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Chapter 1
Research on Technologically Mediated
Mathematics Learning at a Distance:
An Overview and Introduction

Jason Silverman and Veronica Hoyos

Abstract In this chapter, we provide an overview and introduction to this
monograph, which reports on the work of an international group of scholars that
joined together at the 13th International Congress on Mathematics Education to
share and build on current and emerging research in distance learning, e-learning
and blended learning in mathematics. We share work that emerged from Topic
Study Group 44: Distance learning, e-learning, blended learning, including
research and development in the use of digital teaching and learning platforms,
usage of this technology to scaffold mathematics instruction and tutoring, novel
interfaces for communicating and analyzing student thinking, and specialized
mathematics teacher education platforms.

Keywords Research on electronic and distance learning � Teaching and learn-
ing platforms � Scaffolding mathematics instruction

This book emerged from the Topic Study Group 44 at the 13th International
Congress on Mathematics Education, ICME13, held in Hamburg, Germany on
2016, from July 24th to 31th, where an international group of scholars joined
together to share and build on current and emerging research in distance learning,
e-learning and blended learning. Specifically, in TSG44 we sought to push on the
boundaries of what was known on distance education, e-learning and blended
learning and teaching of mathematics through an examination and discussion of
recent research and development through these modalities and the common factors
that cut across them.
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The papers published in this monograph are revisions and extensions of the
original papers presented during the TSG 44 sessions and reflect additional work
carried out by all participant authors after the conference ended. The monograph is
organized in four parts: The first part presents two chapters that focus on the
incorporation of new technologies into mathematics classrooms through the con-
struction or use of digital teaching and learning platforms (see chapters by Mundt &
Hartman, and Hoyos et al., in this book). The second part presents a wide range of
perspectives on the study and implementation of different tutoring systems and/or
computer assisted math instruction (see Chaps. 4–6 in this book, correspondingly
authored by Chekour; Liang et al.; and Landenfeld et al.). The third part presents
four new innovations in mathematics learning and/or mathematics teacher educa-
tion that involve the development of novel interfaces’ for communicating mathe-
matical ideas and analysing student thinking and student work (see Chaps. 7–10,
authored by Albano & Dello-Iacono; Nakamura et al.; Matranga, Silverman, Klein
& Shumar; and Crisan). Finally, the fourth part presents latest work on the con-
struction and implementation of new MOOCs and rich media platforms accom-
plished to carry out specialized mathematics teacher education (see chapters
authored by Avineri et al.; and Chazan et al., in this book).

1.1 Overview of Parts and Chapters

1.1.1 Part I: E-Learning and Blended Learning
of Mathematics

Chapter 2 introduces the reader in the construction of the e:t:p:M® platform,
developed by Mundt and Hartman from 2012 to 2016, at the University of
Education Karlsruhe (Germany). The authors worked to improve the quality of
higher education instruction through a platform that integrates digital and
internet-based technologies into regular (brick-and-mortar) classes. Specifically, the
authors looked at the articulation of online material and other technology to enable
a variety of options to be implemented in a blended-course format through the e:t:p:
M® approach. Additionally, teachers can modify the content and also student
activities can be tracked and reported for a continuous evaluation and improvement.

The potential benefits of this platform are clear as students can find materials for
specific content as well as document occasions of interactions with the materials,
colleagues, a mentor and/or the teacher; and teachers can create his/her materials
specific to their individual needs. In addition to sharing the e:t:p:M® development
and model, Mundt and Hartman’s chapter provides additional data and analysis
regarding the usage of the platform, for example measuring student accesses to the
platform as well as understanding relationships between interactions with the
content and the archived online lessons.
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Chapter 3, by Hoyos et al., from the National Pedagogical University in Mexico
City, addresses opportunities and challenges posed by the teaching and learning of
mathematics through digital platforms. Specifically, the chapter focuses on the
design and implementation of several different mathematics learning environments
that provided new teaching and learning opportunities for students in hybrid
environments. In this work, the authors establish a relationship between student
mathematical attainments and digital tools functionalities, by means of the elabo-
ration of teaching cycles that have influenced the design of the activity and stu-
dents’ learning improvement.

In the chapter by Hoyos et al., the authors documented usage of digital platform
tools for the administration, storage and deployment of resources and for facilitating
interactions within the resources stored in the platform. One important considera-
tion in this chapter is the teaching challenges of attending to the promotion of
reflection processes during the resolution of math problems in an online environ-
ment. This paper documents the challenges when teaching and learning of math-
ematics were completely online and mediated by technology.

1.1.2 Part II: Online Environments and Tutoring Systems
for Leveling College Students’ Mathematics

In Chap. 4, A. Chekour, from the University of Cincinnati-Blue Ash College in
USA, describes an effort to utilize technology to support more effective develop-
mental mathematics learning and teaching. The chapter compares the academic
performance of students enrolled in developmental mathematics sections that utilize
computer-assisted instruction with those using traditional instruction. Results show
the potential of the computer-assisted instruction, both in aggregate and for both
males and females separately. The chapter also discusses the challenges and
opportunities for incorporating computer assisted instruction into university math-
ematics classes.

Chapter 5 by Liang et al., from the University of Hong Kong in Hong Kong,
presents an evaluation of the different user behaviours on an e-learning platform for
students with different levels of calculus knowledge. Having collected data from a
sample of 225 students who have used the platform, which includes both video
lessons and assessments, the authors focus on student interaction with a supple-
mental (i.e. not required) e-learning system. Results highlight relationships between
activity in the system and student performance on standard examinations. For
example, they document that while students with the necessity and urgency to catch
up (i.e. with less prior knowledge on calculus) tend to be more active on the
e-learning platform in general, many of them tend to ignore the importance the
quizzes, which are designed to provide practice and support the development of
fluency with the contents at hand.
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In Chap. 6, Landenfeld and her colleagues from the Hamburg University of
Applied Sciences in Germany discuss the online learning environment via MINT,
which was designed to provide differentiated mathematics support to undergraduate
science and engineering students. Assessment results allow for the system to rec-
ommend differentiated “paths,” that can include selections of video tutorials,
learning activities and exercises and the “Personal Online Desk” provide a view for
the student and others to view progress. In addition to sharing details of the system,
this chapter also shares results of analysis of student engagement with the
environment.

1.1.3 Part III: Innovations on E-Math Learning
and Teaching

Chapter 7, by Albano & Dello-Iacono, from the University of Salerno in Italy,
presents an innovative approach to competence-based mathematics learning,
through the use of a digital platform named DIST-M (Digital Interactive
Storytelling in Mathematics). DIST-M allows learners to define a model where the
roles of participants and the sequence of activities promote cognitive,
socio-cognitive and metacognitive processes. In this platform, students are engaged
in activities within a storytelling experience. The authors used both experiential and
discursive approaches to mathematics learning, integrating individual and social
tasks, defined by external scripts. The development DIST-M was based on the
assumption that such environment can be arranged in a way that a good exploitation
of platform tools and a well-structured collaboration among peers can act as an
expert support to students in achieving their learning goal. The environment also
supports the exploration of specific mathematics content—representation and
management of graphics and descriptive statistics, in the case of this paper—in
spatial activities that the authors have designed around thematic contexts, such as
the discovery of a new planet.

In Chap. 8, Nakamura et al., working in three different universities from Japan
(the Nagoya University, the Mukogawa Women’s University and the Nihon
University) and including the participation of the Sangensha LLC., and the
Cybernet Systems Co., Ltd., address two challenges that instructors encounter when
implementing the e-learning systems that are prominent in Japan: entry of mathe-
matical symbols and equations and the development of content for specific courses
and content. The authors share details of two input interfaces that integrate with
commonly used e-learning systems and allow students to input mathematical
symbols and equations using both computer and mobile devices, importantly, to
address the unique challenges of mathematics e-learning using mobile devices
(tablets and mobile phones). These input interfaces are one component of the
MeLQS e-learning, question specification allows for questions to be cross-platform,
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and users from many different e-learning systems collaborate and share questions
and tasks, thereby making the use of e-learning systems more generative.

Matranga et al. (Chap. 9), from the California State University San Marcos and
the Drexel University in USA, describe an online environment designed to support
the emergence of a set of professional practices within a group of mathematics
teachers. In the chapter, the authors share the design and features of the environ-
ment, highlighting the design process through which it was thought to meet specific
use cases identified by teachers. The chapter addresses the challenge of scaling
teacher professional development through using technology to emulate a boundary
encounter between a group of teachers and an existing community of educators with
productive pedagogical practices. Their findings show the promise of this approach,
specifically noting the emergence of productive pedagogical practices normative in
the target community.

Finally in this part, Crisan (Chap. 10), from the UCL Institute of Education,
University College London in UK, discusses her work supporting teachers as they
explore how digital technology supports students’ understanding and learning of
mathematics. Video cases that depict actual student engagement with specific
mathematics tasks, including audio and video of students synchronized with
recordings of their actual work, were specifically developed for this project and
participants engagement with these cases—and the student thinking that are
depicted in the cases—was analysed. Crisan reports that persistent engagement with
these video cases and the other supports provided in the online context show
promise for scaffolding teachers as they analyze student work and develop peda-
gogical solutions based on this analysis. Using a modified version of the
Technological Pedagogical Content Knowledge (TPACK) framework, Research-
informed TPACK (RiTPACK), Crisan presents additional evidence of teacher
development resulting from their engagement with the video cases and online
course.

1.1.4 Part IV: MOOC and Rich Media Platform
for Mathematics Teacher Education

Chapter 11 by Avineri et al., from three universities in USA (the North Carolina
School of Science and Mathematics, the North Carolina State University, and the
Middle Tennessee State University) and including the Victoria University in
Melbourne (Australia), specify design principles for the implementation of MOOCs
for professional development of mathematics teachers, based on recent research on
this topic. The chapter documents the design efficiency and discusses specific
impacts that participants report on changes into their teaching practices.
Specifically, some participants addressed changes to their approach to teaching
(e.g., increased focus on concepts as opposed to algorithms), others described how
their participation supported their refined attention to and understanding of their
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students’ thinking and their own personal improvement in knowledge of mathe-
matics. According to Avineri and colleagues, the research-based design principles
that guided the creation of the MOOC-ED courses have afforded educators’ choice
in professional learning, complemented with relevant, job-embedded activities,
access to the perspectives of experts, teachers, and students, and a network of
educators learning together around a common content area.

Chapter 12, by Chazan et al., from three institutions in USA (the University of
Maryland, the University of Michigan, and the Rowland Hall School at Salt Lake
City in Utah), describes how the LessonSketch platform has been used to implement
a larger project between math teacher educators. In particular, these authors use
Grossman’s pedagogies of practice to explore how teacher educators are repre-
senting practice, decomposing it, and providing opportunities for their students to
approximate practice through the curricular artefacts that they are creating. Chazan
et al., describe a practice-based approach to helping teachers explore the content of
mathematics teacher education, and report the novel ways in which a certain online
environment (LessonSketch in this case) supports new opportunities for teacher
candidates to practice the work of teaching. These authors note that professional
development experiences created with these platforms not only have pedagogical
characteristics and support learning about teaching, but also have curricular char-
acteristics that help shape what it is that teacher candidates should learn.

1.1.5 Purpose of This Monograph

This book addresses issues of collaboration, equity, access and curriculum in the
context of learning and teaching mathematics. For example, Mundt and Hartman
focus on the population of students entering Universities (Chap. 2) and propose an
online platform such as e:t:p:M® to address the challenges brought forth through
significant increases in undergraduate populations and associated challenges in
instruction and supervision. This is a consistent role posited by authors in this text
utilizing existing course management systems and tools, such as Moodle and
Blackboard Learn, as well as other custom designed platforms. While the vast
majority of online platforms offer similar features, such as organization of the
content, and integration of external software including e-mail, and discussions, the
authors noted that e:t:p:M® approach innovates because it could establish or
monitor a relationship between the usage of different mobile technology resources
with the blended courses it promoted. These results and others presented throughout
this volume confirm the existence of new teaching and learning opportunities when
working with students in hybrid environments.

With regards to wholly online mathematics learning and teaching, authors in this
volume reported the existence of challenges related with the promotion of reflection
processes when teachers or students solve mathematics complex tasks while par-
ticipating in a course at a distance (see Hoyos et al., and Matranga et al., chapters).
Using different contexts and approaches, the authors suggest that effective digital
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collaboration requires attention to individual’s (teacher or student) activity and
specific supports to accomplish an epistemological change required in order to
engage productively and solve such mentioned tasks. These supports can be
included in the computational device, learning environment or otherwise be pro-
vided by tutorial intervention.

A second broad theme in this volume is the construction and evaluation of
mathematics tutoring systems for supporting college students’ persistence and
success. Such tutoring systems are essential, both given the growth in undergrad-
uate students and continued issues regarding entering freshman’s preparation for
college level mathematics. While there are various commercial tutoring environ-
ments available, the authors in this volume (Chekour; Liang, et al.; and Landenfeld
et al.) notice the benefit of custom designed environments to address specific local
constraints and share information about their systems as well as suggestions to
improve students’ use of an e-learning platform.

The third part of this volume addresses a third theme: innovation in e-learning.
In this part, the authors discuss new approaches to mathematics learning and
mathematics teacher collaboration through the use of Web platforms and commu-
nication tools. Albano & Dello-Iacono introduce a general methodology to support
an e-learning-based approach to competence-based mathematics learning. These
authors designed and implemented certain computer-supported collaboration scripts
aimed to foster students’ shift from investigating, reasoning and communicating
what they have found. Nakamura et al.’s chapter described and displayed a series of
interfaces designed to minimize the challenges of mathematical symbols and syntax
in e-learning environments. In Matranga et al. chapter, the authors documented that
a specifically designed online collaborative environment had the potential to scaf-
fold teachers’ legitimate participation in reform-type conversations and activities
that were not common for these individuals without the online supports. Finally,
Crisan’s chapter provides another example on the use of varied multimedia for
teacher development resulting from their engagement with video cases and specific
online course.

The fourth part of the book addresses a final theme: the use of online rich media
platform for teacher education, including the development and implementation of
both visualizations of teaching and specially constructed MOOCs for mathematics
teacher education. Two of these applications are discussed in Chaps. 11 and 12, and
share theoretical and empirical evidence regarding both the effectiveness of the
specific design and medium as well as emerging advancements in this area. As an
example, Chazan et al. (Chap. 11) use the mathematics education literature on
curriculum to suggest that the curriculum creation process that is underway in
teacher education, when it happens online, is influenced by the digital nature of
technological artifacts.

This book is a scholarly collaboration on the part of professors, developers and
researchers in the broad fields of technologically-enhanced mathematics education
and serves as an effort to disseminate significant contributions and share interna-
tional perspectives on this important and timely area. The book provides an over-
view of the current state-of-the-art research and shares and discusses emerging
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work, including trends, ideas, methodologies, and results and represents a special
call to continue research and development and to grow a canon of research foun-
dations for distance learning, e-learning and blended learning in mathematics
education.
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Part I
E-Learning and Blended
Learning of Mathematics



Chapter 2
The Blended Learning Concept
e:t:p:M@Math: Practical Insights
and Research Findings

Fabian Mundt and Mutfried Hartmann

Abstract The chapter outlines the key ideas of the blended learning concept
e:t:p:M® and its further development in the field of Higher Mathematical Education.
e:t:p:M@Math aims to integrate digital technologies and face-to-face interactions to
simultaneously allow personalized and high-quality learning. Both practical
teaching experiences as well as research findings will be discussed. One focus is on
the description of the self-developed and designed e-Learning environment, its
possibilities and further development. Another focus is on the reflection of the
practical implementation into everyday teaching, especially the integration with
face-to-face seminars. In addition, first research insights will be presented and
explained.

Keywords Blended learning � E-learning � Distance learning � Learning analytics

2.1 Introduction: Challenging Trends in Higher
Education

In the winter term 2014/2015, the Federal Bureau for Statistics of Germany counted
2.7 million university students—a milestone in the history of the Federal Republic
of Germany (SB, 2015). Given that only ten years ago there were far less than 2
million students (Bildungsbericht, 2014), the magnitude of this increase becomes
even more significant. Many universities have adopted “bulk-instruction” with
heterogeneous student groups and an unfavorable student-to-instructor ratio
(Himpsl, 2014). In particular, high-demand introductory courses suffer under these
problematic circumstances. Therefore, the quality of education is lacking and the
need for reforms is apparent (Asdonk, Kuhnen, & Bornkessel, 2013).

F. Mundt (&) � M. Hartmann
University of Education Karlsruhe, Bismarckstraße 10, 76133 Karlsruhe, Germany
e-mail: fabian.mundt@ph-karlsruhe.de
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Since this situation is unlikely to change in the foreseeable future—neither
nationally nor internationally (Dräger, Friedrich, & Müller-Eiselt, 2014; Maslen,
2012)—innovative teaching and learning concepts are necessary. In contrast to
widely-discussed MOOCs, one very promising approach involves integrating reg-
ular class sessions with the opportunities of digital (Internet-) technologies (see
Carr, 2012). One specific model that specifically aims at the integration of both
class sessions and digital content is e:t:p:M®.

2.2 The Blended Learning Concept e:t:p:M®

e:t:p:M®1 was developed as an introductory course in education in the winter term
2012 at the University of Education in Karlsruhe by Timo Hoyer and Fabian
Mundt. Detailed information about the project and its theoretical framework can be
found in Hoyer and Mundt (2014, 2016). The acronym, which indicates the indi-
vidual parts of the project, are described in depth below.

2.2.1 “e” for E-Learning

The core of the e-learning content consists of 11 studio recorded online lessons that
have been post-produced according to a creative framework. The lessons are all
between 20 and 30 min long and are comprised of a speaker as well as info boards,
images, animations and quotations. Additionally, the lessons are structured through
so called “Fähnchen“ (thematic headlines). The students can access the content via
an especially for the e:t:p:M® project developed responsive web-app (Fig. 2.1).2

Personal annotations can be added to every “Fähnchen” and then downloaded as
a PDF-file (Fig. 2.2). Furthermore, the web-app grants access to additional mate-
rials (texts, exercises etc.) and does not only contain general information about the
class but also an extensive FAQ-area and the possibility to get in touch with the
lecturers directly. The web-app also provides the user with a differentiated module
for analysis that enables the teacher to track the students’ interactions.3

1Project website: http://etpm.ph-karlsruhe.de/demo/ [13.12.2016].
2The web-app was developed with the open-source frameworks Laravel, Vue.js, Semantic UI and
Video.js.
3As a tool for analyzing the interaction, an adjusted version of the open analytics platform “Piwik”
is used. All collected data is anonymized. The tracking function can be deactivated from inside the
web-app, which is highlighted for the users.

12 F. Mundt and M. Hartmann
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2.2.2 “t” for Text and Theory Based

Alongside every online lesson, the students are provided with a text that deepens
the content (primary as well as secondary literature). In addition to suggested
approaches to the text, the file contains questions that will be dealt with during the
attended seminar. All texts are formatted uniformly and have been edited for the use
in a seminar.

2.2.3 “p” for Practice-Oriented (and Attendance-Oriented)

The e-learning content of e:t:p:M® aims at a high personalization of the learning
content as well as its integration into the seminars. The latter are comprised of
information sessions (lecturers), FAQ-sessions (lecturers) and weekly mentoring
sessions (student mentors) (Fig. 2.3).

Fig. 2.1 The responsive web-app (original version)

Fig. 2.2 The annotation function of the web-app

2 The Blended Learning Concept e:t:p:M@Math: Practical Insights … 13



2.2.4 “M” for Mentoring

Especially in the beginning of studies at university, the support and care for
beginners is of high importance. In addition to subject-specific competences, the
students need to acquire a sense to navigate the foreign academic world. In e:t:p:M®

the class is separated into smaller groups who will be mentored by a tandem of
older students during the semester. The mentors are trained in a specifically
designed workshop and receive a certificate after completion.

The program received an award for extraordinary teaching methods in 2013 and
was evaluated positively several times.4

2.3 Using e:t:p:M® in an Introductory Course
in Mathematics

Based on the previously explained challenges for teaching at university and the very
positive feedback towards the project e:t:p:M®, the concept is being adapted for
other subjects outside the realm of pedagogy. At the moment, the authors work on
applying the program to an “Introduction in Mathematics” course, which started in
the winter term 2015 (Mundt & Hartmann, 2015). The current evolution of the
concept is presented below. Since the contents are more historical and theory
oriented, the application of e:t:p:M@Math requires adjustments. The online lessons
and web-app, in particular, are being revised extensively to meet the requirements
of mathematical learning.

The adaptation is informed and guided by “design-based research methodology”
(Wang & Hannafin, 2005). Specifically, it is situated in a real educational context
(mathematics introduction) and is focusing on the design and testing of significant
interventions (e:t:p:M@Math concept) (see Anderson & Shattuck, 2012). As part of
the design process, we refer to contemporary findings in the field of Higher

Fig. 2.3 The e:t:p:M® concept

4http://etpm-dev.ph-karlsruhe.de/etpm-evaluation/ [13.10.2015].
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Education eDidactics (Ertl, 2010; Kerres, 2013) with a special focus on mathe-
matical learning in digitally supported environments (Aldon, Hitt, & Bazzini, 2017;
Juan, 2011) and “User Experience Design” (Meyer & Wachter-Boettcher, 2016;
Walter, 2011). In this text, we are concerned with the extensions of the web-app.5

For this reason, we also include a review of existing blended-learning specific tools.

2.3.1 Existing Tools and e:t:p:M@Math Web-App

A review of the current literature and software shows that there are many blended
learning concepts in the field of Higher Education, but only few explicit tools.
Besides well-established Learning Management Systems like Moodle, OpenOLAT
or ILIAS there are some more recent MOOC related platforms like edX. A more
detailed overview of these and similar resources can be found in Spring et al. (2016)
and Ma’arop and Embi (2016). All these solutions offer functionality for blended
learning scenarios. Often, these tools require special plugins or add-ons (Kumari,
2016). They also often lack both a good user experience design and context-specific
needs (e.g. for mathematics teaching), which goes hand in hand with the over-
whelming functionality of the software (Persike & Friedrich, 2016). Hence, it is no
surprise that there are also a variety of special and often well-designed tools in
addition to the all-embracing systems. These range for example from applications
which enable the creation of interactive videos (H5P6), deliver the opportunity to
brainstorm online (MindMeister7) or create entire learning lessons easily (TES
Teach8).

In contrast to this situation, the e:t:p:M@Math web-app is a blended
learning-specific software. This means it integrates modern technologies and ideas,
e.g. creating rich interactive video content, with the pedagogical aspects of the
e:t:p:M® concept and context specific needs in mind. One example might be per-
sonalized annotations optimized for seminar use (see Fig. 2.2) or instant exercise
feedback for teachers as outlined below. The web-app can be seen as a continuously
developing framework in the sense of the design-based research, where interven-
tions are repeatedly added, evaluated and improved. The web-app itself can also be
seen as a research tool.

5The web-app is developed in the sense of “Agile Software Development” (Dingsøyr, Dybå, &
Moe, 2010), which fits perfectly with the design-based research methodology.
6https://www.h5p.org [10.7.2017].
7https://www.mindmeister.com [10.7.2017].
8https://www.tes.com/lessons [10.7.2017].
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2.3.2 Research Questions

The review of the current literature and software showed that there is a lack of a
well-designed blended learning specific software that integrates modern technolo-
gies in a tight didactical way and is also open for further research-based develop-
ment. Out of this, our focus is on the following overarching question: How can
modern technology enabled options be implemented in the mathematical adapta-
tion of e:t:p:M®? The following sub-foci organize our discussion of our broad
research focus:

(a) How can interactive content be integrated in the web-app?
(b) How can discussions—a key element of teaching and learning mathematics—

be integrated in the web-app?
(c) How can exercises and tests be implemented?
(d) How can the teachers modify and generate content?
(e) How can student activities be tracked and reported for continuous evaluation

and improvement?

2.3.3 Series of Interactive Content (Sub-focus a)

An online lesson is not only comprised of just a single video, but contains a series
of shorter videos and interactive learning applications. This series of interactive
content enables a more differentiated structure of the more abstract, mathematical
learning contents. The interactions make it possible for the user to comprehend
complex correlations on their own. Current versions of the video environment are
shown in Figs. 2.4 and 2.5.

At present, we are considering about at least three different content types:

• Interactive videos
• Exploration exercises
• Test exercises

As you can see in Fig. 2.4 the video environment integrates these new ideas in
the existing application. In addition, the concept of “Fähnchen” can be used in both
the shorter videos and in exercises. In case of the exercises, the concept has to be
adjusted, particularly through structuring each interactive exercise around several
tasks. Each of these tasks can be visually and functionally highlighted by one
“Fähnchen”. Thereby individual notes can be taken while solving the tasks.

To implement interactive exploration and test exercises the open-source software
CindyJS9 is used. CindyJS is a JavaScript implementation of the well-known
interactive geometry software Cinderella (Richter-Gebert & Kortenkamp, 2012).

9http://cindyjs.org [13.12.2016].
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The software is mainly used to connect with existing content. However, a modern
JavaScript-framework also makes is possible to optimize the learning environment
for modern devices, which is very important in the mobile world. Furthermore, it is
possible to develop an intuitive content editor, which allows for quick and easy
editing of the exercises (Sect. 2.3.4).

2.3.4 Discussions (Sub-focus b)

Especially in mathematics, controversial discussions facilitate learning and create a
lot of questions. Hence, the annotations and the series of interactive content are
supplemented by discussions. In the discussion forums, which are based on tradi-
tional online discussions, students can post questions and answers tailored to the
corresponding “Fähnchen”. Additionally, the students can ‘like’ the posts, and
lecturers can highlight relevant questions or interesting postings. To keep matters
clear, irrelevant postings will be faded out after a while.

Since 2016, we have been testing several forms of in-app discussions. Following
the iterative implementation and evaluative paradigm of the design-based research
approach we present here both, a first draft (Fig. 2.5) and the current version

Content series

Timeline with “Fähnchen” to a particular content-part of the above series 

Fig. 2.4 Implementation of content series
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(Fig. 2.6). As you can see in Fig. 2.6 we are using the popular disqus™ service at
the moment. By using an existing service, we gain valuable insights for our own
implementation. In addition to technical challenges, it seems important to develop a
discussion format which integrates very well with the existing parts of the blended
learning concept, particularly the interlink to the face-to-face seminars.

Fig. 2.5 First draft of “discussions”-extension
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2.3.5 Playground (Sub-focus c)

Every online-lesson contains a summarizing event called “playground”. The
playground consists of practice final exercises and interactions that can be scored in
terms of understandability. Through that, a feedback loop is created that enables a
focused learning process. Furthermore, a dynamic script can be generated. If
desired, the personal annotations and discussions from the forum can be included at
the respective place in the script, before it can be downloaded as a PDF (Fig. 2.7).

2.3.6 Content Editor (Sub-focus d)

In addition to functions that deal with teaching content, the easy creation and
revising of online materials is an important point. Especially in the context of
mathematical settings, where abstract ideas and their representation are focused,
content production can become very intensive.

For this reason, we are working to extend the web app with an “editor mode”,
which makes it possible to create rich learning content quickly and easily. On the
one hand, this includes the possibility to add “Fähnchen” and interactive areas
(links, graphs, pictures etc.) to video content. An elaborate postproduction is

Fig. 2.6 Implementation of discussions (native web-app screenshot, see Fig. 2.8 for translated
interface)
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thereby reduced to the essential and the video content can be changed more easily.
A great advantage is also that the teachers can do this by themselves. On the other
hand, the interactive applications (exploration and test exercises) will be editable as
well.

In this way, the web-app offers teachers the opportunity to create a compre-
hensive and modern learning environment, which reflects both the requirements of
the mathematical subject and those of the learners.

Fig. 2.7 First draft of the “playground”-extension
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Figure 2.8 shows the current development of the content editor.10 We are trying
to integrate the editor features seamlessly within the user interface. Teal-colored
buttons highlight interaction possibilities, and the main features are bundled in the
secondary menu bar. Following the agile development paradigm, we are imple-
menting extensions continuously. At the moment we have implemented the fol-
lowing “main features”:

• news message system
• FAQ system
• seminar management
• rudimentary online lesson management
• discussion system
• user management
• user role system
• integration in the university ecosystem through LDAP support
• integration of the open analytics platform Piwik (see footnote 3)

In other words, teachers are able to create and manage their own seminars. This
includes the possibility to arrange existing online lessons or add new ones, manage
seminar participants, upload documents, write news messages and manage dis-
cussions through a disqus™ service integration. Further, they can receive statisti-
cally prepared live analytics and configure the system setup.

Unfortunately, it is at the moment not possible to create new high-level online
lessons without technical knowledge. The next step will be to develop the previ-
ously explained online lesson editor based on the already mentioned CindyJS and
H5P frameworks.

2.3.7 Continuous Evaluation Strategy (Sub-focus e)

The series of interactive content, the discussions, the playground and the content
editor mark the current state of the further development of the e-learning content of
e:t:p:M@Math. At the moment, the program—in particular, the discussions and
their integration with face-to-face seminars—is being implemented and evaluated.
In addition to continuous web-based interaction analysis, we have planned an
extensive survey in 2017, when more parts of the introduction course are imple-
mented according to the blended-learning concept. Because we can relate both tools
of our analytical framework—which is called “Blended Evaluation” (Mundt &
Hoyer, 2017)—we expect to identify detailed learning profiles. In fact, we hope to
obtain a solid empirical basis for further design-based decisions. In the following
sections, we share some initial results, which focus the web-app interactions.

10The web-app project, called “Synthesise”, is published under the MIT Open Source license. The
code is available on GitHub: https://github.com/inventionate/Synthesise. Participation is welcome.

2 The Blended Learning Concept e:t:p:M@Math: Practical Insights … 21

https://github.com/inventionate/Synthesise


2.4 First Insights of the Use in Winter Semester 2015/2016

The first three sessions of an “Introduction in Mathematics” course (October 2015
to November 2015) were organized in the e:t:p:M® format. Altogether, there were
168 students who attended the course. In this section, we will present some sta-
tistical analysis of the web-app interactions using Learning Analytics, which is
described as “an educational application of web analytics aimed at learner profiling,
a process of gathering and analyzing details of individual student interactions in
online learning activities” (NMC, 2016). We are focusing on the web-interactions
for two reasons. First, the introduction course is at this time only partly adapted.
A comparative analysis, which allows conclusions on the student performance is
therefore very difficult. As already said, this is methodically prepared as well as
planned for future semesters (see Mundt & Hoyer, 2017). Second, the evaluation of
web-interactions (Learning Analytics) provides important information for our agile
development and design-based research process.

2.4.1 Evaluation Strategy and Questions

We begin by interpreting some core web-analytics data provided by our Piwik (see
footnote 3) installation. Based on these singular insights we apply a more elaborate
multivariate approach—the so called Multiple Correspondence Analysis (see
Sect. 2.4.3 for additional details and references)—to visualize entangled relation-
ships. In the sense of our design-based research methodology, we seek to identify

Fig. 2.8 First implementations of the content editor (web-app screenshot, translated)
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indicators of particularly effective interventions and developments. In this context,
two main questions are addressed:

a. How do students use the web-content?
b. Can web-interactions be condensed into interaction-profiles?

2.4.2 Usage of Web-Content (a)

Figure 2.9 shows the visitors of the web-app form October to November. After a
period of initial curiosity, the tool has been used continuously. In particular, one
day before the weekly seminars (mentoring), the online lessons were intensively
watched.

More important than the number of visitors over time are their content inter-
actions (clicks, movements, typed characters). For example, how long and how
often videos were played seems to make a difference. In our case, the average
playing time was more than 30 min per online lesson and they were often played
multiple times (3–4 times). These data may indicate that there was much ‘done’
with the videos—and hopefully much learned.

Additional data also supports the conjecture regarding active student engage-
ment. Overall, the online lessons were played more than 45,000 times, almost as
often as they were paused. Nearly 35,000 times the students skipped parts of the
video by using some “Fähnchen”. At least 14,500 annotations were made by most
of the students.

Apart from traffic and interaction data there is some other interesting informa-
tion. Looking at the above-mentioned challenge of digitization, it is appropriate to
analyze the devices which have been used by the students. In the case of
“Introduction in Mathematics”, 80% used ‘traditional’ desktop or laptop computers
to access the web-app. 20% used ‘modern’ smart devices—10% used smartphones
and 10% tablets.

Overall, it can be stated that the students have used the web content extensively.
Even if no information about the performance of the students could be integrated,
the amount of web-interactions, the time spent and the continuity of usage leads to
meaningful insights for further research.

However, research methods which focus on the relationship between those
particular aspects of content usage are even more useful. They enable the recon-
struction of interaction-profiles, which allows well-informed didactical interven-
tions as they are intended by the referenced design-based research methodology.
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2.4.3 Reconstruction of Interaction-Profiles (b)

In order to reconstruct rich interaction-profiles, we applied a Multiple
Correspondence Analysis (MCA). This is a multivariate statistical method, which
belongs to a framework known as “Geometric Data Analysis” (Le Roux & Rouanet,
2010). In contrast to popular methods, e.g. Factor Analysis, geometrical methods
are exploratory oriented, which is concerned with the construction of “social
spaces”. That is, an individual level is observed throughout the whole geometrical
modeling process (see ibid). Especially in the case of a “Blended Evaluation,” this
property is of great advantage. It allows both the analysis of the position of each
student as well as the reconstruction of group profiles (see Mundt & Hoyer, 2017).
Within this chapter, we can only provide brief insights.

2.4.3.1 Dataset and Analysis Toolkit

The analyzed data refer partially to the previously mentioned values. Overall, the
correlations between 12 interaction-variables are evaluated. These can be grouped
under three headings:

1. Duration of web-app interactions overall (2 variables)
2. Amount of web-app interactions overall without video (5 variables)
3. Amount of video interactions in particular (5 variables)

All variables were categorized in order to be able to carry out an analysis which
is as meaningful as possible. The two temporal variables (first heading) were
divided into four categories: very short (0–7 h), short (8–13 h), long (14–23 h),
very long (24–60 h). Likewise, the five web-app counting variables (second
heading) as well as the five video counting variables (third heading) were divided in
four categories. Web-app interactions are, as already mentioned above, mouse

Fig. 2.9 Web-app users (October 2015 to November 2015)
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clicks, mouse movements and keyboard input. They were categorized in: very few
(0–800 interactions), few (801–2000 interactions), many (2001–4000 interactions),
very many (4001–20000). Video interactions (playback, pause, jump, speed
change) were categorized in: very few (0–600 interactions), few (601–1800 inter-
actions), many (1801–3300 interactions), very many (3001–9700 interactions). In
total, the dataset consists of 12 columns (one per variable), 168 rows (one per
student) and 48 categories (12 variables multiplied by 4 categories).

A standard MCA was performed on this dataset using the free statistical envi-
ronment R (R Core Team, 2017). To be more specific, the Geometric Data Analysis
related packages “FactoMineR” (Lê, Josse, & Husson, 2008) and “factoextra”
(Kassambara & Mundt, 2017) were used. In the sense of open and reproducible
science, all analysis scripts are available online.11

2.4.3.2 MCA Results and Interpretation

Figure 2.10 visualizes the MCA results as a biplot. Both the categorical locations as
well as the corresponding positions of the students (grey points) are recognizable.
This two-dimensional MCA solution clarifies 86.6% variance, which underlines the
significance of the analysis. Usually, solutions over 70% are considered sufficiently
meaningful (see Le Roux & Rouanet, 2010). In order to obtain the greatest possible
overview, only the barycenters of the variable headings are mapped. For example,
the position of “Amount of video interactions: many” results from the positions of
the corresponding categories of the five variables of this heading and so on.

Looking at Fig. 2.10 it is striking that the location of the four categorical
barycenters of all three headings are always arranged approximately the same. By
connecting the points, a kind of parabola becomes visible. As a matter of fact, this
effect is a well-known methodological artefact. It reflects the ordinal structure of the
variables under investigation (Le Roux & Rouanet, 2010).

In terms of content, the so called “horseshoe-effect” (ibid.) makes clear that
students who have a lot of interaction with the web-app and videos also have visited
the app significantly longer than the other students. The respective categories are
distributed ascending from left to right.

Reflecting the corresponding positions of the students (grey points) four more or
less separated interaction-profiles can be identified. These profiles are linked to the
temporal intensity and frequency of web-app interactions. Hence, it is almost
impossible that people work considerably more with the video elements, but
interact rather less with other elements of the web-app. Furthermore, it is noticeable
that in particular the less-intense-user-profile is separated sharply (down left). This
refers to approximately 25% of the students who have used the web content rarely,
which can be interpreted as an indication of a skeptical attitude towards the concept.
In contrast, there is a less clearly separated spread of approximately 75% positions

11https://github.com/inventionate/learning-analytics [11.07.2016]; especially file “mca_mathe.R”.
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along the other three categories (short/few to very long/very many). We have begun
to outline three additional interaction-profiles, which can be attributed to a positive
attitude towards the concept, and are related to a gradual distribution of the inter-
action intensity. These three interaction profiles appear to be fluid and permeable.
Additional research is underway to further analyze the interaction profiles and their
impact.

On the one hand, this analysis confirms the altogether intensive use of the
web-app, which has been already discussed in the previous section. On the other
hand, a more detailed description and understanding of this initial observation
became possible through the Geometric Data Analysis.

2.5 Conclusion

Based on the results presented above, we argue that the high adoption progress
clearly signifies the potential of the online system. Particularly, it indicates the
potential of the mathematical adaptation of the established blended learning soft-
ware. In combination with the previously gained experiences with the original e:t:p:
M® concept and the ongoing optimization, we are very optimistic to be able to offer
an outstanding mathematical learning environment, and especially one that allows
for interesting empirical insights in mathematical learning processes. Our work
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continues, with currently research focusing on further analysis and evaluation,
particularly of successful mathematical learning and its relation to the interaction
profiles. Results of this work is forthcoming.

References

Aldon, G., Hitt, F., Bazzini, L., & Gellert, U. (Eds.). (2017). Mathematics and technology. Cham:
Springer.

Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education
research? Educational Researcher, 41(1), 16–25.

Asdonk, J., Kuhnen, S. U., & Bornkessel, P. (Eds.). (2013). Von der Schule zur Hochschule.
Münster: Waxmann.

Bildungsbericht. (2014). Bildung in Deutschland 2014. Bielefeld: wbv.
Carr, N. (2012). The crisis in higher education. MIT Technology Review Magazine, 115(6), 32.
Dingsøyr, T., Dybå, T., & Moe, N. B. (Eds.). (2010). Agile software development. Berlin/

Heidelberg: Springer.
Dräger, J., Friedrich, J.-D., & Müller-Eiselt, R. (2014). Digital wird normal. Gütersloh: CHE.
Ertl, B. (Ed.). (2010). Technologies and practices for constructing knowledge in online

environments: Advancements in learning. Hershey: IGI Global.
Himpsl, F. (2014). Betreuer, dringend gefragt. Die Zeit. 09/2014.
Hoyer, T., & Mundt, F. (2014). e:t:p:M – ein Blended-Learning-Konzept für Großveranstaltungen.

In K. Rummler (Ed.), Lernräume gestalten – Bildungskontexte vielfältig denken (pp. 249–259).
Münster: Waxmann.

Hoyer, T., & Mundt, F. (2016). Den Studienanfang pädagogisch gestalten. Das Blended Learning
Konzept e:t:p:M®. In R. Bolle & W. Halbeis (Eds.), Zur Didaktik der Pädagogik.
Herbartstudien Bd. 6.

Juan, A. (2011). Teaching mathematics online: Emergent technologies and methodologies.
Hershey: IGI Global.

Kassambara, A., & Mundt, F. (2017). Factoextra—Extract and visualize the results of multivariate
data analyses. CRAN.

Kerres, M. (2013). Mediendidaktik (4th ed.). Berlin: Oldenbourg.
Kumari, S. (2016). Personalised, flexible and blended learning features of moodle-LMS.

Educational Quest- An International Journal of Education and Applied Social Sciences, 7(1),
53.

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate data analysis.
Journal of Statistical Software, 25(1), 1.

Le Roux, B., & Rouanet, H. (2010). Multiple correspondence analysis. London: SAGE.
Ma’arop, A. H., & Embi, M. A. (2016). Implementation of blended learning in higher learning

Institutions: A review of literature. International Education Studies, 9(3), 41.
Maslen, G. (2012). Worldwide student numbers forecast to double by 2025. University World

News, 209. Retrieved 10/2015, from http://www.universityworldnews.com/article.php?story=
20120216105739999.

Meyer, E. A., & Wachter-Boettcher, S. (2016). Design for real life. New York: ABA.
Mundt, F., & Hartmann, M. (2015). Klasse trotz Masse am Studienanfang – das Blended Learning

Konzept e:t:p:M@Math. In H. Linneweber-Lammerskitten (Ed.), Beiträge zum
Mathematikunterricht 2015. WTM: Münster.

Mundt, F., & Hoyer, T. (2017). Blended Evaluation in der digital gestützten Lehre. In P. Pohlenz
(Ed.), Digitalisierung der Hochschullehre – Hochschullehre in der digitalen Welt: Neue
Anforderungen an die Evaluation? Münster: Waxmann.

2 The Blended Learning Concept e:t:p:M@Math: Practical Insights … 27

http://www.universityworldnews.com/article.php?story=20120216105739999
http://www.universityworldnews.com/article.php?story=20120216105739999


NMC. (2016). Horizon report 2016. Higher Education Edition. Retrieved 03/2016, from https://
library.educause.edu/*/media/files/library/2016/2/hr2016.pdf.

Persike, M., & Friedrich, J.-D. (2016). Lernen mit digitalen Medien aus Studierendenperspektive.
hochschulforum digitalisierung. 17.

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria:
RC Team.

Richter-Gebert, J., & Kortenkamp, U. (2012). The Cinderella.2 Manual. Working with the
interactive geometry software. Berlin/Heidelberg: Springer.

SB. (2015). Zahlen & Fakten: Studierende insgesamt nach Hochschularten. Retrieved 10/2015,
from https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/
Hochschulen/Tabellen/StudierendeInsgesamtHochschulart.html;jsessionid=EC79F16337CCA
9999EB90629995D1E85.cae4.

Spring, K. J., Graham, C. R., & Hadlock, C. A. (2016). The current landscape of international
blended learning. International Journal of Technology Enhanced Learning, 8(1), 84.

Walter, A. (2011). Designing for emotion. New York: ABA.
Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning

environments. In Educational technology research and development (Vol. 53, No. 4,
pp. 5–23). The Netherlands: Kluwer Academic Publishers.

28 F. Mundt and M. Hartmann

https://library.educause.edu/%7e/media/files/library/2016/2/hr2016.pdf
https://library.educause.edu/%7e/media/files/library/2016/2/hr2016.pdf
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Tabellen/StudierendeInsgesamtHochschulart.html%3bjsessionid%3dEC79F16337CCA9999EB90629995D1E85.cae4
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Tabellen/StudierendeInsgesamtHochschulart.html%3bjsessionid%3dEC79F16337CCA9999EB90629995D1E85.cae4
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Tabellen/StudierendeInsgesamtHochschulart.html%3bjsessionid%3dEC79F16337CCA9999EB90629995D1E85.cae4


Chapter 3
Challenges and Opportunities
in Distance and Hybrid Environments
for Technology-Mediated Mathematics
Teaching and Learning

Veronica Hoyos, Maria E. Navarro, Victor J. Raggi
and Guadalupe Rodriguez

Abstract This chapter addresses opportunities and challenges posed by the
teaching and learning of mathematics through digital learning platforms basically
developed using Moodle (see https://moodle.org). Specifically, we review and
discuss the design and implementation of several different mathematics learning
environments. Results indicate the existence of new teaching and learning oppor-
tunities—and challenges—when working with secondary or middle school students
in hybrid learning environments where teaching and learning of mathematics are
mediated by technology.

Keywords Hybrid environments � Transforming practices and results at school
Online environments � Reflection processes � Resolution of optimization problems

3.1 Purpose of the Chapter

In this chapter, we report on work in mathematics education mediated by tech-
nology across four different projects, two of them focusing on technology-mediated
and distance mathematics teacher professional development, and two focusing on
hybrid mathematics teaching and learning environments at secondary and college
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levels. Through the design and implementation of these teaching and learning
modalities, we searched to establish a relationship between student mathematical
attainments, functionalities of the different and available digital tools, and the
design of the environment. Across these four different projects, we explored the
following research questions.

– How is it possible to coordinate syntactic and conceptual aspects of mathematics
teaching using specific digital technology in a hybrid learning environment?

– How could student mathematical knowledge be validated through following
virtual or online activities?

– How can teacher or student reflection processes be promoted during
technology-mediated and distance resolution of math problems?

It should be noted that our interest in the design and implementation of distance
learning mediated by technology is based on both a critical look and exploration of
the educational potential of this educative modality, when compared to face-to-face
mathematics teaching and learning. We also note that many of the main charac-
teristics of the distance or online education seem to challenge theoretical results or
notions previously established in the field of classroom mathematics education. For
example, years ago, behind the idea of the introduction of new technologies in the
classroom was the belief that students would be able to interact and learn with
software almost independently of teachers, and with more interaction with
knowledge (Sutherland & Balacheff, 1999). However, research has demonstrated
the importance of the role of the teacher, by intervening in the negotiation of the
meaning of the mathematical activity with the students, to lead them to specific
learning (ibidem). Now, in new and massive technology-mediated distance edu-
cation (for example, see new MOOC’s case in Chap. 10 in this book), it has been
challenging to model teacher’s intervention and/or interaction’s orchestration, and/
or to promote the exchange of opinions between students on the topic under study,
and even in alternative settings it has been generally expected for teachers or
students to learn independently (see Hoyos, 2016).

In that way, and according to Balacheff (2010b, 2012, 2015),

Distance learning is provocative because it is a source of restrictions that have their origin
in a series of questions and rethinking of common practices.

On the other hand, a noteworthy and common characteristic between all the works
that are reviewed in this chapter (see Heffernan, Heffernan, Bennett, & Militello,
2012; Rodríguez, 2015; Hoyos, 2016, 2017) is the existence of significant advances
in the understanding and use of digital technologies supporting effectively teaching
and learning of mathematics into the school. Specifically, on generalization of pat-
terns in the case of Rodríguez (2015), and on the use of mathematical functions in the
cases of Hoyos (2016, 2017) and Hoyos and Navarro (2017). In these works, there is
an emphasis on the use of the Internet and/or digital platforms for the administration,
storage and deployment of resources, as well as for the interaction between partici-
pants and within the resources stored in the platform in use.
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Finally, in this chapter, we will share a variety of emerging foci from our
research, including the importance of the reflection processes during the resolution
of math problems in an online environment (Hoyos, 2016, 2017). Additional foci
include equity in schools, specifically in the case of disadvantaged student learning
when they were solving complex tasks of school algebra (Rodríguez, 2015), and on
improving the classroom environment, particularly in the case of the teaching and
learning of functions (Hoyos & Navarro, 2017).

3.2 Hybrid Environments for the Integration
of Technology into Mathematics Classroom

Research by Cuban, Kirkpatrick, and Peck (2001), Ruthven (2007), Zbieck and
Hollebrands (2008), and Hoyos (2009, 2012) gives an account of few advances on
the incorporation of technology into mathematics classroom, and recent OECD
data (2015) show that this situation is generalized worldwide. Hence, this section
is dedicated to sharing some contributions in this line of research through the
design and implementation of hybrid environments for mathematics teaching and
learning. The setting, orchestration and exploration of these environments will be
presented, including management of distance digital resources (using the Internet
in or out of school), and the deployment of the functionalities of specific digital
devices in use which, coordinated with the implementation of classroom mathe-
matical activities, have transformed practices and results of mathematics teaching
and learning.

3.2.1 Antecedents in the Utilization of Hybrid Environments
for Mathematics Teaching and Learning
with Technology

Heffernan et al. (2012) reported an investigation on how secondary teachers used
ASSISTments (https://www.assistments.org), a Digital Teaching Platform (term
coined by Dede & Richards, 2012), which was developed by the Worcester
Polytechnic Institute to increase, replicate and promote good teaching practices. It
includes detailed diagnosis of student misconceptions, provides student immediate
specific feedback, and monitors student practice (Heffernan et al., 2012, p. 89).
ASSISTments, in the words of these authors, has the characteristics of being:

a web-based assessment system that provides tutoring based on student response.… Collects
data efficiently and provides student-level diagnostic results, … has many features, including
content, Mastery Learning, an advanced student-response system, teacher authoring, and data
collection.… This is a tool that can be adapted and used in a variety of manners with different
cognitive models and content libraries. (Heffernan et al., 2012, pp. 88–89)
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A characteristic of ASSISTments, which is important to emphasize here, is
related with teachers’ hybrid use of the platform, because they have also used it for
students to work on out-of-school tasks. Heffernan et al. (2012) have suggested that
the components of ASSISTments are designed to highlight what the teacher is
already doing in the classroom, but that the use of the digital device allows him or
her to do so more efficiently (idem, p. 92).

These authors consider that instructional technologies such as ASSISTments has
major implications,

for the current and future practices of teachers, as for those who direct and train them. If
practice is to change to keep pace with the development of new technologies and the
expectation of students, then pre- and in-service teacher development efforts must be
altered. Moreover, more cloud-based, interactive instructional technologies must be
developed and implemented in our schools. (Heffernan et al., 2012, p. 101)

It should be clear up to here that Heffernan and colleagues were not just talking
about more cloud-based tech, but those that serve to purposes, such as those
highlighted here, students working on out-of-school tasks and teachers practicing
more efficiently. The next section of this chapter will present another new research
effort, which will be displayed there and that specifically deals with teacher prac-
ticing efficiently and innovatively by means of involving hybrid learning envi-
ronments into the classroom.

To finalize this section, it is important to note that the work of Heffernan
et al. (2012) is a significant antecedent of research on digital platforms of
teaching not only for inquiring about student achievement, but also because it
was established there that this type of research should include more robust,
detailed examinations of school level educator development, implementation,
and student engagement (Heffernan et al., 2012, p. 101). Having this frame in
mind, last section of this chapter will present an investigation by Hoyos (2016,
2017) that speaks partly to this issue, specifically on the examination of sec-
ondary teacher professional development on mathematics, at a distance and by
means of digital tools.

3.2.2 Advances in Teacher Practice to Innovate by Involving
Hybrid Learning Environments

The reviewed work of Heffernan et al. (2012) made in the previous section referred
directly to some opportunities that teaching and learning have by means of hybrid
environments, providing detailed diagnosis of student misconceptions and moni-
toring student practice. In these environments teacher participation is central in the
planning and orchestration of the use of digital technologies in the classroom—as it
is going to be evidenced next, through the review of the work of Rodriguez (2015);
thus, increasing the possibility of enabling achievements and reach of mathematical
significant ideas. “Significant ideas in mathematics are not necessarily advanced
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and powerful mathematical notions but instead are key notions that provide real
access to the latter” (Rojano, 2002: 144). According to Rojano, significant ideas are
those that promote transitional processes and allow students to access levels of
thought that surpass specific, numeric and perceptual thinking (Idem). In the review
of Rodriguez’s work (2015), the reader will recognize the teacher promotion of two
transitional processes for students to pass by with the help of virtual manipulatives’
tools (see http://nlvm.usu.edu/en/nav/vlibrary.html), namely (1) identification of
figural templates (Rivera, 2010); and (2) reproduction and counting of different
parts of the figures in a given pattern. Both processes would allow students to
access to the generalization of figural patterns, accomplishing then some of the
complex tasks that are usual in school algebra.

As part of her doctoral dissertation, Rodríguez (2015) supported seventh grade
disadvantaged1 students in several public middle schools in solving complex tasks
on the generalization of figural patterns,2 a typical subject matter of school algebra.3

Her pedagogical approach4 for teaching using hybrid environments for mathematics
learning included the use of specific free, online digital materials or virtual

1According to Dunham and Hennessy (p. 388), disadvantaged students are who traditionally do
less well than the general population: “In effect, technology ‘leveled the playing field’ so that
previously disadvantaged groups, who—because of different cognitive styles, learning disabilities,
or special circumstances—had usually achieved less, performed as well or better than the main
group on outcome measures when using computers or calculators.”
2Such figural patterns, “whether constructed ambiguously, or in a well-defined manner, consist of
stages whose parts could be interpreted as being configured in a certain way” (Rivera 2010,
p. 298). According to Rivera, he preferred «to use the term figural pattern to convey what I assume
to be the “simultaneously conceptual and figural” (Fischbein, 1993, p. 160) nature of mathematical
patterns. The term “geometric patterns” is not appropriate due to a potential confusion with
geometric sequences (as instances of exponential functions in indiscrete mathematics). Also, I was
not keen in using the term “pictorial patterns” due to the (Peircean) fact that figural patterns are not
mere pictures of objects but exhibit characteristics associated with diagrammatic representations.
The term “ambiguous” shares Neisser’s (1976) general notion of ambiguous pictures as conveying
the “possibility of alternative perceptions”, (p. 50)».
3In accordance with Mason and collaborators (1985), a main idea for initiate students in the
learning of algebra is that students identify a pattern in a succession of figures (or numbers) and
then communicate and record by writing the common characteristics perceived between them, or
the relationships that might be established initially with examples. From there teacher can drive
some math questions as for example: will there be any formula that could define this pattern? Also,
Mason et al., established that once agreed what defines the pattern, the regularities and relation-
ships between its components must be translated from one natural language into a rule or general
formula, which will result from a cognitive evolution of the student, such transition is not a simple
cognitive exercise, but it could be supported by drawings, diagrams or words, which lead later to
describe the key variables in the problem and move to the achievement of its expression in
symbolic form.
4In his work on a pedagogical approach of teaching, Simon (1995) founded a constructivist
learning of mathematics. He developed a model of decision-making for teachers considering the
design of math tasks. Its core consists in “the creative tension between the teacher's goals about
student learning and his responsibility to be sensitive and responsive to the mathematical thinking
of the students” (see Simon, 1995, p. 114). Simon’s work presents a diagram (Simon, 1995,
p. 136) of a—constructivist—cycle of teaching.
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manipulatives hosted by the University of Utah (see http://nlvm.usu.edu/en/nav/
vlibrary.html), for levelling effects in the development of algebraic reasoning of all
students at middle school.

Rodriguez’s (2015) work was framed as a teaching cycle5 (Simon, 1995) on
generalization of figural patterns, using visual templates (Rivera, 2010, 2011) and
utilized specific online digital devices (http://nlvm.usu.edu/en/nav/vlibrary.html) as
the basic tools for the construction of a pedagogical approach to the teaching of the
generalization of figural patterns. Rodriguez’s (2015) contribution consisted in
developing digital, interactive, direct and visual manipulation of the Rivera’s figural
templates, in order that disadvantaged students could separate, coloring and
counting the distinctive elements of corresponding figural patterns. All these
activities were in fact correlated to specific actions of abduction and/or induction,
actions previously identified by Rivera6 (2010, 2011) but this time recreated within
the virtual medium, they allowed that participant students developed algebraic
formulas to express the generalization sought.

The empirical observations in Rodriguez’s work (2015) were accomplished with
the participation of 45 disadvantaged students from 10 different 7th grade classes.
During 10 sessions of practical work (each session of one hour), each group
(formed by 9 disadvantaged students) was placed in a classroom equipped with
internet-connected computers. Students worked alone in a hybrid environment
basically composed by the use of the virtual manipulatives hosted by the University
of Utah, the following of detailed, printed instructions (or pedagogical guides, as
Rodriguez called them) and teacher orchestration of both resources. The work
sessions were video recorded and transcribed, allowing the researchers to construct
detailed descriptions of the student use of the virtual manipulatives, problem
solving, and generalization of figural patterns.

Four hypotheses were advanced in Rodriguez’ (2015) research: (H1) First,
according to Simon (1995), a teacher’s reconstruction of a (constructivist) peda-
gogy of mathematics implies that his attention has been able to focus on the
different possibilities of the students. (H2) Second, a mediation using online digital
tools to access complex mathematical ideas will strengthen arguments exposed by
Zbieck and Hollebrands (2008) regarding the benefits of the use of digital tech-
nology with disadvantaged students to level their knowledge at the end of a given
schooling. (H3) Third, teacher participation would be central to orchestrate and

5See last part in the previous final note, in this section.
6According to Rivera (2010, p. 300) “meaningful pattern generalization involves the coordination
of two interdependent actions, as follows: (1) abductive–inductive action on objects, which
involves employing different ways of counting and structuring discrete objects or parts in a pattern
in an algebraically useful manner; and (2) symbolic action, which involves translating (1) in the
form of an algebraic generalization. The idea behind abductive–inductive action is illustrated by a
diagram [it appeared in Rivera’s work published in 2010, p. 300, in Fig. 5], an empirically verified
diagram of phases in pattern generalization that I have drawn from a cohort of sixth-grade students
who participated in a constructivist-driven pattern generalization study for two consecutive years
(Rivera & Becker, 2008).”
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promote student access to specific significant ideas. (H4) Four, the development of
mathematical reasoning, particularly in school algebra and with disadvantaged
seventh-grade students, would be achieved through the implementation of hybrid
learning environments based on a pedagogical reconstruction of mathematics
teaching and the mediation of digital technologies, in situations that guarantee the
access to significant mathematical ideas and during the resolution of complex
mathematical tasks (Fig. 3.1).

The virtual manipulatives used in Rodriguez’s study have many of the same
features and affordances than concrete manipulatives, which are “objects that can be
touched and moved by students to introduce or reinforce an idea or mathematical
concept” (Hartshorn & Boren, 1990, Quoted in Neesam, 2015). According to Matus
and Miranda (2010), virtual manipulatives have the following characteristics:
(i) they tend to be more than the exact replica of the ‘concrete’, or ‘physical’,
manipulatives; (ii) in general, they include additional options of a digital envi-
ronment (copy and color pieces, select and move multiple objects); (iii) most offer
simulations of concepts and operations that cannot easily be represented by tradi-
tional manipulatives; (iv) they are flexible, independent and dynamic; can be
controlled entirely by teacher and students; in addition, be used in different lessons,
levels and ages; (v) some offer to record the actions or results to provide feedback to
the student; and (vi) they are available without limit, anywhere, 24 h a day via the
Internet. Teachers, parents and children can often access them for free (Fig. 3.2).

Fig. 3.1 Example of specific instructions and questions given to the students in a printed format,
utilized during the empirical observations of Rodriguez’s work (2015)
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The virtual manipulatives hosted by the University of Utah (http://nlvm.usu.edu/
en/nav/vlibrary.html) specifically offer the facility for reproducing the figural pat-
terns that appear in the tasks of generalization. This facility allows to move the
pieces of the figures into a box to automatically know how many pieces are in a
determined subset of the figure, as well as to change the color of subsets according
to distinctive figural elements.

For example, in Fig. 3.3, several computer screens show the process of coloring
and counting three different subsets or parts of a given figure. This virtual
manipulatives’ tool is important for students to choose a convenient unity of
measure of the change or invariancy that could be perceived in subsequent figures
of a figural pattern. This perception (of a unity of measure in figural patterns) is
consistent with the identification of visual templates in figural patterns already
reported by Rivera (2010). For example, it can be seen in Rivera’ research (2010,
p. 309) how Emma, one of his students, encircled three subsets in each figure of a
given pattern. This was her strategy for counting how subsequent figures were
changing. Similar student actions in Rodriguez’ study (2015), but now executed

Fig. 3.2 A 7th grade
participant student solving
one task of generalization of
figural patterns during the
empirical observations in
Rodriguez’s work (2015)

Fig. 3.3 Screens that show the consecutive use of one virtual manipulative, denominated Pattern
Blocks, pertaining to the library of virtual manipulatives hosted by the University of Utah (http://
nlvm.usu.edu/en/nav/vlibrary.html)
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within the virtual manipulatives, are being denoted here by student choosing a
convenient unity of measure.

In relation with the tool for counting the number of objects inside the box in the
screen, please see Fig. 3.3, the reader could note that the first screen shows an
empty box that was made simply by clicking on one side of the figure, and dragging
the mouse, holding it. It should also be noted that in the first figure a zero appears in
the upper right corner of the empty box. This number is in fact the result of
counting the number of elements that have been moved into the box. In the second
screen, the whole stack of tiles has been dragged into the box, so the number eight
appears on the counter. Finally, in the third screen it is shown that only two
elements of the figure have been left inside the box and that the other elements of
the figure have been left out. This manipulatives’ tool for counting automatically
the number of elements in a subset of a figure was beneficial for disadvantaged
students, so was the one of coloring the different parts of the figures differently,
making both easier for students to identify different subsets of elements (or possible
unity of measure in the figures) in such a way that they become important parts of a
strategy for registering the changes of consecutive figures in a given pattern.

Perhaps the most important result in Rodríguez’ work (2015) is the student’s
appropriation, using the virtual manipulatives, of the strategy of choosing a specific
unity of measure for each pattern, which was partly suggested through the peda-
gogical approach implemented by Rodriguez, certainly following Rivera’s (2010,
2011) work on visual templates. It is to note that once participant students in
Rodriguez’ work had identified a corresponding unity of measure during a problem,
this strategy was subsequently and systematically used, throughout the resolution of
subsequent tasks (Fig. 3.4).

Undoubtedly, the pedagogical reconstruction of the topic made by Rodriguez,
through building hypothetical learning trajectories (Simon, 1995) for disadvantaged
students was a factor related with the success of the activities of resolution in the
tasks of generalization of figural patterns with this type of students.

In synthesis, with the help of the virtual manipulatives, disadvantaged students
in Rodriguez’ study could establish hypothesis about the whole number of elements
in any figure of a given (figural) pattern, including those figures that really did not

Fig. 3.4 Two examples of disadvantaged students’ executions using the virtual manipulative
named as Pattern Blocks (see http://nlvm.usu.edu/en/nav/vlibrary.html), and finally at right, an
example of a colored figure showing three different subsets and possibilities of choosing a unity of
measure
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appeared in the diagram included in the text of the problem (abductive action in the
process of generalization, in accord with Rivera, 2010); also, they could advance in
testing its assumptions (inductive action, in agreement with Rivera, 2010). They
could confirm then the validity of the rule they had advanced to define any figure in
the given pattern (Rivera, 2010). According to Rivera, both actions (abductive and
inductive) are part of the process of generalization, subjacent in the resolution of
tasks associated with figural patterns.

In summary, this section has presented the opportunities offered by certain
hybrid learning environments for the incorporation of digital technologies into the
classroom, as they enable the support by the teacher of students’ use of the digital
devices. It has been evidenced through the research (Heffernan et al., 2012;
Rodriguez, 2015) reviewed in this section, that design and implementation of
hybrid environments for mathematics learning has made possible to promote
leveling disadvantaged students, and effective and meaningful use by teachers and
students of technological tools into the classrom.

3.3 The Challenge of Accomplishing Reflection Processes
During Problem Solving in an Online Learning
Environment

Two of the questions raised at the beginning of this chapter are related to the
content of this third section: How could the mathematical knowledge that students
acquired through following virtual or online activities be validated? And, what
evidence exists of student reflection during math learning opportunities mediated by
technology and/or at a distance?

In this section, we’ll explore both questions against the background of an online
program (named MAyTE) for the professional development of teachers in mathe-
matics and technology (see Hoyos, 2016). In this work, it was shown that teachers
were only able to solve in a procedural way the math problems proposed there (see
Hoyos, 2017). One possible explanation for the bias of such type of resolution was
that teachers stayed in a pragmatic position when approaching the problems, but
they should turn to be able to move to a theoretical one. The hypothesis that is
advanced here is that this change of teacher’s stance when he is faced to math
problem solving will only be achieved through reflection, experimentation of
possible solutions and verification or validation of such solutions from an episte-
mological point of view.

Ninety teachers participated in the six-month online program or course named
MAyTE, for their professional development (see Hoyos, 2012, 2017), mainly in
relation with the incorporation of mathematics technology into their practice, but
course focus also included learning to use technology and learning to do
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mathematics with technology.7 In this context, it was important to know teachers’
strategies during the resolution of complex mathematical tasks and their usage of
technology for the resolution, to identify the mathematical resources they displayed,
as well as their understanding of the content that were at stake.

In the case of optimization content (a topic from calculus) in college, problems
in general are designed for the modelling of real situations. However, the mathe-
matical representations that come into play (e.g. formulas, graphs or symbols, and
the treatments or operations carried out with them) obey a set of rules and operative
principles within a context of mathematical theories previously established. Thus,
when a statement is made in mathematical terms, the validity or not of such
statement comes into play—from an epistemological point of view, and this within
a well-defined theoretical context (Habermas 1999, quoted in Balacheff, 2010a).
Balacheff expresses this complexity of mathematical work as follows: “mathe-
matical ideas are about mathematical ideas; they exist in a closed ‘world’ difficult to
accept but difficult to escape” (Idem).

In the MAyTE program, mathematical activities for in-service secondary teachers
were developed around an understanding of concepts, learning procedures or
mathematical techniques that relied mainly on asking participant teachers in the
program for the resolution of some specific mathematical problems, which were
designed to challenge secondary teacher math knowledge and teacher implemen-
tation of digital tools for resolution, while teachers were only provided with a brief
list of instructions and an explanatory text on the mathematical content. MAyTE
course in general did not include tutorial indications related to the mathematical
resolution of the tasks requested.

Balacheff and colleagues’ theoretical notion of epistemological validity (e.g.
Balacheff 1994, 2004; Balacheff & Sutherland, 1994), and Duval’s work on the
coordination of representation registers of mathematics, specifically of graphs
(Duval, 1994), were useful for analyzing the means or the strategies that participant
teachers displayed, using a dynamic software of geometry (GEOGEBRA in this
case), to solve the problems or learning situations provided in the MAyTE program.
Years ago, these authors (Balacheff, 1994, 2010a; Balacheff & Sutherland, 1994)
illustrated the different contributions certain software has in different virtual
learning environments; and here it is noteworthy not only that the teacher

7Both modes are at the beginning of the incorporation of innovation at the school, according to the
PURIA model. Following this model implies that teachers should experiment with the mentioned
modes to advance toward successfully incorporating technology into classrooms (Hoyos, 2009,
2012; Zbiek & Hollebrands, 2008).

Briefly, the PURIA model consists of five stages named the Play, Use, Recommend,
Incorporate, and Assess modes: “When [teachers are] first introduced to a CAS… they play around
with it and try out its facilities… Then they realize they can use it meaningfully for their own
work… In time, they find themselves recommending it to their students, albeit essentially as a
checking tool and in a piecemeal fashion at this stage. Only when they have observed students
using the software to good effect they feel confident in incorporating it more directly in their
lessons… Finally, they feel they should assess their students’ use of the CAS, at which point it
becomes firmly established in the teaching and learning process” (Beaudin & Bowers, 1997, p. 7).
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(orstudent) should learn to recognize those different register of representations
(Duval, 1994) that are put in play by distinct computational devices or digital tools,
in order to solve math problems using these digital resources, but also teachers need
to learn about the coordination of representation registers that an appropriate use of
computational devices involves when the validation of a solution is in question.

In the case of the resolution of optimization problems, it involves the under-
standing of two mathematical contents at least, functions and the geometrical
relationships at stake; and in according with Duval (1994), “there couldn’t be
understanding of the content represented without coordination of the representation
registers, regardless of the representation register used. Because the peculiarity of
mathematics in relation to other disciplines is that the objects studied are not
accessible independently of the use of [mathematics] language, figures, schemas,
symbols…” (Ibidem, p. 12)

Briefly, in the online MAyTE program (see Hoyos, 2012), the activities were
developed around the utilization of digital tools that were freely available on the
Internet to solve math problems, like GEOGEBRA, a software of dynamic geom-
etry. The mathematical content was approached synthetically through a capsule of
the content, and the digital tools for solving the mathematical problems consisted of
a variety of mathematical software, particularly software of dynamic geometry
(SDG).

The text of one of the problems posed is as follows: “A refinery can process
12,000 barrels of oil per day and it can produce Premium [high octane] and Magna
[unleaded] gasoline. To meet the demand, the refinery must produce at least 2200
barrels of Premium and 1500 of Magna. The distribution center for the Premium is
30 km from the refinery and the Magna distribution center is from 10 km. The
transportation capacity of the refinery is 180,000 barrels/km per day (This means
that 180,000 barrels are transported 1 km per day). If the benefit is 20 pesos per
barrel of Premium and 10 pesos per barrel of Magna, how many barrels of gasoline
should be produced daily to maximize the benefit?”

Most teachers’ solutions to this problem were based on the identification and
formulation of several algebraic expressions that modelled the given situation, the
modelling was in accordance with the data provided, and in the solutions, it was
also included a graphical representation using GEOGEBRA, having as starting
point the algebraic expressions that firstly were elicited. Such procedures were
needed to determine the region of feasibility and the coordinates of the points from
which it was possible to obtain the maximum or the minimum cost, depending on
the initial conditions of each problem. Many teachers’ solutions followed a pattern
showed in Hoyos (2016, 2017), it was taken from the documents the teachers
uploaded to the platform, and provide evidence of a solution strategy composed of
these elements: translation from the initial conditions to algebraic expressions, and
representation of these data through the software GEOGEBRA. In this process, the
teachers obtained a representation of the feasibility region from which the value of
maximum benefit should be deducted. In their graph, the feasibility region was
shaded, and the problem in all cases was still unsolved after the graphic was made,
because a point [with coordinates (x, y)] needed to be found by means of
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exploration and through calculating the values of the function of two variables f(x,
y), and that in the region of feasibility (for attaining or not the benefit maximum in
the case of the problem presented here).

Seeing the image, it should be noted that after having adequately defined the
region of points that satisfied the initial conditions, teachers ended by not carrying
out an exploration of the f(x, y) values in the region of feasibility, question that
would bring them to obtain the requested maximum value, in a point with coor-
dinates that indeed didn’t correspond to what visually (see Fig. 3.5) teachers had
already chosen or discarded. Readers interested in a detailed account of what
teachers did at the time in question, please see it in Hoyos (2016).

Moreover, what is perhaps most interesting is to note that for the computer
learning environment in question, in this case constructed mainly for exploration
and use of GEOGEBRA and for the conversion of mathematical representations
(Duval, 1994) required to solve the problem, an epistemological change of teacher’s
stance must be achieved (Balacheff, 1994, 2004, 2010a), it is linked to the use of the
software in the situation or problem proposed, and to the mathematical complexity
of the task involved, but basically consist in passing from a pragmatic position (i.e.
proposing a solution) to a theoretical one (verifying his proposition).

A way to solve the problem noted in Hoyos (2017) is, for example, by asso-
ciating any point within the feasibility region to the value of the benefit function,
such exploration could thus be carried out directly using GEOGEBRA, starting by
dragging the point over the feasibility region and verifying the increase or decrease
of the value of the benefit function as the chosen point were varying. For example,
for point E with coordinates (2507.66, 6006.86) the value of the function f(x, y)
equals 110,222 approximately. And it can be proven that the value of maximum
benefit is f(x, y) = 149,924.05 when the approximate values for x and y are
x = 2993.81, and y = 9004.79.

Fig. 3.5 A GEOGEBRA screenshot showing a representation of the feasibility region similar to
the image that was part of the teachers’ solution in the problem of finding a maximum value of a
function f(x, y) in that region
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Based on evidence of teacher’s stance remained pragmatic during distance
problem solving, we concluded that partly of the difficulty to solve could reside into
reflect on the possibility of carrying out an exploration using GEOGEBRA, starting
by dragging a point over the feasibility region and verifying the increase or decrease
of the function f as the chosen point was varying. From our point of view, the
possibility to do so is entirely relied on a necessity of feedback or teacher (or student)
control of their activity within the software (see Balacheff & Sutherland, 1994, p. 15).
But this control usually is relied on the coordination of the representation registers or
on the comprehension of the mathematical content in question, which is usually not
accessed directly by working alone within the software and at a distance.

3.4 Conclusions

The final statement of the last section reminds us, once again, of the great oppor-
tunities enjoyed by using hybrid environments for the teaching and learning of
mathematics, such as those presented in the first section of this chapter. In these
scenarios it has been evidenced, through the review of the work of Heffernan et al.
(2012), as an antecedent, and Rodriguez (2015) in this chapter, that teacher’s
participation is central in the planning and orchestration of the use of the digital
technologies into the classroom. For example, in section two of this chapter it has
been showed how one teacher was involved in enabling achievements of all stu-
dents, including those at disadvantage, in the study of complex school subjects,
such as in the generalization of figural patterns in school algebra. In fact, this
is new evidence on how disadvantage students have benefits rather than deficits
when technology is used in supportive teaching and learning environments, as was
already noticed by Dunham and Hennessy (2008, p. 375).

By another hand, in relation to the content of the last section (the teaching and
learning of mathematics at a distance), principal results drawn from an epistemic
and semiotic perspective of analysis (Hoyos, 2017), are as follows: (1) The learning
environment was in part defined using a computational device (in this case
GEOGEBRA) as a procedural tool for the conversion,8 use and treatment of the
different mathematical representations (Duval, 1994, 2006), in this case the equa-
tions and graphs that came into play in the given situation of optimization.
(2) However, to transit from a pragmatic stance where a possible solution was
proposed to a theoretical one that implies to validate or verify it, an epistemological
change is required (Balacheff, 2010a). In this case, such change was denoted by the
instrumentation of reflective tools, which are not automatically available within
GEOGEBRA by itself.

8According to Duval (2006, p. 112): “Conversions are transformations of representations that
consist of changing a register without changing the objects being denoted: for example, passing
from the algebraic notation for an equation to its graphic representation, …”.
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Therefore, based in the evidence and interpretation of data presented in this work
and trying to explain teacher difficulties to go ahead towards reflection, experi-
mentation of possible solutions and verification or validation of such solutions in an
online PD program and during optimization problem solving, it has been advanced
a hypothesis of teacher’s necessity of digital collaboration according to his specific
participation or activity, or a support to accomplish the epistemological change
already mentioned. It would be included in the computational device, or otherwise
it would be provided by tutorial intervention (e.g. Balacheff & Soury-Lavergne,
1996; Soury-Lavergne, 1997).

These final remarks mean it is not enough to have access to mathematics
technology and/or Internet free resources to achieve expertise or comprehension of
certain mathematical content addressed. For example, in the case of teacher reso-
lution of problems of optimization at a distance and mediated by technology, it has
been advanced here a hypothesis of necessity of digital collaboration included in the
digital device or provided by tutorial intervention to go ahead towards reflection,
experimentation of possible solutions and verification or validation of such
solutions.

Yet perhaps what is most interesting is that interpreting data from teacher math
resolution, framed by Balacheff’s & Duval’s epistemic and semiotic perspectives,
sheds light on how to move forward by correcting the design, incorporating ele-
ments missing in the online program reviewed, or working with digital materials as
collaborative tools that could promote exploration and reflective thinking to be
applied in the solution of certain mathematical tasks, as those that were showed in
the situation under study. Finally, this chapter ends with a contribution to the
application of the epistemic and semiotic perspectives to reflect upon the potential
of using Internet tools and resources for design and research of both distance
education of mathematics and math hybrid environments of learning mediated by
technology. This reflection can be expressed as follows: In the same way that social
interactions do not in principle have an impact on learning but rather depend on the
content and forms of interaction chosen, the use of Internet digital tools and
computational devices will have an impact on teachers and teaching (or students
and learning) when instrumentalization of Internet resources had been exercised to
gain knowledge, or to teachers (or students) get control of the activity within the
software.
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Part II
Online Environments and Tutoring

Systems for Leveling College
Students’ Mathematics Learning



Chapter 4
Computer Assisted Math Instruction:
A Case Study for MyMathLab Learning
System

Adam Chekour

Abstract Colleges and universities are trying alternative instructional approaches
to improve the teaching of developmental mathematics with the goal of increasing
the number of students who have the skills and knowledge required for
college-level math courses and for the twenty-first century workforce. Computers
and the Internet make possible new methods of delivering instruction so students
will have choices of when, where, and how they learn math. The purpose of this
study was to compare academic performance of students enrolled in a develop-
mental mathematics course using traditional instruction and traditional instruction
supplemented with computer-assisted instruction. In addition, gender differences in
mathematical performance were also investigated. Independent groups T-test was
used to compare the mean difference between pretest and posttest mathematics
scores of students enrolled in conventional instruction and MyMathLab integrated
instruction. Students enrolled in MyMathLab sections made significant gains over
students enrolled in conventional sections. Same test confirmed that there was also a
significant difference in the posttest scores of females and males, with females
outperforming males in both modes of instruction.

Keywords Computer assisted instruction � Hybrid instruction � Conventional
instruction � Developmental mathematics � Computer algebra systems
MyMathLab � Computer learning systems

4.1 Introduction

Research on mathematics problem solving has largely evolved throughout history
from experience-based techniques for problem solving, learning and discovery
(Pólya, 1957) to linking these techniques to the development of mathematical
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content (Lester & Kehle, 2003). Exposing students to the course content has often
not been enough for them to achieve academic success in mathematics.
Implementing a variety of instructional strategies that increase students’ motivation
and meaningful learning were also necessary. Only recently, math problem solving
has known an infusion of a variety of technology tools and procedures aimed at
enhancing students’ meaningful understanding of different math concepts (Lesh,
Zawojewski, & Carmona, 2003).

Indeed, research on how mathematics is integrated in different fields (e.g. STEM
education), and how professionals in these fields tend to heavily apply mathe-
matical concepts, has dramatically affected the nature of math problem solving.
Furthermore, this integration emphasizes the necessity of implementing new and
powerful technologies to enable students’ conceptualization, communication, and
computation while solving math problems (National Council of Teacher of
Mathematics, 2000). These skills certainly provide students with a new perspective
on how to approach math problem solving and build a foundation for them to be a
successful critical thinker and problem solver within and beyond school (NCTM,
2000).

However, the implementation of technology in the teaching and learning of
mathematics has witnessed a slow growth, due to factors such as accessibility to
technological tools, students’ and teachers’ beliefs about technology, and lack of
general research enlightening the effects of technology on enhancing classroom
instruction, mathematical curriculum content, and students’ learning of mathematics
(Zbiek, Heid, Blume, & Dick, 2007). Such an issue persists mainly in K–12 edu-
cation and developmental mathematics classes at two-year or community colleges
(International Technology Education Association, 2006). While there are numerous
case studies on specific technologies applied to K–12 math education, there is still a
need for a comprehensive synthesis of the findings of these separate case studies.
This will inform, substantially, both the practice and the research in math education.

Further, most of the research studies on technology-infused math education
emphasizes only the technical aspect of learning mathematics, which involves
mathematical activities and procedures that lead to numerical computations, solving
equations, using diagrams, and collecting and sorting data (Borwein & Bailey,
2005). Conversely, few research studies address the instrumental use of technology
to enhance students’ conceptualization of math activities involving how students
understand, communicate, and use mathematical connections, structures, and rela-
tionships. Achieving this goal not only changes educators’ and students’ belief
about technology, but it also improves students’ skills in learning mathematics
(Kulik & Kulik, 1991).

Although problem solving has been a concern of psychologists and education
researchers for more than a hundred years, there have been limited research studies
on mathematical problem solving and math reasoning involving the use of tech-
nology. In addition, few methods have been implemented to study the various
concepts of problem solving, such as simulation, computer modeling and experi-
mentation (Maccini, Mulcahy, & Wilson, 2007). One aspect of computer modeling
is the use of Computer Algebra Systems (CAS) such as the MyMathLab
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application, which has found its way to a variety of math course levels and is
currently adopted by numerous academic institutions (Pearson Education, 2005).
Initially designed and commercialized by Pearson Education, a worldwide leader in
education resourcing, MyMathLab has been, somewhat, a successful tool in
enhancing students’ learning, specifically in developing math problem solving skills
(Pearson Education, 2005).

This research is intended to evaluate the success of implementing MyMathLab
into the learning process while solving math problems and learning developmental
mathematics. The efficacy of Computer Assisted Instruction (CAI) using
MyMathLab will be compared to traditional, face-to-face instruction of mathe-
matics in developmental classes.

4.2 Significance of the Study

High school graduates often come unprepared to college math courses and therefore
struggle in meeting math course expectations (National Center for Educational
Statistics, 2003). Despite the continuous intervention efforts of different institutions,
only 10% of these students graduate, and only 40% of these students who are in
developmental math programs graduate with a bachelor’s degree (Brittenham et al.,
2003).

Whether the developmental math classes will lead students to attend four-year
institutions, with more emphasis on college algebra and statistics (NCES, 2003), or
to qualification for a meaningful job, colleges and universities are concerned with a
low passing rate not even exceeding 24% at some colleges (Trenholm, 2006).
Therefore, there is urgency in developing programs and strategies that aim at stu-
dent retention and provide a meaningful learning experience to students, one that
emphasizes understanding of math concepts, promotes active constructivist learn-
ing, and allows for transfer to real world applications. Instructors of developmental
mathematics are implementing different supplemental tools to traditional instruction
known to be limited in effective resources and pedagogies. The broadened use of
computer technology in education today has led math instructors to implement
computer tools to benefit students’ learning of mathematics (NCES, 2003). The
National Council of Teachers of Mathematics (NCTM, 2000) calls for using
computer technology as a means to enhance math teaching and learning in and out
of classrooms. In addition, in a study conducted by the National Center for
Educational Statistics (2003), 31% of the 3230 US surveyed colleges (during the
fall of 2000) revealed a frequent use of computers by students for their instructional
needs in on-campus remedial math education.

With a fast increase of computer technology, a variety of software, hardware and
media tools has found its way into developmental mathematics to offer a rich
learning experience to students, while they are learning mathematics. Most of the
software used in developmental mathematics has been developed by textbook
publishers to either supplement classroom instruction with tutorial and
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algorithmically generated problems, or to provide a thorough presentation of con-
cepts with interactive multimedia (Kinney & Robertson, 2003). In addition to the
advantage of receiving immediate feedback, students can also self-pace and revisit
their assignments until mastery (Hannafin & Foshay, 2008), although there is a
schedule for completion of lessons. They can also benefit from accessing a variety
of built-in resources such as videos, guided practice problems, and online tutoring.
Teachers can also build individualized study plans, quizzes and tests immediately
graded by the software and tailored to a specific unit and learning objectives.

Providing instructors with detailed data on students’ progress is a valuable
feature to course overall assessment (Cotton, 2001). Within this perspective, this
study aims at investigating the effect of computer-assisted instruction on the
mathematical learning of students in developmental classes, using the MyMathLab
learning system. The results of this study can inform institutions in investing their
resources wisely on computer-assisted instruction with potential impact on stu-
dents’ mathematical achievement. The study also suggests future research to
decipher key student characteristics that are associated with higher developmental
math achievement, within different delivery formats, and simultaneously, improve
the experience of computer-assisted learning of mathematics in developmental
courses.

4.3 Theoretical Framework

There are two major theories that provide the framework for analyzing the data and
guiding the discussion in this study. The first theory is constructivism grounded in
eminent work of Dewey (1958) and Vygotsky (1978). The main premise of con-
structivism is the learner’s ability to internally construct an understanding of
mathematical concepts and connect them through important relationships. This
constructivist learning usually conditionalizes knowledge through experience,
exploration, thinking, and reflection (Dewey, 1958). In addition, this experiential
learning often takes place within an interactive environment, which promotes
understanding through life experiences, or can be mediated by an educator, who
usually guides this discovery process.

The second theory is grounded in the nature of technology use, which catego-
rizes technology into instrumental and substantive (Trenholm, 2006). According to
Zbiek, Heid, Blume, and Dick (2007), the instrumental view of technology is a
legacy of Aristotle, who posited that technological products have no meaning in and
of themselves and that technology receives its justification from serving human life.
Indeed, technology use in mathematics will have no meaning if it doesn’t promote
or supplement the learning process of students. At the same time, the use of
technology needs to maintain the right balance and fit the right purpose, by allowing
a deeper-level of logical and critical thinking.

The substantive view of technology is based on the view that “technology is
becoming autonomous, is going beyond human control, and operates and evolves
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according to its own logic and norms” (Chen et al., 2011, p. 57). This theory
recognizes that the learner’s experience is mediated by and structured through
technology. Indeed, students and technology become embodied in an experientially
semi-symbiotic unity, where the technology mediates what and how mathematics is
experienced and learned. In this process, the technology becomes appropriated to
the learning activity as an integral part of students’ thinking, causing an inter-
weaving of instrumental and mathematical knowledge, and preventing learners
from accessing the types of activities and mathematics that are not afforded by the
particular technology.

4.3.1 Issues in Math Teaching and Learning

While students are required to acquire the ability to compute, problems solve, and
put mathematical concepts and skills into practice, to compete with the demands of
a fast growing and technology saturated world, there are still several increased
challenges facing the learning and teaching of mathematics. The United States
Department of Education indicates that U.S. students are performing below their
counterparts in other developed countries (USDOE, 2008). In addition, the National
Assessment of Educational Progress (2006) claims that only two percent of U.S.
students manage to attain advanced levels of math achievement by grade 12.

Woodward (2004) contends that changing policies and standards in mathematics
are among possible solutions for the decline of student performance in mathematics.
Indeed, the National Council of Teachers of Mathematics (NCTM) initiated reform
efforts to improve students’ achievement in mathematics through revising math
curricula and core standards. This revision process focused primarily on a thorough
and a deeper pedagogical content knowledge of conceptual understanding (NCTM,
2000). The focus highlighted a significant shift from the rote memorization of
computational facts and procedures used in math problem solving to practical
situations, where students are given opportunities for critical thinking and problem
solving.

Another issue pertaining to students’ performance is the lack of effective
instructional approaches and metacognitive strategies, which aim at enhancing and
scaffolding the mastery of abstract concepts in mathematics (National Mathematics
Advisory Panel, 2008). According to Maccini and Gagnon (2002), authentic
mathematics instruction should include the following recommended instructional
practices:

1. Differentiated instruction
2. Metacognitive strategies and instructional routines
3. Progress monitoring and formative assessment procedures
4. Computer-assisted instruction and Universal Design (p. 13)
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In another study, Bouck and Flanagan (2009) claims there are two fundamental
constraints hindering the improvement of K–12 mathematics education. The first
one lies in the fact that mathematics teachers spend valuable energy and time in
designing instructional activities, which are seldom conductive to students’
exploration and construction of their own understanding of mathematical concepts.
The second constraint is that mathematics instructors are resistant to changes in
their teaching strategies. Indeed, Bouck claims that the current teaching of math-
ematics is mainly characterized by universal formal and symbolic presentations of
mathematical rules or procedures, based on a mere textbook presentation rather than
a synthesis of encompassing mathematical relations.

In a subsequent study, Kilpatrick, Swafford, and Findell (2001) maintains that
the most fundamental task facing mathematics instructors is to promote mathe-
matics conceptual meaning among their learners. This approach supports the
Piagetian position that postulates the existence of mathematical objects as syn-
onymous with meaning, which later become mental entities that unfold over time to
allow for connection and transfer of knowledge (Piaget & Garcia, 1991).

In a different study on the use of constructivism in math activities, Lerman
(2001) argues that conceptual knowledge cannot be transferred automatically from
teacher to learner, but it should be built and molded by the learner under the
guidance of the instructor, and on the basis of prior knowledge and experience.
According to Lerman, this constructivist representation of one’s reality and
meaning enables learners to seek the meaning in the structure, organization, and
relationships between different math subjects.

Within the same perspective, Santos-Trigo (2007) contends that mathematics
learners achieve better outcomes in problem solving when they assimilate mathe-
matical concepts to the collection of their intrinsic satisfying models. The absence
of these intrinsic models makes mathematical problem solving painfully difficult,
even when concepts are simulated. This is due to a lack of insights, which mys-
tically shed the light on and facilitate the process of problem solving.

In her study on scaffolding problem solving, Muis (2004) claims that the
socialization of problem solving through discussion is essential to the success of
this process. This socialization suggests a shift in the focus of activities led by the
instructor to activities lead by the students, but understood and facilitated by the
former (Kim, 2011). This provides the instructor with a context to be more sensitive
to students’ mathematical experience, in addition to developing meaningful math-
ematical conversations conductive to concepts’ assimilation, organization, exten-
sion and transfer.

Within the same construct, Magiera and Zawojewski (2011) contend that the
lack of meaningful mathematical discussions is frequently observed in mathematics
classrooms. Students tend to work independently on math tasks and activities,
without benefiting from the opportunities to communicate and interact with their
peers. The socialization aspect of these mathematical conversations is fundamental
to critical thinking, problem solving and evolving as a mathematician. Therefore,
math instructors need to perpetuate these behaviors and make them a common place
in the mathematics classrooms.
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Recently, a continued emphasis was made on mathematics and science inte-
gration to improve teachers’ knowledge in both mathematics and science.
According to Stinson, Harkness, Meyer, and Stallworth (2009), math integrated
instruction enables students to better understand problem-solving strategies as they
are applied to more practical situations. Instructors also benefit from math inte-
gration by experiencing greater student involvement and contribution to the design
of effective math curricula (Stinson et al., 2009).

Finally, within the same perspective, Schoenfeld (2007) maintains that mathe-
matics instructors should possess two kinds of competencies, subject matter
knowledge and general pedagogical skills, in order to achieve satisfactory and
efficient teaching. The intertwining of these two competencies constitutes teachers’
belief and affects towards mathematics and mathematical activities, which also
affects students’ potentials for learning mathematics (Schoenfeld, 2007). Therefore,
it is important to identify and implement professional development components that
are specific and instrumental for pre-service preparation, in-service development,
and professional identity in the field of mathematics education (Sfard, 2006).

4.4 Methodology and Sampling

4.4.1 Methodology

This is a quasi-experimental study that uses a non-randomized pretest-posttest
design. Students will self-register to class, with no disruption of their schedules.
The target population consists of several developmental math classes selected from
a Midwestern university, which will provide the sampling convenience. One of
each paired classes received traditional instruction (control group), and the other
received traditional instruction supplemented with the MyMathLab computer
learning system (treatment group). Both groups were subjected to a pre-test and a
post-test. The pre-test was a math placement test students generally take to be
placed in a certain math course level, while the post-test (also consisting of math
placement test) was given as a review test to the course’s final exam. Instruction of
both groups was coordinated with the content of the textbook. In this study, samples
might not represent the real college population, but generalizability was attempted
through sampling different courses and their sections, yet presenting similar char-
acteristics of developmental classes.

The independent variable of this study is the mode of instruction, with the
entrance math placement test as the pre-test. The dependent variable is the student’s
math performance, as measured by the math department placement test scores at
both pretest and posttest, in all courses. Before the beginning of fall term 2014, both
control and experimental groups took a pretest as an academic requirement to
register to any developmental mathematics course. A week after the start of the
course, all students completed an online questionnaire, the purpose of which was to
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gather descriptive data to establish similarities of both groups. Students were placed
in developmental mathematics class based on their math placement test scores
(pretest). Therefore, all students were expected to have mathematics achievement
within the same range of scores. Since students self-registered for the classes, they
couldn’t be placed by the college into a section with a particular mode of
instruction. However, students were having access to information about which
sections will use computer-assisted instruction and which will use traditional
instruction from their developmental mathematics instructors, their advisors, the
developmental math website, and the tutoring center. The instruction was delivered
for 16 weeks, and during the last week, all students took a version of the placement
test prepared and reviewed by the math department faculty. Data will be compiled
regarding instructional method, and pretest and posttest scores. The questionnaire
results will be gathered to serve as information on students’ demographics.

An analysis of variance was conducted using both T-test and ANOVA. The
independent variable (IV) was the method of instruction, and the dependent variable
(DV) was the math performance measured by the math placement test (at both the
pretest and posttest). This analysis was intended to check the first null hypothesis
that states: There is no significant difference in the mathematics performance of
students in a developmental mathematics course using traditional instruction and
computer assisted instruction (traditional instruction supplemented by MyMathLab
learning system).

The second null hypothesis stated that there is no significant difference in the
mathematical performance of developmental mathematics students by gender.
A second analysis of variance using both T-test and ANOVA was conducted with
gender as the independent variable and the posttest as the dependent variable. The
interaction of method and gender was also analyzed. Both groups were taught by
full-time instructors who have demonstrated competence in teaching developmental
mathematics students and in teaching in both delivery formats (face-to-face and
hybrid).

4.4.2 Study Participants

The responses to a demographics questionnaire were expected to reveal some
similarities, consistent with national studies, which report that 56% of undergrad-
uate students in 2000 were female (NCES, 2005), and 55% of community college
remedial students were female (Boylan, 2002).

The responses to the questionnaire revealed some noticeable similarities between
students in the traditional and traditional with computer assisted instruction classes.
Students of both groups were more likely to have the same age, to be white, to have
few years since their last math course, and to have positive attitudes toward math
and computers. Three-hundred-seventy-one students had taken their last math class
one or two years ago.
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Overall most students had been in college two to four quarters. All of the
students were full-time students, taking at least 12 credit hours.

Thirty-five percent of the traditional students, and 28% of the traditional + CAI
students, reported having a negative or very negative attitude toward math. Nearly
all students (352 of the 371) used computers for both academic purposes and other
reasons, such as email, social networking, and shopping. Seventy-one percent of the
traditional students, and 59% of the traditional + CAI students reported feeling
positive or very positive toward using computers for educational purposes.

Overall, 44% of the students were male and 56% were female, which is con-
sistent with national studies that reported 56% of undergraduate students in 2000
were female (NCES, 2005), and 55% of community college remedial students were
female (Boylan, 2002). While, 95% of the students were of traditional college age
(less than or equal to 23). Overall, 74% of the students were white, 14% were
African American, 4% were Hispanic, and 8% were other ethnicities.

4.4.3 Instrumentation

The construct of mathematics achievement was operationally defined as scores on
the developmental mathematics placement test, at both the pretest and the posttest.
This is the departmental placement test given to all students in developmental
mathematics. Validity of this test is the extent to which it measures mathematics
achievement. The test is a collection of test exam items created by the develop-
mental mathematics faculty and matched with the developmental mathematics
course objectives in proportion to the emphasis given to each topic during the
semester. This provides face validity. The test questions are reviewed and critiqued
by a team of Department of Mathematics faculty members. This provides content
validity. Reliability of the placement test is the extent to which scores are free of
random error, that is, the extent to which the exam yields consistent results. Ideally,
the reliability coefficient should be close to one. Cronbach’s Alpha, or coefficient
alpha, for the final exam is 0.915 as calculated using SPSS, based on scores from a
sample of 100 exams from eight instructors from previous semesters. Cronbach’s
alpha calculates the mean of all possible split-half correlations and is preferred by
many researchers when the questions have different point values, such as a Likert
scale or essay test (Ary, Jacobs, Razavieh, and Sorensen, 2006).

The pretest consists of 30 questions from the placement test, representing major
course objectives of developmental mathematics. The placement test as the pretest
was taken by all students as an academic requirement to test into the course. The
test usually requires 2 h to be completed. The placement test as the posttest con-
sisted of 30 questions again and was given few days before the final exam, as part
of the course requirements, within a 120-min exam period. The pretest serves to
inform the students that they did indeed need to take the course and gives them a
preview of topics that are usually studied in developmental mathematics.
Cronbach’s alpha for the pretest was also 0.915.
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The nonrandomized control group, pretest-posttest design does not provide the
control that a randomized experimental design does because subjects are not ran-
domly assigned to groups (Ary et al., 2006). The more similar the control and
experimental groups are at the beginning of the experiment, as determined by the
questionnaire and similar means on the pretest, the more credible are the results of
the study. Threats to internal validity were controlled where possible. An analysis
of variance was conducted on the pretest and posttest scores, and the questionnaire
data established the similarity of the groups before treatment.

Attitudes of the subjects toward mathematics or technology may affect the
outcome of an experiment (Ary et al., 2006). In this study the effect of attitudes was
controlled by not telling the subjects they will be participating in a study. Many
developmental mathematics students, whether they participated in the study or not,
completed a questionnaire (see Appendix), and all have taken the mandatory pretest
and posttest. Extraneous variables were controlled where possible.

All groups had the same course objectives, same schedule, same tests, and the
same 16 weeks of instruction. Each instructor was teaching in both modes of
instruction. Attrition might have been a threat as more students with low scores
withdrew from one group than the others.

4.5 Data Analysis and Narrative of Findings

Table 4.1 shows the distribution of the 371 participants as per method of instruction
and gender. A total of 371 students took the pretest: 187 from the traditional
(control) and 184 from the integrated traditional/MML (intervention); the same
number of students took the posttest. Of this group, 146 were male and 255 were
female. Therefore, 79 male and 108 female students were enrolled in the control
group, and 83 male versus 101 female students were enrolled in the intervention
group (Table 4.1). Of the total 172 participants, 162 (44%) were male and 209
(56%) were female, with an almost even split between traditional instruction and
traditional instruction supplemented with MyMathLab learning system.

As both t-test and ANOVA were implemented in this study, with two inde-
pendent variables (mode of instruction and gender) at two levels each (traditional
versus hybrid instruction and male versus female), several assumptions must be
met. The first assumption involves the instrumentation scale of measurement: data
collected for the dependent variable should be continuous or ordinal. The instru-
ment used for reporting test scores in this study meets this assumption.

Table 4.1 Distribution of
sample by method of
instruction and gender

Method Male Female Total

Traditional 79 108 187

Traditional + MML 83 101 184

Total 162 209 371
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The second assumption, random sampling, was impossible to satisfy given that
students self-registered to classes; however, paired sections were compared to
determine similarity of demographics and pretest scores. The third assumption
pertains to testing for normality using skewness and kurtosis values (D’Agostino,
Belanger, & D’Agostino, 1990). This test was conducted on the dependent variable
posttest (MPTPOST), for both subgroups (traditional versus hybrid and male versus
female). Both Kolmogorov–Smirnov and Shapiro–Wilk tests (Tables 4.2 and 4.3)
infer a normal distribution for the dependent variable MPTPOST in each method of
instruction (p < 0.05). This is confirmed by the Q-Q Plots (Figs. 4.1, 4.2, 4.3 and
4.4), where the value for each score is plotted against the expected value from the
normal distribution. The reasonably straight line for both male and female plots
suggests a normal distribution for the MPTPOST dependent variable. Similar
results are shown when examining gender, thus indicating a normal distribution.
The fourth assumption is that of adequate sample size. Each group (traditional
versus hybrid, and male versus female) has more than 30 cases and is therefore
sufficient for the analysis.

4.5.1 Hypothesis I

Hypothesis I asks whether there is a significant difference in the performance of
students in developmental math classes based on type of instruction. To begin the
analysis, an independent groups t-test was conducted to determine whether there
was a significant difference between the pretest means of the control group versus
the intervention group. Results indicated no significant difference between groups
(p = 0.003) (Table 4.2). The mean pretest score for students registered for

Table 4.2 Independent samples T-test results of the post-test by mode of instruction

Mode of instruction F Levene’s test for
equality of variances

t-test for equality of means

Sig t df Sig
(2-tail)

Mean diff Std error diff.

Equal var. assumed 53.9 0.003 −5.53 369 0.001 −11.82 −16.03

Equal var. not assumed −5.54 314 0.001 −11.82 −16.02

Table 4.3 Descriptive statistics by method of instruction

Method N Pretest Posttest

Mean SD Mean SD

Traditional 187 69.87 29.23 96.02 30.13

Traditional + MML 184 72.31 29.94 129.76 28.08

Total 371 71.35 29.67 112.66 29.56
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traditional instruction was 69.87 (SD 29.23). The mean pretest score for
traditional + MML students was 72.31 (SD 29.94). The total mean score was 71.
(SD 29.67). Because there was no significant difference in mean pretest scores
between the control and intervention groups, analysis of the difference in pretest

Fig. 4.1 Q-Q Plot of normality of posttest by mode of instruction (control group)

Fig. 4.2 Q-Q Plot of normality of posttest by mode of instruction (intervention group)
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and posttest scores between both groups could proceed without the need to adjust
for pretest values. Results (Table 4.3) also indicate that the mean posttest score for
the control group was 96.02 (SD 30.13), while the mean posttest score the inter-
vention group was 126.72 (SD 28.08). The total mean score was 112.66 (SD

Fig. 4.3 Q-Q Plot of normality of posttest by gender (males)

Fig. 4.4 Q-Q Plot of normality of posttest by gender (females)
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29.56). Unlike the difference between group means on the pretest, these results
show a significant difference between group means (p = 0.001), with the inter-
vention group gaining 54.41 points on the posttest versus a gain of 26.15 points for
the control group.

An independent groups t-test was conducted to compare the mean difference in
pretest and posttest scores between the control and intervention groups. Results
revealed a significant difference between groups (p = 0.001), with the intervention
group scoring significantly higher. Based on the above results, Null Hypothesis I
was rejected.

4.5.2 Hypothesis II

Hypothesis II examines the question of whether there is a significant difference in
achievement between males and females in developmental math classes. Of 371
students who completed the pretest and posttest, 162 were males and 209 females.
As indicated in Table 4.4, the mean posttest score for males was 65.33 (SD 21.72),
while the mean posttest score for females was 68.86 (SD 21.19). For all 371
participants, the mean posttest score was 66.26 (SD 21.41). An independent group
t-test was conducted to determine whether there was a significant difference
between the mean posttest scores of males and females. According to Table 4.5,
results indicated that females scored significantly higher than males (p = 0.028) on
the posttest. Therefore, null hypothesis II was rejected.

Of further interest was whether the type of instruction was of particular benefit to
one gender or the other. For this reason, the interaction between mode of instruction
and gender was examined through an analysis of variance, as summarized in
(Table 4.6). Results indicated that, first, there was a significant main effect of mode
of instruction on posttest performance, F (1, 368) = 30.78, p = 0.002. Second, there
was also a significant main effect of gender on posttest performance, F (1,
368) = 7.67, p = 0.041. However, there was no significant interaction between the
mode of instruction and gender on the posttest performance, F (2, 368) = 52.01,
p = 0.166. This can be explained by the slight difference in mean values between
both genders, which renders the interaction effect to be non-significant. This
demonstrates that the effect of mode of instruction on math performance scores was
not different for male participants versus females.

Table 4.4 Descriptive
statistics by gender

Method N Pretest Posttest

Mean SD Mean SD

Male 162 56.71 23.51 65.33 21.72

Female 209 58.25 24.56 68.86 21.19

Total 371 57.64 24.13 66.26 21.41
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4.6 Discussion of Findings

The major finding of this study was the superiority of instruction that integrated
MyMathLab over traditional instruction in college developmental math classes.
Students in the integrated sections scored 30.7 points higher on the posttest than
students in the traditional sections, although both groups had comparable pretests
scores. The posttest scores of the sections that integrated MyMathLab indicate that
the students are now prepared to enter regular college math courses, while the
students who participated in the traditional sections continue to need more devel-
opmental math courses. Based on the results of this study, colleges should move to
incorporate MyMathLab into their developmental math courses.

A secondary finding that is of interest to instructors of developmental math
courses is the performance of females in this study. Regardless of method of
instruction, females scored higher than males at posttest. These results indicate the
females have bridged the gender gap in terms of performance in mathematics, at
least at this level.

Table 4.5 Independent samples t-test results of the post-test by gender

Mode of instruction F Levene’s test for equality
of variances

t-test for equality of means

Sig t df Sig
(2-tail)

Mean
Diff

Std Error
Diff.

Equal var. assumed 0.413 0.041 −1.111 369 0.267 −2.5266 2.2748

Equal var. not
assumed

−1.12 304.31 0.028 −2.53 2.29

Table 4.6 Interaction between mode of instruction (section) and gender (sex)

Source Type III SS df Mean square F Sig

Corrected model 14,365.40 4 7182.70 17.02 0.001

Intercept 207,129.58 1 207,129.58 30.78 0.002

Section 12,987.69 1 12,987.69 30.78 0.002

Section * Sex 346.19 2 346.19 52.01 0.166

Error 155,271.13 368 421.93

Total 1,779,251.00 371

Corrected total 169,636.53 370
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4.7 Study Implications

Developmental mathematics students are unprepared for college-level mathematics
courses and need a learning experience that is different from their learning expe-
riences in middle and high school—experiences that resulted in them being placed
in a developmental course in college. Since developmental students are very diverse
in mathematical background and have a variety of learning styles, no one
instructional style will meet the needs of all students. Therefore, colleges and
universities should offer developmental mathematics courses in a choice of
instructional models. The findings of this study indicate that developmental
mathematics students learn better from a lecture supplemented with
computer-assisted instruction, rather than from a lecture alone.

Several reasons indicate that colleges and universities should offer develop-
mental mathematics courses with computer-assisted instruction. Standards devel-
oped by the American Mathematical Association of Two-Year Colleges (1995) and
the National Council of Teachers of Mathematics (2000) call for the use of tech-
nology in the classroom to improve student learning. Technological advances have
made computers more powerful and less expensive, which has resulted in more
students having access to computers. Most college students are inclined to use them
for academic purposes in addition to communication and social uses. Eighty-five
percent of college students in the Pew Internet and American Life Project (2002)
had their own computer and 79% said the computer had a positive impact on their
college academic experience. Finally, much of the research indicates that students
of all ages and abilities using computer-assisted instruction in a variety of
instructional models learn as well or better than those receiving traditional
instruction.

Developmental educators should learn how to use technology effectively to
improve student learning. One of the factors identified as critical to success in an
online developmental mathematics course was professional development for faculty
(Perez & Foshay, 2002). A report based on 176 literature reviews and individual
studies found that the achievement of students using computer-based instruction
was significantly related to the amount of technology-related training the teachers
had received and whether the technology was being used appropriately (Bialo &
Sivin-Kachala, 1996).

Faculty should constantly evaluate computer software because new products
continue to be developed and old ones change. Some software is designed to
supplement classroom instruction and some is designed to deliver instruction
(Kinney & Robertson, 2003). Instructors need time to evaluate and select software
appropriate to the course design. They need to know how to use the technology and
how to integrate it in the curriculum in a way that enhances student learning. Since
developmental students often lack study skills, organizational skills, and motivation
(Armington, 2003); courses with an online component should include lessons and
discussion boards on learning strategies (Kinney & Robertson, 2003; Trenholm,
2006; Wadsworth, Husman, Duggan, & Pennington, 2007).
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In order for students to receive the maximum benefit from using a computer
learning system, faculty should provide instruction in how to use the system.
Researchers have discovered a high degree of frustration among students and
teachers in communicating with mathematical symbols (Engelbrecht & Harding,
2005; Jacobson, 2006; Smith & Ferguson, 2004; Testone, 1999). Students need to
learn how to enter mathematical notation. A student may have the correct answer on
paper but the computer will not accept it as correct if the answer is entered
improperly. They also need to know how to use the tutorial features and the study
plan to improve their learning. Some students attempt the graded assignments
without first working the tutorials and become discouraged when they earn low
scores. Students should also be taught how to monitor their progress in the course
using the grade book.

This study also indicates that some developmental mathematics students do learn
in a traditional classroom. Although lecture alone has not been effective with
developmental students, there is evidence in the literature that enhancing the lecture
with such techniques as group work, cooperative learning, class discussions,
real-world examples, and peer tutoring has positive results. Educators using the
traditional lecture should examine their teaching practice and find ways to enhance
the lecture with active learning and relevant examples that will motivate students to
learn. Courses could be redesigned with classes meeting four or five days a week.
Two or three days could be lecture and the remaining days would be for students to
work problems and take quizzes.

Developmental educators should strive to give all students, whether male or
female, equal opportunities to receive a quality education. Instructors should
examine whether they treat males and females differently in any way, including
asking and answering questions from one gender more than the other, and then
make necessary corrections. A peer or supervisor could conduct a classroom
observation in which the number and types of interactions are recorded by gender.

4.8 Conclusion

Based on the literature and the findings of the current study, several conclusions can
be drawn concerning developmental mathematics and computer-assisted instruc-
tion. The results of this study indicate that developmental mathematics students
learn better with computer-assisted instruction (such as MyMathLab learning sys-
tem) than with traditional mode of instruction. The mere presence of computers
does not improve student learning, unless used carefully. Students have an interest
in using technology for a variety of purposes including academics. Computers still
have the potential to be useful tools to improve learning. They provide educators
the opportunity to create courses in a variety of alternative formats to the traditional
lecture in order to address the different learning styles and preferences of students.
Quality is essential in any mode of instruction.
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Chapter 5
Lessons Learned from a Calculus
E-Learning System for First-Year
University Students with Diverse
Mathematics Backgrounds

Lixing Liang, Karfu Yeung, Rachel Ka Wai Lui,
William Man Yin Cheung and Kwok Fai Lam

Abstract First-year science majors at The University of Hong Kong have different
levels of proficiency in mathematics, with a significant proportion lacking the
necessary calculus background for a compulsory freshman science foundation
course. A supplementary calculus e-learning platform was implemented so that
students lacking the prerequisite could gain the necessary knowledge and skills at
their own pace. This chapter presents quantitative and qualitative analyses of the
learning analytics, including the behavior as well as the achievements of the users.
Pretest and posttest results are used to assess the effectiveness of the platform.
Questionnaires completed by the users are utilized to explore aspects for
improvement. We hope this study can stimulate discussions on the assessment of
e-learning, as well as shed light on the factors contributing to the efficiency and
effectiveness of similar platforms.
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5.1 Introduction

SCNC1111 Scientific Method and Reasoning is a compulsory course for all
undergraduate students who intend to pursue a major offered by the Faculty of
Science at The University of Hong Kong. It aims to give students a holistic view of
the nature and methodology of science, to equip students with basic skills of logical
and quantitative reasoning, and to introduce to students a wide spectrum of
mathematical and statistical methods for studies and research. Since September
2012, this course has been offered in every fall and spring semester, with enrollment
number constantly beyond 200 per semester. For instance, 256 students completed
both the midterm and final examinations in the spring semester of 2015–16, on
which our research is based.

This course receives students from a variety of educational backgrounds,
including students who have taken the Hong Kong Diploma of Secondary
Education (HKDSE), the International Baccalaureate (IB) curriculum, the National
Joint College Entrance Examination (Chinese NJCEE or Gaokao), the General
Certificate of Secondary Education (GCSE) or the Scholastic Assessment Test
(SAT). A major challenge in teaching this course is the disparity of the levels of
mathematics preparation among such a diverse group of students. Prior to taking the
course, a significant proportion of students in the class have not learned any cal-
culus, while the others have different levels of mastery, ranging from being able to
apply some basic rules to possessing a comprehensive skillset for advanced com-
putation. As calculus is a major mathematical tool for advanced science learning,
equipping all our students with a common level of it has been an essential and
critical goal of SCNC1111. In the past, additional tutorials were held for students
less prepared in calculus. Conducting these additional tutorials, however, was not
very effective since not every student could attend due to scheduling conflicts, and
students who managed to attend still had different mathematics background. As a
result, the diverse individual learning needs continue to be an issue to be addressed
during these tutorials.

To tackle such problem, an e-learning platform was developed in 2015 with
which students can learn calculus online through instructional videos that cover
topics of functions, limits, differentiation, integration and ordinary differential
equations. Students can also use this system to work on quizzes and exercises as
well as receive instant feedback. A very powerful feature of such an e-learning
platform is that all activities are documented, making it possible to track and
analyze students’ learning.

The remainder of this chapter is organized as follows. Section 5.2 reviews rel-
evant literature on e-learning. Section 5.3 describes the design of our platform,
while Sect. 5.4 outlines the methodology framework employed in this chapter. Data
analysis is conducted in Sect. 5.5 to investigate what kinds of students used the
platform, how users used it, and what they achieved with it. Section 5.6 offers
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policy recommendations for improving the e-learning platform with the assistance
of a survey conducted by the SCNC1111 Teaching Team. We will finally conclude
in Sect. 5.7.

5.2 Literature Review

E-learning systems provide students with non-linear access to information pre-
sented in a wide range of formats, including text, graphics and videos (Daradoumis,
Bassi, Xhafa, & Caballé, 2013; Jacobson & Archodidou, 2000). It has become a
promising alternative to traditional classroom learning. E-learning allows students
to learn at their own pace and is able to provide frequent assessment as well as
feedback to help students monitor their own learning (Gibbs, 2014; Zhang &
Nunamaker, 2003). E-learning systems also contain tools for mass grading,
including machine grading and peer assessment, which allow the course to scale to
a large number of learners (Daradoumis et al., 2013). E-Learning can be as effective
as traditional instruction methods, and several studies have shown that e-learners
demonstrate increased content retention and higher student engagement (Chen,
Lambert, & Guidry, 2010; Clark, 2002; Nelson Laird & Kuh, 2005; Robinson &
Hullinger, 2008).

E-learning systems for mathematics in universities can improve learning out-
comes. In a basic calculus course at the University of Helsinki, students taught
through an e-learning system had a lower dropout rate than students taught under
the traditional instruction method. They also performed better than the traditional
students in the posttest (Seppälä, Caprotti, & Xambó, 2006). E-learning systems
have also been welcomed by students. In student feedback for an online linear
algebra course at Pompeu Fabra University, most students indicated that they were
satisfied with the course and had found the materials useful for reviewing concepts
as well as for their other courses (Daza, Makriyannis, & Rovira Riera, 2013). The
use of online assignments at Simon Fraser University for several calculus courses
over a period of five years had also received positive feedback from students.
Survey data from the involved students indicate that online assignments led them to
read the textbook and lecture notes on a regular basis, and had helped them to better
learn the material (Jungic, Kent, & Menz, 2012). E-learning platform has also been
devised for use by engineering students at the Universities of Salerno and of
Piemonte to generate personalized online courses based on the student’s needs
(Albano, 2011).

In addition, the use of tests and exercises in e-learning systems has been shown
to be effective at the university and secondary levels (De Witte, Haelermans, &
Rogge, 2015; Galligan & Hobohm, 2015). Self-testing produces positive effects on
student learning by encouraging repeated retrieval of the content being tested,
helping students to learn from the feedback they receive, and directing students’
further study toward the material that they have yet to master (Black & Wiliam,
1998; Karpicke & Roediger, 2008).
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5.3 Platform Design

As presented in Table 5.1, our calculus e-learning platform is divided into five
modules: Functions, Limit and Introduction to Differentiation, Differentiation
Rules, Application of Differentiation, and Integration. Each module contains three
features: videos, quizzes and exercises. Combined with other learning activities of
the course, our platform follows the Conceptualization Cycle proposed by Mayes
and Fowler (1999) as its pedagogical framework, namely following a three-step
approach of conceptualization, construction and dialogue.

Conceptualization, where students acquire information from the videos on the
platform, is the first step of the Cycle. The videos present materials in a form similar
to a slideshow with voice-over, and most of them last 3–6 minutes. They can be
classified into two categories: introduction to theories and discussion of examples.
The former, which accounts for 32 of the total 46 videos, gives students the most
basic understanding of certain concepts. The illustration is typically carried out in a
three-step approach. Firstly, mathematical definitions are proposed, sometimes after
discussing the necessary background. For instance, the logistic function is defined
after introducing the need to model population growth in a confined environment by
biologists. Secondly some of the most basic properties and/or techniques related to
this concept are introduced, such as the use of first derivative test to distinguish a
local minimum from a local maximum. Sometimes, the illustration is aided with
graphs, for example showing the relationship between instantaneous rate and
averaged rate in the discussion of differentiation. Thirdly, what has been introduced
is applied to one or two straightforward examples which only require direct
application of the concepts. These examples are mainly mathematical and com-
putational, so as to allow the viewers to focus mostly on the concepts they just
learned. The rest of the 14 videos are application examples aimed to consolidate
students’ understanding. For instance, radiometric dating is used to illustrate the
application of logarithmic and exponential functions. By watching all the videos
sequentially, a student with no calculus background is expected to be able to learn
every concept required by the course syllabus and tested in the formal assessments.
Students can also choose to view particular videos as they see fit.

The second step of the Cycle, construction, where students apply the concepts to
meaningful tasks, is carried out in the quiz and exercise components of the plat-
form. The quizzes are listed below the videos in each module on the homepage of
the platform. Each of them has 7–17 questions, mostly (193 out of the total 205
questions) in the form of multiple choice and short answer (10 out of 205).
Regardless of the form of the question, the difficulty level of almost every quiz is
reduced to its minimum and similar to that of the questions discussed in the videos,
i.e. direct application of the concepts. Hence students should be able to finish them
with ease after watching all the relevant videos. The platform also offers 8 more
challenging exercises. Students’ participation in them was low (the average number
of submitted attempts being 9.0 compared to 36.7 for the quizzes); the exercises are
thus excluded from our analysis so as to avoid bias resulted from a small sample.
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The third step of the Cycle, dialogue, where students engage in meaningful con-
versations and discussions with their tutors and peers, is carried out both online and
offline within the course. An open discussion forum is established on the
SCNC1111 course website, where both instructors and students participated. In
addition, weekly face-to-face small-group tutorial sessions were held, offering
opportunities to discuss course materials.

5.4 Methodology

Our e-learning platform was offered to all the students of SCNC1111, and the data
analyzed in this chapter are from the spring semester of 2015–16. Through this
analysis, we seek to answer the following questions:

1. Do students with different calculus background use our platform with different
intensity?

2. Are different features of the platform (i.e. the videos and the quizzes) utilized
differently by the students?

3. Is there quantitative evidence to show an association between student
improvement in calculus knowledge and the use of the platform?

The user log of the e-learning platform, where a student is the basic unit of
observation, is the starting point of our quantitative analysis. We aggregate the user
log into multiple variables that describe each user’s intensity of usage. To assess the
students’ prior calculus knowledge, a pretest, which only allows one submission,
was carried out on the SCNC1111 official course website. Students had been
reminded multiple times in tutorials, lectures and through emails to finish the
pretest, and they were given 3 weeks to complete it independently without prior
revision. To encourage them to show their actual ability without seeking external
assistance, students were assured that the pretest was not linked to their final grades.
Twelve of the pretest questions require only direct applications of theorems, with
difficulty level similar to that of the platform quizzes. We then differentiate different
types of students based on their response to the pretest.

To answer Question 1 above, we conduct two-sample t-tests and linear regres-
sions to analyze the correlation between variables on students’ intensity of platform
usage and variables on students’ knowledge background. These variables regarding
user’s intensity of participation also allow us to answer Question 2 via applying
linear regression models to explore their association with the characteristics of the
user.

To answer Question 3, measures are needed to indicate the student’s perfor-
mance in the course, and we have picked the calculus part of the midterm and final
examinations for this purpose. The midterm examination on March 15, 2016
contains 4 questions related to calculus, with levels of difficulty similar to those of
the quizzes. The final examination on May 16, 2016 requires more steps to solve
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each question (an integration of the knowledge rather than simple direct applica-
tion). In addition, the form of assessment was changed to long-answer questions in
which students were required to state clearly every step of their reasoning. How the
calculus knowledge is aligned between the platform and other assessments of the
course is displayed in Table 5.1.

With these data on platform usage and performance in course assessments, t-test
and linear regressions are then conducted to investigate their inter-relationship. It is
noteworthy that the data available to this research constrained us from making
statements about causal relationships, and hence our analysis is mostly about
observations on correlation. Proposals to record and collect data for better inference
will be discussed after key findings are presented.

To overcome the limitations of our data and understand better students’ moti-
vations as well as needs so as to improve the e-learning platform, a survey, partly
inspired by the research of Sun, Tsai, Finger, Chen, and Yeh (2008), was designed
to assess the platform comprehensively. Students’ responses are expected to help us
better understand the more subtle details that our quantitative analysis may fail to
capture. Due to space limit, we are only able to analyze parts of the survey
responses. The discussion will be focused on the major questions and observations
found in the data analysis in Sect. 5.5.

5.5 Data Analysis

This section is organized as follows. Section 5.5.1 defines various measures of
student participation in the platform and their learning achievement. Section 5.5.2
analyzes the relationship between the intensity of platform participation and stu-
dents’ prior calculus knowledge. Section 5.5.3 discusses how platform users with
different prior knowledge utilized videos and quizzes on the platform. Section 5.5.4
explores the correlation between student improvement and platform participation.
Section 5.5.5 summarizes the key findings, and Sect. 5.5.6 suggests aspects for
improvement in the research.

5.5.1 Data Collection and Descriptive Statistics

Among the total 256 students that took both the midterm and final examinations,
225 submitted the pretest and form our sample. To differentiate the student popu-
lation based on their background in calculus, we can use either their scores in the
pretest or their self-assessment. In the pretest, students were asked the question
“Have you learned calculus before?” The variable rBackground, which forms our
measure for students’ self-assessment, is defined as 1 if they identify themselves as
having at least some prior knowledge of calculus, and 0 otherwise. As our first step,
we would like to ensure such self-assessment and the pretest score perform equally
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well in representing the students’ prior calculus knowledge. Here we standardize
the pretest score such that the maximum score achievable is 100, so that we can
interpret the score as the percentage of marks obtained. While it is true that stu-
dents’ self-assessment is not absolutely accurate, the t-test1 in Table 5.2 shows that
it is able to differentiate the two groups of students whose pretest scores are sig-
nificantly different. On average, students who reported themselves as not having
prior calculus knowledge gained 25.94% of the score in the pretest, while the other
group gained 84.74%. The pretest score is significantly lower for students
(self-reported as) without calculus background at the 1% significance level. This
means rBackground and the pretest score can be equally good indicators for our
coming analyses to represent students’ prior calculus background.

We then define the following variables as measures of participation in the
platform. Firstly, for usage in videos, qvideo measures the total number of videos
watched,2 while cvideo makes a similar measurement except that repeated watching
of the same video by the same student will only be counted once.3 Similarly, to
capture how often the quizzes are utilized by the students, qquiz_all and cquiz_all
measure the number of quizzes submitted (with or without double-counting repe-
ated submission of the same quiz by the same student). The number of quizzes
submitted, however, cannot capture the quality of submission. For example, a full
mark in a quiz may reveal different learning outcome or effort than a zero score. To
address this, we define the variables qquiz_pass and cquiz_pass. The definitions of
these two are similar to the previous ones, except that any quiz attempts that scored
less than 30% of the full mark are excluded. The descriptive statistics for all these
variables are listed in Table 5.3.

Table 5.2 Pretest scores for students who self-reported as having and not having prior knowledge
in calculus

Variable Self-reported prior
knowledge = 0
(n = 71)

Self-reported prior
knowledge = 1
(n = 154)

t-test

Mean (sd) Mean (sd) t-statistic (p-value)

Pretest score
(out of 100)

25.94 (25.14) 84.74 (17.56) t(102.67) = −17.806
(<0.001)

One-sided two-sample t-test allowing for unequal variance is used to evaluate whether the pretest
score is lower for students who reported they do not have prior knowledge in calculus

1The t-test allowing for unequal variance is used as an F-test comparing the variances of pretest
scores of the two groups suggests that we cannot treat the variances as the same at 1% significance
level.
2Due to limitations in the user log, we define “watching a video” as clicking the video link. The
assumption is that users watch the video once every time they click the link. Unfortunately, this
cannot capture the case where a user stays on the same page and watch a video over and over
again.
3For example, if a user had clicked on the link of one particular video n times throughout the
semester, his/her qvideo would be n while cvideo would only be 1.
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5.5.2 Relationship Between E-Learning Participation
and Calculus Background

Understanding how different groups of students used an e-learning platform can
inform us how to develop one that suits the needs of each group better. Our
e-learning platform can potentially offer us such understanding because it was
designed to be a supplementary rather than principal part of the SCNC1111 cur-
riculum. Participation is optional but welcomed regardless of students’ prior
knowledge background. Thus, our platform was used by different types of students
for multiple purposes (e.g. study, practice and revision) depending on their needs
and preferences. We start our analysis by defining the variable use for each student
to differentiate those who have not accessed the platform at all: use being 1 if the
student has either watched one video or attempted one quiz, and 0 otherwise.

Regression was performed to investigate how students’ “platform participation”
variables are related to their calculus background (as indicated by their pretest
score). The results are presented in Table 5.4 column (1) treats whether the student
has used the platform as the dependent variable, while columns (2) and (3) use the
number of unique videos watched as the response. In column (1), we observe that
the higher the score on pretest is, the less likely one will use the platform (b = −.04,
p < .001). In column (2), we can observe that a higher pretest score is associated
with fewer number of videos watched (b = −1.68, p < .001). In column (3), we
limit the analysis to cases where the user has accessed the platform (i.e. use = 1).
We can see that the same relationship between number of videos watched and
calculus background is still significant (b = −1.59, p < .001) among users who
have at least watched one video or submitted a quiz.

Table 5.3 Descriptive statistics

Variable No. of
observations

Mean St. Dev. Min Max

Assessment results

Pretest (full mark = 12) 225 7.9 4.1 0 12

Midterm (full mark = 4) 225 2.6 1.1 0 4

Final (full mark = 8) 225 4.0 2.0 0 8.0

Platform usage

Videos watched (qvideo) 225 17.6 27.7 0 161

Unique videos watched (cvideo) 225 10.9 15.1 0 46

Quizzes submitted (qquiz_all) 225 2.5 4.5 0 36

Unique quizzes submitted (cquiz_all) 225 2.1 3.4 0 17

Quizzes passed (qquiz_pass) 225 2.1 3.8 0 25

Unique quizzes passed (cquiz_pass) 225 1.9 3.1 0 17

Tables 5.3, 5.4 and 5.5 were generated using the R-package Stargazer (Hlavac, 2015)
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Considering that quizzes are the other major part of the e-learning platform,
columns (4) and (5) use the number of quizzes submitted as the dependent variable.
They have similar settings as those in columns (2) and (3) respectively. In column
(4), we find that the number of quizzes submitted is negatively associated with a
student’s prior calculus background (b = −.13, p = .04). However, when we limit
our sample to those who have at least used one feature of the platform once in
column (5), such association is no longer significant, even at the 10% significance
level. This means that among genuine platform users, the relationship between the
intensity of submitting quizzes and prior knowledge background is not significant.
The relationship observed in column (4) might be just due to a number of students
with stronger prior knowledge background who are much less likely to use the
platform, as indicated in column (1).

Columns (6) and (7) discuss the intensity of platform usage from a different
angle. In addition to the number of videos or quizzes watched/submitted, we can
analyze how many times on average a student accesses the same platform item.
Such average frequency4 can be represented by qvideo/cvideo (for watching a video
repeatedly) and qquiz_all/cquiz_all (for submitting a quiz more than once). Their
relationships with the pretest score are shown in columns (6) and (7). We observe in
column (6) that the average number of views per video across time is negatively
associated with the user’s pretest score (b = −.03, p < .001). Similar relationship is
shown for the quizzes in column (7), although it is not significant even at the 10%
level (p = .111).

Based on the above findings, we can draw three conclusions regarding the
relationship between e-learning participation and students’ calculus background.
Firstly, students with a stronger background in calculus (as measured by their
pretest score5) are less likely to use the platform. Secondly, students with a weaker
prior background in calculus tend to watch more videos, both in the sense that they
watch a larger number of different videos (i.e. higher cvideo) and watch the same
video repetitively for more times (i.e. higher qvideo/cvideo). Thirdly, there is no
significant association between attempts in quizzes and student’s calculus back-
ground. In other words, we cannot conclude that students with different calculus
background use the quiz function of our platform with different intensity, in terms
of attempting different quizzes and making repetitive attempts of the same quiz.
More intuitively speaking, students with weaker prior knowledge tend to watch

4Average frequency refers to the number of times a student watched the same video or submitted
the same quiz. For instance, if a student has watched 10 different videos (cvideo = 10) with a total
view count of 30 (qvideo = 30), then his/her average frequency of watching videos is defined as
qvideo/cvideo = 3.
5As for column (1) of Table 5.4, the same conclusion can still be reached if the independent
variable is students’ self-reported calculus background (rBackground) instead of their pretest
score.
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videos on more different topics as well as re-watch the videos for more times, yet
they are not as eager to participate in quiz practices. This situation will be further
discussed in the following sections.

5.5.3 Relationship Between Features of the Platform

The previous section discusses in what intensity students with different calculus
backgrounds use the different functions on the e-learning platform. In this section,
we use similar regression techniques to capture the relationship between the two
major features of our platform, the quizzes and the videos. Throughout this section,
we limit the sample to students who have at least watched one video or submitted
one quiz (use = 1).

There are two main questions to be addressed. Firstly, we wonder if students
who watch the videos intensively tend to attempt the quizzes intensively as well. In
other words, we analyze if the quizzes and the videos are substitutes for or com-
plements to each other. Secondly, we want to know, given a certain number of
videos viewed, whether students with different calculus backgrounds tend to
attempt quizzes with different intensity.6

The results are presented in columns (8) and (9) of Table 5.5. Column (8) treats
the number of unique quizzes submitted (cquiz_all) as the response variable, while
column (9) considers the number of unique quizzes passed (cquiz_pass) as the
response. In both cases the explanatory variables are the number of unique videos
watched (cvideo) and the student’s score in the pretest.

From columns (8) and (9), we can see a positive and significant association
between the intensity of quiz attempts, as measured by the number of unique
quizzes submitted or passed, and the intensity of watching videos, as measured by
the number of unique videos watched, given the same level of pretest (i.e. positive
coefficient for cvideo, b = .13 and .11 respectively with p < .001 in both cases). In
other words, quizzes and videos are complementary to each other for the students’
learning via the platform.

In addition, the coefficients for pretest in columns (8) and (9) are also positive
and significant (i.e. b = .23 and .25 with p = .003 and p < .001 respectively). One
interpretation is that given the same intensity in watching videos (as measured by
cvideo), students with stronger prior knowledge in calculus tend to use the quiz
feature more intensively. Considering that this platform was originally designed for
students with weaker prior knowledge, this is contrary to the intuition that students

6Originally, we also wanted to analyze whether and how students’ prior knowledge affects the
substitute/complement relationship between the videos and the quizzes. Hence, the interaction
effect between cvideo and pretest was initially included in the full model. At the significance level
of 5%, the interaction effect was not statistically significant. In other words, the relationship
between quizzes and videos is not affected by a student’s calculus knowledge background. In
columns (8) and (9), therefore, only the main effects of cvideo and pretest are included.
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with weaker calculus background would use both functions of the platform more
intensively. This finding is consistent with those from column (4) and (5) in
Table 5.4 regarding the relationship between intensity of quiz attempt and prior
calculus knowledge. We may conclude that compared with their peers, students
with weaker calculus background are not as active in attempting quizzes as they are
in watching videos. To some extent, it reveals that students without prior knowl-
edge tend to prefer learning passively through features like videos, but overlooked
the importance of practice. This will be discussed further in Sect. 5.6 when offering
policy recommendations.

Table 5.5 Relationship between features of the platform

Dependent variable

Unique quizzes
submitted
(cquiz_all)

Unique quizzes
passed
(cquiz_pass)

Improvement
(sdFinal −
sdPretest)

Improvement
(sdMidterm −
sdPretest)

(8) (9) (10) (11)

cvideo 0.132*** 0.109*** 0.394** 0.866***

(0.020) (0.019) (0.170) (0.209)

Pretest 0.226*** 0.246***

(0.074) (0.071)

cquiz_all −0.949 −0.972

(0.712) (0.862)

Constant −0.421 −0.593 −15.111*** −7.907*

(0.797) (0.762) (3.840) (4.771)

Limit to
use = 1

Yes Yes Yes Yes

Observations 135 135 135 126

R2 0.250 0.207 0.040 0.125

Adjusted R2 0.239 0.195 0.025 0.111

F statistic 22.038***
(df = 2; 132)

17.210***
(df = 2; 132)

2.747*
(df = 2; 132)

8.796***
(df = 2; 123)

Only columns (8) and (9) are relevant to the analysis of Sect. 5.5.3. Columns (10) and (11) explore
the association between learning outcome and platform participation, to be discussed in Sect. 5.5.4
There are no influential (high leverage) observations or outliers that are dropped in Table 5.5
In column (8), the same conclusion regarding the significance and sign of the coefficient can still
be drawn even if the response variable is qquiz_all, and/or the independent variable cvideo is
replaced by qvideo. In column (9), at the 5% significance level, the same conclusion regarding the
significance and sign of the coefficient can still be drawn even if the response variable is
qquiz_pass, and/or the independent variable cvideo is replaced by qvideo
Note *p < 0.1; *p < 0.05; ***p < 0.01
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5.5.4 Relationship Between Student Improvement
and E-Learning Participation

We used two proxies for the intensity of using the platform. First, we use the binary
variable use to differentiate students who have at least watched one video or sub-
mitted one quiz on the platform from those who do not. Then, a t-test is conducted
to compare the mean improvement between these two groups of students. The null
hypothesis is that there is no difference in improvement between them, and the
alternative hypothesis is that the students who have not used the platform have
relatively lower improvement score. The results of this test are presented in
Table 5.6. Firstly, from the pretest to the final examination, the mean score dif-
ferences are both negative for users and non-users of the platform, which can be
interpreted as that the final examination itself is more challenging. However, the
score difference is more negative or, in other words, relatively lower for students
who had not used the platform (t(223) = −3.28, p < .001). Hence, we shall reject
the null hypothesis and conclude that students who used the platform tend to have
larger improvement from the pretest to the final examination. Secondly, we can also
analyze the period from the pretest to the midterm examination to test the robust-
ness of our above claim. Students who used the platform showed a positive score
difference (mean = 4.29) whereas students who did not use the platform showed a
negative score difference (mean = −4.39). Such difference is statistically significant
(t(223) = −1.94, p = .03), and hence we can conclude that students who used the
platform between the beginning of the semester and the midterm examination tend
to have higher improvement, as observed from differences in test scores. These
analyses show that platform users tend to have better improvement in the midterm
and final examinations compared to their peers who do not use the platform.

Table 5.6 Relationship between improvement and platform usage

Variable:
improvement

Did not used the platform
use = 0

Used the platform
use = 1

t-test

mean (sd) mean (sd) t-statistic (p-value)

sdFinal −
sdPretest

−23.76 (27.21) −11.319 (28.27) t(223) = −3.2827
(<0.001)

sdMidterm −
sdPretest

−4.39 (30.64) 4.29 (35.29) t(223) = −1.9391
(0.027)

In both rows, we employ t-tests that assume equal variance because both F-tests comparing the
variances of improvement of the two groups suggest the variances are the same, at the 1% level
The two rows cover different time spans, so the number of observations in each group differs.
From the start of the semester to the midterm examination, 126 out of the 225 students used the
platform (i.e. use = 1). By the date of the final examination, 135 out of the 225 students have
used it
One-sided two-sample t-tests assuming equal variance are used to evaluate whether improvement
between posttest and pretest is lower for students who have not used any functions on the platform
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The second way to proxy the intensity of platform usage is the number of videos
watched and quizzes submitted. In columns (10) and (11) of Table 5.5, we treat the
improvement from the pretest to the final and midterm examinations as the response
variables respectively. We can observe that there is a positive and significant
association between the improvement and the intensity of watching videos, as
measured by the number of unique videos watched (i.e. positive coefficient for
cvideo, with b = .39 and .87, p = .02 and < .001, in columns (10) and (11) re-
spectively). Both coefficients for cvideo are statistically significant at the 5% sig-
nificance level.

However, there seems not to be a statistically significant association between
improvement of scores and intensity of participation in quizzes. The coefficients for
cquiz_all are not statistically significant even at the 10% significance level in both
columns (10) and (11). The interpretation may be as follows. As it is discussed in
Sects. 5.5.2 and 5.5.3 (based on observations from columns (2) and (3) in Table 5.4
and from column (8) and (9) in Table 5.5), there is no significant negative asso-
ciation between participation in quizzes and students’ prior knowledge background
once we control for other variables such as use. In other words, students with
stronger calculus background are equally as likely to attempt the quizzes as their
less well-prepared peers. Therefore, the usage of quizzes is varied, in that students
with stronger calculus background may use it for revision and practice, while the
others may use it for consolidating newly learned concepts. For the group of
students using them for revision, attempting the quizzes may not associate with a
higher improvement in scores as there is little room for improvement for students
who are already well-prepared in calculus.

5.5.5 Key Findings from Data Analyses

From the data analyses above, we are able to answer the three questions proposed in
Sect. 5.4. First, students with weaker prior knowledge in calculus are more likely to
use the platform intensively. In particular, they display a preference for videos, as
shown in their tendency to watch more videos of different topics and watch the
same video repetitively. However, they are not as keen in practicing the quizzes, in
the sense that the intensity of quiz participation is not associated with a student’s
calculus background. The association even seems to be positive once we control for
other variables. Second, a complementary relationship between the two functions of
the platform, the videos and the quizzes, is present, regardless of the user’s prior
knowledge. Third, improvement between the examinations and the pretest is pos-
itively associated with the usage of our platform. Though our observations cannot
be proved as causal, they can still provide insight on the behavior and preference of
students with diverse learning needs.
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5.5.6 Reflections on Research Improvement

While the above t-tests and linear regression models provide a consistent picture of
user behavior and learning outcome, our ability to infer patterns is still limited by
multiple elements. Developing a more comprehensive dataset and experimenting
with methods to identify causality are two major areas similar projects can improve
on in the future.

First, our data analysis can be more rigorous by controlling for various fixed
effects, so as to account for any nested structure in the data (De Witte et al., 2015).
These effects can be the students’ familiarity with e-learning and their learning
ability. In future offering of the course, the SCNC1111 Teaching Team can include
questions related to student’s characteristics (such as their familiarity with
e-learning) in the pretest, in addition to the existing mathematical questions.
Moreover, scores of assignments that are not directly relevant to calculus might be
used as a proxy for students’ learning ability which can then be controlled for in our
regression model. Still, a more thorough and detailed examination will be needed in
deciding what data to collect and what effects to control for in future research.

Second, as stressed in earlier analyses, the data available to us did not enable us
to explore causality. To improve, the first and most obvious way is through ran-
domized control experiments as adopted in the research of Papastergiou (2009),
Potocki, Ecalle, and Magnan (2013); yet doing so may be infeasible or even
inappropriate under some teaching settings (such as not granting part of the class
access to certain teaching facilities). The Instrumental Variable (IV) approach as
discussed in Angrist and Lavy (2002), De Witte et al. (2015), or Machin, McNally,
and Silva (2007) can be a possible way to explore causality using only observa-
tional data. Integrating elements of a randomized experiment with an IV approach
as discussed by Rouse and Krueger (2004) is also worth exploring in future
projects.

5.6 Policy Recommendations

The relationship discussed in Sect. 5.5 between different features of the platform
and the preferences of students with different calculus background offers us insights
on future improvement of e-learning efficiency and effectiveness. To partly over-
come the limitations on our data and to gather direct feedback from the students, we
designed a comprehensive questionnaire for the SCNC1111 Teaching Team to
distribute to the students after the end of the semester. This section will discuss this
questionnaire and what we have learned from it. Section 5.6.1 briefly introduces the
structure of the questionnaire. Section 5.6.2 offers policy recommendations on
implementing e-learning platforms, based on observations from Sect. 5.5 and stu-
dents’ feedback in the questionnaire.
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5.6.1 Questionnaire Design

The questionnaire is modeled after the research of Sun et al. (2008), which suggests
six groups of factors influencing user experience: the learner, instructor, course,
technology, design, and environmental dimensions. In addition, we have included
questions specifically related to our e-learning platform, such as those about stu-
dent’s attitude towards and suggestions for the videos and the quizzes. Since the
platform is connected to the general SCNC1111 learning experience, questions
regarding how well it linked to other components of the course are also included.
Students are, furthermore, welcomed to provide open-ended suggestions for future
improvement. A summary of the survey is displayed in Table 5.7 in the Appendix.
The space limit of this chapter, however, forbids us from conducting a compre-
hensive review of the responses, which shall be presented in a separate paper. In
this section, we instead focus our analysis mainly on the issues identified in
Sect. 5.5 and draw inspirations from the survey responses.

5.6.2 Recommendations for Future Improvement

Section 5.5 provides us with insights on how to improve the platform with regard to
the relationship among quizzes, videos, and students’ prior knowledge in calculus.
Here we make three proposals to improve user satisfaction and education effec-
tiveness, namely adjustment of quiz design, appropriate pace of learning, and
facilitation of dialogue.

The first proposal aims at increasing users’ participation in the quizzes. As we
have discussed in Sect. 5.5, students with weaker prior knowledge in calculus are
not as keen in doing practice in quizzes as they are in watching videos. If we posit
that videos and quizzes are the two major sources for students to complete the first
two steps of the Conceptualization Cycle respectively, low participation in quizzes
means a weak construction phase (Mayes & Fowler, 1999). While this might be due
to different learning needs and preferences,7 more options can be incorporated into
the quizzes to accommodate such diversity, such that more students will be more
willing to attempt them. Two such possible ways to enhance the quizzes are to offer
practice questions of more levels of difficulty (so that the students can sense more
clearly the quizzes are preparing them for the examinations) and to offer the quizzes
in various formats.

According to our survey, 95% of the platform users agree that the quizzes align
closely with the content of the videos,8 yet only 83% of the users agree that the
quizzes cover all contents in the examinations. Moreover, students tend to consider

7For instance, students may have managed to find practice questions from other sources.
8Defined as assigning number 3, 4, 5 to the statement “the quizzes aligned closely with the content
of the videos” on a Likert Scale of 1–5: 1 means “strongly disagree” and 5 means “strongly agree”.
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the quizzes to be easy compared with questions in the midterm and final exami-
nations.9 As mentioned in Sect. 5.3, quizzes on the platform are designed to be
straightforward (direct application of the involved concepts), whereas more chal-
lenging questions are included in the exercises. Students who sought more
advanced questions, therefore, may already be able to satisfy their needs from the
exercises. The reason for such survey response, it seems, is that the platform has not
fully informed the students of the differences between the quizzes and the exercises.
In this regard, an e-learning platform should ensure that clear information about all
its components is conveyed to its users. Furthermore, more advanced questions of
more levels of difficulty (such as those that require similar ways of reasoning as in
the examinations and those that are in some ways related to examination questions)
can be provided. Doing so may help to boost students’ confidence in learning (and
thus willingness to work on the quizzes) via fostering a sense of gentle and gradual
increase in difficulty level. Some students have also indicated in the open-ended
response10 their preference for printable handouts and quizzes. Such preference
may be because our examinations are conducted offline and students find these
forms of learning materials more in line with the examination format. Providing
such kinds of offline learning opportunities on the platform can help encouraging
students who prefer learning this way to attempt the quizzes.

Second, it is apparent that some students skipped the quizzes, reporting that
“they were running out of time during revision”.11 To take a closer look, we graph
the average number of videos watched and quizzes submitted per student per day
respectively,12 where the red vertical lines indicate the dates of the midterm and
final examinations (Figs. 5.1 and 5.2). The traffic for both quizzes and videos
soared on the immediate periods before examinations. Some may use the platform
as a last-minute study shortcut before the examinations. The resulted lack of time
for study will prevent students from combining learning with actual practices. For
instance, some students may not even be able to spare 10 minutes to finish a quiz,
simply because they were rushing through the materials the day before an exami-
nation. Furthermore, as some of the contents introduced in our lectures and tutorials
(such as separable differential equation) require basic understanding on calculus, the
delay in grasping the necessary calculus concepts will make it even harder for those
to catch up with the course progress, resulting in a vicious circle of losing confi-
dence in mathematics. Therefore, though participation in the e-learning platform

9Only 16 and 14% of the students respectively disagree or strongly disagree with the statement that
“Compared with the midterm/final examination, the quizzes were too easy”.
10For instance, in the course dimension part of the survey, an optional question asked “What gave
you a better learning experience than the e-learning platform in Calculus learning, if any?”.
11In the quiz part of the survey, a question asked if there is “any other reasons that stopped/
prevented you (the students) from working on the quizzes”. A number of respondents claim the
quizzes are time-consuming or they do not have enough time for revision.
12The average is defined as the total number of videos/quizzes accessed every day divided by the
total number of students with certain mathematical background. 71 students reported themselves as
having no prior calculus background, and 154 students reported they have.
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shall still be optional, it would be important to share with the students a recom-
mended timeline for finishing the constituent modules. This would allow the stu-
dents to plan ahead and allocate enough time for the learning and practice, as well
as for better integrating with other related contents of the lectures and the tutorials.
In this regard, a number of students have proposed to combine such timeline with
printable study notes, such that the learning progress can be more organized.13

Last but not least, it would be important for the platform to enhance dialogue
among its users. In the Conceptualization Cycle, the third step, dialogue, is crucial
as this is when conceptualizations can be tested and further developed. While
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13This is observed in students’ response to the question “I would suggest the following changes for
improvement:”. In addition, 88.5% of the respondents agreed with the proposal that “the
instructors should suggest a timeline that we finish certain modules of the e-learning platform”.

5 Lessons Learned from a Calculus E-Learning System … 89



opportunities for dialogue have already existed in SCNC1111 (such as the
all-purpose online forum on the course website and the tutorial sessions with the
instructors), the survey still reflects more demand for tools for communication. For
instance, some suggest the development of an online Q&A forum within our
platform. This can indicate our students’ preference for more convenient oppor-
tunities to discuss their learning progress with greater focus (i.e. a forum dedicated
for discussing calculus learning materials).

5.7 Conclusion

This chapter offers an integrated quantitative and qualitative assessment of the
e-learning platform for a compulsory freshman science course, SCNC1111, at The
University of Hong Kong. In terms of user behavior, data analysis indicates that
users with weaker prior knowledge of calculus tend to utilize the platform,
specifically its instructional videos, more intensively compared to their peers with
stronger background in calculus. We also observe that the videos and the quizzes of
the platform complement each other in the students’ learning, regardless of their
prior calculus knowledge. In addition, association is identified between greater
improvement (from the pretest to the examinations) and a higher intensity of
platform participation. While there are limits in data availability, we conclude that
participating in the SCNC1111 e-learning platform is positively associated with a
better understanding and ability in calculus knowledge. Finally, based on our data
analysis and feedback from the platform users, we identify ways to enhance the
efficiency and effectiveness of e-learning platforms, namely adjustments to the
quizzes, provision of a recommended timeline of learning, and enhanced facilitation
of dialogue.
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Chapter 6
A Customized Learning Environment
and Individual Learning
in Mathematical Preparation Courses

Karin Landenfeld, Martin Göbbels, Antonia Hintze and Jonas Priebe

Abstract Large differences in the mathematical knowledge of incoming engi-
neering students as well as different individual students’ needs make it necessary
not only to offer mathematical preparation courses, but also to conduct these
courses in a manner adaptive to the special needs of each student. The online
learning environment viaMINT, developed by the Hamburg University of Applied
Sciences, accounts for both the student’s individual prior knowledge and learning
pace as well as the needs due to the course of study. Individualization and cus-
tomization is realized by several technical and didactical measures, visual elements
and a so called short learning track. Students begin by taking an online placement
test to assess their knowledge level. Based on the test results, video-based online
learning modules, which include various exercises, are recommended. The
“Personal Online Desk” gives a customized representation of these recommenda-
tions that tracks the student’s learning progress. Parallel class lectures explore the
topics of the online modules in greater depth to create a blended learning approach.
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6.1 Introduction

6.1.1 Problems

Many universities offer bridging courses in mathematics for first semester students
in STEM fields to close possible knowledge gaps between high school and uni-
versity. These preliminary courses often have the characteristics of a crash course:
during one or two weeks before the semester starts, a large part of high school
mathematics is repeated to ensure that students have the background necessary for
the mathematical subjects of study courses. In general, during the preliminary
course, students work on all topics and in the same way, regardless of their indi-
vidual mathematical strengths and weaknesses. On the contrary, research shows that
students’ individual knowledge gaps are very different (Knospe, 2012; Landenfeld,
Göbbels, Hintze, & Priebe, 2014). In recent years, many online courses have
emerged to enable a more time- and location-independent learning (Biehler et al.,
2014; Daberkow & Klein, 2015; Roegner, 2014). However, online courses that are
adaptive to the individual needs of the students are not often used.

6.1.2 Measures and Objectives

This chapter introduces an online learning environment, viaMINT, developed at the
Hamburg University of Applied Sciences—with its video-based content for
mathematics, physics, chemistry and programming—and focuses on the following
questions in order to offer an individualized customized learning environment for
students:

(1) How is it possible to design the online learning environment and the offered
content to take into account the prior knowledge and learning pace of each
student? For this, various technical and educational measures are described
below.

(2) Our evaluations during the last semesters with the first semester students of the
Faculty of Engineering and Computer Sciences show clearly that the students
welcome the online modules (see Sect. 6.5), but also still want to attend
preparation courses at the university. So, how can a meaningful combination of
online and classroom teaching be obtained?
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6.2 Customized Online Learning Environment

6.2.1 Mass Customization and Individualized Learning
in an Adaptable Learning Environment

Within the consumer market, mass customization has become increasingly popular,
as it allows customers to define a product that takes into account their personal
requirements. The adoption of mass customization into the field of education is
introduced in Mulder (2005) as mass individualization of higher education.
Individualization of the learning environment and learning process opens new
opportunities to conduct an adequate preparation fitting the specific needs of each
individual student and her or his course of study.

Individualized Learning (I-Learning) is influenced by multiple elements unique
to the learner (for example marks, life situation), the individual learning features
provided by the online learning environment and the individual learning behavior
of the learner. Zeitler (2016) stated, that it is necessary for future learning to shift
from e-Learning to an integrative, individualized, intelligent I-Learning.

Individualized learning is stated to be instructive and teacher-centered, whereas
personalized learning is learner-centered, where the student is encouraged to learn
in that way that suits his ability and his own preferences (Bray & McClaskey, 2014;
Wallach, 2014). viaMINT combines elements of both personalized and individu-
alized learning.

For individualization, viaMINT uses information on the course of study and the
results of the online placement test. Based on this information, the learning envi-
ronment and its learning elements are adapted and individual user-specific learning
recommendations are given. In Fig. 6.1, the concept of mass customization for
individualized learning is displayed parallel to the concept of individualized
learning in viaMINT. Details are described in the next sections. Personalized
learning is incorporated by using the different features of the online learning
environment viaMINT for individual learning.

6.2.2 The Online Placement Test

viaMINT offers an integrated online placement test in an adapted Moodle1-envir-
onment. The test demonstrates to the students the mathematical prerequisites for
their course of study and gives them the opportunity to preemptively refine their
individual skills. Based on the test results, individual learning modules are

1Moodle is an open source online learning platform: https://moodle.org/.
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recommended and presented to the students on their Personal Online Desk
(Landenfeld, Göbbels, & Janzen, 2015).

The online placement test for mathematics consists of ten topics based on school
mathematics (see Fig. 6.2) with five questions per topic. The mathematical test
topics are: fractions and percentages, equations and inequalities, functions 1 (linear
and quadratic functions), functions 2 (polynomial, exponential and logarithmic
functions), powers and roots, vectors, logarithms, systems of linear equations,
trigonometry and trigonometrical functions and mathematical basics like sets, logic
and terms. The topics are chosen from subjects stated in the COSH Catalogue
(COSH, 2014) to be required by engineering and economics study courses. The
topics additionally take into account requirements mentioned by the first semester
teachers.

The evaluation algorithm of the online test gives recommendations on a
three-step scale: Strongly Recommended, Recommended or Not Necessary (see
Table 6.1). After the placement test, Strongly Recommended and Recommended
modules appear in the section Recommended Modules on the Personal Online Desk
(see Fig. 6.3).

In this way, students get both summarized and detailed individual feedback on
their knowledge along with recommendations for the topics they should focus their
efforts on.

The test is designed to last no more than 90 min. Thus, to obtain accurate
recommendations, it is necessary to find the right balance between validity and
recommendations on the one hand, and test length and the number and type of test

Fig. 6.1 General concept of mass customization for individualized learning in viaMINT
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questions on the other hand. Further investigations will deal with this issue of
balance. Additional information on the question types is given in Sect. 6.3.

Evaluations of the review courses for the winter semester 2015/16 show that
75.5% of the participating students (total number n = 110) completed the online
test, 15.5% partially completed it and 9% not at all. 70.7% of the students who took
the test considered it to be helpful or very helpful in realistically estimating their
prior knowledge. On average, each module is recommended to more than 50% of
the participating students (see Fig. 6.4).

Fig. 6.2 Mathematical topics in viaMINT used in placement test and learning modules

Table 6.1 Explanation of the three-step recommendation scale

Categories Correct answers in placement
test regarding a particular
module (%)

Meaning for the students

Strongly
recommended

0–50 Students should work through the entire
module from the beginning to the end.
They should especially complete all
exercises.

Recommended 51–80 Students can focus on single topics of the
module. To do so, they have to take a
look at the detailed test results to identify
the topics of the module they should
work on.

Not necessary 81–100 The prior knowledge in this topic is
sufficient.
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Fig. 6.3 Online placement test evaluation and recommendations

Fig. 6.4 Evaluation results winter semester 2015/2016 concerning the test performance
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6.2.3 The Personal Online Desk

The Personal Online Desk shown in Fig. 6.5 is divided into different sections:
Recommended Modules, Modules in Progress and Completed Modules. Modules
are depicted in sections corresponding with students learning progress, thus orga-
nizing the students’ learning. An estimated work time is displayed on each module
icon. A tooltip shows further information, such as total length of the embedded
videos and number of embedded questions. Different visual elements like progress
bars, green check marks and badges serve as gamification elements while also
giving users a continual feedback on their learning progress.

Fig. 6.5 The Personal Online Desk with individual settings. viaMINT is in German, so a short
English translation is given here
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6.2.4 Modules, Learning Sequences and Short Learning
Track

Each learning module refers to one of the ten test topics (see Fig. 6.2). The modules
(e.g., ‘Functions 2’) are structured in chapters (e.g., ‘Power and Polynomial
Functions’) and subchapters (e.g., ‘Monomial Functions’). Subchapters contain the
learning sequences that have an estimated working time of 30–60 min and may also
contain additional learning materials like formulary and exercises that approach the
topic more in depth (see Fig. 6.6).

The content is mostly presented in videos using a screen capture format, about 6
to 10 short videos concerning on each topic. The sequences of videos are supple-
mented by interactive applets, questions and online exercises with direct feedback
(see Fig. 6.7). Through this approach, a good balance between explanations and
hands-on learning is obtained.

To meet the needs students with little prior knowledge, the explanations in the
videos are quite extensive. Faster access to the content is given via a short learning
track (see Fig. 6.8).

In the short learning track, students only use the last two elements of each
learning sequence. The second-to-last element summarizes the content in a compact
video. As shown in Fig. 6.7, this summary video is followed by a summary exercise
that students use to check whether they have mastered the content of the learning

Fig. 6.6 Example of the structure of the module Functions 2 with brief insight into a learning
sequence, the final module test and the formulary
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sequence or not. This way students get a short explanation of the content and
corresponding exercises to check their comprehension. In case of incomplete
comprehension, students always have the opportunity to work step by step through
the whole learning sequence.

In addition to the short learning track, individualization of learning is possible by
fast-forwarding or skipping videos. For example, videos with an explanation of an
exercise solution may be skipped if the exercise was solved correctly. The last

Fig. 6.7 Learning sequence within a sub-chapter, a combination of video explanations and
interactive questions

Fig. 6.8 The Short Learning Track—individual learning across the learning sequences (red
arrow). If desired, more details are given working through the entire learning sequence (grey
arrow) (Color figure online)
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chapter of each module is a final exercise that gives the students feedback on
whether they have met the learning goals or not. Answering 80% correctly is
equivalent to passing. If the final exercise has been passed, the icon of the corre-
sponding module on the Personal Online Desk moves to the Completed Modules
section. To add a gamification element to it, the check mark turns from grey to
green and the user receives a badge which is depicted at the top of the Personal
Online Desk (see Fig. 6.5).

6.2.5 Individualization Concerning the Field of Study

Each individual course of study may require bridging courses in different fields:
mathematics, physics, chemistry and/or programming. The Personal Online Desk is
customized depending on the students’ individual course of study, displaying only
relevant preparation courses (e.g., only mathematics and physics, and no chem-
istry). The mathematics preparation course itself is also adapted to the needs of the
specific study course, i.e. by selecting specific mathematics topics or application
examples. The necessary information is taken from the user’s profile. With this
approach, the amount of preparation courses is adapted to the specific needs of the
students. The implementation of this concept is under construction.

6.3 Repeated Opportunities to Practice

6.3.1 Questions and Exercises

Within the online modules, questions and exercises are used in three different ways
(Göbbels, Hintze, & Landenfeld, 2014): as brief activating tasks within a learning
sequence, as exercise and revision at the end of each learning sequence (so called
summary exercises, see Fig. 6.7), and as a diagnostic and summative assessment at
the end of each module (final module test). Different types of questions give the
learner feedback and help consolidate the acquired knowledge. The following
question types are used in viaMINT: multiple choice with one or more correct
answers, drag and drop, numeric and algebraic input, matching and cloze questions.
Some question examples are given in Fig. 6.9.

6.3.2 Brief Activating Tasks and Applets

To prevent users from passively viewing the learning videos, two to four of the
videos are completed by a short question (see Fig. 6.10). In addition, some of these
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questions involve applets that visualize mathematical relationships and help with
answering the questions, as well as with understanding the topic. The input solu-
tions to these questions are evaluated electronically and, if necessary, a detailed
explanation is given in the following video. These tasks focus more on under-
standing the learning content and activating the user and less on training routines
and skills.

6.3.3 Exercises and Individual Feedback

At the end of each learning sequence, an exercise set consisting of six to ten tasks is
implemented. Here, the goal is to train and consolidate the content discussed in the
sequence.

The diversified questions help students reach their learning goals and also serve
motivational aspects. Algebraic input questions are realized using STACK/

Fig. 6.9 Examples of questions with different question types (drop down menu, drag and drop,
algebraic input)
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Maxima2 as a Moodle extension (Sangwin, 2013). Individual feedback is given
based on a student’s answer. Table 6.2 provides examples of possible responses
that students could receive. The program considers typical mistakes and common
misconceptions; in this way, student comprehension is maximized (Shute, 2007).

The amount of practice necessary to learn the content differs from student to
student. At the moment, about 500 questions are used in the modules and the
students are allowed to repeat the exercises without any restriction. Some of the
questions use variable values, which are randomized each time the question is
accessed and some are randomly drawn from a pool of about 1200 questions. This
means students often get a slightly different question every time they open an
exercise, allowing them to practice more.

Fig. 6.10 Example for a short question, that follows directly after videos about setting up
functional equations

2STACK—System for Teaching and Assessment using a Computer algebra Kernel http://stack.ed.
ac.uk.

Maxima—Computer Algebra System http://maxima.sourceforge.net/.
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6.3.4 Summative Assessment and Final Test

After the students have gone through a whole module, they can complete the topic by
executing the final test for the module. Just like the placement exam, this test has a
diagnostic function where the feedback is reduced to whether or not the answers are
correct. The questions are generated in a similar way (as for the placement test) and the
derived recommendations give the user information about his or her learning status.

6.4 Matching Class Lectures

viaMINT uses a blended learning approach in which the online modules are
complemented by corresponding class lectures. Students regard the class lectures as
an important part of preparation courses and take advantage of the opportunity to
socialize. A combination of online and classroom teaching was conducted for the
first time in preparation courses for the winter semester of 2015/16, based on
concepts of the Inverted Classroom Model (Handke & Sperl, 2012; Loviscach,

Table 6.2 Example for individual formative feedback

Problem: Calculate 1
6 þ 3

10 and express the result in lowest terms. Expected Answer: 7
15

Answer category Student answer Specific feedback

Algebraically equivalent
and in expected form

7
15

Your answer is correct.

Algebraically equivalent
not in expected form

28
60 or 14

30
Your answer is not reduced to its
lowest form.
You can divide by a common factor.

5
30 þ 9

30 or 10
60 þ 18

60
Your answer is not reduced to its
lowest form.
You haven’t added the both correctly
expanded fractions.

Not algebraically
equivalent with particular
error or misconception

1þ 3
6þ 10 or 4

16 or 1
4

Your answer is wrong.
You added numerator and denominator
of the two fractions separately.

1�3
6�10 or 3

60 or 1
20

Your answer is wrong.
You multiplied numerator and
denominator of the two fractions.

4
60 or 4

30
Your answer is wrong.
You calculated the common
denominator correctly, but you haven’t
expanded the numerators.

Not algebraically
equivalent

Something else Your answer is wrong.
Calculate the common denominator,
add the fractions and then reduce the
fraction to its lowest form.
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2013), commonly also known as Flipped Classroom Model. Using this model, it is
necessary for the student to work through the online modules before attending the
corresponding classroom lectures. The classroom time is spent focusing on practice
and consolidation of the online learned content.

Typically, the class lectures start with a multiple-choice quiz using an audience
response system (clicker) as a ‘warm-up.’ The questions refer directly to the content
of the associated online module, so the quiz helps the students recall different
aspects of the topic and also helps the teacher to identify and correct misconcep-
tions (Göbbels, Hintze, Landenfeld, Priebe, & Stuhlmann, 2016).

The students benefit from the class lectures by further developing their mathe-
matical competencies in modelling, problem posing and solving, and general
mathematization of problems. Simultaneously, they are training social and lin-
guistic skills. This is implemented by using open application and modelling tasks
and by working with different teaching methods and formats such as group work
and experiments.

For example, in the class lecture on vectors, students work in groups to solve
problems like “How is it possible to sail against the wind?” or “How does a rear
reflector work?” (Göbbels et al., 2016). They have to apply their knowledge about
vectors learned online, model the situation and after finalization, present their
solution to the other groups.

Topics and dates of the class lectures are announced in advance via e-mail. This
gives students an idea of whether or not they should participate in the class lecture,
depending on their individual learning recommendations and progress.

6.5 Evaluation Results

The learning environment viaMINT and the existing online modules have been
developed, deployed, and improved over several semesters in an iterative way.
To get detailed information about the students’ problems in the field of mathe-
matics, knowledge tests (total number n = 1777) and questionnaires on learning
habits and requirements (total number n = 792) were done at the beginning of the
project in 2012 and 2013. The results have shown very heterogeneous preliminary
knowledge and learning behavior and thus have indicated the need for an adaptive
learning environment (Göbbels, Hintze, Landenfeld, Priebe, & Vassilevskaya,
2012).

Since winter semester 2013/2014, when the viaMINT platform and its first
online modules were launched, through winter semester 2015/2016, regular
evaluations with a total number of n = 878 participants in different student courses
have been conducted. The evaluations were carried out during the attendance
preparation courses for the Hamburg University of Applied Sciences Faculty of
Engineering and Computer Sciences and/or during the mathematics lectures at the
start of the semester using an anonymous paper-pencil-feedback questionnaire,
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which was evaluated with the system EvaSys.3 The questionnaire contains ques-
tions on the technical aspects of the learning environment itself, the didactical
approach of the learning modules, and the usability. The results have been evalu-
ated continuously, primarily for improvement of the online learning environment
and not for detailed scientific research. The evaluations clearly show that students
appreciate the online learning environment with its individual learning opportuni-
ties and regard the content as very helpful. Some evaluation results of the survey,
especially the technical aspects, the didactical aspects and the learning aspects are
shown in Figs. 6.11, 6.12 and 6.13 (Landenfeld, 2016). The evaluation of the
technical aspects (see Fig. 6.11) shows clearly a very good accessibility (mean
value 1.46 on a scale from 1 to 5) and good usability of the online learning
environment with a mean value of 1.82 for the topic navigation.

Figure 6.12 shows the results of the evaluation of didactical aspects related to
the tempo of explanation, the comprehensibility and the level of explanation. 47.5%
of the participants rate the tempo of explanation as very good. 32% of the partic-
ipants rate it as a little bit too slow. For these users the short learning track,
described in Sect. 6.2.4, has been developed, which offers a faster access to the
learning content of the module. The comprehensibility with a mean value of 1.63 on
a scale from 1 to 5 makes it obvious that the explanations in the videos, the screen
capture format and the exercises are very useful for learning and attests the
described approach of viaMINT.

Fig. 6.11 Evaluation results winter semester 2015/2016—technical aspects

3EvaSys—webbased software for an automatic evaluation of questionnaires within the scope of
quality management www.evasys.de.
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The quality of learning and the time spent for learning using one specific
learning module are addressed in Fig. 6.13. The quality of learning is rated
homogenously with a mean value of 1.69 on a scale from 1 to 5. On the contrary the
time spent for learning is rated very inhomogeneously and differs from 0 to more

Fig. 6.12 Evaluation results winter semester 2015/2016—didactical aspects

Fig. 6.13 Evaluation results winter semester 2015/2016—learning aspects
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than 5 hours distributed nearly uniformly. This demonstrates the very heteroge-
neous prior knowledge and individual learning behavior.

The impact on the students’ performance after learning with viaMINT can be
demonstrated in several ways. First, if the learner has passed all final module tests
of the recommended modules and received the module badges, he or she has very
good knowledge of the module content. Second, the self-rating of the learner after
working through the module is shown in Fig. 6.14. It displays, that the learner is
confident that he or she has more knowledge and understanding of the content of
the module. Since the evaluations were conducted anonymously, it is very difficult
to measure student performance within the mathematics lecture in the first semester
in relation to the results of the online learning environment. This should be part of a
scientific work in future.

6.6 Summary and Outlook

Within this paper the need for individualization in mathematical preparation courses
was identified and viaMINT was suggested as a potential customized learning
environment with different specific features. Two main elements of individualiza-
tion are the online placement test with recommendations, which are displayed on
the Personal Online Desk, and the short learning track, which allows individual
learning in a clear way. Three different ways of assessment using different question
types have been pointed out: brief activating tasks, summary exercises and diag-
nostic and summative assessment. Various types of questions give the learner
individual feedback and help to consolidate the acquired knowledge. The blended
learning approach of the preparation courses combines the advantages of online
learning and in class lectures and deepens the mathematical comprehension.

Fig. 6.14 Evaluation results winter semester 2013/2014—self rating of knowledge improvement
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We are in the process of extending the learning environment with further
modules in mathematics and physics, new courses in chemistry and programming
will also be developed. The comprehensive evaluation will be continued.
Furthermore, the blended learning concepts will be expanded in the next semesters,
adapting even further to the individual needs of students and evaluated in detail.
The implementation of individualization of the Personal Online Desk concerning
the field of study will be realized. Further investigations will also be carried out to
find the right balance between validity and recommendations of the online place-
ment test on the one hand and test length and number of test question on the other.

Acknowledgements This work is part of the research developed under the Project “Lehre lotsen”
funded by the BMBF (Bundesministerium für Bildung und Forschung), project number
01PL11046. Responsibility for the contents of this publication is assumed by the authors.

References

Biehler, R., Bruder, R., Hochmuth, R., Koepf, W., Bausch, I., Fischer, P. R., et al. (2014).
VEMINT – Interaktives Lernmaterial für mathematische Vor- und Brückenkurse. In I. Bausch,
R. Biehler, R. Bruder, R. Hochmuth, W. Koepf, S. Schreiber, & T. Wassong (Eds.),
Mathematische Vor- und Brückenkurse – Konzepte, Probleme und Perspektiven (pp. 261–276).
Wiesbaden: Springer Spektrum.

Bray, B., & McClaskey, K. (2014). Personalization v differentiation v individualization
(PDI) Chart (Version 3). Online report. http://www.personalizelearning.com/2013/03/new-
personalization-vs-differentiation.html. Accessed July 15, 2017.

COSH. (2014). Cooperation Schule: Hochschule - Mindestanforderungskatalog Mathematik
(Version 2.0) der Hochschulen Baden-Württembergs für ein Studium von WiMINT-Fächern.
Ergebnis einer Tagung vom 05.07.2012 und einer Tagung vom 24.-26.02.2014; Stand 23. Juli
2014. Online: http://www.mathematik-schule-hochschule.de/images/Aktuelles/pdf/
MAKatalog_2_0.pdf. Accessed July 15, 2017.

Daberkow, M., & Klein, O. (2015). Geht doch – Mathematik online für Erstsemester.
In Tagungsband zum 2. HDMINT Symposium 2015, Nürnberg (p. 242).

Göbbels, M., Hintze, A., & Landenfeld, K. (2014). Verschiedene Formen intelligenten Übens in
mathematischen Online-Kursen. In Proceedings at: Hanse-Kolloquium zur Hochschuldidaktik
der Mathematik 2014, 7./8.11. 2014, Münster.

Göbbels, M., Hintze, A., Landenfeld, K., Priebe, J., Stuhlmann, A. S. (2016). Blended learning for
mathematical preparation courses—Video based learning and matching in-class lectures. In
European Society for Engineering Education, Proceedings of the 18th SEFI Mathematics
Working Group Seminar, Gothenburg, Sweden (pp. 93–98), June 27–29, 2016.

Göbbels, M., Hintze, A., Landenfeld, K., Priebe, J., & Vassilevskaya, L. (2012). Blended Learning
für Mathematik-Vorkurse - Eine Bestandsaufnahme der Vorkenntnisse. In J. Vorloeper (Ed.),
Proceedings of 10. Workshop Mathematik in ingenieurwissenschaftlichen Studiengängen
2012, Mülheim/Ruhr (pp. 25–34).

Handke, J., & Sperl, A. (Ed.). (2012). Das inverted classroom model. In Begleitband zur ersten
deutschen ICM Konferenz. Münster: Oldenbourg.

Knospe, H. (2012). Zehn Jahre Eingangstest Mathematik an Fachhochschulen in
Nordrhein-Westfalen. In J. Vorloeper (Ed.), Proceedings of 10. Workshop Mathematik in
ingenieurwissenschaftlichen Studiengängen 2012, Mülheim/Ruhr (pp. 19–24).

Landenfeld, K. (2016). viaMINT: Videobasierte interaktive Vorkurse – Eine
Online-Lernumgebung für den Studieneinstieg im Blended Learning-Format an der Fakultät

110 K. Landenfeld et al.

http://www.personalizelearning.com/2013/03/new-personalization-vs-differentiation.html
http://www.personalizelearning.com/2013/03/new-personalization-vs-differentiation.html
http://www.mathematik-schule-hochschule.de/images/Aktuelles/pdf/MAKatalog_2_0.pdf
http://www.mathematik-schule-hochschule.de/images/Aktuelles/pdf/MAKatalog_2_0.pdf


Technik und Informatik. Collective Report, In Lehre lotsen 2011–2016 – Erste Förderphase
Dialogorientierte Qualitätsentwicklung für Studium und Lehre an der Hochschule für
Angewandte Wissenschaften Hamburg (pp. 73–88). HAW Hamburg. ISBN
978-3-00-054734-8.

Landenfeld, K., Göbbels, M., Hintze, A., & Priebe, J. (2014). viaMINT – Aufbau einer
Online-Lernumgebung für videobasierte interaktive MINT-Vorkurse. Zeitschrift für
Hochschulentwicklung (ZFHE), 9(5). Online: www.zfhe.at/index.php/zfhe/article/view/783/642.

Landenfeld, K., Göbbels, M., & Janzen, S. (2015). Der Persönliche Online-Schreibtisch in der
Vorkurs-Lernumgebung viaMINT. In Poster publication and Proceedings at GMW & DeLFI
2015 „Digitale Medien und Interdisziplinarität: Herausforderungen, Erfahrungen und
Perspektiven”. Online: http://www.interdis2015.de/poster.html. Accessed July 15, 2017.

Loviscach, J. (2013). MOOCs und Blended Learning – Breiterer Zugang oder Industrialisierung
der Bildung? In R. Schulmeister (Ed.), MOOCs—Massive open online courses—Offene
Bildung oder Geschäftsmodell (pp. 239–255). Berlin: Waxmann.

Mulder, F., (2005). Mass-individualization of higher education facilitated by the use of ICT.
In J. M. Haake, U. Lucke, D. Tavangarian (eds.), DeLFI 2005: 3. Deutsche e-Learning
Fachtagung Informatik (p. 17). Bonn: Gesellschaft für Informatik. Online: http://dl.mensch-
und-computer.de/handle/123456789/1748. Accessed July 15, 2017.

Roegner, K. (2014). Exploratives Lernen an der Schnittstelle Schule/Hochschule. In I. Bausch, R.
Biehler, R. Bruder, R. Hochmuth, W. Koepf, S. Schreiber, & T. Wassong (Eds.),
Mathematische Vor- und Brückenkurse – Konzepte, Probleme und Perspektiven
(pp. 181–196). Wiesbaden: Springer Spektrum.

Sangwin, C. (2013). Computer aided assessment of mathematics. Oxford: Oxford University
Press. ISBN: 9780199660353.

Shute, V. J. (2007). Focus on Formative Feedback. ETS Research Reports Series, 2007(1), i-47.
https://doi.org/10.1002/j.2333-8504.2007.tb02053.x.

Wallach, S. (2014). Personalized learning vs. individualized learning. Internet report on
Edmentum Online. Online: http://blog.edmentum.com/personalized-learning-vs-individualized-
learning. Accessed July 15, 2017.

Zeitler, W. (2016). Humboldt digital: E-learning oder I-learning? In DNH – Die Neue Hochschule,
Heft 2/2016 (pp. 46–47). Online: http://hlb.de/fileadmin/hlb-global/downloads/dnh/full/2016/
DNH_2016-2.pdf. Accessed July 15, 2017.

6 A Customized Learning Environment and Individual Learning … 111

http://www.zfhe.at/index.php/zfhe/article/view/783/642
http://www.interdis2015.de/poster.html
http://dl.mensch-und-computer.de/handle/123456789/1748
http://dl.mensch-und-computer.de/handle/123456789/1748
http://dx.doi.org/10.1002/j.2333-8504.2007.tb02053.x
http://blog.edmentum.com/personalized-learning-vs-individualized-learning
http://blog.edmentum.com/personalized-learning-vs-individualized-learning
http://hlb.de/fileadmin/hlb-global/downloads/dnh/full/2016/DNH_2016-2.pdf
http://hlb.de/fileadmin/hlb-global/downloads/dnh/full/2016/DNH_2016-2.pdf


Part III
Innovations on E-Math
Learning and Teaching



Chapter 7
Scripting Collaboration
for Competence-Based Mathematics
Learning: A Case Study
on Argumentation

Giovannina Albano and Umberto Dello Iacono

Abstract This work concerns the use of scripting collaboration in order to
implement an innovative approach to competence-based mathematics learning. In
this chapter, we show how Digital Interactive Storytelling in Mathematics
(DIST-M) can be used to engage students in shared argumentative experiences and
how the technology supports the students’ reprocessing and appropriation within
their knowing. The design is based on a network of theories and students are
engaged in activities within a storytelling experience. The activities use both
experiential and discursive approaches to mathematics learning, integrating indi-
vidual and social tasks, defined by external scripts. We merge free tools and define
new applications, which allow to integrate and manipulate dynamic graphs as well
as to construct open sentences starting from available blocks of words. We also
discuss the outcomes of a case study.

Keywords Mathematics education � Collaboration script � Digital storytelling
Argumentation � Linguistic cohesion

7.1 Introduction

This paper concerns the definition of a design methodology, Digital Interactive
Storytelling in Mathematics (DIST-M), for competence-based mathematics learning
in e-learning environment. It is based on the assumption that such an environment
can be arranged in a way that a good exploitation of platform tools and a
well-structured collaboration among peers can act as an “expert” and scaffold
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students in achieving their learning goal (Albano, Dello Iacono, & Fiorentino,
2016; Albano, Dello Iacono, & Mariotti, 2017). The underpinning theoretical
approach is framed in the socio-constructivist view of learning, where students
construct their own knowledge and are actively engaged in social interactions
(Vygotsky, 1978). The DIST-M consists of collaboration scripts, aimed at regu-
lating and structuring roles and interaction in a collaborative setting (King, 2007).
As suggested by the name, the described methodology is implemented in a story-
telling framework, where the students are characters in a story and they interact
facing problems, whose solution is needed to advance. The design on one hand can
motivate learners and, on another hand, can have benefits of the integration between
narrative and logical-scientific thought (Zan, 2011).

In this chapter, we apply the DIST-M in a case study concerning the argu-
mentative competence in mathematics and analyze whether it can promote the
production of written arguments according to a register shared in the mathematical
scientific community. In fact, as shown by PISA results, a critical challenge for
15 years old students is expressing arguments and conclusions in written form
(Turner & Adams, 2012). In the frame of discursive approach to mathematics
learning, seen as initiation to a particular mathematical discourse (Sfard, 2001),
Ferrari (2004) shows that mathematical language and written literate registers of
ordinary language share many features. Thus, he concludes that being familiar with
written communications is a prerequisite to promote advanced mathematical
thinking. To this aim, there is a need of a shift from the request of just solving a
problem to the request of verbal and or written explanations.

In the following, first, we share the theoretical framework, then we describe the
design of DIST-M. Finally, in the case study we discuss its outcomes from a
qualitative point of view, taking into account the collaborative and argumentative
features of the design. The analysis will highlight the arguments produced by the
students and assumes a linguistic perspective, focusing on the organization of the
verbal texts, as cohesive texts, which means words and sentences perceived as a
whole entity.

7.2 Theoretical Framework

This work approaches mathematics learning, taking into account a network of
theories: discursive approach (Sfard, 2001), computer supported collaboration
script (King, 2007), especially with respect to argumentative competence
(Weinberger, Stegmann, Fischer, & Mandl, 2007).

Sfard’s (2001) notes that, communication in mathematics cannot be considered
simply an aid to thinking, but, primarly because mathematics learning can be
defined as initiation to a particular (mathematical) discourse, it should be thought of
as thinking. When students construct arguments, they elaborate and explain to
themselves the concepts that they are justifying (Baker, 2003). Such explanations to
themselves help the students to integrate new information within cognitive
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structures previously existing (Chi, Bassok, Lewis, Reimann, & Glaser, 1989).
When students share their explanations in a work group, they are expected to
produce arguments, in form of communicable texts (Boero, 1999), that are socially
acceptable, and, in particular, “mathematically acceptable” (Mariotti, 2006). In the
frame of the discursive approach to mathematics learning (Sfard, 2001), the quality
of such texts is strictly linked to the quality of thinking, and thus of argumentation,
so that the use of literate registers should be considered an indicator of quality, and
at the same time an educational objective (Ferrari, 2004).

In spite of the benefits of collaborative work, it is well known that collaboration
is not spontaneous and successful without being well structured (Laurillard, 2013).
To this aim, educational scripts can be externally imposed, regulating roles and
actions that the students are expected to assume and to carry out in order learning
occurs successfully in collaborative learning (King, 2007). Their use has been
implemented in computer-based environments (Weinberger, Kollar, Dimitriadis,
Mäkitalo-Siegl, & Fischer, 2009), where external scripts can establish the roles of
the participants and the sequence of the tasks to be performed (King, 2007), reg-
ulating the interaction and collaboration in order to foster suitable cognitive pro-
cesses. Two levels can be distinguished in a script: one macro and one other micro.
The former concerns how to group and to assign the roles, whilst the latter defines a
suitable sequence of events and of specific tasks to be carried out for the effec-
tiveness of the cooperation. The aim of the educational scripts is that they will be
interiorized along the time through the social practice (Vygotsky, 1978), in order to
bring the students to be more autonomous learners.

Literature also shows the failure of spontaneous collaboration in order to pro-
duce arguments (Kuhn, Shaw, & Felton, 1997). Andriessen, Baker, and Suthers
(2003) notes that computer based collaboration scripts can help, since they allow
the students to communicate among them by means of text-based interfaces and to
write and read texts and messages. This modality let them to be faster than in
face-to-face setting in order to read and revise their own speech and the peers’ ones
(Pea, 1994). Moreover, it also encourages weak students to participate in debates,
supporting the recovery of previous gaps.

Weinberger et al. (2007) distinguishes three types of components into a com-
puter based collaboration script on argumentation: epistemic, argumentative, social.
The epistemic components aim to structure the collaborative activities, focusing on
the discussion’s content and on the steps needed to carry out the task. They can
support students in finding suitable solving strategies. The argumentative compo-
nents aim to support the construction of arguments admissible with respect to a
fixed formal system. The social components define the interactions among the
students in order to promote the construction of knowledge. They take care of the
engagement of the students in collaborative activities that cannot occur sponta-
neously, as for instance encouraging students to reply critically to their peers’
contributions.
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7.3 The DIST-M Methodology

The methodology defined in Distance Interactive Storytelling (DIST) is competence
oriented, framed in an e-learning environment. DIST makes use of digital story-
telling, which becomes interactive due to the use of applications allowing the
student to manipulate objects (graphics, multimedia, etc.) and due to feedbacks
given by the e-learning platform. When a DIST concerns a mathematical compe-
tence, it will be called DIST-M, short for Digital Interactive Storytelling in
Mathematics.

The DIST is organized as collection of Frames. Each Frame is sequence of
scripts and each script consists in one or more tasks, where a task is a learning
activity. The first Frame, called Introduction, aims to let the student become familiar
with the digital environment, the storytelling and the content pre-requisites. All the
other Frames, labelled as “Frame of Level,” aim to mediate various levels of the
specific competence at stake. Thus, starting from a Frame of Level 1, focused on a
basic level of competency, Frames of greater level mediate the same competence at
higher levels.

The tasks can be individual, collaborative or mixed. In the individual tasks, the
student is expected to work and to delivery her products individually, not com-
municating with peers. In the second, collaboration among peers is guided by the
task design and it is realized by means of constraints in the use of tools such as chat,
forum, wiki, etc. In the mixed tasks, the student can take advantage of communi-
cation with peers (usually by chat) but she is required to delivery her work indi-
vidually. The underpinning idea is that scripts should be designed as sequence of
collaborative and individual tasks so that learning is first socialized and then
interiorized, consistent with a Vygotskian view (Vygotsky, 1978).

7.4 The Design of a DIST-M Concerning Argumentation

In the following, we describe a DIST-M on argumentative competency. The
DIST-M aims at providing the students with a methodology of construction and
communication of arguments in mathematics. In the literature, some authors studied
the effectiveness of collaborative scripts in fostering mathematical argumentation
skills (Kollar, Ufer, Reichersdorfer, Vogel, Fischer, & Reiss, 2014; Vogel, Kollar,
Ufer, Reichersdorfer, Reiss, & Fischer, 2015) focusing on the construction of a
conjecture and on its proving process by means of explanation, arguments, coun-
terarguments and synthesis. In our case, we focus on the elaboration of a com-
municable text (Boero, 1999) as an answer to a question, explaining the correctness
of the answer based on mathematical arguments and expressed in a literate register
(Ferrari, 2004) and according to shared socio-mathematical norms which makes the
statement acceptable in the reference scientific community (Mariotti, 2006).
The design of the scripts within the DIST-M is based on the idea of transferring the
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mediation role of the teacher to the peers and to the device. Thus, it foresees various
types of interactions, both with the device and the peers, and it enables students to
produce personal arguments, to compare with the peers’ ones and to elaborate their
own final argumentative text in a literate register. In this view, the epistemic
components of the script do not explicitly give solving strategies, but they aim to
recover previous knowledge and skills gaps (see Sect. 7.4.2) and to activate pro-
cesses of individual and collaborative reflection, whose side-effects should be
self-regulation and self-correction. The argumentative components of the DIST-M
aim to let the student explain her reasoning to her peers and then to convert it in a
literate register. The social components of the DIST-M have been designed in order
to promote the interaction among peers, for instance in order to agree upon a
common answer and statement, to ask and give help to peers in troubles, and so on.

The actual implementation of the DIST-M includes the Frame Introduction,
consisting of one script, and the Frame of Level 1, consisting of three scripts,
named Chapter 1, Chapter 2 and Chapter 3. It has been implemented in Moodle, a
common e-learning platform (https://moodle.org). Among its tools, we have used:
Chat (for informal and speed communication); Answer and Question Forum (as
students cannot view other students’ posts before posting their own comment);
Wiki (as a LogBook, where to write information or add images useful for the
continuation of the activities); Lesson Module (to allow personalized learning path
according to the student’s needs along the DIST-M); Task Module (to share the
students’ products within a group). Further, we have integrated Moodle pages with
comic strips, realized by Tondoo (www.toondoo.com), to implement the story-
telling, and with new interactive manipulative objects, realized by GeoGebra
(www.geogebra.org) as shown in the next section.

7.4.1 The Technological Innovations

Three new resources, consisting of interactive applications created by GeoGebra,
have been defined: Tutorial, Interactive Graphical Question and Interactive
Semi-Open Question. Once created, they have been loaded to the Community for
the users of GeoGebra (https://www.geogebra.org/materials) and they have been
made visible by the URL address and the HTML code has been incorporated in the
short answer question page (a single word or short phrase answer should be pro-
vided) of the Moodle Lesson. In the following chapters, we will detail each
resource.

The Tutorial enables the student to inteact with a designed object (graphs, text
boxes, tables, etc.) in order to find a configuration of the object as answer to a given
question. The application, at the end of the student’s manipulation, gives back a
code, according to the correctness or not of the given answer. The student is
expected to insert, in a suitable text box of the short answer of the Lesson page,
such code, which steers the student to a subsequent personalized path.
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The Interactive Graphical Question (IGQ) differs from Tutorial, since the code
given back does not correspond only to the two options (correct or incorrect
answer). Given that in many cases, various decisions and configurations of the
graphical objects can be correct, the IGQ allows for a variety of parameters, so each
configuration can be correct (all parameters are admissible), semi-correct (some
parameters are admissible), wrong (no parameter is admissible). Thus, the appli-
cation has been designed in order to be able to generate dynamically a code that
reveals the manipulation of the student with respect the two previous features. Then
the code allows a very fine subsequent personalization.

The Interactive Semi-Open Question (ISQ) allows to construct the answer to a
given question by assembling some available words-blocks by means of dragging.
The expected answer should be constituted as a main sentence linked to a secondary
one, which concerns the arguments to support what stated in the main sentence. The
correctness of the answer depends on the two sentences, thus we can have correct,
semi-correct and wrong answers. The code given back is generated dynamically
taking into account which words-blocks have been used and how they have been
assembled, allowing to know exactly which sentence the student created and thus to
foresee fine personalized paths. From the technological point of view, the ISQ
allows the enviroronment to overcome, at least partially, the problem of automatic
assessment of open-ended questions. Actually, it can be very near to a real
open-ended question if the words-blocks are suitably chosen to allow the student to
construct sentences alike in language and thought to the ones she actually uses in a
similar situation. From the educational point of view, the careful selection of the
words-blocks to be made available can foster the argumentative competence. In
fact, in our case, they can make evident the general structure of an argumentation in
a literate register, highlighting the causal conjunction between the main sentence
and the subordinate one, independently on the order of the two sentences (Albano,
Dello Iacono, & Mariotti, 2017).

7.4.2 The Frame Introduction

The Frame Introduction aims to steer the student within the storytelling and the
digital environment. It consists of a single script that introduces the student in the
story “Discovery Programme”. As an example, on Discovery Programme noted
“Life on the planet Terra is at risk: a huge impact with a meteorite is foreseen in
2150, which can cause the extinction of life on the planet. All the scientists in the
world are working hard in order to find a solution as soon as possible. A new planet
in the solar system has been discovered and the NASA has launched the space
probe COLOMBO to collect data from the new planet, which need to be analyzed
in order to test if life is possible on it.” In this case, the student plays the role of a
scientist of the NASA, as member of an équipe (team) supervised by Professor
Garcia (guide and voice of the storytelling) (Fig. 7.1).
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Along the storytelling, the student is going to face questions concerning statistics
and statistical graphics, needed for the équipe work. Thus, the mathematical content
at stake concerns representation and management of graphics of descriptive
statistics, which constituted the contents of the Tutorials (which are not the focus in
this paper).

7.4.3 The Frame of Level 1

In the following, we go into details of the script Chapter 1 within the Frame of
Level 1. The design, shown in Fig. 7.2 is based on both experiential and discursive
approach. So, on one hand, the student can manipulate interactive objects in order
to formulate and test hypotheses and, on the other hand, she is expected to debate
with herself and with the peers.

At beginning (task 1) each student is expected to choose a role to play in her
group, by negotiating it with the colleagues. The roles foreseen are the following:

• the Captain, the leader of the group who takes care of engaging all the mates in
the discussions and in the decision processes (social literacy);

• the Scientific Official, who is in charge of collecting and summarizing all the
mates’ answers concerning mathematical questions to be solved during the
mission (mathematical literacy);

Fig. 7.1 The équipe in discovery programme

Fig. 7.2 Design of script Chapter 1
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• the Technological Official, who supports the mates who are in troubles in using
the platform (digital literacy);

• the Communication Official, who reports and summarize the conversations of
the mates when a shared communication/answer is required (communicational
literacy).

Then, the group is required to work with an ISQ, where suitable manipulation of
a graphical object gives the answer to a posed question (task 2 part 1). According to
the code, corresponding to the final object’s configuration chosen by the student
(see Sect. 7.5.2), a personalized reflective question is delivered (task 2 part 2). It
aims to steer the student towards self-regulation processes by means of being aware
of what done and why: further possible correct configurations of the object, if she
was successful; reasons of her choice, in case of semi-correct configuration; and on
what has brought her to generate a wrong configuration, in case of failure.

Task 3 requires the student to answer to an individual open-ended question,
aimed to shift from the previous experience to a general case. It should bring out the
elaboration of arguments to justify the given answer. Each student has to post her
answer in a Question and Answer Forum, in order to avoid the influence of peers’
arguments and to force the participation.

When all the students posted their answers, in order to elaborate a shared answer
(task 4), a discussion is started in the same Forum. The use of the forum guarantees
that everyone completes the previous task, otherwise they cannot access to the
peers’ answers, and differing from the chat where communication is immediate and
not so formal, in the forum there is an implicit request of a shift towards a more
literate register. Once agreed upon the answer, the students deliver it by the Moodle
Task module, in collaborative setting so that each member takes her responsibility
to deliver the shared answer (task 5).

Later (task 6), the student individually converts it into a more literate text,
assembling suitable words-blocks (see ISQ, Sect. 7.4.1). The words-blocks have
been constructed in order to highlight the causal structure of the sentences, that is
the causal conjunctions (i.e. since, because, etc.) constitute single blocks, allowing
to link two sentences (main and conditional ones) constructed by more other blocks.
The ISQ recognizes the correctness of the construction independently on the order
of the sentences.

The task 7 requires the student to post the answer constructed in the Question
and Answer Forum together with explanation of her reasoning and to discuss all the
answers in the thread. If she was successful in the previous task, then she is
acknowledged of this (she has the title of Champion) and she is asked to help her
classmates. A further general Forum is activated where all the Champions (even-
tually, also a teacher who can be essential when there is no champion) are available
for anybody at risk (task 8).

At the end of the activity, the students are required to edit a Social LogBook
(task 9) and an Individual LogBook (task 10). The first one is composed using a
Moodle collaborative wiki, aiming to collect and store all the cognitive information
useful for the mission. The second one is referred to a metacognitive reflection of
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the student on the activity, on the difficulties encountered and how she overcome
them.

The various tasks of the script refer to components that can be social, epistemic
and argumentative. All the tasks that envisage debate, discussion, comparison
among the students can be ascribed to social components (tasks 1, 4, 5, 7, 8, 9). As
the aim of the script is to foster argumentation, most of the tasks encourage the
students to reflect in order to explain, to clarify, to produce arguments, so they can
be considered argumentative components. Finally, as the arguments the students
should produce concern problem solving activities, solving strategies, recovery of
errors, many tasks can be seen as epistemic components (tasks 2, 3).

7.5 The Case Study

7.5.1 The Mathematical Problem

The mathematical problem of the case study concerns the invariance of the angle of
a circular sector with respect to the length of the radius of the circle. The tasks of the
script aim to put the student’s attention on the relationship between the size of the
angle and the radius of the circle. In task 2, a circle with unit radius is presented,
where a circular sector corresponding to a 72° angle represents the percentage of
red stone on the new planet (20%) and the student must enlarge the chart manip-
ulating the radius and/or the size of the angle (by means of an IGQ), unchanging the
percentage.

After manipulating the circle graph, a scientist of another group appears asking
the student a question: “Can you explain how you chose the angle?”, in case of
semi-incorrect or incorrect configuration, or “I would like to take as radius X and to
leave the angle at 72°. Does anything change?”, in the case of a correct configu-
ration with a radius different than X. The student faces the same question several
times in order to generalize the experience and the results achieved: “How does the
size of the angle of colored sector changing the radius? Explain your answer”, first
individually (task 3), then collaboratively (task 5) and finally by means the ISQ
(task 6).

7.5.2 Methodology

The Frame Introduction and Chapter 1 of the DIST-M have been tested in a pilot
involving eleven 10th Grade students from Grammar High School “Virgilio” in
Southern Italy. The students were randomly split into 4 groups, 3 of which con-
sisting in 3 members and 1 consisting in 2 ones. In groups of 3 members, one of the
students played 2 roles (task 1), whilst in the group of 2 members, each student
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played 2 roles. Each student worked on her PC, for twenty hours, logged into the
platform by username (such as S1, S2 etc.) and password, and communicated
within a group only by means of the tools of the platform.

7.5.3 Analysis Tools

Our DIST-M aims to support the production of written verbal arguments by the
students. Some theoretical models of analysis of the arguments do not refer to
language, but we assume that a written argument is, firstly, a written text and the
production of a correct text is closely intertwined with an acceptable explanation.
This is why we chose to use a linguistic approach to analyze the data, using tools
such as textual cohesion that consider the text a single entity rather than a collection
of words and disorganized sentences (Halliday & Hasan, 1976). Cohesion is dif-
ferent from coherence, although they are very interrelated. The coherence identifies
the connection among the various sentences and, thus, allows to give them conti-
nuity of sense, that depends on who writes and who interprets the text, starting from
her encyclopedic knowledge. Therefore, coherence is closely linked to the inter-
locutors rather than to the language itself. Instead, the cohesion concerns the
grammatical way in which the sentences are related to each other. Then it refers to
the linguistic tools needed to achieve coherence and helps to highlight it, although a
text can be perceived as coherent without cohesion markers (Thompson, 1996).
Lexical or grammatical repetitions and conjunctions are markers that can be used to
realize the cohesion. A lexical repetition consists in repetition of words. It is a very
powerful form of cohesion and it is often used to emphasize or strengthen a con-
cept. As grammatical repetition we consider only the reference, which is. used to
indicate whether a term is repeated somewhere earlier in the text (it has already
been said) or if it has not yet appeared in the text (it is new). The conjunction is a
cohesion marker which connects any two parts of speech. It can be external, when it
reflects a state of fact, internal, when it refers exclusively to the organization of the
text.

7.6 Analysis and Discussion of the Outcomes

In this section, we analyze the work of one group of students in the study and share
the results and outcomes as case studies. In particular, we analyze the students’
transcripts with respect to the impact of the social components, (collaboration in
task 4 and task 5), and the argumentative component (the ISQ in task 6) on the
production of argumentative texts. For this reason, we look at the transcripts related
first to the task 2–part 2 and task 3 (individual phase before collaboration and ISQ)
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and then to task 7 (individual phase after collaboration and ISQ). Moreover, we
examine transcripts related to Social Open Question (task 5), Social Logbook (task
9) and Individual Logbook (task 10) to go more in depth.

As was mentioned, a qualitative approach was used to to deepen our under-
standing of the quality of argumentation. More specifically, for each transcript, we
looked at the existence of arguments and the quality (cohesion) of the text. We
define the following qualitative model (Table 7.1) which allows us to classify the
argumentative texts with respect to the links among various pieces realized by
means of cohesion markers (Thompson, 1996).

We assume level 2 as sufficient level of argumentation in the sense that it is
perceived that the student has in mind the argument but she is able to communicate
only partially. Table 7.2 summarizes the outcomes according to the defined model
and level for each student, labelled S#.

As shown in the above data, we can observe a slight change from the task 2 to
the task 3. Recall that task 2 part 2 requires the student to reflect on what happens in
different cases of her manipulation and task 3 asks for a generalization of what
found previously. Only few students, at task 3, are able to do that with partially
explicit arguments (mark 2), some others are not able to give any argument (level 0)
and nobody is able to write an argumentative text (level 3).

Table 7.1 Qualitative model

Level 0 Text with no argument.
An example is S9’s answer to task 3: “the angle always remains the same by
changing the radius”.

Level 1 Text without markers or with generic markers (such as ‘and’) or with even less
generic markers but that do not expose the links.
For instance, S8’s answer in task 2: “It does not change anything because the angle
always remains the same, along with the percentage” (there is a non-generic marker,
“because”, but the links are not explicit).

Level 2 Some links are also appropriately explained but there are some pieces that are not
related: typically, one of the relationships is well highlighted, while the others are in
the shadows (that is, it significantly requires the collaboration of the reader). See
S8’s answer in task 3: “The colored part increases as the circumference and radius
increase, but the angle is always the same, i.e. 72° and the percentage is 20%” (there
is the explanation of 72° as percentage of 20%, but the speech is not clear and a
significant collaboration from the reader is required).

Level 3 All the relevant links are explained through markers. See S8’s answer in task 7:
“The angle does not vary because it is directly proportional to the circumference. If
the radius increases, with it also the circumference, but this does not affect the angle
amplitude because grades remain unchanged and also the percentage. The increase
of the radius makes the graph clearer when added more data, but the colored part,
that is, the red rocks, will always remain 20% and 72°” (non-generic markers,
explicit links).
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In the following, we provide detailed analysis of the work of one group; similar
results were observed in the other three groups.

We now share some excerpts from the group 1 (Table 7.3). All the students in
this group succeeded in IGQ (task 2 part 1), and were then asked if something
changes in the circle graph choosing a radius different from the one taken into
account by the student during the manipulation (task 2 part 1).

Table 7.2 also shows a meaningful improvement from task 3 to task 7. Let us see
some excerpts from the group 1 (Table 7.4). Every student constructs arguments at
a sufficient level (level 2), in particular the student S2 improved beyond (from level
2, already reached at task 3, at level 3).

Table 7.2 Levels of argument for each student in task 2, 3 and 7

Task\group 1 2 3 4

2 S1: 1
S2: 2
S3: 0

S4: 0
S5: 0
S6: 1

S7: 0
S8: 1
S9: 0

S10: 1
S11: 1

3 S1: 0
S2: 2
S3: 1

S4: 0
S5: 1
S6: 2

S7: 0
S8: 2
S9: 0

S10: 2
S11: 2

7 S1: 2
S2: 3
S3: 2

S4: 1
S5: 2
S6: 2

S7: 2
S8: 3
S9: 2

S10: 3
S11: 3

Table 7.3 Excerpts from the group 1 in task 2 and task 3

Task S# Excerpt Analysis

2 S1 Nothing changes because the
percentages and the degrees are
always the same.

Only one external conjunction
(“because”) not exposing the links.

S2 Nothing changes because,
incrementing the radius, only the
circumference grows and thus the
degrees are always the same.

Two external conjunctions
(“because”, “thus”), some pieces are
not related.

S3 The radius increases but the size does
not vary.

No argument.

3 S1 The angle does not change varying
the radius.

No argument.

S2 The colored part increases according
the increment of the circumference
but the angle is constant (72°) as well
as the percentage (20%).

Two external conjunctions (“but”,
“as well as”), more explicit
arguments with respect to the one
given previously, but some pieces are
not related.

S3 Nothing changes, since the degrees,
increasing or decreasing, the
circumference remains constant.

Only one external conjunction
(“since”) not exposing the links.
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The tasks 3 and 7 require the student to answer the same question, before and
after social tasks (tasks 4 and 5) and ISQ (task 6).

During the discussion before task 5, the students chose to deliver the answer
given by S2 (table 2 task 3). They said: “Anyway all the answers are equal”.
Actually, this is not true (Table 7.2), but they probably refer to the shared belief that
the angle does not change. At the same time, the choice of S2’s sentence seems to
make evident that all the members are somehow implicitly aware that the S2
sentence is the more complete, because it gives an argument too, even if not an
explicit argument. We also note that S2 is not the communication official, thus she
is not in charge of reporting the shared answer, so this means that the group really
choices her sentence.

Next, we examine a chat in task 6:

S3: the explanation?

S1: the reasoning

Table 7.4 Excerpts from the group 1 in task 7

Task S# Excerpt Analysis

7 S1 The angle does not vary because it is
directly proportional to the
circumference, since increasing the
circumference the percentage of the
angle does not vary, because the
degrees are always 360°.

The student goes beyond the sentence
constructed by the words-blocks (first
part), adding explanations that refer
to somehow implicit arguments. Two
external conjunctions in the second
part (“since”, “because”) and two
lexical repetitions (“angle”,
“circumference”). Some links are
also appropriately explained but there
are some pieces not related.

S2 The angle is directly proportional to
the circumference thus it does not
vary. Increasing the radius, there is an
increase of the size of the
circumference but not of the size of
the angle within. The degrees of the
circumference are always 360° and
the percentage is always 100. Then
any change we make to the size of the
circumference, the angle will remain
always constant and fixed.

The student goes beyond the sentence
constructed by the words-blocks (first
part), adding many explanations that
refers to explicit arguments. Two
external conjunctions (“but”, “then”),
some lexical repetitions (“angle”,
“circumference”) and a substitution
(“but not of” instead of “but there is
not an increase of”). All the relevant
links are explained.

S3 The angle does not vary because it is
directly proportional to the area of the
circle, because increasing the
circumference the angle remains
constant. The size of the angle does
not change since the radius does not
move but it only increases.

The student goes beyond the sentence
constructed by the words-blocks (first
part), adding explanations that refer
to somehow implicit arguments. Two
external conjunctions (“since”,
“because”) and a lexical repetition
(“angle”). Some links are also
appropriately explained but there are
some pieces not related.
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S3: what do we write?

S2: let me think about

I guess that the radius is directly proportional to

I DON’T KNOW:’(((((((((

It is worthwhile to note that this (argumentative component) reveals the fact that
an argument is expected and brought the students to think about. It seems not casual
that S2 is the one more engaged in the reasoning, as she was the one who already
reasoned (implicitly). We note that she seems to be in crisis because she is not able
to say in words her thinking but this conflict highlights that something is wrong
from the mathematical point of view and she becomes aware of this. In fact, S2
wrote in her logbook:

I had some difficulties because the size of the circumference could be whatever. And I knew
that the answer I constructed with the words-blocks was wrong, but anyway I justified the
reasoning after (see Table 7.4).

As conclusion, we share an excerpt from the logbook of the group 1:

We started the chapter 1 analyzing the give aerogram. After a sequence of procedures
justified by an argument, we achieved a common theory, that is: the angle does not vary
because it is directly proportional to the area of the circle. The angle is directly proportional
to the circumference and thus it does not change. Increasing the radius, there is a growth of
the circumference, but not of the size of the angle within. The degrees of the circumference
are always 360 and the total percentage is always 100. Thus, any change we make to the
size of the circumference, the angle will be always constant and fixed.

The above excerpt highlights a metacognitive process realized by the group
working together. As evidenced by the above excerpt from the group’s logbook
(second line through the end of the excerpt), the group members become aware of a
shift from procedures to the need of a justification by arguments and finally to the
achievement of a common theory.

Finally, comparing S2’s excerpt (Table 7.4) and the above logbook excerpt, we
note that S2 acts as an expert in the group and her interactions with the group’s
mates allow an improvement of each member with respect to the argumentative
competence. So, she mediates the underpinning educational objective, as desired,
fostered by the script’s design, requesting comparisons within the group, shared
answer, conversion by words-blocks.

As the script is designed to scaffold argumentation, it was successful, even if the
group was not able to give the correct answer from the mathematical point of view.
Looking at the transcripts, students achieved an intuitive understanding of the
mathematics but they lack some contents (i.e. direct proportionality) needed to
convert their understanding in texts.
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7.7 Conclusions

In this paper, we have introduced a general methodology to support
competence-based learning. This method, DIST-M, represents an adaptation of the
DIST methods, specifically created to support mathematics learning in an e-learning
environment. The specific activity discussed focused on developing argumentative
competence, using DIST-M methodology within a Moodle platform. The imple-
mentation involved using computer-supported collaboration scripts aimed to foster
the students’ shift from investigating and reasoning to communicate verbally what
found, by constructing sentences with evidence of arguments in a style typical of
scientific communication. The implementation utilized the Moodle features and
supported collaboration among peers as well as individual work. Collaborative
tasks utilize the chat or forum features, depending on what linguistic register is to be
supported, and the particular setting of the forum to be used (Questions and
Answer) avoid the students undue influence on each other. Analogously, the group
features in Moodle-hosted tasks compels the students to take part in the activity.
Individual tasks also benefit from the technology: the student can manipulate
dynamical objects, graphical or textual, with automatic tracking, thus personalized
recovery paths are delivered.

The analysis of the students’ transcripts in chat and forum, in a linguistic per-
spective, have shown an improvement on the level of arguments given by each
student. Moreover, they show how the script supports reasoning on mathematical
concepts.

Looking at the tasks’ flow, we conjecture that the improvement has been mainly
fostered by two key points:

• the social tasks, that require to negotiate a delivery shared by all the members of
the group, seem to come to light the need of producing arguments to support the
answer; this request was present from the beginning, but many students did not
give arguments when delivered individually;

• the argumentative task, that supports the treatment from the sentence in a col-
loquial register chosen by the group to sentence in a literate register, foster not
only to refine the argument, but mainly to deepen the students’ mathematical
understanding as shown by their further cohesive sentences produced to explain
their reasoning.

The above outcomes encourage further investigation of the design and effec-
tiveness of DIST-M for promoting the ability of converting reasoning in con-
structing arguments expressed by cohesive texts.
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Chapter 8
Effective Use of Math E-Learning
with Questions Specification

Yasuyuki Nakamura, Kentaro Yoshitomi, Mitsuru Kawazoe,
Tetsuo Fukui, Shizuka Shirai, Takahiro Nakahara, Katsuya Kato
and Tetsuya Taniguchi

Abstract MATH ON WEB, STACK, and Maple T.A. are the prominent mathe-
matics e-learning systems used in Japan. They can assess answers containing
mathematical content freely written by students as opposed to only answers to
multiple-choice questions. However, there are two major challenges while using
these systems: inconvenience in inputting answers and heavy content-development
workload. We have developed two math input interfaces, MathTOUCH and
FlickMath, using which students can easily input mathematical expressions. The
interfaces were developed as part of a project aimed at accelerating the spread of
math e-learning systems using a question-sharing environment among heteroge-
neous systems such as MATH ON WEB and Maple T.A. Further, they form a part
of mathematics e-learning question specification (‘MeLQS’) system, which is
currently being developed in our project to realise this objective. We would like to
emphasize the importance of building a common base, ‘MeLQS’, for creating
questions in math e-learning.
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8.1 Introduction

In recent years, information and communication technology infrastructure has
improved in schools and e-learning has become increasingly popular. One of the
most important functions of e-learning is automatic assessment to evaluate a stu-
dent’s understanding of course content. Computer-aided assessment (CAA) is an
old technique and was applied to many subjects, even before learning management
systems (LMS) became popular. One of the most common question types in CAA
systems is multiple-choice questions (MCQ), wherein the potential answers are
provided by a teacher and students select a single response as their answer.
A well-constructed MCQ provides a correct answer with plausible distracters,
which are usually decided by knowledge of common student errors.

CAA has been successfully used in language education. For example, CAA has
been applied to placement tests based on Item Response Theory and computer
adaptive testing has been compared with pencil and paper testing in terms of
validity and efficiency (Koyama & Akiyama, 2009).

CAA has also been carried out using MCQs in scientific subjects, but the MCQ
format is not sufficient to evaluate a student’s comprehension level. For example,
when students answer MCQ type questions, students can simply choose an answer
from a list even if they do not know the correct answer, and there is a possibility of
answering correctly by guessing. In order to avoid these problems with MCQs, it is
preferable to adopt a question format wherein students provide answers containing
mathematical expressions, which are subsequently evaluated. There are some sys-
tems that evaluate student-provided answers. In one of the major systems,
CIST-Solomon (CIST, 2016; Komatsugawa, 2004), which has more than 30,000
subject areas including mathematics, students construct mathematical expressions
using software such as Flash.

In this study, we focus on a CAA system where students provide mathematical
expressions through keyboard input and the answer is evaluated using a computer
algebra system (CAS). For example, for the differentiation question
d
dx

1
4 x

2 þ 1
2 xþ 1

� �
, the correct answer is 1

2 xþ 1ð Þ; but some students provide 1
2 xþ 1

2,
others provide xþ 1

2 , etc. These answers are all mathematically equivalent and cor-
rect, and the evaluation of equivalence is underpinned by CAS. Recently, this kind
of math e-learning system has become popular and, to the best of our knowledge,
there are three main systems being used in Japan: MATH ON WEB, STACK, and
Maple T.A. Although the importance of questions with student-provided answers is
understood in e-learning of mathematics, many teachers are now seeking effective
ways to carry out mathematics e-learning using CAA. In this paper, we summarize
the utilization of math e-learning systems in Japan, present some associated
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problems, and propose solutions to a variety of issues with implementing these
technologies.

8.2 Math E-Learning Systems in Japan

Hereafter, we focus on online assessment systems for mathematics using CAS as a
mathematics e-learning system. In contrast to multiple-choice or true-or-false
choice questions, which are referred to as teacher-provided-answer questions,
online assessment for mathematics provides student-provided-answer questions,
wherein students submit numerical values or mathematical expressions as answers
to the questions. In order to assess answers to student-provided-answer questions,
math e-learning systems evaluate these answers using CAS. In this section, three
math e-learning systems are briefly discussed: MATH ON WEB, STACK, and
Maple T.A. These math e-learning systems, which are representative of the systems
in use in Japan, use Mathematica, Maxima, and Maple, respectively, as their CAS
to evaluate student answers. The problems associated with the continued use of
these systems are outlined at the end of this section.

8.2.1 MATH ON WEB

E-learning/e-assessment systems based on webMathematica have been developed
and are currently being used in mathematics education for first-year students at
Osaka Prefecture University (2016; Kawazoe, Takahashi, & Yoshitomi, 2013;
Kawazoe & Yoshitomi, 2016a, b). The systems are available on the ‘MATH ON
WEB’ website. The website has two systems: web-based mathematics learning
system (WMLS) and web-based assessment system of mathematics (WASM).

WMLS is a self-learning system aimed at promoting students’ after-class
learning. It has two sections: drill section and simulation section. The drill section
offers an online mathematics exercise environment with more than 1000 mathe-
matics problems in calculus and linear algebra courses for first-year university
students. When a student submits his/her answer to a presented problem, the system
analyses the answer using Mathematica and provides a feedback message. When
the answer is incorrect, the system provides a different feedback message according
to the error type identified. The simulation section offers simulation type content
that assists students in learning mathematical concepts.

WASM is an online mathematics assessment system with two different modes:
assessment mode and exercise mode. The basic mechanism of WASM is the same
as the drill mode of WMLS, but in WASM, problems are presented in random order
or are randomly generated by Mathematica. In the assessment mode, online
assessment tests are classified with respect to learning units and achievement levels,
and students can assess their achievement in each learning unit using the online test
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associated with the learning unit. In the exercise mode, students can carry out
problem-solving exercises in each assessment test. WASM has various improve-
ments over WMLS. One such improvement is the implementation of popup key-
boards based on jQuery Keyboard (Wood, 2014), which enables students to input
their answers (Kawazoe & Yoshitomi, 2016b).

At Osaka Prefecture University, more than 600 students use the systems annu-
ally and both systems are used to promote students’ after-class learning and the
implementation of blended learning environments (Kawazoe & Yoshitomi, 2016a).
Quantitative analysis of the log data in WMLS (Kawazoe et al., 2013) showed that
students use the system mainly in the late afternoons and at nights. Hence, it can be
concluded that WMLS promotes students’ after-class engagement. Statistical
analysis of engineering students (ibid.) shows that there is a positive correlation
between the frequency of use of the system and achievement in mathematics.
Kawazoe and Yoshitomi (2016b) reported on a blended learning linear algebra class
with WMLS and WASM for first-year engineering students and noted that many
students stated that the blended learning approach is useful and preferable.

The next objective of the MATH ON WEB project is to develop a Moodle
plugin for WMLS and WASM. The development of the Moodle plugin is still
underway, but a prototype has already been developed (Nakahara, Yoshitomi, &
Kawazoe, 2016).

8.2.2 STACK

STACK, developed by Sangwin (2013), uses Maxima as its CAS to evaluate stu-
dents’ answers. STACK not only assesses the mathematical equivalence of stu-
dents’ answers but also generates outcomes, such as providing feedback according
to the mathematical properties of students’ answers. The feedback function is
implemented using the potential response tree (PRT) mechanism. PRT is an
algorithm that establishes the mathematical properties of students’ answers and
provides feedback specifically to each student.

STACK is being utilised for several subjects in many institutions in Japan.
Taniguchi, Udagawa, Nakamura, and Nakahara (2015), who used STACK in a
math class at Nihon University, used logistic regression analyses to document that
STACK is effective. STACK is also being used in physics classes at Toyama
University and Nagoya University. Basic support for scientific units has been added
to the latest version of STACK; this function is expected to enhance the use of
STACK in physics class.

STACK is an open source system and users can develop required functions. For
example, the plot function in STACK is poor. Specifically, only the drawing of
single variable functions is supported. The plot function has been enhanced using
Maple (Nakamura, Amano, & Nakahara, 2011) and gnuplot (Fukazawa &
Nakamura, 2016).
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8.2.3 Maple T.A.

Maple T.A. is a web-based online testing and assessment system developed by
Maplesoft, a Canadian software company. It was designed especially for science,
technology, engineering, and mathematics (STEM) courses. Further, it offers var-
ious question types, flexible assignment properties, full-featured gradebook with
reporting and analytical tools, seamless connectivity to any LMS, and support for
multiple languages. In recent years, Maple T.A. has been gradually and steadily
adopted for STEM education in academic institutions such as high schools, col-
leges, and universities in Canada, U.S.A., many European countries, China, and
Taiwan (Maplesoft, 2016). After adopting and utilizing Maple T.A., they not only
successfully reduced their grading burden but also improved the STEM education
learning environment, resulting in students being strongly engaged in the courses.
Consequently, they also view Maple T.A. as an important teaching tool.

By contrast, in Japan, Maple T.A. has been promoted by its distributor Cybernet
Systems, a Japanese software company, for several years and is gradually beginning
to be recognized as an online testing and assessment system for STEM education.
Cybernet Systems already has a user—the Faculty of Science and Technology at
Ryukoku University. The faculty utilizes Maple T.A. for fundamental mathematics
education such as pre-entrance education and remedial education, bridging the gap
between high schools and university. They state that Maple T.A. is capable of
improving and enhancing the basic math ability of students and thus, they have
plans to expand the use of Maple T.A. to a wide variety of STEM subjects in the
future (Higuchi, 2015).

Cybernet Systems experimentally introduced Maple T.A. in a STEM program-
ming course at Gakushuin University, and also assessed the functionality and
performance of Maple T.A. (Cybernet Systems, 2012). The course provided stu-
dents with a small test designed specifically to measure the programming skills of
Maple. Eventually, all the results associated with this course are managed within
Maple T.A. along with all the results of external items such as offline assignments
graded using a Maple T.A. rubric.

In 2016, Cybernet Systems launched and conducted a project aimed at evalu-
ating the capabilities and performance of Maple T.A. in seminars and classes with
students, and obtained the cooperation of math instructors at universities. Six math
instructors from different universities joined the project and evaluated Maple T.A.
in their own math seminars and classes, with capacity ranging from several students
to more than 200 students. Their main objective was to ascertain whether Maple T.
A. enabled them to efficiently streamline the existing grading workflow and reduce
the workload associated with creating questions, marking tests, and managing
gradebooks. The instructors were satisfied with Maple T.A to some extent.
Furthermore, Cybernet Systems obtained diverse feedback from the instructors and
students, which centered around two major issues. One was a need to expand the
math content from the viewpoint of the instructors; the other was a need to improve
the math input interface from the viewpoint of the students.
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8.2.4 Common Challenge

E-learning systems, especially CAS-based mathematics e-learning systems, are
undoubtedly powerful tools for developing effective mathematics learning envi-
ronments. However, CAS-based e-learning systems, including the aforementioned
three systems, have two issues in common: inconvenience in inputting answers and
heavy workload in developing content.

In CAS-based mathematics e-learning systems, students have to input their
answers using the input form provided by CAS, which students consider incon-
venient. Such inconvenience should be resolved; hence, developing effective math
input interfaces for these systems is important. We discuss this issue in detail in
Sect. 8.3.

The issue of heavy content-development workload originates from the fact that,
in many Japanese universities, e-learning content is usually developed by teachers
—specifically, a very limited number of teachers. If the teachers could share the
content or resources beyond system differences, their burdens would be reduced.
We investigate this problem in Sect. 8.4 and we will determine the importance of
building a common base for creating questions in Sect. 8.5.

If the aforementioned two issues can be overcome, the use of e-learning systems
in university mathematics education would become more pervasive.

8.3 Math Input Interfaces

As described at the end of the previous section, one of the problems associated with
math e-learning systems is the math input complexity for questions requiring the
input of mathematical expressions as answers rather than multiple-selection or
number input types of answers. For example, in order to input 3x2 � 2x

x2 þ 1ð Þ2, which

is an answer for the differentiation d
dx x3 þ 1

x2 þ 1

� �
, the answer should be

“3*x^2-2*x/(x^2+1)^2”, which easily causes typing errors. It has been
reported that many students experienced syntax issues in answering questions
(Thaule, 2016). Several interfaces aiming to minimize math input difficulties have
been proposed. The proposed interfaces include DragMath (Sangwin, 2012), a drag
and drop equation editor in the form of a Java applet, which is used as one of the
math input types for STACK. However, the interface requires Java and the input
environment is restricted.

Most math e-assessment systems use CAS (e.g. Mathematica, Maple, Maxima
etc.), which requests users to input mathematical expressions according to the rule
of CAS. In order to improve the convenience of math input, template-based
interfaces, such as DragMath mentioned above, are added to text-based interfaces.
However, it is difficult for novice learners to adapt to current standard interfaces.
For example, text-based interfaces accept input according to the CAS command
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syntax and it is difficult for the users to imagine the desired mathematical
expressions because the input is not in the WYSIWYG format. However,
structure-based interfaces have an advantage in that learners can operate in the
WYSIWYG format. Moreover, they can input using math template icons.
Therefore, they do not need to remember CAS command syntax in the case of the
text-based interface. However, learners should understand the structure of the
required mathematical expressions and should be able to select the math template
icons in the correct order (Pollanen, Wisniewski, & Yu, 2007). Furthermore, it is
cumbersome to make corrections later (Smithies, Novins, & Arvo, 2001).

In this section, we present two math input interfaces, MathTOUCH and
FlickMath, developed by the authors. MathTOUCH accepts math input in the form
of colloquial-style mathematical text and FlickMath supports math input on mobile
devices.

8.3.1 MathTOUCH

MathTOUCH is a mathematical input interface with Java that facilitates conversion
from colloquial-style mathematical text (Fukui, 2012). With this interface, users do
not need to enter symbols that are not printed. For example, if users would like to
enter x2 þ 1

3 , they have only to enter “x2+1/3”. They do not need to input paren-
theses for the delimiters, and a power sign (e.g. a caret symbol) as a list of can-
didates for each mathematical element is shown in WYSIWYG based on the user
input (see Fig. 8.1). After all the elements are chosen interactively, the desired
mathematical expression can be created.

In a previous study, Shirai and Fukui implemented MathTOUCH in STACK and
conducted two experiments—a performance survey (Shirai, Nakamura, & Fukui,
2015) and an eight-week learning experiment (Shirai & Fukui, 2014)—to evaluate
the efficacy of MathTOUCH. The results obtained indicated that MathTOUCH
enables tasks to be completed approximately 1.2–1.6 times faster than standard
input interfaces (such as text-based interfaces and structure-based interfaces).

Fig. 8.1 MathTOUCH input procedure
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Moreover, MathTOUCH was shown to have a high level of satisfaction with
respect to math input usability. The results of the eight-week learning experiment
show that students could practice using MathTOUCH on STACK at the same
learning rate as with the standard input interface on STACK.

In 2016, Shirai and Fukui reconstructed MathTOUCH using JavaScript to make
MathTOUCH available not only on Java-compliant devices but also on various
other devices, and conducted a five-week learning experiment to evaluate the sta-
bility of reconstructed MathTOUCH. The results showed that students can study
using reconstructed MathTOUCH on STACK as effectively as with the previous
Java-version of MathTOUCH. The details including the data are available in Shirai
and Fukui (2017).

8.3.2 MathDox and FlickMath

Nakamura, Inagaki, and Nakahara (2014a) developed an input interface for STACK
using MathDox formula editor. MathDox formula editor facilitates the input of
mathematical formulas two-dimensionally using a keyboard, and it also has a
palette for input assistance (Fig. 8.2). Maple T.A.’s Equation Editor also realises
the same type of mathematical expressions. However, with both editors, users have
to switch keyboard between letters and numbers/symbols, especially when using
mobile devices. Further, the editors do not reduce the complexity of the math input
process for such devices.

Based on the MathDox input type, a new input type, FlickMath, was developed
for using STACK on mobile devices (Nakamura & Nakahara, 2016). FlickMath
allows the input of mathematical expressions by the flick operation (Fig. 8.3). The
flick operation is carried out by placing a finger on the prepared keyboard, shifting
the finger vertically or laterally, and subsequently releasing it. Japanese students
often use flick input to input characters on their smartphones; therefore, inputting
math using the flick operation should be natural for them. On tablet devices, a full

Fig. 8.2 MathDox input type for STACK
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keyboard is displayed and the flick operation is implemented. We conducted a
survey on the usability and satisfaction levels of students. Our results, based on the
average responses of 29 students, indicate that usability and satisfaction levels are
higher when the flick input method is used to enter mathematical expressions as
compared to the direct input method (Nakamura & Nakahara, 2017). As the input
operation using FlickMath is less cumbersome than using the direct method on a
smartphone, it could be effective for drill practices on mobile devices when students
have spare time.

8.4 Sharing Questions

When e-learning is employed, not only in mathematical science but also other
subjects, content has to be prepared. However, math e-learning, especially math
online testing, has a relatively short history and an individual teacher may not have
sufficient content. As stated in Sect. 8.2.4, developing questions that can assess
students’ answers and return suitable feedback appropriately is time-consuming.
Accordingly, a question-authoring tool that reduces the amount of work involved
was developed for STACK (Nakamura, Ohmata, & Nakahara, 2012). It is helpful
for authors; however, in order to promote math e-learning effectively, it is perhaps
more important to prepare as much high-quality content as possible and to share
such content among teachers.

Fig. 8.3 FlickMath input
type for STACK
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In this section, as effective ways to accumulate content, we discuss several
content-sharing systems, including content-converting methods and our project that
aims to share content among heterogeneous math e-learning systems.

8.4.1 Item Bank System: MathBank

In order to effectively promote student learning, well-structured questions must be
shared, thereby allowing any registered user to access them. This helps to broaden
the applications of e-learning to math and science subjects. Accordingly, we
developed an item bank system (Nakamura, Taniguchi, & Nakahara, 2014b), called
‘MathBank’, open to the public at Mathbank.jp, https://mathbank.jp/.

We developed MathBank as a Moodle system wherein any user can register
questions and search for registered questions after user authentication. When users
register a question in MathBank, they are prompted to include metadata associated
with the question such as grade, difficulty level, publicity level, and keywords.
Questions can be registered by uploading an XML file via the interface. Users can
also create questions on MathBank itself. After searching through the list of
questions, users can download STACK questions in XML format and import the
file to their servers for subsequent use. MathBank also provides time for registered
questions to be tested straight from MathBank, which creates stored logs. The log is
used to reconsider the difficulty level and to improve the quality of the questions in
the system. MathBank was opened to the public approximately three years ago and,
as of December 2016, 46 users were registered and approximately 200 questions
were available on the system.

8.4.2 Maple T.A. Cloud

Tens of thousands of questions are available in the Maple T.A. Cloud (Maplesoft,
2013), a worldwide content-sharing system based on Maple T.A., ready for
immediate use or customization. Content is available for a variety of subjects,
including calculus, pre-calculus, algebra, differential equations, linear algebra,
physics, chemistry, engineering, statistics, and economics.

8.4.3 Converting Content Between Different Systems
and Building Common Base for Content Creation

The aforementioned question-sharing systems, Mathbank and Maple T.A. Cloud,
are designed for specific math e-learning systems STACK and Maple T.A.,
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respectively. One can share questions in each system only. A solution for increasing
the amount of content is converting high-quality content created in one system to
another system. There are some projects to convert questions among different math
e-learning systems; e.g. conversion system between Maple T.A. and SOWISO
(Baumgarten et al., 2015) and Maple T.A. to STACK conversion (Higuchi, 2016).
However, conversion is not always perfect since some features of a system are
sometimes not supported by the other system.

8.4.4 Necessity of Common Base for Sharing Content

We reviewed two content-sharing systems and some content-converting methods.
However, it is certainly preferable to have a common base of shared content to
accumulate content. An aggregation of content can be compared with an emerging
“system” of interactive elements. For example, knowledge map (Chen, Chu, Chen,
& Su, 2016; Reed, 2013) is a visualization of connections among subjects and
shows an interaction between elements, which is similar to content-sharing systems.
Further, the elements of content-sharing systems should be increased in number
and, in other words, content-sharing systems should emerge. It is said that “evo-
lutionary algorithms have a common base with evolution, since they are based on
fundamentals of natural selection” (Davendra, 2010). Our project aims to share
content among heterogeneous math e-learning systems based on a common base,
i.e. mathematics e-learning question specification (MeLQS), which we believe
realizes the objective of this work, i.e. to determine effective ways to carry out
mathematics e-learning using CAA.

8.5 Mathematics E-Learning Questions Specification:
MeLQS

In order to build a common base for sharing questions, we verified that the struc-
tures of the question data in STACK and WASM (see Sect. 8.2.1) are analogous
(Yoshitomi & Kawazoe, 2013). In WASM, the data consists of question sentences
with formatting similar to HTML that permits MathJax description, which has a
similarly formatted answer format; Mathematica to analyze the input; a set of
program (maybe including random functions) parameters that are randomly selected
when actually used; feedback messages coupled with the return code of the analysis
program above. It is well known that STACK has a similar constitution; concep-
tually, both the systems have the same structure. We attempted to convert the
question data between the systems manually (Yoshitomi, 2014). First, we converted
each piece of data to better understand text describing what the author wants to do
and how the parameters are determined. We called the prototype of specification of
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the question data MeLCS, Mathematics e-Learning Contents Specification,
(Yoshitomi, 2014), but have since changed the name to MeLQS, as defined
previously.

We started the MeLQS project, a four-year project, with grant support in 2016,
and aim to share the e-learning/e-assessment content in the universal format
MeLQS. This format is expected to be easily exported to any format available in the
world, including MATH ON WEB, STACK, and Maple T.A. Therefore, we use
MeLQS as a common base of shared content to accumulate questions for math
e-learning. After the preliminary analysis of structures of the questions of
MATH ON WEB and STACK, we determined it appropriate to categorize the
structures of questions as follows: question text and routine to create it; definition of
answer column and answer type; routine to evaluate student answer and feedback.
MeLQS also has metadata of questions: question name, subject, intention behind a
question etc.

One of the most important features of MeLQS is that it is constructed with two
specifications: concept design and implementation specification. In the following
subsection, we describe MeLQS in detail.

8.5.1 Concept Design for Questions

Concept design is a specification of questions that describes how the question is
designed according to concept, and it is described by mathematical statements
rather than programming statements so that all mathematics teachers can understand
the concept addressed by the question. The concept design is stored in a database
and databased concept design can be viewed on the MeLQS web system or can be
exported to TeX and PDF format. Therefore, concept design is useful not only for
online tests but also paper-based tests. We implemented an authoring tool of
concept design as a Moodle plug-in that allows users to, create a concept design,
including metadata: question name, subject, intention behind a question etc.,
step-by-step as shown in Fig. 8.4. At the present stage, how to input mathematical
expressions is not fixed, but TeX is preferable for the preview. We also plan to
familiarize the editorial function to all teachers with support from MathTOUCH
(see Sect. 8.3.1).

8.5.2 Implementation Specification for Questions

The standard of implementation specification is being formulated as of May 2017.
It is considered that those who have experience in authoring questions for online
tests would create implementation specification based on the suggested concept
design. In the implementation specification, details of settings of questions defined
as dependencies on each math e-learning system are eliminated. For example,
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input of mathematical expression should not be dependent on each CAS syntax.
Authoring tool like Fig. 8.4 will be developed in the future.

8.5.3 Implementation of Questions in Math E-Learning
System

Questions based on the implementation specification can be used in each mathe-
matics e-learning system. We plan to provide MeLQS as a cloud service with
functions that enable users to author the question data and to export and import
them to heterogeneous systems. At the present stage, the evaluation procedure
implemented in STACK and MATH ON WEB cannot be reflected to Maple T.A.
but the implementation is being considered by referring MeLQS.

In the future, we aim to make it easy for virtually all teachers to participate in the
service. All the users can use this system freely but are expected to provide feed-
back about the effects or issues associated with the downloaded teaching materials
to the community. We expect that significant use of the service will promote more
practical usage and increase the efficacy of math e-learning systems.

8.6 Conclusion

We briefly reviewed the three main math e-learning systems used in Japan and
outlined two problems associated with using them: inconvenience in inputting
answers and heavy content-development workload. In order to solve the problem of
inconvenience in inputting mathematical expressions, we developed two math input

Fig. 8.4 Authoring tool of concept design of MeLQS
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interfaces: MathTOUCH and FlickMath. Currently, both the math input interfaces
are implemented only in STACK, but as they are HTML5-based, they can be
applied to other systems. Sharing content reduces the problem of heavy
content-development workload. Maple T.A. Cloud and MathBank are used to share
mathematical questions by Maple T.A. and STACK, respectively. Although similar
types of mathematical questions are present in both the systems, these questions
cannot always be interchanged between them. Many questions have also accu-
mulated in MATH ON WEB, but these questions are not compatible with other
systems.

Collecting well-constructed mathematical questions in the promotion of math
e-learning is undoubtedly important. In order to share questions among heteroge-
neous math e-learning systems—MATH ON WEB, STACK, and Maple T.A.—we
have started a four-year project wherein the first step is to design the universal
format MeLQS. We believe MeLQS, as a common base, is necessary for contents
and usage of e-Learning systems in undergraduate mathematics education to
increase in number. This is our answer to the research question in the present paper:
what is necessary to realize effective use of mathematics e-learning using CAA.
Eventually, we plan to provide MeLQS cloud service with functions that enable
users to author question data and to export and import them to heterogeneous
systems. We believe that heavy use of the service will promote more practical usage
and increase the efficacy of math e-learning systems.
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Chapter 9
Designing Interactive Technology
to Scaffold Generative Pedagogical
Practice

Anthony Matranga, Jason Silverman, Valerie Klein
and Wesley Shumar

Abstract This chapter introduces a web-based assessment environment, the
EnCoMPASS Environment, that was purposefully designed to scaffold activities
consistent with a group of mathematics teacher educators’ practices as well as
research-based instructional practices. The chapter details the design of the tool and
then presents preliminary findings from our analysis of 21 practicing teachers’
collective mathematical activity mediated by the tool. Findings indicate that the
software environment supported teachers’ participation in common practices for
examining student work as well as more generative practices such as providing
evidence-based feedback. The study has implications for a way in which to con-
ceive of the design of technologies to support generative professional development
at a distance.
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9.1 Introduction

There is a collective effort amongst mathematics education researchers to develop
and refine ways in which to support mathematics teachers’ instructional change. It
is widely accepted that professional development (PD) is an effective approach to
impacting teachers’ instruction. There are a variety of approaches to PD that have
shown potential to support teachers’ instructional change such as PD where
teachers plan, rehearse and analyze classroom instruction with teacher educators
(Lampert et al., 2013), examine records of practice (i.e. videos of classroom
interactions (Sherin, 2007) or student mathematical thinking Jacobs, Lamb, &
Philipp, 2010), or participate in communities with generative and productive norms
(McLaughlin & Talbert, 2001). There is evidence that community-based PD, in
particular, is effective in supporting teachers prolonged and generative change
(Vescio, Ross, & Adams, 2008). With advances in technology, research is begin-
ning to investigate the potential for teacher professional development in online
spaces (Goos & Bennison, 2008; Matranga, 2017; Trust, Krutka, & Carpenter,
2016). Online communities enhance access to high quality professional develop-
ment and allow teachers to fit community into their daily schedule. Research also
indicates that norms that emerge in alternative contexts are transferable into
teachers’ instructional practice, even if they come in conflict with instructional
norms in teachers’ local schools and districts (Vescio et al., 2008).

There is little research that focuses on how to support the emergence of online
communities and in particular how to support the emergence of communities that
engage particular norms and instructional practices. Our current work aims to
address this gap in the literature through the design of an enhanced web-based
assessment environment that can scaffold teachers’ participation in particular
activities that are consistent with a community of teacher educators’ practices. The
broad goal of facilitating teachers’ work with the web-based assessment environ-
ment is to support the emergence of generative and productive norms that could
transfer into teachers’ instructional practice and engender a more student-centered
learning environment. This chapter introduces the design of this web-based tool and
discusses emerging results from a case study in which we analyzed teachers’ use of
the tool in the context of an online community-based PD course for practicing
teachers.

This chapter is organized as follows. First, we discuss our conceptualization of
professional development in order to motivate the design of the tool. Second, we
discuss the Math Forum—an online community for mathematics and mathematics
education—and their core practices. Third, the web-based tool is introduced in
which the design features are intended to scaffold activities consistent with the Math
Forum’s practices. Fourth, we discuss emerging results from our analysis of
teachers’ use of the tool. The chapter concludes with a discussion regarding the
implications this work has for the design of PD and enhancing mathematics
teachers’ instruction.
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9.2 Designing the EnCoMPASS Environment

Our work is grounded in sociocultural theories of learning and in particular com-
munities of practice framework that takes evidence of learning as increasing one’s
participation in a community of practice (Wenger, 1998). Wenger (1998) argues
that social life involves participation in multiple communities of practice, where
involvement in a community includes engaging shared practices, having common
goals and a shared set of tools. One consequence of this perspective of learning is
that as individuals engage in practice with members of a particular community,
boundaries often form between those who have been participating in the community
and those who have not been participating in the community. Because of this
phenomenon, one way to conceptualize engineering learning experiences is through
bridging communities, where members of different communities come together and
engage in collective practice, thereby engaging a boundary encounter.

Sztajn, Wilson, Edgington, and Myers (2014) conceptualize mathematics teacher
professional development as boundary encounters between communities of teachers
and communities of teacher educators. Teachers and teacher educators can be
conceived of as participating in different communities of practice, as they engage
different practices around analyzing and making sense of student thinking. In this
sense, Sztajn et al. (2014) argues professional development should be
practice-based, where members of these communities are engaging practice around
artifacts of teaching.

The concept of boundary objects is used to conceive of artifacts that have
potential to support generative work at the boundary between communities.
Boundary objects are objects or environments originally conceptualized as effective
in mediating activity in the absence of consensus (Star & Griesemer, 1989). One of
the properties of boundary objects is interpretive flexibility, that is the potential of
an object’s perceived use to vary according to the communities in which are
engaging with the object (Star, 2010). An artifact with interpretive flexibility has the
potential to engender a generative learning environment because when different
communities come together and engage practice around the object it is likely that
differences in perspective will arise affording opportunities for negotiation and the
transformation of practice. Thus, PD activities that include interactions between
teachers and teacher educators mediated by a boundary object have the potential to
provoke generative conversations.

Our work intended to design a web-based software environment that can
function as a boundary object and mediate generative work between communities
of teachers and communities of teacher educators. Building on extant research
around boundary objects, we conceptualized the design of a tool that could have the
same generativity as a boundary object, while situated within a context in which
only members of a teacher community are interacting with one another. In this
sense, we intended to emulate a boundary encounter between a community of
teachers and a community of teacher educators by mediating a group of teachers’
work with a software environment that would function as a boundary object but
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also scaffold participation in activities consistent with the Math Forum’s practices.
Thus, documenting the Math Forum’s core practices was an important part of the
design of the web-based tool. The following section introduces the Math Forum and
provides an overview of two of the Math Forum’s core practices.

9.2.1 The Math Forum

The Math Forum is a website for mathematics and mathematics education as well as
a community of mathematics teacher educators. The Math Forum’s website houses
services and digital archives designed to mediate communication on the Internet
about mathematics as well as to provide resources for teachers when planning
instruction. The Math Forum staff are a group of teacher educators who travel the
US and conduct workshops with mathematics teachers and promote
student-centered instruction consistent with instructional practices called for by the
NCTM (e.g. orchestrating rich mathematical discussions, scaffolding peer-to-peer
argumentation, etc.) (NCTM, 2000).

In our work with the Math Forum over the last two decades we have documented
what we refer to as the Math Forum’s core practices. One of these core practices we
refer to as valuing. Valuing is grounded in the belief that “individuals have great
things to contribute” (Renninger & Shumar, 2004, p. 197) both mathematically and
otherwise. Valuing is operationalized in the Math Forum’s activity of noticing and
wondering. Noticing and wondering at the Math Forum originated in staff’s PD
work with teachers as a way to frame the ways in which they looked at student work
(Shumar & Klein, 2016). Noticing frames interrogation of students’ ideas as a way
to attend to the mathematical details of students’ thinking and then wondering is a
process of grounding analysis in students’ thinking by asking specific questions.
This activity is at the core of the way in which the Math Forum works to understand
students’ mathematical thinking.

The second core practice of the Math Forum is providing evidence-based
feedback. This practice of the Math Forum can be likened to a “research lens,” or a
process of developing and testing conjectures to better improve conditions for
learning. Providing evidence-based feedback includes two activities: (1) collecting
evidence of student thinking through processes of noticing and wondering, and then
(2) reflecting upon this initial layer of analysis to parse through noticings and
wonderings as a means to target aspects of student thinking that are likely inchoate
forms of significant mathematical understandings. The Math Forum staff use these
activities to prepare to design feedback that can create an environment for students
to expand their mathematical understandings. Following providing feedback to
students, the Math Forum staff reengage these activities to further understand stu-
dent mathematical thinking and support learning.

In regard to the broader landscape of mathematics education research, the Math
Forum’s core practices are consistent with the NCTM’s principles and standards for
mathematics as well as research-based instructional practices that advocate
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student-centered instructional strategies. Valuing and providing evidence-based
feedback are consistent with calls by the NCTM to provide all students opportu-
nities to engage rigorous mathematical thought (NCTM, 2000). Valuing students’
ideas by focusing on the details of their thinking and grounding analysis within this
thinking is a way to take each and every student’s thinking seriously. Moreover,
providing evidence-based feedback is a way to support each student in expanding
his or her current way of knowing through linking feedback to that student’s
mathematical thinking. In addition, valuing and providing evidence-based feedback
are consistent with practices such as professional noticing (Jacobs et al., 2010) and
formative assessment (Heritage, Kim, Vendlinski, & Herman, 2009). The profes-
sional noticing framework involves attending to the details of student thinking and
interpreting the meaning of these details for students’ mathematical understandings
while developing this understanding of student thinking is a starting point for
designing feedback and learning environments that support student mathematics
learning.

Taken together, the Math Forum’s practices are at the core of their success as a
community of mathematics teacher educators and their practices are consistent with
those called for by research and policy to improve mathematics education in the
United States. Thus, our work began with the conjecture that designing a web-based
assessment environment that could scaffold activities consistent with the Math
Forum’s practices has the potential to improve teachers’ mathematics instruction to
become more consistent with what is called for by research and policy.

9.2.2 The EnCoMPASS Environment

The EnCoMPASS Environment is designed to function as a boundary object
through affording participation in teachers’ existing practices for organizing and
assessing student work and it is also designed to scaffold activities for examining
student work consistent with the Math Forum’s practice of valuing and providing
evidence-based feedback. Thus, the following introduces (1) the landscape of the
EnCoMPASS Environment and its design features, (2) the way in which these
features scaffold activities consistent with the Math Forum’s practices, and (3) the
way in which the tool is designed to function as a boundary object by affording
participation in teachers’ existing ways of examining student work.

9.2.2.1 The Landscape of the EnCoMPASS Environment

The EnCoMPASS Environment is a web-based assessment environment that pro-
vides a space for teachers to upload sets of student work into a primary workspace
(shown in Fig. 9.1). The design features of the EnCoMPASS Environment are
intended to enhance the process of looking at student work and developing feed-
back. The primary workspace is separated into three panels. Student work is
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populated into the middle panel while the left and right panels scaffold the analysis
of students’ work. The features that support this analysis include a selection tool, a
noticing and wondering commenting tool (center pane), the capacity to sort and
categorize (left pane) and aggregate for future use and feedback (right pane).

The selection tool is designed to scaffold a process of highlighting aspects of
students’ work. Selections are collected at the bottom of the screen below the
student’s work (shown in yellow in Fig. 9.1). In the right panel, there is a text field
that provides space for teachers to record their thinking. These comments are in the
form of “I notice…” and “I wonder…” and are directly linked to selected aspects of
the student’s work. Below the text field is a list of the noticings and wonderings,
which are available for reuse. In the left panel, there is a categorization system or
folders, which facilitate organization of selections and comments. This feature
allows teachers to develop a set of folders and sort selections based on different
characteristics (i.e. strategy used to solve the problem, completeness, correctness,
etc.). Lastly, the EnCoMPASS Environment has an aggregation system that
organizes teachers’ selections, noticings and wonderings for a specific students’
work and organizes them into the feedback screen (shown in Fig. 9.2). For
example, in Fig. 9.2, following “you wrote:” is an aspect of student work that the
teacher highlighted using the selection tool. Moreover, following “…and I noticed
that…” is the comment the teacher made using the noticing and wondering com-
menting field on that particular selection. In this screen, teachers can also edit their
selections/noticings/wonderings to develop a coherent note that is sent to a student.

While this section introduced the functionality of the EnCoMPASS
Environment’s features, the following relates the activities in which these features
scaffold to the Math Forum’s practices.

Fig. 9.1 Primary workspace in the EnCoMPASS environment (color figure online)
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9.2.2.2 Scaffolding Activities Consistent with the Math Forum’s
Practices

Table 9.1 provides an overview of the conjectures that guided the design of the
EnCoMPASS Environment and this section details how the features of the envi-
ronment scaffold activities consistent with the Math Forum’s practices of valuing
and providing evidence-based feedback. The Math Forum’s practice of valuing
takes seriously the notion that everyone has something to contribute to a conver-
sation and is operationalized through the activity of noticing and wondering.
Noticing and wondering includes activities such as focusing on the details of stu-
dent thinking and grounding analysis in these details by asking specific questions.
The noticing and wondering commenting field and selection tool are designed to
scaffold the activities just mentioned.

The noticing and wondering commenting tool provides an entry point into
focusing on the details of student work and grounding analysis in these details.
Noticing frames analysis of student work through the lens of “I notice,” which is
intended to focus user’s attention on anything that is interesting, unique or ques-
tionable. Once an aspect of student work is “noticed,” framing additional thinking
through “I wonder” is intended to scaffold careful thinking about what the “notice”
or evidence of student thinking could say about the students’ mathematical
understandings. In this sense, the activity of noticing and wondering sets a frame
around which the user engages with the selection tool.

The primary activity in which the selection tool supports as well as its under-
lying functionality further scaffold activities of focusing on the details of student
thinking and grounding analysis within this thinking. In particular, the selection tool
scaffolds these activities by supporting the process of “selecting” or “highlighting”
aspects of students’ work noticed by the analyst. As aspects of student thinking are

Fig. 9.2 The feedback screen
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selected, they are aggregated at the bottom of the screen (see Fig. 9.1—shown in
yellow at the bottom of the center panel in the primary workspace). This isolates
instances of student thinking and affords the opportunity for additional thinking to
be done by the analyst about these details as well for the analyst’s thoughts to be
recorded with the noticing and wondering commenting field. In addition, the
EnCoMPASS Environment generates a link between the selection and comment,
thus scaffolding the grounding of analysis in student thinking. In particular, in order
to record a notice or wonder in the text field one of the highlighted aspects of
student work collected at the bottom of the screen must be ‘clicked’ prior to
recording the comment in the noticing and wondering commenting field. Moreover,
once a comment is made, if the user clicks on a comment from the list of comments
in the right panel of the primary workspace the corresponding selection highlighted
in yellow at the bottom of the center panel in which this comment was connected is
underlined in red. To this end, the EnCoMPASS Environment is designed to
mediate activities involved in noticing and wondering and, consequently, valuing
by focusing user’s analysis on details of student thinking as well as by grounding
this analysis in student thinking. While these aspects of the tool’s design are
intended to support the analysis of student work, the aggregation system is intended
to support the design of feedback in ways that are consistent with the Math Forum’s
practice of providing evidence-based feedback.

In fact, the Math Forum’s practice of providing evidence-based feedback is
regarded as a ‘research lens’ for examining student thinking, which includes two

Table 9.1 Conjectured relationship between features, activity and practice

Design features Activity Math Forum practice

• Selection tool 

• Noticing and 

wondering 

commenting field

• Focusing on the details of 

student 

thinking

• Grounding analysis in 

student thinking

Valuing

• Aggregation system • Reflect upon evidence of 

student 

thinking to 

develop focused feedback

Evidence-based feedback
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activities (1) collecting evidence of student thinking through process of noticing
and wondering, and (2) reflecting upon this initial layer of analysis to develop
focused feedback.

The selection tool and noticing and wondering commenting field of the
EnCoMPASS Environment are designed to scaffold activity consistent with the
initial process of providing evidence-based feedback. Thus, the initial layer of
analysis of student work results in a collection of highlighted aspects of student
thinking and noticings/wonderings that are explicitly linked to this data. The
EnCoMPASS Environment therefore creates residue of this first pass of analysis of
student thinking and then when the user is ready to develop feedback, the aggre-
gation system transitions users to the feedback screen (shown in Fig. 9.2), which
aggregates selections/noticings/wonderings in order to provide a snapshot of the
thinking done in the initial analysis. This screen scaffolds reflection on the initial
layer of analysis as there is an “edit button” that allows users to adjust, reword,
reorganize and build upon the thinking done during the initial analysis. In this way,
the feedback is grounded in student thinking as users are supported in transforming
evidence of student thinking and documentation of their own thinking that is linked
to this evidence into a focused feedback note designed to support students in
expanding their mathematical ways of knowing.

9.2.2.3 Teachers’ Existing Practice

In addition to scaffolding activity consistent with the Math Forum’s practices, the
EnCoMPASS Environment was also designed to afford participation in teachers’
common practices for preparing for and providing students feedback on their
mathematics work. With decades of experience working with teachers, we have
found that when presented with a pile of student work teachers (1) sort the work
into different piles, (2) assess students’ mathematics work, and (3) provide feedback
to students based on previous experiences. Sorting student work includes placing
students’ papers into piles according to particular commonalities in their work. For
example, pile A might be ‘correct,’ pile B might be ‘incorrect’ and so on. The
categorization system of the EnCoMPASS Environment affords participation in this
practice as teachers can quickly scan through student work and then place it into
folders that are named according to the particular commonality in their work. We
also have found that teachers tend to assess student work by circling aspects of a
student’s work and making brief comments about the particular mistake. The
selection tool and noticing and wondering commenting field affords participation in
these activities as teachers could highlight, for instance, a calculation error and then
comment about what went wrong or how to fix the error. The tool also affords the
development of feedback according to teachers’ experiences as they could look at
student work and then transition directly to the feedback screen without using the
selection tool or the noticing and wondering commenting field.

The way in which the EnCoMPASS Environment affords participation in
practices for preparing for and providing students feedback on their mathematics
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work is consistent with what we have found is typical for practicing teachers and is
important for the tool to function as a boundary object. If the tool was not designed
to have interpretive flexibility and support participation in such activities, it is
unlikely that teachers would perceive the tool as useful and might not legitimately
engage with the EnCoMPASS Environment.

9.3 Examining Teachers’ Interactions Mediated
by the EnCoMPASS Environment

In one of our initial use cases of the EnCoMPASS Environment, we integrated the
tool into an online community-based PD course for practicing teachers that inclu-
ded exclusively asynchronous communication. The existing structure for engaging
collaborative problem solving in the course included providing teachers with a
problem in which they would spend 3–4 days to work privately on drafting a
response and then post their response to the course. Teachers would then review
their colleagues’ work and provide them feedback. The final stage included revising
the initial submission according to their colleagues’ feedback. Modifying this
process for this study, participants uploaded their colleagues’ work into the
EnCoMPASS Environment and then used the web-based tool to scaffold the pro-
cess of providing their colleagues feedback.

The current study included 21 practicing teachers who participated in the online
PD course. The participants were primarily novice teachers that ranged from only
having student teaching experiences to three years of experience in the classroom.
The analysis in this study used a grounded theory methodology (Glaser & Strauss,
1999) where we conducted open and axial coding procedures with participants’
mathematics work and the EnCoMPASS-scaffolded feedback they developed.

9.3.1 Findings

Participants used the EnCoMPASS Environment to examine their colleagues’ work
and provide feedback for seven of the ten weeks of the course. The tool was
introduced in week three and then participants used the tool for each of the fol-
lowing weeks except week seven and ten. Week seven and ten did not include
problem-solving activities in which participants used the EnCoMPASS
Environment to provide one another feedback because in week seven a group
assignment replaced the typical mathematical activities and week ten was reserved
for reflective activities. During each of the weeks in which participants used the
EnCoMPASS Environment, they examined two of their colleagues’ work via the
tool and then sent the result of this analysis to their colleague as feedback. As we
examined the ways in which participants engaged this process scaffolded by the tool
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we began to recognize several patterns. We identified a pattern in the connection
between the aspects of the mathematics work in which participants were high-
lighting and the comments they made about these highlights as well as a pattern in
the feedback participants were crafting using the noticing and wondering com-
menting tool. The following briefly examines these patterns, however prior to doing
so, we first show that participants used to the tool for its designed use.

9.3.1.1 Using the Tool’s Features for Their Intended Use

Through the analysis of participants’ interactions mediated by the EnCoMPASS
Environment’s design features, there is evidence that the tool scaffolded partici-
pants’ activity in the activities in which it was intended to scaffold. Participants
used the selection tool to highlight details of their colleagues’ mathematics work
and then used the noticing and wondering commenting tool to develop comments
connected to these details. Following the use of these features, participants sent the
result of their analysis to their colleagues as feedback. An example of the feedback
participants developed is shown in Fig. 9.3.

The reader will notice in Fig. 9.3 that the feedback is in the form of a list of text
labeled “You wrote…,” “…and I noticed that…” or “…and I wondered about…”
The EnCoMPASS Environment generates these labels. “You wrote:” signifies the
particular instance of mathematical thinking a participant highlighted using the
selection tool while “…and I noticed/wondered that/about…” signify the comment
participants made using the noticing and wondering commenting tool. Given the
“look” of participants’ feedback (in which a representative example is shown in

You wrote: relationship between a length x and the area of a rectangle with sides 2x and 
3x

... and I noticed that ... these are the quantities you are focusing on

You wrote: area of a rectangle with sides 2x and 3 is dependent on the value of the 
quantity x.

... and I noticed that ... quantities you are working with and the relationship

You wrote: x-intercept and a y-intercept of zero. This is a result of the fact that if the 
length X is zero than the area must be zero.

... and I noticed that ... I made the connection of the area being zero when the 
length of x was 0, but I didn’t relate that to the x and y intercept. Nice 
connection

You wrote: the vertex is a minimum because the area cannot be negative therefore the 
smallest area possible is zero.

... and I noticed that ... good explanation of this value

You wrote: parabola with an axis of symmetry through x=0

... and I wondered about ... if you could explain the axis of symmetry. It may help in 
student understanding.

You wrote: As x is squared, this allows for the graph to exist when x is negative even 
though we do not measure negative lengths.

... and I noticed that ... This is a great way to explain the negative length. I used 
the idea that we were measuring in the opposite direction so the negative 
represents direction.

Fig. 9.3 Example feedback developed scaffolded by the EnCoMPASS environment
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Fig. 9.3), it appears that the tool scaffolded participant’s development of feedback
in the way in which it was designed to because participants selected the details of
their colleagues’ work and then developed comments connected to these details.

To place this use case in contrast to one that would have come in conflict with
the EnCoMPASS Environment’s intended use, participants could have used the
selection tool to select the entirety of their colleague’s initial response and then
make broad comments about their colleague’s work using the noticing and won-
dering commenting tool. Moreover, participants could have used the selection tool
to highlight details of their colleague’s work and then transitioned directly to the
feedback screen to provide feedback without using the noticing and wondering
commenting tool. Nevertheless, the above example shown in Fig. 9.3 provides
evidence that participants used the EnCoMPASS Environment for its designed use.

9.3.2 Linking Comments to Data

Closer analysis of participants’ feedback indicates that participants explicitly linked
their noticing and wonderings to evidence of their colleagues’ thinking and they did
so in two ways. First, participants used pronouns such as “this” or “here” to refer to
the highlighted portion of their colleague’s work in which they were referring to in
the comment they developed with the noticing and wondering commenting tool.
Moreover, participants linked the content of the highlighted aspect of their col-
league’s work with the content of their noticing/wondering. For example, consider
the following representative example from an occasion where the class is making
sense of the quantities from the unit circle (e.g. arc length, vertical/horizontal
distances from the circumference of the circle to the axes) in order to make sense of
the behavior of the sine function.

(Jazmine’s selection from Rose’s work) You wrote: domain

(Jazmine’s Comment on the above selection)…and I noticed that… you used the word
domain; I don’t think I did

(Jazmine’s selection from Rose’s work) You wrote: x represents the angle or the arc
length of the circle

(Jazmine’s Comment on the above selection)…and I wondered about… I think this is
different from my explanation. I wonder if one of us is correct; or if we are both correct, but
saying it differently.

In the first selection, Jazmine highlighted Rose’s use of the word ‘domain’ from her
solution and then in Jazmine’s comment on this selection she noticed that Rose
used the word domain. Jazmine’s second selection highlighted Rose’s description
of a particular quantity (“the angle or arc length…”) and then in her comment on
this selection, Jazmine wondered, “I think this [emphasis added] is different…”.

This example illustrates the way in which Jazmine linked her comments to the
selections she made from Rose’s work. First, Jazmine used the design features for
their intended use as she selected the details of Rose’s work. In Jazmine’s first
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comment, there was a link between the content of Rose’s work and the content of
her comment, namely the word “domain.” In Jazmine’s second comment, she
explicitly referenced Rose’s work with use of the word “this.” Thus, in both cases
there was a specific highlighted detail of Rose’s work and an explicit link between
this detail and the comment. In particular the link was through (1) common use of
terms (e.g. domain) and (2) pronoun usage to refer to the selection.

This was the typical way in which participants provided feedback to colleagues
scaffolded by the EnCoMPASS Environment, which was consistent with the
operationalization of valuing through noticing and wondering. As noted above,
noticing and wondering includes focusing on the details of student work and then
grounding analysis in these details. Thus, there is evidence that the EnCoMPASS
Environment scaffolded activities that are consistent with the Math Forum’s prac-
tice of valuing, as participants highlighted the details of colleagues’ work and then
linked their comments to this evidence of their colleagues’ thinking.

9.3.2.1 An Emerging Purpose for Feedback

Emerging from participants’ use of the selection tool and noticing and wondering
commenting field was a pattern in the feedback they provided to colleagues that had
the purpose of challenging colleagues to refine the details of their mathematical
explanations. When challenging colleagues, participants linked their feedback to
data and explicitly asked colleagues to further refine and expand upon their
mathematical explanations. To illustrate this use of the tool, an example is taken
from an activity where participants were working with the function y = sin(x).
Consistent with the goals of the course, participants were attempting to examine the
relationship between quantities to make sense of the behavior of y = sin(x). There
were a number of cases where participants develop explanations that were not
consistent with the goals of the course, which invoked occasions where participants
would challenge colleagues who developed such explanations. The following
illustrates how Paul used the tool to develop feedback that challenges Nina to refine
her mathematical explanation.

Paul’s selection from Nina’s work: You wrote: This graph appears as it does because of
the Unit Circle. Essentially as the values of sin(x) make their way around the circle, they
start again at zero.

Paul’s comment to Nina:…and I wonder… if you could elaborate on this concept more.
Why do the values start again at zero? Why does the graph have hills and valleys?

Using the selection tool of the EnCoMPASS Environment, Paul highlighted an
aspect of Nina’s work and then made a comment grounded in this detail as he used
“this” to refer to Nina’s work when Paul said, “if you could elaborate on this
concept more.” In his comment, Paul challenged Nina to expand her mathematical
explanation when he said, “Why do the values start again at zero?” “Why does the
graph have hills and valleys?” Part of the reason why this was regarded as a
challenge is because the class was working collectively to explain why graphs look
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a particular way and it appears that Nina did not include such a description in her
explanation.

While the EnCoMPASS Environment scaffolded participants’ examination of
the details of colleagues’ thinking and grounding comments within those details,
there was nothing inherent about the tool’s design features that scaffolded chal-
lenging colleagues. Therefore, it appears that challenging was emergent, in that the
purpose of the feedback emerged through the use of the EnCoMPASS Environment
for developing feedback.

Taken together, the brief examination of participants’ use of the EnCoMPASS
Environment for developing feedback illustrates that (1) participants used the
design features for their intended use as they made selections and made comments
connected to these selections, (2) the tool scaffolded activities consistent with the
Math Forum’s practice of valuing as participants began to explicitly link their
noticings and wonderings to data, and (3) the purpose of participants’ feedback was
emergent in that the tool was not designed to scaffold challenging colleagues to
refine their mathematical explanations.

9.4 Discussion

The intention of the design of the EnCoMPASS Environment is to scaffold gen-
erative and productive norms for preparing for and providing students feedback on
their mathematics work (consistent with the Math Forum’s practices) that can
transfer into teachers’ instructional practice and engender a more student-centered
learning environment. This study found that the design features of the
EnCoMPASS Environment scaffolded activities in which they were designed to
scaffold. Moreover, as a result of this activity, participants began to engage prac-
tices for preparing and providing feedback to students in ways in which were
consistent with the Math Forum’s practice of valuing and developing generative
feedback through challenging colleagues. This result suggests the potential of the
EnCoMPASS Environment to scaffold generative work between teachers in online
community-based PD.

Earlier in this chapter, we mentioned that research indicates that norms that
emerge in alternative contexts are transferable into teachers’ instruction. While this
study did not document the emergence of norms, as a result of participation in this
study it is more likely that participants would focus on the details of their students’
thinking and then link feedback to this data. Moreover, there was likely an
increased potential for participants to challenge students to refine their mathematical
explanations. In this sense, students’ ideas would become more central to teachers’
instruction as teachers use student thinking as the foundation on which they think
about how to respond to students and move the class forward in their thinking.
Thus, there is potential that participation in community-based PD mediated by the
EnCoMPASS Environment can support teachers in moving along a trajectory from
teacher-centered to student-centered instruction.
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9.5 Conclusion

This study found that a technology mediating interactions in a collaborative envi-
ronment had potential to impact teachers’ mathematics instruction rather than a
group of teacher educators facilitating PD activities. A digital platform, namely the
EnCoMPASS Environment, was designed to emulate teacher or student participa-
tion within the Math Forum and appeared to have potential impact on the ways in
which teachers provide one another feedback on their mathematics work in similar
ways in which participation in PD with the Math Forum staff would impact these
practices. This suggests that this environment has the potential to impact the norms
and practices of an online community of teachers and ostensibly impact teachers’
classroom practice. Given that the tool could be integrated into multiple contexts
simultaneously, it has the potential to enhance the scale at which the Math Forum
could impact mathematics teachers’ instruction.

While there is emerging evidence that this tool began to scaffold participation in
generative and productive norms for providing feedback, we are still in the process
of analyzing data to make sense of how the tool’s design to function as a boundary
object impacted teachers’ use of the EnCoMPASS Environment. At this phase of
the analysis, we have preliminary conjectures that emerged through observations
from facilitating teachers’ use of the tool in the online PD course. In particular, we
observed teachers expressing affect towards the design of the tool and its potential
to make analysis of student work more efficient.

In summary, at this stage of our work, there is evidence that the EnCoMPASS
Environment is functioning as a boundary object because it is perceived as legiti-
mate and the design features have interpretive flexibility through their use to share
and compare information as well as to challenge colleagues. Given our findings
from the study presented in this chapter, we argue that conceptualizing the design of
technology as a boundary object is one way in which to conceive of a scalable
design for collaborative and technologically mediated professional development
that takes place at a distance. Future research is needed to better understand how the
EnCoMPASS Environment functions as a boundary object and how functioning as
such is significant for scaffolding participation in activities consistent with the Math
Forum’s practices.
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Chapter 10
Supporting Teachers in Developing
Their RiTPACK Through Using Video
Cases in an Online Course

Cosette Crisan

Abstract In order to help the participants on our online course engage critically
with research to reflect on whether and how digital technology supports students’
understanding and learning of mathematics, a trial focused on the use of online
video cases was implemented in a newly designed online course. In this chapter, we
report on the use of video cases with the course participants and on the potential of
using these videos with the aim of supporting the development of the participants’
Research informed Technological Pedagogical Content Knowledge (RiTPACK),
with a particular focus on how the digital environment supports students’ mathe-
matical work.

Keywords TPACK � Teachers as researchers � Online teaching
Digital technologies

10.1 Introduction

In this chapter I report on a pedagogical intervention in our recently re-developed
Masters level online course ‘Digital Technologies for Mathematical Learning,’
which focuses on the teaching and learning of mathematics supported by digital
technologies. The intervention is aimed at supporting the enrolled teachers engage
with research as they develop their Technological, Pedagogical and Content
Knowledge (TPACK).
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10.1.1 Overview of the Chapter

I start this chapter with a description of the content and organization of the online
course. I then discuss the pedagogical principles underlying the design of our online
course, describing the rationale for our pedagogical innovation and intervention,
namely the use of online video cases. The latter part of this chapter introduces a
theoretical framework adapted from the literature in order to account for the course
participants’ learning as they started experimenting with using the new technology
in their teaching practices and linking it with the theoretical and research knowledge
base of the course. Finally, a case study is presented, together with the methods
employed in the collection and analysis of the data. A discussion of the learning and
engagement with research of one of the course participants1 and a brief conclusion
end this chapter.

10.2 Context and Course Description

There are two e-learning aspects of this Masters level course: (1) its online delivery
and (2) the e-focus of the course itself, consisting of (i) familiarization of the
participants (practicing or prospective mathematics teachers) with a wide range of
digital tools and resources (graph plotters, dynamic geometry environments, sta-
tistical software, fully interactive online packages) and (ii) critical reflection on the
implications of using such tools in the learning and teaching of mathematics at
secondary school level (11–18 years old students).

The main aim of this course is to encourage participants to reflect critically on
the potential and limitations of digital technologies for the learning and teaching of
mathematics by providing opportunities for participants to apply knowledge of
relevant research and theory to their professional contexts.

10.2.1 Course Curriculum and Organization

The course is taught online, with participants being given a series of tasks over a
ten-week period. The curriculum for this course is divided into three themed sec-
tions: Visualizing, Generalizing and Expressing, and Modelling, with each theme
lasting for three weeks.

In each of the themed sections, the course curriculum is arranged into a series of
short tasks that culminate in the main task of designing and testing a learning
activity relevant to each theme. These short weekly tasks are signposted on the

1In this chapter, I will be referring to the teachers enrolled on our online course as participants,
while students will be used to refer to students in schools.
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virtual learning environment of the course (Moodle) at the beginning of each week
and include offline tasks such as: familiarization with a piece of software and
example problems using the specific software; designing a mathematical activity
using the specific digital environment; trialling the activity with students or other
learners, followed by reflection on the learning episodes. There are also online tasks
such as: engaging with the ideas in the key readings; reading one of the essential
reading articles and writing a response about the points agreed or disagreed with
from the article; contribution to online discussion forums, including written
observations on views and perspectives of fellow participants. Each theme ends in
an activity week, where participants are required to: choose a software tool relevant
to the theme, design a learning activity using features of good practice identified
from the literature, use the activity they designed with students and analyze its
implementation through engagement with research and the ideas assimilated from
the literature reviewed to evaluate and justify the implications of using digital
technology for students’ learning. In each theme, at least one task will form the
basis of an online group discussion. The tutors also contribute to these discussions,
with the aim of encouraging informed reflection and raising critical awareness of
and supporting engagement with the research literature.

10.2.2 Theoretical Background: Pedagogical
Underpinnings of Our Online Course

The design of this course has been influenced by the Technological Pedagogical
Content Knowledge (TPACK) framework (Mishra & Koehler, 2006) which
attempts to describe the body of knowledge and skills needed by a teacher for
effective pedagogical practice in a technology enhanced learning and teaching
environment. Mishra and Koehler (2006) proposed that a teacher’s professional
knowledge base for teaching with the new technology should include a type of
flexible knowledge needed to successfully integrate technology into teaching,
informed by and borne out of the interaction of three essential bodies of knowledge:
content, pedagogy and technology. Drawing on the work of Koehler and Mishra
(2009), Mishra and Koehler (2006), Otrel-Cass, Khoo, and Cowie (2012) described
the TPACK as the intersectional relationship of six components as follows (see
Table 10.1).

TPACK has been used by many researchers, as this frame offers a helpful way to
conceptualize what knowledge teachers need in order to integrate technology into
their teaching practice, leaving the specifics of what lies in each circle to disci-
plinary researchers.

The participants on our course, either practicing or prospective mathematics
teachers, bring with them a well-developed or developing PACK (pedagogical and
content knowledge base). When designing our course, I planned for opportunities
for the participants to familiarize themselves with key types of digital technologies
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for learning mathematics, at the same time learning to appreciate the rationales and
pedagogic strategies associated with these digital technologies for learning math-
ematics, thus facilitating the development of their TPACK.

10.2.3 Course Evaluation and Reflections

While the participating teachers enrolled in the first presentation of this online
course reported development of their TPACK knowledge (as exemplified later in
this chapter through a case study), writing about such experiences (as part of their
contributions to online forum discussions, as well as part of written tasks and final
assignment for this course) and applying the ideas from the key readings in
classrooms was a challenge.

Research acknowledges that teachers characterized as ‘novice’ (with respect to
new practices) ‘see’ less of the complexity of classroom events than experienced
teachers do (Yadav & Koehler, 2007). I also realized that the participants in our
courses often failed to make connections between their ‘research-based’ learning
with the particular instances of digital technology use in their practices which they
were reporting.

I noticed, for example, that during the weekly online discussions, the participants
provided narratives of their own learning or classroom based experiences with the
new technology. These entries did indeed generate activity on the online forum
discussions, but the narratives were mainly about ‘what happened’. While this
background knowledge was needed in order to comprehend what the learning
episode was about, the written format of these asynchronously shared experiences
proved to be mainly descriptive, hence time consuming, meaning that the partici-
pants rarely reached as far as engaging themselves explicitly with the research and
analyze ‘why that happened’, i.e. how their students’ mathematical work was
affected by the use of the new technology.

Similarly, for their end of course assignment, the participants were expected to
describe, analyze and interpret students’ experiences of doing mathematics with

Table 10.1 TPACK components

TPACK components Component descriptors

TK or technological knowledge Understanding about any kind of technological tool

CK or content knowledge What is known about a given subject

PK or pedagogical knowledge Teaching methods and processes

PCK or pedagogical content
knowledge

Pedagogy specific to a particular subject area or content

TCK or technological content
knowledge

What is known about a technology’s affordance to
represent or enhance content

TPK or technological
pedagogical knowledge

Understanding of how technology may support particular
teaching approaches
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digital technology. The analysis of their written assignments provided us with a
clear evidence that the participants found it challenging to move beyond description
of the learning episodes.

As a tutor, I came to realize that what was needed were opportunities for the
participants to engage with analyzing and describing of learning early on in the
delivery of the course. I also came to realize that the participants would benefit from
shared learning episodes, as this would remove the need for a detailed description
of ‘what happened’, instead allowing participants and tutors to focus on the analysis
and interpretation of the learning of mathematics when technology was being used.
These reflections led to consideration of a pedagogical intervention in the next
presentation of the course, namely providing participants with ‘video cases’ of
students’ doing mathematics with digital technology, with the potential to act as a
catalyst in generating discussions and reflections focused on the analysis and
interpretation of the learning taking place.

10.3 The Study

For the new presentation of the course (starting in January 2016), my intention was
also to address Leat, Lofthouse, and Reid (2014) call for the need to develop
‘teachers as researchers’. They acknowledge that (worldwide) the relationship
teachers have with research is passive, that teachers may or may not choose to use it
in their practice. Through the pedagogical intervention mentioned above, my
intention was to support the participants in making their conversations more
grounded in actual events, more insightful, and more resistant to oversimplifica-
tions, thus scaffolding our participants’ learning towards more active engagement in
undertaking enquiry themselves, which ultimately will benefit their students.

I thus adapted Mishra and Koehler’s (2006) TPACK frame to account for the
participants’ learning as they started experimenting with using the new technology
in their teaching practices and linking it with the theoretical and research knowledge
base of the course (Fig. 10.1). I refer to this frame as teachers’ Research informed
Technological Pedagogical Content Knowledge (RiTPACK—my own acronym for
this frame).

Learning from my reflection on the first presentation of the course, I decided to
provide the participants with shared episodes of students’ doing mathematics with
digital technology and support them in critically analysing and interpreting these
episodes by engaging with and making connections with the theory and research
they were reading.

Guided by Van Es and Sherin’s (2002) study, I considered the use of video cases
to provide the participants with a shared learning episode to analyse. Video cases
have been used by several mathematics educators and researchers in order to help
teachers focus on students’ learning and on teachers’ decisions made in lessons.
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Van Es and Sherin (2002) proposed that videos could be effective tools in helping
teachers develop their ability to notice and interpret classroom interactions. Van den
Berg (2001) highlights another potential of using videos, namely that they enable
teacher educators to prompt the students to watch for specific elements when
viewing a video, thus compelling the teachers to look more deeply than they might
otherwise have done.

10.3.1 The Aims of the Study

Thus, the aims of this study were to pilot the use of video cases and investigate
whether and how this intervention supports and contributes to the development of
the participants’ RiTPACK, with a particular focus on how the digital environment
supports students’ mathematical work. My hypotheses was that through such an
intervention the participants on the course will be supported in the development of
their skills of noticing significant episodes when observing students doing mathe-
matics with the new technology, which they would then analyse and interpret by
engaging with the theory and research, with a long term view of preparing them to
make informed decisions about use of digital technology that will benefit their
students’ learning.

Fig. 10.1 RiTPACK frame
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10.3.2 Using Video Cases—A Brief Review of Literature

A search through websites which provide video and support materials for those who
work in education in the United Kingdom, including teachers, teacher trainers,
student teachers and support staff, failed to identify resources with a focus on using
digital tools in mathematics lessons. For this reason, in order to support the par-
ticipants’ development of TPACK through reflecting on how the digital environ-
ment could support participants’ mathematical work, I created and used online
video cases in the new presentation of the course. I planned for and recorded a
number of videos featuring students working through mathematics activities in a
digital environment, referred to as video cases in this chapter.

Of the many features of videos well documented in literature (Calandra,
Brantley-Dias, & Lee, 2009; Van Es & Sherin, 2002), one significant feature is the
capacity of a video to be paused, rewound, replayed many times in order for the
viewer to focus specifically on segments of the videos selected strategically for their
significance to the viewer, based on a particular goal (e.g. how the students’
learning benefitted (or not) from doing mathematics in a digital environment). The
design of the video case was informed by suggestions made by researchers (Van Es
& Sherin, 2002), namely that the use of video clips could assist users to shift their
attention away from the teachers, the classroom events and evaluating the teaching
and learning, and focus it instead onto students’ work. Through using a video,
teachers can be supported to make tacit ideas explicit because “the process of
making images encourages participants to consider why it is that the moment
captured on film is important to them” (Liebenberg, 2009, p. 441).

In this research study, the video cases produced are recordings of the work of a
pair of students, narrowing the focus of observation on the particular pedagogical
activity of noticing significant episodes and analyzing students’ learning. The video
cases produced for this online course feature two Year 8 students, Tim and Tom
(pseudonyms), both age 12, attending two different secondary schools in a large city
in the United Kingdom. Since what the students did with the digital environment
provided was of importance and relevance, a screencast video-recording software
was used to enable video recording of students’ on-screen work as well as an audio
recording of any student-student interactions while working through the mathe-
matics activity.

10.3.3 Description of Our Video Cases

An overview of the four short videos are shown in Table 10.2. Figure 10.2 is an
example of what the video cases look like, together with some explanations of the
areas of the video screen that participants should pay particular attention to.
Figure 10.2 shows the boys (video capture of their faces) talk through the activities
(audio recorded) as they use a digital environment to do some mathematics
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(their on-screen activity being captured, too). The boys were invited to work
independently from a teacher. They were encouraged to talk through and to each
other when working towards the solution to the mathematical activities they were
presented with. Once the recordings were edited, the short video cases (not longer
than 10 min each) were uploaded online.

The ethical dimension of creating and using these video cases was considered
thoroughly. A review of some of the literature on the use of videos raised my
awareness of the ethical considerations when images, video or audio recordings

Table 10.2 Description of videos

Video Case 1
(3 min)

Video Case 2
(8 min)

Video Case 3 Part A
(1 min)

Video Case 3 Part B
(6 min)

Straight line graphs More straight line
graphs

Mid-points in a
quadrilateral

Mid-points in a
quadrilateral

Plotting points in a
symbolic and
graphical
environment that lie
on straight lines of
given equations

Finding the
equations of
straight line graphs
already plotted in a
symbolic and
graphical
environment

Recording of
students’ work while
investigating the
nature of the
quadrilateral made
by joining up the
mid-points in a
quadrilateral

Recording of
students’ work while
investigating, in a
dynamic geometry
environment, the
nature of the
quadrilateral made
by joining up the
mid-points in a
quadrilateral

Fig. 10.2 A screen shot from Video Case 1
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are taken, then posting them online (Flewitt, 2005). Permission to use the videos
was sought through students and parents’ consent, where my intention on how to
use the video material and for what purposes was clearly explained.

10.3.4 Piloting the Use of Video Cases

During the second presentation of this online course in (Spring, 2016), the video
cases were implemented for one of the three themes of the course, namely Theme
A: Visualising. In this theme, which spread over weeks 1–4 of the course, the
course participants explored the value of access to multiple representations enabled
by the digital technology in terms of the potential to facilitate learners’ under-
standing of various areas of mathematics. The participants were expected to
familiarize themselves with multiple representation software (such as graphing
packages and dynamic geometry software, thus developing their TK—technolog-
ical knowledge and skills) and experience for themselves the potential and limi-
tations of these applications (contributing to development of their TCK—
knowledge and skills concerning the combination of mathematics and the use of
technology) in facilitating learners’ understanding of the concepts and properties
associated with functions and their graphical and symbolic representations and in
promoting spatial and geometrical reasoning in mathematics (hence informing their
TPK—knowledge and skills concerning the combination of mathematics and
didactics of mathematics) (Mishra & Koehler, 2006). Two weeks into studying for
Theme A: Visualizing, for the end of theme task, the participants were asked to
reflect critically on the implications of using such technology in the learning and
teaching of mathematics. In designing the end of theme task, the participants were
invited to strategically select particular sequences of the uploaded video cases that
were significant to them and write their reflections on how the students’ learning
had been affected by doing mathematics in a digital environment. By choosing to
focus on specific parts of the chosen video(s), the participants were invited to
explain their new thinking and insights through engagement with research and ideas
assimilated from the literature reviewed (the key course readings) in order to
evaluate and justify the implications of using digital technology for the students’
learning as portrayed by the video cases.

In my role as a tutor, I provided scaffolding for the participants by modelling
engagement with research and theory when analyzing learning episodes of the
video cases. For example, I exemplified how I selected episodes in one of the video
cases, how I annotated the video to focus on specific aspects of students’ interac-
tions with the digital tools which were significant to conceptual understanding of
the mathematics under scrutiny and how I then analyzed and interpreted students’
learning, with annotations and explicit links to research and theory. A forum
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discussion of the tutor’s writing followed, to further sensitivities and increase the
participants’ awareness of the analysis and interpretation of the learning and of the
need to be explicit in making connections between research & theory reviewed and
their observations of the students’ learning/activities in these videos. They were
made aware of the expectations of engaging with the literature reviewed to support
and back up claims such as ‘all students understood’, ‘ICT helped’, ‘all learned’,
etc. otherwise made by participants in our course in the previous year.

The participants were invited to watch the short video cases, then pause and
reflect on how and in what ways the digital technology together with the mathe-
matics tasks designed supported students’ learning. Taking van den Berg (2001)’s
suggestion into account, participants were guided to attend to the more sophisti-
cated and less obvious aspects of doing mathematics through using the digital
technology. In this respect, further scaffolding was provided to the participants
through a number of guiding prompt questions to use while watching the videos:
What would you consider as the benefits/limitations of using digital technology in
this mathematics task, compared to a similar mathematics task but in a
non-technology environment? What representations of this concept are facilitated
by doing this activity in a digital environment? How did the students employed the
digital environment to investigate the mathematics task and why? How did the
design of the task support the students’ consolidation of and extension of their
knowledge about the mathematics concept/topic?

The participants’ written accounts for the end of theme task were shared online,
hence shifting the focus of their online communications about each other’s
accounts of the learning in the shared episodes from the ‘what happened’ to their
analysis and interpretation of ‘the how and the why’ supported by their own
engagement with the key readings of the course. In the online learning environ-
ment of this course, there were opportunities for asynchronous contributions from
all the participants. They were encouraged to engage with and learn from each
other’s contributions by watching the significant episodes each of them selected
and then read about each other’s analysis and interpretation. They could then
reflect at their own pace on how each of them used the ideas assimilated from the
key readings together with their personal knowledge and experiences in order
to evaluate and justify how the student’s learning of mathematics benefitted from
using digital technology. One participant’s contribution to the forum discussion
illustrates how she benefited from reading accounts of learning episodes that may
be different to your own interpretation “Thanks for your comments, Mark.
I have also read your written work and I appreciated your suggestion that
teachers might have made students explore different quadrilaterals and discuss
about the new construct. That was a really good opportunity for us to watch the
videos which simulate a real teaching situation and to identify key points about
them. I too felt lucky being able to access my friends’ opinions.” (Dina’s contri-
bution, week 4, forum discussion)
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10.4 Participants and Data Sources

All the participants (16) on our second presentation of the online course have
agreed for their written contributions to be used as data for this research study. They
constituted a convenience sample for researching whether and how the pedagogical
intervention supported and contributed to the development of the participants’
RiTPACK, with a particular focus on how the digital environment supports stu-
dents’ mathematical work. Gray (2014) notes that research that “… tries to
understand what is happening … explores the personal construction of the indi-
vidual’s world [and] studies individuals … using small samples researched in depth
or over time” (p. 12). Miles et al. (2013) in Gray (2014, p. 174) advise the selection
of information-rich cases which can be studied in depth. For this reason, in this
chapter the qualitative data collected and analyzed for the purpose of the study
reported in this chapter consisted of one participant’ online contributions
throughout Theme A of the course, his analysis and interpretation of the chosen
episodes from the four video cases and his final assignment for this course; the
assignment documented the participant’s personal development of a mathematical
idea or topic based on their exploration of digital technology and reflection on their
experiences of designing and testing the use of the activity with learners.

10.5 Data Analysis

The data were analyzed using the RiTPACK lens. The conceptual framework
structured what I noticed and paid attention to and took as important in the analysis
of the data collected. My goal was to describe the development of the participants’
TPACK components, with a particular focus on their learning about how digital
environment supports students’ mathematical work, and to find evidence of them
engaging with the theoretical and research knowledge base of the course when
analyzing and interpreting their accounts of students’ learning.

Simon and Tzur (1999) talked extensively about the generation of accounts of
teachers’ practice as an attempt to understand teachers’ current practices in a way
that accounts for aspects of practice that are of theoretical importance, using con-
ceptual frameworks developed in the research community. They characterized their
methodology as “explaining the teacher’s perspective from the researchers’ per-
spectives” (ibid., p. 254) and it was developed as an alternative to both deficit
studies where the principal focus is on what teachers’ lack, do not know or are
unable to do, and teachers’ own accounts of their practice.

The RiTPACK lens also enabled me to identify in participants’ written contri-
butions explicit instances of where and how their analysis and interpretation of the
mathematical learning was informed by theory and research.
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Thus, the evaluation of the pedagogical intervention of this study consists in
analyzing the developing ‘quality’ of a variety of the written contributions of the
participants throughout the delivery of this course, where quality was evidenced in
the levels of development of participants’ engagement with the theoretical and
research knowledge base of this course to analyze and interpret students’ learning.
In the following, I will be reporting on one participant (Mark—pseudonym)’s
trajectory towards the development of his RiTPACK.

10.5.1 The Case of Mark

Prior to the start of the course, all the participants on this course were asked to
submit a short piece of writing about the digital technology use in their own
learning and teaching of mathematics. By sharing these writings online, the par-
ticipants were thus encouraged to get to know each other’s backgrounds and
experiences with the new technology.

10.5.1.1 Week 1

Mark, an experienced mathematics teacher, expressed his own views about the
potential of digital technology: Much technology used inappropriately simply does
the same thing as non-technology, but used well [it] has the ability to add signif-
icant value (forum discussion, week 2), with no further exemplification of his claim.
Prior to his enrolment on the course, Mark had invested into developing his TK
(technology knowledge):My own experiences with technology is that I have spent a
considerable amount of time in developing my knowledge and getting to know
systems, to the point that I would probably have got better student outcomes by
doing something else (forum discussion, week 1), and at the start of the course he
expressed his hopes that I am getting to the point of pay off.

Mark’s writing at this stage is descriptive, drawing from his own experience with
digital technology prior to starting the course.

10.5.1.2 Week 2

In week 1 of the online course, the participants were introduced to some key
readings aimed at raising their awareness of the TPACK literature. In a written task
at the end of the week 2 of this course, the participants were asked to describe their
own TPACK components, namely knowledge, skills, and experiences on using the
digital technology in their own mathematics learning and in their teaching, by
exemplifying them with specific instances from their practices. Like most of the
other participants on this course, Mark did not illustrate any of the claims about the
development of his TPACK components with specific examples from his own
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experience with digital technology or from his own classroom practice. Instead, his
writing consisted of assertions about digital technology use in doing mathematics,
without being clear if they were inferred from his practice or if they were just
personal opinions, without empirical evidence. For example, Mark remarks that
Computer system is engaging. It allows participants to experience a variable by
dynamically changing it and seeing the results “what is the same, what is different”
(forum contribution, MarkTPACKstory, week 2) which could otherwise be an
indicator of his TCK. Referring specifically to his TPK, Mark envisaged his role in
show[ing] students what actually happens using dynamic functionality; instanta-
neous graphing and tabulating of results of expression allows for students to see
the effect of a varying variable in these forms (forum contribution,
MarkTPACKstory, week 2). In his writing, there is evidence that his own aware-
ness of how digital tools allow for the interplay between representations dynami-
cally (an indicator of his TCK) influenced his view of how digital technologies
could be used to support his students’ learning by seeing the same thing in different
ways and by promoting thinking through questioning on predicting potential
changes (an indicator of his TPK) (forum contribution, MarkTPACKstory, week 2).

Mark’s writing at this stage is a mix of descriptions and claims about some of the
potential benefits and limitations of the digital technology for learning, but with no
evidence that connects the claims to specific events from either his experience or his
practice.

10.5.1.3 Week 3

For the following week of this course (week 3), the participants themselves explored
the value of access to multiple representations in terms of the potential to facilitate
students’ understanding of various areas of mathematics. They were asked to use a
piece of symbolic and graphical representation software to investigate how the
parameters in the general form of a quadratic equation were related to the graphical
representation of the equation and share reflections on their own learning experi-
ences. In his online entry, Mark comments on the importance of and the need for
creating many images to construct relationships that will facilitate visualisation and
reasoning. This is where the technology is powerful in facilitating the creation of
many images rapidly in order to focus participants on the connections between
them. Technology is also engaging and provides a change from the “normal” (forum
contribution, week 3). This is a big claim about the potential of digital technology,
indicating his knowledge of TCK and TPK, but again, with no specific reference to
the actual mathematics investigation he carried out, nor with an explicit insight into
how it benefitted his own investigation of the task. Similarly, when asked to sum-
marize his reflections on the learning opportunities facilitated by the use of a
dynamic geometry software, Mark’s writing provides evidence of his engagement
with the key course readings (RiT): The added value from the dynamic nature is how
variance can be shown and more complex mental images can be created in par-
ticipants’ minds since they will see multiple images of the same problem. This can
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only enhance participants understanding and engagement (from Laborde, 2005)
(forum contribution, week 3), but he fails to link the research knowledge base of the
course with his own experience when using the dynamic geometry software. At this
stage, there is evidence that Mark’s writing is descriptive, with some attempts to
draw on the key readings, but this is not done explicitly.

While I wanted Mark and the other participants to continue to engage with
research through using the ideas assimilated from the literature reviewed, I wanted
to support them in noticing and interpreting students’ learning when doing math-
ematics in a digital technology environment, by focusing on not only on ‘what is
actually happening’ but also on ‘how and why’. The video cases were introduced
and tutor’s modelling of analysis of an episode of students’ learning was shared
with the participants.

10.5.1.4 Week 4

For the end of theme task, Mark selected an episode from a video showing Tim and
Tom working together to find the equation of two straight line graphs intersecting
each other at a point. The significant episode he selected ‘starts’ at the point when
the boys typed in a partially correct but incomplete equation of one of the two
straight line graphs. Mark comments on how the feedback from the dynamic
software exposed [the boys] to a misconception when the technology shows them
the graph of y = 4x [which] is different from the graph they are trying to define.
Here they are able to quickly alter their incorrect conjecture as a result of timely
response from the technology. Additionally, rather than just being told they are
wrong and, as a result of the technology showing them the graph of their con-
jectured function [the inputted equation] beside the target function, they see that the
coefficient of x is related to the steepness [of the straight line graph]. They both alter
their conjecture fluidly and add clarity to their visualisation of the situation.
Mariottii and Pesci (1994) cited in Elliot (1998) say that visualisation occurs when
‘thinking is spontaneously accompanied and supported by images’ (End of
Theme A task, week 4). I see here a detailed description of the learning episode
selected. Mark explains what the boys are doing, at the same time connecting his
interpretation of the boys’ actions with research and literature in an attempt to
justify his evaluation of how the boys’ learning benefitted from using the digital
environment (an indicator of his RiTPK). Mark goes on to notice that the boys add
another image to the “family” of images. Through doing so, this connection
between the coefficient of x and the gradient is again confirmed when their next
conjecture of y = 2x − 4 turns out to be too steep again, so they correctly reason
that they need to reduce the coefficient of x again (End of Theme A task, week 4).
When analyzing this observation of pupils’ actions, Mark draws on his PCK about
pupils’ learning of this topic, which he then links to the specificity of the digital
technology environment by explicitly making connections to Solano and Presmeg
(1995) cited in Elliot (1998) [who] see visualisation as ‘the relationship between
images’ to explain the boys’ actions of using the software to sketch straight line
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graphs of equations inputted by them and improve their equations based on the
feedback from the software (an indicator of his RiTPACK). He then explains how
each time the feedback scaffolds the boys’ learning in order to visualise there is a
need to create many images to construct relationships that will facilitate visuali-
sation and reasoning and concludes that the boys did benefit from the digital
environment as in this thinking process another image is added to their visual
understanding and they gain further clarity (End of Theme A task, week 4).

10.5.1.5 End of Course Assignment

In his end of course assignment, Mark describes one of his students’ work with a
dynamic geometry software: Student 2, at the end of Task 3 [which Mark designed
for his final assignment], when asked about his understanding of Thales theorem
said “I can actually see it”. This implies that during the tasks he gained a clear visual
picture of the Theorem, which he did not have before. The student’s reference to
being able to “see” the Theorem seems to link closely with the research on visual-
isation for understanding (End of course assignment). In his assignment, Mark’s
RiTPACK is made visible through his explanation of how his review of the literature
on visualization influenced his design of the student Task 3: In Geometric
Visualisations, visualisation is when students can perceive a family of images with
the same “geometric make-up” (Healy & Hoyles, 2000). The ability to make con-
nections between images facilitates reasoning and is therefore critical in forming
and proving new mathematical ideas that could later become theorems once proven.
Visual methods of solution complement and provide an alternative to a traditional
symbolic approach used in mathematics (Zimmermann & Cunningham in 1991).

At this stage, Mark’s writing is concerned with analysis and interpretation by
drawing consistently on the literature and research and he even begins to offer
pedagogical solutions based on his interpretations: This suggests that students will
benefit from approaching a problem in both a visual and traditional symbolic way
and each will add something to the students’ understanding (End of course
assignment) providing further evidence of the development of Mark’s RiTPACK.

10.6 Implications and Conclusions

The primary focus in this research study was the development of one of the four
aspects of the participants’ RiTPACK, namely their knowledge of students’
learning with technology, through a pedagogical intervention. The analysis of
Mark’s written contributions over the first four weeks of this course indicated that
Mark’s RiTPACK was developing. While there is evidence that Mark started
developing his TPACK and engaged with research right from the start of the course,
the connection between these two aspects of his learning on the course was not
established until later in the course (weeks 3 and 4). There is evidence in his end of
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course assignment that the his prior engagement with the video cases (the peda-
gogical intervention in week 4) supported Mark in writing about and reflecting on
specific instances where the digital technology supported students’ thinking about
and learning of mathematics, which he analysed and interpreted through engaging
with the key readings (Ri) and connecting it with his personal knowledge and
experience (TPACK).

Through this pedagogical intervention, the intention was to support Mark (as well
as all the other participants on the course) become more actively engaged with the
research and knowledge base of this course rather than just ingurgitating messages
that ‘experts’ put forward/proclaim about the potential of digital technology.

From the work presented here, I propose that through using video cases teacher
educators could support participants in Masters level courses learn how to critically
analyze practice. This is significant for several reasons. Firstly, the designed
intervention was brief, consisting of an intervention early on in the delivery of the
course (week 4), at a time when the participants have started developing their
TPACK (specific to Theme A) and started engaging with the key readings of the
course. Reflections on previous presentations of the course provided clear evidence
that the participants found it challenging to apply the ideas encountered in the key
readings when reflecting on students’ learning with digital technology. Through
tutor modelling on how to engage with research and theory when analyzing
learning episodes of the video cases, participants’ awareness of actively engaging
with theory and research increased and supported them in how to make this explicit
in their writing. This was an important aspect of the intervention, as in an online
course writing is the only means of communication when teaching and in peer
collaboration.

Secondly, the video cases provided the participants with shared learning epi-
sodes to analyse which together with sharing their written accounts supported
further the participants in critically engaging with (different interpretations) of ‘the
how and the why’ and where each participant’s analysis and interpretation was
supported by the research and theory reviewed.

Another dimension of this research study was the advance of the RiTPACK
theoretical framework. As exemplified through Mark’s case study, RiTPACK
framework can provide an analytical and yet pragmatic tool in supporting teacher
educators raise the critical awareness needed for teachers to reflect on their
practices.
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Chapter 11
Design and Impact of MOOCs
for Mathematics Teachers
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Abstract With online learning becoming a more viable and attractive option for
students and teachers around the world, we discuss how one effort in the U.S. is
focused on designing, implementing, and evaluating MOOCs designed for pro-
fessional development of mathematics teachers. We share design principles and
learning opportunities, as well as discuss specific impacts participants report for
changes to teaching practices and how these MOOCs have impacted engagement of
educators.
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11.1 Introduction

Improving mathematics and statistics instruction continues to receive attention
around the globe, and many efforts have been made to design professional devel-
opment for teachers to develop their content and pedagogy, typically on a small,
local scale (cf. Darling-Hammond, Wei, Andree, Richardson, & Orphanos, 2009).
Online courses can expand the reach of professional development and the teachers
involved, fostering communities beyond school or district lines. Indeed, with
advances in technology and interest in offering alternatives to traditional profes-
sional development (e.g., in-person conferences, workshops), the number of online
professional development opportunities has increased. The National Research
Council (NRC, 2007) claimed that:

The provision of professional development through online media has had a significant
influence on the professional lives of a growing number of teachers. Growing numbers of
educators contend that online teacher professional development (OTPD) has the potential to
enhance and even transform teachers’ effectiveness in their classrooms and over the course
of their careers. (p. 2)

Most recently, with increased demand for open, accessible resources and advances
in technological and analytic capabilities, Massive Open Online Courses (MOOCs)
have become a significant option for online education internationally (Pappano,
2012). MOOCs are designed and delivered in a variety of ways, depending on the
learning goals for participants, to serve different target populations and provide
diverse experiences for learners (Clark, 2013). Most MOOC participants engage in
isolation, reviewing material individually and perhaps engaging in discussion
forums (Kim, 2015). In recognizing the potential for MOOCs to serve as large-scale
professional development, we are part of teams that have created MOOCs for
Educators (MOOC-Eds) to assist mathematics and statistics teachers in developing
content understanding and pedagogical strategies for improving practice, and
forming local and global communities of educators. While MOOCs designed for
educators have not had the “massive”, large-scale enrollment of other MOOCs, they
do reach larger numbers of people than typical online courses. MOOC-Eds are
intended to attract professional educators who are specifically looking to engage in
a free, open online course that is marketed to educators beyond specific geo-
graphical boundaries. Thus, a MOOC-Ed is a particular type of online professional
development course that takes advantage of online technologies for learning that
can connect educators across the world. Our question guiding this design and
research is “To what extent does a MOOC-Ed offer opportunities for mathematics
and statistics teachers to engage in online professional learning and impact their
practices?”
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11.2 Research on Design of Professional Development

In response to a growing focus on professional development for teachers, the
American Federation of Teachers (AFT) published their Principles of Professional
Development: AFT Guidelines for Creating Professional Development Programs
That Make a Difference in 2008. They argued that:

The nation can adopt rigorous standards, set forth a visionary scenario, compile the best
research about how students learn, change textbooks and assessment, promote teaching
strategies that have been successful with a wide range of students, and change all the other
elements involved in systemic reform–but without professional development, school reform
and improved achievement for all students will not happen. (p. 1)

In designing our MOOC-Eds to provide quality professional development (PD) for
mathematics teachers that is effective in impacting their practice, we based many of
our decisions on research on such PD in both traditional and online forms.

11.2.1 Mathematics Professional Development

Members of both the education research and practitioner communities have
advocated for teacher education programs and professional development focused on
the specific types of mathematical knowledge for teaching (MKT) and argue that
providing such opportunities in a mathematics context can improve teacher quality
(e.g., Conference Board of the Mathematical Sciences [CBMS], 2012; Hill et al.,
2008). Without proper and frequent opportunities to engage in mathematics or
mathematics education-specific PD, however, deepening of both mathematical
knowledge and that knowledge for teaching would prove challenging. In an effort to
address current challenges in mathematics education, the National Center for
Education Evaluation and Regional Assistance (NCEE) of the Institute of
Education Sciences (IES) at the U.S. Department of Education (Siegler et al., 2010)
used empirical evidence gathered from a comprehensive collection of studies to
develop specific recommendations for providing effective mathematics PD. They
recommend that PD should:

• include activities that require participants to solve problems, explore the
meaning and justification for algorithms, and discuss challenges associated with
solving those problems;

• prepare teachers to use varied pictorial and concrete representations by including
activities in which they develop tasks for their students that integrate these
representations;

• develop teachers’ ability to assess students’ understandings and misunder-
standings by incorporating research on teaching and learning as well as activities
designed around critical analysis of student thinking (e.g., discussion of stu-
dents’ written work and/or video segments) (Siegler et al., 2010, pp. 43–44).
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The CBMS (2012) also recommended that PD for classroom teachers be both
content-focused and “directly relevant to the work of teaching mathematics” (p. 32).
They provided ideas for social PD activities that bring mathematics specialists and
other content experts together with practitioners to help strengthen teachers’ MKT,
such as solving problems and deeply exploring the mathematics in a professional
learning community (i.e. fellow practitioners), analyzing authentic student work
(e.g., from participating teachers’ classrooms), and participating in collaborative
task design with colleagues (CBMS, 2012). It was important to us as MOOC-Ed
designers to incorporate elements that addressed each of these recommendations.

11.2.2 Online Professional Development

Recent research on online professional development (OPD) has identified design
principles that help inform the development and implementation of future OPD
opportunities that can have an impact on participants.

11.2.2.1 Personalization and Choice

Researchers have found that OPD that addresses the varied needs and abilities of its
participants can be effective in changing teachers’ instructional practice (e.g.,
Renninger, Cai, Lewis, Adams, & Ernst, 2011; Yang & Liu, 2004). One of the
objectives of OPD programs should be to provide enough choice, or personaliza-
tion, among the included activities (e.g., varied tasks, opportunities for reflection on
different practices) to give participants options to engage with components that are
most useful to them and their practice (Ginsburg, Gray, & Levin, 2004). Indeed,
Renninger et al.’s (2011) findings suggested that “the potential of [OPD] lies in its
designers’ abilities to support participant stake by providing for multiple ways into
thinking and working with disciplinary content—design that both accommodates
and supports those with differing strengths and needs” (p. 229). Designers of OPD
should be especially mindful of the activities they include in their program, as
meaningful, accessible and relevant tasks encourage participants to then apply their
knowledge to the classroom (Vrasidas & Zembylas, 2004). In providing choice and
personalization, designers should “involve [participants] in the development of
materials, so that online tools reflect what [they] want and need” (NRC, 2007,
p. 20).

11.2.2.2 Online Communities of Practice (CoP)

Another principle that parallels one described in the context of face-to-face PD is
the development and facilitation of an online community of practice (CoP).
Researchers have highlighted benefits of such communities that are not always
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afforded in traditional face-to-face PD. For example, Mackey and Evans (2011)
argued that online CoPs provide members with “extended access to resources and
expertise beyond the immediate school environment” (p. 11), thereby offering
ongoing PD and the potential for increased application of learning into the class-
room. In their study on teacher OPD exploring the “impact and transfer of
knowledge” (p. 191), Herrington, Herrington, Hoban, and Reid (2009) found that
teachers succeeded in implementing new pedagogical strategies in their classrooms
when they felt supported by their online CoP.

In order to maximize the benefits that CoPs provide, designers of OPD programs
must be creative in building the infrastructure necessary to support such commu-
nities, as participants have the challenge of not being physically in the same place
when engaging in online activities. Programs that include asynchronous discussion
forums where participants respond to carefully-designed, relevant prompts provide
opportunities for participants to reflect on their practice, exchange ideas, and dis-
cuss strategies for improvement on their own schedules and with colleagues they
may not interact with otherwise (Treacy, Kleiman, & Peterson, 2002).

All of this suggests that opportunities for interaction and discussion offer par-
ticipants the opportunity to engage in learning that will be sustained and relevant, as
knowledge is enhanced through the exchange of thoughts and insights among a
CoP, and skills are developed with a focus on specific needs (Simoneau, 2007). In
the next section, we describe how we designed our courses to align with the
literature on PD for mathematics teachers.

11.3 Design of Courses

The MOOC-Ed effort at the Friday Institute for Educational Innovation (http://
www.mooc-ed.org) includes a collection of courses built using research-based
design principles of effective professional development and online learning
(Kleiman, Wolf, & Frye, 2014) that emphasize: (a) self-directed learning,
(b) peer-supported learning, (c) job-connected learning, and (d) learning from
multiple voices. The focus of this research was on two of the MOOC-Eds on
mathematics and statistics education, namely Fraction Foundations (FF) and
Teaching Statistics through Data Investigations (TSDI). The FF MOOC-Ed was
designed to help K–5 teachers teach fraction concepts (selected from K–5 USA
curricula) and skills through understanding students’ thinking and implementing
research-based approaches in classrooms aligned with recommendations of a
practice guide for developing effective fraction instruction (Siegler et al., 2010).
The purpose of the TSDI course was for participants to think about statistics
teaching in ways likely different from current practices in middle school through
introductory statistics. A major goal was for teachers to view statistics as an
investigative process (pose, collect, analyze, interpret) that incorporates statistical
habits of mind and view learning statistics from a developmental perspective,
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aligned with guidelines from Franklin et al. (2007). In the following sections, we
provide examples to illustrate how we enacted the four design principles in these
two courses.

11.3.1 Self-directed Learning

We promoted self-directed learning by encouraging participants to set their per-
sonal learning goals at the beginning to help guide their experience. For example, in
the FF course, participants engaged with approximately 30 items to consider their
awareness of various mathematical and pedagogical issues in teaching fractions; in
the TSDI course, participants engaged with a confidence rating survey for their
statistics teaching efficacy. In each course, multiple types of resources were
incorporated, such as classroom-ready materials (e.g., lesson plans, tasks, instruc-
tional videos) and thought-provoking materials for educators to reflect on their
practice and deepen their content and pedagogy knowledge for teaching. These
resources were often provided with multiple media, such as readings/transcripts,
classroom videos, animated videos, and podcasts to support different paths of
learning activities. Participants were also often given choices to explore materials
designed for different levels of understandings or grade levels. In addition, the
project component of each course was designed to suit a teacher’s practice or to
assist other educators, such as mathematics coaches, professional development
providers, and mathematics teacher educators, in developing their own materials for
use in professional development settings.

11.3.2 Peer-Supported Learning

One way that MOOC-Eds differ from other MOOCs is the intentional design to
create and support a network of professional learners. This is accomplished through
opportunities to interact with one another in online discussion forums, review each
other’s projects, rate posted ideas, recommend resources, crowdsource lessons
learned, and participate in twitter chats (Kleiman & Wolf, 2016). The discussion
forums were designed for participants to post their thoughts about videos and
discussion prompts, as well as interact with others, including facilitators of the
courses. It was important for us as OPD designers to construct thoughtful prompts
and questions that were open-ended to a degree that motivated participants to
engage in discussions that were relevant to them. The design teams functioned as
facilitators in forums; we encouraged participants to share experiences, asking
probing questions to elicit participant thinking, challenged current understandings,
and connected related discussion threads from different groups to offer multiple
perspectives to support richer discussions. Our role as facilitators included sending
weekly announcements to all enrolled and engaging in discussions along with
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participants in the discussion forums. This again makes a MOOC-Ed different from
other types of MOOCs; in a MOOC-Ed, the instructors/facilitators have a presence
in communications beyond simply answering support questions.

11.3.3 Job-Connected Learning

Through the use of video case studies, activities and projects assigned to develop
classroom materials, both courses provided opportunities for participants to learn
lessons that could enhance their current practice and was directly related to their
work. Video lessons, student interviews, small group teacher videos, and resource
videos provided authentic images of students working through problems, revealing
their thinking, and models of questioning strategies. Such resources provided
opportunities for participants to think deeply about their approach and consider
alternative strategies. Expert panel videos focused discussions from experienced
educators around anticipated student difficulties and effective teaching approaches.

11.3.4 Learning from Multiple Voices

Both courses incorporated a number of opportunities to learn from multiple voices.
As members of the design teams, we created many of our own resources, but also
used existing open access resources written by other educators in the respective
disciplines. Discussions that included well-known experts in each discipline were
recorded and used throughout the courses. In these videos, the experts discuss
relevant topics, share personal experiences and valued resources, and suggest
strategies for implementing knowledge gained from research in everyday class-
rooms. Teacher and student voices were brought into the courses through videos of
teachers implementing investigations in real classrooms, including teacher com-
mentary. These open-access videos, all available online, gave participants a look
inside real classrooms to imagine possibilities for their own contexts.

Student voices were brought into the courses through student interviews edited
to highlight specific student thinking (see Fig. 11.1a) and through brief animated
videos constructed based on actual student responses from research (Fig. 11.1b).
The student videos were used to: (1) present purposeful aspects of students’ work
while they solved tasks; and (2) ask participants to specifically consider students’
work using frameworks and constructs introduced in the course and how they might
engage their own students in such tasks.
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11.4 Framing Learning Opportunities in the MOOC-Eds

Both courses were built upon research-based recommendations for effective
teaching in the specific content areas. All resources included in the courses centered
around and explicated the recommendations through short videos, documents and
experiences that are applicable for educators. In the FF course, many activities were
built using the recommendations in the Siegler et al. (2010) report on effective
instruction on fractions. For example, in a unit about using fair sharing activities to
build on students’ intuitive understandings and support understanding about frac-
tions, the What Would You Do Next? videos of students working on fair sharing
tasks with an interviewer prompt for participants to examine the students’ under-
standing and how they would help move students forward. Core resources included
research-based recommendations for using fair sharing activities in teaching frac-
tions and other resources to support the teaching of concepts focusing on student
thinking. Discussion forums enabled participants to focus on personal reflection on
their successes as well as challenges when teaching specific fraction constructs.

In the TSDI course, research on students and teachers’ learning of statistics and
teaching practices was used to build opportunities for engagement. For example, we
built upon an existing framework (GAISE, Franklin et al., 2007) by incorporating
recent research on students’ statistical thinking and highlighting productive statis-
tical habits of mind. The new framework, Students’ Approaches to Statistical
Investigations [SASI], needed a variety of learning materials and opportunities for
participants to develop an understanding of its importance and potential ways it can
influence their classroom practices. Both a static and interactive version of a dia-
gram was created to communicate the investigative cycle, reasoning in each phase
at three levels, and an indication of productive habits of mind for each phase
(Fig. 11.2).

Two brief PDF documents described statistical habits of mind and the frame-
work. In a video, the instructor illustrated the framework using student work from
research, and another video featured one of the experts illustrating the development
of the concept of mean across levels of sophistication. The participants could also
watch two animated illustrations of students’ work on a task that highlighted how

Fig. 11.1 a A group interview of students working on a task, and b animated video of students’
work using technology to investigate a task
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students could approach an investigative task using different levels of statistical
sophistication and then discuss, in the forums, students’ work and how they could
use such a task in their own practice.

11.5 Data Collection and Analysis

Although both courses have been offered more than once, we focus here on the
course offerings of FF and TSDI that occurred in Spring 2015. Multiple sources of
data were collected in quantitative and qualitative forms. This included course
registration, pre-survey responses, and click logs of every action taken by partici-
pants (e.g., resources viewed, videos watched). All dialogs generated in discussion
forums, 5-star ratings of resources, and feedback surveys for each unit and at the
end of each course were collected. Descriptive statistics were generated based on
demographic information, survey responses, and click logs. Open coding of forums
and survey responses was used to develop themes related to participants’
self-reported impacts on practice, as discussed below. In addition, follow-up
interviews and classroom observations were used to ascertain impacts of the
learning opportunities in the FF course on teachers’ classroom practices.

Fig. 11.2 Diagram of framework used in the TSDI course. Interactive version available at https://
s3.amazonaws.com/fi-courses/tsdi/sasi_framework/index.html

11 Design and Impact of MOOCs for Mathematics Teachers 193

https://s3.amazonaws.com/fi-courses/tsdi/sasi_framework/index.html
https://s3.amazonaws.com/fi-courses/tsdi/sasi_framework/index.html


11.5.1 Engagement in the MOOCs

There were 1712 participants registered for the FF course, with 34 countries rep-
resented (vast majority were USA based, 93%) while the TSDI course had 797
participants registered from 43 countries, with 597 (76%) registrants from the USA.
Figure 11.3 illustrates our global reach for both courses in Spring 2015. In the
figure, levels of participation are illustrated by the depth of color depicted on
regions on the map. Darker regions represent higher levels of participation.

In both courses, the majority of participants were classroom teachers (58% FF
and 64% TSDI). The courses also had approximately 10% of participants who
worked in mathematics teacher education in university settings or other professional
development roles. Interestingly, approximately two thirds of participants in both
courses held advanced degrees (masters or doctoral). This is one indicator that
many participants attracted to the MOOC-Eds were engaged learners in their dis-
cipline, valuing advanced educational opportunities.

The graph in Fig. 11.4 illustrates the engagement of those who enrolled.
Participants were considered “no shows” if they never entered the course after
registration, and were tagged as a “visitor” if they logged into the course and
engaged with some aspect of it four or fewer times (Kleiman, Kellogg, & Booth,
2015). The remaining participants who engaged were considered active partici-
pants. As the graph indicates, there was a large proportion of registrants (1/4–1/3)
that did not engage at any time. However, in both courses, there was a large number
that either engaged somewhat or more fully.

While these numbers may not look impressive for a massively scaled course, the
materials are potentially impacting a large number of participants in the context of
professional development. Additional analysis was performed by Kleiman et al.
(2015) that further characterized the active participants according to how engaged
they were with videos, resources and tools, visiting discussion forums, posting in

Fig. 11.3 Global enrollment
in both MOOC-Ed courses
Spring 2015

194 T. Avineri et al.



forums, and commenting on posts of others throughout the course. This analysis
showed that the 547 active participants in the FF course were about equally cat-
egorized as declining activity (34%), moderate activity (38%), and sustained high
activity (28%). However, the 180 active participants in the TSDI course had either
declining activity (54%), or sustained high activity (46%). These high activity rates
through the final units in the courses are much higher than typical MOOC com-
pletion rates (2–10%), but are aligned with completion rates when participants
intend to complete a course (Reich, 2014).

We took a close look at click logs from the discussion forums to get a global
sense of participants’ engagement in the most publicly viewable form through
forum posts and replies and comments to a peer or course facilitator. Across both
courses, approximately 33% of participants (those classified as visitors or active
participants) posted at least twice in the forums, with either a new post or comment
on a post by someone else; however, Kleiman et al. (2015) identified many par-
ticipants across both courses considered to be active contributors to the discussion
forums. In FF, there were 770 participants (59.9% of 1286 visitors or active par-
ticipants) who contributed in some way in the forums, with an average of 9.3 posts
per participant. In TSDI, 308 (58.3% of the 528 visitors or active participants)
participated in the forums with an average of 7.1 posts each. Examining click logs,
we found there were also many more discussion views than postings. Some dis-
cussion views were done by participants who were active posters; however, other
views were done by non-posters. Thus, many saw discussion forums as an
opportunity for learning, even for only reading the posts of others. Participants who
engage in such “lurking” are present, but not visible; thus, precisely why they read
discussions and what they have learned from them is unknown.

11.5.2 Impact of the MOOC-Eds on Educators’ Practices

On end-of-course surveys, participants were asked how effective they believed the
MOOC-Ed was in preparing them to make positive changes in their practice.
Across the two courses, 205 participants completed the optional end of course

Fig. 11.4 Distribution of
participation categories in
both Spring 2015 courses
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survey, with 96.5% of participants responding positively. Participants were then
explicitly asked if they had made changes in their practice as a result of partici-
pation, to which 96.7% indicated “Yes.” When asked to describe how they were
applying what they learned to their professional practice, the following three themes
emerged as the most common: (1) integrating new tools and strategies directly in
their classroom; (2) implementing course projects or specific tasks/lessons; and
(3) using course content for instructional coaching or professional development
with colleagues.

For both courses, we examined discussion forum posts and open-ended
responses on feedback surveys to look for explicit mention of changes to practice
and tagged triggers for such changes. Preliminary analysis showed that there were
several main themes and course triggers that participants indicated as leading to
changes in practice.

In the FF course, the themes related to impact on practice were: (1) attending to
student conception and misconception, (2) prompting students to elicit reasoning,
(3) using multiple representations and models to help students understand fractions,
(4) and designing/adapting rich tasks to assess students’ understanding. These
themes were associated with triggers from course experiences, such as the student
interview videos, the tasks provided, and conducting a clinical interview as part of a
project. Consider the following participant statements with course triggers bolded:

• I now really talk to the students and have interviews so I can assess better.
I look at fractions in a whole different way. I also look closer at student
answers, I once would have considered incorrect.

• The most valuable part of this MOOC-Ed was the “What Would You Do
Next?” video series. As teachers, I think we need to see the “look fors” in
students’ misconceptions… For students to understand, teachers must become
comfortable seeing misconceptions and addressing the understanding.

• I have begun to facilitate learning of fractions versus teaching the students
about fractions. I am now having students take their time and explore concepts
in different ways rather than rushing through and trying to teach an algorithm.

While some participants’ comments addressed changes to their approach to
teaching (e.g., increased focus on concepts as opposed to algorithms), others
described how their participation supported their refined attention to and under-
standing of their students’ thinking and their own personal improvement in
knowledge of mathematics. This finding was supported by classroom observations
and interviews with teachers who participated in the FF course (Avineri, 2016).
Indeed, in describing her lesson planning after having participated in the
MOOC-Ed, one teacher noted that the course encouraged her to:

[try] to do something different on purpose. Trying not to drag out my old fraction folder and
dig from it. Trying to do something other than I would normally have done…It has
impacted me to just slow down. It’s not a race. You have to strategically take your time and
give them a chance to develop that knowledge, to start small and then let it blossom.
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This was evident in observations of this teacher’s classroom following the
MOOC-Ed. Another teacher described how her enhanced mathematical under-
standing impacted her attention to students’ thinking, which was also evident in
classroom observations following the MOOC-Ed.

I just wanted a better understanding of what a fraction was, what it meant to partition…and
then to see [the students] today, [speaking as a student] ‘Well you’ve got four more models,
that’s your four wholes that are represented, but you’ve got a fourth of each one or a third of
each one’…I would never have looked for that conversation from them before.

In the TSDI course, four elements emerged as often cited for triggering impacts on
practice. The most dominant trigger for change was the SASI framework. Not only
did participants discuss how they needed to design tasks that met their students
where they were, but also to further develop their levels of sophistication. Educators
also reported wanting to use all four phases of a statistical investigation, rather than
their past heavy emphasis on the analysis phase. Two additional common triggers
were the use of technology for visualizing data, and use of real data sources that are
multivariable and sometimes “messy”. These triggers came from learning oppor-
tunities in the course that included videos of students and teachers engaged with
messy data using technology, discussions in expert panel videos, and opportunities
to use a large internet resource for gathering and sampling data from students across
the world (Census at School) and a technology tool of their choice to engage with
the data. Consider the following statements from participants with course triggers
bolded:

• I have changed my planning process for statistics. I will use more technology in
my teaching and spend more time on the first 2 phases of the investigative
cycle. I will encourage statistical habits of mind and movement through the
levels of the SASI framework.

• The SASI framework was the most useful part of the course. It is incredible.
I’ve been telling the teachers here about it because normally we teach the Intro
to Stats class only procedurally, just calculations, with no sense of equations
or interpreting. But that has changed now because of using the framework.

• Since starting the class, I have had my students use richer and messier data in
their investigations and I have also putmore of an emphasis on understanding
the results and being able to analyze findings.

While some of the comments indicate how teachers had already changed, or will
change, their practices with their own students, other comments showed how ele-
ments of the TSDI course have impacted how participants encourage their col-
leagues to change their practices.
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11.6 Discussion/Conclusion

The results are encouraging for how participants took advantage of our purposeful
designs. There were many elements of these designs that acted as catalysts for
self-reflection and change in practice. The use of frameworks and research-informed
practices in teaching both fractions and statistics were highly valued and appear to
assist participants in viewing the learning and teaching of these ideas more con-
ceptually and comprehensively. Activities that were designed to capture the per-
spective of students, such as What Would You Do Next? videos, videos of students’
work in the classroom, and edited and produced videos of students’ work from
research, all fostered rich discussions in the forums about students’ understandings
and how participants can use their new understanding of students’ reasoning to
inform instructional planning. Participants also seemed to be able to shift their
perspectives from viewing the importance of teaching and learning these content
ideas as reliant on algorithms or procedures, to a view of mathematics and statistics
as more of a process that has nuanced conceptions that must be developed with
extended experiences.

Too often, professional development is provided by local school districts and
does not meet individual teacher’s need (Sowder, 2007). However, our MOOC-Eds
provided participants with the opportunity to engage in professional development to
strengthen their content and pedagogy in areas of mathematics they personally were
interested in improving. In the forums, one TSDI participant discussed the oppor-
tunities she felt the MOOC-Ed provided:

Some all-day workshops can be painful and provide little benefit. I think teachers who have
given up instructional time and been burned on a poorly designed workshop become
increasingly resistant to later PD opportunities. This course has been just the opposite. I can
engage with it on my own schedule, rather than losing class time, and I’m coming away
with lots of new ideas, resources, and activities. I feel grateful for this opportunity and look
forward to finding more like it.

The research-based design principles that guide the creation of these courses have
afforded educators choice in professional learning, complemented with relevant,
job-embedded activities, access to the perspectives of experts, teachers, and stu-
dents, and a network of educators learning together around a common content area.
For PD developers, our results can be used to help develop and refine future online
PD opportunities for educators that are effective in having a meaningful impact on
their practice. For school administrators, teachers, and PD providers, our results
provide strong evidence that MOOC-Eds can serve as viable, cost-effective and
quality online solutions to satisfy the urgent need for professional development for
mathematics and statistics teachers (Avineri, 2016).

We continue to learn about the affordances and constraints of this model of
professional learning for mathematics teachers and are interested in expanding our
research. One expansion needed is to explore long term impacts on practice. There
is also a need to explore the potential of MOOC-Eds beyond our current imple-
mentation model as time-bound courses managed primarily by our team. We
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wonder, if the MOOC-Ed courses were available on-demand, how would partici-
pants engage, and would professional learning networks emerge without active
participation by facilitators? We would also like to explore the possibility of
international collaboration in the design of future courses, the impact of facilitators
in a course of this scale, and the possibility of offering smaller scale modules that
are continuously available.

There is much to be studied and understood about the effectiveness and impact
of MOOC-Eds as a medium for offering online professional development for
educators. Rich data emerged from our studies that can be further analyzed and
used to refine future MOOC-Eds, and more globally, online PD programs for
educators. This inspires motivation to continue the work toward making
MOOC-Eds and other OPD for educators effective in ways that serve educators
well in promoting changes in their knowledge and to have an actual, true impact on
their practice.
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Chapter 12
Describing Curricular Materials
for Mathematics Teacher Education
in an Online, Rich Media Platform

Daniel Chazan, Patricio Herbst, Dana Grosser-Clarkson,
Elizabeth Fleming, Janet Walkoe and Emina Alibegović

Abstract This chapter explores a way of describing the teacher education curric-
ular materials being developed by mathematics teacher educators through their
interaction with the LessonSketch online platform (www.lessonsketch.org). We
briefly describe the platform and the larger project and then using the experiences
created by two fellows illustrate the kinds of materials being created by the teacher
educators. We then use Grossman’s pedagogies of practice to explore how with the
materials they are creating teacher educators are representing practice, decomposing
it, and providing opportunities for their students to approximate practice through the
curricular artifacts that they are creating. We note that the use of these pedagogies
of practice to describe curricular artifacts suggests three different kinds of repre-
sentation of practice in the artifacts being created.
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12.1 Introduction

Historically, the goals and purposes of teacher education have varied; for example,
teacher education in the U.S. has shifted from a focus on particular teacher char-
acteristics and behaviors to developing particular beliefs and forms of knowledge
for teaching (Grossman & McDonald, 2008). At this moment in time in the U.S.,
against the backdrop of expected greater curricular uniformity across states
(CCSSO, 2010), there is a call in teacher preparation for coordinating the content of
teacher preparation across the country, for example by developing a common
language and engaging in cross-institutional collective activity (McDonald,
Kazemi, & Kavanagh, 2013; see http://corepracticeconsortium.com/). The field is
considering the ideas of practice-based teacher education (for different perspectives,
see Ball & Forzani, 2009; Zeichner, 2012), though even for those considering
practice-based approaches, ways of describing the content of mathematics teacher
education are not settled (e.g., consider the challenge of identifying high leverage
practices as described by Ball, Sleep, Boerst, & Bass, 2009).

In the context of these developments in the curriculum of teacher education, this
chapter explores the pedagogies of practice described by Grossman, Compton, Igra,
Ronfeldt, Shahan, and Williamson (2009) as one way to describe interactive digital
materials created to support practice-based teacher education. Specifically, the
chapter uses Grossman et al.’s categories to examine the materials created by 12
LessonSketch Research and Development fellows. This examination suggests ways
in which representing practice is a complex pedagogy, present in at least three
distinct ways in which the fellows have created representations of practice.1

Similarly, we note novel ways in which the online environment supports new
opportunities for teacher candidates to practice the work of teaching. Before
introducing the project and describing the materials created by the fellows, we use
the mathematics education literature on curriculum to suggest that the curriculum
creation process that is underway in teacher education, when it happens online, is
influenced by the digital nature of technological artifacts (see Herbst et al., 2016).

12.2 Considerations in Specifying the Content of Teacher
Education

Some readers may have had the experience of teaching both mathematics content
courses and teaching methods (or didactics) courses for teacher candidates. The
teaching of methods courses can seem quite different than the teaching of content

1Following Herbst, Chazan, Chieu, Milewski, Kosko, and Aaron (2016) (see especially p. 81), in
this chapter, we will distinguish between representations as artifacts and the activity of repre-
senting practice.
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courses. While mathematics is the content of a content course, it does not play the
same role in a methods course; in fact, in a methods course, the role of content
seems less easily specified.

While the process of transforming disciplinary activity in mathematics into a
school subject matter has a long history (Popkewitz, 1987) and we are familiar with
the results of this process, a similar process of transforming the practice of math-
ematics teaching into a curriculum for teacher education is also underway. In
particular, the decomposition of the practice of teaching into component practices
(as part of the move to practice-based teacher education) has the potential to
privilege particular aspects of teaching. This process feels similar to the way that
mathematics as a school subject privileges particular aspects of the discipline of
mathematics.

New technologies are changing the nature of texts used in education settings. In
particular, the move to digital platforms influences the curricular artifacts that hold
the content of mathematics teacher education. For example, in digital environments,
texts are more malleable and editable than they were in the past (think, e.g., of the
difference between Wikipedia and the print encyclopedias that came before it) and
this leads to questions about the boundaries of a textbook and who will author
textbooks in the future (Chazan & Yerushalmy, 2014). New technologies are also
creating opportunities for many new sorts of rich media educational texts (in the
broader sense of text broached in Love & Pimm, 1996) that incorporate interactive
diagrams (Yerushalmy, 2005), as well as video (e.g., Vi Hart’s videos; https://www.
youtube.com/user/Vihart) and animations (Chazan & Herbst, 2012). And, with the
development of software platforms that facilitate online instructional interactions
(e.g., Kahoot, LessonSketch, TedEd), rich media are being incorporated into formal
education and put in service of particular curricular goals. Experiences for teacher
candidates created with these platforms not only have pedagogical characteristics
(Love & Pimm, 1996) in the sense that they put forward a way of learning about
teaching, but also have curricular characteristics in the sense that those experiences
also shape what it is that students, in this case teacher candidates, should learn. As
practice-based teacher education is done through technological mediation (see
Herbst et al., 2016), a transposition of the practice of mathematics teaching is being
produced.

12.3 The Project and Platform Context that Informs This
Chapter

Currently, as part of a National Science Foundation-funded project that explores the
use of new technologies for the purposes of supporting practice-based teacher
education, 12 U.S.-based mathematics teacher educators are each developing
materials using the LessonSketch platform, where users can create, share, and
discuss scenarios that represent classroom interaction (Herbst & Chieu, 2011). Each
of these LessonSketch Research and Development (LR+D) Fellows has recruited an
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inquiry group of three to four other teacher educators to pilot and critique the
materials that they have developed. These materials are being used in a range of
teacher education contexts: methods courses for elementary or secondary teachers,
mathematics content courses, and courses for in-service teachers. These materials
are shared as LessonSketch experiences that teacher candidates complete, with those
experiences including representations of classroom practice, as well as ancillary
materials that function as teacher educators’ guides to these materials.

LessonSketch currently has two kinds of users, advanced and basic. Both types
of users can create depictions, or storyboards that are used to represent classroom
activity with a graphic language made of cartoon characters. These representations
can include mathematical inscriptions and diagrams as well as pictures of student
work that can be placed on student papers or on the board of the depicted class-
room. Speech in the classroom can be represented in text or in audio files,
embedded in the depictions.

Advanced users also have access to a tool that allows them to author the agendas
or scripts that the platform uses to run the experiences that advanced users set up for
basic users. Advanced users can share those experiences with other teacher edu-
cators who can then modify the underlying agendas to customize the experiences
for their teacher candidates (Herbst, Aaron, & Chieu, 2013). The platform supports
the assignment of these experiences to students and allows teacher educators to
review and provide feedback on what their students have done. The experiences
students complete may include their annotation of video clips, their own creation of
depictions, or their responses to prompts, all of which can then be annotated by
their instructors using LessonSketch’s Annotate tool. These experiences, the
agendas that create them, and the depictions that are used in them are the teacher
education materials that the fellows are creating.

To summarize, one might describe the LessonSketch platform as an environment
that provides teacher educators with editable experiences for teacher candidates,
editable depictions of classroom interaction, and structures that support shared
analysis of teacher candidate data. The LR+D fellows have been exploring the
affordances of these capabilities for practice-based teacher education.

12.4 Two Experiences that Illustrate What Teacher
Educators Have Created and How Their Teacher
Candidates Interact with Experiences

In this section, focusing on the work of two of the fellows, Janet Walkoe and Emina
Alibegović, we illustrate the sorts of experiences teacher educators have been
creating for their teacher candidates and what it is like when teacher candidates
interact with these materials.
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12.4.1 Representing Student Thinking in a Methods Course

Fellow Janet Walkoe’s goal is to allow teacher candidates to see and think about
student thinking using information gathered in the classroom context as well as
“behind the scenes” deeper insight into students’ ideas. Central to the experience
she has created, and a key resource in the materials she is creating, is a represen-
tation of teaching that teacher candidates are asked to analyze as homework to be
done outside of class. In creating this representation of teaching for her class,
Walkoe uses a blend of two different kinds of media; she uses student interview
videos alongside depictions of classroom interaction (see Walkoe & Levin, 2018).
For example, a classroom depiction displays students beginning to work on a
proportional reasoning task in small groups; the task describes a pink paint mixture
that is created by mixing three liters of red paint with four liters of white paint.
When asked how to scale down the paint mixture to get one liter of pink paint, one
student suggests mixing 3/4 L of red paint with 1/4 L of white paint. In the
associated video, a cognitive interviewer delves into that student’s way of thinking
about the task by asking him questions that elicit and clarify his thinking. This array
of media allows Walkoe to foreground skills involved in noticing student thinking.

Before beginning their interaction with the experience Walkoe has created,
teacher candidates work on the paint-mixing task themselves. At the start of the
experience, Walkoe uses the Media Show capacity of LessonSketch to show teacher
candidates a classroom depiction in which a student, Raj, discusses the problem
with his peers. Then, using the Question capacity of LessonSketch, teacher candi-
dates are asked a series of open-ended questions, including what questions they as
teachers would ask to probe Raj’s thinking. Walkoe follows this by using Media
Show again to have teacher candidates see how Raj thought about the problem in
more detail, by watching a set of clips from a cognitive interview with Raj. The
experience then returns to similar questions about Raj’s thinking and asks teacher
candidates how they might now want to interact with Raj in the classroom.
Sequencing the tasks in the experience in this way supports teacher candidates in
delving deeper into student thinking and using that analysis to inform questions
they would ask the student in the classroom.

To illustrate how Walkoe’s experience may help support teacher candidates’
practice, we present the work of one teacher candidate. Donna, a teacher candidate
enrolled in a mathematics methods course, interacted with the LessonSketch
experience as part of a homework assignment for the methods course. Below we
quote some of her written responses to prompts provided in the experience.

After viewing the initial depicted classroom scene, Donna wrote that Raj was
struggling with ratios and fractions. When asked what questions she would want to
ask him to probe his thinking, the types of questions she suggested were general,
focusing primarily on what he was thinking about or how he obtained his initial
answer. For example, Donna said she would ask Raj: “At first you thought the
answer was 1/4 white and 3/4 red. How did you get your answer? Why did you
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change your answer to 3/4 white and 1/4 red? What were you thinking about? Can
you explain how you created these fractions?”

The interview clip allowed Donna to see more detail in Raj’s thinking and to
realize that the richness of his ideas goes beyond what was initially seen in the
classroom depiction. As she watched the first interview clip, her attention was
drawn more to Raj’s thinking and the details of his ideas, as intended. She was able
to focus and articulate specific details about his thinking:

When Raj talks about the numbers being ‘too far apart in value’ I suppose he is talking
about 1/4 and 3/4. He then points to a number and says it is greater than another number
and another number is greater than that. I’m not quite sure what he means by this. Maybe he
is thinking about these numbers on a number line and the numbers aren’t as close together
as he originally thought. Maybe he is confusing their value or doesn’t have the necessary
number sense with fractions.

Donna is beginning to analyze his thinking, which is arguably a deeper way of
attending to student thinking (Sherin & van Es, 2009) than the general way she
discussed his thinking prior to watching the video clip.

When asked what questions she would want to ask Raj after watching the video
clips, Donna suggested more specific questions, related to details about Raj’s
thinking:

How did you get your original answer? What made you think your answer was wrong?
Explain? Can you explain what you mean by 3L of red paint and 1L of white paint don’t
represent 3/4 and 1/4? Where did you get 3/4 and 1/4 from? What do you mean by 3/4 and
1/4 are too far apart? How does this affect your answer and reasoning? How do you know
this value is greater than this value?

Seeing more detail in Raj’s thinking supported Donna in crafting more specific
questions to elicit Raj’s thinking. This is the kind of work teachers do in classroom
practice but have little chance to practice outside the classroom. Allowing details
about student thinking to guide questioning pushes questions to have a different
focus. For example, Donna’s earlier questions focused on “why” or “how,” while
her later questions included “where did you get?” and “what do you mean by?”
which have a different character.

Watching the interview also allowed Donna to see some of the conditions that
helped elicit Raj’s thinking. She commented, “I think once he was using a pencil
and paper and making equations and not just thinking about the problem in his
head, he remembered or realized the process to make the ratios proportionate.”
Donna also attended to the features of the interviewer’s questions and prompts. “To
elicit Raj’s response the interviewer purposefully uses questions to elicit, probe, and
connect Raj’s mathematical ideas to his answer. This questioning supports his
reasoning about this concept.” Here Donna sees the direct relationship between the
types of questions the interviewer asked and the detail in Raj’s thinking the
questioning elicited.

This LessonSketch experience allowed Donna to connect individual student’s
thinking to the larger classroom situation. She was able to see the richness of
student thinking that lay behind the small piece visible in the classroom. When
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asked whether Raj’s thinking in the interview surprised her, she commented, “This
did surprise me. This was inconsistent with my ideas about what he would do [from
the depiction]. I thought he would struggle with [the problem] more and need more
prompting.” The interview clips allowed Donna to see that the depth of student
thinking went beyond the surface of what was visible in the classroom. These clips
raise important questions for teacher candidates, like: How can I bring greater
depths of student thinking into my classroom on a regular basis? and What do I do
as a teacher if I cannot do cognitive interviews with every student in my class?

12.4.2 Representing Classroom Teaching in a Mathematics
Course

Fellow Emina Alibegović also uses representations of teaching in her LessonSketch
experiences, in this case, to help teacher candidates see connections between their
geometry content course and their future as teachers. Alibegović uses animations
created by the Thought Experiments in Mathematics Teaching (ThEMaT) project to
represent interactions in secondary mathematics classrooms and that are available in
the LessonSketch platform. The experience we focus on uses The Midpoint
Quadrilateral. Through interacting with these animations, Alibegović’s teacher
candidates are able to experience how mathematical content knowledge is relevant
to leading mathematical discussions.

The first encounter the teacher candidates have with the Midpoint Quadrilateral
Theorem is through their own exploration and experimentation. They are initially
asked to construct a quadrilateral inside the Geogebra platform, to construct mid-
points of each side, connect the consecutive points with segments, and record all the
observations they can make in response to an open-ended question. Shortly
thereafter they are asked to prove their conjectures and submit those proofs. Using
the discussion forum capability of LessonSketch, Alibegović’s experience asks
teacher candidates to collaborate on improving the proofs by providing each other
feedback on their proofs.

Once the students have sufficient time to think about the theorem and the proof,
they are then shown the animation using Media Show. In the animation, the teacher
aims to teach a class about the isosceles trapezoid and its midpoint quadrilateral, the
rhombus. The teacher introduces the idea of developing a new theorem by
reminding the students of the corresponding theorem for rectangles; she then
introduces the definition of the isosceles trapezoid, asks the students to come up
with properties of isosceles trapezoids, and finally asks them to make conjectures
about the midpoint quadrilateral of an isosceles trapezoid. After watching this
animation, teacher candidates are asked questions that will get them thinking about
the mathematical decisions that underlie the teachers’ actions in this classroom
interaction. Specifically, they are asked to consider the teacher’s rationale for
choosing this particular sequencing of ideas. Here are some example excerpts from
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teacher candidates’ responses. These responses show the teacher candidates
engaging in consideration of the unfolding of the mathematical ideas and in jus-
tifying the actions of the teacher in terms of this unfolding.

• I think to start with a rectangle is a easy way to show that the midpoints form a
rhombus. Students can use the Pythagorean theorem to easily solve for, or see
what the length of the rhombus will be, and again easily see that they all end up
being the same a^2 + b^2 = c^2. Moving next to the trapezoid should let stu-
dents see that there will still be a relationship between the sides made by
connecting the midpoints.

• By starting with a rectangle, the students already have some intuition about what
is going on when the trapezoid is experimented with. The difference between a
rectangle and an isosceles trapezoid is some extension on one side in the x
direction. From Proof 2, it is clear that this will keep the inscribed shape a
rhombus as it was under the rectangle. This is a sequence that will help the
students start to make this connection.

This animation allows these teacher candidates to see and evaluate one particular
sequencing of this material, pushing them to consider the role of the mathematics in
the interaction. Teacher candidates were then offered an opportunity to develop
their own sequencing of the material. In their responses to this prompt, many were
influenced by the sequencing outlined in the animation, but conveyed that they
thought the scenario was insufficiently student-centered and outlined activities to
remedy that.

Alibegović’s experience continues with another excerpt from the animation in
which students in the same class share their conjectures. Two students make
arguments that the midpoint quadrilateral for an isosceles trapezoid is a rhombus
and a kite, respectively. The student who presented an informal justification for the
kite, Beta, is then told that in fact the answer is a rhombus. Teacher candidates
demonstrated dissatisfaction with this development, most notably through their
discussion of the role of definition. In focusing on the role of the definition in the
classroom interaction, they are giving evidence that the experience helps them
articulate connections between the mathematical content of the course and ways in
which they as teachers might structure class discussions of such content. Here are
three illustrative teacher candidate responses:

• Beta, the student who said the shape is a kite, is wrong because she forgot about
the part of the definition that “no opposite sides are congruent,” thus why a
rhombus cannot be a kite.

• Well, using my definitions, or the definitions in the Geometry text I used, it is a
kite and a rhombus. So, I guess I would have to know what definitions we are
using. I would not have told Beta she was wrong, especially because she is using
good reasoning on why it is a kite.

• If I were the teacher I would have asked Alpha and Beta to give me their
definition of a kite and a rhombus. My definition of a kite is a quadrilateral
whose adjacent sides are congruent. The textbook I was using said a kite was a

208 D. Chazan et al.



quadrilateral whose adjacent sides are congruent and whose opposing sides are
not congruent. If we were to go with my definition, then a rhombus would be a
specific type of kite, but if we were to go off the textbook’s definition a rhombus
would not be a kite. […] This is definitely something the class would need to
discuss and not just glaze over.

By responding to this animation, the teacher candidates are engaging both with the
mathematical content of the definitions of a rhombus and a kite, but also with the
teaching practices of interpreting and responding to student thinking. Incorporating
this representation of teaching into her geometry course allows Alibegović to make
connections between mathematical content and the decisions of teaching around
lesson planning, supporting mathematical practices of proving and making con-
jectures, and interpreting and responding to student thinking. Having teacher can-
didates respond to the prompts about the animation both individually and to one
another in forums provides Alibegović with rich assessment data about their
understandings of the mathematical content in the context of actual teaching
practice.

12.5 Describing the Fellows’ Teacher Education Materials

Having described the functionalities that LessonSketch provides to teacher educa-
tors to do their work and having illustrated what two experiences are like and how
students interact with them, we turn now to the central question of the chapter: How
might one characterize the content of the materials that the LR+D fellows provide
to teacher candidates through the experiences in LessonSketch? This section
explores the utility of a set of concepts offered by Grossman et al. (2009) that they
describe as pedagogies of practice. They suggest that across fields, professional
education can be usefully described as involving representations of practice, de-
composition of the complexity of practice into practices, and then approximations
of practice. In working with these concepts to describe the curriculum of teacher
education, we suggest that these concepts use the word practice in three ways
(Lampert, 2010, suggests four views of practice, one of which we do not include
here). The complexity of teaching practice (singular) is decomposed into the
practices (plural) that constitute the curriculum of teacher education methods
courses (Fig. 12.1). Then, in order to have teacher candidates develop skills and
expertise related to these practices, teacher educators create opportunities for
practicing these practices in settings that approximate the complexity of teaching
practice (Fig. 12.1).

As the settings for approximating practice become more complex and more
closely approximate practice, teacher candidates gradually learn to stitch the
practices together into the practice of a well-prepared beginner (Darling-Hammond,
2012).
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In the rest of this section, we explore relationships between Grossman et al.’s
(2009) pedagogies of practice and the teacher education curricular artifacts created
by the LR+D fellows. With these artifacts, teacher candidates are given a variety of
opportunities for practicing aspects of the specific practices that their instructors
have chosen as focal. In addition, teacher educators and their students make use of
tools provided by the platform to represent the complexity of teaching practice, to
represent particular component practices, and to represent candidates’ attempts to
enact these practices. We begin with how teacher educators represent complexities
of practice, move to how they decompose practice into component practices and
represent those practices, and then finally to how they create opportunities for
teacher candidates to practice skills relevant to these practices and to represent their
efforts.

12.5.1 Representing Practice

The use of artifacts of practice in teacher education for representing practice is well
established; “Using real artifacts, records, moments, events and tasks permits a kind
of study and analysis that is impossible in the abstract” (Ball & Cohen, 1999, p. 24).
In this effort, teacher educators collect, organize, and interpret aspects of classroom
interaction to represent practice (Herbst et al., 2016, for example, distinguish
between found and interpreted representations of practice, as well as ones designed
by teacher educators). The artifacts that are created by this activity, like video
recordings and written transcripts of classroom dialogue, both make certain aspects
of teaching visible to teacher candidates, as well as give teacher candidates an
overall sense of the work. Teacher educators also design artifacts—such as cases
(Lacey & Merseth, 1993) or animations (Chazan & Herbst, 2012)—to act as

Fig. 12.1 Three uses of practice in practice-based teacher education
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representations of practice. The LessonSketch platform supports work with a wide
range of artifacts that represent practice in different ways. In addition to being able
to display and use those representations in the context of experiences, the
LessonSketch platform also supports the design and creation of depictions, or
storyboards, that are used to represent classrooms with cartoon characters. Below
we describe how the Fellows are incorporating representations of practice in their
curricular materials.

We begin with ways in which the LR+D Fellows represent instances of practice
without decomposing the practice into practices. Subsequent sections will also
examine how the fellows represent practice in the context of decomposing practice
into practices, as well as how they support their teacher candidates in representing
practicing the candidates do. For example, in the context of a course focused on
research on learning and its relationship to teaching, in order to make a point about
ways in which societal dynamics make themselves felt in the classroom, Fellow
Lawrence Clark has designed and created a depiction to invite teacher candidates to
interact with a story from his own teaching (based on The Case of Mya in Chazan,
Herbst & Clark, 2016). In order to meet his goals, in addition to representing
classroom interaction, this depiction also includes the teacher’s thinking as the story
plays out and the dilemmas that arose for him when what seemed initially to be a
sensible solution had unanticipated negative consequences. In creating the depic-
tion, Clark represented the teacher and student thoughts (note the thought bubbles
in Fig. 12.2) involving race that were then taken up in different ways by teacher
candidates as they interacted with the finalized depiction (Herbst et al., 2017). But,
in contrast to the work that will be highlighted in future sections, there is not a
particular aspect of teaching for teacher candidates to practice. Instead, the focus
here is on teaching as a complex and intertwined practice nested within social
structures that created dilemmas for teachers that must be managed, but cannot be
solved (Lampert, 1985).

As described earlier, Fellow Emina Alibegović, who teaches mathematics con-
tent courses, also uses designed representations. To help teacher candidates see
connections between a geometry course and their future as teachers, she uses two
animations created by the Thought Experiments in Mathematics Teaching
(ThEMaT) project and available in the LessonSketch platform, The Midpoint
Quadrilateral and Postulates and Theorems on Parallel Lines.2 Similarly, Fellow
Orly Buchbinder incorporates high school students’ conjectures when doing
geometry tasks into her curricular materials for a geometry content course. Without
decomposing practice and providing opportunities to practice specific skills in
teaching, she uses the student conjectures and the question of whether these con-
jectures are a coincidence or a representative case of a general rule (Buchbinder,
Zodik, Ron, & Cook, 2017) as a way to suggest that teachers’ mathematical
understandings are a resource for responding to student work.

2These can be seen among the animations in LessonSketch’s Original Collection
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Fellows have also used artifacts of practice like video of actual classrooms.
These videos are often purposefully chosen by a teacher educator and perhaps even
carefully edited by a production team. Videos may have some advantages in sug-
gesting the viability of a vision for practice in real classrooms (Brophy, 2004, p. xi).
Fellow Kristen Bieda uses video records of teaching of The Pool Border Problem
(Boaler & Humphreys, 2005) to provide teacher candidates with an opportunity to
see real students engaging in Constructing viable arguments and critiquing the
reasoning of others (CCSSO, 2010, Standard for Mathematical Practice Three). In
choosing to use video, and this video in particular, Bieda is representing a particular
kind of reform-minded mathematics teaching practice her teacher candidates may
not otherwise encounter and suggesting that such teaching practice be emulated.

12.5.2 Decomposing Practice into Practices
and Representing Practices

As they strive to develop materials for practice-based teacher education, several of
the fellows have been decomposing teaching practice into constituent practices and
using representations of classroom interaction to engage teacher candidates with

Fig. 12.2 Depiction showing Mya switching into a predominantly white class. (Graphics are ©
The Regents of the University of Michigan, used with permission.)
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specific practices. For example, as described earlier, Fellow Janet Walkoe suggests
to teacher candidates that attending to and responding to student thinking is an
important component of the work of teaching in mathematics classrooms. Similarly,
Fellow Rob Wieman focuses on the launching of an exploratory mathematical task
as a particular task of teaching (Wieman & Jansen, 2016) that may be over-
whelming to a novice teacher. To do so, he begins his module with a representation
of the range of initial reactions students may have when they first encounter an
exploratory task (see Fig. 12.3).

But, not only has Wieman decomposed teaching into practices of such a grain
size as launching a task, he also has developed templates for his teacher candidates
to use to assess and then respond to student questions in the context of launching an
exploratory task (For a presentation of the rationale for this structure, see http://
resourcecenters2015.videohall.com/presentations/537). Wieman uses the
closed-ended question tool in the LessonSketch platform to provide teacher can-
didates with four options for classifying student questions and six options for
potential responses to student questions. The provision of these options is intended
to help teacher candidates develop ways of describing a limited set of potential
responses that might serve as a resource in their initial forays in launching
exploratory tasks. Wieman’s decomposition of teaching practice relies on a

Fig. 12.3 Depiction showing variety of potential student comments during a launch. (Graphics
are © The Regents of the University of Michigan, used with permission.)
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representation of one of those practices (launching a task) and the platform allows
him to engage his students in the decomposition of this practice into discursive
moves.

12.5.3 Approximations of Practice and Representing One’s
Practicing

“Approximations of practice refer to opportunities for novices to engage in prac-
tices that are more or less proximal to the practices of a profession” (Grossman
et al., 2009, p. 2049). As described in the three subsections below, in the work of
the fellows, these opportunities have ranged from asking teacher candidates to
choose a response from a specified set of options, to describing how they would
respond to fictional students, to carrying out a particular task of teaching in a field
placement and creating a representation of what happened.

12.5.3.1 Selecting a Response from a Fixed Set of Options

A number of fellows have created experiences where teacher candidates practice
making teaching decisions. Fellow Woong Lim begins one experience with a
middle school student’s response to an algebraic task. He then provides three
different ways in which teacher candidates from earlier years chose to provide
feedback and asks his teacher candidates to describe how they would respond as
teachers. Similarly, Fellow Karl Kosko has teacher candidates choose between at
least two possible depicted teacher actions and then see how the interaction con-
tinues. For example, in one module for elementary teacher candidates, teacher
candidates are asked to choose between the following two moves: “The teacher
needs to encourage additional student participation to have other strategies for how
the problem was solved and compare those strategies” or “The teacher needs to
press Jasmine to explain her thinking more clearly until Jasmine recognizes
something is not working with her explanation” (Kosko, 2016, p. 1342). The
response they select determines what they will see next in the depicted classroom
scenario. This type of ‘choose your own adventure’ activity allows teacher candi-
dates to play out different scenarios to see how different teacher decisions can
influence the course of a lesson, without the high stakes of interactions with actual
students (Kosko, 2014).

12.5.3.2 Respond as a Teacher

Many of the fellows ask their teacher candidates to respond to questions about some
aspect of classroom interaction from the perspective of a teacher. For example,
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coming from a complex instruction perspective (Cohen & Lotan, 2014), Fellow
Sandra Crespo has created an experience designed to help teacher candidates rec-
ognize students’ mathematical strengths (Featherstone et al., 2011) and to practice
articulating those strengths (see Bannister, Kalinec-Craig, Bowen, & Crespo,
2018). Teacher candidates are asked to fill in the following sentence frame to
identify potential strengths in the students’ mathematical thinking from a given
depiction: It was smart when <name of student> did/said <evidence from the
depiction>, because it <how does strength support students’ math learning>. By
completing such sentence frames, teacher candidates are given an opportunity to
practice responding to student thinking, but with a particular goal and structure in
mind. She aims to have teacher candidates develop awareness of deficit frames and
language they may bring to describing students’ thinking and to provide them with
support to begin the process of shifting those frames and language.

Another Fellow, William Zahner, also asks his teacher candidates to respond to a
depiction as if they were the teacher. In Zahner’s case, he asks teacher candidates to
focus on a specific mathematical concept—defining integer exponents. Zahner
creates a depiction where two students provide explanations for different ways they
are thinking about a0 (Fig. 12.4).

Fig. 12.4 1 or 0? Articulating that students have different ideas. (Graphics are © The Regents of
the University of Michigan, used with permission.)
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Then, as shown in Fig. 12.5, Zahner asks the teacher candidates to assume they
are the teacher and to explain what they would do next to respond to these ideas.

12.5.4 “Before” and “After” Depictions

Finally, not only can teacher educators ask their students to respond to particular
depictions of practice, but they can also ask them to create storyboards as a way
both to indicate what they might do when facing such a situation and what they
actually did when facing such a situation in a field placement. Fellow Joel Amidon
has been thinking about the LessonSketch depictions in his module as coming from
a “virtual field placement” that his teacher candidates visit three times over the
course of the semester (Amidon & Casey, 2016; Amidon, Chazan,
Grosser-Clarkson, & Fleming, 2017). In the context of work on eliciting student
thinking, he assigns a common interview task to be carried out by each teacher
candidate in their own field placement. He then asks his teacher candidates to depict
both how they expect their interaction with their interviewee to go and later how it
actually transpired.

Fig. 12.5 Teacher candidates asked to respond to a situation where two students disagree.
(Graphics are © The Regents of the University of Michigan, used with permission.)
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Similarly, another Fellow, Wendy Rose Aaron, has her students make story-
boards depicting their predictions about how enacting a high-leverage instructional
practice (e.g., eliciting and responding to student contributions) will go in their
classroom (Herbst et al., 2016). Aaron’s students are in-service teachers, so she asks
them to enact the lesson and to video record the enactment. The teachers are then
asked to choose an excerpt from the lesson where they are enacting the focal
practice and to create a cartoon depicting what actually happened. The teachers post
their depictions to a class forum, where they are asked to comment on the depic-
tions created by their peers.

Both Amidon and Aaron suggest that to have teacher candidates learn from
making these depictions it is important for teacher candidates to compare their
“before” and “after” depictions and reflect on these differences.

12.6 Summary and Concluding Thoughts

To summarize, in the production of their materials for practice-based, online teacher
education, the LessonSketch Research + Development Fellows have decomposed
teaching practice into core practices of teaching and have created opportunities for
the practicing of component skills of these core practices. The fellows have had
teacher candidates practice by selecting choices from a fixed set of options, by
describing how they would respond as teachers, and by asking teacher candidates to
carry out a practice with students and then represent what happened. Throughout
this work, fellows have engaged in, and have asked their teacher candidates to
engage in, representing practice. The representations of practice that they have
created represent the complexity of teaching practice, core practices of teaching,
and the attempts of teacher candidates to practice component skills of these core
practices. As the fellows have done so, the capacities of the Depict tool in
LessonSketch to design representations have been useful to represent practice in all
of these ways. As a result of the fellows’ work in this digital environment, the
pedagogies of practice described by Grossman and her colleagues have come
crystallized into curricular artifacts: representing practice has led to the creation
of representations of practice, decomposing practice has led to representations of
decompositions of practice, and approximating practice has led to representations of
opportunities for practicing teaching. In this sense, the concepts that Grossman et al.
(2009) described as pedagogies of practice have turned out to be useful in
describing the curricular artifacts created by the LR+D fellows.
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