixed-point
property:

fix f = f (fix f)

That is, the fixed point of a function f equals the application of the function to
the fixed point of the function. While this property essentially defines the meaning
of the term “fixed point”, it is also directly useful in computing the fixed point, once
we have plugged the property into the semantics. We can reformulate the earlier
recursive function definitions to make use of fix instead:

add = fix (λ f n m. if iszero n then m else succ (f (pred n) m))
mul = fix (λ f n m. if iszero n then zero else add m (f (pred n) m))
factorial = fix (λ f n. if iszero n then succ zero else mul n (f (pred n)))

Thus, we take a fixed point of a lambda expression with an extra argument f ,
which corresponds to the assumed fixed point. In this manner, we tie a recursive
knot. Let us extend the syntax and semantics of the lambda calculus to include a
dedicated expression form fix e. To this end, we essentially turn the earlier fixed-
point property into a reduction rule, as defined below.

296 10 An Excursion into the Lambda Calculus

Specification 10.4 (Small-step operational semantics of fix)

Reduction of lambda expressions

e → e′

fix e → fix e′
[fix1]

fix λx. e → [fix λx. e/x]e [fix2]

Rule [fix1] brings the argument of fix into normal form. Rule [fix2] assumes that
the argument of fix is a lambda abstraction λx. e, and it returns e after substituting
x by the original fixed-point expression.

10.1.6 Interpretation

Let us implement an interpreter for the untyped lambda calculus in Haskell. To this
end, we introduce a language ULL (Untyped Lambda Language). ULL combines
the untyped lambda calculus with BTL’s expression forms and the fix construct. For
instance, the “recursive” add function can represented in ULL as follows.

Illustration 10.1 (A function for addition)

Haskell module Language.ULL.Sample

add = Fix (Lambda "f" (Lambda "n" (Lambda "m"
(If (IsZero (Var "n"))

(Var "m")
(Succ (Apply (Apply (Var "f") (Pred (Var "n"))) (Var "m")))))))

Let us implement a data type for representing ULL expressions in Haskell.

Illustration 10.2 (Representation of ULL expressions)

Haskell module Language.ULL.Syntax

data Expr
−− The untyped lambda calculus
= Var String | Lambda String Expr | Apply Expr Expr
−− BTL (Basic TAPL Language)
| TRUE | FALSE | Zero | Succ Expr | Pred Expr | IsZero Expr | If Expr Expr Expr
−− Fixed−point combinator
| Fix Expr

http://github.com/softlang/yas/tree/springer/languages/ULL/Haskell/Language/ULL/Sample.hs
http://github.com/softlang/yas/tree/springer/languages/ULL/Haskell/Language/ULL/Syntax.hs

10.1 The Untyped Lambda Calculus 297

Interpretation for ULL is implemented by encoding the various small-step opera-
tional semantics rules in Haskell; the BTL-related rules are elided below for brevity.

Illustration 10.3 (Implementation of the single-step relation for ULL)

Haskell module Language.ULL.SmallStep

step :: Expr→ Maybe Expr
step (Apply e1 e2) | not (isValue e1) =

step e1 >>=λ e1'→ Just (Apply e1' e2)
step (Apply e1 e2) | isValue e1 && not (isValue e2) =

step e2 >>=λ e2'→ Just (Apply e1 e2')
step (Apply (Lambda x e1) e2) | isValue e2 =

substitute e2 x e1
step (Fix e) | not (isValue e), Just e'← step e = Just (Fix e')
step e@(Fix (Lambda x e')) = substitute e x e'
...
step _ = Nothing

Substitution, as needed for beta reduction and fixed-point computations, is im-
plemented as follows.

Illustration 10.4 (Implementation of substitution for ULL expressions)

Haskell module Language.ULL.Substitution

substitute :: Expr→ String→ Expr→ Maybe Expr
substitute e x (Var y) | x == y = Just e
substitute e x (Var y) | x /= y = Just (Var y)
substitute e x (Apply e1 e2) = do

e1'← substitute e x e1
e2'← substitute e x e2
Just (Apply e1' e2')

substitute e x (Lambda y e') | x == y =
Just (Lambda y e')

substitute e x (Lambda y e') | x /= y && not (elem y (free e)) = do
e''← substitute e x e'
Just (Lambda y e'')

substitute e x (Fix e') = substitute e x e' >>=Just . Fix
...
substitute _ _ _ = Nothing

free :: Expr→ [String]
free (Var x) = [x]
free (Apply e1 e2) = free e1 `union` free e2
free (Lambda x e) = [y | y← free e, y /= x]
...

In order to arrive at a complete interpreter, we also need an operation steps for
taking the reflexive and transitive closure of the single-step operation step in Illus-
tration 10.3. We omit the implementation here because steps is defined in just the
same way as for the much simper language BTL (Section 8.2.4).

http://github.com/softlang/yas/tree/springer/languages/ULL/Haskell/Language/ULL/SmallStep.hs
http://github.com/softlang/yas/tree/springer/languages/ULL/Haskell/Language/ULL/Substitution.hs

298 10 An Excursion into the Lambda Calculus

Here is how we can use the interpreter if we assume convenience conversions
fromInt and toInt from Haskell’s Int type to ULL’s (BTL’s) natural numbers and vice
versa:

Interactive Haskell session:

I let (Just r) = steps (Apply (Apply add (fromInt 20)) (fromInt 22))
I toInt r
42

That is, we apply the recursive function add to 20 and 22 after converting these
Haskell Ints into ULL expressions; the result is 42 after converting the ULL ex-
pression into a Haskell Int. The convenience conversions allow us to use Haskell’s
numbers rather than the verbose constructors Zero and Succ. The trivial implemen-
tations of the conversions are shown below.

Illustration 10.5 (Conversions between expressions and numbers)

Haskell module Language.ULL.Value

...
−− Convert Haskell Int to expression such that isNat is True
fromInt :: Int→ Expr
fromInt i | i >= 0 = if i == 0 then Zero else Succ (fromInt (i−1))

−− Convert expression such that isNat is True to Haskell Int
toInt :: Expr→ Int
toInt Zero = 0
toInt (Succ e) = toInt e + 1

10.1.7 Turing Completeness

As an aside, let us point out that the lambda calculus, without predefined values and
operations, is expressive enough to encode such values and operations. Also, the ba-
sic untyped lambda calculus is expressive enough to encode a fixed-point combina-
tor. Thus, the basic untyped lambda calculus is Turing-complete, i.e., all computable
functions can be encoded in the calculus. Such an encoding is not straightforward,
but it may provide insight, which is why we illustrate it here briefly. In particular,
we can apply the so-called Church encoding for values and operations on Boolean
values and natural numbers, as shown in Table 10.2.

That is, Boolean values are essentially encoded as lambda expressions that pick
out one of two arguments, thereby immediately enabling an “if-then-else”. Natural
numbers are encoded in Peano style such that any natural number takes two argu-
ments z and s, the first one corresponding to zero and the second one corresponding
to the successor function; the natural number n applies s n times to z.

http://github.com/softlang/yas/tree/springer/languages/ULL/Haskell/Language/ULL/Value.hs

10.2 The Simply Typed Lambda Calculus 299

Table 10.2 Encoding of Boolean values and natural numbers

Value/Operation Encoding
true λ t. λ f . t
false λ t. λ f . f
if λb. λv. λw. b v w
0 λ s. λ z. z
1 λ s. λ z. s z
2 λ s. λ z. s (s z)
3 λ s. λ z. s (s (s z))
.
succ λn. λ s. λ z. s (n s z)

The encoding of fixed-point computations relies on a lambda expression that
“behaves” like the earlier fix construct. In fact, there are several different options
for fix and which of these actually work well depends on the exact choice of the
semantics. Here is a fixed-point combinator that can be used together with the call-
by-value semantics at hand:

fix = λ f .(λx. f (λv.((xx)v))) (λx. f (λv.((xx)v)))

Understanding this combinator properly or deriving it rationally requires some
deep insights that go beyond our level of sophistication here, but it may help to
observe that the combinator involves some sort of infinite copying behavior, thereby
essentially implying that fix f is mapped to f (f · · ·).

10.2 The Simply Typed Lambda Calculus

Let us transition from untyped to typed lambda calculi.

10.2.1 Syntax

We need to revise the syntax of the lambda calculus to incorporate types of variables
in lambda abstractions:

• x: variables (as before);
• λx : T. e: lambda abstractions; x is declared to be of type T ;
• e1 e2: applications (as before).

300 10 An Excursion into the Lambda Calculus

We assume that the BTL forms of expressions are added again, so that we are
considering an applied calculus. There are types nattype and booltype as in BTL.
We also need syntax for a function types:

T 1→ T 2

That is, T 1 is the argument type and T 2 is the result type.

10.2.2 Semantics

The semantics of the simply typed lambda calculus is the same as that of the untyped
lambda calculus, except that the rule for beta reduction needs to be revised; the type
annotation is simply ignored:

(λx : T. e) v → [v/x]e [beta]

10.2.3 Type System

In the following typing rules, we use labels which start with t−. . . (“t” for typing) to
distinguish them from the rules for operational semantics.

Specification 10.5 (Type system for the simply typed lambda calculus)

x : T ∈ Γ

Γ ` x : T
[t−var]

Γ ` e1 : T1→ T2 Γ ` e2 : T1

Γ ` e1 e2 : T2

[t−apply]

Γ ,x : T1 ` e : T2

Γ ` λx : T1. e : T1→ T2

[t−abstr]

In rule [t−var], we assume that the type context Γ provides the type of the vari-
able x. In rule [t−apply], we assume that the function position e1 in a function ap-
plication is of a function type and the argument position e2 is of the corresponding
argument type. In rule [t−abstr], when checking the type of the body e, we assume
that the context Γ is locally adapted (see “Γ ,x : T1”) to assume that the variable x

10.2 The Simply Typed Lambda Calculus 301

from the lambda abstraction is of type T1; the type of a lambda abstraction is, of
course, a function type. The typing rules for BTL’s expression forms (Section 9.3)
can be trivially adopted; they just need to pass on the typing context Γ .

Exercise 10.4 (Typing rule for fix) [Basic level]
Devise the typing rule for the fixed-point construct. Informally, the type of e in fix e
must be a function type where the argument type equals the result type.

10.2.4 Type Checking

Let us implement a type checker for the lambda calculus. To this end, we introduce
a language TLL (Typed Lambda Language). TLL’s syntax is exactly the same as
ULL’s – except for lambda abstractions:

−− ULL: Untyped Lambda Language
data Expr = ... | Lambda String Expr | ...

−− TLL: Typed Lambda Language
data Expr = ... | Lambda String Type Expr | ...
data Type = BoolType | NatType | FunType Type Type

For instance, the “recursive” add function is encoded as follows.

Illustration 10.6 (A function for addition)

Haskell module Language.TLL.Sample

add = Fix (Lambda "f" (FunType NatType (FunType NatType NatType))
(Lambda "n" NatType
(Lambda "m" NatType

(If (IsZero (Var "n"))
(Var "m")
(Succ (Apply (Apply (Var "f") (Pred (Var "n"))) (Var "m")))))))

We are ready to implement the typing rules as a type checker. The following
Haskell code is based on a systematic encoding of the typing rules for the simply
typed lambda calculus with predefined values and operations and the fix construct;
the BTL-related rules are elided again for brevity.

http://github.com/softlang/yas/tree/springer/languages/TLL/Haskell/Language/TLL/Sample.hs

302 10 An Excursion into the Lambda Calculus

Illustration 10.7 (Type checking of lambda expressions)

Haskell module Language.TLL.Typing

−− Context for type checking
type Context = Map String Type

−− Type checking expressions
typeOf :: Context→ Expr→ Maybe Type
typeOf ctx (Var x) = lookup x ctx
typeOf ctx (Apply e1 e2) = do

t1← typeOf ctx e1
t2← typeOf ctx e2
case (t1, t2) of

((FunType ta tr), ta') | ta == ta'→ Just tr
_→ Nothing

typeOf ctx (Lambda x t e) = do
let ctx' = insert x t ctx
t'← typeOf ctx' e
Just (FunType t t')

typeOf ctx (Fix e) |
Just t@(FunType ta tr)← typeOf ctx e,
ta == tr =

Just ta
...
typeOf _ _ = Nothing

We can type-check expressions as follows:

Interactive Haskell session:

I typeOf empty add
Just (FunType NatType (FunType NatType NatType))

That is, add is a function that takes two arguments of the NatType and it returns
a result of the NatType.

10.2.5 Type Erasure

In the simply typed lambda calculus, types do not play any role at runtime. We
only declare types as part of the lambda abstractions so that we can check them. In
principle, we could also leave out declarations and aim at inference such that we
show instead whether types can be assigned to the variables of lambda abstractions.
After type checking, we may “erase” the declared types so that we map the syntax
of the simply typed calculus to the untyped lambda calculus and fall back to its
semantics. Such type erasure is specified below; the rule labels start with e−. . . (“e”
for erasure).

http://github.com/softlang/yas/tree/springer/languages/TLL/Haskell/Language/TLL/Typing.hs

10.3 System F 303

Specification 10.6 (Type erasure for the simply typed lambda calculus)

x x [e−var]

e1 e′1 e2 e′2

e1 e2 e′1 e′2
[e−apply]

e e′

λx : T. e λx. e′
[e−abstr]

The implementation of type erasure is a straightforward mapping from ULL to
TLL as follows.

Illustration 10.8 (Type erasure for TLL)

Haskell module Language.TLL.Erasure

import Language.TLL.Syntax as TLL
import Language.ULL.Syntax as ULL
erase :: TLL.Expr→ ULL.Expr
erase (TLL.Var x) = (ULL.Var x)
erase (TLL.Lambda x _ e) = (ULL.Lambda x (erase e))
erase (TLL.Apply e1 e2) = (ULL.Apply (erase e1) (erase e2))
erase (TLL.TRUE) = (ULL.TRUE)
...

As a result, no interpreter is needed atop the TLL syntax; the earlier interpreter
atop the ULL syntax (Section 10.1.6) suffices.

10.3 System F

Here, we look briefly at System F [12]; this is a lambda calculus which provides a
model of polymorphism. The general idea underlying the notion of polymorphism is
to facilitate declaration of abstractions that can be used for different types. There ex-
ist several forms of polymorphism; see, for example, Cardelli and Wegner’s seminal
text on type systems [5]. System F is concerned here with universal or parametric
polymorphism – this is when abstractions are properly parameterized in types. In
System F , we have polymorphic functions such that arguments and results may be
of “arbitrary” types. We also say that System F is a polymorphic lambda calculus.

http://github.com/softlang/yas/tree/springer/languages/TLL/Haskell/Language/TLL/Erasure.hs

304 10 An Excursion into the Lambda Calculus

10.3.1 Syntax

Compared with the simply typed lambda calculus, there are the following additional
syntactic forms:

• There are these additional forms of expressions:

– Type abstractions ΛX . e: An uppercase lambda expression e is explicitly pa-
rameterized by a type variable X .

– Type applications e[T]: A type T is passed explicitly as an argument to an
uppercase lambda expression e. Type application can be compared to function
application.

• There are these additional forms of types:

– Polymorphic types ∀X . T : The type variable X is explicitly and universally
quantified in type T . We use an uppercase lambda (“Λ”) to hint at the sim-
ilarity to normal lambda abstractions, which abstract over values rather than
types.

– Type variables X : A type variable can be referred to in constructing type ex-
pressions. Type variables should be bound in type expressions, just as regular
variable identifiers should be bound in lambda expressions.

Here are two sample expressions in System F :

• id = ΛX . λx : X . x
• twice = ΛX . λ f : X → X . λx : X . f (f x)

The first expression denotes the polymorphic identity function; the second expres-
sion denotes a function combinator for applying a function twice. For comparison,
in the untyped lambda calculus, the same expressions read as follows:

• id = λx. x
• twice = λ f x. f (f x)

Table 10.3 shows some attempts of assigning types to expressions that involve
the functions id and twice.

In the row with the “type error”, we try to apply the polymorphic function id to
a Boolean value immediately. This is not correct, because there is a big lambda in
front of the small lambda; a type application must precede the function application.

System F and variations thereof are used in the implementation of typed func-
tional programming languages. The actual surface syntax for universal polymor-
phism may be different in actual functional programming languages. Let us exercise
Haskell’s situation; we declare and use the functions id and twice as follows:

10.3 System F 305

Table 10.3 Well- and ill-typedness.

Expression Type
id ∀X . X → X
id[booltype] booltype→ booltype
id[booltype] true booltype
id true – type error –
twice ∀X . (X → X)→ X → X
twice[nattype] (nattype→ nattype)→ nattype→ nattype
twice[nattype] λx : nattype. succ x nattype→ nattype

Interactive Haskell session:

I let id = λ x→ x
I let twice = λ f→ λ x→ f (f x)
I :t id
id :: t→ t
I :t twice
twice :: (t→ t)→ t→ t
I id True
True
I twice (λ x→ x + 1) 40
42

That is, in Haskell, type abstractions and type applications are implicit. Also, lambda
abstractions do not need to declare types of bound variables. Types use type vari-
ables, but without a quantifier; see the type variable t in the types of id and twice.
Thus, universal quantification is implicit.

10.3.2 Semantics

The following rules commit to the small-step style of operational semantics; we
also prefer call-by-value just as in the case of the untyped lambda calculus (Sec-
tion 10.1.2).

Specification 10.7 (Call-by-value semantics of System F)

Reduction of lambda expressions

e1 → e′1

e1 e2 → e′1 e2

[app1]

306 10 An Excursion into the Lambda Calculus

e2 → e′2

v1 e2 → v1 e′2
[app2]

(λx : T. e) v → [v/x]e [beta]

e → e′

e[T] → e′[T]
[typeapp1]

(ΛX . e)[T] → [T/X]e [typeapp2]

Values

λx : T. e ∈ value [v−lambda]

ΛX . e ∈ value [v−Lambda]

That is, lambda and type abstractions provide the value forms of the semantics
(rules [v−lambda] and [v−Lambda]). The rules for function application, including
beta reduction, carry over from the simply typed or the untyped lambda calculus.
The rules for type application bring the expression into value form and then use
substitution, just as in the case of function application, to replace the type variable
of the type abstraction by the argument type.

10.3.3 Type System

The type system of the simply typed lambda calculus is extended as follows.

Specification 10.8 (Type system for System F)

x : T ∈ Γ

Γ ` x : T
[t−var]

Γ ,x : T1 ` e : T2

Γ ` λx : T1. e : T1→ T2

[t−abstr]

Γ ` e1 : T1→ T2 Γ ` e2 : T1

Γ ` e1 e2 : T2

[t−apply]

10.3 System F 307

Γ ,X ` e : T

Γ ` ΛX . e : ∀X . T
[t−typeabstr]

Γ ` e : ∀X . T

Γ ` e[T1] : [T1/X]T
[t−typeapply]

The rules for variables, lambda abstraction, and function application carry over
from the simply typed lambda calculus. The rules for type abstraction and type
application are similar to those for lambda abstraction and function application.
The type of a type abstraction ΛX . e is the polymorphic type of e with universal
quantification over the type variable X . Just as in the case of lambda abstraction, X
is added to the context so that we keep track of big lambdas. The typing rule for type
application e[T1] states that e must be of a polymorphic type ∀X . T and the result
type is T with X substituted by T1.

As a testament to the expressiveness of System F’s type system consider the
problem of self-application, i.e., applying a lambda expression to itself. This may
seem to be an obscure problem, but is a good “benchmark” for expressiveness. In
the untyped lambda calculus, self-application can be represented trivially:

λx. x x

In the simply typed lambda calculus, we are looking for an expression of this
form:

λx :?. x x

Alas, there is no type that we can assign to x, because we face unresolvable
constraints: the type would need to be a function type as well as the argument type
of the same function type. Self application can be represented in System F , though:

• term: λx : ∀X . X → X . x[∀X . X → X] x;
• type: (∀X . X → X)→ (∀X . X → X).

The reader is invited to figure out an explanation for this encoding.

10.3.4 Type Erasure

In System F , just as in the simply typed lambda calculus, types are not essential
at runtime. We can “erase” type abstractions and applications, as well as the types
within lambda abstractions, so that we map the syntax of System F to the untyped
lambda calculus, as described below.

308 10 An Excursion into the Lambda Calculus

Specification 10.9 (Type erasure for System F)

x x [e−var]

e1 e′1 e2 e′2

e1 e2 e′1 e′2
[e−apply]

e e′

e[T] e′
[erasure−typeapply]

e e′

λx : T. e λx. e′
[erasure−abstr]

e e′

ΛX . e e′
[erasure−typeabstr]

Since we can erase all types like this without changing the semantics of expres-
sions, we also say that System F has a type-erasure semantics. If the types are essen-
tial in defining the intended semantics of a language, then we speak of a type-passing
semantics. For instance, an object-oriented language with some sort of dynamic dis-
patch may involve some type passing or type tagging so that method dispatch at
runtime can be informed by type information available at runtime.

Exercise 10.5 (Implementation of System F) [Intermediate level]
Implement System F in a declarative program. The type checker assumes that type
annotations, type abstractions, and type applications are present. In the syntax, type
annotations are optional, thereby simplifying the implementation of type erasure.
The interpreter assumes that type annotations, type abstractions, and type appli-
cations are gone. You may add predefined values and operations and a fixed-point
combinator so that you can test the implementation more easily.

Far more details of System F can be found elsewhere [9, 11].

10.4 Type-System Extensions 309

10.4 Type-System Extensions

Programming languages involve many other language and type-system concepts.
For instance, one may want to define types recursively so that recursive data struc-
tures can be represented in this manner. One may also want to existentially – as op-
posed to universally – quantify type variables, thereby being able to “hide” a type,
for example, in the context of abstract data type implementation. One may also want
to support ad hoc polymorphism or overloading so that some functionality can be
implemented for different types. We refer again to [9] for a detailed development in
this regard. We refer also to [10] for more advanced type-system concepts. In the
rest of this chapter, we discuss simple extensions for records and variants, includ-
ing aspects of type equivalence, subtyping, recursion, and the distinction between
structural and nominal types.

10.4.1 Records and Variants

Here we discuss two forms of type construction which are found, in one form or
another, in various programming languages. That is, we introduce record types
(i.e., products with labeled components) and variant types (i.e., sums with labeled
operands). Record types go with expression forms of record construction and pro-
jection to components. Variant types go with expression forms of variant construc-
tion and case discrimination. Such expressiveness corresponds to, for example, al-
gebraic data types in functional programming languages (e.g., Haskell, SML, or
Scala). Record types alone are similar to structs in C or records (indeed!) in Pascal.

Let us introduce the expressiveness by means of an example.

Illustration 10.9 (Record and variant types)
Consider the following variant type with record types for the operands:

rectangle : {width : floattype,height : floattype} | circle : {radius : floattype}

We take for granted a type floattype for floating-point numbers. The variant type
models two different kinds of “shapes” (record types, in turn) with width and height
as components of the rectangle and radius as the one and only component of the
circle. The following function computes the circumference of a shape:

λ s : rectangle : {width : floattype,height : floattype} | circle : {radius : floattype}.
case s of

rectangle : λ r : {width : floattype,height : floattype}. 2∗ (r.width+ r.height)
| circle : λc : {radius : floattype}. 2∗pi∗ c.radius

For the sake of readability, we assume here that we are using a lambda calculus
(a functional programming language) with suitable literals and infix operators.

310 10 An Excursion into the Lambda Calculus

Here is an informal description of the syntax and the intended semantics for
records and variants:

• Forms of types:

– Record type {l1 : T1, . . . , ln : Tn}: A value of a record type is a n-tuple with
components of types T1, . . . , Tn and with the components labeled by l1, . . . ,
ln.

– Variant type l1 : T1 | . . . | ln : Tn: A value of a variant type is of type Ti for
1≤ i≤ n labeled by li.

• Forms of expressions:

– Record construction {l1 : e1, . . . , ln : en}: A record is constructed from labeled
component values of the expressions e1, . . . , en.

– Variant construction l : e: A variant is constructed by labeling the value of e
with l.

– Component projection for records e.l: The component with label l is selected
from the record value of e.

– Case discrimination for variants case e of l1 : e1 | . . . | ln : en: Assuming that e
is of a variant type, a case discrimination is performed on the value of e with
one case per variant (i.e., per label). When a case i applies, i.e., e evaluates
to a value labeled by li, then the corresponding function ei is applied to the
value.

Exercise 10.6 (Records and variants in Haskell) [Basic level]
Implement the type for shapes as well as the function for circumference, as shown in
Illustration 10.9, in Haskell. Exercise these options: (i) use ans algebraic data type
with regular constructors for shapes; (ii) use Haskell’s records; (iii) use the type
constructor Either.

The semantics of records and the corresponding typing rules are spelled out be-
low. The “dual” development for variants is left as an exercise for the reader.

Specification 10.10 (Small-step operational semantics of records)

Reduction of expressions

ei+1 → e′i+1

{l1:v1, . . . , li:vi, li+1:ei+1, . . . , ln:en} →

{l1:v1, . . . , li:vi, li+1:e′i+1, . . . , ln:en}
[record]

10.4 Type-System Extensions 311

e → e′

e.l → e′.l
[project1]

{l1 : v1, . . . , li : vi, . . . , ln : vn}.li → vi [project2]

Values

{l1 : v1, . . . , ln : vn} ∈ value [v−record]

Rule [v−record] states that a record is a value form of expression, provided the
labeled components are values. Rule [record] states that a record expression can
perform a step when there is still a component that can perform a step. (For what it
matters, we pick the leftmost non-value component.) Rules [project1] and [project2]
deal with projection. The first rule brings the record into value form. The second rule
selects the relevant component.

Exercise 10.7 (Semantics of variants) [Intermediate level]
Define the small-step operational semantics of variants.

Specification 10.11 (Typing for records)

Γ ` e1 : T1 · · · Γ ` en : Tn

Γ ` {l1 : e1, . . . , ln : en} : {l1 : T1, . . . , ln : Tn}
[t−record]

Γ ` e : {l1 : T1, . . . , li : Ti, . . . , ln : Tn}

Γ ` e.li : Ti

[t−project]

Rule [t−record] states that a record expression is of a record type, with the labels
from the expression and the component types determined for the labeled compo-
nents. Rule [t−project] states that e.li is of a component type for li according to the
record type of e.

Exercise 10.8 (Typing for variants) [Intermediate level]
Define the typing rules for variants.

312 10 An Excursion into the Lambda Calculus

10.4.2 Structural Type Equivalence

The type system with record and variant types, as it stands, is unnecessarily restric-
tive. The order of operands in types and expressions should not matter. For instance,
the following two record types should be equivalent:

• {x : floattype,y : floattype}
• {y : floattype,x : floattype}

This is easily fixed by defining an appropriate type equivalence “≡” on types so
that record types are equivalent if they differ only in terms of order of components,
as illustrated in the following table.

Table 10.4 Illustration of type equivalence

1st type 2nd type “≡”
floattype floattype X
floattype booltype
floattype→ booltype floattype→ booltype X
floattype→ booltype booltype→ floattype
{x : floattype,y : floattype} {y : floattype,x : floattype} X
{x : floattype,y : floattype} {x : booltype,y : floattype}
{x : floattype,y : floattype}→ booltype {y : floattype,x : floattype}→ booltype X
{x : floattype,y : floattype}→ booltype {y : floattype,x : floattype}→ floattype

Exercise 10.9 (Structural type equivalence) [Basic level]
Specify the equivalence relation “≡” on types, as illustrated above.

When type equivalence is based on structure, as is the case here, then we speak
of structural typing. Type equivalence can also be based on names of types, as we
will discuss in a second.

We assume that whenever we are comparing type expressions for equality, then
equivalence is meant as opposed to plain syntactical equality. We can plug “≡” into
the type system by the following rule:

Γ ` e : T ′ T ≡ T ′

Γ ` e : T
[t−equiv]

10.4.3 Structural Subtyping

Let us now move from type equivalence to subtyping. It is easy to see that a function
which expects – in terms of its type annotation – a record of a specific record type

10.4 Type-System Extensions 313

can also be applied soundly to a value of a record type which features additional
components or a variant type which features fewer operands. We face a form of
polymorphism – in fact, structural subtyping, thereby also providing an instance of
the well-known substitution principle [8]. This is illustrated below.

Illustration 10.10 (Structural subtyping)
The function for circumference as of Illustration 10.9 could also be applied to an
expression of the following type, which is thus a subtype of the earlier type:

rectangle : {width : floattype,height : floattype,filled : booltype}

This type differs from the original type in that the revised variant for rectangles
carries an additional record component “filled” which is obviously not used by
projection in the function for circumference. Also, the variant for circles is missing
in the revised type; it will thus not be encountered by case discrimination in the
function for circumference.

Exercise 10.10 (Structural subtyping) [Basic level]
Give two types that are not subtypes of the argument type of the function for circum-
ference in Illustration 10.9. One of the types should omit a record component. The
other type should include an additional variant.

We assume a subtyping relation “⊆” to be plugged into the type system by means
of adjusting the typing rule for function application. We first recall the subtyping-
unaware typing rule in Specification 10.5.

Γ ` e1 : T1→ T2 Γ ` e2 : T1

Γ ` e1 e2 : T2

[t−apply]

The relationship between the argument type of the function and the actual argu-
ment type has to be relaxed by a subtyping relation “⊆”; the labels for the subtyping-
related rules start with s−. . . (“s” for subtyping).

Specification 10.12 (Subtyping-aware function application)

Γ ` e1 : T1→ T2 Γ ` e2 : T ′1 T ′1 ⊆ T1

Γ ` e1 e2 : T2

[s−apply]

We are ready to define the subtyping relation “⊆”. The following rules specify,
for example, that a subtype may contain additional components and shared compo-
nents may be related by subtyping.

314 10 An Excursion into the Lambda Calculus

Specification 10.13 (Structural subtyping for records)

T ≡ T ′

T ⊆ T ′
[s−reflexive]

T1 ⊆ T2 T2 ⊆ T3

T1 ⊆ T3

[s−transitive]

{l1:T1, . . . , ln−1:Tn−1, ln:Tn} ⊆ {l1:T1, . . . , ln−1:Tn−1} [s−record1]

Ti ⊆ T ′i

{l1:T1, . . . , li:Ti, . . . , ln:Tn} ⊆ {l1:T1, . . . , li:T ′i , . . . , ln:Tn}
[s−record2]

T ′1 ⊆ T1 T2 ⊆ T ′2

T1→ T2 ⊆ T ′1 → T ′2
[s−funsubtype]

The rules cover only record types; the development for variants is left as an ex-
ercise for the reader. We explain the typing rules for “⊆” one by one as follows:

• [s−reflexive]: The rule models reflexivity of subtyping (under equivalence).
• [s−transitive]: The rule models transitivity of subtyping.
• [s−record1]: A record type with an additional component is a subtype of the

record type without that additional component.
• [s−record2]: A record type with type Ti for component li is a subtype of a record

type that differs only in terms of type T ′i for component li, provided it holds that
Ti ⊆ T ′i .

• [s−funtype]: Function types are in a subtyping relationship such that the domains
of the function types are in the reverse direction of subtyping relationship and the
ranges are in the same direction of subtyping relationship.

Let us take a closer look at the complex case of function types ([s−funtype]). Be-
cause ranges are ordered by subtyping in the same direction as the function types,
this is referred to as covariance. In the reverse direction, as with the domains, this
is referred to as contravariance. If we were to rule out any such variance for func-
tion types, then this would be referred to as invariance. The choice made by rule
[s−funtype] is safe in the sense of soundness (Section 9.5).

10.4 Type-System Extensions 315

Exercise 10.11 (Covariance versus contravariance) [Intermediate level]
Assume a modified rule [s−funtype] such that covariance is assumed for both the
domain and the range of the function type. For this modified system, devise a well-
typed expression that gets stuck.

Exercise 10.12 (Structural subtyping for variants) [Intermediate level]
Devise subtyping rules for variants. You may try to adapt the rules [s−record1] and
[s−record2] to fit variants.

The subtyping rules as given above are problematic in that they are not really
syntax-driven. Owing to the rules [s−reflexive] and [s−transitive], one can con-
struct typing derivations indefinitely. In this sense, the rules are not immediately
algorithmic. We need transitivity because of the rules [s−record1] and [s−record2],
which only consider pointwise differences. The rule [t−equiv] is also at play; it
is needed for type equivalence modulo reordering of operands. It is not too hard,
though, to replace all the rules by a single rule which combines the aspects at hand.
This is left as an exercise for the reader.

Exercise 10.13 (Algorithmic subtyping) [Intermediate level]
Devise a reformulation of “⊆” so that the rules are algorithmic, i.e., given two
types, there is at most one (finite) typing derivation for a judgment.

10.4.4 Nominal Typing

When type equivalence and subtyping are based on names of types, then we speak
of nominal typing. The basic assumption is thus that types are named, subject to an
abstraction form for type definition. Types with different names are not equivalent,
even if the underlying structural types are.

As a by-product, the proposed form of nominal typing makes it easy to define
types recursively, even though, in principle, this could also be achieved without
names, i.e., with a fixed-point construction, just as in the case of functions (Sec-
tion 10.1.5). We will discuss type definitions briefly here, without though consid-
ering nominal subtyping, which is of particular interest in the context of OO pro-
gramming [6, 7]. We assume here that type definitions are add on top of records and
variants.

316 10 An Excursion into the Lambda Calculus

Let us introduce the expressiveness by means of an example.

Illustration 10.11 (Type definitions)
Let us model lists of shapes such that a list either is empty (see the variant labeled
nil) or consists of an element as the head and a remaining list as the tail (see the
variant labeled cons):

newtype ShapeList = nil : {} | cons : {head : Shape, tail : ShapeList}
type Shape = rectangle : Rectangle | circle : Circle
type Rectangle = {width : floattype,height : floattype}
type Circle = {radius : floattype}

We explain the notation as follows. We use N as a metavariable that ranges over
names of types. In type expressions, we may refer to named types using, of course,
the name. For the sake of matching more realistically how nominal typing shows up
in actual programming languages, we actually assume two forms of type definition.

• Type alias declared by type N = T : This form only declares an alias N for the
structural type T . Referring to N is like copying T literally. No nominal typing is
involved.

• New type declared by newtype N = T : This form declares a new nominal type
N, with T as the underlying structural type. Referring to N is thus not equivalent
to T .

We assume that all aliases have been eliminated (i.e., inlined) before even con-
sidering typing or semantics. That is, all references to aliases are simply replaced
by the underlying structural types. This also implies that aliases must not be defined
recursively.

At the expression level, there are these forms:

• inN(e): The value of e is injected into the nominal type N provided e is of the
underlying structural type of N.

• outN(e): The expression e must be of the nominal type N; its value is converted
to the underlying structural type of N.

We are ready to define the semantics of nominal types.

Specification 10.14 (Small-step operational semantics of nominal types)

Reduction of expressions

e → e′

inN(e) → inN(e′)
[in]

10.4 Type-System Extensions 317

e → e′

outN(e) → outN(e′)
[out1]

outN(inN(v)) → v [out2]

Values

inN(v) ∈ value [v−in]

By making inN(v) a value form, we hint at the basic implementation/represen-
tation option of using type names as tags within the actual semantics. This can be
compared to carrying type information at runtime, as in object-oriented program-
ming languages with virtual method tables and type inspection [6, 7].

The typing judgment is now of the form Γ ,∆ ` e : T , with ∆ corresponding to
the type definitions. The following rules only cover the new expressiveness, while
we assume that all previous typing rules remain unchanged, except for adding the
extra context ∆ .

Specification 10.15 (Typing for nominal types)

newtype N = T ∈ ∆ Γ ,∆ ` e : T

Γ ,∆ ` inN(e) : N
[t−in]

newtype N = T ∈ ∆ Γ ,∆ ` e : N

Γ ,∆ ` outN(e) : T
[t−out]

Exercise 10.14 (Nominal subtyping for records) [Intermediate level]
Extend the syntax, semantics, and type system so that nominal type definitions permit
nominal subtyping. To this end, assume that nominal record types can explicitly
extend an existing nominal record type.

Exercise 10.15 (Classes and “self”) [Advanced level]
Formalize some aspects of OO programming as follows. Represent classes as func-
tions (so-called “generators”) that are parameterized in “self” and that return a
record that models methods as function-typed components that may also refer to
“self”; class inheritance corresponds to record update for overriding or to exten-
sion for additional members and object construction corresponds to taking the fixed
point of generators. See [4] for some background.

318 10 An Excursion into the Lambda Calculus

Summary and Outline

The lambda calculus is strongly tied to programming language theory, but the topic
is still important in software language (engineering) practice. First, the general no-
tion of a calculus – as an idealized programming language or a core programming
language – is a utility that every software language engineer needs to be aware of. In
particular, mastery of the calculus notion may help language designers, for example,
in the context of identifying the core expressiveness of a domain-specific language.
There exist various calculi other than the lambda calculus, for example, in the do-
mains of concurrent programming and mobile computing. Second, the lambda cal-
culus and the extensions in this chapter allowed us to study some important (recur-
ring) language concepts in a compact manner: substitution, call-by-value semantics,
recursion, Turing completeness, polymorphism, structural versus nominal typing,
and subtyping.

In the following chapter, we will complement the operational approach to defin-
ing semantics, which was also exercised throughout the present chapter, with the de-
notational approach. In the last (technical) chapter, we will discuss a few nontrivial
metaprogramming techniques – some of which are also informed by programming
language theory.

References

1. Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2), 125–154
(1991)

2. Barendregt, H.: The impact of the lambda calculus in logic and computer science. Bulletin of
Symbolic Logic 3(2), 181–215 (1997)

3. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Perspectives in
logic. Cambridge University Press (2013)

4. Bracha, G., Lindstrom, G.: Modularity meets inheritance. In: Proc. ICCL, pp. 282–290. IEEE
(1992)

5. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymorphism. ACM
Comput. Surv. 17(4), 471–522 (1985)

6. Glew, N.: Type dispatch for named hierarchical types. In: Proc. ICFP, pp. 172–182. ACM
(1999)

7. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java
and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

8. Liskov, B.: Keynote address – Data abstraction and hierarchy. In: Addendum to the Proc.
OOPSLA, pp. 17–34. ACM (1987)

9. Pierce, B.: Types and Programming Languages. MIT Press (2002)
10. Pierce, B.: Advanced Topics in Types and Programming Languages. MIT Press (2004)
11. Rémy, D.: Functional programming and type systems: Metatheory of System F (2017). Course

notes. Available at http://cristal.inria.fr/~remy/mpri/.
12. Reynolds, J.C.: Towards a theory of type structure. In: Proc. Programming Symposium, Pro-

ceedings Colloque sur la Programmation, Paris, LNCS, vol. 19, pp. 408–423. Springer (1974)

http://cristal.inria.fr/~remy/mpri/

Chapter 11
An Ode to Compositionality

CHRISTOPHER STRACHEY.1

Abstract In this chapter, we complement the earlier development of operational
semantics with another approach to defining semantics, namely the higher-order
functional approach of denotational semantics. We focus here on compositionality,
which is a structuring principle for interpreters, analyses, and yet other functionality
for languages. We discuss two styles of denotational semantics: the simpler “direct”
style and the more versatile “continuation” style capable of dealing with, for exam-
ple, nonbasic control flow constructs. Denotational semantics can be implemented
easily as interpreters, for example, in Haskell, as we will demonstrate.

1 Twenty-five years after his death, two papers by Christoper Strachey appeared [13, 14]: one
on his lectures on programming language semantics and another (coauthored with Christopher
P. Wadsworth) on continuations. Domain theory would probably not exist without Strachey [11].
My supervisor’s generation would have known the work of Strachey (and Scott) through Joseph
E. Stoy’s textbook [12] and Peter D. Mosses’ thesis [5]. I would fall in love with denotational style
also, thanks to its applications to parallel and logic programming [6, 2]. Every software language
engineer, in fact, every software engineer, should understand and leverage “compositionality” [1].
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA
4.0. This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission.
This work also quotes https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Vaas_
met_tuingladiolen_en_Chinese_asters_-_Google_Art_Project.jpg, subject to the attribution
“Vincent Van Gogh: Vaas met tuingladiolen en Chinese asters (1886) [Public domain], via Wikimedia Commons.” This
work artistically morphes an image, http://www.cs.man.ac.uk/CCS/res/res43.htm, showing the person
honored, subject to the attribution “Permission granted by Camphill Village Trust for use in this book.”

319© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_11

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Vaas_met_tuingladiolen_en_Chinese_asters_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Vaas_met_tuingladiolen_en_Chinese_asters_-_Google_Art_Project.jpg
http://www.cs.man.ac.uk/CCS/res/res43.htm
https://doi.org/10.1007/978-3-319-90800-7_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_11&domain=pdf

320 11 An Ode to Compositionality

11.1 Compositionality

Denotational semantics [12, 3, 15] is not too popular in today’s language definition
culture, but the notion of compositionality is. Therefore, we will skip over the math-
ematical details of denotational semantics here and simply focus on the notion of
compositionality. That is, we speak of a compositional semantics when it is defined
as a mapping from syntax to semantics with cases for each syntactic pattern such
that the meaning of a compound construct is obtained directly and only from the
meanings of its constituent phrases (“subterms”).

Consider the following two inference rules of a big-step operational semantics
for statement sequences and while-loops in an imperative programming language,
as discussed earlier (Section 8.1.6.1):

m0 ` s1 # m1 m1 ` s2 # m2

m0 ` seq(s1,s2) # m2

[SEQ]

m ` if(e,seq(s,while(e,s)),skip) # m′

m ` while(e,s) # m′
[WHILE]

Rule [SEQ] agrees with the principle of compositionality, while rule [WHILE] does
not. That is, the rule [SEQ] for statement sequences applies the judgment for state-
ment execution simply to the two constituents s1 and s2 of the sequence seq(s1,s2).
By contrast, the rule [WHILE] for while-loops carries a premise with a newly com-
posed syntactic pattern. Thus, the meaning of a while-loop while(e,s) is not simply
composed from the meanings of its immediate constituents e and s.

Simply speaking, compositionality is good in the same sense as primitive re-
cursion is better understood and better controllable than general recursion. Com-
positionality simplifies reasoning about the semantics without relying on stepwise
computation. Compositionality also helps in separating syntax and semantics in a
language definition. Compositionality is not always straightforward to achieve for
all language constructs, as we will demonstrate below with a fixed-point semantics
of while-loops. To this end, we leverage a different approach to semantics definition:
denotational semantics. Within the framework of operational semantics, it appears
to be hard to define a compositional semantics of while-loops.

11.2 Direct Style

We develop the basic approach to denotational semantics on the basis of so-called
“direct style,” which suffices for many programming language constructs; this in-
cludes structured programming (sequence, iteration, selection) in imperative pro-
gramming languages.

11.2 Direct Style 321

11.2.1 Semantic Domains

Denotational semantics assumes that each syntactic category is associated with a
semantic domain. We have also used this term earlier in the context of ad hoc inter-
preters (Section 5.1.1) and operational semantics (Section 8.1.5.1). The difference
is that the typical semantic domain of a denotational semantics is a domain of func-
tions. Elements of domains directly represent meanings of program phrases; there
is no reference to stepwise computation. In the case of the imperative programming
language BIPL, we need these domains to be associated with the syntactic categories
of statements and expressions:

storeT = store 7→ store // Type of store transformation
storeO = store 7→ value // Type of store observation

In these type definitions, we assume the same definitions for store and value as in
the earlier operational semantics (Section 8.1.6.1). That is, value denotes the domain
of integer and Boolean values, whereas store denotes the domain of collections of
variable name-value pairs. We can read these definitions as follows. The meaning
of a statement is a store transformer, i.e., a function on stores, thereby describing
the effect of a given statement on a given store. The meaning of an expression is a
store observer, i.e., a function that takes a store and returns a value, where the store
may need to be consulted owing to the variable expression form. We assume here
that expressions do not modify the store. We deal with partial functions, as denoted
by “ 7→” above. The partiality is due to the possibility of nontermination, ill-typed
expressions, and undefined variables.

11.2.2 Semantic Functions

Denotational semantics leverages function definitions as opposed to inference rules.
The functions assign meanings (compositionally) to the different syntactic cate-
gories. In the case of BIPL’s imperative programs, we need these functions:

S : stmt→ storeT // Semantics of statements
E : expr→ storeO // Semantics of expressions

That is, the function for statements, S , maps statements to store transformers. The
function for expressions, E , maps expressions to store observers.

Compositionality is implied by the following style for defining the semantic func-
tions; in fact, we use a somewhat extreme style for clarity:

322 11 An Ode to Compositionality

S [|skip|] = skip
S [|assign(x,e)|] = assign x (E [|e|])
S [|seq(s1,s2)|] = seq (S [|s1|]) (S [|s2|])
S [|if(e,s1,s2)|] = if (E [|e|]) (S [|s1|]) (S [|s2|])
S [|while(e,s)|] = while (E [|e|]) (S [|s|])

E [|intconst(i)|] = intconst i
E [|var(x)|] = var x
E [|unary(o,e)|] = unary o (E [|e|])
E [|binary(o,e1,e2)|] = binary o (E [|e1|]) (E [|e2|])

That is:

• Applications of the semantic functions S and E to syntactical patterns or com-
ponents thereof are surrounded by the so-called Oxford brackets [| · · · |]. One can
trivially check that, in the right-hand sides of equations, the functions are really
just applied to components that have been matched on the left-hand sides.

• The intermediate meanings determined for the components are composed by
function combinators skip, assign, etc. The combinator names are the underlined
names of the constructs.

• Some primitive constituents are not mapped. That is, variable names (see the
equations for the phrases assign(x,e) and var(x)) and operator symbols (see the
equations for the phrases unary(o,e) and binary(o,e1,e2)) are directly passed to
the corresponding combinators, but no other syntax is passed on or constructed
otherwise.

• We apply “curried” notation for the combinators, i.e., function arguments are
lined up by juxtaposition as opposed to enclosing them in parentheses, for exam-
ple, f x y as opposed to f (x,y).

11.2.3 Semantic Combinators

It remains to define the combinators skip, assign, etc. Let us capture their types first,
as they are implied by the use of the combinators in the compositional scheme:

skip : storeT
assign : string→ storeO→ storeT
seq : storeT→ storeT→ storeT
if : storeO→ storeT→ storeT→ storeT
while : storeO→ storeT→ storeT

intconst : int→ storeO
var : string→ storeO
unary : uo→ storeO→ storeO
binary : bo→ storeO→ storeO→ storeO

11.2 Direct Style 323

Let us define the combinators in a semiformal, intuitive functional notation here. A
rigorous development of formal notation for denotational semantics [12, 3, 15] is
beyond the scope of this book.

// The identity function for type store
skip m = m

// Pointwise store update
assign x f m = m[x 7→ (f m)] if f m is defined

// Function composition for type storeT
seq f g m = g (f m)

// Select either branch for Boolean value

if f g h m =

g m if f m = true
h m if f m = false
undefined otherwise

We have left out the definition of while because it requires some extra effort,
as discussed below. For brevity, we have omitted the definition of the combina-
tors needed for E because the earlier operational semantics of expressions (Sec-
tion 8.1.6.1) is essentially compositional.

Exercise 11.1 (Denotational semantics of expressions) [Basic level]
Define the combinators needed for E .

11.2.4 Fixed-Point Semantics

The compositional semantics of while-loops involves a fixed-point construction, as
we will clarify now. That is, we aim at a definition of while f g with f as the meaning
of the condition and g as the meaning of the loop’s body. Let us assume, just for the
moment, that we already know the meaning of the while-loop; let us refer to it as t.
If so, then it is easy to see that the following equivalence should hold:

t ≡ if f (seq g t) skip

That is, by the choice of if , we test the loop’s condition; if the condition evaluates
to false, we use the state transformer skip; otherwise, we sequentially compose the
meaning g of the loop’s body and the assumed meaning t of the loop itself. Thus,
we explicitly construct the meaning of a while-loop, the body of which is executed
zero or one times, and we resort to t for repetitions past the first one. It is crucial
to understand that we do not use any syntax in this equivalence. Instead, we simply
compose meanings.

324 11 An Ode to Compositionality

Alas, we do not yet know t. Let us capture the right-hand side expression of the
equivalence as h and parameterize it in t:

h t = if f (seq g t) skip

Now consider the following progression of applications of h:

h undefined
h (h undefined)

h (h (h undefined))
...

Here, undefined denotes the completely undefined store transformation, which,
given any store m returns a store which maps all variable names to the undefined
value. Note that the elements in this progression correspond to approximations to
the meaning t of the while-loop that agree with t in terms of the resulting store for
the cases of 0, 1, . . . required repetitions of the body. Thus, if we can express an
unbounded number of applications of h to undefined, then we have indeed defined
t. This is essentially achieved by taking the fixed point of h. Thus:

t ≡ fix h

One way to think of fix is as being defined “computationally” according to the
fixed-point property, as discussed earlier in the context of the lambda calculus (Sec-
tion 10.1.5). Thus:

fix k = k (fix k)

That is, we assume that the fixed point of k is computed by applying k to the com-
putation of the fixed point. Another way to think of fix is as being defined as the
least upper bound of the elements in the infinite progression described above. The
least upper bound is defined here essentially in terms of being more “defined”, i.e.,
returning a less undefined or possibly fully defined store transformer.

To conclude, we define the meaning of a while-loop in terms of the while combi-
nator as a fixed point as follows:

while f g = fix h
where
h t = if f (seq g t) skip

Our discussion of fixed points has been very superficial here, and we point to
the literature on denotational semantics [12, 3, 15] and on domain theory specifi-
cally [11]. In particular, semantic domains and combinators over them must satisfy
a number of fundamental properties for such a fixed-point semantics to be well de-
fined in that the fixed point is uniquely defined. To this end, the domains are more
than just sets; they are equipped with a partial order to deal with undefinedness and

11.2 Direct Style 325

approximation. Also, the combinators need to be monotone and continuous in a spe-
cific sense to facilitate fixed-point computation by taking least upper bounds with
respect to the said partial orders.

Exercise 11.2 (Existence and uniqueness of fixed points) [Basic level]
This exercise hints at the challenge of making sure that fixed points exist and are
uniquely defined. Define functions a, b, and c on natural numbers such that a has no
fixed point, b has exactly one fixed point, and c has an infinite number of fixed points.
Use the fixed-point property to check whether a given natural number is indeed a
fixed point of a given function. That is, x0 is a fixed point of f if f x0 = x0.

Regardless of the informality of the development, it is “computationally effec-
tive,” as a discussion of denotational interpreters shows below.

Exercise 11.3 (Expression-oriented imperative language) [Intermediate level]
Define the denotational semantics of an imperative language such that the syntactic
category for expressions incorporates all statement forms. There were similar as-
signments for big- and small-step operational semantics in Chapter 8 (Exercises 8.4
and 8.9).

11.2.5 Direct-Style Interpreters

Arguably, semantic domains, functions, and combinators are easily encoded as in-
terpreters in functional programming. Such an implementation benefits from the fact
that denotational semantics is clearly a functional approach to defining semantics.
That is, domains are types of functions; semantic functions are functions anyway.
Semantic combinators are (higher-order) function combinators. The actual details
of a systematic and well-defined encoding are nontrivial [8, 9, 10], as there may be
some mismatch between the mathematical view of a metanotation for semantics and
the actual semantics of the functional metalanguage, but we skip over such details
here. We encode denotational semantics in Haskell.

Here is how we expect to use the interpreter for executing the sample program
for Euclidean division; we apply values for the variables x and y and execution
computes the variables q and r as the quotient and remainder of dividing x by y:

Interactive Haskell session:

I execute euclideanDiv (fromList [("x", Left 14), ("y", Left 4)])
fromList [("q", Left 3), ("r", Left 2), ("x", Left 14), ("y", Left 4)]

Let us start the implementation of an interpreter with a Haskell encoding of the
semantic domains as shown below.

326 11 An Ode to Compositionality

Illustration 11.1 (Semantic domains for imperative programs)

Haskell module Language.BIPL.DS.Domains

−− Results of expression evaluation
type Value = Either Int Bool
−− Stores as maps from variable ids to values
type Store = Map String Value
−− Store transformers (semantics of statements)
type StoreT = Store→ Store
−− Store observers (semantics of expressions)
type StoreO = Store→ Value

The definitions are straightforward. The definition of Store exhibits an element of
choice. We could also model stores more directly as functions of type String→ Value,
but we opt for Haskell’s library type Map to model stores as maps (say, dictionaries)
from variable names to values because the underlying representation is more conve-
nient to use for testing and debugging, as dictionaries are “observable” as a whole
whereas genuine functions can only be “queried” at specific points.

Let us continue the implementation of an interpreter with a Haskell encoding of
the compositional mapping over statements as shown below.

Illustration 11.2 (Compositional mapping)

Haskell module Language.BIPL.DS.Interpreter

execute :: Stmt→ StoreT
execute Skip = skip'
execute (Assign x e) = assign' x (evaluate e)
execute (Seq s1 s2) = seq' (execute s1) (execute s2)
execute (If e s1 s2) = if’ (evaluate e) (execute s1) (execute s2)
execute (While e s) = while' (evaluate e) (execute s)

evaluate :: Expr→ StoreO
evaluate (IntConst i) = intconst' i
evaluate (Var x) = var' x
evaluate (Unary o e) = unary' o (evaluate e)
evaluate (Binary o e1 e2) = binary' o (evaluate e1) (evaluate e2)

That is, the semantic functions S and E are called execute and evaluate for clar-
ity, and the underlined combinators of the semiformal development are modeled as
primed functions in Haskell; see, for example, skip' instead of skip. (By priming, we
also avoid clashes. For instance, if is readily taken in Haskell.) There is one equa-
tion per language construct. On the left-hand side of an equation, the construct is
matched to provide access to the constituents of the construct. On the right-hand
side of an equation, the meanings of the constituents are determined by recursive
occurrences of the interpreter functions and they are combined by the correspond-
ing semantic combinator.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/DS/Domains.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/DS/Interpreter.hs

11.2 Direct Style 327

We complete the implementation of an interpreter with a Haskell implementation
of the semantic combinators definitions as shown below.

Illustration 11.3 (Combinators of semantic meanings)

Haskell module Language.BIPL.DS.Combinators

skip' :: StoreT
skip' = id
assign' :: String→ StoreO→ StoreT
assign' x f m = insert x (f m) m
seq' :: StoreT→ StoreT→ StoreT
seq' = flip (.)
if’ :: StoreO→ StoreT→ StoreT→ StoreT
if’ f g h m = let Right v = f m in if v then g m else h m
while' :: StoreO→ StoreT→ StoreT
while' f g = fix h where h t = if’ f (seq' g t) skip'
intconst' :: Int→ StoreO
intconst' i _ = Left i
var' :: String→ StoreO
var' x m = m!x
unary' :: UOp→ StoreO→ StoreO
unary' Negate f m = let Left i = f m in Left (negate i)
unary' Not f m = let Right b = f m in Right (not b)
binary' :: BOp→ StoreO→ StoreO→ StoreO
...

In the code shown above, we make reasonable use of functional programming
idioms in Haskell. In the definition of while', we use a polymorphic fixed-point com-
binator that is readily defined in the Haskell library like this:

fix :: (a→ a)→ a
fix f = f (fix f)

Exercise 11.4 (Interpretation without throwing) [Basic level]
The interpreter may “throw” for different reasons, for example, in the case of ap-
plying Boolean negation (Not) to an integer constant. Identify all such reasons and
revise the interpreter so that statement execution and expression evaluation do not
simply throw, but Nothing of Haskell’s Maybe type is returned instead.

The present section can be summarized by means of a recipe.

Recipe 11.1 (Compositional interpretation).

Abstract syntax Implement abstract syntax, as discussed previously
(Recipe 4.1).

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/DS/Combinators.hs

328 11 An Ode to Compositionality

Semantic domains Implement the semantic domains; these are often func-
tion types. For instance, the semantic domain for expressions in a language
with variables maps variable identifiers to values.

Semantic combinators There is one combinator per language construct
with as many arguments as there are constituent phrases (“subterms”), with
the argument types equaling the semantic domains for the constituents and
the result type equaling the semantic domain for the construct’s category.

Compositional mapping Implement functions from the syntactic to the se-
mantic domains. There is one function per syntactic category. There is one
equation per construct. In each equation, apply the semantic functions to
constituents and combine the results with the combinator for the construct.

11.3 Continuation Style

We now turn from the direct to the more advanced continuation style of denotational
semantics. The main idea, when one is applying the style to imperative programs,
is to parameterize meanings in the “rest” of the program so that each meaning can
freely choose to deviate from the default continuation, whenever it may be neces-
sary for control-flow constructs such as throws of exceptions or gotos. In functional
programming, there also exists a related style, the continuation-passing style (CPS),
which helps with adding error handling to programs and with structuring functional
programs, for example, in the context of implementing web applications [4].

11.3.1 Continuations

In direct style, as assumed so far, control flow is quite limited. To see this, let us
recall that the semantic combinator for sequential composition was defined as fol-
lows:

seq : storeT→ storeT→ storeT
seq f g m = g (f m)

Thus, f applies the given store m and passes on the resulting store to g. Now suppose
that f corresponds to a phrase with a goto or a throw of an exception in which case
g should be ignored. Within the bounds of the semantic domains at hand, there is no
reasonable definition for seq such that g could be ignored if necessary.

In continuation style, we use more advanced semantic domains; we do not use
“store transformers” but we rather use “store transformer transformers” defined as
follow:

storeTT = storeT 7→ storeT

11.3 Continuation Style 329

The idea is that any meaning is parameterized by a store transformer corresponding
to what should “normally” be executed next. We refer to such parameters as con-
tinuations. The type and definition of the semantic combinator seq are revised as
follows:

seq : storeTT→ storeTT→ storeTT
seq f g c = f (g c)

That is, the sequential composition is parameterized by a continuation c for whatever
follows the statement sequence. The order of functionally composing the arguments
of seq is reversed compared with direct style. This makes sense because we are not
composing store transformers; instead, we pass store transformers as arguments.

11.3.2 Continuation-Style Interpreters

We will work out any more details of continuation style in a semiformal notation
here. Instead, we will explain details directly by means of interpreters. For now, we
just convert the earlier interpreter into continuation style – without yet leveraging
the added expressiveness. In the next section, we add gotos to leverage continuation
style proper.

We implement the new semantic domain as follows.

Illustration 11.4 (Store transformer transformers)

Haskell module Language.BIPL.CS.Domains

type StoreTT = StoreT→ StoreT

The compositional mapping does not change significantly, as shown below:

Illustration 11.5 (Compositional mapping with continuations)

Haskell module Language.BIPL.CS.Interpreter

execute :: Stmt→ StoreT
execute s = execute' s id

where
execute' :: Stmt→ StoreTT
execute' Skip = skip'
execute' (Assign x e) = assign' x (evaluate e)
execute' (Seq s1 s2) = seq' (execute' s1) (execute' s2)
execute' (If e s1 s2) = if’ (evaluate e) (execute' s1) (execute' s2)
execute' (While e s) = while' (evaluate e) (execute' s)

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/CS/Domains.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/CS/Interpreter.hs

330 11 An Ode to Compositionality

In the code shown above, the top-level function execute maps statements to store
transformers and uses the locally defined function execute' to map statements to
store transformer transformers starting from the “empty” continuation id.

The semantic combinators have to be changed as follows.

Illustration 11.6 (Combinators of semantic meanings)

Haskell module Language.BIPL.CS.Combinators

skip' :: StoreTT
skip' = id
assign' :: String→ StoreO→ StoreTT
assign' x f c sto = c (insert x (f sto) sto)
seq' :: StoreTT→ StoreTT→ StoreTT
seq' = (.)
if’ :: StoreO→ StoreTT→ StoreTT→ StoreTT
if’ f g h c = DS.if’ f (g c) (h c)
while' :: StoreO→ StoreTT→ StoreTT
while' f g = fix h where h t = if’ f (seq' g t) skip'

The combinators differ from direct style as follows:

• skip': The identity function is applied here to store transformers as opposed to
stores. The definition models that the current continuation is simply applied.

• assign': The store is transformed, just as in the case of direct style, and then
passed to the continuation received.

• seq': The definition models that (the meaning of) the second statement, once
applied to the given continuation, acts as a continuation of (the meaning of) the
first statement.

• if’ : The meaning of an if-statement is the same as in direct style, except that we
need to pass the continuation to both branches. We reuse the combinator DS.if ′

of direct style.
• while': The meaning of a while-loop is defined similarly to direct style, except

that there is an extra argument for the continuation (suppressed by currying).

11.3.3 Semantics of Gotos

As a simple exercise in leveraging continuation style, we consider an imperative
language without while-loops, but with general gotos instead. To this end, we use
the following syntax.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/CS/Combinators.hs

11.3 Continuation Style 331

Illustration 11.7 (Syntax of imperative statements with gotos)

Haskell module Language.BIPL.Goto.Syntax

data Stmt
= Skip
| Assign String Expr
| Seq Stmt Stmt
| If Expr Stmt Stmt
| Label String
| Goto String

A sample program follows.

Illustration 11.8 (Euclidean division with goto instead of while)

Haskell module Language.BIPL.Goto.Sample

euclideanDiv :: Stmt
euclideanDiv =

−− Sample operands for Euclidean division
Seq (Assign "x" (IntConst 14))

(Seq (Assign "y" (IntConst 4))

−− Compute quotient q=3 and remainder r=2
(Seq (Assign "q" (IntConst 0))
(Seq (Assign "r" (Var "x"))
(Seq (Label "a")

(If (Binary Geq (Var "r") (Var "y"))
(Seq (Assign "r" (Binary Sub (Var "r") (Var "y")))
(Seq (Assign "q" (Binary Add (Var "q") (IntConst 1)))

(Goto "a")))
Skip)))))

The denotational semantics of imperative programs with gotos relies on an extra
argument for the “goto table” in which to look up the meaning of a label upon
encountering a goto. Thus, the semantic domain for meanings of statements evolves
as follows.

Illustration 11.9 (Goto tables)

Haskell module Language.BIPL.Goto.Domains

type Gotos = [(String, StoreT)] −− Goto tables
type StoreTT' = (StoreT, Gotos)→ (StoreT, Gotos) −− Transformation with gotos

The compositional mapping is adapted to deal with goto tables, as shown below.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Sample.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Domains.hs

332 11 An Ode to Compositionality

Illustration 11.10 (Compositional mapping with gotos)

Haskell module Language.BIPL.Goto.Interpreter

execute :: Stmt→ StoreT
execute s = let (c, g) = execute' s (id, g) in c

where
execute' :: Stmt→ StoreTT'
execute' Skip = skip'
execute' (Assign x e) = assign' x (evaluate e)
execute' (Seq s1 s2) = seq' (execute' s1) (execute' s2)
execute' (If e s1 s2) = if’ (evaluate e) (execute' s1) (execute' s2)
execute' (Label l) = label' l
execute' (Goto l) = goto' l

The top-level function execute maps statements to store transformers and uses
the locally defined function execute' which takes goto tables into account. In fact,
as is evident from the definition of StoreTT', the goto table is both received as an
argument and returned as part of the result. This may be surprising at first, but in
fact the mapping needs to add to the goto table (see the combinator label' in the
following illustration) and to read from the goto table (see the combinator goto' in
the following illustration).

Illustration 11.11 (Combinators of semantic meanings with gotos)

Haskell module Language.BIPL.Goto.Combinators

skip' :: StoreTT'
skip' (c, t) = (c, [])
assign' :: String→ StoreO→ StoreTT'
assign' x f (c, t) = (λ m→ c (insert x (f m) m), [])
seq' :: StoreTT'→ StoreTT'→ StoreTT'
seq' f g (c, t) = let (c', t') = g (c, t) in let (c'', t'') = f (c', t) in (c'', t'++t'')
if’ :: StoreO→ StoreTT'→ StoreTT'→ StoreTT'
if’ f g h (c, t) = let ((c1, t1), (c2, t2)) = (g (c, t), h (c, t)) in (DS.if’ f c1 c2, t1++t2)
label' :: String→ StoreTT'
label' l (c, t) = (c, [(l, c)])
goto' :: String→ StoreTT'
goto' l (c, t) = (fromJust (lookup l t), [])

The combinators are explained one by one as follows:

• skip': The given continuation is simply preserved. The received goto table is not
consulted. The returned goto table is empty ([]).

• assign': The store is transformed and then passed to the received continuation.
The received goto table is not consulted. The returned goto table is empty ([]).

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Interpreter.hs
http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Goto/Combinators.hs

• seq': The two meanings are essentially composed by function composition, ex-
cept that the given goto table is passed to both operands and the individually
returned goto tables are combined (i.e., appended with (++)) to serve as the re-
sulting goto table for the statement sequence.

• if’ : The given goto table is passed to both the then- and the else-branch. The goto
tables for the then- and else-branches are combined as the resulting goto table.
Other than that, we reuse the semantic combinator of direct style.

• label': The current continuation is captured and associated with the label at hand
to form a goto table.

• goto': The current continuation is ignored; in fact, it is replaced by the continua-
tion associated with the given label according to the given goto table.

Exercise 11.5 (Exceptions) [Intermediate level]
Add the following two statement forms:

• Throwing an exception throw(x): A string x. An exception terminates the regular
(sequential) control-flow and propagates through the compound statement until
it is handled by a trycatch statement (see below) or to the top, where it terminates
the program irregularly.

• Catching an exception trycatch(s,x,s′): While the statement s is being executed,
any exception x is caught and s′ would be executed. If no exception occurs within
s, then the statement behaves just like s. If an exception other than x occurs within
s, then the exception is propagated as described above.

These statement forms should be added by extending the Haskell-based interpreter
while leveraging continuation style. This form of exception is developed in some
detail in [7].

Exercise 11.6 (Fixed points with gotos) [Intermediate level]
A recursive let is used in Illustration 11.11, to tie the recursive knot needed for
passing the goto table returned by the mapping back into the same mapping. Thus,
the semantics is arguably not (obviously) compositional. Revise the semantics so
that the recursive let is replaced by some explicit fixed-point construction.

Summary and Outline

We have described the denotational (functional) approach to defining semantics. In
its full beauty, denotational semantics is a mathematically elegant approach. We
focused here, though, on the key principle of the approach: compositionality, i.e.,
defining meanings of compound constructs solely in terms of recursively determined
meanings of constituent phrases, thereby achieving a full separation of syntax and

11.3 Continuation Style 333

334 11 An Ode to Compositionality

semantics. We have also touched upon continuation style, which is a sophisticated
pattern for structuring semantics definitions (and declarative programs).

In the remaining (technical) chapter, we will discuss a few nontrivial metapro-
gramming techniques – some of which are also informed by programming language
theory. In one case, we will also discuss how denotational semantics can be used to
specify program analyses by replacing the semantic algebra for composing mean-
ings by another interpretation geared towards computing program properties that
may be useful, for example, for program optimization.

References

1. Blikle, A.: Denotational engineering. Sci. Comput. Program. 12(3), 207–253 (1989)
2. Brogi, A., Lamma, E., Mello, P.: Compositional model-theoretic semantics for logic programs.

New Generation Comput. 11(1), 1–21 (1992)
3. Gunter, C.: Semantics of Programming Languages: Structures and Techniques. MIT Press

(1992)
4. Krishnamurthi, S., Hopkins, P.W., McCarthy, J.A., Graunke, P.T., Pettyjohn, G., Felleisen, M.:

Implementation and use of the PLT scheme web server. Higher Order Symbol. Comput. 20(4),
431–460 (2007)

5. Mosses, P.D.: Mathematical semantics and compiler generation. Ph.D. thesis, University of
Oxford, UK (1975)

6. Nielson, F., Nielson, H.R.: Code generation from two-level denotational meta-languages. In:
Proc. Programs as Data Objects 1985, LNCS, vol. 217, pp. 192–205. Springer (1986)

7. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergraduate Topics
in Computer Science. Springer (2007)

8. Reynolds, J.C.: Definitional interpreters for higher-order programming languages. In: Proc.
ACM Annual Conference – Volume 2, ACM ’72, pp. 717–740. ACM (1972)

9. Reynolds, J.C.: Definitional interpreters for higher-order programming languages. Higher
Order Symbol. Comput. 11(4), 363–397 (1998)

10. Reynolds, J.C.: Definitional interpreters revisited. Higher Order Symbol. Comput. 11(4), 355–
361 (1998)

11. Stoltenberg-Hansen, V., Lindström, I., Griffor, E.R.: Mathematical Theory of Domains. Cam-
bridge University Press (1994)

12. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language
Semantics. MIT Press (1977)

13. Strachey, C.: Fundamental concepts in programming languages. Higher Order Symbol. Com-
put. 13(1/2), 11–49 (2000)

14. Strachey, C., Wadsworth, C.P.: Continuations: A mathematical semantics for handling full
jumps. Higher Order Symbol. Comput. 13(1/2), 135–152 (2000)

15. Tennent, R.D.: Denotational semantics. In: Handbook of logic in computer science, vol. 3, pp.
169—-322. Oxford University Press (1994)

Chapter 12
A Suite of Metaprogramming Techniques

OLEG KISELYOV.1

Abstract Metaprogramming may be done with just a few programming techniques:
an object-program representation (to capture the syntactical structure of object pro-
grams), pattern matching or accessors (to take apart object programs or to select
suitable parts thereof), pattern building or constructors (to construct or compose
object programs), and a computational model for tree walking (e.g., visitors in OO
programming or possibly just recursion). In this chapter, we describe some metapro-
gramming techniques on the basis of which many metaprograms can be written in
a more disciplined style. That is, we describe term rewriting, attribute grammars,
multi-stage programming, partial evaluation, and abstract interpretation.

1 Mastery of semantics-based techniques, type-system acrobatics, over-the-head functional pro-
gramming – these labels pretty reliably map to Oleg Kiselyov without too much risk of hash-code
collision. The photo shows him while he was talking about “typed final (tagless-final) style” [7, 34]
(http://okmij.org/ftp/tagless-final/) – an advanced topic of metaprogramming
not included in this book. One may wonder what a textbook would look like if Oleg was ever to
write down a good part of his operational knowledge.
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA 4.0. This
artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This work also quotes
https://en.wikipedia.org/wiki/File:Roses_-_Vincent_van_Gogh.JPG, subject to the attribu-
tion “Vincent van Gogh: Roses (1890) [Public domain], via Wikipedia.” This work artistically morphes an image,
http://www.cs.ox.ac.uk/projects/gip/school/kiselyov.JPG, showing the person honored, sub-
ject to the attribution “Permission granted by Oleg Kiselyov for use in this book.”

335© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_12

http://okmij.org/ftp/tagless-final/
http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://en.wikipedia.org/wiki/File:Roses_-_Vincent_van_Gogh.JPG
http://www.cs.ox.ac.uk/projects/gip/school/kiselyov.JPG
https://doi.org/10.1007/978-3-319-90800-7_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_12&domain=pdf

336 12 A Suite of Metaprogramming Techniques

12.1 Term Rewriting

Term rewriting can be viewed as a computational paradigm for describing transfor-
mations as a collection of rewrite rules which match on object-program patterns and
build new patterns from the matched parts in some way. Some implicit or explicit
normalization strategy takes care of applying the rules, in some sense, exhaustively.
A collection of rewrite rules together with a strategy for their application may be
referred to as a rewrite system.

In theoretical computer science, rewrite systems are formal entities in themselves
(just like grammars) and have been studied very well [16, 39, 17]. In practice,
we are interested in metaprogramming systems with support for rewriting such as
ASF+SDF [82], TXL [9, 10], Stratego [6], and Rascal [37, 36], and possibly in
declarative programming languages that support some form of rewriting. We will
exercise term rewriting in Haskell.

12.1.1 Rewrite Rules

As a running example, we will deal with optimization of expression forms; this
example was introduced in a pragmatic metaprogramming manner in Section 5.4.1.
Our objective here is to show that term rewriting provides a rigorous technique for
describing such optimizations. Term rewriting boils down to the declaration and
application of rewrite rules such as the following one:

(X ∗Y)+(X ∗Z) X ∗ (Y +Z)

This rule captures distributivity for multiplication and addition, as present in many
languages. In the rest of this section, we exercise EL (Expression Language), which
is the language of expression forms that are common to the fabricated imperative
and functional programming languages BIPL and BFPL in this book.

As a precursor to setting up a rewrite system, let us collect together several alge-
braic laws that we assume to hold for expressions. We use uppercase letters X , Y , Z,
. . . as metavariables for arbitrary expressions so that we can talk about patterns of
expressions:

X +0 = X -- Unit of addition
X ∗1 = X -- Unit of multiplication
X ∗0 = 0 -- Zero of multiplication
X +Y = Y +X -- Commutativity of addition
X ∗Y = Y ∗X -- Commutativity of multiplication
(X +Y)+Z = X +(Y +Z) -- Associativity of addition
(X ∗Y)∗Z = X ∗ (Y ∗Z) -- Associativity of multiplication
(X ∗Y)+(X ∗Z) = X ∗ (Y +Z) -- Distributivity

12.1 Term Rewriting 337

We should think of applying these laws – from either left to right or from right to
left – to appropriate subterms of a given term such as an EL expression or “bigger”
program phrases such as a statement (in BIPL) or a function definition (in BFPL).
In sample expressions, we use lowercase letters a, b, c, . . . as program variables.

Here is a rewriting step applying the second equation:

a+b∗1+ c = a+b+ c

We have applied the equation from left to right. We have underlined the subex-
pressions which are instances of the left- and right-hand sides of the equation. We
may also use the term “redex” to refer to subterms to which a rewrite rule (or an
equation) is applied or applicable.

Exercise 12.1 (Additional rules for expressions) [Basic level]
Identify some additional algebraic laws for EL – specifically also some rules that
involve operators that are not exercised by the laws stated above.

When equations are readily directed so that the direction of application is speci-
fied, then we speak of rules rather than equations. That is, we use an arrow “ ” to
separate left- and right-hand side, and rules are thus to be applied from left to right.
For instance, the first law may reasonably be directed from left to right, as this direc-
tion would be useful in applying the rule for the purpose of simplification. In fact,
the first three equations can be understood as simplification rules, when directed
from left to right; in fact, we perform a transition from equations to rules:

X +0 X -- Unit of addition
X ∗1 X -- Unit of multiplication
X ∗0 0 -- Zero of multiplication

That is, a rewrite rule consists of a left- and a right-hand side; these are both pat-
terns of object programs. The assumed semantics of applying a rewrite rule is that
the left-hand side is matched with a given term, with the metavariables bound to sub-
terms if matching succeeds; the result is constructed from the bound metavariables
according to the right-hand side.

Exercise 12.2 (Semantics of term rewriting) [Intermediate level]
Specify the semantics of applying rewrite rules.

For now, let us use abstract syntax for expressions, as this makes it easy to im-
plement rewrite systems in programming languages. In abstract syntax, the earlier
simplification rules look as follows:

binary(add,X , intconst(0)) X -- Unit of addition
binary(mul,X , intconst(1)) X -- Unit of multiplication
binary(mul,X , intconst(0)) intconst(0) -- Zero of multiplication

338 12 A Suite of Metaprogramming Techniques

The abstract syntax is defined as follows.

Illustration 12.1 (Abstract syntax of expressions)

ESL resource languages/EL/as.esl

// Expressions
symbol intconst : integer → expr ;
symbol boolconst : boolean → expr ;
symbol var : string → expr ;
symbol unary : uop×expr → expr ;
symbol binary : bop×expr×expr → expr ;

// Unary operators
symbol negate : → uop ;
symbol not : → uop ;

// Binary operators
symbol add : → bop ;
symbol sub : → bop ;
symbol mul : → bop ;
symbol lt : → bop ;
symbol le : → bop ;
symbol eq : → bop ;
symbol geq : → bop ;
symbol gt : → bop ;
symbol and : → bop ;
symbol or : → bop ;

12.1.2 Encoding Rewrite Rules

We may encode rewrite rules easily in Haskell, or in any other functional program-
ming language for that matter. That is, rewrite rules become function equations.
Functions are used for grouping rewrite rules. We need to be careful to define these
functions in such a manner that function application will not throw an exception
when the underlying rules are not applicable to a given term. Instead, failure should
be communicated gracefully and, thus, we use the Maybe monad. In Section 5.4.1,
we already encoded simplification rules in this manner, as we recall here:

simplify :: Expr→ Maybe Expr
simplify (Binary Add x (IntConst 0)) = Just x
simplify (Binary Mul x (IntConst 1)) = Just x
simplify (Binary Mul x (IntConst 0)) = Just (IntConst 0)
simplify _ = Nothing

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/EL/as.esl

12.1 Term Rewriting 339

We may apply the Haskell-based rewrite rules as follows.

Interactive Haskell session:

I simplify (Binary Add (Var "a") (IntConst 0))
Just (Var "a")
- -
I simplify (IntConst 42)
Nothing
- -
I simplify (Binary Add (Var "a") (Binary Add (Var "b") (IntConst 0)))
Nothing
- -
I simplify (Binary Add (IntConst 0) (Var "a"))
Nothing

The first application succeeds because the simplification rule for the unit of addi-
tion is applicable. The second application fails because no simplification rule applies
to the expression at hand. Failure of application is modeled by returning Nothing.
(In an alternative model, the input term could be returned as is if no rule is appli-
cable.) The third application also fails despite the presence of a subexpression to
which the simplification rule for the unit of addition would be applicable, but note
that we apply simplify directly. We do not in any way descend into the argument to
find redexes. Ultimately, we need “normalization”, as we will discuss in a second.
The fourth application also fails because the simplification rule for the unit of addi-
tion only checks for the unit on the right. We may need to combine simplification
with the rules for commutativity somehow.

In Haskell, we may also write more versatile rewrite rules taking advantage of
functional programming expressiveness. In the following examples, we use guards,
extra parameters, and function composition in the “rewrite rules”.

Illustration 12.2 (Additional rules illustrating the use of Haskell in rewriting)

Haskell module Language.EL.MoreRules

−− Cancel double negation on Ints
doubleNegate (Unary Negate (Unary Negate e)) = Just e
doubleNegate (Unary Negate (IntConst i)) | i <= 0 = Just (IntConst (−i))
doubleNegate _ = Nothing

−− Swap variable names
swap x y (Var z) | z == x = Just (Var y)
swap x y (Var z) | z == y = Just (Var x)
swap _ _ _ = Nothing

−− Compose simplification with optional commute
simplify' x = simplify x `mplus` commute x >>=simplify

That is, the doubleNegate function removes two patterns of double negation; the
first pattern models double application of the negation operator, and the second pat-
tern models application of the negation operator to a negative number. The swap

http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/MoreRules.hs

340 12 A Suite of Metaprogramming Techniques

function is parameterized by two variable names, x and y, and it replaces each oc-
currence of x by y and vice versa. The simplify' function builds a choice from the
plain simplify function such that in the case of failure of simplify, the commutativity
rules are applied prior to trying simplify again. Here we assume that we also have
“directed” laws for commutativity; the actual direction does not matter in this case,
obviously.

Illustration 12.3 (Commutativity for expressions)

Haskell module Language.EL.Rules.Commute

commute :: Expr→ Maybe Expr
commute (Binary Add x y) = Just $ Binary Add y x
commute (Binary Mul x y) = Just $ Binary Mul y x
commute _ = Nothing

We may apply the commutativity-aware definition as follows:

Interactive Haskell session:

I simplify' (Binary Add (IntConst 0) (Var "a"))
Just (Var "a")

That is, this application succeeds and returns a simplified term, whereas the ap-
plication of the original simplify function failed.

12.1.3 Normalization

Rewrite rules only model “steps” of rewriting. We need a normalization strategy
atop so that rewrite rules are applied systematically (i.e., repeatedly and exhaustively
in some sense). If we had a suitable function normalize, then we might be able to
apply the simplify function in the following manner:

Interactive Haskell session:

I normalize simplify (Binary Add (Var "a") (Binary Add (Var "b") (IntConst 0)))
Binary Add (Var "a") (Var "b")

Thus,“a+(b+0)” is simplified to “a+ b” when expressed in concrete syntax; we
underline again the redex for clarity. However, there seem to be many possible be-
haviors for normalization, for example: (i) to apply rewrite rules in top-down or
bottom-up manner; (ii) to aim at a single or an exhaustive application of the given
rules; (iii) to succeed or fail in the case of no applicable rewrite rules; or (iv) to apply
rewrite rules only to terms of suitable types or descend into terms to find subterms
of suitable types.

http://github.com/softlang/yas/tree/springer/languages/EL/Haskell/Language/EL/Rules/Commute.hs

12.1 Term Rewriting 341

Fig. 4. Some defined strategy

Non-traversal control The combinator manipulates
ment strategy: recovers from failure of via if
is useful whenever it must be enforced that a given action
datum is returned when normally would fail. The
point computation: applies its argument strate
This control pattern is useful in the definition of traversal
involves exhaustive application of actions.

Fig. 4. Some defined strategy

Non-traversal control The combinator manipulates
ment strategy: recovers from failure of via if
is useful whenever it must be enforced that a giv
datum is returned when normally would fail. The
point computation: applies its argument
This control pattern is useful in the definition of trav
involves exhaustive application of actions.

4. Some defined strategy combinators

combinator manipulates the success value of its argu-
vers from failure of via if necessary. This control pattern
be enforced that a given action succeeds. The incoming
normally would fail. The combinator serves for fix-

applies its argument strategy repeatedly until fails.
in the definition of traversal schemes whenever traversal
of actions.

. 4. Some defined strategy combinators

combinator manipulates the success value of its argu-
vers from failure of via if necessary. This control pattern
be enforced that a given action succeeds. The incoming
normally would fail. The combinator serves for fix-

applies its argument strategy repeatedly until fails.
in the definition of traversal schemes whenever traversal
of actions.

fulltd
oncebuoncetd
stoptd

Fig. 12.1 Illustration of different traversal schemes. (Source: [50].) The illustration conveys which
nodes are encountered during the traversal and whether the given strategy fails (see the gray nodes)
or succeeds (see the black nodes).

Some rewriting approaches tend to favor one “built-in” normalization strategy
so that rewrite rules are applied, in some sense, exhaustively [85]. One popular
strategy is “innermost” which essentially attempts rules repeatedly in a bottom-up
manner until no rule applications are feasible anymore. Other rewriting approaches
permit programmers to define normalization strategies. This is the case for the style
of (so-called) strategic programming, as discussed below. Without such flexibility,
programmers end up controlling normalization by more complex rewrite rules.

12.1.4 Strategic Programming

Strategic programming is a discipline which enables the programmer to define and
use strategies [86, 87, 50, 51, 52, 85, 6, 49] for applying (collections of) rewrite
rules. A suite of reusable normalization strategies is provided to the programmer to
choose from, and problem-specific strategies can be defined when necessary.

The notion of strategies is language-independent; it has been realized in sev-
eral programming languages, for example, in Haskell [51, 52], Java [87], and Pro-
log [44], and it is available in different metaprogramming systems in one form or
another, without necessarily being referred to as strategies; the notion was pioneered
in Stratego/XT [86, 6].

Figure 12.1 illustrates a number of “strategic” traversal schemes. All of these
schemes are applied to an argument strategy which may be a collection of rewrite
rules or a more complex strategy. Let us explain these schemes informally and hint
at applications:

342 12 A Suite of Metaprogramming Techniques

fulltd The argument strategy is applied to all nodes in a top-down, depth-first
manner; application needs to succeed for all nodes, otherwise the entire traver-
sal fails. This scheme is used when a transformation should be applied “every-
where”. The function doubleNegate in Illustration 12.2 could be applied in this
manner; the scheme is suitable for finding and eliminating arbitrarily nested oc-
currences of double negation.

stoptd This scheme also models top-down, depth-first traversal, but traversal does
not visit subtrees for nodes at which application succeeded. This scheme is used
when either the existence of redexes below successful nodes can be ruled out to
exist or rewrites may create redexes that must not be considered in the interests of
termination, for example, when one is inlining recursive abstractions. The func-
tion swap in Illustration 12.2 could be applied in this manner. A fulltd traversal
is not necessary, as redexes for renaming cannot occur inside variables identifier
(i.e., strings or lists of characters).

oncebu The argument strategy is applied to all nodes in a bottom-up manner;
traversal stops upon the first successful application. Focusing on one redex at a
time is a testament to the overall assumption that a single traversal may be in-
sufficient to find and eliminate all redexes, as rewrites may enable new rewrites.
Thus, in general, a repeated application of given rewrite rules may be needed for
the sake of completeness. We mentioned innermost before as a common normal-
ization strategy; it can be defined by means of repeating oncebu until no more
redexes are found in this manner.

oncetd This is just like oncebu, but traversal commences in a top-down manner.

Exercise 12.3 (Nonterminating traversal) [Intermediate level]
Describe a simple, concrete scenario for which a traversal based on fulltd may fail
to terminate.

As an exercise in metaprogramming expressiveness, we would like to give pre-
cise definitions of these schemes. In fact, we would like to define the schemes as
abstractions in Haskell, thereby revealing the expressiveness that may be needed
when a strategic programmer wants to define yet other traversals or schemes for
them. We need two special primitives for what we refer to as layer-by-layer traver-
sal; see Fig. 12.2 for an illustration. Let us describe the traversal modeled by these
primitives when applied to an argument strategy:

all The argument strategy is applied to all immediate subterms of a given term;
in fact, all applications have to succeed, otherwise the all strategy fails. Thus, a
(successful) all strategy essentially rewrites the immediate subterms (the “chil-
dren”) of a term.

one The argument strategy is applied to all immediate subterms (from left to right)
until one application succeeds. If all applications fail, then the one strategy fails
too. Thus, a (successful) one strategy essentially rewrites one immediate subterm
(a “child”) of a term.

12.1 Term Rewriting 343

(Shaded vs. black nodes represent failure vs.
success of processing.)

pletes
sal (for short,

Fig. 2. Strategic traversal with

Expressiveness complemented by a method The strate
passes both expressiveness and a method for
functionality. The ‘strategic’ expressiveness is
citizens, and that recursive traversal schemes can be
from primitive one-layer traversal combinators. This e
sometimes easy to achieve— depending on the tar
quired strength of typing and convenience for the
can be summarised in the following steps for
traversal functionality:

1. identification of a reusable traversal scheme,
2. definition of the problem-specific ingredients, and
3. synthesis of the traversal by parameter passing.

Normally, the reusable traversal schemes is
specific actions are anticipated via parameters. The
traversal are type-specific actions or generic actions with
actions are meant to describe how data of ‘interesting’
tered in the course of the traversal. The strategic method,
difficult. This method of decomposition has been simply

Variation points in traversal The strategic method
programmer to reflect on the variation points in trav
functionality in a given context. The separation of basic

all versus one

(Shaded vs. black nodes represent failure vs.
success of processing.)

pletes
sal (for

Fig. 2. Strategic traversal with

Expressiveness complemented by a method The
passes both expressiveness and a method for
functionality. The ‘strategic’ expressiveness is
citizens, and that recursive traversal schemes can
from primitive one-layer traversal combinators. This
sometimes easy to achieve— depending on the tar
quired strength of typing and convenience for the
can be summarised in the following steps for
traversal functionality:

1. identification of a reusable traversal scheme,
2. definition of the problem-specific ingredients,
3. synthesis of the traversal by parameter passing.

Normally, the reusable traversal schemes is
specific actions are anticipated via parameters. The
traversal are type-specific actions or generic actions
actions are meant to describe how data of
tered in the course of the traversal. The strategic
difficult. This method of decomposition has been

Variation points in traversal The strategic method
programmer to reflect on the variation points in trav
functionality in a given context. The separation

Fig. 12.2 Layer-by-layer traversal. (Source: [50].)

The following code sketch illustrates how all could be defined for expressions:

all s (IntConst i) = IntConst <$> s i
all s (BoolConst b) = BoolConst <$> s b
all s (Var v) = Var <$> s v
all s (Unary o e1) = Unary <$> s o <*> s e1
all s (Binary o e1 e2) = Binary <$> s o <*> s e1 <*> s e2

That is, the argument s (which is essentially a polymorphic function) is applied
to all immediate subterms by combining the applications in the applicative func-
tor style. (We could also use a monadic bind instead.) There is one case for every
constructor.

In reality, all and one are generically defined or definable for all (at least most)
Haskell types. For instance, in Haskell’s “scrap your boilerplate” (SYB) approach
to generic functional programming [45, 46, 47], suitable type-class instances are
automatically derived. That is, the code shown would essentially be derived by a
tool (such as a compiler).

We are ready to define the earlier traversal schemes as a Haskell library of func-
tion combinators. We also provide a few more basic combinators.

Illustration 12.4 (A small strategic programming library)

Haskell module Data.Generics.Strategies

−− Strategic traversal schemes
fulltd s = s `sequ` all (fulltd s)
fullbu s = all (fullbu s) `sequ` s
stoptd s = s `choice` all (stoptd s)
oncetd s = s `choice` one (oncetd s)
oncebu s = one (oncebu s) `choice` s
innermost s = repeat (oncebu s)

−− Basic strategy combinators
s1 `sequ` s2 = λ x→ s1 x >>=s2 −− monadic function composition
s1 `choice` s2 = λ x→ s1 x `mplus` s2 x −− monadic choice
all s = ... −− magically apply s to all immediate subterms
one s = ... −− magically find first immediate subterm for which s succeeds

−− Helper strategy combinators

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/Generics/Strategies.hs

344 12 A Suite of Metaprogramming Techniques

try s = s `choice` return −− recover from failure
vary s v = s `choice` (v `sequ` s) −− preprocess term, if necessary
repeat s = try (s `sequ` repeat s) −− repeat strategy until failure

−− Strategy builders
orFail f = const mzero `extM` f −− fail for all other types
orSucceed f = return `extM` f' −− id for all other types
where f' x = f x `mplus` return x −− id in case of failure

Thus, the traversal schemes are essentially defined as recursive functions in terms
of sequential composition (sequ), left-biased choice, and the traversal primitives all
and one. There are also function definitions for “strategy builders” which are needed
to turn type-specific rewrite rules into generic functions. This transition is essential
for one to be able to process terms of arbitrary types with subterms of different
types – not all terms are of types of interest.

Let us illustrate the library in action:

Interactive Haskell session:

−− The expression "a + b * 0" with simplification potential
I let e1 = Binary Add (Var "a") (Binary Mul (Var "b") (IntConst 0))
−− The expression "((a * b) * c) * d" associated to the left
I let e2 = Binary Mul (Binary Mul (Binary Mul (Var "a") (Var "b")) (Var "c")) (Var "d")
−− The expression "0 + a'' requiring commutativity for simplification
I let e3 = Binary Add (IntConst 0) (Var "a")
- -
−− Incomplete simplification with fulltd
I fulltd (orSucceed simplify) e1
Binary Add (Var "a") (IntConst 0)
- -
−− Complete simplification with fullbu
I fullbu (orSucceed simplify) e1
Var "a"
- -
−− Incomplete association to the right with fullbu
I fullbu (orSucceed associate) e2
Binary Mul (Var "a") (Binary Mul (Binary Mul (Var "b") (Var "c")) (Var "d"))
- -
−− Complete association to the right with innermost
I innermost (orFail associate) e2
Binary Mul (Var "a") (Binary Mul (Var "b") (Binary Mul (Var "c") (Var "d")))
- -
−− Apply simplification module commutativity
I vary (orFail simplify) (orFail commute) e3
Var "a"

12.1 Term Rewriting 345

Exercise 12.4 (Applicability of innermost) [Basic level]
Consider again the swap function of Illustration 12.2. Why would a traversal based
on innermost not produce the correct result with all occurrences of the two variables
consistently swapped?

The present section is summarized by means of a recipe.

Recipe 12.1 (Design of a strategic program).

Test cases Set up test cases for the strategic program, just like for any trans-
formational program (Recipe 5.2). A positive test case consists of an input
term and the expected output term. A negative test case consists of an input
term and the expectation that the strategy fails.

Rules Implement the basic units of functionality, i.e., (rewrite) rules which
match and build patterns of interest and possibly perform other computa-
tions along with matching and building.

Groups Group rules into logical units, for example, groups for simplifica-
tion, normalization, desugaring, and other things. The groups may be spe-
cific to the problem at hand. For instance, there may be several groups of
optimization rules, subject to separate phases.

Strategy Reuse (i.e., select) or define (i.e., compose) strategy combinators so
that they can be applied to the appropriate groups of rules. The combinators
may be concerned with traversal or other forms of “control” (e.g., order,
alternatives, fixed-point computation).

Testing Test the composed strategy in terms of the test cases.

12.1.5 Rewriting-Related concerns

12.1.5.1 Other Traversal Idioms

We mention in passing that we have limited ourselves here to type-preserving strate-
gies. (We refer to “type” here in terms of the syntactic category of object programs
being manipulated.) If we wanted to use rewriting or strategic programming to ex-
tract data using so-called type-unifying strategies or to perform any other kind of
non-type-preserving operations, then we would need additional machinery, but we
will not discuss this here. Traversal schemes may also need to maintain additional
arguments in the sense of environments and states, so that information is passed
down and updated along with traversal. There are also alternative models for com-
bining traversal and rewriting. For instance, traversals may also be set up as walks

346 12 A Suite of Metaprogramming Techniques

subject to performing actions that descend into the children, proceed along the sib-
lings, and return to the root [4].

12.1.5.2 Concrete Object Syntax

Rewriting on top of “large” syntaxes may, arguably, benefit from the use of concrete
object syntax, as discussed earlier (Section 7.5), because a programmer may rec-
ognize object language patterns more easily. Several metaprogramming systems do
indeed support concrete object syntax for this reason.

12.1.5.3 Graph Rewriting and Model Transformation

There is the related discipline of graph grammars and transformation [66, 23] – thus,
rewriting may instead operate on graphs rather than terms (or trees). In model trans-
formation [14, 56], one may operate on models (“graphs”) that are instances of a
metamodel with part-of, reference, and inheritance relationships. There exist ded-
icated model-transformation languages, for example, ATL [31]. These approaches
also aim to eliminate boilerplate code for controlling the overall transformation pro-
cess, including traversal. For instance, ATL provides a refining mode [80] so that
transformation rules can be limited to the model elements that need to be replaced.

12.1.5.4 Origin Tracking

In term rewriting (or model transformation), traceability may be desirable in the
sense that the “origin” of any given (sub-) term (or model element) can be traced
back to some original term (or model element). This idea is captured in a fundamen-
tal manner by the notion of origin tracking [18, 88, 65]. For instance, if a semantic
analysis was applied to an abstract or intermediate representation in a language im-
plementation, then origin tracking helps in systematically relating back the results
of the analysis (e.g., errors or warnings) to the original program. Origin tracking
relies on deep support in a metaprogramming or model-transformation system.

12.1.5.5 Layout Preservation

When transforming object programs (by means of rewriting or otherwise), it may be
desirable to retain the original layout (white space, line breaks, and even comments)
in the programs to the extent possible. For instance, when one is performing a re-
engineering transformation on legacy code, the code should be retained as much as
possible so that programmers will still recognize their code. Such layout preserva-
tion [28, 41, 29] calls for a suitable object-program representation (CST or AST)
which incorporates layout. Less obviously, a term-rewriting approach may need to

12.2 Attribute Grammars 347

manipulate object-program patterns in a special way so as to retain layout where
possible, subject also to possibly incorporating an incremental formatter that ap-
plies to fragments without inherited layout or with invalidated layout.

12.2 Attribute Grammars

Attribute grammars (AGs) [40, 3, 60, 25] can be viewed as a computational
paradigm for describing translations or analyses by means of adding attributes to
nodes in a CST or AST. An AG combines a context-free grammar with compu-
tational rules. Each computational rule relates attributes of nonterminal symbols
within the scope of a specific context-free rule. The order of computation (attribute
evaluation) is not explicitly described, but it can be inferred from the attribute de-
pendencies expressed by the computational rules. In Section 7.3.2, we discussed a
limited form of an AG, i.e., grammars enhanced by semantic actions for AST con-
struction to serve as input for a parser generator.

AGs are supported explicitly by some metaprogramming systems with dedicated
AG languages, for example, Eli [32], JastAdd [25], Silver [83], or (Aspect) Lisa [60]
and these systems support several AG extensions (see, e.g., [33, 48, 42]). The AG
style of metaprogramming and computation can also be leveraged if a sufficiently
powerful (declarative) metalanguage is used. In particular, AGs can be “encoded”
in functional programming [75, 71], as we will show below. Furthermore, a limited
form of an AG is also supported by mainstream parser generators such as ANTLR,
which we discussed earlier. In this section, we introduce the notion of AGs as a
means of approaching analysis and translation problems.

12.2.1 The Basic Attribute Grammar Formalism

We begin with a trivial problem to explain the basics of AGs. In Fig. 12.3, we show
an attributed CST for a binary number in the sense of the (“fabricated”) Binary
Number Language (BNL). Decimal values for the relevant subtrees are shown next
to the nodes. That is, the nodes for the individual bits carry attributes for values
that take into account the position of each bit. The nodes for bit sequences carry at-
tributes for values that arise as sums of values for subtrees. For instance, the decimal
value for the bit sequence 101 is 5 = 4+0+1. This trivial (illustrative) example is
due to Knuth [40].

We may need additional (auxiliary) attributes to compute the actual decimal val-
ues. In one possible model, we may assign a position (. . . , 2, 1, 0, −1, −2, . . .) to
each bit and maintain the length of a bit sequence so as to be able to actually com-
pute the value for any bit. Table 12.1 shows all attributes that we want to compute.

As the table clarifies, attributes are assigned to nonterminals. An attribute is clas-
sified as either inherited or synthesized. We use the classifiers inherited (“I”) and

348 12 A Suite of Metaprogramming Techniques

‘1’ ‘0’ ‘1’ ‘.’ ‘0’ ‘1’

one zero one zero one

rational

single

many

single

many

many

number

104 0 .25

1

1

5

.25

.25

.25

5.25

Fig. 12.3 An attributed syntax tree for the binary number 101.01. The attributes attached to the
nodes model the decimal value of the subtree at hand.

Table 12.1 Attributes for binary to decimal number conversion

Nonterminal Attribute I/S Type
number Val S float

bits Val S float
bit Val S float
rest Val S float
bits Pos I integer
bit Pos I integer
bits Len S natural

synthesized (“S”) to express that the attribute is to be passed down or up, respec-
tively, in the tree. This classification has to do with attribute dependencies, as we
will see in a second.

An AG associates a collection of computational rules with each context-free rule
p. Each computational rule is of the following form:

x0.a0 = f (x1.a1, . . . ,xm.am)

where x0, . . . , xm are nonterminals of the context-free rule, a0, . . . , am are attributes
of the nonterminals, and f is any sort of “operation” on the attributes. Concep-
tually, the computational rules state relationships on attributes. Computationally,
these rules, when collected together for all attributes in a CST, can be evaluated to
compute all attribute values in some order, subject to respecting the attribute depen-
dencies.

12.2 Attribute Grammars 349

There should be exactly one computational rule for each synthesized attribute of
a context-free rule’s left-hand side and for each inherited attribute of each nontermi-
nal of a context-free rule’s right-hand side. Intuitively, this means that synthesized
attributes are indeed computed upwards in the syntax tree, whereas inherited at-
tributes are passed down. Additional constraints are needed to make the AG well
defined and, in particular, to avoid cycles [2], but we omit these details here.

We are ready to show all computational rules for number conversion.

Illustration 12.5 (An attribute grammar for number conversion)
Consider the first context-free rule and the associated computational rules:

[number] number : bits rest ;

bits.Pos = bits.Len − 1
number.Val = bits.Val + rest.Val

That is, the inherited attribute Pos of the right-hand symbol bits is equated with
the difference between the synthesized attribute Len of the right-hand symbol bits
and 1, thereby defining the position of the leading bit in the sequence. The synthe-
sized attribute Val of the left-hand side is equated with the sum of the Val attributes
of the right-hand side, thereby combining the value of the integer and the fractional
parts of the binary number.

These are the remaining context-free rules and the associated computational
rules:

[single] bits : bit ;

bit.Pos = bits.Pos
bits.Val = bit.Val
bits.Len = 1

In the following context-free rule, we assign subscripts 0 and 1 to the different oc-
currences of bits so that we can refer to the different attributes in the computational
rules accordingly:

[many] bits0 : bit bits1 ;

bit.Pos = bits0.Pos
bits1.Pos = bits0.Pos − 1
bits0.Val = bit.Val + bits1.Val
bits0.Len = bits1.Len + 1

[zero] bit : '0' ;

bit.Val = 0

[one] bit : '1' ;

bit.Val = 2bit.Pos

[integer] rest : ;

350 12 A Suite of Metaprogramming Techniques

rest.Val = 0

[rational] rest : '.' bits ;

rest.Val = bits.Val
bits.Pos = −1

Figure 12.4 shows the CST for 101.01 with the attributes of the relevant non-
terminals. We use superscripts on the attribute names to make them unique across
the tree. (The ids model path-based selection of the node. For instance, the id 1.2
states that we select the first subtree of the root and then the second subtree in turn.)
In the figure, we also show the attribute dependencies in the tree, as defined by the
computational rules; see the dotted arrows. The target of an arrow corresponds to
the left-hand side of a computational rule.

It is worth noticing how the attribute dependencies point downwards and upwards
in the tree. Consider, for example, Len1, which is computed upwards in the tree
and is used in initializing Pos1, which is then used in computing other positions
downwards the tree.

12.2.2 Attribute Evaluation

Given a CST and an AG, the process of computing all attributes for the CST is
referred to as attribute evaluation. There are various methods of attribute evalua-
tion [2]; one overall option is to perform static code generation for a tree walk so
that the computations can be performed for any given CST without any run-time
analysis. We will not discuss the corresponding technicalities here. Conceptually,
we may view attribute evaluation as a simple mathematical problem in the sense of
solving a system of equations.

Consider again Fig. 12.4 which encodes all the context-free rules involved and as-
signs unique names to all the attributes involved. For each context-free rule applied,
we instantiate its computational rules for the unique attribute names taken from the
CST. For instance, the root of the CST shown, with its two children, corresponds to
an application of the rule [number]. Accordingly, we instantiate the computational
rules as follows:

Pos1 = Len1 − 1
Val = Val1 + Val2

The left child (id 1) with its two children (ids 1.1 and 1.2) corresponds to an
application of the rule [many]. Accordingly, we instantiate the computational rules
as follows:

Pos1.1 = Pos1

Pos1.2 = Pos1 − 1
Val1 = Val1.1 + Val1.2

Len1 = Len1.2 + 1

12.2 Attribute Grammars 351

‘1
’

‘0
’

‘1
’

‘.’
‘0
’

‘1
’

on
e

ze
ro

on
e

ze
ro

on
e

ra
tio

na
l

si
ng

le

m
an

y

si
ng

le

m
an

y

m
an

y

nu
m

be
r

V
al

V
al

 1

P
os

 1
V
al

 2

V
al

 1
.2

P
os

 1
.2

V
al

 1
.1

P
os

 1
.1

V
al

 1
.2

.1

P
os

 1
.2

.1

V
al

 1
.2

.2
.1

P
os

 1
.2

.2
.1

V
al

 2
.1

.1

P
os

 2
.1

.1

V
al

 2
.1

.2
.1

P
os

 2
.1

.2
.1

Le
n

1

Le
n

1.
2

V
al

 1
.2

.2

P
os

 1
.2

.2

Le
n

1.
2.

2

V
al

 2
.1

P
os

 2
.1

Le
n

2.
1

V
al

 2
.1

.2

P
os

 2
.1

.2

Le
n

2.
1.

2

Fi
g.

12
.4

A
ttr

ib
ut

es
to

be
ev

al
ua

te
d

fo
ra

C
ST

of
a

bi
na

ry
nu

m
be

r.

352 12 A Suite of Metaprogramming Techniques

Once we have collected all these equations for all the applications of context-free
rules together in a CST, we can simply start replacing references to attributes by
values. The process starts with replacement for attributes with computational rules
by constant expressions on the right-hand side. The process ends when replacements
have assigned values to all attributes. The process is illustrated below.

Illustration 12.6 (Attribute evaluation)
Let us consider a much simplified example: the binary number 1 for which we face
the following equations; we also show the final value for each attribute:

// [number]
Pos1 = Len1 − 1 = 0
Val = Val1 + Val2 = 1

// [single]
Pos1.1 = Pos1 = 0
Val1 = Val1.1 = 1
Len1 = 1 = 1

// [one]
Val1.1 = 2Pos1.1

= 1
// [integer]

Val2 = 0 = 0

The solution of the equation system commences as follows:

• Replace references to Val2 and Len1 by their values.
• Compute Pos1.
• Replace the reference to Pos1 by its value.
• Replace the reference to Pos1.1 by its value.
• Compute Val1.1.
• Replace the reference to Val1.1 by its value.
• Replace the reference to Val1 by its value.
• Compute Val.

There exist various AG classes which impose constraints on attribute dependen-
cies so that attribute evaluation can be performed more easily or efficiently. We
briefly mention two such classes here:

S-attribution There are synthesized attributes only. Thus, all dependencies point
upwards in a CST. In this case, attribute evaluation can be accomplished as a
simple walk over CSTs. This scheme facilitates, for example, simple forms of
CST/AST construction.

L-attribution There are also inherited attributes, but there are no right-to-left
dependencies in a CST. This means that we can pass inherited attributes from
the left-hand side to inherited attributes on the right-hand side and we can pass

12.2 Attribute Grammars 353

synthesized attributes of any nonterminal on the right-hand side to inherited at-
tributes on the right-hand side if they are further to the right. In this case, attribute
evaluation can be also be accomplished by a simple walk, which can be carried
out during parsing if the CST is built from left to right.

Let us consider an S-attributed variation on the running example.

Illustration 12.7 (An S-attributed variation on number conversion)
Compared to Illustration 12.5, we do not use not any attributes for positions in

the following variation. These are the computational rules:

[number] number : bits rest ;

number.Val = bits.Val + rest.Val

[single] bits : bit ;

bits.Val = bit.Val
bits.Len = 1

[many] bits0 : bit bits1 ;

bits0.Val = bit.Val ∗ 2bits1.Len + bits1.Val
bits0.Len = bits1.Len + 1

[zero] bit : '0' ;

bit.Val = 0

[one] bit : '1' ;

bit.Val = 1

[integer] rest : ;

rest.Val = 0

[rational] rest : '.' bits ;

rest.Val = bits.Val / 2bit.Len

It should be clear by now that the computational rules in an AG are necessar-
ily tied to the underlying CST structure. That is, given two context-free grammars
that generate the same language (i.e., set of strings), the two grammars may require
different computational rules to achieve the same ultimate result. We use the term
“result” here in the sense of a dedicated synthesized attribute of the start symbol
such as the decimal value of a binary number in the running example. The depen-
dence between context-free and computational rules is illustrated below.

Illustration 12.8 (A left-recursive variation on Illustration 12.7)
The rule [many] for bit sequences was defined in right-recursive style in Illustra-
tion 12.7. If we use left-recursive style instead, then the associated computational
rules are adapted as follows:

354 12 A Suite of Metaprogramming Techniques

[many] bits0 : bits1 bit ;

bits0.Val = 2 ∗ bits1.Val + bit.Val
bits0.Len = bits1.Len + 1

12.2.3 Attribute Grammars as Functional Programs

Attribute grammars provide a declarative computational paradigm that is actually
very similar to (some form of) functional programming. That is, we may encode
AGs as disciplined functional programs [75, 71]. One encoding scheme may be
summarized as follows:

• Without loss of generality, we operate on the abstract as opposed to the concrete
syntax. That is, we interpret computational rules on top of algebraic constructors
as opposed to context-free rules.

• We associate each syntactic category (sort) with a function with one equation
per alternative (constructor) to model the associated computational rules. That
is, a function’s patterns match on the syntactic structure. The inherited attributes
of the category become function arguments, whereas the synthesized attributes
become function results. Overall, we switch from the use of attribute names to
the use of positions in argument lists and result tuples.

• Types of attribute values and operations on these types – as they are used in the
computational rules – are also modeled in the functional program.

This encoding is illustrated for the AG for binary-to-decimal number conversion;
see Illustrations 12.9 and 12.10 below.

Illustration 12.9 (Representation of binary numbers)

Haskell module Language.BNL.Syntax

data Number = Number Bits Rest
data Bits = Single Bit | Many Bit Bits
data Bit = Zero | One
data Rest = Integer | Rational Bits

Illustration 12.10 (Binary-to-decimal number conversion)

Haskell module Language.BNL.Conversion

number :: Number→ Float
number (Number bs r) = val0

where
(len1, val1) = bits bs pos1
pos1 = len1 − 1
val2 = rest r

http://github.com/softlang/yas/tree/springer/languages/BNL/Haskell/Language/BNL/Syntax.hs
http://github.com/softlang/yas/tree/springer/languages/BNL/Haskell/Language/BNL/Conversion.hs

12.2 Attribute Grammars 355

val0 = val1 + val2

bits :: Bits→ Int→ (Int, Float)
bits (Single b) pos = (1, bit b pos)
bits (Many b bs) pos0 = (len0, val0)

where
val1 = bit b pos0
(len1, val2) = bits bs pos1
pos1 = pos0 − 1
len0 = len1 + 1
val0 = val1 + val2

bit :: Bit→ Int→ Float
bit Zero _pos = 0
bit One pos = 2^^pos

rest :: Rest→ Float
rest Integer = 0
rest (Rational bs) = val

where
(_len, val) = bits bs pos
pos = −1

Because of the generality of attribute grammars, the result of encoding may be
such that function arguments depend on results. This is indeed the case for the ex-
ample at hand; consider the function corresponding to the rule [number], which we
repeat for clarity:

number (Number bs r) = val0
where

(len1, val1) = bits bs pos1
pos1 = len1 − 1
val2 = rest r
val0 = val1 + val2

The result of applying the function bits includes the length len1 of the bit se-
quence, which is then used in setting up pos1, i.e., the position of the leading bit
in the sequence, to be passed as an argument to the same function application. This
functional program is sound only for lazy (as opposed to eager) language semantics.
Thus, AGs can be said to be declarative because no particular order of computation
is expressed directly; instead, an order must be determined which respects attribute
dependencies. Lazy evaluation happens to determine a suitable order.

Exercise 12.5 (An AG for translation) [Intermediate level]
The running example (binary-to-decimal number conversion) can be seen as a triv-
ial form of translation. Let us consider a more significant form of translation: im-
perative statements are to be mapped to bytecode (Section 5.2), just as in a real
compiler. Devise an AG for this purpose.

356 12 A Suite of Metaprogramming Techniques

12.2.4 Attribute Grammars with Conditions

AGs are routinely used to impose “context conditions” on syntactical structure, as
discussed as a general concern earlier (Section 3.3). That is, we may use AGs effec-
tively to represent the typing and name-binding rules of a software language. If we
want to model conditions, then, in principle, we can simply use computational rules
on Boolean-typed attributes. Alternatively, we may assume a more convenient AG
notation with explicit support for conditions in addition to regular computational
rules. Attribute evaluation is supposed to “fail” if any condition does not hold.

We now discuss conditions for a somewhat more complex example of an AG
specification. Specifically, we consider an imperative language with a nested block
structure: EIPL (Extended Imperative Programming Language), which is an exten-
sion of BIPL. Each block (scope) may declare variables and (parameterless) proce-
dures. The use of variables and procedures entails some nontrivial conditions to be
understood relative to an environment maintaining scopes. Consider the following
sample.

Illustration 12.11 (An imperative program with block structure)

EIPL resource languages/EIPL/sample.eipl

1 begin
2 var x = 0;
3 proc p { x = x + x; }
4 proc q { call p; }
5 begin
6 var x = 5;
7 proc p { x = x + 1; }
8 {
9 call q;

10 write x;
11 }
12 end
13 end

In particular, the sample program declares a variable x and a procedure p in two
different scopes. Thus, it is important to understand what the different references
to x and p actually resolve to. We assume lexical (static) scope here. The call to q
(line 9) in the inner block makes q call p (line 4) in the outer block, whose reference
to x (line 3) resolves to the x in the outer block (line 2). (If we assume dynamic
scope instead, then x (line 3) resolves to the x in the inner block (line 6), as the call
chain departed from there.)

We can model such conditions in an AG. In the following example, we mark
conditions with the keyword “require”.

http://github.com/softlang/yas/tree/springer/languages/EIPL
http://github.com/softlang/yas/tree/springer/languages/EIPL/sample.eipl

12.2 Attribute Grammars 357

Illustration 12.12 (An attribute grammar for checking block structure)
Within the conditions and computational rules, we use the following function and
condition symbols on attributes of an assumed type Env for environments:

empty This is the representation of the empty environment, i.e., an empty collec-
tion of scopes from which to start the semantic analysis.

enterScope This function modifies an environment to enter a new (nested) scope.
noClash This condition checks that a name is not yet bound in the current scope

of the given environment.
addVar This function adds a variable with a name and a type to the current scope

of the given environment.
addProc This function adds a procedure with a name to the current scope of the

given environment.
isVar This condition checks that a name can be resolved to a variable in the cur-

rent scope or an enclosing scope of the given environment.
getType The type of the variable is returned. The type is only defined if isVar holds.
isProc This condition checks that a name can be resolved to a procedure in the

current scope or an enclosing scope of the given environment.

program : scope ;

scope.EnvIn = empty

scope : 'begin' decls stmt 'end' ;

decls.EnvIn = enterScope(scope.EnvIn)
stmt.EnvIn = decls.EnvOut

decls0 : decl decls1 ;

decl.EnvIn = decls0.EnvIn
decls1.EnvIn = decl.EnvOut
decls0.EnvOut = decls1.EnvOut

decls : ;

decls0.EnvOut = decls0.EnvIn

[var] decl : 'var' name '=' expr ';' ;

require noClash(decl.EnvIn, name.id)
decl.EnvOut = addVar(decl.EnvIn, name.Id, expr.Type)
expr.EnvIn = decl.EnvIn

[proc] decl : 'proc' name stmt ;

require noClash(decl.EnvIn, name.id)
decl.EnvOut = addProc(decl.EnvIn, name.Id)
stmt.EnvIn = decl.EnvIn

[skip] stmt : ';' ;

358 12 A Suite of Metaprogramming Techniques

[assign] stmt : name '=' expr ';' ;

require isVar(stmt.EnvIn, name.Id)
require getType(stmt.EnvIn, name.Id) = expr.Type
expr.EnvIn = stmt.EnvIn

[call] stmt : 'call' name ';' ;

require isProc(stmt.EnvIn, name.Id)

[scope] stmt : scope ;

scope.EnvIn = stmt.EnvIn

// Remaining statement forms omitted for brevity
. . .

[intconst] expr : integer ;

expr.Type = intType

[var] expr : name ;

require isVar(expr.EnvIn, name.Id)
expr.Type = getType(expr.EnvIn, name.Id)

// Remaining expression forms omitted for brevity
. . .

Exercise 12.6 (Recursive procedures) [Basic level]
Does the given AG permit (model) recursive procedures? Discuss how to change the
AG so that recursive procedures are expressed or not expressed.

Exercise 12.7 (Functional encoding for block structure) [Basic level]
Exercise the functional program encoding (Section 12.2.3) for the given AG. (See
the repository for additional positive and negative test cases.) You may use Boolean-
typed attributes for the conditions or, instead, operate in the Maybe monad.

Exercise 12.8 (An interpreter for EIPL) [Intermediate level]
Implement an interpreter that includes block structure.

12.2.5 Semantic Actions with Attributes

In Section 7.3.2, we discussed semantic actions as a means of injecting statements
of the target language for parser generation into a grammar. Specifically, we used

12.2 Attribute Grammars 359

semantic actions for AST construction during parsing. A parser description with
semantic actions can be considered a limited form of an AG because computational
actions are associated with context-free grammar productions.

In fact, parser generators may also support proper synthesized and inherited at-
tributes. In particular, S-attribution is supported by the “typical” parser generator.
This is demonstrated for ANTLR below. That is, we transcribe the S-attributed
grammar variation on binary-to-decimal number conversion (Illustration 12.7) quite
directly to ANTLR notation.

Illustration 12.13 (Binary-to-decimal number conversion)

ANTLR resource languages/BNL/ANTLR/BnlBnfConversion.g4

grammar BnlBnfConversion;
@header {package org.softlang.bnl;}

number returns [float val]
: bits rest WS? EOF { $val = $bits.val + $rest.val; }
;

bits returns [float val, int len]
: bit { $val = $bit.val; $len = 1; }
| bits1=bits bit { $val = 2*$bits1.val + $bit.val; $len = $bits1.len + 1; }
;

bit returns [int val]
: '0' { $val = 0; }
| '1' { $val = 1; }
;

rest returns [float val]
: { $val = 0; }
| '.' bits { $val = $bits.val / (float)Math.pow(2, $bits.len); }
;

WS : [\t\n\r]+ ;

While ANTLR does not support AGs in their full generality, ANTLR’s support
goes beyond S-attribution. That is, L-attribution (i.e., a limited form of inherited
attributes on top of S-attribution) is also supported. We demonstrate L-attribution
with a parser for FSML below. We use a synthesized attribute for the constructed
AST. We use inherited attributes to pass appropriate “context” for AST construction.

Illustration 12.14 (A parser for finite state machines)

ANTLR resource languages/FSML/Java/FsmlToObjects2.g4

grammar FsmlToObjects2;
@header {package org.softlang.fsml;}

fsm returns [Fsm result] :
{ $result = new Fsm(); }
state[$result]+
EOF

http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/BNL/ANTLR/BnlBnfConversion.g4
http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/FsmlToObjects2.g4

360 12 A Suite of Metaprogramming Techniques

;
state[Fsm result] :

{ boolean initial = false; }
('initial' { initial = true; })?
'state' stateid
{ String source = $stateid.text; }
{ $result.getStates().add(new State(source, initial)); }
'{' transition[$result, source]* '}'
;

transition[Fsm result, String source] :
event
{ String action = null; }
('/' action { action = $action.text; })?
{ String target = source; }
('−>' stateid { target = $stateid.text; })?
{ $result.getTransitions().add(new Transition(source, $event.text, action, target)); }
';'
;

. . . // Lexical syntax as before

That is, we pass the FSM to the nonterminals state and transition as context so
that states and transitions can be added to the appropriate collections in the scope
of the corresponding productions. We also pass the state id of a state declaration to
each of its transitions so that it can be used as the target state id when an explicit
target is omitted.

The parser is invoked like this:

Fsm fsm = parser.fsm().result;

Thus, the FSM is retrieved as the result of invoking the method fsm, i.e., we access
the synthesized attribute result of the nonterminal fsm.

Let us return to the more significant AG for checking imperative programs with
block structure (Section 12.2.4) and implement the AG with ANTLR. The following
ANTLR code takes advantage of the imperative nature of the host language such that
the environment is implemented as a global attribute rather than passing the object
reference for the environment with attributes and copy rules.

Illustration 12.15 (Checking block structure)

ANTLR resource languages/EIPL/ANTLR/EiplChecker.g4

1 grammar EiplChecker;
2 @header {package org.softlang.eipl;}
3 @members {
4 public boolean ok = true;
5 public Env env = new Env();
6 }
7

8 program : scope EOF ;
9 scope : { env.enterScope(); } 'begin' decl* stmt 'end' { env.exitScope(); } ;

http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/EIPL/ANTLR/EiplChecker.g4

12.2 Attribute Grammars 361

10 decl :
11 'var' NAME '=' expr ';'
12 { ok &= env.noClash($NAME.text); env.addVar($NAME.text, $expr.type); }
13 |
14 'proc' NAME stmt
15 { ok &= env.noClash($NAME.text); env.addProc($NAME.text); }
16 ;
17 stmt :
18 ';'
19 |
20 NAME '=' expr ';'
21 { ok &= env.isVar($NAME.text) && env.getType($NAME.text) == $expr.type; }
22 |
23 'call' NAME ';'
24 { ok &= env.isProc($NAME.text); }
25 |
26 scope
27 |
28 // Remaining statement forms omitted for brevity
29 . . .
30 ;
31 expr returns [Env.Type type] :
32 INTEGER
33 { $type = Env.Type.IntType; }
34 |
35 NAME
36 { ok &= env.isVar($NAME.text); $type = env.getType($NAME.text); }
37 |
38 expr1=expr '+' expr2=expr
39 {
40 ok &= $expr1.type == Env.Type.IntType
41 && $expr2.type == Env.Type.IntType;
42 $type = Env.Type.IntType;
43 }
44 |
45 // Remaining expression forms omitted for brevity
46 . . .

In line 9, we use a new symbol, exitScope, to exit the scope by means of a side
effect. In the original formulation of the AG, there is no counterpart because the
basic formalism is free of side effects. In various semantic actions, for example, in
lines 12 and 15, we adapt a global attribute ok, as declared in line 4, to communicate
condition failures, if any.

The use of global attributes may be acceptable if the technology-defined order of
executing semantic actions and thus the order of side effects on the global attributes
are easily understood to be correct. We mention in passing here that there exist
AG extensions that aim at avoiding laborious computational “copy rules” in a more
declarative manner [24, 33, 5].

We need a concrete realization of environments, as accessed within the condi-
tions and computational rules. That is, we assume a corresponding type Env, as
implemented below. We assume here again that ANTLR is used together with Java.

362 12 A Suite of Metaprogramming Techniques

Illustration 12.16 (The environment for checking block structure)

Java source code org/softlang/eipl/Env.java

import java.util.Stack;
import java.util.HashMap;

public class Env {
public enum Type { NoType, IntType, BoolType }
private abstract class Entry { String id; }
private class VarEntry extends Entry { Type ty; }
private class ProcEntry extends Entry { }
private Stack<HashMap<String, Entry>> stack = new Stack<>();
public void enterScope() { stack.push(new HashMap<>()); }
public void exitScope() { stack.pop(); }
public boolean noClash(String id) { return !stack.peek().containsKey(id.intern()); }
public void addVar(String id, Type ty) {

VarEntry entry = new VarEntry();
entry.ty = ty;
stack.peek().put(id.intern(), entry);

}
public void addProc(String id) { stack.peek().put(id.intern(), new ProcEntry()); }
public boolean isVar(String id) { return chase(id.intern()) instanceof VarEntry; }
public boolean isProc(String id) { return chase(id.intern()) instanceof ProcEntry; }
public Type getType(String id) {

Entry entry = (VarEntry) chase(id.intern());
return entry instanceof VarEntry ? ((VarEntry) entry).ty : Type.NoType;

}
private Entry chase(String id) {

Entry entry = null;
for (HashMap<String, Entry> map : stack)

if (map.containsKey(id)) {
entry = map.get(id);
break;

}
return entry;

}
}

In particular, lexical scopes are maintained as a stack of hash-maps – one hash-
map per scope. Variables and procedures are searched for in the environment by a
stack traversal, i.e., starting at the top of the stack, which is the current scope.

The present section is summarized by means of a recipe.

Recipe 12.2 (Design of an attribute grammar).

Syntax Define the underlying syntax, typically, by means of a context-free
grammar. (Tree grammars may be used instead of context-free grammars,
for example, in the form of algebraic data types in a functional program

http://github.com/softlang/yas/tree/springer/languages/EIPL/ANTLR/org/softlang/eipl/Env.java

12.3 Multi-Stage Programming 363

encoding.) In this manner, we can already separate valid inputs from in-
valid inputs, subject to implementing the grammar as a syntax checker
(Recipe 2.5).

Test cases Set up test case for the AG. In particular, a positive test case con-
sists of a valid input and the expected output which is to be modeled even-
tually as a dedicated attribute of the start symbol.

Attributes Associate the grammar symbols with attributes (their names and
types), thereby expressing what sort of information should be available at
what sort of node in the parse tree. Mark the attributes as either synthesized
or inherited, in accordance with attribute dependencies.

Computations and conditions Define computational rules for each context-
free grammar rule, all synthesized attributes of the left-hand side nonter-
minal and all inherited attributes of the right-hand side nonterminals. If
necessary, impose additional conditions on the attributes. (At this point,
one may need to commit to a particular AG system or to an encoding of the
AG, for example, as a functional program.)

Testing Test attribute evaluation in terms of the test cases. This may also
entail parsing.

12.3 Multi-Stage Programming

Multi-stage programming is a style of metaprogramming that is particularly use-
ful for program generation, i.e., for writing programs that generate programs or
parts thereof at compile time or runtime. A “stage” is essentially a point in time at
which programs or parts thereof are compiled, generated, or evaluated, i.e., compile
time versus runtime versus different stages at runtime [78, 76, 77]. We focus here
on compile-time metaprogramming as a form of multi-stage programming, which
means that parts of the program are executed at compile time to compute and com-
pile additional parts of the program (again at compile time).

The motivation for multi-stage programming is often performance in the pres-
ence of using more or less advanced abstraction mechanisms. In a simple case,
program generation may help to inline function applications for arguments that are
known at compile time, as we will demonstrate below. In a more advanced case, pro-
gram generation may help with providing domain-specific concepts in a performant
and possibly type-safe manner.

Multi-stage programming is clearly a form of metaprogramming, as a multi-
stage program is essentially a program generator with the metalanguage and the
object language being the same language. (In reality, the language of generated code
may be restricted compared with the full metalanguage.) Multi-stage programming
language extensions do not just strive for syntactically correct generated code, but
name-binding and typing rules may also be guaranteed (more or less) statically.

364 12 A Suite of Metaprogramming Techniques

12.3.1 Inlining as an Optimization Scenario

In the sequel, we briefly demonstrate multi-stage programming in terms of Haskell’s
Template Haskell extension [69] for compile-time metaprogramming. We discuss
a very simple scenario – essentially, programmatic inlining of recursive function
applications. Template Haskell has seen many uses, especially also in the context of
optimizations for DSLs [67].

Consider the recursive function definition as follows.

Illustration 12.17 (A power function)

Haskell module Power

power :: Int→ Int→ Int
power n x =

if n==0
then 1
else x * power (n−1) x

Now assume that within some part of our program, we need the exponent 3 time
and again. We may even define a dedicated application of the power function and
use it as illustrated below:

Interactive Haskell session:

I let power3 = power 3
I power3 3
27
- -
I power3 4
64

Alas, the overhead of applying the recursively defined power function is incurred,
even for applications of power3 unless we imagine a Haskell compiler that somehow
decides to inline recursive function applications in some way. Multi-stage program-
ming allows us to express explicitly that nonrecursive code is to be generated on the
basis of the known exponent.

12.3.2 Quasi-Quotation and Splicing

In Template Haskell, we may define a variation on the power function which is
recursive at compile time, and generates nonrecursive code for a fixed first argument,
as shown below.

http://github.com/softlang/yas/tree/springer/samples/Haskell/Power.hs

12.3 Multi-Stage Programming 365

Illustration 12.18 (A staged power function)

Haskell module UntypedPower

power :: Int→ Q Exp→ Q Exp
power n x =

if n==0
then [| 1 |]
else [| $x * $(power (n−1) x) |]

mk_power :: Int→ Q Exp
mk_power n = [| λ x→ $(power n [| x |]) |]

Notice that the structure of the code is very similar to the original power function.
There is an additional function, mk_power, that we will explain in a second. The
following elements of multi-stage programming are at play:

• We use quasi-quote brackets [| · · · |] (or Oxford brackets) to quote Haskell code,
thereby expressing that the corresponding expression evaluates to code. For in-
stance, for the base case of power we simply return the code 1.

• Within the brackets, we use splicing $(· · ·) to insert code that is computed when
the quasi-quoted code is constructed. For instance, for the recursive case of the
power function, we insert the code returned by the recursive application of the
code-generating function.

• We use the quotation monad Q in places where we compute code. This monad
takes care of fresh-name generation, reification (program inspection), and error
reporting.

• The type Exp stands for “Haskell expressions”. By using the quasi-quote brack-
ets, we enter a scope in which Haskell expressions are constructed (in fact, “com-
puted”) as results.

The additional function mk_power serves the purpose of applying power to an ac-
tual exponent. A lambda abstraction is constructed to receive the missing argument
x; the body of the function splices in the code generated for a given exponent n. Here
is a demonstration where we apply the generated function and inspect the generated
code for clarity:

Interactive Haskell session:

I let power3 = $(mk_power 3)
I power3 3
27
- -
I power3 4
64
- -
I runQ (mk_power 3) >>=putStrLn . pprint
λ x_0→ x_0 * (x_0 * (x_0 * 1))

http://github.com/softlang/yas/tree/springer/samples/Haskell/UntypedPower.hs

366 12 A Suite of Metaprogramming Techniques

At the last prompt, we use the “run” function of Template Haskell’s quotation
monad (i.e., runQ) to actually perform code generation in the Haskell session, and
we pretty print the code, as shown. The generated code clearly conveys that the
recursive definition of the power function was unfolded three times, ending in the
base case.

Exercise 12.9 (Fine-tuning the code generator) [Intermediate level]
The generated code clearly involves an unnecessary multiplication with “1” at the
right end of the multiplication. It is reasonable to expect that the compiler may
take care of this by implementing a unit law for multiplication. However, whether
or not a particular compiler optimization is available and applicable is generally
a complicated matter. So we might prefer to make the code generator avoid the
unnecessary multiplication in the first place. Adjust the generator accordingly so
that it returns this code instead:

λ x_0→ x_0 * (x_0 * x_0)

12.3.3 More Typeful Staging

Arguably, the staged code discussed above lacks some important type information
that might be valuable for a user of the code generator and helpful in type check-
ing. Most notably, the revised power function takes an argument of type Exp and its
result is of type Exp too. Thus, we neither document nor enforce the condition that
the power function operates on Ints. Template Haskell also provides a more typeful
model such that we can track the expected type of Haskell expressions, as demon-
strated below.

Illustration 12.19 (A more typefully staged power function)

Haskell module TypedPower

1 power :: Int→ Q (TExp Int)→ Q (TExp Int)
2 power n x =
3 if n==0
4 then [|| 1 ||]
5 else [|| $$x * $$(power (n−1) x) ||]
6

7 mk_power :: Int→ Q (TExp (Int→ Int))
8 mk_power n = [|| λ x→ $$(power n [|| x ||]) ||]

That is, we use the type constructor TExp (lines 1 and 7) instead of Exp, thereby
capturing the expected type of expression. The power function is more clearly typed
now in that it takes an Int and code that evaluates to an Int; the function returns code

http://github.com/softlang/yas/tree/springer/samples/Haskell/TypedPower.hs

12.3 Multi-Stage Programming 367

that evaluates to an Int (i.e., the actual expression for computing the power). We use
“typed” quasi-quote brackets [|| · · · ||] (e.g., in line 4) and “typed” splices $$(· · ·)
(e.g., in line 5). Other than that, the program generator remains unchanged, and it
can be also used in the same manner as before. Incorrect uses would be caught by
the type system at the time of checking the quasi-quotes in the staged abstractions,
i.e., even before applying the staged abstractions.

In staging, as much as in using macro systems, one needs to be careful about
unintended name capture so that names from the generated code do not interfere in
an unintended manner with other names in scope, thereby giving rise to a notion of
hygiene [1].

Staging does not need to involve systematic quasi-quotation and splicing, as
demonstrated by the “Scala-Virtualized” approach [64]. In this approach, overload-
ing is used in a systematic manner so that the transition between regular code and
quoted code (“representations”) is expressed by type annotations. This idea, which
relies on some Scala language mechanisms, was fully developed in the body of work
on LMS (Lightweight Modular Staging) with applications of staging for the bene-
fit in performance across different domains [63, 74, 30, 38], for example, database
queries or parsing.

This concludes our brief discussion of multi-stage programming. There exist dif-
ferent language designs that support multi-stage programming. In a simple case,
macro systems may be used for program generation. In the case of the language
C++, its template system caters for a form of multi-stage programming, i.e., tem-
plate metaprogramming [84, 70, 59]. We have exercised Template Haskell [69],
thereby taking advantage of dedicated language support multi-stage programming,
including means of quotation and splicing. MetaML [79], MetaOCaml [54, 35], and
Helvetia [62] also provide such support. There exists scholarly work comparing or
surveying approaches in a broader context [15, 61, 19, 72].

Exercise 12.10 (A recipe for multi-stage programming) [Intermediate level]
Describe a recipe for the design of a multi-stage program (Recipe 12.3). Aim at
adopting the style for recipes used elsewhere in this book. In particular, you may
consult Recipe 12.4 for inspiration, as it is concerned with the problem of partial
evaluation, which is closely related to multi-stage programming. In the view of the
breadth of the field of multi-stage programming, as indicated by the discussion of
related work above, you are advised to focus your recipe on the kind of optimization
that we demonstrated above.

368 12 A Suite of Metaprogramming Techniques

Recipe 12.3 (Design of a multi-stage program). See Exercise 12.10.

12.4 Partial Evaluation

Partial evaluation2 is a style of metaprogramming where a program is systematically
“refined” on the basis of partially known program input so that a partially evaluated
(specialized) program is computed; the primary objective is optimization [27, 22].
Partial evaluation is based essentially on one simple idea: evaluate (execute) a pro-
gram to the extent possible for incomplete input. The result of partial evaluation is
a specialized program, also referred to as a residual program.

Partial evaluation has applications in, for example, modeling [81], model-driven
development [68], domain-specific language engineering [26], generic program-
ming [53], and optimization of system software [55]. The technique of partial eval-
uation is particularly useful and well understood when the program is an interpreter
and the partially known program input is the program to be interpreted. In this case,
one gets essentially a compiler.

We introduce partial evaluation (or program specialization) by means of writing
a simple partial evaluator for a simple, pure, first-order, functional programming
language. In particular, we will show that the partial evaluator can be derived as
a variation on a compositionally defined interpreter. The style of partial evaluator
developed here is called an online partial evaluator because it makes decisions about
specialization as it goes, based on whatever variables are in the environment at a
given point during evaluation [27]. (An offline partial evaluator performs a static
analysis of the program to decide which variables will be considered known versus
unknown.)

12.4.1 The Notion of a Residual Program

We pick up essentially the same example that we studied in the context of multi-
stage programming, i.e., the application of the power function with a known ex-
ponent. However, this time around, we separate the metalanguage and the object
language: Haskell versus a “fabricated” functional language (BFPL). That is, we
use an object program as follows.

2 Acknowledgment and copyright notice: This section is derived from a tutorial paper, jointly
written with William R. Cook [8], who has kindly agreed to the material being reused in this book.
The tutorial was published by EPTCS, subject to the rule that copyright is retained by the authors.

12.4 Partial Evaluation 369

Illustration 12.20 (A power function and an application thereof)

BFPL resource languages/BFPL/samples/power.bfpl

power :: Int −> Int −> Int
power n x =

if (==) n 0
then 1
else (*) x (power ((−) n 1) x)

main = print $ power 3 2 −− Prints 8

Now let us suppose that only the value of the exponent is given, while the base
remains a variable. A partial evaluator should return the following code:

(*) x ((*) x ((*) x 1))

In infix notation:

x * x * x * 1

That is, partial evaluation should specialize the program such that the recursive
function is essentially inlined as many times as needed for the different exponents
encountered recursively. In contrast to multi-stage programming, we do not want
to “instrument” the power function in any way (by quasi-quotation and such); in-
stead, inlining should be triggered by setting the corresponding function argument
to unknown.

We use Haskell as the meta-language for implementing the partial evaluator. We
take advantage of the fact that we have already implemented an interpreter for the
object language (BFPL) in Haskell in Section 5.1.3. The power function is easily
represented as a Haskell term as shown below.

Illustration 12.21 (The power function in abstract syntax)

Haskell module Language.BFPL.Samples.Power

power :: Function
power = (

"power",
(([IntType, IntType], IntType),
(["n", "x"],

If (Binary Eq (Arg "n") (IntConst 0))
(IntConst 1)
(Binary Mul

(Arg "x")
(Apply "power" [Binary Sub (Arg "n") (IntConst 1), Arg "x"])))))

This is the signature of a regular interpreter function (Illustration 5.8):

http://github.com/softlang/yas/tree/springer/languages/BFPL
http://github.com/softlang/yas/tree/springer/languages/BFPL/samples/power.bfpl
http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Samples/Power.hs

370 12 A Suite of Metaprogramming Techniques

eval :: Program→ Value

A “total evaluator” can handle applications of the power function only if the ar-
guments denote values; evaluation fails if missing arguments are dereferenced:

Interactive Haskell session:

I eval ([power], (Apply "power" [IntConst 3, IntConst 2]))
Left 8
- -
I eval ([power], (Apply "power" [IntConst 3, Arg "x"]))
*** Exception: ...

A partial evaluator is similar to an interpreter, but it returns residual code instead
of values. For now, we assume a simple scheme of partial evaluation such that a
residual expression is returned:

peval :: Program→ Expr

A partial evaluator agrees with a total evaluator, i.e., a regular interpreter, when
values for all arguments are provided. However, when an argument is a variable
without binding in the environment, some operations cannot be applied, and they
need to be transported into the residual code:

Interactive Haskell session:

I peval ([power], (Apply "power" [IntConst 3, IntConst 2]))
IntConst 8
- -
I peval ([power], (Apply "power" [IntConst 3, Arg "x"]))
Binary Mul (Arg "x") (Binary Mul (Arg "x") (Binary Mul (Arg "x") (IntConst 1)))

12.4.2 Interpretation with Inlining

Let us implement the envisaged partial evaluator by enhancing a regular interpreter
with inlining. In principle, the approach presented here works for any interpreter
following the scheme of, more or less closely, big-step operational or denotational
semantics.

Illustration 12.22 (An interpreter with inlining of function applications)

Haskell resource languages/BFPL/Haskell/Language/BFPL/Inliner.hs

1 type Env = Map String Expr
2

3 peval :: Program→ Expr
4 peval (fs, e) = f e empty

http://github.com/softlang/yas/tree/springer/languages/Haskell
http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Inliner.hs

12.4 Partial Evaluation 371

5 where
6 f :: Expr→ Env→ Expr
7 f e@(IntConst _) _ = e
8 f e@(BoolConst _) _ = e
9 f e@(Arg x) env =

10 case Data.Map.lookup x env of
11 (Just e')→ e'
12 Nothing→ e
13 f (If e0 e1 e2) env =
14 let
15 r0 = f e0 env
16 r1 = f e1 env
17 r2 = f e2 env
18 in
19 case toValue r0 of
20 (Just (Right bv))→ if bv then r1 else r2
21 Nothing→ If r0 r1 r2
22 f (Unary o e) env =
23 let r = f e env
24 in case toValue r of
25 (Just v)→ fromValue (uop o v)
26 _→ Unary o r
27 f (Binary o e1 e2) env = ...
28 f (Apply fn es) env = f body env'
29 where
30 Just (_, (ns, body)) = Prelude.lookup fn fs
31 rs = map (flip f env) es
32 env' = fromList (zip ns rs)
33

34 −− Attempt extraction of value from expression
35 toValue :: Expr→ Maybe Value
36 toValue (IntConst iv) = Just (Left iv)
37 toValue (BoolConst bv) = Just (Right bv)
38 toValue _ = Nothing
39

40 −− Represent value as expression
41 fromValue :: Value→ Expr
42 fromValue (Left iv) = IntConst iv
43 fromValue (Right bv) = BoolConst bv

The inlining partial evaluator deviates from the regular interpreter as follows:

• The partial evaluator maps expressions to residual expressions, whereas the reg-
ular interpreter maps expressions to values. Values are trivially embedded into
expressions through the constant forms of expressions, subject to the conversions
fromValue and toValue (lines 34–43).

• The partial evaluator uses an environment (line 1) which maps argument names to
expressions, whereas the regular interpreter’s environment maps argument names
to values. This is necessary when function arguments cannot be evaluated com-
pletely and, thus, residual code needs to be passed to the applied function.

372 12 A Suite of Metaprogramming Techniques

• The cases of the partial evaluator for the different expression forms (lines 7–
32) are systematically derived from the cases of the regular interpreter (Illustra-
tion 5.8) by performing regular evaluation when subexpressions are values and
returning residual code otherwise. The cases are explained one by one as follows:

IntConst/BoolConst A constant is partially evaluated to itself, just like in the
regular interpreter.

Arg An argument is partially evaluated to a value according to the variable’s
binding in the environment, just like in the regular interpreter, if there is a
binding. Otherwise, the variable is partially evaluated to itself; the regular
interpreter fails in this case.

If An if-statement can be eliminated such that one of the two branches is cho-
sen for recursive (partial) evaluation, just like in the regular interpreter, if the
condition is (partially) evaluated to a Boolean value. Partial evaluation fails
for an integer value, just like regular interpretation. If the condition is not par-
tially evaluated to a value, an if-statement is reconstructed from the partially
evaluated branches.

Unary/Binary The corresponding operation is applied to the (partially) evalu-
ated arguments, just like in the regular interpreter, if these are all values. Oth-
erwise, a unary/binary expression is reconstructed from the partially evaluated
arguments.

Apply Partial evaluation involves argument (partial) evaluation, environment
construction, and (partial) evaluation of the body in the new environment,
just like in the regular interpreter – except that expressions for the partially
evaluated arguments are passed in the environment in the case of the partial
evaluator, as opposed to values in the case of the regular interpreter.

The treatment of if-statements and function applications is naive. In particular,
partial evaluation of a function application may diverge, as illustrated by the follow-
ing example:

Interactive Haskell session:

−− Result shown in concrete BFPL/Haskell syntax for clarity
I peval ([power], (Apply "power" [Arg "n", IntConst 2]))
if ((==) n 0)

then 1
else (*) 2 (if ((==) ((−) n 1) 0)

then 1
else (*) 2 (if ((==) ((−) ((−) n 1) 1) 0 ...))

The position with ‘...’ proxies for infinite inlining. That is, in this example, the
function power is applied to a specific base, 2, but the exponent remains a variable,
n. Inlining diverges because the recursive case of power is expanded indefinitely.

Nevertheless, inlining is useful in a relatively well-defined situation. Before we
generalize from inlining to full-fledged program specialization, let us discuss some
variations on inlining by means of exercises.

12.4 Partial Evaluation 373

Exercise 12.11 (Inlining with pairs) [Intermediate level]
Extend the functional language to support pairs. The following expression forms
should be supported:

data Expr = ...
| Pair Expr Expr −− Construction of a pair
| Fst Expr −− 1st projection
| Snd Expr −− 2nd projection

Another form of type is needed as well:

data Type = ... | PairType Type Type

For instance, a swap function for pairs of ints is defined as follows:

−− Haskell counterpart for comparison
−− swap :: (Int, Int) −> (Int, Int)
−− swap x = (snd x, fst x)
swap :: Function
swap =

("swap",
(([PairType IntType IntType], PairType IntType IntType),

("x", Pair (Snd (Arg "x")) (Fst (Arg "x")))
)

)

Extend the regular interpreter to support pairs. To this end, you also need to
extend the type of values. Assume the following variant, which favors a dedicated
algebraic data type over the use of Either:

data Value = IntValue Int | BoolValue Bool | PairValue Value Value

The extended interpreter must support this application:

Interactive Haskell session:

I evaluate ([swap], (Apply "swap" [Pair (IntConst 2) (IntConst 3)]))
PairValue (IntValue 3) (IntValue 2)

Extend the inliner to cover pairs so that it supports this application:

Interactive Haskell session:

I peval ([swap], (Apply "swap" [Pair (Arg "x") (Arg "y")]))
Pair (Arg "y") (Arg "x")

374 12 A Suite of Metaprogramming Techniques

Exercise 12.12 (Loop unrolling in imperative programs) [Advanced level]
Let us consider partial evaluation in the context of an imperative language. This
exercise is concerned with an optimization which is somewhat similar to function
inlining. The optimization is to unroll loops in an imperative language. Consider
the following imperative program for exponentiation, with base x, exponent n, and
result r:

BIPL resource languages/BIPL/samples/exp-loop.bipl

{
r = 1;
while (n >= 1) {

r = r * x;
n = n − 1;

}
}

Now suppose the exponent is known: n = 3. In the absence of a known base x,
a partial evaluator may still unroll the loop three times, since the loop condition
depends only on n. This unrolling may result in code like this:

BIPL resource languages/BIPL/samples/exp-unrolled.bipl

{
r = 1;
r = r * x;
n = n − 1;
r = r * x;
n = n − 1;
r = r * x;
n = n − 1;

}

A data-flow analysis may determine that the result r does not depend on n and,
thus, all assignments to n may be removed. Such slicing may result in code like this:

BIPL resource languages/BIPL/samples/exp-sliced.bipl

{
r = 1;
r = r * x;
r = r * x;
r = r * x;

}

Implement a partial evaluator for the unrolling part of this optimization.

http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/exp-loop.bipl
http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/exp-unrolled.bipl
http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/exp-sliced.bipl

12.4 Partial Evaluation 375

12.4.3 Interpreter with Memoization

The proper treatment of recursive functions requires us to synthesize residual pro-
grams instead of just residual expressions. Also, we need to memoize specialization
in a certain way, as we will discuss in a second. We need a partial evaluator of the
following type:

peval :: Program→ Program

The idea here is that the incoming function definitions and the main expression
are specialized such that the resulting main expression refers to specialized function
definitions. A given function definition may be specialized several times depending
on the statically known argument values encountered. For instance, exponentiation
with the exponent 3 would be specialized as follows; the result is shown in Haskell’s
concrete syntax for the sake of readability:

power'a x = x * power'b x
power'b x = x * power'c x
power'c x = x * power'd x
power'd x = 1

The names of the specialized functions are fabricated from the original name by
some qualification scheme to account for disambiguation. Thus, specialized func-
tion definitions have been inferred for all the inductively encountered values 3, 2, 1,
and 0 for the exponent. Subject to an inlining optimization, we obtain the familiar
expression for x to the power 3. The inlining needed here is trivial, in that we would
only inline nonrecursive functions. The “heavy lifting” is due to specialization.

Here is a demonstration of the implemented specializer; it returns the same spe-
cialized program, in abstract syntax.

Interactive Haskell session:

I peval ([power], (Apply "power" [IntConst 3, Arg "x"]))
([

("power'a", (([IntType], IntType), (["x"],
Binary Mul (Arg "x") (Apply "power'b" [Arg "x"])))),

("power'b", (([IntType], IntType), (["x"],
Binary Mul (Arg "x") (Apply "power'c" [Arg "x"])))),

("power'c", (([IntType], IntType), (["x"],
Binary Mul (Arg "x") (Apply "power'd" [Arg "x"])))),

("power'd", (([IntType], IntType), (["x"],
IntConst 1)))

],
Apply "power'a" [Arg "x"]

)

376 12 A Suite of Metaprogramming Techniques

Exercise 12.13 (Inlining nonrecursive functions) [Intermediate level]
Implement an analysis (in Haskell) to determine for a given functional (BFPL) pro-
gram the set of names of nonrecursive functions. For instance, all of the above func-
tions power'a, . . . , power'd should be found to be nonrecursive. Hint: This analysis
can be described like this:

• Start from the empty set of nonrecursive functions.
• Repeat the following step as long as new nonrecursive functions are still found:

– Include a function in the set if it only applies functions that are already known
to be nonrecursive. (Thus, initially, a function is included if it does not apply
any function – power'd in our example.)

Complement the analysis for nonrecursive functions to obtain the simple inlining
optimization discussed above.

Let us illustrate how program specialization should handle the diverging exam-
ple that we faced earlier. Program specialization should carefully track argument
lists for which specialization is under way or has been completed. This solves the
termination problem:

Interactive Haskell session:

I peval ([power], (Apply "power" [Arg "n", IntConst 2]))
([

("power'a", (([IntType], IntType), (["n"],
If (Binary Eq (Arg "n")

(IntConst 0))
(IntConst 1) (Binary Mul

(IntConst 2)
(Apply "power'a" [Binary Sub (Arg "n") (IntConst 1)])))))

],
Apply "power'a" [Arg "n"]

)

Thus, the original definition of power has been specialized such that the argu-
ment position for the statically known base is eliminated. Note that the specialized
function is recursive.

The program specializer is derived from the inliner and thus from the regular
interpreter by making adaptations as described below. Overall, inlining is tamed so
that termination is guaranteed. During inlining (in fact, specialization), specialized
functions are aggregated in a data structure:

peval :: Program→ Program
peval (fs, e) = swap (runState (f e empty) [])

where
f :: Expr→ Env→ State [Function] Expr
...

12.4 Partial Evaluation 377

The state monad is applied to the result type to aggregate specialized functions along
the way. The environment is of the same type as in the regular interpreter:

type Env = Map String Value

That is, the environment binds variables to values as opposed to expressions, as in
the case of the naive inliner. Thus, the environment only serves to represent stat-
ically known arguments. Statically unknown arguments are preserved within the
definitions of the specialized functions.

The cases for all constructs but function application can be taken from the in-
liner – except that we need to convert to monadic style, which is a simple, sys-
tematic program transformation in itself [43, 20], routinely performed by functional
programmers. Thus, recursive calls to the specializer are not used directly in recon-
structing terms, but their results are sequenced in the state monad. For instance:

f (Binary o e1 e2) env = do
r1← f e1 env
r2← f e2 env
case (toValue r1, toValue r2) of

(Just v1, Just v2)→ return (fromValue (bop o v1 v2))
_→ return (Binary o r1 r2)

It remains to define the case for partial evaluation of function applications; this
case is significantly more complex than in the regular interpreter or the inliner. The
case is presented below.

Illustration 12.23 (Specializing function applications)

Haskell resource languages/BFPL/Haskell/Language/BFPL/Specializer.hs

1 f (Apply fn es) env = do
2 −− Look up function
3 let Just ((ts, t), (ns, body)) = Prelude.lookup fn fs
4 −− Partially evaluate arguments
5 rs← mapM (flip f env) es
6 −− Determine static and dynamic arguments
7 let trs = zip ts rs
8 let ntrs = zip ns trs
9 let sas = [(n, fromJust (toValue r)) | (n, (_, r))← ntrs, isJust (toValue r)]

10 let das = [(n, (t, r)) | (n, (t, r))← ntrs, isNothing (toValue r)]
11 −− Specialize body
12 let body' = f body (fromList sas)
13 −− Inlining as a special case
14 if null das then body'
15 −− Specialization
16 else do
17 −− Fabricate function name
18 let fn' = fn ++ show sas
19 −−Memoize new residual function, if necessary
20 fs'← get
21 when (isNothing (Prelude.lookup fn' fs')) (do

http://github.com/softlang/yas/tree/springer/languages/Haskell
http://github.com/softlang/yas/tree/springer/languages/BFPL/Haskell/Language/BFPL/Specializer.hs

378 12 A Suite of Metaprogramming Techniques

22 −− Create placeholder for memoization
23 put (fs' ++ [(fn', undefined)])
24 −− Partially evaluate function body
25 body''← body'
26 −− Define residual
27 let r = ((map (fst . snd) das, t), (map fst das, body''))
28 −− Replace placeholder by actual definition
29 modify (update (const r) fn'))
30 −− Apply the specialized function
31 return (Apply fn' (map (snd . snd) das))

Here the following steps are performed:

1. The applied function is looked up (lines 2–3) and the arguments are evaluated
(lines 4–5), just like in the regular interpreter. As a reminder, the list of function
declarations is an association list mapping function names to lists of argument
types ts, the result type t, argument names ns, and the body.

2. The partially evaluated arguments are partitioned into static arguments sas and
dynamic arguments das (lines 6–10). Static arguments are values; dynamic argu-
ments exercise other expression forms.

3. The body of the specialized function is obtained by partially evaluating the orig-
inal body in the variable environment of the static variables (lines 11–12). In
fact, we use a let-binding; the actual specialization needs to be demanded in a
monadic computation (lines 14 and 25).

4. If there are no dynamic arguments, we switch to the behavior of the interpreter
by (partially) evaluating the body of the applied function (lines 13–14).

5. The “identity” (name) of the specialized function is derived by concatenating the
name of the applied function and the string representation of the actual values of
the static arguments (lines 17–18); see Exercise 12.14 for a discussion of naming.

6. We need to remember (memoize) function specializations so that a function is not
specialized again for the same static arguments, thereby guarding against infinite
inlining (lines 19–29).

7. In order to deal with recursion, it is important that the specialized function has
already been added to the state before its body is obtained so that it is considered
known during specialization. To this end, an undefined function, except for the
name, is initially registered as a placeholder (lines 22–23), to be updated later
(lines 28–29).

8. The argument list of the specialized function (the “residual”) includes only vari-
ables for the dynamic positions (lines 26–27). The specialized function is ul-
timately applied to the dynamic arguments; the expression for that application
serves as the result of partial evaluation (lines 30–31).

Exercise 12.14 (Readable function names) [Intermediate level]
In the illustration of the specializer, we used readable names for the specialized
functions, power'a, . . . , power'd, in the specialized program. The actual implementa-
tion applies a rather crude approach to memoization:

12.4 Partial Evaluation 379

let fn' = fn ++ show sas

That is, it uses the string representation of the list of static arguments as part of the
fabricated function name. For instance, power'a would be rendered as "power[(\"n\",
Left 3)]". Revise the specializer so that readable (short) function names, as assumed
in the illustration, are indeed fabricated.

As a hint at a more interesting partial evaluation scenario, consider the follow-
ing problem related to the language of finite state machines (FSML), as discussed
in detail in Chapter 2. We would like to apply partial evaluation in the context of
model-driven development such that partial evaluation of a model interpreter for
a statically known model (an FSM) provides us with a code generator. That is, a
program specializer, when applied to the model interpreter with a static FSM and a
dynamic event sequence, creates essentially a compiled version of the model [21].
The tutorial notes [8] describe the development of a sufficiently powerful specializer
for an FSML-like interpreter.

The present section is summarized by means of a recipe.

Recipe 12.4 (Design of a partial evaluator).

Interpreter Pick a regular interpreter (Recipe 5.1) from which to start.
Test cases Set up test cases for the partial evaluator. A positive test case

consists of a program (to be partially or totally evaluated), the input of the
program, the partitioning thereof in terms of what parts are known versus
unknown to the partial evaluator, the output of the program, and the par-
tially evaluated program.

Code domains Extend the domains used by the regular interpreter, specifi-
cally those for results, to be able to represent code.

Code generation Complement the regular interpreter by extra cases that
cover unknown input (“dynamic variables”). That is, when subexpressions
cannot be evaluated to apply the regular interpreter’s operations (e.g., if-
then-else or addition), the corresponding expression is reconstructed from
the recursively specialized subexpressions. Memoization is needed to avoid
infinite code generation.

Testing Validate each test case as follows: the regular interpreter computes
the expected output from the given program and the input; the partial evalu-
ator computes the partially evaluated program from the given program and
the part of the input known to the partial evaluator; and the regular inter-
preter computes the expected output from the partially evaluated program
and the remaining input.

380 12 A Suite of Metaprogramming Techniques

12.5 Abstract Interpretation

Abstract interpretation is a semantics-based technique for program analysis. The
expectation is that any such analysis will soundly predict the runtime behavior at
some level of abstraction. We will describe two analyses by abstract interpretation:
a form of type checking (Chapter 9), and “sign detection” for program variables to
be used in program optimization. We will use denotational semantics or denotational
style interpreters (Chapter 11) as a starting point for abstract interpreters, because
the underlying compositional scheme of mapping syntax to semantics makes it easy
to replace systematically the semantic domains of a standard semantics and the cor-
responding combinators by versions that serve the purpose of a specific program
analysis.

12.5.1 Sign Detection as an Optimization Scenario

We would like to optimize imperative programs on the basis of knowing just the
signs but not the precise values of some program variables. Here we assume that
signs may be determined by a static analysis for “sign detection”. The following
program is amenable to such an optimization.

Illustration 12.24 (A program with an optimization opportunity)

BIPL resource languages/BIPL/samples/abs.bipl

{
. . .
y = x * x + 42;
if (y < 0)

y = −y;
. . .

}

The basic laws of arithmetic suggest that the variable y in this program must
be positive by the time it is tested by the condition of the if-statement. Thus, the
condition must evaluate to false, which implies that the then-branch will never be
executed. On the basis of such a static analysis, i.e., without knowing the exact input
x, the program could be optimized. In this example, we consider the signs Pos, Neg,
and Zero of variables in the program as properties of interest for abstract interpreta-
tion. Compare this with the standard semantics, where we care about actual numbers
stored in variables. We can calculate on signs pretty much like on numbers, as illus-
trated by the following function tables for the arithmetic and comparison operators
on signs:

http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/abs.bipl

12.5 Abstract Interpretation 381

∗ Neg Zero Pos ?

Neg Pos Zero Neg ?
Zero Zero Zero Zero Zero
Pos Neg Zero Pos ?
? ? Zero ? ?

+ Neg Zero Pos ?

Neg Neg Neg ? ?
Zero Neg Zero Pos ?
Pos ? Pos Pos ?
? ? ? ? ?

< Neg Zero Pos ?

Neg ? True True ?
Zero False False True ?
Pos False False ? ?
? ? ? ? ?

In these tables, we use “?” to denote that the sign or truth value of an operand
or result has not been assigned. For the program in Illustration 12.24, we can assign
sign Pos to y because, for all possible signs of x, the result of x*x has sign Pos or
Zero and thus the addition of 42 implies sign Pos for x*x+42. Hence, the condition
must evaluate to False and the code in the then-branch is dead.

Abstract interpretation has found many application areas; see, for example, [13]
for an application to refactoring and [12] for an application to grammar analysis
and parsing. This section relies completely on representing abstract interpretation
in Haskell, as opposed to using any semiformal notation for semantics or analysis.
The development will be cursory and pragmatic overall. A thorough development
can be found elsewhere [58, 57]. Also, Cousot & Cousot’s line of seminal work on
the subject may be consulted; see [11] for their first paper on the subject.

12.5.2 Semantic Algebras

An abstract interpreter can be seen as a variation on a regular interpreter where
semantic domains and combinators are defined differently. In order to be able to ex-
plore such a variation in an effective manner, we revise a denotational interpreter so
that it is parameterized in the semantic domains and combinators. This is done here
for an imperative programming language (BIPL) and its direct-style denotational
semantics.

That is, we aim at factoring out the algebra (an abstract data type) of meanings;
we use the term “semantic algebra”. We begin by identifying the corresponding
signature as shown below.

Illustration 12.25 (Signature of semantic algebras)

Haskell module Language.BIPL.Algebra.Signature

−− Aliases to shorten function signatures
type Trafo sto = sto→ sto −− Store transformation
type Obs sto val = sto→ val −− Store observation
−− The signature of algebras for interpretation
data Alg sto val = Alg {

skip' :: Trafo sto,
assign' :: String→ Obs sto val→ Trafo sto,
seq' :: Trafo sto→ Trafo sto→ Trafo sto,
if’ :: Obs sto val→ Trafo sto→ Trafo sto→ Trafo sto,
while' :: Obs sto val→ Trafo sto→ Trafo sto,
intconst' :: Int→ Obs sto val,

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Algebra/Signature.hs

382 12 A Suite of Metaprogramming Techniques

var' :: String→ Obs sto val,
unary' :: UOp→ Obs sto val→ Obs sto val,
binary' :: BOp→ Obs sto val→ Obs sto val→ Obs sto val

}

That is, the signature is defined as a record type Alg. The record type carries one
member for each language construct. There are type parameters sto and val for stores
and values. These type parameters enable different type definitions for concrete and
abstract interpreters and, in fact, for different abstract interpreters implementing dif-
ferent program analyses.

Given an actual algebra of the signature, an interpreter (an analysis) can be de-
fined by simply recursing into program phrases and combining the intermediate
meanings according to the operations of the algebra, as shown below.

Illustration 12.26 (The compositional scheme)

Haskell module Language.BIPL.Algebra.Scheme

interpret :: Alg sto val→ Stmt→ sto→ sto
interpret a = execute

where
−− Compositional interpretation of statements
execute Skip = skip' a
execute (Assign x e) = assign' a x (evaluate e)
execute (Seq s1 s2) = seq' a (execute s1) (execute s2)
execute (If e s1 s2) = if’ a (evaluate e) (execute s1) (execute s2)
execute (While e s) = while' a (evaluate e) (execute s)
−− Compositional interpretation of expressions
evaluate (IntConst i) = intconst' a i
evaluate (Var n) = var' a n
evaluate (Unary o e) = unary' a o (evaluate e)
evaluate (Binary o e1 e2) = binary' a o (evaluate e1) (evaluate e2)

The interpreter is equivalent to the earlier direct-style denotational interpreter
(Illustration 11.2), except that the semantic combinators are not functions in scope,
but instead are looked up as record components from the argument algebra a. Thus,
interpretation is completely parametric at this stage.

12.5.3 Concrete Domains

The “standard semantics” can now be simply represented as a specific algebra – a
record; we also speak of “concrete domains”. The record components, as shown be-
low, directly correspond to the top-level functions modeling semantic combinators,
as defined in the underlying denotational interpreter (Illustration 11.3).

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Algebra/Scheme.hs

12.5 Abstract Interpretation 383

Illustration 12.27 (An algebra for interpretation)

Haskell module Language.BIPL.Algebra.StandardInterpreter

1 type Value = Either Int Bool
2 type Store = Map String Value
3 algebra :: Alg Store Value
4 algebra = a where a = Alg {
5 skip' = id,
6 assign' = λ n f m→ insert n (f m) m,
7 seq' = flip (.),
8 if’ = λ f g h m→ let (Right b) = f m in if b then g m else h m,
9 while' = λ f g→ fix (λ x→ if’ a f (seq' a g x) (skip' a)),

10 intconst' = λ i→ const (Left i),
11 var' = λ n m→ m!n,
12 unary' = λ o f m→
13 case (o, f m) of
14 (Negate, Left i)→ Left (negate i)
15 (Not, Right b)→ Right (not b),
16 binary' = λ o f g m→ ...
17 }

Thus, the algebra commits to the sum of Int and Bool for values (line 1), and to
maps from strings to values for stores (line 2), and it designates the usual operations
for combining meanings. For instance, if-statements are eventually handled by a
dispatch on a condition’s two possible values, True and False (line 8).

12.5.4 Abstract Domains

An abstract interpretation devises abstract domains to analyze programs statically,
as opposed to a description of the precise semantics in terms of its so-called con-
crete domains. For instance, an abstract interpretation for type checking would use
abstract domains as follows:

data Type = IntType | BoolType −− Instead of values
type VarTypes = Map String Type −− Instead of stores

That is, abstract interpretation should compute variable-to-type maps as opposed
to proper stores, i.e., variable-to-value maps. The idea is then that the semantic com-
binators on abstract domains are defined similarly to those for the concrete domains.
In algebraic terms, we use (chain-) complete partial orders (CCPO or CPO). An ab-
stract interpretation for sign detection would use abstract domains as follows:

data Sign = Zero | Pos | Neg | BottomSign | TopSign
data CpoBool = ProperBool Bool | BottomBool | TopBool
type Property = Either Sign CpoBool
type VarProperties = Map String Property

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Algebra/StandardInterpreter.hs

384 12 A Suite of Metaprogramming Techniques

The key type is Sign, with constructors Zero, Pos, Neg for different signs of num-
bers. The type abstracts from the Int type used in the standard interpreter. The type
Sign features additional constructors BottomSign and TopSign as least and greatest
elements, which are needed for technical reasons. BottomSign (⊥) proxies for the
analysis not having identified the sign yet. TopSign (>) proxies for the analysis hav-
ing failed to identify the sign. The type CpoBool adds least and greatest elements to
Haskell’s Bool. The type Property is a sum over Sign and CpoBool, and it thus ab-
stracts from Value as a sum over Int and Bool in the standard interpreter. The type
VarProperties abstracts from Store in the concrete interpreter, i.e., it maps variables
to abstract values (“properties”) rather than concrete values.

Let us take a closer look at the abstract domain for signs. We provide an imple-
mentation as follows.

Illustration 12.28 (Signs of numbers)

Haskell module Data.CPO.Sign

1 data Sign = Zero | Pos | Neg | BottomSign | TopSign
2

3 instance Num Sign
4 where
5 fromInteger n
6 | n > 0 = Pos
7 | n < 0 = Neg
8 | otherwise = Zero
9

10 TopSign + _ = TopSign
11 _ + TopSign = TopSign
12 BottomSign + _ = BottomSign
13 _ + BottomSign = BottomSign
14 Zero + Zero = Zero
15 Zero + Pos = Pos
16 ...
17

18 instance CPO Sign where
19 pord x y | x == y = True
20 pord BottomSign _ = True
21 pord _ TopSign = True
22 pord _ _ = False
23 lub x y | x == y = x
24 lub BottomSign x = x
25 lub x BottomSign = x
26 lub _ _ = TopSign
27

28 instance Bottom Sign where
29 bottom = BottomSign

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/CPO/Sign.hs

12.5 Abstract Interpretation 385

With less precision With more precision

© 2012, 101companies

Signs as abstract numbers

Neg

⊥

⊤

PosZero Neg

⊥

⊤

PosZero

Non-Pos Non-Neg

Fig. 12.5 Two options for an abstract domain of signs.

The excerpts given here illustrate the following aspects of signs:

• Signs are “abstract” numbers; Haskell’s library type class Num is instantiated for
type Sign (lines 3–16), paralleling the standard instance for type Int. The type-
class member fromInteger (lines 5–8) is the explicit manifestation of abstraction:
integers are mapped to signs. Further, we hint at the addition operation on signs
(lines 10–15). Several other operations on signs have been omitted for brevity.

• Signs form a partial order, and there are least and greatest elements; see the in-
stances of dedicated type classes CPO and Bottom (lines 18–29). In Fig. 12.5, we
show two options for a partial order on signs with different degrees of precision;
the algebraic data type shown earlier corresponds to the less precise option on
the left. We use Hasse diagrams for illustration. The idea is that the least element
⊥ is the initial element for any sort of approximative, fixed point-based analysis
(see below for details), whereas the greatest element > is the indicator of failure
of analysis. We show two options for the abstract domain of signs in the figure
because we want to indicate that one can make a trade-off in abstract interpreta-
tion or program analysis more generally, in terms of precision of results versus
time and space complexity required.

For an abstract interpretation to be sound with regard to a given standard seman-
tics and to enable effective computation of uniquely defined fixed points, various
properties have to be satisfied by the abstract domains [57, 73], which we mention
here only in passing. In general, abstract domains need to define chain-complete
partial orders (ccpos). Further, there also needs to be a mapping from concrete to
abstract domains (see fromInteger above) such that partial orders are preserved and
homomorphisms are defined, i.e., mapping concrete values to abstract values and
then combining abstract values with the abstract semantic combinators equals com-
bining concrete values and mapping the result.

Exercise 12.15 (More discriminative signs) [Basic level]
Implement the more precise option shown in Fig. 12.5.

386 12 A Suite of Metaprogramming Techniques

12.5.5 Examples of Abstract Interpreters

Let us work out the abstract interpreters for type checking and sign detection.

12.5.5.1 A Type-Checking Interpreter

The interpreter needs to compute types instead of values for expressions, and it
computes variable-type pairs (in fact, a map) for statements. Clearly, type checking
can fail, which happens when the given program or some phrase of it does not type-
check. As discussed earlier (Chapter 9), we do not want the type checker to “throw”
in the Haskell sense. Instead, we expect to observe failure of type checking on the
basis of wrapping the result types of the type checker in the Maybe monad.

Here is how we expect to use the type checker:

Interactive Haskell session:

I interpret TypeChecker.algebra euclideanDiv (fromList [("x", IntType), ("y", IntType)])
Just (fromList [("q", IntType), ("r", IntType), ("x", IntType), ("y", IntType)])

That is, we type-check the sample program for Euclidean division We supply
enough type context for the arguments x and y. Type checking infers that the pro-
gram variables q and r are of type IntType.

The simple signature introduced above (Illustration 12.25) does not give us con-
trol to add Maybe to the result types in semantic domains. We need a more general,
monadic signature as follows:

Illustration 12.29 (Monadic semantic algebras)

Haskell module Language.BIPL.MonadicAlgebra.Signature

−− Aliases to shorten function signatures
type Trafo m sto = sto→ m sto −− Store transformation
type Obs m sto val = sto→ m val −− Store observation
−− The signature of algebras for interpretation
data Alg m sto val = Alg {

skip' :: Trafo m sto,
assign' :: String→ Obs m sto val→ Trafo m sto,
seq' :: Trafo m sto→ Trafo m sto→ Trafo m sto,
...

}

That is, the type synonyms Trafo and Obs at the top (lines 1–2) for transformers
and observers wrap the result in a type constructor m. The compositional scheme
for monadic algebras is the same as for non-monadic ones (Illustration 12.26). We
define an algebra for type checking as follows.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/MonadicAlgebra/Signature.hs

12.5 Abstract Interpretation 387

Illustration 12.30 (An algebra for type checking)

Haskell module Language.BIPL.MonadicAlgebra.TypeChecker

1 data Type = IntType | BoolType
2 type VarTypes = Map String Type
3 algebra :: Alg Maybe VarTypes Type
4 algebra = Alg {
5 skip' = Just,
6 assign' = λ x f m→ f m >>=λ t→
7 case lookup x m of
8 (Just t')→ guard (t==t') >> Just m
9 Nothing→ Just (insert x t m),

10 seq' = flip (<=<),
11 if’ = λ f g h m→ do
12 t← f m
13 guard (t==BoolType)
14 m1← g m
15 m2← h m
16 guard (m1==m2)
17 Just m1,
18 while' = λ f g m→ do
19 t← f m
20 guard (t==BoolType)
21 m'← g m
22 guard (m==m')
23 Just m,
24 intconst' = const (const (Just IntType)),
25 var' = λ x m→ lookup x m,
26 unary' = λ o f m→ f m >>=λ t→
27 case (o, t) of
28 (Negate, IntType)→ Just IntType
29 (Not, BoolType)→ Just BoolType
30 _→ Nothing,
31 binary' = λ o f g m→ ...
32 }

We discuss the first few record components as follows:

skip′ The transformer returns the given variable-type map as is (line 5).
assign′ The right-hand side expression is type-checked and its type, if any, is

bound to t (line 6). The variable-type map m is consulted to see whether or not
the left-hand side variable x has an associated type (line 7). If there is a type, it
must be equal to t (line 8); otherwise, the map is adapted (line 9).

seq′ Flipped monadic function composition composes type checking for the two
statements (line 10).

if′ The condition is type-checked and its type, if any, is bound to t (line 12); the
guard checks that t equals BoolType (line 13). The then- and else-branches are
type-checked for the same input map m and the result maps, if any, are bound
to m1 and m2 (lines 14–15). The two maps are checked to be equal; this is one

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/MonadicAlgebra/TypeChecker.hs

388 12 A Suite of Metaprogramming Techniques

sound option for if-statements (Section 9.7.1) (line 16), and either of them (in
fact, m1) is finally returned (line 17).

Exercise 12.16 (Fixed-point semantics of while-loops) [Basic level]
Why does the semantic combinator while' for type checking not involve a fixed-point
computation, whereas it does in the case of standard semantics?

Exercise 12.17 (Algebras with monadic binding) [Intermediate level]
Would it make sense to factor out monadic binding, as exercised extensively in the
algebra above, into the compositional scheme?

12.5.5.2 A Sign-Detection Interpreter

Let us set up a test case for sign detection first. We pick a program that involves
a while-loop so that we are bound to also discuss the intricacies of fixed-point se-
mantics. In fact, we offer two variations on a program computing the factorial of an
argument x in the hope that sign detection works equally well for these variations;
see below.

Illustration 12.31 (A program for the factorial (V1))

BIPL resource languages/BIPL/samples/factorialV1.bipl

// Assume x to be positive
y = 1;
i = 1;
while (i <= x) {

y = y * i;
i = i + 1;

}

Illustration 12.32 (A program for the factorial (V2))

BIPL resource languages/BIPL/samples/factorialV2.bipl

// Assume x to be positive
y = 1;
while (x >= 2) {

y = y * x;
x = x − 1;

}

http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/factorialV1.bipl
http://github.com/softlang/yas/tree/springer/languages/BIPL
http://github.com/softlang/yas/tree/springer/languages/BIPL/samples/factorialV2.bipl

12.5 Abstract Interpretation 389

We want sign detection to infer that the variable y is positive after execution
of the program. As we will see, the minor idiomatic differences between the two
variants will cause a challenge for the program analysis. That is, an initial, more
straightforward version of the analysis will fail to predict the sign of y in the second
variant. A refined, more complex version will succeed, though.

Here is how we expect the program analysis for sign detection to work:

Interactive Haskell session:

I interpret analysis facv1 (fromList [("x", Left Pos)])
fromList [("i", Left Pos), ("x", Left Pos), ("y", Left Pos)]

That is, applying the analysis to the first variant of the factorial code (facv1) and
setting up x with sign Pos as a precondition, we find that y has sign Pos after program
execution; the signs for the other program variables also make sense.

We define an algebra for sign detection as follows.

Illustration 12.33 (An algebra for sign detection)

Haskell module Language.BIPL.Analysis.BasicAnalysis

1 type Property = Either Sign CpoBool
2 type VarProperties = Map String Property
3 algebra :: Alg VarProperties Property
4 algebra = a where a = Alg {
5 skip' = id,
6 assign' = λ n f m→ insert n (f m) m,
7 seq' = flip (.),
8 if’ = λ f g h m→
9 let Right b = f m in

10 case b of
11 (ProperBool True)→ g m
12 (ProperBool False)→ h m
13 BottomBool→ bottom
14 TopBool→ g m `lub` h m,
15 while' = λ f g→ fix' (λ x→ if’ a f (x . g) id) (const bottom),
16 intconst' = λ i→ const (Left (fromInteger (toInteger i))),
17 var' = λ n m→ m!n,
18 unary' = λ o f m→
19 case (o, f m) of
20 (Negate, Left s)→ Left (negate s)
21 (Not, Right b)→ Right (cpoNot b),
22 binary' = λ o f g m→ ...
23 }

We discuss the semantic combinators one by one as follows:

skip′, assign′, seq′ These cases (lines 5–7) are handled in the same manner as
in the standard semantics. That is, it does not matter if we operate on concrete or
abstract stores when it comes to the empty statement, assignment, and sequential
composition.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Analysis/BasicAnalysis.hs

390 12 A Suite of Metaprogramming Techniques

if′ There is a case discrimination with respect to the truth value computed for the
condition of the if-statement (lines 8–14); the first two cases correspond to those
also present in the standard semantics (True and False, lines 11–12). The third
case (line 13) applies when the truth value is not (yet) defined, in which case the
resulting variable-property map is also undefined, i.e., bottom. The fourth case
(line 14) applies when the truth value is “over-defined”, i.e., the analysis cannot
derive any precise value, in which case the least upper bound of the variable-
property maps for the then- and else-branches are computed. This is discussed in
more detail below.

while′ A fixed point is computed in a manner similar to the standard seman-
tics (line 15), except that a different fixed-point combinator fix' is assumed here,
which aims at finding a fixed point computationally and effectively by starting
from an initial approximation bottom. This is discussed in more detail below.

intconst′ The constant is mapped to a sign by plain abstraction (line 16), i.e., the
Int is first mapped to an Integer so that the fromInteger member of the type class
Num, as discussed above (Illustration 12.28), can be applied.

var′ This case (line 17) is handled in the same manner as in the standard seman-
tics.

unary′ and binary′ Just as in the standard semantics, operations are applied to
the arguments, except that we operate on the abstract domains here: Sign and
CpoBool.

One crucial aspect is the treatment of if-statements in the case where the truth
value for the condition cannot be precisely determined. In this case, the analysis
approximates the resulting property-type map by simply assuming that either of the
two branches may be executed and, thus, the least upper bound (LUB) of the two
branches is taken. Here we rely on LUBs on maps to be defined in a pointwise
manner as follows.

Illustration 12.34 (Partial order on maps with pointwise LUB)

Haskell module Data.CPO.Map

instance (Ord k, CPO v) => CPO (Map k v) where
pord x y = and (map (f y) (toList x))

where f y (k,v) = pord v (y!k)
lub x y = foldr f y (toList x)

where f (k,v) m = Data.Map.insert k (lub v (y!k)) m
instance (Ord k, CPO v) => Bottom (Map k v) where

bottom = empty

If the two branches of an if-statement disagree in the sign of a variable (Pos
versus Neg versus Zero), then the combined value is Top. This causes a precision
challenge, to be discussed in a second.

Another crucial aspect is the treatment of while-loops in terms of the required
fixed-point computation. We a dedicated fixed-point combinator as follows.

http://github.com/softlang/yas/tree/springer/lib/Haskell/Data/CPO/Map.hs

12.5 Abstract Interpretation 391

Illustration 12.35 (Fixed-point computation with iterands)

Haskell module Language.BIPL.Analysis.Fix

fix' :: Eq a => ((a→ a)→ a→ a)→ (a→ a)→ a→ a
fix' h i x = limit (iterate h i)

where limit (b1:b2:bs) = if b1 x == b2 x then b1 x else limit (b2:bs)

This combinator is polymorphic, but let us explain it in terms of the ab-
stract domains at hand. The type variable a proxies for abstract stores (i.e., type
VarProperties). Thus, the combinator, in this instance, returns an abstract store trans-
former. It is parameterized in the “transformer transformer” h, from which we can
take a fixed point, an initial transformer i to start off the iteration, and an abstract
store x. With iterate, the combinator builds an infinite list by applying h to i 0, 1, 2,
... number of times. With the local helper limit, the combinator finds the position in
the list such that the applications of two consecutive elements b1 and b2 to x are the
same; b1 is thus the fixed point, i.e., the store transformer for the while-loop.

We are now ready to apply the program analysis:

Interactive Haskell session:

I interpret BasicAnalysis.algebra facv1 (fromList [("x", Left Pos)])
fromList [("i", Left Pos), ("x", Left Pos), ("y", Left Pos)]
- -
I interpret BasicAnalysis.analysis facv2 (fromList [("x", Left Pos)])
fromList [("x", Left TopSign), ("y", Left TopSign)]

Our analysis finds the expected sign for the first variant (Illustration 12.31); it
fails for the second variant (Illustration 12.32), as it reports TopSign for y. Generally,
program analysis (whether based on abstract interpretation or not) may be chal-
lenged by such precision issues. In this particular case, the origin of the problem lies
in the handling of if-statements. The abstract store transformer for an if-statement
will assign TopSign all too easily to variables whenever the condition evaluates to
TopBool which may happen easily. Consider the second variant again; variable x is
decremented in the loop body and, by the rules for signs, the sign of x is going to be
TopSign. Thus, the truth value of the loop’s condition is going to be TopBool.

Let us hint at a possible improvement. Given the abstract input store m for the if-
statement, we do not simply compute the abstract output stores for the two branches
from the given map m and combine them, but instead determine a smaller abstract
store to serve as the input for each branch. For the then-branch, we determine the
largest store such that the condition evaluates to True, and likewise for the else-
branch. We revise the algebra accordingly as follows.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Analysis/Fix.hs

392 12 A Suite of Metaprogramming Techniques

Illustration 12.36 (A refined algebra for sign detection)

Haskell module Language.BIPL.Analysis.RefinedAnalysis

1 algebra :: Alg VarProperties Property
2 algebra = a where a = Alg {
3 ...
4 if’ = λ f g h m→
5 let Right b = f m in
6 case b of
7 (ProperBool True)→ g m
8 (ProperBool False)→ h m
9 BottomBool→ bottoms m

10 TopBool→ g (feasible True f m) `lub` h (feasible False f m)
11 where feasible b f m = lublist (bottoms m) [m' |
12 m'← maps (keys m),
13 m' `pord` m,
14 Right (ProperBool b) `pord` f m'],
15 ...
16 }

The refinement concerns the TopBool case for if’ (lines 10–14). That is, g and h
are not directly applied to m, as before. Instead, a variable-property map is computed
for each branch by the function feasible. This function generates all maps m' such
that they assign properties to the same variables as in m (line 12), they are less
defined than or equally defined as m (line 13), and they permit the evaluation of the
condition f for the given Boolean value b (line 14).

We apply the refined program analysis as follows:

Interactive Haskell session:

I interpret RefinedAnalysis.algebra facv1 (fromList [("x", Left Pos)])
fromList [("i", Left Pos), ("x", Left Pos), ("y", Left Pos)]
- -
I interpret RefinedAnalysis.algebra facv2 (insert "x" (Left Pos) empty)
fromList [("x", Left TopSign), ("y", Left Pos)]

Thus, we infer sign Pos for y for both variants of the program now. Nevertheless,
there is room for improvement, as illustrated by the following exercises.

Exercise 12.18 (More precise domains) [Intermediate level]
As the analysis stands, when applied to the second variant of the factorial program,
it maps x to Top. Refine the analysis so that it can make a more precise prediction.
This exercise may require an adaptation of the abstract domains for signs.

http://github.com/softlang/yas/tree/springer/languages/BIPL/Haskell/Language/BIPL/Analysis/RefinedAnalysis.hs

Exercise 12.19 (Precise squaring) [Intermediate level]
The present section started with an example in which the sign of an input vari-
able x was not fixed (Illustration 12.24) and, thus, BottomSign should be as-
signed to x. The analysis, as it stands, would be too imprecise to serve for
this example. For instance, consider squaring x. Per the rules we would assign
BottomSign*BottomSign = BottomSign to x*x, even though we “know” that the result
of squaring a number x has sign Zero or Pos no matter what the sign of x. Refine the
analysis accordingly.

The present section is summarized by means of a recipe.

Recipe 12.5 (Design of an abstract interpreter).

Interpreter Pick a compositional interpreter (Recipe 11.1) from which to
start.

Abstract domains Define the abstract domains as abstraction from the con-
crete domains in the underlying interpreter so that the properties of interest
(e.g., signs) are modeled. Abstract domains include bottom (⊥ = “unde-
fined”) and top (> = “overdefined”) as abstract values, subject to a partial
order for undefinedness.

Test cases Set up test cases for the abstract interpreter. A test case consists of
an input term and the expected result of the analysis, thereby exercising the
abstract domains. A positive test case does not exercise top for the result.
Explore the precision the analysis by also incorporating negative test cases,
as variations on positive test cases, for which the analysis returns top.

Parameterization Factor the compositional interpreter to become paramet-
ric in the semantic domains and semantic combinators, thereby enabling
the use of the abstract domains for the analysis at hand.

Testing Test the abstract interpreter in terms of the test cases.

Summary and Outline

We have presented term rewriting and attribute grammars as computational
paradigms for developing certain kinds of metaprograms in a more disciplined
way. Term rewriting fits well with rule-based transformational problems, for exam-
ple, refactoring and optimization. Attribute grammars fit well with tree-annotation
problems and, specifically, with translations and analyses. We have also presented
(compile-time) multi-stage programming and partial evaluation as powerful pro-
gram optimization techniques and abstract interpretation as a semantics-based

12.5 Abstract Interpretation 393

394 12 A Suite of Metaprogramming Techniques

method for analysis. Multi-stage programming serves the purpose of program gen-
eration by allowing one to derive optimized code based on appropriately “quasi-
quoted code and splices”. Partial evaluation serves the purpose of program special-
ization by allowing one to derive optimized code based on an appropriately refined
interpreter, which, in the case we considered, combines function inlining and mem-
oization for arguments. Abstract interpretation may serve, for example, the purpose
of optimization.

This ends the technical development presented in this book. We will now wrap
up the book in the Postface.

References

1. Adams, M.: Towards the essence of hygiene. In: Proc. POPL, pp. 457–469. ACM (2015)
2. Alblas, H.: Attribute evaluation methods. In: Proc. SAGA, LNCS, vol. 545, pp. 48–113.

Springer (1991)
3. Alblas, H., Melichar, B. (eds.): Attribute Grammars, Applications and Systems, International

Summer School SAGA, 1991, Proceedings, LNCS, vol. 545. Springer (1991)
4. Bagge, A.H., Lämmel, R.: Walk your tree any way you want. In: Proc. ICMT, LNCS, vol.

7909, pp. 33–49. Springer (2013)
5. Boyland, J.T.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)
6. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language and

toolset for program transformation. Sci. Comput. Program. 72(1-2), 52–70 (2008)
7. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: Tagless staged inter-

preters for simpler typed languages. J. Funct. Program. 19(5), 509–543 (2009)
8. Cook, W.R., Lämmel, R.: Tutorial on online partial evaluation. In: Proc. DSL, EPTCS, vol. 66,

pp. 168–180 (2011)
9. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61(3), 190–210

(2006)
10. Cordy, J.R.: Excerpts from the TXL cookbook. In: GTTSE 2009, Revised Papers, LNCS, vol.

6491, pp. 27–91. Springer (2011)
11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In: Proc. POPL, pp. 238–252. ACM
(1977)

12. Cousot, P., Cousot, R.: Grammar semantics, analysis and parsing by abstract interpretation.
Theor. Comput. Sci. 412(44), 6135–6192 (2011)

13. Cousot, P., Cousot, R., Logozzo, F., Barnett, M.: An abstract interpretation framework for
refactoring with application to extract methods with contracts. In: Proc. OOPSLA, pp. 213–
232. ACM (2012)

14. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Syst. J. 45(3), 621–646 (2006)

15. Czarnecki, K., O’Donnell, J.T., Striegnitz, J., Taha, W.: DSL implementation in MetaOCaml,
Template Haskell, and C++. In: Domain-Specific Program Generation, International Seminar,
Dagstuhl Castle, Germany, March 23-28, 2003, Revised Papers, LNCS, vol. 3016, pp. 51–72.
Springer (2004)

16. Dershowitz, N.: A taste of rewrite systems. In: Functional Programming, Concurrency, Simu-
lation and Automated Reasoning: International Lecture Series 1991-1992, McMaster Univer-
sity, Hamilton, Ontario, Canada, LNCS, vol. 693, pp. 199–228. Springer (1993)

17. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer
Science B: Formal Methods and Semantics, pp. 243–320. North-Holland (1990)

18. van Deursen, A., Klint, P., Tip, F.: Origin tracking. J. Symb. Comput. 15(5/6), 523–545 (1993)

References 395

19. Erdweg, S.: Extensible languages for flexible and principled domain abstraction. Ph.D. thesis,
Philipps-Universität Marburg (2013)

20. Erwig, M., Ren, D.: Monadification of functional programs. Sci. Comput. Program. 52, 101–
129 (2004)

21. Futamura, Y.: Partial evaluation of computation process — an approach to a compiler-
compiler. Higher Order Symbol. Comput. 12, 381–391 (1999)

22. Hatcliff, J.: Foundations of partial evaluation and program specialization (1999). Available at
http://people.cis.ksu.edu/~hatcliff/FPEPS/

23. Heckel, R.: Graph transformation in a nutshell. ENTCS 148(1), 187–198 (2006)
24. Hedin, G.: An overview of door attribute grammars. In: Proc. CC, LNCS, vol. 786, pp. 31–51.

Springer (1994)
25. Hedin, G.: An introductory tutorial on JastAdd attribute grammars. In: GTTSE 2009, Revised

Papers, LNCS, vol. 6491, pp. 166–200. Springer (2011)
26. Hudak, P.: Modular domain specific languages and tools. In: Proc. ICSR, pp. 134–142. IEEE

(1998)
27. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program generation.

Prentice-Hall, Inc. (1993)
28. de Jonge, M.: Pretty-printing for software reengineering. In: Proc. ICSM 2002, pp. 550–559.

IEEE (2002)
29. de Jonge, M., Visser, E.: An algorithm for layout preservation in refactoring transformations.

In: Proc. SLE 2011, LNCS, vol. 6940, pp. 40–59. Springer (2012)
30. Jonnalagedda, M., Coppey, T., Stucki, S., Rompf, T., Odersky, M.: Staged parser combinators

for efficient data processing. In: Proc. OOPSLA, pp. 637–653. ACM (2014)
31. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci. Com-

put. Program. 72(1-2), 31–39 (2008)
32. Kastens, U., Pfahler, P., Jung, M.T.: The Eli system. In: Proc. CC, LNCS, vol. 1383, pp.

294–297. Springer (1998)
33. Kastens, U., Waite, W.M.: Modularity and reusability in attribute grammars. Acta Inf. 31(7),

601–627 (1994)
34. Kiselyov, O.: Typed tagless final interpreters. In: Generic and Indexed Programming – In-

ternational Spring School, SSGIP 2010, Revised Lectures, LNCS, vol. 7470, pp. 130–174.
Springer (2012)

35. Kiselyov, O.: The design and implementation of BER MetaOCaml – System description. In:
Proc. FLOPS, LNCS, vol. 8475, pp. 86–102. Springer (2014)

36. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language for source code
analysis and manipulation. In: Proc. SCAM, pp. 168–177. IEEE (2009)

37. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming with Rascal. In: GTTSE
2009, Revised Papers, LNCS, vol. 6491, pp. 222–289. Springer (2011)

38. Klonatos, Y., Koch, C., Rompf, T., Chafi, H.: Building efficient query engines in a high-level
language. PVLDB 7(10), 853–864 (2014)

39. Klop, J.W.: Term rewriting systems. In: Handbook of Logic in Computer Science, pp. 1–117.
Oxford University Press (1992)

40. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory 2(2), 127–
145 (1968)

41. Kort, J., Lämmel, R.: Parse-tree annotations meet re-engineering concerns. In: Proc. SCAM,
pp. 161–168. IEEE (2003)

42. Lämmel, R.: Declarative aspect-oriented programming. In: Proc. PEPM, pp. 131–146. Uni-
versity of Aarhus (1999)

43. Lämmel, R.: Reuse by program transformation. In: Selected papers SFP 1999, Trends in
Functional Programming, vol. 1, pp. 144–153. Intellect (2000)

44. Lämmel, R.: Scrap your boilerplate – Prologically! In: Proc. PPDP, pp. 7–12. ACM (2009)
45. Lämmel, R., Jones, S.L.P.: Scrap your boilerplate: a practical design pattern for generic pro-

gramming. In: Proc. TLDI, pp. 26–37. ACM (2003)
46. Lämmel, R., Jones, S.L.P.: Scrap more boilerplate: reflection, zips, and generalised casts. In:

Proc. ICFP, pp. 244–255. ACM (2004)

http://people.cis.ksu.edu/~hatcliff/FPEPS/

396 12 A Suite of Metaprogramming Techniques

47. Lämmel, R., Jones, S.L.P.: Scrap your boilerplate with class: extensible generic functions. In:
Proc. ICFP, pp. 204–215. ACM (2005)

48. Lämmel, R., Riedewald, G.: Reconstruction of paradigm shifts. In: Proc. WAGA, pp. 37–56
(1999). INRIA Technical Report

49. Lämmel, R., Thompson, S.J., Kaiser, M.: Programming errors in traversal programs over struc-
tured data. Sci. Comput. Program. 78(10), 1770–1808 (2013)

50. Lämmel, R., Visser, E., Visser, J.: The essence of strategic programming (2002). 18
p.; Unpublished draft; Available at http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.198.8985&rep=rep1&type=pdf

51. Lämmel, R., Visser, J.: Typed combinators for generic traversal. In: Proc. PADL, LNCS, vol.
2257, pp. 137–154. Springer (2002)

52. Lämmel, R., Visser, J.: A Strafunski application letter. In: Proc. PADL, LNCS, vol. 2562, pp.
357–375. Springer (2003)

53. Landauer, C., Bellman, K.L.: Generic programming, partial evaluation, and a new program-
ming paradigm. In: Proc. HICSS-32. IEEE (1999)

54. Lengauer, C., Taha, W. (eds.): Special issue on the first MetaOCaml Workshop 2004. Sci.
Comput. Program. (2006)

55. McNamee, D., Walpole, J., Pu, C., Cowan, C., Krasic, C., Goel, A., Wagle, P., Consel, C.,
Muller, G., Marlet, R.: Specialization tools and techniques for systematic optimization of sys-
tem software. ACM Trans. Comput. Syst. 19(2), 217–251 (2001)

56. Mens, T.: Model Transformation: A Survey of the State of the Art, pp. 1–19. John Wiley &
Sons, Inc. (2013)

57. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, corrected 2nd printing
edn. Springer (2004)

58. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergraduate Topics
in Computer Science. Springer (2007)

59. Porkoláb, Z., Sinkovics, Á., Siroki, I.: DSL in C++ template metaprogram. In: CEFP 2013,
Revised Selected Papers, LNCS, vol. 8606, pp. 76–114. Springer (2015)

60. Rebernak, D., Mernik, M., Henriques, P.R., Pereira, M.J.V.: AspectLISA: An aspect-oriented
compiler construction system based on attribute grammars. ENTCS 164(2), 37–53 (2006)

61. Renggli, L.: Dynamic language embedding with homogeneous tool support. Ph.D. thesis,
Universität Bern (2010)

62. Renggli, L., Gîrba, T., Nierstrasz, O.: Embedding languages without breaking tools. In: Proc.
ECOOP, LNCS, vol. 6183, pp. 380–404. Springer (2010)

63. Rompf, T.: The essence of multi-stage evaluation in LMS. In: A List of Successes That Can
Change the World – Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday,
LNCS, vol. 9600, pp. 318–335. Springer (2016)

64. Rompf, T., Amin, N., Moors, A., Haller, P., Odersky, M.: Scala-Virtualized: linguistic reuse
for deep embeddings. Higher Order Symbol. Comput. 25(1), 165–207 (2012)

65. van Rozen, R., van der Storm, T.: Origin tracking + + text differencing = = textual model
differencing. In: Proc. ICMT, LNCS, vol. 9152, pp. 18–33. Springer (2015)

66. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transforma-
tion. World Scientific Publishing Company (1997). Volume 1: Foundations

67. Seefried, S., Chakravarty, M.M.T., Keller, G.: Optimising embedded DSLs using Template
Haskell. In: Proc. GPCE, LNCS, vol. 3286, pp. 186–205. Springer (2004)

68. Shali, A., Cook, W.R.: Hybrid partial evaluation. In: Proc. OOPSLA, pp. 375–390. ACM
(2011)

69. Sheard, T., Peyton Jones, S.L.: Template meta-programming for Haskell. SIGPLAN Not.
37(12), 60–75 (2002)

70. Siek, J.G., Taha, W.: A semantic analysis of C++ templates. In: Proc. ECOOP, LNCS, vol.
4067, pp. 304–327. Springer (2006)

71. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure embedding of attribute grammars. Sci. Comput.
Program. 78(10), 1752–1769 (2013)

72. Smaragdakis, Y.: Structured program generation techniques. In: GTTSE 2015, Revised Pa-
pers, LNCS, vol. 10223, pp. 154–178. Springer (2017)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.8985&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.8985&rep=rep1&type=pdf

References 397

73. Stoltenberg-Hansen, V., Lindström, I., Griffor, E.R.: Mathematical Theory of Domains. Cam-
bridge University Press (1994)

74. Sujeeth, A.K., Brown, K.J., Lee, H., Rompf, T., Chafi, H., Odersky, M., Olukotun, K.:
Delite: A compiler architecture for performance-oriented embedded domain-specific lan-
guages. ACM Trans. Embedded Comput. Syst. 13(4), 1–25 (2014)

75. Swierstra, S.D., Alcocer, P.R.A., Saraiva, J.: Designing and implementing combinator lan-
guages. In: Advanced Functional Programming, Third International School, Braga, Portugal,
September 12-19, 1998, Revised Lectures, LNCS, vol. 1608, pp. 150–206. Springer (1999)

76. Taha, W.: A gentle introduction to multi-stage programming. In: Domain-Specific Program
Generation, International Seminar, Dagstuhl Castle, Germany, March 23-28, 2003, Revised
Papers, LNCS, vol. 3016, pp. 30–50. Springer (2004)

77. Taha, W.: A gentle introduction to multi-stage programming, part II. In: GTTSE 2007, Revised
Papers, LNCS, vol. 5235, pp. 260–290. Springer (2008)

78. Taha, W., Sheard, T.: Multi-stage programming. In: Proc. ICFP, p. 321. ACM (1997)
79. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit annotations. Theor.

Comput. Sci. 248(1-2), 211–242 (2000)
80. Tisi, M., Mart/´ınez, S., Jouault, F., Cabot, J.: Refining models with rule-based model trans-

formations. Tech. rep., Inria (2011). Research Report RR-7582. pp.18
81. Ulke, B., Steimann, F., Lämmel, R.: Partial evaluation of OCL expressions. In: Proc. MOD-

ELS, pp. 63–73. IEEE (2017)
82. van den Brand, M., Sellink, M.P.A., Verhoef, C.: Generation of components for software reno-

vation factories from context-free grammars. Sci. Comput. Program. 36(2-3), 209–266 (2000)
83. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute grammar system.

Sci. Comput. Program. 75(1-2), 39–54 (2010)
84. Veldhuizen, T.: Template metaprograms. C++ Rep. 7(4), 36––43 (1995)
85. Visser, E.: A survey of strategies in rule-based program transformation systems. J. Symb.

Comput. 40(1), 831–873 (2005)
86. Visser, E., Benaissa, Z., Tolmach, A.: Building program optimizers with rewriting strategies.

In: Proc. ICFP, pp. 13–26. ACM Press (1998)
87. Visser, J.: Visitor combination and traversal control. In: Proc. OOPSLA, pp. 270–282. ACM

(2001)
88. Williams, K., Wyk, E.V.: Origin tracking in attribute grammars. In: Proc. SLE, LNCS, vol.

8706, pp. 282–301. Springer (2014)

Postface

Abstract We wrap up this book by (i) restating the importance of competence soft-
ware languages in the broader context of computer science and IT; (ii) summarizing
the key concepts of software languages as captured in this book; (iii) identifying the
omissions in this book, to the extent they are clear to the author; (iv) listing comple-
mentary textbooks; and (v) listing relevant academic conferences. In this manner,
we also provide pointers to further reading of different kinds.

The importance of Software Language Engineering

Software language engineering (SLE) basically proxies for software engineering
with awareness of the languages involved such that software artifacts are treated in
a syntax- and semantics-aware manner and particular attention is paid to software
language definition and implementation, as well as other phases of the software
language lifecycle. A “philosophical” discussion of the term “software languages”
and the engineering thereof can be found elsewhere [39].

SLE is becoming a fundamental competence in computer science, best compa-
rable to competences in algorithms, data structures, networking, security, software
architecture, design, testing, formal methods, data mining, and artificial intelligence.
The importance of SLE competence has increased in recent years and may continue
to increase because of general developments in computer science. That is, while the
classic language implementation tasks, i.e., the design and implementation of in-
terpreters and compilers for mostly general-purpose programming languages, affect
only a few software engineers directly, software engineers and other IT profession-
als and scientists are increasingly ending up in more diverse contexts with relevance
to SLE such as the following:

• Design, implementation, and usage of internal and external DSLs that support
problem or technical domains, for example, user interfaces, web services, con-
figuration, testing, data exchange, interoperability, deployment, and distribution.

399© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7

https://doi.org/10.1007/978-3-319-90800-7

400 Postface

• Software reverse engineering and re-engineering in many forms, for example,
analysis of projects regarding their dependence on open-source software, inte-
gration of systems, and migration of systems constrained by legislation or tech-
nology.

• Data extraction in the context of data mining, information retrieval, machine
learning, mining software repositories, big data analytics, data science, compu-
tational social science, digital forensics, and artificial intelligence, with diverse
input artifacts to be parsed and interchange formats to conform to.

Software Languages: Key Concepts

What are the key concepts regarding software languages? In this particular book, we
have identified, explained, illustrated, and connected some concepts, as summarized
below.

The basic starting point is (object program) representation of artifacts that are
software language elements so that they are amenable to programmatic processing,
i.e., metaprogramming. Thus, a metaprogram is a program that processes other pro-
grams or software artifacts that are elements of software languages. Ordinary pro-
gramming languages may serve for metaprogramming, but we may also use more
specialized metaprogramming languages or systems with dedicated metaprogram-
ming expressiveness (e.g., for term rewriting or concrete object syntax) and infras-
tructure (e.g., for template processing or parser generation).

The syntax of a software language defines the language as a set of strings, trees,
or graphs; it also defines the structure of software language elements, thereby fa-
cilitating their representation in metaprograms. Different formalisms may be used
for syntax definition, for example, grammars, signatures, or metamodels. We may
check for conformance, i.e., given a string, a tree, or a graph, we may check whether
it complies with a given syntax definition. We may also engage in parsing, such that
we analyze the structure of some input and possibly map language elements from
concrete syntax to abstract syntax. We may further engage in formatting such that
we render language elements according to some concrete syntax.

The syntax (and semantics) of syntax definitions gives rise to a metametalevel.
It is important to master representation and syntax across technological spaces [76]
because one is likely to encounter different spaces in practice.

The semantics of a software language defines the meaning of language elements.
A software language engineer may not be interested in the formal study of seman-
tics in itself, but may be very well interested in the applications of semantics for the
purpose of (metaprograms for) interpretation (i.e., actual or abstract interpretation),
semantic analysis (e.g., well-formedness or type checking), transformation (e.g., op-
timization or refactoring), and translation (e.g., compilation or code generation in a
DSL implementation). We contend that there is simply no reasonable way to author
metaprograms without some degree of understanding of the operational or denota-
tional semantics of the object and metalanguages involved. All these metaprograms

Postface 401

are syntax-driven and essentially rule-based in how they interpret, analyze, trans-
form, or translate object programs. In more disciplined cases, these metaprograms
may obey the principle of compositionality (i.e., some kind of structural recursion).

Omissions in This Book

This book describes the author’s particular view of the software language world and
it is limited by what can be reasonably fitted into a book, also taking into account
a certain target audience and making certain assumptions about the background of
readers, as discussed in the Preface. Thus, omissions are to be expected, and we
itemize them here. We do this also to support further reading, maybe also in the
context of research-oriented course designs. We group these omissions by major
software language topics.

Meta-programming In this book, we favor a grammarware- and
metaprogramming-based view of software languages; we have comple-
mented this view with occasional excursions into the technological space of
model-driven engineering (metamodeling, model transformation) [10, 125].
We implemented transformations in the style of rewriting; we did not properly
describe or exercise model transformation languages [92, 26, 58, 2, 60]. The
coverage of metaprogramming is limited in this book. We focused mainly
on source-code analysis and manipulation, where source code should again
be understood in a broad sense, not limited to programming languages. We
managed an excursion to program generation. We did not cover reflection or
limited (disciplined) concepts derived from reflection [67, 36, 30], bytecode
analysis and manipulation [27, 21], higher-level programming constructs
for modularity with lower-level semantics involving reflection, for example,
context-oriented programming (COP) [50], aspect-oriented programming
(AOP) [65, 78, 149, 64, 66], or morphing [54].

Domain-specific languages This book provides a backbone regarding represen-
tation, syntax, parsing, formatting, basic language concepts, interpretation, and
typing for DSLs or software languages generally. Coverage of domains was very
sparse; some additional problem domains for DSLs are, for example, telecom
services, insurance products, industrial automation, medical device configura-
tion, ERP configuration, and phone UI applications [139]. The book also left out
the interesting topic of domain-specific optimization [75, 12, 68]. We adopted
a basic metaprogramming approach without explicit dependence on or system-
atic discussion of more advanced features of metaprogramming languages and
systems [52, 151, 152, 93, 118, 19, 35, 32, 29, 143, 124], and also without cov-
erage of DSL development with language workbenches [33, 34, 62, 61, 147,
145, 148, 141]. We focused on textual concrete syntax; we did not cover visual
syntax [88, 96, 73], in particular, we did not cover it in terms of editing. We
also omitted coverage of syntax-directed editing [11, 119] and projectional edit-
ing [142, 146, 144]. Overall, we did not cover the lifecycle of DSLs too well; we

402 Postface

provided some implementation options, but we were very sparse on design. Some
recommended further reading is [52, 151, 152, 93, 118, 19, 35, 32, 29, 143, 124].
There were also specific topics on the software language lifecycle that fell off the
desk, unfortunately, for example, test-data generation [114, 89, 13, 48, 17, 134,
136, 47, 77, 59, 82] and language-usage analysis [72, 43, 80, 7, 22, 38, 81].

Compilation As compiler construction is a well-established subject with excel-
lent textbook coverage (see the next section), the present book makes no at-
tempt at covering compiler construction. It so happens that simple aspects of
frontends and translation were covered, but the more interesting aspects of the
vital use of intermediate representations and high- and low-level optimizations
were not. These days, compiler frameworks, as a form of language infrastruc-
ture possibly including runtime system components, support compiler construc-
tion, for example, LLVM [83], which is widely used, or more specialized frame-
works [28, 115, 37, 20, 86] that target different architectures or optimization
philosophies. Another interesting framework is Graal/Truffle, which combines
aspects of cross-compilation and interpreter specialization [153, 31, 120].

Grammars While we covered tree-based abstract syntax definition by means of
algebraic signatures, we did not discuss the related notion of tree grammars [23].
While we covered graph-based abstract syntax definition (i.e., metamodeling, in-
cluding reference relationships), we did not discuss the related field of graph
grammars [122]. As for string languages, we focused completely focused on
context-free grammars, and did not cover other grammar formalisms such as
regular grammars [53] and parsing expression grammars (PEGs) [40]. Regu-
lar grammars are useful, for example, for efficient scanning [1] and lexical fact
extraction [101, 70]. PEGs provide an alternative formalism for parsing.

Parsing We did not explore grammar classes and we dealt superficially with
parsing algorithms [1, 45], thereby leaving out a discussion of the space of
options with regard to precise recognition, efficiency, restrictions imposed on
the grammar author, and guarantees regarding grammar ambiguities. Increas-
ingly, “generalized” parsing approaches are being used: generalized LR pars-
ing [140, 117], generalized LL parsing [57, 126], LL(∗) [109], and PEGs [40].
We certainly also missed various forms of parsing used in software engineering.
For instance, there are specific forms of grammars (or parsing) such as island or
tolerant grammars, aiming at robustness in the in response to the complexity of
language syntax, diversity of dialects, or handling parser errors in an interactive
context [97, 98, 71, 104].

Semantics and types We covered the basics of semantics and types, aiming at
the pragmatic realization of interpreters and type checkers. While we developed
the basics of operational and denotational semantics, we did not cover some of
the refinements that improve usability, for example, modular operational seman-
tics [100], action semantics [99], and monad transformers [85]. We also did not
cover approaches to semantics that are less directly usable for interpretation –
in particular, all forms of axiomatic semantics [51, 138]. We skipped over the
foundations of formal semantics and type systems; we refer to the next section
for textbooks on programming language theory. We focused on “classical” static

Postface 403

typing; we omitted several advanced concepts, for example, effect systems [102],
liquid types [121], soft typing, gradual typing [18, 130, 131, 132], dependently
typed programming [90, 106, 107, 15], and the scale between static and dynamic
typing [91]. We touched upon type safety, but omitted a proper discussion of the
more general notion of (mechanized) metatheory [113, 4], which might possibly
also depend on theorem provers or proof assistants, for example, Twelf [112, 84],
Coq [8], and Isabelle/HOL [105], or dependently typed programming languages,
for example, Agda [14, 107].

Language concepts We exercised a range of languages for illustration. We did
not intend to cover programming paradigms systematically; see the next section
for textbook recommendations. Various language concepts were not covered, for
example, object-oriented programming (OOP) [55, 16], type dispatch or type
case [44, 24, 25], polytypic or generic functional programming [56, 49, 79], and
information hiding or data abstraction [95, 133, 150]. We covered some parts
of the lambda cube [6]; we did not cover complementary calculi, for example,
process calculi or process algebras (CCS, CSP, π-calculus, etc.) [5, 94, 123] for
concurrent programming.

Complementary Textbooks

This book can be usefully compared and complemented with textbooks in neighbor-
ing areas. In this manner, we may also provide pointers to further reading. We have
classified textbooks into the following categories:

Programming language theory Textbooks in this category cover topics such
as lambda calculi, formal semantics, formal type systems, metatheory, and
program analysis. Examples include Pierce’s “Types and Programming Lan-
guages” [113], Friedman and Wand’s “Essentials of Programming Lan-
guages” [42], and Gunter’s “Semantics of Programming Languages: Structures
and Techniques” [46]. We also refer to Nielson and Nielson’s “Semantics with
Applications: An Appetizer” [103] as an introductory text and Slonneger and
Kurtz’ “Formal Syntax and Semantics of Programming Languages” [135] for a
less formal, more practical approach to programming language theory.
The present book covers only some basic concepts of formal semantics and type
systems, such as interpretation based on big-step and small-step semantics, the
scheme of compositional (denotational) semantics, and type checking – without
covering language concepts deeply, and without properly covering fundamental
aspects such as metatheory (e.g., the soundness property on pairs of semantics
and type system). This book goes beyond textbooks on programming language
theory by covering the lifecycle, syntax implementation (parsing and format-
ting), and metaprogramming with applications to, for example, software reverse
engineering and re-engineering.

Programming paradigms Textbooks in this category cover various paradigms
(such as the imperative, functional, logical, and OO paradigms). The organiza-

404 Postface

tion may be more or less aligned with an assumed ontology of language con-
cepts. Typically, an interpreter-based approach is used for illustration. Examples
include Sebesta’s “Concepts of Programming Languages” [128], Sethi’s “Pro-
gramming Languages: Concepts and Constructs” [129] and Scott’s “Program-
ming Language Pragmatics” [127]. These books also cover, to some extent, pro-
gramming language theory and compiler construction.
The present book is not concerned with a systematic discussion of programming
paradigms and programming language concepts. Nevertheless, the book exer-
cises (in fact, “defines”) languages of different paradigms and discusses various
language concepts in a cursory manner. This book goes beyond textbooks on
programming paradigms by covering metaprogramming broadly, which is not a
central concern in textbooks on paradigms.

Compiler construction This is the classical subject in computer science that, ar-
guably, comes closest to the subject of software languages. Examples of text-
books on compiler construction and overall programming language implemen-
tation include Aho, Lam, Sethi, and Ullman’s seminal “Compilers: Principles,
Techniques, and Tools” [1], Louden’s “Compiler Construction: Principles and
Practice” [87], and Appel’s product line of textbooks such as Appel and Pals-
berg’s “ Modern Compiler Implementation in Java” [3].
The present book briefly discusses compilation (translation), but it otherwise cov-
ers compiler construction at best superficially. For instance, lower-level code op-
timization and code generation are not covered. This book covers language im-
plementation more broadly than textbooks on compiler construction, with regard
to both the kinds of software languages and the kinds of language-based software
components. Most notably, this book covers metaprogramming scenarios other
than compilation, and metaprogramming techniques other than those used in a
typical compiler.

Hybrids There are a number of books that touch upon several of the aforemen-
tioned topics in a significant manner. There is Krishnamurthi’s “Programming
Languages: Application and Interpretation” [74], which combines programming
language theory and programming paradigms in a powerful manner. There is
Ranta’s “Implementing Programming Languages: An Introduction to Compilers
and Interpreters” [116] with coverage of programming paradigms and compiler
construction. There is also Stuart’s “Understanding Computation: From Simple
Machines to Impossible Programs” [137], which is exceptionally broad in scope:
it covers various fundamental topics in computer science, including parsing and
interpretation; it explains all notions covered to the working Ruby programmer
in a pragmatic manner.
The present book aims at a deeper discussion of the implementation and lifecycle
of software languages in the broader context of software engineering, with the
central topic being metaprogramming in the sense of source-code analysis and
manipulation.

Domain-specific languages There are some more or less recent textbooks on
DSLs. Fowler’s “Domain-Specific Languages” [41] discusses relatively basic or
mainstream OO techniques and corresponding patterns for language implemen-

Postface 405

tation and embedding specifically. Kleppe’s “Software Language Engineering:
Creating Domain-Specific Languages Using Metamodels” [69] and Kelly and
Tolvanen’s “Domain-Specific Modeling: Enabling Full Code Generation” [63]
exercise the modeling- and metamodeling-based view of language design and
implementation, as opposed to the use of standard programming languages and
language implementation technology. Voelter et al.’s “DSL Engineering: Design-
ing, Implementing and Using Domain-Specific Languages” [143] focuses on
specific technologies such as MPS, xText, and Stratego/Spoofax. Parr’s “Lan-
guage Implementation Patterns: Techniques for Implementing Domain-Specific
Languages” [108] is a practical guide to using the ANTLR technology for
language implementation. Bettini’s “Implementing Domain-Specific Languages
with Xtext and Xtend” [9] focuses on practitioners specifically interested in the
Xtext stack.
The present book is not limited to domain-specific languages; it discusses soft-
ware languages in a broad sense. Programming languages and semantics-based
techniques such as partial evaluation and abstract interpretation are also covered
to some extent. The book discusses software language engineering without com-
mitment to a specific metaprogramming system.

Software Languages in Academia

Let us now connect the broad area of software languages to some established aca-
demic conference series. In this manner, we will also hint at resources for carrying
out research on software languages. The conferences listed below are loosely or-
dered by decreasing coverage of the software language area. Thus, we start off with
the conferences on Software Language Engineering and close the list with more
specialized conferences focusing on specific aspects of software languages or spe-
cific categories such as programming languages. It goes without saying that this
selection and its ordered presentation, just as much as the characterization of the
individual conferences series, are subjective. We link each conference acronym to
its manifestation in the DBLP database.

• SLE3: Software Language Engineering. This conference series covers the full
range of software language topics in a balanced manner. The conference series
was specifically created to unite the different perspectives on software languages
such as those in the communities of grammarware and modelware.

• SCAM4: Source Code Analysis and Manipulation. This conference series takes
a broad view of source code and covers a wide range of forms and purposes of
software analysis and transformation such as parsing, smells, metrics, slicing,
and clone detection.

3 SLE: http://dblp.uni-trier.de/db/conf/sle/ (at DBLP)
4 SCAM: http://dblp.uni-trier.de/db/conf/scam/ (at DBLP)

http://dblp.uni-trier.de/db/conf/sle/
http://dblp.uni-trier.de/db/conf/scam/

406 Postface

• MODELS5: Model Driven Engineering Languages and Systems. This confer-
ence series covers the field of software languages in terms of modeling, meta-
modeling, and model transformation while assuming an increasingly broad in-
terpretation of modeling etc.

• ECMFA6: European Conference on Model Driven Architecture - Founda-
tions and Applications. This conference series is similar to MODELS.

• MODELSWARD7: Model-Driven Engineering and Software Development.
This conference series is similar to MODELS.

• ICMT8: International Conference on Model Transformation. This conference
series covers the field of software languages in terms of model transformation
while assuming an increasingly broad interpretation of model transformation by
being inclusive in terms of technological spaces.

• MSR9: Mining Software Repositories. This conference series covers analysis of
all kinds of artifacts in the broad sense of software repositories – not just source
code, but also commit messages and bug reports. The conference series goes
beyond the field of software languages by being also inclusive of methods from
the fields of text analysis, natural language processing, information retrieval, ma-
chine learning, and data mining.

• ICPC10: International Conference on Program Comprehension. This con-
ference series focuses on methods and tools for program comprehension, which
includes a wide range of types of software analysis, visualization, cognitive theo-
ries, and other things. Software languages play a key role in terms of the artifacts
to be analyzed.

• SANER11: Software Analysis, Evolution, and Reengineering (formerly WCRE
(Working Conference on Reverse Engineering) and Conference on Software
Maintenance and Reengineering (CSMR)). This conference series covers the
broad areas of software reverse engineering, software re-engineering, and – even
more broadly – software maintenance, software evolution, and software analy-
sis. Software languages play a key role in terms of the artifacts to be analyzed or
transformed.

• ICSME12: International Conference on Software Maintenance and Evolu-
tion (formerly ICSM (International Conference on Software Maintenance)). This
conference series is similar to SANER.

• CC13: Compiler Construction. This conference series focus on language imple-
mentation, specifically compiler construction, which is a classic core component

5 MODELS: http://dblp.uni-trier.de/db/conf/models/ (at DBLP)
6 ECMFA: http://dblp.uni-trier.de/db/conf/ecmdafa/ (at DBLP)
7 MODELSWARD: http://dblp.uni-trier.de/db/conf/modelsward/ (at DBLP)
8 ICMT: http://dblp.uni-trier.de/db/conf/icmt/ (at DBLP)
9 MSR: http://dblp.uni-trier.de/db/conf/msr/ (at DBLP)
10 ICPC: http://dblp.uni-trier.de/db/conf/iwpc/ (at DBLP)
11 SANER: http://dblp.uni-trier.de/db/conf/wcre/ (at DBLP)
12 ICSME: http://dblp.uni-trier.de/db/conf/icsm/ (at DBLP)
13 CC: http://dblp.uni-trier.de/db/conf/cc/ (at DBLP)

http://dblp.uni-trier.de/db/conf/models/
http://dblp.uni-trier.de/db/conf/ecmdafa/
http://dblp.uni-trier.de/db/conf/modelsward/
http://dblp.uni-trier.de/db/conf/icmt/
http://dblp.uni-trier.de/db/conf/msr/
http://dblp.uni-trier.de/db/conf/iwpc/
http://dblp.uni-trier.de/db/conf/wcre/
http://dblp.uni-trier.de/db/conf/icsm/
http://dblp.uni-trier.de/db/conf/cc/

Postface 407

of the software language field. Language implementation aspects other than those
directly relevant to compilation are not systematically covered.

• PEPM14: Partial Evaluation and Semantic-Based Program Manipulation.
This conference series is concerned with program manipulation, partial evalu-
ation, and program generation. The focus is on semantics-based methods and
programming languages (including domain-specific languages) as opposed to en-
gineering and software languages generally.

• ICSE15: International Conference on Software Engineering. This conference
series covers software engineering broadly. A significant percentage of ICSE pa-
pers involve language-centric tools and methods, for example, in the sense of
refactorings, IDEs, and automated testing. Combinations of software language
engineering and empirical software engineering are common – just as in the case
of the MSR conferences.

• ASE16: Automated Software Engineering. This conference series is similar to
ICSE, except that it entirely focuses on automated aspects of software engineer-
ing.

• PLDI17: Programming Language Design and Implementation. This confer-
ence series covers all areas of programming language research, including the de-
sign, implementation, theory, and efficient use of languages. There is a clear fo-
cus on implementation, though, for example, innovative and creative approaches
to compile-time and runtime technology and results from implementations.

• POPL18: Principles of Programming Languages. This conference series covers
all aspects of programming languages and programming systems. Historically,
POPL papers have been theoretical – they develop formal frameworks; more
recently, experimental papers and experience reports have been encouraged.

• ECOOP19: European Conference on Object-Oriented Programming. This
conference series covers all areas of object technology and related soft-
ware development technologies with a focus on foundations (semantics, types,
semantics-based tools, language implementation).

In addition to the established conferences listed above, let us also point out
an emerging conference series, http://programming-conference.
org/, which is associated with a dedicated journal, http://
programming-conference.org/journal/. This conference series
promises, as it develops further, to be very relevant in terms of software language
topics.

It would also be useful to itemize journals in a similar manner, but we leave this
as an “advanced exercise” to the reader. One could, for example, set up and execute a
suitable methodology to review computer-science journals in terms of their coverage

14 PEPM: http://dblp.uni-trier.de/db/conf/pepm/ (at DBLP)
15 ICSE: http://dblp.uni-trier.de/db/conf/icse/ (at DBLP)
16 ASE: http://dblp.uni-trier.de/db/conf/kbse/ (at DBLP)
17 PLDI: http://dblp.uni-trier.de/db/conf/pldi/ (at DBLP)
18 POPL: http://dblp.uni-trier.de/db/conf/popl/ (at DBLP)
19 ECOOP: http://dblp.uni-trier.de/db/conf/ecoop/ (at DBLP)

http://programming-conference.org/
http://programming-conference.org/
http://programming-conference.org/journal/
http://programming-conference.org/journal/
http://dblp.uni-trier.de/db/conf/pepm/
http://dblp.uni-trier.de/db/conf/icse/
http://dblp.uni-trier.de/db/conf/kbse/
http://dblp.uni-trier.de/db/conf/pldi/
http://dblp.uni-trier.de/db/conf/popl/
http://dblp.uni-trier.de/db/conf/ecoop/

408 Postface

of the software language area. To this end, one could follow common guidelines for
a systematic mapping study [110, 111].

Feedback Appreciated

Readers are strongly encouraged to get in touch with the book’s author, who is
looking forward to incorporating any feedback received into a future revision of
this book and to advertise contributed resources. Please see the book’s website20 for
contact information.

References

1. Aho, A., Monica S., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools.
Addison Wesley (2006). 2nd edition

2. Amrani, M., Combemale, B., Lucio, L., Selim, G.M.K., Dingel, J., Traon, Y.L., Vangheluwe,
H., Cordy, J.R.: Formal verification techniques for model transformations: A tridimensional
classification. J. Object Technol. 14(3), 1–43 (2015)

3. Appel, A., Palsberg, J.: Modern Compiler Implementation in Java. Cambridge University
Press (2002). 2nd edition

4. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis,
D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The
PoplMark challenge. In: Proc. TPHOLs, LNCS, vol. 3603, pp. 50–65. Springer (2005)

5. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press (1990)
6. Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2), 125–154

(1991)
7. Baxter, G., Frean, M.R., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H., Tempero,

E.D.: Understanding the shape of Java software. In: Proc. OOPSLA, pp. 397–412. ACM
(2006)

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS
Series. Springer (2004)

9. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt Publish-
ing (2013)

10. Bézivin, J.: Model driven engineering: An emerging technical space. In: GTTSE 2005, Re-
vised Papers, LNCS, vol. 4143, pp. 36–64. Springer (2006)

11. Borras, P., Clément, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: CEN-
TAUR: the system. In: Proc. SDE 1988, pp. 14–24. ACM (1989)

12. van den Bos, J., van der Storm, T.: Domain-specific optimization in digital forensics. In:
Proc. ICMT, LNCS, vol. 7307, pp. 121–136. Springer (2012)

13. Boujarwah, A., Saleh, K.: Compiler test suite: Evaluation and use in an automated test envi-
ronment. Inf. Softw. Technol. 36(10), 607–614 (1994)

14. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – A functional language with
dependent types. In: Proc. TPHOLs, LNCS, vol. 5674, pp. 73–78. Springer (2009)

15. Brady, E.: Idris, a general-purpose dependently typed programming language: Design and
implementation. J. Funct. Program. 23(5), 552–593 (2013)

20 http://www.softlang.org/book

http://www.softlang.org/book

References 409

16. Bruce, K.B., Schuett, A., van Gent, R., Fiech, A.: PolyTOIL: A type-safe polymorphic
object-oriented language. ACM Trans. Program. Lang. Syst. 25(2), 225–290 (2003)

17. Burgess, C.J., Saidi, M.: The automatic generation of test cases for optimizing Fortran com-
pilers. Inf. Softw. Technol. 38(2), 111–119 (1996)

18. Cartwright, R., Fagan, M.: Soft typing. In: Proc. PLDI, pp. 278–292. ACM (1991)
19. Ceh, I., Crepinsek, M., Kosar, T., Mernik, M.: Ontology driven development of domain-

specific languages. Comput. Sci. Inf. Syst. 8(2), 317–342 (2011)
20. Chandramohan, K., O’Boyle, M.F.P.: A compiler framework for automatically mapping data

parallel programs to heterogeneous MPSoCs. In: Proc. CASES, pp. 1–10. ACM (2014)
21. Chiba, S.: Load-time structural reflection in Java. In: Proc. ECOOP, LNCS, vol. 1850, pp.

313–336. Springer (2000)
22. Collberg, C.S., Myles, G., Stepp, M.: An empirical study of Java bytecode programs. Softw.,

Pract. Exper. 37(6), 581–641 (2007)
23. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,

Tommasi, M.: Tree automata techniques and applications. Available at http://www.
grappa.univ-lille3.fr/tata (2007)

24. Crary, K., Weirich, S., Morrisett, J.G.: Intensional polymorphism in type-erasure semantics.
In: Proc. ICFP, pp. 301–312. ACM (1998)

25. Crary, K., Weirich, S., Morrisett, J.G.: Intensional polymorphism in type-erasure semantics.
J. Funct. Program. 12(6), 567–600 (2002)

26. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Syst. J. 45(3), 621–646 (2006)

27. Dahm, M.: Byte code engineering. In: Java-Informations-Tage, pp. 267–277 (1999)
28. Dai, X., Zhai, A., Hsu, W., Yew, P.: A general compiler framework for speculative optimiza-

tions using data speculative code motion. In: Proc. CGO, pp. 280–290. IEEE (2005)
29. Degueule, T.: Composition and interoperability for external domain-specific language engi-

neering. Ph.D. thesis, Université de Rennes 1 (2016)
30. Denker, M.: Sub-method structural and behavioral reflection. Ph.D. thesis, University of

Bern (2008)
31. Duboscq, G., Würthinger, T., Mössenböck, H.: Speculation without regret: Reducing deopti-

mization meta-data in the Graal compiler. In: Proc. PPPJ, pp. 187–193. ACM (2014)
32. Erdweg, S.: Extensible languages for flexible and principled domain abstraction. Ph.D. the-

sis, Philipps-Universität Marburg (2013)
33. Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W.R., Gerritsen,

A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: The state of the art in language workbenches – conclusions from the
language workbench challenge. In: Proc. SLE, LNCS, vol. 8225, pp. 197–217. Springer
(2013)

34. Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W.R., Gerritsen,
A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: Evaluating and comparing language workbenches: Existing results
and benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47 (2015)

35. Erwig, M., Walkingshaw, E.: Semantics first! – rethinking the language design process. In:
Proc. SLE 2011, LNCS, vol. 6940, pp. 243–262. Springer (2012)

36. Fähndrich, M., Carbin, M., Larus, J.R.: Reflective program generation with patterns. In:
Proc. GPCE, pp. 275–284. ACM (2006)

37. Falk, H., Lokuciejewski, P.: A compiler framework for the reduction of worst-case execution
times. Real-Time Systems 46(2), 251–300 (2010)

38. Favre, J., Gasevic, D., Lämmel, R., Pek, E.: Empirical language analysis in software linguis-
tics. In: Proc. SLE 2010, LNCS, vol. 6563, pp. 316–326. Springer (2011)

39. Favre, J.M., Gasevic, D., Lämmel, R., Winter, A.: Guest editors’ introduction to the special
section on software language engineering. IEEE Trans. Softw. Eng. 35(6), 737–741 (2009)

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

410 Postface

40. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation. In: Proc.
POPL, pp. 111–122. ACM (2004)

41. Fowler, M.: Domain-Specific Languages. Addison-Wesley (2010)
42. Friedman, D., Wand, M.: Essentials of Programming Languages. MIT Press (2008). 3rd

edition
43. Gil, J., Maman, I.: Micro patterns in Java code. In: Proc. OOPSLA, pp. 97–116. ACM (2005)
44. Glew, N.: Type dispatch for named hierarchical types. In: Proc. ICFP, pp. 172–182. ACM

(1999)
45. Grune, D., Jacobs, C.: Parsing Techniques: A Practical Guide. Monographs in Computer

Science. Springer (2007). 2nd edition
46. Gunter, C.: Semantics of Programming Languages: Structures and Techniques. MIT Press

(1992)
47. Harm, J., Lämmel, R.: Two-dimensional approximation coverage. Informatica (Slovenia)

24(3) (2000)
48. Harm, J., Lämmel, R., Riedewald, G.: The Language Development Laboratory — LDL. In:

Proc. NWPT, pp. 77–86 (1997). Research Report 248. University of Oslo
49. Hinze, R.: A new approach to generic functional programming. In: Proc. POPL, pp. 119–132.

ACM (2000)
50. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. J. Object Tech-

nol. 7(3), 125–151 (2008)
51. Hoare, C.: An axiomatic basis for computer programming (reprint). Commun. ACM 26(1),

53–56 (1983)
52. Hoare, C.A.R.: Hints on programming language design. Tech. rep., Stanford University

(1973)
53. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and

Computation. Pearson (2013). 3rd edition
54. Huang, S.S., Smaragdakis, Y.: Morphing: Structurally shaping a class by reflecting on others.

ACM Trans. Program. Lang. Syst. 33(2), 6 (2011)
55. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java

and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)
56. Jansson, P., Jeuring, J.: Polyp – A polytypic programming language. In: Proc. POPL, pp.

470–482. ACM (1997)
57. Johnstone, A., Scott, E.: Modelling GLL parser implementations. In: Proc. SLE 2010, LNCS,

vol. 6563, pp. 42–61. Springer (2011)
58. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci.

Comput. Program. 72(1-2), 31–39 (2008)
59. Kalinov, A., Kossatchev, A., Petrenko, A., Posypkin, M., Shishkov, V.: Coverage-driven au-

tomated compiler test suite generation. ENTCS 82(3) (2003)
60. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model transforma-

tion by-example: A survey of the first wave. In: Conceptual Modelling and Its Theoretical
Foundations – Essays Dedicated to Bernhard Thalheim on the Occasion of His 60th Birthday,
LNCS, vol. 7260, pp. 197–215. Springer (2012)

61. Kats, L.C.L., Visser, E.: The Spoofax language workbench. In: Companion SPLASH/OOP-
SLA, pp. 237–238. ACM (2010)

62. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative specification
of languages and IDEs. In: Proc. OOPSLA, pp. 444–463. ACM (2010)

63. Kelly, S., Tolvanen, J.: Domain-Specific Modeling. IEEE & Wiley (2008)
64. Kiczales, G.: Aspect-oriented programming. In: Proc. ICSE, p. 730. ACM (2005)
65. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J., Irwin, J.:

Aspect-oriented programming. In: Proc. ECOOP, LNCS, vol. 1241, pp. 220–242. Springer
(1997)

66. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In: Proc.
ICSE, pp. 49–58. ACM (2005)

67. Kiczales, G., des Rivieres, J., Bobrow, D.G.: The Art of the Metaobject Protocol. MIT Press
(1991)

References 411

68. Kim, Y., Kiemb, M., Park, C., Jung, J., Choi, K.: Resource sharing and pipelining in coarse-
grained reconfigurable architecture for domain-specific optimization. In: Proc. DATE, pp.
12–17. IEEE (2005)

69. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages Using
Metamodels. Addison-Wesley (2008)

70. Klusener, A.S., Lämmel, R., Verhoef, C.: Architectural modifications to deployed software.
Sci. Comput. Program. 54(2-3), 143–211 (2005)

71. Klusener, S., Lämmel, R.: Deriving tolerant grammars from a base-line grammar. In: Proc.
ICSM, pp. 179–188. IEEE (2003)

72. Knuth, D.E.: An empirical study of FORTRAN programs. Softw., Pract. Exper. 1(2), 105–
133 (1971)

73. Kolovos, D.S., Rose, L.M., bin Abid, S., Paige, R.F., Polack, F.A.C., Botterweck, G.: Taming
EMF and GMF using model transformation. In: Proc. MODELS, LNCS, vol. 6394, pp. 211–
225. Springer (2010)

74. Krishnamurthi, S.: Programming Languages: Application and Interpretation. Brown
University (2007). https://cs.brown.edu/~sk/Publications/Books/
ProgLangs/

75. Kronawitter, S., Stengel, H., Hager, G., Lengauer, C.: Domain-specific optimization of two
Jacobi smoother kernels and their evaluation in the ECM performance model. Parallel Pro-
cessing Letters 24(3) (2014)

76. Kurtev, I., Bézivin, J., Akşit, M.: Technological spaces: An initial appraisal. In: Proc. CoopIS,
DOA 2002, Industrial track (2002)

77. Lämmel, R.: Grammar testing. In: Proc. FASE, LNCS, vol. 2029, pp. 201–216. Springer
(2001)

78. Lämmel, R.: A semantical approach to method-call interception. In: Proc. AOSD, pp. 41–55.
ACM (2002)

79. Lämmel, R., Jones, S.L.P.: Scrap your boilerplate: a practical design pattern for generic pro-
gramming. In: Proc. TLDI, pp. 26–37. ACM (2003)

80. Lämmel, R., Kitsis, S., Remy, D.: Analysis of XML schema usage. In: Proc. XML (2005)
81. Lämmel, R., Pek, E.: Understanding privacy policies – A study in empirical analysis of lan-

guage usage. Empir. Softw. Eng. 18(2), 310–374 (2013)
82. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based testing. In:

Proc. TestCom, LNCS, vol. 3964, pp. 19–38. Springer (2006)
83. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program analysis &

transformation. In: Proc. CGO, pp. 75–88. IEEE (2004)
84. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of standard ML. In:

Proc. POPL, pp. 173–184. ACM (2007)
85. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters. In: Proc.

POPL, pp. 333–343. ACM (1995)
86. Liang, Y., Xie, X., Sun, G., Chen, D.: An efficient compiler framework for cache bypassing

on GPUs. IEEE Trans. CAD Integr. Circ. Syst. 34(10), 1677–1690 (2015)
87. Louden, K.: Compiler Construction: Principles and Practice. Cengage Learning (1997)
88. Marriott, K., Meyer, B. (eds.): Visual Language Theory. Springer (1998)
89. Maurer, P.: Generating test data with enhanced context-free grammars. IEEE Softw. 7(4),

50–56 (1990)
90. McBride, C.: Epigram: Practical programming with dependent types. In: Proc. AFP, LNCS,

vol. 3622, pp. 130–170. Springer (2004)
91. Meijer, E., Drayton, P.: Static typing where possible, dynamic typing when needed: The

end of the cold war between programming languages (2005). Available at http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.5966

92. Mens, T.: Model Transformation: A Survey of the State of the Art, pp. 1–19. John Wiley &
Sons, Inc. (2013)

93. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37(4), 316–344 (2005)

https://cs.brown.edu/~sk/Publications/Books/ProgLangs/
https://cs.brown.edu/~sk/Publications/Books/ProgLangs/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.5966
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.5966

412 Postface

94. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge University
Press (1999)

95. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Trans. Program.
Lang. Syst. 10(3), 470–502 (1988)

96. Moody, D.L.: The physics of notations: Toward a scientific basis for constructing visual
notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

97. Moonen, L.: Generating robust parsers using island grammars. In: Proc. WCRE, pp. 13–22.
IEEE (2001)

98. Moonen, L.: Lightweight impact analysis using island grammars. In: Proc. IWPC, pp. 219–
228. IEEE (2002)

99. Mosses, P.D.: Theory and practice of action semantics. In: Proc. MFCS, LNCS, vol. 1113,
pp. 37–61. Springer (1996)

100. Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Program. 60-61,
195–228 (2004)

101. Murphy, G.C., Notkin, D.: Lightweight lexical source model extraction. ACM Trans. Softw.
Eng. Methodol. 5(3), 262–292 (1996)

102. Nielson, F., Nielson, H.R.: Type and effect systems. In: Correct System Design, Recent
Insight and Advances, LNCS, vol. 1710, pp. 114–136. Springer (1999)

103. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergraduate Top-
ics in Computer Science. Springer (2007)

104. Nilsson-Nyman, E., Ekman, T., Hedin, G.: Practical scope recovery using bridge parsing. In:
Proc. SLE 2008, LNCS, vol. 5452, pp. 95–113. Springer (2009)

105. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

106. Norell, U.: Towards a practical programming language based on dependent type theory.
Ph.D. thesis, Department of Computer Science and Engineering, Chalmers University of
Technology (2007)

107. Norell, U.: Dependently typed programming in Agda. In: AFP 2008, Revised Lectures,
LNCS, vol. 5832, pp. 230–266. Springer (2009)

108. Parr, T.: Language Implementation Patterns: Techniques for Implementing Domain-Specific
Languages. Pragmatic Bookshelf (2010)

109. Parr, T., Fisher, K.: LL(*): The foundation of the ANTLR parser generator. In: Proc. PLDI,
pp. 425–436. ACM (2011)

110. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. In: Proc. EASE, Workshops in Computing. BCS (2008)

111. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping
studies in software engineering: An update. Inf. Softw. Technol. 64, 1–18 (2015)

112. Pfenning, F., Schürmann, C.: System description: Twelf – A meta-logical framework for
deductive systems. In: Proc. CADE-16, LNCS, vol. 1632, pp. 202–206. Springer (1999)

113. Pierce, B.: Types and Programming Languages. MIT Press (2002)
114. Purdom, P.: A sentence generator for testing parsers. BIT 12(3), 366–375 (1972)
115. Raghavan, P., Lambrechts, A., Absar, J., Jayapala, M., Catthoor, F., Verkest, D.: Coffee:

COmpiler Framework for Energy-aware Exploration. In: Proc. HiPEAC, LNCS, vol. 4917,
pp. 193–208. Springer (2008)

116. Ranta, A.: Implementing Programming Languages: An Introduction to Compilers and Inter-
preters. College Publications (2012)

117. Rekers, J.: Parser generation for interactive environments. Ph.D. thesis, University of Ams-
terdam (1992)

118. Renggli, L.: Dynamic language embedding with homogeneous tool support. Ph.D. thesis,
Universität Bern (2010)

119. Reps, T.W., Teitelbaum, T.: The Synthesizer Generator – A System for Constructing
Language-Based Editors. Texts and Monographs in Computer Science. Springer (1989)

120. Rigger, M., Grimmer, M., Wimmer, C., Würthinger, T., Mössenböck, H.: Bringing low-level
languages to the JVM: Efficient execution of LLVM IR on Truffle. In: Proc. VMILSPLASH,
pp. 6–15. ACM (2016)

References 413

121. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proc. PLDI, pp. 159–169. ACM
(2008)

122. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transforma-
tion. World Scientific Publishing Company (1997). Volume 1: Foundations

123. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge Uni-
versity Press (2001)

124. Schauss, S., Lämmel, R., Härtel, J., Heinz, M., Klein, K., Härtel, L., Berger, T.: A
chrestomathy of DSL implementations. In: Proc. SLE. ACM (2017). 12 pages

125. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Computer
39(2), 25–31 (2006)

126. Scott, E., Johnstone, A.: Structuring the GLL parsing algorithm for performance. Sci. Com-
put. Program. 125, 1–22 (2016)

127. Scott, M.: Programming Language Pragmatics. Morgan Kaufmann (1996). 3rd edition
128. Sebesta, R.W.: Concepts of Programming Languages. Addison-Wesley (2012). 10th edition
129. Sethi, R.: Programming Languages: Concepts and Constructs. Addison Wesley (1996). 2nd

edition
130. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Proc. Workshop on Scheme

and Functional Programming, pp. 81–92. University of Chicago (2006)
131. Siek, J.G., Taha, W.: Gradual typing for objects. In: Proc. ECOOP, LNCS, vol. 4609, pp.

2–27. Springer (2007)
132. Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined criteria for gradual typing.

In: Proc. SNAPL, LIPIcs, vol. 32, pp. 274–293. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik (2015)

133. Simonet, V.: An extension of HM(X) with bounded existential and universal data-types. In:
Proc. ICFP, pp. 39–50. ACM (2003)

134. Sirer, E.G., Bershad, B.N.: Using production grammars in software testing. In: Proc. DSL,
pp. 1–13. USENIX (1999)

135. Slonneger, K., Kurtz, B.: Formal Syntax and Semantics of Programming Languages. Addison
Wesley (1995)

136. Slutz, D.: Massive stochastic testing for SQL. Tech. Rep. MSR-TR-98-21, Microsoft Re-
search (1998). A shorter form of the paper appeared in the Proc. VLDB 1998

137. Stuart, T.: Understanding Computation: From Simple Machines to Impossible Programs.
O’Reilly (2013)

138. Tennent, R.: Specifying Software. Cambridge University Press (2002)
139. Tolvanen, J., Kelly, S.: Defining domain-specific modeling languages to automate product

derivation: Collected experiences. In: Proc. SPLC, LNCS, vol. 3714, pp. 198–209. Springer
(2005)

140. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In: Proc.
IJCAI, pp. 756–764. Morgan Kaufmann (1985)

141. Visser, E., Wachsmuth, G., Tolmach, A.P., Neron, P., Vergu, V.A., Passalaqua, A., Konat, G.:
A language designer’s workbench: A one-stop-shop for implementation and verification of
language designs. In: Proc. SPLASH, Onward!, pp. 95–111. ACM (2014)

142. Voelter, M.: Embedded software development with projectional language workbenches. In:
Proc. MODELS, LNCS, vol. 6395, pp. 32–46. Springer (2010)

143. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,
Wachsmuth, G.: DSL Engineering – Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013)

144. Voelter, M., Lisson, S.: Supporting diverse notations in MPS’ projectional editor. In: Proc.
GEMOC@Models 2014, CEUR Workshop Proceedings, vol. 1236, pp. 7–16. CEUR-WS.org
(2014)

145. Voelter, M., Ratiu, D., Kolb, B., Schätz, B.: mbeddr: instantiating a language workbench in
the embedded software domain. Autom. Softw. Eng. 20(3), 339–390 (2013)

146. Völter, M., Siegmund, J., Berger, T., Kolb, B.: Towards user-friendly projectional editors. In:
Proc. SLE, LNCS, vol. 8706, pp. 41–61. Springer (2014)

414 Postface

147. Völter, M., Visser, E.: Language extension and composition with language workbenches. In:
Companion SPLASH/OOPSLA, pp. 301–304. ACM (2010)

148. Wachsmuth, G., Konat, G.D.P., Visser, E.: Language design with the Spoofax language work-
bench. IEEE Softw. 31(5), 35–43 (2014)

149. Wand, M., Kiczales, G., Dutchyn, C.: A semantics for advice and dynamic join points in
aspect-oriented programming. ACM Trans. Program. Lang. Syst. 26(5), 890–910 (2004)

150. Wehr, S., Lämmel, R., Thiemann, P.: JavaGI: Generalized interfaces for Java. In: Proc.
ECOOP, LNCS, vol. 4609, pp. 347–372. Springer (2007)

151. Wile, D.S.: Lessons learned from real DSL experiments. In: Proc. HICSS-36, p. 325. IEEE
(2003)

152. Wile, D.S.: Lessons learned from real DSL experiments. Sci. Comput. Program. 51(3), 265–
290 (2004)

153. Würthinger, T.: Graal and Truffle: Modularity and separation of concerns as cornerstones for
building a multipurpose runtime. In: Proc. Modularity, pp. 3–4. ACM (2014)

Index

Symbols

π-calculus 403
101companies 10

A

abstract data type see ADT
abstract domain 383
abstract interpretation 380, 400
abstract interpreter 386
abstract syntax 18, 74, 87, 184, 400

graph-based 96, 115
tree-based 88, 112

abstract syntax graph see ASG
abstract syntax tree see AST
abstraction 71, 89, 184, 203, 220
acceptance 188, 204
acceptor 188, 204
Acme 52
action semantics 402
ADT 118, 218
AG 103, 347
algebraic data type 112
algebraic signature 89, 95
algorithmic subtyping 315
alias analysis 24
Alloy 2
alpha conversion 293
alpha equivalence 293
AM3 25
ambiguity 190
ambiguous grammar 190
analysis 24, 154, 400

alias 24
bug 24
change impact 32

performance 24
termination 24
usage 24

analyzer 24
antiquotation 234
ANTLR 2, 68, 71, 217, 359
AOP 401
API

fluent 57
influent 57

application domain 13
applicative functor 224
applied lambda calculus 294
approximation 324
architecture description language 10
architecture recovery 30
ASE (conference) 407
ASG 71, 101
ASN.1 76
aspect weaving 169
aspect-oriented programming see AOP
assembler 151
assembly language 148
assignment 7
AST 71, 90, 203
AST-to-ASG mapping 129
attribute 347, 347

global 360
inherited 347
synthesized 347

attribute evaluation 350
attribute grammar see AG
attribution

L- 352
S- 352

axiomatic semantics 402

415© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7

https://doi.org/10.1007/978-3-319-90800-7

416 Index

B

backtracking 208, 214
global 208
local 208

Backus Naur form see BNF
BAL 4, 148
Basic Assembly Language see BAL
Basic Functional Programming Language

see BFPL
Basic Grammar Language see BGL
Basic Imperative Programming Language

see BIPL
Basic Machine Language see BML
Basic Signature Language see BSL
Basic TAPL Language see BTL
BCL 196

abstract syntax 196
beta reduction 291
BFPL 4, 6

abstract syntax 93, 102
concrete syntax 183
operational semantics 257, 267
type checker 284
type system 284
well-typedness 284

BGL 4, 9, 178
abstract syntax 194
concrete syntax 197

big-step style 242
in functional programming 247

Binary Number Language see BNL
BIPL 4, 7

abstract syntax 92
concrete syntax 181
denotational semantics 321
operational semantics 253, 264
type checker 278
type system 278
well-typedness 278

BL 4, 6, 99
abstract syntax 97

BML 4, 151
BNF 9, 178
BNL 4, 5

abstract syntax 88
attribute grammar 347
concrete syntax 178

Boolean 91
bottom element 384
bottom-up parsing 209
bottom-up traversal 342
BSL 4, 89

abstract syntax 104

concrete syntax 198
BTL 4, 5, 272

abstract syntax 92
concrete syntax 181
type checker 277
type system 273

Buddy Language see BL
bug analysis 24
business rule modeling language 10
bytecode 20
bytecode engineering 401

C

C 7
call by need 291
call by value 291
case discrimination 309
CC (conference) 406
ccpo 385
CCS 403
CFG 9, 186
chain complete partial order see ccpo
change-impact analysis 32
checking

syntax 68
Church encoding 298
CIL 2
classification of languages 9
clone detection 31
closed expression 293
co-evolution

model 37
code generation 22, 76, 147, 400
code generator 22, 76
code smell 32
code-smell

detection 32
coding convention 32
combinator 218, 224, 226
Common Log Format 3
comparison

model 37
compilation 20, 146, 147

multi-pass 21
single-pass 21

compiler 21
compiler construction 402
compiler framework 402
complete derivation sequence 261
complete lattice 385
composition 169
compositionality 320, 368, 400
computation 242

Index 417

computational rule 348
conclusion 243
concrete domain 382
concrete object syntax 231, 346, 400
concrete syntax 9, 18, 66, 87, 177, 201, 400
concrete syntax tree see CST
condition 356
conditional jump 148
conformance 87, 96, 122
conformance checking 122
constant symbol 89
constraint 63, 154, 156
constraint-based language 16
consume (action) 204
context condition 102
context-free derivation 179, 187
context-free grammar see CFG
context-free syntax 103
context-oriented programming see COP
context-sensitive syntax 103
continuation 154, 328
continuation-passing style see CPS
continuous function 324
contravariance 314
control flow 7
convention (in fluent API style) 58
Converge 25
COP 401
coupled software transformation 35
coupling 35
covariance 314
CPS 328
CSP 403
CST 71, 188, 202
customizability 76

D

data abstraction 403
data model 33
data-flow analysis 374
data-modeling language 10
declarative language 15
deduction

natural 243
default 58
definition

syntax 67
denotational semantics 319

continuation style 328
direct style 320

dependently typed programming 402, 403
deprecation 14
derivation

context-free 179, 187
type 274

derivation sequence 261
complete 261

derivation tree 246
deserialization see serialization
design pattern 31
design-pattern detection 31
detection

clone 31
code smell 32
design pattern 31

direct style
of denotational semantics 320

DocBook 3
domain 13

abstract 383
application 13
concrete 382
problem 13
programming 13
solution 13

domain analysis 17
domain-specific language see DSL
domain-specific modeling language see

DSML
domain-specific optimization 401
domain-specific syntax 66
DOT 82
DSL 13, 36, 51, 401

embedded 14
external 14
internal 14

DSML 36
duck typing 12
dynamic typing 12, 402

E

EBNF 180
ECMFA (conference) 406
ECOOP (conference) 407
Ecore 99
efficiency 76
EFPL 4
EGL 4, 180

abstract syntax 195
concrete syntax 197

EIPL 4, 356
EL 4, 162, 336
embedded DSL 14
embedded language 232
embedded system 52
EMF 99

418 Index

endogenous transformation 23, 161
environment 141, 356
epsilon production 211
error message 156
ESL 4, 91

abstract syntax 104
concrete syntax 198

evolution
model 36

executable semantic framework 25
existential quantification 403
exogenous transformation 23, 161
expand (action) 204
expression evaluation 6
Expression Language see EL
extended Backus Naur form see EBNF
Extended Functional Programming Language

see EFPL
Extended Grammar Language see EGL
Extended Imperative Programming Language

see EIPL
Extended Signature Language see ESL
external DSL 14, 66, 68

F

fact extraction 159
fact extractor 159
factory method 57
failure 250
feature location 31
feature-oriented programming 169
finite state machine see FSM
Finite State Machine Language see FSML
fixed point 295, 323
fixed-point property 323
fixed-point semantics 323
float 91
fluent API 57
FOAF 3, 6
formal language theory 186
formal machine 258
formatter 23
formatting 203, 226, 400
FSM 7, 51
FSML 4, 7, 51

abstract syntax 94, 101
concrete syntax 183
operational semantics 269
type system 287
well-formedness 287

function application 6, 141
function symbol 89
functional constructor 55

functional programming 6, 10
functor

applicative 224

G

generalized LL parsing 402
generalized LR parsing 402
generated language 187
generation

code 22, 24
program 24
software 24
test-data 25

generator
code 22, 24
program 24
software 24
test-data 25

generic functional programming 403
global attribute 360
global backtracking 208
goto 330
GPL 13
grammar 9, 67, 178, 186, 400

attribute 103
context-free 9, 186
well-formed 187

grammar class 402
grammarware 33
graph 87, 96, 98, 115, 129
graph grammar 402
graph language 96, 402
graph-based abstract syntax 96, 115
Graphviz 82
greatest element 384

H

Haskell 2, 6
Hasse diagram 385
Helvetia 26
homoiconic language 110
horizontal transformation 23
host language 14
house keeping 148
hygiene 367

I

ICMT (conference) 406
ICPC (conference) 406
ICSE (conference) 407
ICSME (conference) 406

Index 419

id 98
IDE 25
ill-typed program 272
imperative programming 7, 10
implicit parameter 58
inference rule 243
influent API 57
information hiding 403
inherited attribute 347
INI file 3
injection attack 231
inlining 364, 370
innermost 340
instruction pointer 151
integer 91
integrated development environment see

IDE
intensional polymorphism 403
interchange format 74, 120
intermediate representation see IR
internal DSL 14, 54
interpretation 20, 61, 136, 400

abstract 380, 400
interpreter 61, 125, 136

abstract 386
continuation style 329
denotational 325
direct style 325
in big-step style 247
in small-step style 263

invariance 314
invasive software composition 169
IR 22
island grammar 402

J

Java 2, 54
Java bytecode 3
Javaware 33
JDBC 231
Jinja2 78
JIT 20
JSON 2, 74, 120
JSON Schema 2
JSONware 33
judgment 242

typing 272
just in time see JIT

L

L-attribution 352
label 98, 148

lambda calculus 289
applied 294
polymorphic 303
simply typed 299
untyped 290

language
architecture description 10
business rule modeling 10
constraint-based 16
data modeling 10
generated by a CFG 187
homoiconic 110
markup 10
model transformation 10
modeling 8, 36
programming 10
query 34
rule-based 16
schema 33
specification 10
string 177
stylesheet 10
textual 177
transformation 10, 34
visual 10

language classification 9
language composition 14
language definition 17, 18
language definition framework 25
language design 17
language evolution 18, 27, 37
language extension 27
language implementation 18, 20
language integration 27
language migration 18
language obsolescence 18
language processor 18, 22
language restriction 27
language retirement 18
language revision 27
language taxonomy 9
language usage 18
language usage analysis 18
language workbench 26, 401
language-usage analysis 401
lattice

complete 385
layout preservation 346
laziness 355
least element 384
left recursion 207
lexeme 202
lexical analysis 147
lexical syntax 192

420 Index

lifecycle
software language 17

lightweight modular staging see LMS
list 91
LLVM 25, 402
LMS 367
local backtracking 208
logic programming 11
look ahead 214
loop unrolling 374

M

machine
formal 258

machine language 151
make 3
management

model 37
many-sorted signature 89, 95
mapping 34

tree-to-graph 129
markup language 10
MDE 36, 401
membership test 188
memoization 375
memory 151
memory cell 151
merging

model 37
metalanguage 135
metalevel 9
metametalevel 87, 103, 194, 400
metametamodel 106
metamodel 87, 99, 400
metamodeling 96, 401
MetaModeling Language see MML
metaprogram 135, 400
metaprogramming 25, 135, 400
metaprogramming language 400, 401
metaprogramming system 25, 400, 401
metatheory 402
metavariable 242
method chaining 57
migration 28
MML 4, 99

abstract syntax 105, 106
concrete syntax 199

model 71, 101, 231
model co-evolution 37
model comparison 37
model evolution 36
model management 37
model merging 37

model synchronization 37
model transformation 36, 346, 401
model transformation language 10
model weaving 37
model-driven engineering see MDE
model-to-model 23
model-to-text 23, 203
model-transformation language 401
modeling 8

state-based 8
modeling framework 25
modeling language 8, 36
run.time 37
MODELS (conference) 405
MODELSWARD (conference) 406
modelware 33
modular SOS 402
monad 221, 224
monotone function 324
morphing 401
MSR (conference) 406
multi-paradigm programming 11
multi-pass compilation 21
multi-stage programming 363
mutable variable 7

N

name binding 19, 156
natural deduction 243
negative test case 70
newtype 316
nominal typing 12, 315
nondeterminism 205
nonterminal 67, 178
nontermination 207, 211
normal form 260
normalization 162, 340
notation 15

O

object language 135
object model 54
object oriented/orientation see OO
object program 135
object syntax

concrete 231, 346
object-oriented programming see OOP, 11
object-program representation 110
Objectware 33
OCL 154
offline partial evaluation 368
online partial evaluation 368

Index 421

OOP 403
open expression 293
operational semantics 241

big-step style of 242
small-step style of 242, 258

operator priority 182
optimization 22, 147, 162, 400, 402
optionality 91
origin tracking 346
OWL 3
Oxford bracket 232, 365

P

parametric polymorphism 303
parse tree 188
parse-tree forest 191
Parsec 218
parser 22, 23, 68, 190, 204
parser algorithm 204
parser combinator 218, 224
parser generation 68, 217, 358, 400
parser generator 68, 217, 358
parsing 9, 22, 71, 147, 190, 203, 204, 204,

400
bottom-up 209
recursive descent 213, 221
top-down 204

parsing algorithm 402
parsing expression grammar see PEG
part-of relationship 115
partial evaluation 368

offline 368
online 368

partial order 324
pattern guard 251
PEG 402
PEPM (conference) 406
performance analysis 24
PLDI (conference) 407
PLT redex 25
pluggability 76
polymorphic function 303
polymorphic lambda calculus 303
polymorphic type 304
polymorphism 303
polytypic programming 403
POPL (conference) 407
pragmatics 19
pre-graph 98
pre-term 96
predefined operations 294
predefined value 294
premise 243

preprocessing 23, 147
preprocessor 23
preservation (type safety) 274
pretty printer 23
pretty printing 203, 226
priority

operator 182
problem domain 13
process algebra 403
production 178
productivity 187
profile 89
program

ill-typed 272
well-typed 272

program analysis 147, 154, 380, 388
program comprehension 30
program optimization 162, 380
program phrase 242
program slicing 31
program specialization 25, see partial

evaluation, 375
program specializer 25
programming

functional 6, 10
imperative 7, 10
logic 11
multi-paradigm 11
object-oriented 11

programming concept 11
programming domain 13
programming language 10
programming language theory 19, 241
programming paradigm 10
progress (type safety) 274
projection 309
projectional editing 401
Prolog 3
proof assistant 402
proof tree 242
Protocol Buffers 120
purpose

language classification by 12
Python 2

Q

QTFF 3
quasi-quotation 232, 346, 364
quasi-quote bracket 232
quasi-quote brackets 365
query 34
query language 34
quotation 232, 364

422 Index

R

Rascal 25
RDF 3
RDFS 3
RDFware 33
re-engineering (of software) 28
reachability 187
record type 309
recovery

architecture 30
traceability 31

recursive descent parsing 213, 221
recursive function 6
redex 337
reduce (action) 209
refactoring 28, 164, 400
reference 98, 115
reference relationship 96, 115
reflection 401
regular grammar 402
relation 242
relationship

part-of 115
reference 115

renaming 164
representation 14

object-program 110
typeful 112
universal 111
untyped 110

residual program 368, 375
resolution 71, 129, 203
resolvable pre-graph 98
resource description framework see RDF
reverse engineering

software 159
reverse engineering (of software) 30
rewrite rule 336, 336
rewrite system 336
rewriting 336
rule 178

computational 348
rule-based language 16

S

S-attribution 352
SANER (conference) 406
Scala 3, 367
SCAM (conference) 405
scanning 147, 203
schema 33, 125
schema language 33

schema validation 125
scope 356
semantic action 222
semantic algebra 381
semantic analysis 22, 147, 154, 400
semantic combinator 322
semantic domain 321
semantic function 321
semantics 5, 19, 241, 400
serialization 128
shift (action) 209
sign detection 388
signature 87, 89, 95, 400

well-formed 188
simplification 162, 337
simply typed lambda calculus 299
simulation 61
simulator 61
single-pass compilation 21
SLE (conference) 405
slicing 374
SLR 26
small step 258
small-step style 242
Smalltalk 3, 26
smart constructor 118
software analysis 24, 31
software analyzer 24
software composition 169

invasive 169
software engineering 28
software generation 24
software generator 24
software language lifecycle 17, 401
software language repository see SLR
software metric 32
software re-engineering 28
software reverse engineering 30, 159
software transformation 23, 161

coupled 35
software translation 24
software translator 24
software visualization 30
solution domain 13
sort 89
soundness 19, 274
source code 77
SPARQL 3
specification language 10
splicing 234, 365
SQLware 33
stage (of program) 363
staging

typeful 366

Index 423

standard interpretation 382
standard interpreter 382
start symbol 179
state chart 85
statement execution 7
static analysis 154
static typing 11, 274, 402
step 143
stepwise enhancement 169
store 138
strategic programming 341
Stratego XT 25
strategy 341

type-preserving 345
type-unifying 345

string 91
string language 177
StringTemplate 80
structural subtyping 312
structural typing 12, 312
stuck phrase 261
stylesheet language 10
sub-graph 98
sub-pre-graph 98
substitution 141, 267, 292
synchronization

model 37
syntactical analysis 147
syntax 5, 9, 18, 66, 87, 177, 400

abstract 18, 74, 87, 184
concrete 9, 18, 66, 87, 177
context-free 103
context-sensitive 103
domain-specific 66
textual 9, 66, 177
visual 82, 401

syntax checker 68
syntax checking 68
syntax definition 67
syntax graph

abstract 101
syntax tree

abstract 90
concrete 188

syntax-directed editing 401
synthesized attribute 347
System F 303

T

target code 77
taxonomy of languages 9
technological space 33, 400
technological space travel 34

template 78, 228
Template Haskell 232
template processing 78, 228, 400
term 88

of a sort 95
term rewriting 162, 336, 400
terminal 67, 178
termination analysis 24
test case

negative 70
test-data generation 25, 401
test-data generator 25
Text 4
text 202
text-to-model 23, 71, 203
text-to-objects 71
textual language 177
textual syntax 9, 66, 177
theorem prover 402
Thrift 120
TLL 4, 301
token 202
token stream 202
tolerant grammar 402
top element 384
top-down parsing 204
top-down traversal 341
traceability 31
traceability recovery 31
transformation 23, 34, 161, 400

endogenous 23, 161
exogenous 23, 161
horizontal 23
model 36
model-to-model 23
model-to-text 23
text-to-model 23
vertical 24

transformation language 10, 34
transition relation 258
translation 24, 146, 400
translator 24
traversal 341

bottom-up 342
top-down 341

tree 87, 88, 112
tree grammar 402
tree language 402
tree-based abstract syntax 88, 112
tree-to-graph mapping 129
tuple 91
Turing completeness 14, 298
TXL 25
type 19, 89, 272

424 Index

type abstraction 304
type alias 316
type application 304
type case 403
type checker 154, 277
type checking 19, 154, 277, 386, 400
type dispatch 403
type equivalence 312
type erasure 302, 307
type error 274
type inference 19, 287
type passing 307
type safety 274
type system 11, 19, 154, 271, 272
type variable 304
type-preserving strategy 345
type-unifying strategy 345
Typed Lambda Language see TLL
typeful representation 112
typing

duck 12
dynamic 12, 402
nominal 12
static 11, 402
structural 12

typing derivation 274
typing judgment 272

U

ULL 4, 296
UML 3, 8, 85
unconditional jump 148
undefinedness 324
unified modeling language see UML
universal polymorphism 303
universal representation 111
unparser 23

unparsing 203, 226
untyped lambda calculus 290
Untyped Lambda Language see ULL
untyped representation 110
usage analysis 24

V

variable assignment 138
variant type 309
vertical transformation 24
view 231
visual language 10
visual syntax 82, 401
visualization 82

software 30

W

weaving
model 37

well-formed CFG 187
well-formed signature 188
well-formedness 19, 63, 156, 287, 400
well-formedness checking 156
well-typed program 272
well-typedness 19
while-loop 323
whole-part relationship 96
wrapping 28

X

XML 2, 76, 121
XMLware 33
XPath 3
XSD 2
XSLT 3

	Copyright and Attribution
	Copyright for Code
	Artwork Credits

	Preface
	Welcome to the Software Languages Book!
	The Notion of a Software Language
	Software Language Engineering (SLE)
	A Particular SLE Book
	Complementary Online Material
	Structure of the Preface

	Audience Targeted by this Book
	Background Assumed by this Book
	Required Knowledge
	Optional Knowledge

	Characteristics of this Book
	Outline of this Book
	Trails Offered by this Book
	Trail “An Introduction to Metaprogramming”
	Trail “A Primer on Programming Language Theory”
	Trail “Metaprogramming in Haskell”
	Trail “Software Language Engineering”

	Exercises in the Book

	Acknowledgments
	Contents
	List of Recipes
	Acronyms
	Fabricated languages
	Other acronyms

	Chapter 1: The Notion of a Software Language
	1.1 Examples of Software Languages
	1.1.1 Real-World Software Languages
	1.1.2 Fabricated Software Languages
	1.1.2.1 BNL: A Language of Binary Numbers
	1.1.2.2 BTL: An Expression Language
	1.1.2.3 BL: A Language for Buddy Relationships
	1.1.2.4 BFPL: A Functional Programming Language
	1.1.2.5 BIPL: An Imperative Programming Language
	1.1.2.6 FSML: A Language for Finite State Machines
	1.1.2.7 BGL: A Language for Context-Free Grammars

	1.2 Classification of Software Languages
	1.2.1 Classification by Paradigm
	1.2.2 Classification by Type System
	1.2.3 Classification by Purpose
	1.2.4 Classification by Generality or Specificity
	1.2.5 Classification by Representation
	1.2.6 Classification by Notation
	1.2.7 Classification by Degree of Declarativeness

	1.3 The Lifecycle of Software Languages
	1.3.1 Language Definition
	1.3.2 Language Implementation
	1.3.2.1 Compilation versus Interpretation
	1.3.2.2 Architecture of a Compiler
	1.3.2.3 Classification of Language Processors
	1.3.2.4 Metaprogramming Systems
	1.3.2.5 Language Workbenches

	1.3.3 Language Evolution

	1.4 Software Languages in Software Engineering
	1.4.1 Software Re-Engineering
	1.4.2 Software Reverse Engineering
	1.4.3 Software Analysis
	1.4.4 Technological Spaces
	1.4.5 Model-Driven Engineering

	Summary and outline
	References

	Chapter 2: A Story of a Domain-Specific Language
	2.1 Language Concepts
	2.2 Internal DSL
	2.2.1 Baseline Object Model
	2.2.2 Fluent API
	2.2.3 Interpretation
	2.2.4 Well-Formedness

	2.3 External DSL
	2.3.1 Syntax Definition
	2.3.2 Syntax Checking
	2.3.3 Parsing

	2.4 DSL Services
	2.4.1 Interchange Format
	2.4.2 Code Generation
	2.4.3 Visualization

	Summary and outline
	References

	Chapter 3: Foundations of Tree- and Graph-Based Abstract Syntax
	3.1 Tree-Based Abstract Syntax
	3.1.1 Trees versus Terms
	3.1.2 A Basic Signature Notation
	3.1.3 Abstract Syntax Trees
	3.1.4 An Extended Signature Notation
	3.1.5 Illustrative Examples of Signatures
	3.1.5.1 Syntax of Simple Expressions
	3.1.5.2 Syntax of Simple Imperative Programs
	3.1.5.3 Syntax of Simple Functional Programs
	3.1.5.4 Syntax of Finite State Machines

	3.1.6 Languages as Sets of Terms
	3.1.7 Conformance to a Signature

	3.2 Graph-Based Abstract Syntax
	3.2.1 Trees versus Graphs
	3.2.2 Languages as Sets of Graphs
	3.2.3 A Metamodeling Notation
	3.2.4 Conformance to a Metamodel
	3.2.5 Illustrative Examples of Metamodels
	3.2.5.1 Syntax of Finite State Machines
	3.2.5.2 Syntax of Simple Functional Programs

	3.3 Context Conditions
	3.4 The Metametalevel
	3.4.1 The Signature of Signatures
	3.4.2 The Signature of Metamodels
	3.4.3 The Metamodel of Metamodels

	Summary and outline
	References

	Chapter 4: Representation of Object Programs in Metaprograms
	4.1 Representation Options
	4.1.1 Untyped Representation
	4.1.2 Universal Representation
	4.1.3 Typeful Representation
	4.1.3.1 Algebraic Data Type-Based Representation
	4.1.3.2 Object-Based Representation
	4.1.3.3 Reference Relationships
	4.1.3.4 Smart Constructors

	4.1.4 Interchange Formats
	4.1.4.1 JSON Representation
	4.1.4.2 XML Representation

	4.2 Conformance Checking
	4.2.1 Language-Specific Conformance Checking
	4.2.2 Generic Conformance Checking
	4.2.3 Schema-Based Conformance Checking

	4.3 Serialization
	4.4 AST-to-ASG Mapping
	Summary and outline
	References

	Chapter 5: A Suite of Metaprogramming Scenarios
	5.1 Interpretation
	5.1.1 Basics of Interpretation
	5.1.2 Interpretation with Stores
	5.1.3 Interpretation with Environments
	5.1.4 Stepwise Interpretation

	5.2 Compilation
	5.2.1 Architecture of a Compiler
	5.2.2 Translation to Assembly Code
	5.2.3 Translation to Machine Code

	5.3 Analysis
	5.3.1 Type Checking
	5.3.2 Well-Formedness Checking
	5.3.3 Fact Extraction

	5.4 Transformation
	5.4.1 Optimization
	5.4.2 Refactoring

	5.5 Composition
	Summary and outline
	References

	Chapter 6: Foundations of Textual Concrete Syntax
	6.1 Textual Concrete Syntax
	6.1.1 A Basic Grammar Notation
	6.1.2 Derivation of Strings
	6.1.3 An Extended Grammar Notation
	6.1.4 Illustrative Examples of Grammars
	6.1.4.1 Syntax of Simple Expressions
	6.1.4.2 Syntax of Simple Imperative Programs
	6.1.4.3 Syntax of Simple Functional Programs
	6.1.4.4 Syntax of Finite State Machines

	6.2 Concrete versus Abstract Syntax
	6.3 Languages as Sets of Strings
	6.3.1 Context-Free Grammars
	6.3.2 The Language Generated by a Grammar
	6.3.3 Well-Formed Grammars
	6.3.4 The Notion of Acceptance

	6.4 Languages as Sets of Trees
	6.4.1 Concrete Syntax Trees
	6.4.2 The Notion of Parsing
	6.4.3 Ambiguous Grammars

	6.5 Lexical Syntax
	6.6 The Metametalevel
	6.6.1 The Signature of Grammars
	6.6.2 The Signature of Concrete Syntax Trees
	6.6.3 The Grammar of Grammars
	6.6.4 The Grammar of Signatures
	6.6.5 The Grammar of Metamodels

	Summary and outline
	References

	Chapter 7: Implementation of Textual Concrete Syntax
	7.1 Representations and Mappings
	7.2 Parsing
	7.2.1 Basic Parsing Algorithms
	7.2.1.1 Top-Down Acceptance
	7.2.1.2 Bottom-Up Acceptance
	7.2.1.3 Top-Down Parsing
	7.2.1.4 Bottom-Up Parsing

	7.2.2 Recursive Descent Parsing
	7.2.3 Parser Generation
	7.2.4 Parser Combinators

	7.3 Abstraction
	7.3.1 Recursive Descent Parsing
	7.3.2 Semantic Actions
	7.3.3 Parser Combinators
	7.3.4 Text-to-Model

	7.4 Formatting
	7.4.1 Pretty Printing Combinators
	7.4.2 Template Processing

	7.5 Concrete Object Syntax
	7.5.1 Quotation
	7.5.2 Antiquotation

	Summary and outline
	References

	Chapter 8: A Primer on Operational Semantics
	8.1 Big-step Operational Semantics
	8.1.1 Metavariables
	8.1.2 Judgments
	8.1.3 Inference Rules
	8.1.4 Derivation Trees
	8.1.5 Big-Step Style Interpreters
	8.1.5.1 Aspects of Implementation
	8.1.5.2 Explicit Model of Failure
	8.1.5.3 Rule-by-Rule Mapping

	8.1.6 More Examples of Big-Step Style
	8.1.6.1 Semantics of Simple Imperative Programs
	8.1.6.2 Semantics of Simple Functional Programs

	8.2 Small-Step Operational Semantics
	8.2.1 Big- versus Small-Step Judgments
	8.2.2 Normal Form
	8.2.3 Derivation Sequences
	8.2.4 Small-Step Style Interpreters
	8.2.5 More Examples of Small-Step Style
	8.2.5.1 Semantics of Simple Imperative Programs
	8.2.5.2 Semantics of Simple Functional Programs
	8.2.5.3 Semantics of Finite State Machines

	Summary and outline
	References

	Chapter 9: A Primer on Type Systems
	9.1 Types
	9.2 Typing Judgments
	9.3 Typing Rules
	9.4 Typing Derivations
	9.5 Type Safety
	9.6 Type Checking
	9.7 More Examples of Type Systems
	9.7.1 Well-Typedness of Simple Imperative Programs
	9.7.2 Well-Typedness of Simple Functional Programs
	9.7.3 Well-Formedness of Finite State Machines

	Summary and outline
	References

	Chapter 10: An Excursion into the Lambda Calculus
	10.1 The Untyped Lambda Calculus
	10.1.1 Syntax
	10.1.2 Semantics
	10.1.3 Substitution
	10.1.4 Predefined Values and Operations
	10.1.5 Fixed-Point Computation
	10.1.6 Interpretation
	10.1.7 Turing Completeness

	10.2 The Simply Typed Lambda Calculus
	10.2.1 Syntax
	10.2.2 Semantics
	10.2.3 Type System
	10.2.4 Type Checking
	10.2.5 Type Erasure

	10.3 System F
	10.3.1 Syntax
	10.3.2 Semantics
	10.3.3 Type System
	10.3.4 Type Erasure

	10.4 Type-System Extensions
	10.4.1 Records and Variants
	10.4.2 Structural Type Equivalence
	10.4.3 Structural Subtyping
	10.4.4 Nominal Typing

	Summary and outline
	References

	Chapter 11: An Ode to Compositionality
	11.1 Compositionality
	11.2 Direct Style
	11.2.1 Semantic Domains
	11.2.2 Semantic Functions
	11.2.3 Semantic Combinators
	11.2.4 Fixed-Point Semantics
	11.2.5 Direct-Style Interpreters

	11.3 Continuation Style
	11.3.1 Continuations
	11.3.2 Continuation-Style Interpreters
	11.3.3 Semantics of Gotos

	Summary and outline
	References

	Chapter 12: A Suite of Metaprogramming Techniques
	12.1 Term Rewriting
	12.1.1 Rewrite Rules
	12.1.2 Encoding Rewrite Rules
	12.1.3 Normalization
	12.1.4 Strategic Programming
	12.1.5 Rewriting-Related concerns
	12.1.5.1 Other Traversal Idioms
	12.1.5.2 Concrete Object Syntax
	12.1.5.3 Graph Rewriting and Model Transformation
	12.1.5.4 Origin Tracking
	12.1.5.5 Layout Preservation

	12.2 Attribute Grammars
	12.2.1 The Basic Attribute Grammar Formalism
	12.2.2 Attribute Evaluation
	12.2.3 Attribute Grammars as Functional Programs
	12.2.4 Attribute Grammars with Conditions
	12.2.5 Semantic Actions with Attributes

	12.3 Multi-Stage Programming
	12.3.1 Inlining as an Optimization Scenario
	12.3.2 Quasi-Quotation and Splicing
	12.3.3 More Typeful Staging

	12.4 Partial Evaluation
	12.4.1 The Notion of a Residual Program
	12.4.2 Interpretation with Inlining
	12.4.3 Interpreter with Memoization

	12.5 Abstract Interpretation
	12.5.1 Sign Detection as an Optimization Scenario
	12.5.2 Semantic Algebras
	12.5.3 Concrete Domains
	12.5.4 Abstract Domains
	12.5.5 Examples of Abstract Interpreters
	12.5.5.1 A Type-Checking Interpreter
	12.5.5.2 A Sign-Detection Interpreter

	Summary and outline
	References

	Postface
	The importance of Software Language Engineering
	Software Languages: Key Concepts
	Omissions in This Book
	Complementary Textbooks
	Software Languages in Academia
	Feedback Appreciated
	References

	Index

