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Chapter 3
Students’ Thinking About Integer Open 
Number Sentences

Jessica P. Bishop, Lisa L. Lamb, Randolph A. Philipp, Ian Whitacre, 
and Bonnie P. Schappelle

Abstract  We share a subset of the 41 underlying strategies that comprise five ways 
of reasoning about integer addition and subtraction: formal, order-based, analogy-
based, computational, and emergent. The examples of the strategies are designed to 
provide clear comparisons and contrasts to support both teachers and researchers in 
understanding specific strategies within the ways of reasoning. The ability to cate-
gorize strategies into one of five ways of reasoning may enable teachers to organize 
knowledge of student thinking in ways that are useable and accessible for them and 
provide researchers with sufficient information about the strategies and ways of 
reasoning such that they can reliably build on this work.

Imagine how a student might solve the problem -3 + 6 =  . Below we share several 
responses we heard from K–12 students who participated in our study.

Oscar:	 Oscar reaches for a provided number line and places his pen at -3. He 
moves his pen to the right one unit at a time while he counts, “One, 
two, three, four, five, six.” His pen is now at 3 on the number line, and 
he answers, “Three” (Grade 7).

Alex:	 “It’s like I owe my friend three dollars. And my mom gives me six 
dollars. I pay my friend three of the dollars that I got from my mom, 
and I still have three dollars, so my answer is three” (Grade 4).

Cole:	 “Three. The signs [for -3 and 6] are different, so I subtracted them and 
took the sign of the bigger number.” When asked what he subtracted, 
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Cole continued, “I subtracted six minus three, which is three. Six is 
bigger than three, so I knew the answer had to be positive since six is 
positive.” When asked why it mattered which number was larger, 
Cole posed a related problem of -6 + 3. “Look, if it was, uh, like nega-
tive six plus three, you still subtract six minus three because they’re 
different signs. But if six is negative [with emphasis], then the answer 
is negative three” (Grade 7).

Fran-Olga:	 “I’ll just start by counting. [Fran-Olga moves her lips, presumably 
counting under her breath.] I don’t know. It’s either negative nine or 
three.” When asked to explain how she arrived at each answer, Fran-
Olga replied, “Well if I go down into the negatives, it’s -4, -5, -6, -7, 
-8, -9. But if I go the other way, then [it’s] -2, -1, 0, 1, 2, 3. [Long 
pause] Maybe it’s switched. Wait. When I did three minus five, it [the 
operation in the problem] was minusing, and this one [this problem] 
is plussing. I’m thinking that since this one [points to 3 – 5 =  ] was 
minus and I was going into the negatives, that this one [points to 
-3 + 6 =  ] goes up. I think it’s three now” (Grade 2).

These responses are representative of the reasoning students across multiple 
grade levels used when solving open number sentences such as -3  +  6  =  , 
5 –   = 8, and  + -2 = -10. When students solved these types of problems and 
shared their responses with us, we found that we could characterize their thinking 
about integer open number sentences into one of five broad ways of reasoning: 
order-based, analogy-based, computational, formal, and emergent. For us, a way of 
reasoning (WoR) about integer addition and subtraction involves a conceptualiza-
tion of signed numbers in which the student draws on certain affordances or math-
ematical properties of the underlying conceptualization to engage in integer 
arithmetic. For example, in using an order-based WoR, one draws on the ordered 
and sequential nature of the set of integers and uses that property to reason about 
integer addition. We see this approach in both Oscar’s and Fran-Olga’s responses. In 
contrast, in a computational WoR, one treats numbers more abstractly and relies on 
rules and procedures to solve problems as we see in Cole’s response.

Although we briefly describe the five broad ways of reasoning (for a more detailed 
description, see Bishop et al., 2014), our goal in this chapter is to share the underlying 
strategies students used within each WoR about integer addition and subtraction. Our 
hope is that researchers and teachers will find both the more general ways of reason-
ing and the specific and detailed strategies useful to better understand students’ 
approaches to solving open number sentences and to guide future instruction.

�Connections to Theory and Building From Existing Research

Our focus is on students’ mathematical thinking in the context of signed numbers, 
with a particular focus on how children think about integer addition and subtraction. 
Within mathematics education is a well-established tradition of studying students’ 
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understanding of mathematical topics, including whole-number operations 
(Carpenter, Fennema, Franke, Levi, & Empson, 2014; Fuson, 1992), fractions 
(Empson & Levi, 2011; Hackenberg, 2010; Steffe & Olive, 2010), quantitative rea-
soning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Moore, 2010), limits and infin-
ity (Swinyard & Larsen, 2012; Tall & Vinner, 1981; Williams, 1991), and integers 
(Bishop et  al., 2014; Bofferding, 2014; Peled, 1991). Drawing from a Piagetian 
tradition, researchers working in this vein are generally interested in “… the way the 
child reasoned and the difficulties he encountered, the mistakes he made, his rea-
sons for making them, and the methods he came up with in order to get to the right 
answers” (Piaget, as quoted in an interview with Bringuier, 1980, p. 9). Studies of 
students’ mathematical thinking and cognition are grounded in constructivist theo-
ries of knowing and learning, and researchers within this tradition view students’ 
mathematical thinking as important in its own right and distinct from established 
disciplinary views of a given topic as well as commonplace adult conceptions of 
mathematical topics.

Although a common constructivist heritage unites research in this tradition, 
scholars vary in their research designs and data sources (e.g., paired interviews in 
teaching experiment settings, individual, clinical interviews, or design experiments 
in classroom settings), their units of analysis (e.g., student reasoning about a par-
ticular task or evidence of construction of a particular mental scheme/structure), and 
the extent to which they incorporate Piagetian constructs such as operations, struc-
tures, and interiorization/internalized operations into analyses. In this chapter, we 
do not analyze students’ mathematical thinking by looking for evidence of particu-
lar schemes, structures, or mental operations (e.g., levels of units). Instead we docu-
ment strategies that students use when solving integer addition and subtraction 
problems. Through these more detailed strategies and their relationships to broader 
ways of reasoning, we seek to identify, describe, and categorize key features and 
patterns in students’ problem-solving approaches that are general enough to provide 
a sense of coherence, yet are nuanced enough to sufficiently differentiate among 
students’ solutions. We now turn to the literature base for a brief review of research 
related to students’ conceptions of integers and the specific strategies they bring to 
bear when solving problems.

Students’ struggles operating with negative numbers are well documented 
(Christou & Vosniadou, 2012; Gallardo, 1995; Kloosterman, 2012; Vlassis, 2002). 
Whereas Mora and Reck (2004) identified rules and procedures that students 
attempted to use when solving problems with negative numbers, others have found 
that children can make productive use of order, leveraging the sequential and 
ordered nature of numbers, to solve such problems, particularly with number lines 
(e.g., Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2011; Bishop, Lamb, Philipp, 
Whitacre, & Schappelle, 2014; Bofferding, 2014; Peled, 1991; Peled, Mukhopadhyay, 
& Resnick, 1989). Those using other lines of research have studied students’ use of 
metaphors (see, e.g., Chaps. 5 and 6) and the efficacy of different contexts when 
engaging with integers and integer arithmetic (see, e.g., Chaps. 4 and 9). For exam-
ple, Chiu (2001) identified categories of metaphors that students and experts used 
when solving integer problems, and Stephan and Akyuz (2012) developed an 
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instructional sequence about financial contexts (with a focus on net worth and incor-
porating the use of number lines) that positively supported students’ understanding 
of integer addition and subtraction. Further, Murray (1985) and Bishop, Lamb, 
Philipp, Whitacre, and Schappelle (2016a, 2016b) found that some students could 
apply logical deductions based on the underlying structure of our number system to 
solve or explain their reasoning about integer open number sentences. Murray found 
that students used logic to solve problems by comparing a previously solved prob-
lem and a related new problem (e.g., 5 + -3 and 5 – -3) to aid in solving the new 
problem.

Because our focus in this chapter is on students’ strategies for integer addition 
and subtraction, our above synthesis of existing research was also focused on differ-
ent problem-solving approaches. In Table  3.1, we summarize problem-solving 
approaches documented in other scholar’s work on integers and integer operations 
along with a brief example and relevant references for each.

Table 3.1  Literature-based problem-solving approaches for integer arithmetic

Problem-solving 
approach for 
integer arithmetic Example/explanation References

Rules and 
procedures

Operations with negative numbers are 
performed using rules, either correctly or 
incorrectly (e.g., applying rules for 
multiplication of signed numbers to addition 
and subtraction problems).

Chiu (2001) and Mora and 
Reck (2004)

Financial/
transactional 
context (debt, net 
worth, etc.)

Operations with negative numbers are 
related to money or other transactional 
contexts (giving/receiving) in which 
negatives are typically associated with debt 
or owing.

Chiu (2001), Peled and 
Carraher (2006), and Stephan 
and Akyuz (2012)

Other 
oppositional 
contexts and 
quantities

Negative numbers are used to represent a 
quantity of items with an unfavorable 
connotation (and in opposition to the 
positive quantity). For example, using two 
colors of chips or blocks to represent 
positive and negative numbers.

Chiu (2001) and Peled (1991)

Analogy to whole 
number

Negative numbers are related to whole 
numbers when solving integer arithmetic 
problems (e.g., using the known fact that 
5 – 2 = 3 to evaluate the unknown 
expression -5 – -2).

Human and Murray (1987) 
and Murray (1985)

Number line, 
motion/movement

Imposing an ordering on signed numbers or 
using an existing ordering (as provided in a 
number line) and reasoning about addition/
subtraction as moving forward and 
backward.

Chiu (2001), Behrend and 
Mohs (2005–2006), 
Bofferding (2014), Murray 
(1985), Peled et al. (1989), 
Peled (1991), and Stephan 
and Akyuz (2012)

Logic Comparing related problems such as 6 + -2 
and 6 + 2 and using a fundamental 
mathematical property (e.g., inverse 
operations) to solve the related problem.

Human and Murray (1987)
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Across the literature that documents differing conceptions of integers and integer 
arithmetic, we see a variety of productive problem-solving approaches. In this chap-
ter we build on this research by describing students’ integer strategies, including 
those in Table 3.1, and organizing those strategies within the broader ways of rea-
soning. We hope that this expanded framework, which combines both ways of rea-
soning and strategies, will support teachers to develop and use this knowledge in 
their instruction.

�Conceptual Framework

Our goal within this chapter is to present a more nuanced and complete view of our 
ways -of -reasoning framework by defining and exemplifying many of the strategies 
within each WoR. To do so, we briefly describe the broader ways of reasoning into 
which the more detailed strategies are organized (see also Bishop et al., 2014; Bishop 
et al., 2016a for previous versions of the ways of reasoning). As mentioned earlier, a 
way of reasoning (WoR) is a general conceptualization and approach to solving inte-
ger addition and subtraction problems that is characterized on the bases of key fea-
tures of students’ solutions and the underlying views of number and operations at 
work. We identified five ways of reasoning that students across all participant groups 
in our study used when solving open number sentences: order-based, analogy-based, 
computational, formal, and emergent. (In earlier publications, we used different 
names for analogy-based and emergent reasoning, referring to analogy-based as mag-
nitude and emergent as developmental or limited.) In Table 3.2 we define each WoR.

In the responses shared in the introduction to this chapter, four of the five ways of 
reasoning are represented. Alex’s comparison of negative numbers to debt is an 
example of analogy-based reasoning, whereas Cole used computational reasoning 
when he invoked rules and properties in his solution. Oscar and Fran-Olga used 
order-based reasoning by ordering spoken number words and their corresponding 
written symbols to determine what was before and after a given number and then 
using these sequences to solve the problem. Fran-Olga’s response also reflects a 
formal way of reasoning: In her explanation she compared the operations of addition 
and subtraction and used her informal understanding of inverses to argue that her 
answer was a necessary consequence of the relation between addition and subtrac-
tion and her assumptions from a previous problem. Within each WoR we wanted to 
identify specific and detailed strategies students brought to bear on each task (e.g., 
counting as a particular instantiation of the order-based WoR seen in Fran-Olga’s 
response or the use of a number line as seen in Oscar’s order-based WoR). A strategy 
is a subcategory of a particular WoR that further describes and differentiates student 
responses within the broader WoR. We view the five ways of reasoning as an organiz-
ing structure into which we can categorize more detailed strategies on the basis of 
the underlying views of number and operation leveraged in a given strategy’s use. 
Given this view, the research questions guiding our study were the following: What 
strategies do students use when solving open number sentences with integers, and 
what is the relation among strategies and the broader ways of reasoning?

3  Students’ Thinking About Integer Open Number Sentences
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�Study Background and Methods

�Participants

The data and findings we share are from a larger program of research wherein we 
investigated student’s' conceptions of integers and integer operations across multi-
ple grade levels. We interviewed 160 students at 11 schools in five districts in a large 
urban city in the Southwestern United States. Forty students at each of Grades 2, 4, 
7, and 11 were randomly selected from students who returned consent forms. We 
chose these grades to provide a cross-sectional view of integer reasoning at different 

Table 3.2  Ways of reasoning

Ways of 
reasoning Definition

Order-based In this way of reasoning, one leverages the sequential and ordered nature of 
numbers to reason about a problem. Strategies include use of the number line 
with motion as well as counting forward or backward by 1s or another 
incrementing amount.

Analogy-based This way of reasoning is characterized by relating numbers and, in particular, 
signed numbers, to another idea, concept, or object and reasoning about 
negative numbers on the basis of behaviors observed in this other concept. At 
times, signed numbers may be related to contexts (e.g., debt or digging holes). 
Analogy-based reasoning is often tied to ideas about cardinality and 
understanding a number as having magnitude.

Formal In this way of reasoning, signed numbers are treated as formal objects that exist 
in a system and are subject to mathematical principles that govern behavior. 
Students may leverage the ideas of structural similarity, well-defined 
expressions, the structure of our number system, and fundamental principles 
(such as the field properties). This way of reasoning includes generalizing 
beyond a specific case by making a comparison to another, known, problem 
and appropriately adjusting one’s heuristic so that the logic of the approach 
remains consistent, or generalizing beyond a specific case to apply properties of 
classes of numbers, such as generalizations about zero.

Computational In this way of reasoning, one uses a procedure, rule, or calculation to arrive at 
an answer. For example, some students used a rule to change the operation of a 
given problem along with the corresponding sign of the subtrahend or second 
addend (i.e., changing 6 – -2 to 6 + 2 or 5 + -7 to 5 – 7). Students often 
explained these changes by referring to rules like “Keep Change Change” (keep 
the sign of the first quantity, change the operation, and change the sign of the 
second quantity). For a strategy to be placed into this category, the student may 
state a procedure or rule with or without sharing a justification.

Emergent This category of reasoning often reflects preliminary attempts to compute with 
signed numbers. For many strategies in this category, the domain of possible 
solutions is locally restricted to nonnegatives. For example, a child may 
overgeneralize that addition always makes larger and, as a result, claim that a 
problem for which the sum is less than one of the addends (6 +   = 4) has no 
answer. The domain of possible solutions appears to be restricted to natural 
numbers, and the effect (or possible effect) of adding a negative number is not 
considered.

J. P. Bishop et al.
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grade levels. The second and fourth graders provided insight into children’s think-
ing before school instruction; the seventh graders reflected students’ thinking imme-
diately after school instruction on integers; and the 11th graders were chosen to 
represent the endpoint of students’ integer reasoning in the K–12 setting.1 During 
the interviews we noticed that some of our elementary-grade participants had 
knowledge of integers, whereas others did not. Consequently, we reorganized our 
second- and fourth-grade participant groups for analysis purposes. All students 
were placed into one of four groups: college-track ([CT], n = 40, eleventh-grade 
students), post instruction ([PI], n = 40, seventh-grade students who had recently 
completed instruction in integers), before instruction, with negatives ([BIN], n = 39, 
second and fourth graders with knowledge of negatives), and no evidence of nega-
tives ([NEN], n = 41, second and fourth graders without knowledge of negatives). 
Group placements for second and fourth graders were made on the basis of responses 
to the introductory questions in the interview (see questions 1–4 in the Appendix).

�Problem-Solving Interview

As part of the larger study, we developed, piloted, and revised a problem-solving 
interview over a period of 2 years. In addition to the 160 participants described in 
the previous section, we conducted pilot interviews with an additional 90  K–12 
students across four interview cycles, each of which was focused on different grade 
levels of students (i.e., the first interview cycle targeted K–2 students, the second 
cycle targeted high school students, the third Grades 3–5, and the last cycle focused 
on middle school students). In each interview cycle, we tested new tasks and contin-
ued to refine the sequencing and phrasing of existing tasks to identify tasks likely to 
elicit students’ integer reasoning.

Drawing from Piaget’s method of clinical interviewing (Ginsburg, 1997), our 
initial goal with the interviews was to balance flexibility and standardization. Piaget 
described his approach as follows:

You ask, you select, you fix the questions in advance. How can we, with our adult minds, 
know what will be interesting? If you follow the child wherever his answers lead spontane-
ously, instead of guiding him with preplanned questions, you can find out something new. 
… Of course there are three or four questions we always ask, but beyond that we can 
explore the whole area instead of sticking to fixed questions. (Piaget, as cited by Bringuier, 
1980, p. 24)

Our pilot interviews were consistent with Piaget’s description of his method. For 
example, it was not initially apparent to us that the open number sentences 
-3 + 6 =   and 6 + -3 =  might encourage different reasoning; as adult experts, 

1 Note that we restricted our eleventh-grade participants to college-track students, that is, students 
who were enrolled in either calculus or precalculus during their eleventh-grade year. Our goal with 
the eleventh-grade students was to identify the best-case scenario for integer understanding when 
students finish their high school education.

3  Students’ Thinking About Integer Open Number Sentences
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we viewed -3 + 6 and 6 + -3 as equivalent because of the commutative property of 
addition. As we discovered in the pilot interviews, the location of -3 as the first or 
second addend influenced some students’ approaches to the problem. Similarly, we 
were surprised when the seemingly similar problems of 6 – -2 =   and -5 – -3 =   
(both involve subtracting a negative quantity) yielded widely differing responses 
from some children. One of our goals in conducting the pilot interviews was to 
pursue and uncover these differences in reasoning and the underlying conceptions 
from which they emerged. As a result, we routinely posed follow-up tasks to con-
firm or refute our working hypotheses about the ways students were reasoning and 
what features made problems more and less difficult. Because we customized fol-
low-up questions on the basis of the specifics of the student’s responses in the 
moment, they were not preplanned or standardized.

However, from the beginning of the project, our goal was to develop a standard-
ized set of questions that would be posed to all students in the main study and from 
which we could compare students’ reasoning within and across grade levels. In 
early 2011 we finalized the problem-solving interview and began conducting 160 
interviews across the participant groups described earlier using a standardized set of 
questions. The one-on-one interview lasted 60–90 minutes and consisted of 56 total 
problems including introductory questions, open number sentences, context prob-
lems, comparison problems, and tasks involving variables and algebra (see Appendix 
for the complete interview). We found that solving open number sentences provided 
productive opportunities for students to reason about signed numbers; consequently, 
the analyses and findings we share in this chapter are based on the 25 open number 
sentences posed to students. (These open number sentences are questions 9–14, 
16–28, and 30–35 in the interview shared in the Appendix.)

�Analysis

For each open number sentence in each interview, we assigned a code for correct-
ness and a code for the strategy (or strategies) the student used when solving the 
given problem. Each strategy was subsumed in one of the five ways of reasoning. 
For some problems, students used multiple ways of reasoning and, therefore, 
received more than one WoR code. Across all ways of reasoning, we identified a 
total of 41 strategies.2 We developed our set of codes for the 41 strategies (and the 5 
ways of reasoning) iteratively over a 3-year period. Moreover, this set of codes 
comprehensively captures the strategies students in our study used. Although some 
of the strategy codes we created are documented in existing literature (e.g., logic, 
use of number lines, converting to context), we did not use these codes a priori. 
Instead, we used a grounded theory approach to analysis so that our codes emerged 
from the student responses in the interviews (Corbin & Strauss, 2008).

2 Two of these strategies, unclear (assigned when a strategy was not clear) and other (assigned 
when a student’s response did not match an existing WoR or strategy), were used rarely and were 
not associated with one particular WoR. Although we include unclear and other as strategies, they 
are not subcategories of any single WoR.
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�Findings

In the text that follows, we expand the ways of reasoning framework by identifying 
and exemplifying the most common strategies within each WoR. We hope our cate-
gorizations will help readers to identify important differences and similarities 
among strategies and recognize the complexity and richness of students’ thinking 
about integer addition and subtraction.

�Common Strategies Within Ways of Reasoning

Across all ways of reasoning, we identified 41 total strategies. Table 3.3 identifies 
the most frequently invoked strategies within each WoR along with their overall 
percentage use. In general, we share the three most common strategies within each 
WoR in the following sections.3

3 Because computational was the most frequently used WoR, we share more of the strategies within 
this WoR, and because the strategies other than negatives like positives and converts to context 
within analogy-based WoR were used so infrequently, we share only those two.

Table 3.3  Examples of strategies within ways of reasoning and frequency of use

Way of 
reasoning Strategy examples

Percentage use (of total problems 
posed)

Order-based Number line 16.21%
Jumping to zero 3.73%
Counting by ones 3.26%

Analogy-based Negatives like positives 6.82%
Converts to context 3.32%

Computational Keep change change 16.21%
Negative sign subtractive 7.86%
Changes order of terms 6.67%
Equation 6.39%
Same signs/different signs 3.73%

Formal Infers sign 8.41%
Generalization about zero/additive 
inverses

2.63%

Logical necessity <1%
Emergent Addition makes larger/subtraction makes 

smaller
14.01%

Ignores sign 10.78%
Pascal 1.18%

3  Students’ Thinking About Integer Open Number Sentences
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Order-Based  Order-based reasoning was used on about one fourth of all problems 
posed. In this WoR, one leverages the sequential and ordered nature of numbers to 
reason about a problem. The most common strategies within this WoR were the 
number line/motion strategy, the jumping to zero strategy, and the counting by ones 
strategy. The number line/motion strategy was the most common within the order-
based WoR, used on 16% of the problems posed. When using the number line/
motion strategy, students treated the first addend and the sum (or the minuend and 
difference) as locations on the number line and the second addend (or subtrahend) 
as the number to move. The operations usually determined the direction of 
movement. To receive this code, students had to either explicitly use motion on a 
number line or share that they imagined moving on a number line when solving. For 
example, for the problem shared in the introduction, -3 + 6 =  , Oscar’s strategy 
exemplifies number line/motion. His starting point is -3, the operation of addition 
indicates movement to the right, the second addend indicates the number to move, 
and the unknown is the ending location.

Another relatively common strategy demonstrating an order-based WoR that stu-
dents used was counting by ones. Ellie, a second-grade student, counted up by ones 
to solve -3 + 6 =   and from -2 to 4 to solve the problem -2 +   = 4. She counted 
aloud saying, “Minus 2, minus 1 (raises one finger), zero (raises another finger).” 
She paused. “Wait, I lost count.” Ellie then restarted her count, “Minus 2, minus 1 
(raises one finger), zero (raises second finger), 1 (raises third finger), 2 (raises fourth 
finger), 3 (raises fifth finger), 4 (raises sixth finger).” Ellie’s final answer was 6. We 
conjecture that Ellie’s pause and restart (“I lost count”) may indicate the additional 
cognitive demand required to begin her counting sequence with a negative number 
rather than a natural number. But her ability to successfully extend her counting 
sequence may be attributable to the fact that the direction of her counting was con-
sistent with the addition of natural numbers (addition makes larger and thus one 
counts up toward the positive numbers to arrive at a sum). When, for example, Ellie 
solved the problem -5 + -1 =  , she adopted a different strategy and incorrectly 
answered -4; she may have abandoned a counting strategy for this problem because 
adding -1 to -5 would indicate a movement left on the number line for addition, or 
movement in the opposite direction than one would move with natural numbers.

The last strategy within the order-based WoR we share here is jumping to zero, 
which was used on just more than 3% of the problems posed. Opal’s response to the 
problem -3 + 6 =   exemplifies this strategy. Opal answered, “Three, “and then 
explained saying, “Half of 6 is 3, so then that would bring it [the running total] to 
the 0. And 3 more would bring it to the 3. And that would equal 6.” Opal’s strategy 
can be represented mathematically with the following series of equivalent expres-
sions: -3 + 6 = -3 + (3 + 3) = (-3 + 3) + 3 = 0 + 3. By decomposing 6 into 3 plus 3, 
Opal was able to “jump to zero” by adding one of the 3s to -3. In general, this strat-
egy involves strategically decomposing a number to obtain additive inverses so that 
the resultant partial sum is zero. However, students are unlikely to recognize either 
the underlying mathematical property they are implicitly using or its significance. 
We conjecture that Opal was treating zero like other decade numbers (e.g., 10 and 20) 
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and using her knowledge of decomposition and incrementing to reach a friendly 
number as part of her computation. We believe that this type of order-based reason-
ing can be leveraged to formalize and explicitly name the concept of additive 
inverses that is at work in this strategy and encourage its continued use as 
appropriate.

Analogy-Based  This WoR is characterized by relating signed numbers to another 
idea, concept, or object, often countable amounts or quantities, and reasoning about 
signed numbers on the basis of behaviors observed in this other concept. We named 
this WoR analogy-based because students created an analogy between signed num-
bers and some other concept. Analogy-based reasoning was used on about 13% of 
all problems posed.

Students compared negative numbers to positive numbers using a strategy we 
named negatives like positives, on about 7% of all problems. This strategy involves 
computing with negative numbers through explicit comparison to computing with 
positive numbers. This strategy was used productively across all grade levels. 
Consider Ricardo’s (Grade 11) response to -5 + -1 =  : “Negative five plus nega-
tive one equals negative six. I thought about this by changing this whole thing into 
a positive. So I just ignored the negatives for a little bit. So I knew five plus one 
equals six. But since it was negative, I added the negative after.” When asked if 
changing the problem into a positive always worked, he replied, “So like this prob-
lem was applicable to change it to a positive since there were two negative numbers. 
But if you had like a negative and a positive, then that would be different.” Ricardo 
was an 11th grader, but we also had many younger students who used this strategy. 
As an example, consider Jacob’s (Grade 1) strategy for solving -7 –   = -5. “Well 
for this one I need little cubes. … It would be like real numbers, but you just add the 
minus sign. You just do seven plus, well actually, seven minus two equals five. 
That’s the answer for real numbers, so I just added a negative to all of them, and 
there is my answer.” In these examples, we see that both Ricardo and Jacob com-
pared the mathematical behavior of negative numbers to the behavior of positive 
numbers (or “real” numbers in Jacob’s case) to solve problems involving the addi-
tion or subtraction of two negative integers.

Students also explicitly related signed numbers to contexts (e.g., debt or digging 
holes) on about 3% of all problems posed. Central to the converts to context strategy 
is that students used a context such as debt, digging holes, or bad guys that they 
deemed as related to negative numbers. As an example, consider Alex’s solution to 
the problem in the introduction, -3 + 6 =  , in which he interpreted -3 as represent-
ing a debt of $3 and 6 as gaining $6 from his mother. After taking $3 from the 
money he was given to repay his debt, he had $3 left. Another use of converts to 
context was relating signed numbers to digging and refilling holes. For example, 
Sawyer explained his answer of -3 to the problem -5 +   = -8 by relating operations 
with negative numbers to digging and burying (his word for refilling) holes. For this 
problem he started with a hole five units deep: “Okay, if it [the unknown] would 
have been positive three, it would have canceled out; it would have buried some of 
the hole. [Instead] it’s like we are digging a deeper hole and trying to get to negative 
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eight.” He applied the same context to think about the problem -2 +   = 4: “We 
start from negative two, and so it’s like a hole and you need to fill it in.” For Sawyer, 
the signs of the starting and ending numbers indicated whether he had a hole or a 
mound of dirt. He related the unknown in this problem to the action of filling in or 
burying the hole so that the result was a pile of dirt above ground.

Formal  In a formal WoR, students treat negative numbers as formal objects that 
exist in a mathematical system and are subject to fundamental mathematical prin-
ciples that govern their behavior. Students may generalize beyond a specific case to 
apply properties of classes of numbers or leverage underlying structures of our 
number system to make conjectures about which properties hold and do not hold 
upon successive extensions. Formal reasoning was used on just fewer than 12% of 
all problems posed.

The most common strategy within the formal WoR, infers sign, used on about 8% 
of all problems, involves examining the structural features of the problem—the 
operation in conjunction with the signs of the given numbers—to determine the sign 
of the answer prior to determining its magnitude. As an example of infers sign, 
consider Jane’s thinking when solving the open number sentence  + 6 = 2. “Um, 
now we’re trying to find, we know the number has to be negative. … The number 
that we’re actually adding by [six], it’s more than the actual, than our answer [two]. 
… So it has to be negative. So then if you know basic subtraction and addition, you 
know six minus what equal two. So it’d be four. … And it’d be negative four.” 
Before she identified the magnitude of the unknown, Jane first determined the sign 
of the unknown by considering the operation, the signs of the given numbers, and 
their relative magnitudes. We considered this strategy to be a formal WoR because 
Jane is essentially making a claim about a class of problems—addition problems 
such that the sum is smaller than an addend (or, in other cases, subtraction problems 
such that the difference is greater than the minuend, like 5 –   = 8).

Sometimes students made generalizations that explicitly referenced the idea of 
additive inverses or the fact that the difference between any number and itself is 
zero. When a student invoked a general principle that a – a = 0 or a + (-a) = 0 (for 
a ∈ Ζ), we assigned the code generalization about 0/additive inverses. (Although 
we combine these strategies in our discussion here, we recognize important distinc-
tions in them.) When using the generalization about 0 strategy, students needed to 
indicate that the given problem was an instantiation of the generalization that any 
number minus itself is 0. One of our fourth-grade students, David, used this strategy 
when explaining how he thought about -5 – -5 =  : “I know that any number sub-
tract itself is zero.” Because his language suggests that this is a general property and 
not true for just these particular numbers, we assigned the generalization about 0 
code to David’s response.

Although the additive inverses strategy is related to generalization about 0, when 
using the additive inverses strategy, the student needed to explicitly mention three 
aspects we deemed critical to understanding additive inverses deeply: (a) the rela-
tion between a and -a (i.e., that they are inverses or opposites), (b) that the quantities 
are “canceling” (i.e., specify the importance of the operation of addition for additive 
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inverses and the identity element of 0), and (c) that this claim is not specific to the 
numbers in the problem but is a generalization. For example, when solving the open 
number sentence 3 +   = 0, Belinda (an 11th grader) explained her answer of -3 
saying, “I know that the opposite of three is negative three. And whenever you add 
things that are the same number but with different signs, positive or negative, it 
equals zero.” Belinda identified the inverse relation between three and negative 
three describing them as opposites and also specified the operation and identity ele-
ment involved (addition and zero). We interpreted her use of “whenever,” the indexi-
cal noun “thing,” and the second-person pronoun of “you” to indicate that Belinda 
was generalizing beyond the specific numbers given in the problem. Similarly, con-
sider Kate’s response to the problem -8 +   = 0. She reasoned that, “If it [the sum] 
is going to equal zero, the way to cancel the eight out is to have the same number 
but have it in negative form.” If Kate had stopped there with her explanation, she 
would not have received the additive inverses code. Although she alludes to the 
inverse relationship, identifies the importance of zero as the identity element, and 
seems to be moving toward a generalization with the phrase “same number in nega-
tive form,” it’s not clear how the canceling occurs. Critically, for us, the operation of 
addition had not yet been mentioned.4 However, Kate did continue her explanation. 
“Because the same number on opposite sides of zero cancel each other out when 
you add them.” In her last sentence, Kate indicated the importance of the operation 
of addition, and her language was more clearly generalized.

Another strategy within the formal WoR, logical necessity, was invoked infre-
quently but has promise for supporting powerful mathematical ideas. In the 
introduction, Fran-Olga used logical necessity in her response to -3 + 6 =  . She 
was unsure which way to count (an order-based WoR) and considered answers of -9 
and 3. After comparing the expressions -3 + 6 and 3 – 5, Fran-Olga settled on an 
answer of three. Because, on an earlier subtraction problem of 3 – 5, she had counted 
down “into the negatives,” then for a problem that involved “plussing,” Fran-Olga 
concluded she needed to count up. The key aspect of her reasoning was that “plus-
sing” and “minusing” are inverse operations: If minusing goes down, then plussing 
goes up. Fran-Olga knew that addition and subtraction behaved oppositely in oper-
ating with whole numbers. She conjectured that the operations would still behave 
oppositely upon extension to the set of integers. In logical necessity, a student 
makes a comparison to another, known, problem and appropriately adjusts his or her 
reasoning so that the underlying logic of the system and the approach remain con-
sistent; in this example, Fran-Olga maintained consistency with what she knew to 
be true for whole numbers. (We share an extensive examination of logical necessity 
in Bishop et al., 2016a, 2016b).

4 Instead, Kate would have been assigned the strategy code, magnitude, which falls in the analogy-
based WoR category. Magnitude strategies were used when students’ responses indicated that they 
viewed a negative quantity as having magnitude, which enabled negative quantities to “cancel” an 
oppositional, positive quantity. Sometimes the “canceling” language was used when students used 
different colored chips to model and solve a problem. In these situations, another analogy-based 
strategy of chips was assigned as opposed to the magnitude code.
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Computational  A strategy coded as a computational WoR was based on a proce-
dure, rule, or calculation. Because the most common WoR was computational, 
employed on about 40% of all problems posed, we share more strategies with this 
WoR to highlight the variety of computational strategies students in our study used. 
KCC, the most prevalent rule, is so named because many students shared the mne-
monic Keep Change Change to indicate that they Keep the sign of the first number, 
Change the operation, and Change the sign of the second number. KCC was the 
most common strategy code across all ways of reasoning, used on about 16% of all 
problems.5 The key feature of KCC is that the operation and second addend (or 
subtrahend) in the original expression are both changed to their opposites. In most 
instances, students referred to a mnemonic like KCC, boom boom, or the double 
stick trick when invoking this rule. But some students simply used the rule absent 
an accompanying memory aid, stating something like, “When a negative and a 
minus sign are together, they count as an addition.” In both cases, the response was 
assigned the KCC strategy code. We exemplify this strategy in the following two 
responses and highlight the difficulty students typically had when asked to justify 
the validity of this rule. Gabriel, an 11th grader, invoked a mnemonic while solving 
the problem 5 –   = 8.

Gabriel: 	 Negative three. Boom boom [writes -3  in the blank and when he 
states, “Boom boom,” he draws two vertical line segments, one 
through the subtraction sign and one through the negative sign in 
-3].

Interviewer: 	 Okay. So where does that boom boom come from? What was that?
Gabriel: 	 It’s magic.
Interviewer: 	 Tell me a little bit more about the boom boom.
Gabriel: 	 I remember learning in sixth grade or something, when you subtract 

a negative, you just do boom boom. And you add it I guess.
Interviewer: 	 Okay, and why does that work?
Gabriel: 	 Newton’s third law—I don’t know. Because you’re taking away 

something that’s negative? [Rising intonation]. Uh. [15-second 
pause] It just works.

Bea also gave an answer of -3 to the problem 5 –   = 8: “Just because, negative 
three, then I do the double stick trick. There is a minus [and a] negative so you add.” 
When asked what the “double stick trick” was, Bea clarified, “Okay, when you have 
a subtraction sign [points to subtraction symbol in the expression 5 – -3 = 8] and 
then a negative number [points to negative sign for -3], they call it a double stick 
trick when you do this. [She draws two vertical lines, one through the subtraction 
sign the other through the negative sign in -3 so that the expression 5 – -3 = 8 is 
transformed into 5 + +3 = 8.] And so five plus three is eight.”

The next two most common computational strategies—negative sign subtractive 
and changes order of terms—were used on roughly 8% and 7% of problems posed, 

5 The percentage use of 16% was driven by the CT students, who used KCC on 31.40% of all prob-
lems posed, sometimes in conjunction with another WoR.
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respectively. Claire’s response to the problem -3 + 6 =   reflects both of these 
strategies. “It’s three. I know that six minus three is three. I just changed the order 
of the numbers and since three is negative, I subtracted.” The interviewer pressed 
Claire, saying, “But the problem was negative three plus six. You subtracted and 
started with six instead of negative three.” Claire again reiterated, “I just changed 
the order of the numbers and since three is negative, I subtracted.” The interviewer 
continued, “Okay. When you changed the order of the numbers, I’m curious if you 
thought of the problem as six plus negative three, and then changed to subtraction? 
Or when you switched it, if you immediately thought of the problem as six minus 
three.” Claire responded, “I immediately thought of it as a subtraction problem.” In 
the strategy of negative sign subtractive, students indicate that the negative sign in 
the written symbolic form of a negative number, the - in -3, indicates the process of 
subtraction. Instead of being viewed as a quantity or mathematical object in its own 
right, -3 is understood as a quantity to be subtracted. Thus, Claire interpreted -3 to 
mean “subtract three.” This strategy, which was used in all participant groups in our 
study, was one of the earlier historical conceptions mathematicians had for negative 
numbers (see Henley, 1999, for a discussion of “subtractive numbers”). In particu-
lar, almost two thirds of the college-track students used this strategy to solve the 
problem -3 + 6 =   by subtracting three from six.

Similar to most college-track students, Claire responded to the problem 
-3 + 6 =   by using negative sign subtractive simultaneously and in combination 
with changes order of terms to transform the original expression of -3 + 6 to the 
equivalent expression of 6 – 3. Claire was clear that she did not use the following 
sequence of transformations: -3 + 6 → 6 + -3 → 6 – 3, but instead went straight to 
the last expression. Her response exemplifies changes order of terms because she 
essentially applied the commutative property of addition to change the order of the 
addends, but she simultaneously changed what was an addition problem to a sub-
traction problem by interpreting -3 as subtractive, which is why her response was 
also assigned the negative sign subtractive strategy code. The college-track students 
were especially fluent, but almost always implicit, when changing the meaning of 
the minus sign from a negative number to subtraction.

Sometimes students added or subtracted a number to both sides of the open num-
ber sentence to “isolate the box.” We named this strategy equation because students 
used properties of equality often associated with school-based instruction for solv-
ing one- and two-step equations. For example, Belinda’s explanation for her solu-
tion to 6 +   = 4 was “I just subtracted six from both sides and got negative two.” 
Many students explained that they had to “do the same thing to both sides,” and 
some students insisted on rewriting the number sentences so that the box was 
replaced with a variable (i.e., 6 +   = 4 was rewritten as 6 + x = 4).

The last computational strategy we share was named the same signs/different 
signs rule, and it was used on just fewer than 4% of problem responses. This is a 
rule that applies only to addition problems, though we saw many students apply it 
incorrectly to subtraction problems. The same signs/different signs rule can be 
stated as follows: If the signs of the addends are the same, add their magnitudes, 
and keep the sign for the sum. If the signs are of the addends are different, find the 
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difference of their magnitudes, and the difference should take the sign of the 
number with the larger magnitude. Cole’s response to 6 + -3 =  , shown in the 
introduction, is an example of this strategy. Because -3 and 6 had opposite signs, 
he subtracted three from six and assigned to that difference the sign of the addend 
with the larger magnitude, 6, which was positive. One student we interviewed 
recited a song to help her remember this rule (to the tune of Row, Row, Row Your 
Boat): “Same signs, add and keep. Different signs, subtract. Take the sign of the 
larger one, then you’ll be exact.”

Emergent  The emergent WoR reflects students’ initial attempts to compute with 
signed numbers. We chose the name emergent because many of the strategies stu-
dents used in this WoR were not only sensible but with appropriate support could 
provide a strong foundation for integer reasoning from which more sophisticated 
strategies and ways of reasoning could emerge. Some students who had not yet 
heard of negative numbers ignored the negative sign or treated it as a subtraction 
symbol. Other students sometimes selectively restricted the domain of possible 
solutions to nonnegatives. Overall, emergent reasoning was used on about one third 
of all problems posed. The most common such strategy was addition makes larger/
subtraction makes smaller (AML/SMS), used on 14% of all problems posed.6 The 
AML/SMS strategy stems from the overgeneralizations that addition always makes 
larger and subtraction always makes smaller and is related to conceptualizations of 
addition and subtraction as increasing and decreasing the cardinality of a set (Bishop 
et  al., 2011; Bishop et  al., 2014). For example, consider Oscar’s response when 
solving 5 –   = 8. “Cuz, this [points to 8 in the written problem] is bigger than that 
[points to 5]. And if you minus three, if that [points to the minus sign] was a plus, 
um, it would be possible. … You couldn’t take away, fff, fi, three out of five to equal 
eight ‘cuz it would just equal two.” Oscar then wrote “No” in the box. Ryan, too, 
used the subtraction makes smaller strategy for the same problem saying, “I 
wouldn’t be able to do it because it would always be behind eight if it was minus 
something. Because if it was minus zero it would be five. It [the difference] would 
always be behind eight.” Although both of these students had heard of negative 
numbers, they appeared to restrict the domain of possible solutions to whole num-
bers and did not consider the effect (or possible effect) of subtracting a negative 
number.

The second most common strategy within emergent reasoning was ignores sign. 
In this strategy students either ignore the negative sign throughout and treat it as 
though it does not exist or they initially ignore the negative sign and then account 
for it after finding a solution. The strategy ignores sign was used in just fewer than 
11% of the problems posed and was mainly driven by second- and fourth-grade 
students in our study. Dahlia, a second grader, ignored the negative signs when solv-
ing -5 + -1 =   and treated -5 and -1 as if they were whole numbers. She read the 
problem aloud as “Five plus one” and immediately answered six. Dahlia then 

6 This percentage was driven by the BIN and NEN students, who used AML/SMS on 27.21% and 
32.44% of all problems posed, respectively.
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demonstrated the fact on her fingers saying, “Five (she held out five fingers on one 
hand) plus one (she held out her thumb on her other hand) would equal six.” In 
contrast, Javier read the open number sentence   –  5  =  -1 as “Box minus five 
equals negative one.” He initially wrote 6 in the box and then revised his answer to 
-6. He explained, “Six minus five equals one. So I used negative six minus five so it 
could be negative one.” Javier appeared to initially ignore the negative in -1 and 
solve instead the related number sentence of  – 5 = 1. When asked why the 6 was 
negative, he replied, “Because I, because if I don’t have a negative and I subtract 
minus five, I won’t be able to have negative one.” Javier reasoned that for the differ-
ence to be negative one as opposed to one, the unknown needed to be negative. 
Thus, he assigned a negative sign to the unknown on the basis of the absence or 
presence of other negative numbers in the problem. Moreover, how Javier inter-
preted or made sense of signed numbers is unclear; he may have attended only to 
surface features embedded in the symbolization of these numbers.

Another strategy in the emergent WoR was used for open number sentences in 
which the magnitude of the subtrahend was larger than the magnitude of the minu-
end (e.g., 3 – 5 =  , -2 – 7 =  , -7 – -9 =  ). Students often declared that these 
problems were “not possible” to solve or gave an answer of zero. Consider Sam’s 
response to the problem 3 – 5 =  : “Three minus five is zero because you have 
three and you can’t take away five. So take away the three, and it leaves you with 
zero.” (When asked to solve 3 – 4 =   and 3 – 3 =  , Sam answered 0 to both.) 
Similarly, Andrew was puzzled by the same task and said that solving 3 – 5 =   was 
“not possible.” He shared his thinking, saying, “How come there’s three and take 
away five? I don’t have enough. ‘Cuz look there’s three (holding up three fingers) 
and I cannot take away five ‘cuz there’s not enough.” We named this strategy Pascal 
for the mathematician and philosopher Blaise Pascal who gave a response not unlike 
Sam’s. In his collection of unpublished philosophical and religious writings entitled 
Pensées, Pascal stated, “I know some who cannot understand that to take four from 
nothing leaves nothing” (1669/1941, p. 25).

�Discussion and Implications

Because of their documented effectiveness in supporting students’ learning, frame-
works of students’ mathematical thinking are deeply rooted in mathematics educa-
tion research (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, Fennema, 
Peterson, Chiang, & Loef, 1989). In this chapter, we have contributed a descriptive 
framework for organizing and making sense of students’ problem-solving strategies 
by relating them to the broader ways of reasoning about integer addition and sub-
traction. By combining strategies and ways of reasoning in our framework, we dis-
tinguish key details of student thinking in a way that provides organization and 
structure to student thinking in the realm of integers. Knowledge of specific strate-
gies is beneficial because it can help teachers recognize and encourage the use of 
multiple, appropriate strategies and build toward more sophisticated strategies both 
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within and across ways of reasoning (e.g., counting vs. jumping to zero vs. additive 
inverses). This knowledge also helps teachers to support students to select and use 
efficient strategies that are based on key features of problems. For example, we 
found that students often use jumping to zero (or another order-based WoR strategy) 
for problems like -5 +   = 3 (an addition problem starting with a negative quantity, 
ending with a positive quantity, and with an unknown, positive, change value). (See 
Lamb, Bishop, Philipp, Whitacre, & Schappelle, 2017, for a discussion of integer 
addition and subtraction problem types and their relation to ways of reasoning.) And 
finally, the knowledge to differentiate multiple instantiations of a specific WoR (i.e., 
differentiating strategies within a WoR) can support the identification of common 
characteristics that unite those strategies within the WoR.

As discussed in the beginning of this chapter (see Table 3.1), researchers investi-
gating the teaching, learning, and historical development of signed numbers have 
contributed studies and descriptions of students’ thinking about integers that are 
consistent with both our broader ways of reasoning and many of the strategies we 
documented in this chapter (Bofferding, 2014; Chiu, 2001; Murray, 1985; Peled, 
1991; Stephan & Akyuz, 2012). We extend this work by organizing key distinctions 
and patterns in children’s solutions into a coherent framework that leverages the 
broader ways of reasoning as its central organizing feature.

�Connecting Key Mathematics to Student Strategies

We believe the ways of reasoning framework holds promise for teachers because it 
can support their abilities to assess and interpret student thinking in the moment. 
Moreover, the strategies students use draw on important mathematical ideas. 
Therefore, knowing and recognizing differences among students’ ways of reasoning 
and strategies as well as the underlying mathematical ideas embedded in specific 
strategies is important pedagogical content knowledge for teachers. However, the 
mathematical ideas in students’ strategies are often unstated, unclear, or implicit, 
and teachers can experience difficulty in eliciting those ideas from students. We 
note that though we have selected the examples in this chapter for their clarity, stu-
dent thinking is not always complete or clearly articulated; thus, in practice, asking 
probing questions to help elicit student thinking and connect student-generated 
strategies to underlying mathematical ideas is helpful. Further, at times, students 
may be unaware of the strategies they used. Providing students opportunities to 
regularly share their thinking may have multiple benefits. Students can become both 
more able to meaningfully communicate their mathematical ideas and more aware 
of the strategies that they actually used. Additionally, by making their own strategies 
more explicit to themselves, students may be able to use those strategies for prob-
lems with similar structure. In the following sections, we return to several strategies 
discussed earlier in the chapter, identify the key mathematical ideas embedded in 
these strategies, and offer suggestions for teachers to explore and make connections 
to those mathematical ideas.
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Jumping to Zero and Additive Inverses  We view the strategy jumping to zero, 
which is order-based, as significant for two reasons. First, students who jump to 
zero may recognize that decomposing numbers to get to a friendly number (in this 
case, 0) enables them to solve problems more efficiently than does counting by 
ones. Second, we suspect that the use of jumping to zero may be an important pre-
cursor to reasoning more formally about additive inverses—that is, using the addi-
tive inverse strategy in the formal WoR. For example, after sharing her strategy to 
-3 + 6 =  , Opal and her classmates might be asked to consider the relation between 
3 and -3 and what it means to be opposites. These types of conversations could sup-
port students to generalize the specific instantiation of the property 
-3 + 3 = 0 = 3 + (-3) to all integers. In this case, we envision using the initial order-
based reasoning to develop formal reasoning.

AML/SMS and Infers Sign  In related work (Lamb et al., 2017), we shared how 
kernels of inferring the sign are present in AML/SMS strategies. We reiterate here 
that we believe that some strategies within the emergent WoR provide productive 
starting points for students’ learning about negative numbers. For example, students 
who express AML/SMS strategies provide evidence that they have noticed features 
of the number system with which they have heretofore engaged, and thus they have 
recognized the underlying structure of addition and subtraction in the domain of 
natural numbers: Addition makes larger and subtraction makes smaller. After they 
have worked with negative values a, c, or both in problems with the form a ± b = c, 
teachers and researchers can support students to develop a more nuanced assess-
ment of their claims by having students consider what might happen to sums or 
differences when the b value is negative. This examination may support students in 
understanding the conditions under which AML/SMS holds and in recognizing that 
when AML does not hold, the sum may be less than or equal to a. When SMS does 
not hold, the difference may be greater than or equal to a. In this case, we envision 
using the initial emergent reasoning to develop formal reasoning.

Negative as Subtractive and Symbolic Flexibility  In our research, we found that 
students often productively and appropriately treat the negative sign as a subtraction 
sign to efficiently solve open number sentences (i.e., the negative sign subtractive 
strategy in the computational WoR). We view the ability to seamlessly move between 
meanings of the minus sign and the operation as a desirable outcome of instruction 
(Arcavi, 1994; Lamb et al., 2012). For example, our college-track students success-
fully treated the subtraction sign as a negative number or treated a negative number 
as the operation of subtraction on almost one fourth of all problems they solved. 
However, the students who shared these strategies may have been so efficient and 
fluid when computing that they may not have recognized how or that they changed 
the problem. One goal may be to support students to be more explicit about when 
they are changing the meaning of the minus sign to aid their computations. See 
Lamb et al. (2012) for additional information and suggestions.

Negatives Like Positives and Ignores Sign  We shared examples of two strategies 
that seem similar, negatives like positives and ignores sign, but were categorized as 
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an analogy-based WoR and an emergent WoR, respectively. Despite the strategies’ 
similarity, we provided evidence to support our claim that students were doing more 
than appending a sign when invoking negatives like positives. Rather, we deter-
mined that students had invoked negatives like positives only when they provided 
evidence of attending to more than surface features of the problem in their solutions. 
That is, had the students initially ignored signs, computed an answer, and appended 
a sign after computing, the responses would have been coded as ignore signs. We 
view negatives like positives as a productive strategy that teachers can leverage to 
discuss with students when the strategy is useful, to explore reasons the strategy 
makes sense mathematically, and to discuss important ideas including equivalent 
expressions and negation.

�Final Thoughts

In this chapter, we shared five broad ways of reasoning about integer addition and 
subtraction and 16 (of the 41 identified) strategies that are subsumed under those 
ways of reasoning. Although we have shared the ways of reasoning in previous 
work, herein we sought to share some of the most common strategies with examples 
that provide clear comparisons and contrasts to support both teachers and research-
ers in understanding specific strategies within the ways of reasoning. The ability to 
categorize strategies into one of five ways of reasoning may enable teachers to orga-
nize knowledge of student thinking in ways that are useable and accessible for them 
and provide researchers with sufficient information about the strategies and ways of 
reasoning such that they can reliably build on this work.
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�Appendix

�Problem-Solving Interview7

	 1.	 Name a big number. Can you name a bigger number?
	 2.	 Name a small number. Can you name a smaller number? If the child responds, 

“One,” ask, “What if I gave that away? What number would you have then?” If 
the child responds, “Zero,” ask, “Is there a number smaller than zero?”

7 Students who provided no evidence of having knowledge of negative numbers (NENs) did not 
respond to items 16–22 or 30–35.
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	 3.	 Can you count backward, starting at 5? If the child stops at 0 or 1, ask, “Can you 
keep counting back?” (If the child continues to count back, have the child stop 
counting at −5).

Note. For Grades 2 and 4 students, the interviewer did not pose Question 4 
unless the student had previously mentioned the term negative. The interviewer 
did not introduce the term negative or the notation for negative numbers unless 
the child mentioned them in responses to Questions 1–3.

	 4.	 What can you tell me about negative numbers?
	 5.	 5 + 6 = 
	 6.	 4 +   = 9
	 7.	  – 4 = 6
	 8.	 8 –   = 4
	 9.	 3 – 5 = 
	10.	 6 +   = 4
	11.	 5 –   = 8
	12.	  + 6 = 2
	13.	 -3 + 6 = 
	14.	 -8 – 3 = 
	15.	 Yesterday you borrowed $8 from your friend to buy a school t-shirt. Today you 

borrowed another $5 from the same friend to buy lunch. What’s the situation 
now?

	16.	 -2 +   = 4
	17.	  – 5 = -1
	18.	 -9 +   = -4
	19.	 -2 –   = -8
	20.	 -5 +   = -8
	21.	 -3 –   = 2
	22.	 -8 –   = -2
	23.	 -8 +   = 0
	24.	 -5 + -1 = 
	25.	 -5 – -3 = 
	26.	 6 – -2 = 
	27.	 6 + -3 = 
	28.	 3 +   = 0
	29.	 There is a bird flying 20 feet above the surface of the water and a fish swimming 

5 feet below the surface of the water. (Show picture of fish, bird, water surface.)
How many feet higher is the bird than the fish?

	30.	 -5 – -5 = 
	31.	 -7 – -9 = 
	32.	  + -7 = -3
	33.	  + -2 = -10
	34.	 3 –   = -6
	35.	 -2 – 7 = 
	36.	 -8	 Point to -8. Can you read this? What does it mean?
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For each pair of numbers, circle the larger, write “=” if they are equal, or write 
“?” if there is not enough information to tell which one is larger.

	37.	   3	 7
	38.	 -7	 3
	39.	 -5	 -6
	40.	 +20	 20
	41.	 -0	 0
	42.	 -9	 0
	43.	 - -4	 -4
	44.	 -(-4)	 -4
	45.	 -5	 -100
	46.	 	 - 
	47.	 Is there anything you can write in the blank to make the following statement 

true?
5 = -____

For PI and CT students, we posed questions 48–54.
Circle the larger, write “=” if they are equal, or write “?” if there is not enough 

information to determine.

	48.	 x	 x + x
	49.	 x	 x + 1
	50.	 x + y	 x – y
	51.	 -x	 x
	52.	 7	 x
	53.	 x	 -7
	54.	 If x < y, compare -x and -y.

For CT students, we posed questions 55 and 56.

	55.	 What can you tell me about absolute value?

	56a.	 Someone wrote this down as the definition of absolute value.

For any real number x, the absolute value of x is denoted by |x| and is defined as

	
x

x x

x x
={

if

if

≥
<
0

0 	

Can you read this to me (point to definition of absolute value)? What does this 
mean? Do you think this makes sense for the definition of absolute value? Why?

	56b.	 According to this definition, explain what the absolute value of -2 is.

Pose this follow-up question, if needed: I am confused because negative 2 is less 
than zero. Doesn’t this (circling the –x in the definition for absolute value) mean 
that my answer should be negative?
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