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Preface

 Connecting Pathways Across the Integer Addition 
and Subtraction Landscape

The only way to solve negative problems is you have to, like you probably have to just go 
to try and do it…you gotta pretend. (2nd grader)

One of the delights of childhood is having the freedom to pretend and consider 
“what if’s” free from pressure. Perhaps that is why we find ourselves drawn to chil-
dren’s conceptions around negatives. Negative numbers are playful things within 
children’s imaginations, and as they consider numbers they cannot see, we gain 
insight into children’s reasoning about numbers and operations. Interestingly, we 
find evidence of similar integer conceptions and reasoning across grade levels (both 
aligned with conventional meanings and not). Therefore, students’ understanding of 
integers seems less connected with how old they are and more dependent on their 
prior knowledge. This makes the topic of negative integers an ideal example for 
highlighting the importance of eliciting student thinking and building on their cur-
rent understanding in instruction.

 Why Focus on Integers Now?

The emerging foundation of research on thinking about integers highlights students’ 
sophisticated reasoning about integers, demonstrated even by young children, and 
critical nonconventional conceptions that they can develop if integers are ignored. 
Understanding children’s thinking about integers is pivotal for planning better 
instructional experiences in elementary and middle school, preparing prospective 
elementary and middle school teachers, and supporting inservice teachers. An 
increase in research into integer thinking and learning in recent years highlighted 
the need to bring together multiple viewpoints to establish our current understand-
ing of the integer landscape.
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Children’s thinking is the soil of the landscape because it is foundational to our 
building of knowledge on thinking about integers and can influence what knowl-
edge arises from it. Across the decades, as a field we have recognized that children 
have difficulties with making sense of integers and integer operations: What is the 
composition of the soil? (What knowledge do students bring to the topic of inte-
gers?) How can we navigate across unstable ground? (How do students make sense 
of integers in light of their prior understanding?) Scholarly conversations around 
integer addition and subtraction also highlight and classify the sophisticated reason-
ing that children are capable of when solving integer addition and subtraction prob-
lems: How do we distinguish one type of soil from another? (How can we classify 
students’ strategies and ways of reasoning?) We need to focus in depth on how play, 
instructional contexts, or different number sentence types may contribute to chil-
dren’s thinking about integers and integer addition and subtraction.

In the landscape of integers, specific instructional contexts (e.g., elevator models, 
balloon models), models (e.g., number line, cancellation), and metaphors (e.g, mov-
ing along a path, collecting objects) are the mountains behind the clouds. Important, 
but hard to pin down. We see the prominence of contexts, models, and metaphors, 
but they are distant. How far away are the mountains? (How well do the models or 
contexts align with the operations?) What do the mountains look like? (How do 
students use contexts, models, and metaphors when presented in different ways?) 
How is one mountain different than its neighbor? (What distinguishes an integer 
model from an instructional context or even one number line model from another?) 
How easy is the mountain to scale? (What shortcuts do the contexts, models, and 
metaphors support? How easy are they for students to understand?) A substantial 
portion of the integer literature focuses on instructional models and metaphors for 
supporting integer thinking around addition and subtraction. In some cases, there 
are subtle (or not so subtle) arguments for one versus another. We need to continue 
gaining insight into when and how these models support students’ learning and 
when they break down.

As we traverse any landscape, there are leaders and signposts that guide the way 
along existing (or new!) paths. Both teachers and prospective teachers (PTs) are the 
tour guides through the integer landscape (magnitude, value, operations) for the 
new tourists (students). Even experts can find some landscapes difficult to cross; we 
know that secondary and university students find thinking and learning about inte-
gers challenging. What characterizes their challenges? Sometimes signposts are 
mislabeled or tour guides stumble; PTs often have nonconventional conceptions 
about integer addition and subtraction or rely on procedures that they have difficulty 
explaining, which make it difficult for them to lead. How can we capitalize on their 
strengths? As tour guides through this landscape, teachers and PTs need to develop 
deep conceptual understandings in order that they may make instructional choices, 
evaluate curricula, and support student thinking in their own classrooms. We need 
more investigations into this type of deep knowledge that PTs have and need about 
integer addition and subtraction.

Preface
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 Let’s Begin!

This book represents the collaborative work of researchers from different perspec-
tives about integer addition and subtraction with a common goal of exploring the 
integer landscape. Although the commentary chapters provide connections among 
various landmarks in the landscape, they also point to additional paths for future 
research that need to be explored. We hope the work within these chapters inspires 
you on your journey, as it did for us.

West Lafayette, IN, USA Laura Bofferding
Newberg, OR, USA Nicole M. Wessman-Enzinger
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Chapter 1
Playing with Integer Concepts: A Quest 
for Structure

Laura Bofferding, Mahtob Aqazade, and Sherri Farmer

Abstract How children play around with new numerical concepts can provide 
important information about the structure and patterns they notice in number sys-
tems. In this chapter, we report on data from 243 second graders who were asked to 
fill in missing numbers on a number path (encouraging them to play around with 
numbers less than zero) and to solve integer arithmetic problems (encouraging them 
to play around with the concepts of addition and subtraction involving negative 
integers). When playing around with the number paths, students made patterns, con-
tinued the number sequence in interesting ways, and used invented notation. When 
playing around with the operations, they interpreted negative signs as subtraction 
signs or added negative signs to their answers. Their play with the number path 
often connected to their play with operations, revealing that although some students 
were attuned to the pattern in the order of numbers and operations as movement in 
a particular direction, others focused more on numerical values and operations as 
changes in amount. The various ways in which children played with integers pro-
vide insight into their conceptual change process and can provide guidance for ways 
teachers could help students build on their logic.

Put simply, play is not so much an activity as it is an acceptance of uncertainty and a will-
ingness to move...But it is not an abandonment of our quest for structure, order, pattern, and 
comprehensibility. Quite the opposite, these are the ends of play.

But these ends are revealed only in the playing, for play is not simply random activity. 
Rather, by opening the door to the as yet unexperienced, to the possible, play reveals what 
is not yet known as it simultaneously offers space to support learning. (Davis, 1996, p. 222)
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As expressed in the opening quote, children’s play helps them make sense of the 
world. An early introduction to negative numbers provides a rich context for 
 exploring children’s willingness to play with numbers (Featherstone, 2000). Further, 
their play can illuminate which aspects of structure and pattern stand out in their 
minds and can provide a space for them to wonder about new observations. The 
integer literature illuminates several instances where young children were given the 
opportunity to play around with the idea of numbers before zero with delightful 
results, which we describe next.

Encouraging playful thinking can begin with a simple question. Behrend and 
Mohs (2005–2006) discussed such a situation, where first graders were challenged 
to determine if numbers go on forever. After reasoning that they could count in the 
positive direction endlessly, the teacher asked if they could in the other direction as 
well. Having heard about them from a sibling, one student introduced the idea of 
negative numbers, and over the course of the year, students began using negatives in 
calculations, such as −2 + 12 = 10.

Having students consider numbers to the left of zero is a common theme in play-
ful integer activities for young students. Aze (1989) introduced a game with 7- and 
8-year-olds involving movements on a physical number line. One child moved on 
the number line as the rest of the class told the child how much to add or subtract in 
order to move. The number line was labeled 0–9 with space on either end, and stu-
dents inevitably suggested a movement that required them to determine what to do 
to the left of 0. Even if they had not heard of negative numbers, many students sug-
gested moving to a new tick mark, and one class playfully named each number they 
needed to the left of zero with a classmate’s name. They were even able to solve 
problems such as 2 – 5 based on their system.

Similarly, Wilcox (2008) described a game, in which she had her first-grade 
daughter move along on a number line with unlabeled spaces for negatives by draw-
ing + and – cards followed by a numeral. Zero, as a reference point, played a crucial 
role in understanding the numbers less than zero. The child originally called -3 
“zero” but when pushed to distinguish it from the other zero called it “zero cousin 
spot” and later “zero cousin minus three spot.” Similar to students described by Aze 
(1989), when using the number line, the girl could add 1 to the -3 spot to get to -2. 
However, her reasoning was limited when working with objects; with blocks, she 
did not yet extend the structure of her new system to deal with situations such as 
3 – 4, in which case there were not enough blocks to take away.

The number line games just described focus on exploring integers as locations as 
a result of translations. Games that focus more directly on quantity tend to encour-
age counterbalance conceptual models (Wessman-Enzinger & Mooney, 2014) and 
often involve positive and negative chips or double-sided abaci. For example, a 
group of third and fourth graders played a game where they had to keep track of 
scores (black counters) and forfeits (red counters) as well as their running totals 
after each turn (Liebeck, 1990). Through the process of game play, they were able 
to articulate that four scores and two forfeits would result in a score of 2. More 
impressively, when they ran out of red counters, they decided they could take away 
a black counter instead. Similarly, fifth graders played a dice game where they either 

L. Bofferding et al.



5

scored for a yellow team or a blue team by moving beads on a double abacus. They 
were able to reason that removing a bead from one team corresponded to gaining a 
bead on the other team (Williams, Linchevski, & Kutscher, 2008). The fifth graders 
eventually applied this compensation rule to addition and subtraction in order to 
solve addition and subtraction integer problems. These games helped students con-
sider integers as physical quantities rather than as locations.

The above examples highlight open-ended number line games or object-based 
games where students sought to find structure and comprehensibility in their use of 
numbers. In the study described in this chapter, we took inspiration from the integer 
number line examples above. We used a fill-in-the-blanks number path as an exam-
ple of an open-ended or unexpected task that can provide teachers with insight into 
what children see as important, such as the role of zero (Wilcox, 2008). We also 
went a step further by posing unexpected integer problems to children. By analyz-
ing how students play around with numbers when working with these types of tasks, 
we can gain insight into the structure, order, or patterns they see and to what extent 
their play aligns with our formal understanding of integers.

In this chapter, we present two situations where children had the opportunity to 
play with numbers and symbols and illuminate their meaning making of integers. 
Looking at their answers through a lens of play, we give legitimacy to children’s 
interactions with the numbers. Further, we identify instances where play reveals 
important insights that teachers and researchers can leverage for encouraging stu-
dents’ developing understanding of integers.

 Conceptual Change

The lens of play as articulated by Davis (1996) in the opening quote explains play 
as “an acceptance of uncertainty and a willingness to move...play reveals what is not 
yet known as it simultaneously offers space to support learning” (p. 222). This per-
spective is consistent with a framework theory approach to conceptual change, 
which posits that children form their initial conceptions based on experiences in the 
world and modify them as they encounter new experiences (Vosniadou & Brewer, 
1992). In particular, the process children go through to modify their conceptions 
involves a willingness to play with new ideas. Children experience conceptual 
change on a daily basis, interacting in a world where much is yet unknown to them, 
but they are willing to forge ahead and try to find order in all that they encounter.

More specifically, in the realm of integers, children’s initial integer mental mod-
els are based on their experiences with whole numbers; therefore, they may ignore 
negative signs completely or order negatives correctly but treat them as equivalent 
to positives (Bofferding, 2014). Some may make their answers negative because 
they notice the negative sign and think it is important (symmetric meaning of the 
minus sign) (Bofferding, 2010; Vlassis, 2008); others will interpret the negative 
sign as a subtraction sign (binary meaning of the minus sign) (Bofferding, 2010; 
Vlassis, 2008) based on their experiences with whole number subtraction. These 

1 Playing with Integer Concepts: A Quest for Structure
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students will often consider negatives to be amounts taken away, worth zero. 
Therefore, they will either order them next to their positive counterparts (as amounts 
that will be taken away) or next to zero (Bofferding, 2014; Peled, Mukhopadhyay, 
& Resnick, 1989). All of these responses indicate a “quest for structure, order, pat-
tern, and comprehensibility” (Davis, 1996, p. 222).

Students who have more exposure to negatives may indicate that negatives are 
less than zero but continue to play around with the meaning of integer values in rela-
tion to the numerals used to express them. Classified as exhibiting synthetic mental 
models, these students interpret negatives with larger absolute value (further from 0) 
to be more than negatives with smaller absolute value (e.g., -6 > -2) (Bofferding, 
2014). Therefore, when solving problems such as -5 + 3, they might add 5 + 3 and 
make the answer negative (symmetric meaning of the minus sign), or they might 
start at -5 (treating the negative sign as designating a negative number, the unary 
meaning) and count -6, -7, -8. Students who order negatives correctly and treat 
negatives closer to 0 as larger (not those with larger absolute value) exhibit formal 
mental models (Bofferding, 2014).

Although the formal mental models are based on an adult perspective, the con-
ceptual change approach values children’s alternative ways of thinking, grounded in 
the theory that there is structure and order in children’s thinking, based on their prior 
experiences. In particular, how students who exhibit initial mental models play with 
numbers and respond provides insight into what aspects of number are salient to 
them. Likewise, the responses of students who exhibit synthetic models are valuable 
because they highlight children’s efforts to find structure with new numbers and 
indicate where additional instruction could be fruitful. Therefore, this chapter 
addresses two main research questions:

 1. What does second graders’ play with numbers when filling in an integer number 
path suggest about their understanding of numbers?

 2. Based on their integer number path play, what does their subsequent play with 
integer operations suggest about their understanding of numbers and 
operations?

 Our Data

As part of a larger 5-year study, we worked with second graders on a series of inter-
ventions involving negative numbers. The data described come from a total of 243 
second graders across 12 classrooms in a rural school district in the Midwest (110 
students from year 1 and 133 students from year 2). In this district, there were 
approximately 40% English-language learners and 69% receiving free or reduced 
lunch. Several classrooms (but not all) had number lines in their classrooms that 
included negative numbers, but negative numbers were not part of their 
curriculum.

L. Bofferding et al.
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At the beginning of each year, we administered to students a written pretest com-
posed of a variety of integer tasks. We asked them to complete the tasks as best they 
could, answering whatever they thought. We emphasized that we were interested in 
how and what they thought about and even told them they could make up answers if 
they got stuck. In this sense, we had playful tasks as part of our assessment. Out of 
the six main tasks, we focus our analysis here on two that were the most open- 
ended: a number path task (one item) and an integer arithmetic task (several items). 
A day or two after students took the pretest, we individually interviewed 20% of 
students in order to learn more about their reasoning on the pretest.

 Number Path Task

For the number path task, students saw a number path with the numbers 3, 4, and 5 
labeled (see Fig. 1.1), and we asked them to fill in the missing numbers as if they 
were counting backward. There were enough empty spaces that students could label 
to -11. If they stopped at 1 or 0 and inquired about the remaining spaces, we asked 
them if there was anything else they could fill in and encouraged them to do “what-
ever you think.”

 Integer Arithmetic Task

The integer arithmetic task differed across the 2 years, with the first year focusing 
on 14 addition problems involving integers and the second year focusing on 17 
subtraction problems involving integers (with four addition problems also included). 
The problems included adding or subtracting with two negative integers or with 
both a positive and negative integer. In the case of subtraction, there were also prob-
lems where students had to subtract two positive numbers in order to get a negative 
answer. See the appendix for the list of integer arithmetic questions each year. In 
this discussion of the results, we group students based on whether they used any 
negatives on their number path as well as whether they had any negative number 
answers on the arithmetic problems that reasonably could be obtained using the 
numbers given. Therefore, for the sake of grouping students in the results section, if 
a student included only one negative answer without meaningful reasoning (e.g., -7 
+ -1 = -100), we did not count this as using negatives.

Fig. 1.1 Integer number path

1 Playing with Integer Concepts: A Quest for Structure
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 What Is an Instance of Play?

Using a liberal interpretation of Davis’s (1996) words, “Play is not so much an 
activity as it is an acceptance of uncertainty and a willingness to move” (p. 222), we 
interpreted all of students’ answers as a version of play, as they showed a willing-
ness to move their thinking even if uncertain about negative integer tasks. Including 
negatives on a counting backward task is not standard at this age level. Not includ-
ing negatives on the number path demonstrates the order and structure that fit their 
understanding when given essentially more space than they need. On the other hand, 
their willingness to include negatives (or something else) when we did not specifi-
cally ask suggests playfulness and provides a different insight into their structuring 
of number. Similarly, whether or not students use negatives or pay attention to the 
negative signs on the arithmetic problems provides insight into patterns or structure 
they notice. Nonetheless, we organize the presentation of the results for the two 
tasks according to students who play with whole numbers only and students who 
play with negative numbers.

 Number Path Results

Based on how they played around with completing the number paths, the 243 sec-
ond graders’ responses fell into one of several categories. We describe these sets of 
responses under the larger categories of students who play with whole numbers 
versus students who play with negative numbers, and we follow each section with a 
discussion of what we can learn about these students’ playfulness.

 Playing Around with Whole Numbers

The majority of students (50%) only played with positive or whole numbers on the 
number path, leaving several of the spaces blank. Therefore, they left 11 spaces 
blank and then filled in numerals 0–2 (see Fig. 1.2).

Otherwise, they left 12 spaces blank and only wrote numerals 1–5. For example, 
when explaining the number path, one student (3.A12) counted back to zero, and 
another student (3.A05) counted backward, “Five, four, three, two, one,” and, when 
asked if there were any other numbers, responded, “No, that’s it, I think.” A few 
students (4%) used this stem to create a repeating pattern (see Fig. 1.3).

Fig. 1.2 Number path with numerals 0–2 filled in

L. Bofferding et al.
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Two of these students extended the number path, repeating the sequence from 1 
to 10 twice.

Another trend for students who primarily used positive or whole numbers was to 
continue the number sequence in some way (9%). Out of those who answered in this 
way, six of the students continued the number sequence with repeated zeroes (see 
Fig. 1.4).

Of the rest, some counted up from the left end of the number path and counted 
down from the right (see Fig. 1.5).

Others continued the number sequence after 5 by wrapping numbers around to 
the left of zero (see Fig. 1.6).

Student 3.E09 explained, “I saw five, then four, then three...so I went two, one, 
zero, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen.” 
When asked how the student knew to put the six to the left of zero, the student 
responded, “Because there was no room for it [after five]. I just put it—shoved it in 
there.”

Aside from continuing the positive number sequence, a few students (7%) cre-
ated symmetric number paths. The most common way they did this was to start at 5 
on the right and write the decreasing number sequence to zero and then write the 
increasing number sequence on the left side of zero (see Fig. 1.7).

Fig. 1.3 Number path with repeating pattern

Fig. 1.4 Number path with repeated zeroes

Fig. 1.5 Number path with two counts

Fig. 1.6 Number path with wrapped numbers

Fig. 1.7 Number path with symmetric numbers
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One student added in an extra zero, while a few left out zero. One student who 
left out zero also did a symmetric pattern (see Fig. 1.8).

 Discussion of Whole Number Play

Interestingly, half of the second graders did not play around with the “extra” spaces 
on the number path and only filled in the positive integers (1–5) or whole numbers 
(0–5). A few of these students questioned why there were extra spaces while filling 
in the number path. Many others stopped filling in the numbers, perhaps due to 
confidence that there are no more numbers below zero, similar to the above exam-
ples. Another reason for leaving blanks could be reluctance to deviate from teach-
ers’ “normal” expectations. Having confidence in an answer when the problem 
situations are unfamiliar is an important trait and speaks to the strength of these 
students’ whole number understanding. Those students who continued the number 
sequence on the left side of zero by wrapping the numbers around exhibited knowl-
edge that the positive number sequence continues beyond five (something they 
clearly wanted to make sure we knew!), and their willingness to place these num-
bers on the other side of zero suggests that they do not necessarily visualize num-
bers in a linear manner. We constrained them by providing a set number of boxes, 
which likely influenced where they chose to put the numbers. In terms of integer 
exposure, these students would benefit from number path games similar to those 
described by Aze (1989) and Wilcox (2008) to encourage students to further play 
with numbers. Teachers could encourage students to consider what numbers go on 
the other side of zero and to think about how to notate them and to provide them 
with opportunities to think about numbers continuing indefinitely in both 
directions.

Other students, who used the whole numbers to make a pattern, demonstrated a 
focus on the repetitive nature of numbers. Patterning with number is important in 
making sense of place value and can be leveraged to help students focus on similari-
ties between positive and negative numbers, such as through a focus on symmetry 
(Tsang, Blair, Bofferding, & Schwartz, 2015). Both students who leveraged patterns 
and symmetry in their answers could benefit from experiences that involve compar-
ing patterns in increasing magnitudes from zero (e.g., 1, 2, 3 versus -1, -2, -3) and 
exploring how the patterns are similar yet different in terms of how they are ordered 
(i.e., -3, -2, -1 versus 1, 2, 3).

Fig. 1.8 Number path with symmetric numbers and no zero
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 Playing Around with Negatives

A small group of students (7%) included negatives on their number paths in ways 
that are not considered formal. One student even added negatives onto their pattern 
(see Fig. 1.9).

As with the patterns, one student added negatives when writing a sequence (see 
Fig. 1.10).

Further, two students reversed the order of the negatives and wrote -89 to -100 to 
the left of zero (although both skipped one number in the sequence).

The student who completed the number path shown in Fig. 1.11 said that she 
knew “minus a hundred” went next to zero “because it’s a low one. It’s a low num-
ber.” Others either used negative zero instead of zero or used both versions of zero, 
sometimes putting the negative sign on the right side of the number (see Fig. 1.12).

Similarly, some of the students ordered the negatives correctly but left out zero, 
used negative zero (see Fig. 1.13), or used both positive zero and negative zero.

One of the students who left out zero included it later on a number line task. 
Finally, 23% of students correctly filled in the number path to show the integer 
sequence, with five of these students creating their own notation to designate nega-
tives. These notations included putting an apostrophe, which the student called 

Fig. 1.9 Number path pattern with negatives

Fig. 1.10 Number path with a negative and positive sequence

Fig. 1.11 Number path with a reversed negative sequence

Fig. 1.12 Number path with a reversed negative sequence and two zeroes

Fig. 1.13 Number path with negative zero
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“negative” or “N” after each number to indicate a negative (see Fig. 1.14), putting 
an “n” above each number, placing a zero before the number (e.g., 02, 01), or put-
ting a “0-” before each number (e.g., 0-2, 0-1) (see Fig. 1.15). This latter student 
(2.Q02) called 0-1 “negative one” and indicated, “It means zero, and the line means 
negative, and then the number.”

 Discussion: Negative Number Play

The small group of students who included negatives in informal ways provides 
interesting insight into students’ beginning conceptions of negatives. The inclusion 
of negative zero suggests that students are attuned to symmetry and the similarity in 
notation between positive and negative numbers and, based on that pattern, feel the 
pattern should extend to zero. Although the notion of negative zero exists in com-
puting, students need to understand that we do not write both zero and negative zero 
on the number path because their values are the same (i.e., -0 = 0; this might make 
more sense to students who are exploring multiplication with integers: -1 × 0 = 0). 
Students who reversed the order of the negatives on the number path also tried to 
find structure in the numbers but did so by focusing on the numerals and copying the 
order of the positive number sequence or by writing them in order of increasing 
magnitudes within each set of numbers. In this way, these students demonstrated a 
“separate negative number ray” conception (Widjaja, Stacey, & Steinle, 2011, 
p.  86). These students need additional experience thinking about the relation 
between integer order and values through exploring them on a continuum from most 
negative to most positive (e.g., Bofferding, 2014) and through contexts such as ele-
vation (e.g., Swanson, 2010), temperature (e.g., Pratt & Simpson, 2004), or net 
worth (e.g., Stephan & Akyuz, 2012). Some of these students indicated that they 
knew about negatives because they “just saw it somewhere” (Y2.R07) or because a 
sibling had told them (Y3.D06).

Given that some of the students had previously heard about negatives, it is not 
surprising that some of them wrote them correctly. Further, some of them may have 
copied the negatives from number lines posted in their classrooms, suggesting that 
some students rely on external cues to support their playfulness  – it is perhaps 
equally enlightening that many of them ignored the number lines in their rooms. 

Fig. 1.14 Number path with apostrophe notation for negatives

Fig. 1.15 Number path with invented notation for negatives
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Those who made up their own notation, although a small number, may have 
similarly heard about negatives but did not know the formal notation; yet, their 
 willingness to create consistent notation suggests a high degree of playfulness. 
Further, their use of an alternate notation suggests they understand the importance 
of distinguishing types of numbers through notation. When possible, teachers 
should help these students connect their playful notations to the formal notations.

 Arithmetic Results

As seen by the number path results, students had a variety of ways of playing with 
whole numbers and negative numbers that illuminated how they were structuring 
and finding patterns in number. However, their responses on the number path did not 
directly relate to their interpretations of the arithmetic problems in most cases. That 
is, most children did not count on their number paths in order to solve the arithmetic 
problems. Yet, depending on students’ prior experiences with negative numbers (as 
illustrated through their number path responses), they played around with the prob-
lems in different ways. Our presentation of the arithmetic results revolves around 
two main sections: one focused on the students who only included whole numbers 
on their number paths and one focused on the students who included negative num-
bers on their number paths. Within each section, we further break apart the results 
based on students who gave only positive answers on the arithmetic problems and 
those who included negative answers on the arithmetic problems. We follow these 
two subsections with a discussion of the students’ playfulness. Recall that based on 
the play perspective highlighted by Davis (1996), we interpret all responses as play-
ful because they provide us with insight into how students find structure in the 
problems.

 Students Who Only Included Whole Numbers  
on the Number Path

Whole Number Answers on Arithmetic As mentioned earlier, the majority of 
students completed the number path with positives or the whole number sequence. 
Unsurprisingly, only including whole numbers on the number path was significantly 
correlated with only giving whole number answers on the arithmetic problems 
(r = 0.519 and r = 0.475 for addition problems in years 1 and 2, respectively, and 
0.585 for subtraction problems in year 2).

Among the 169 students who did not include negatives on their number paths, 
151 did not include negative integers in their arithmetic responses. For those who 
solved subtraction problems in the second year, some avoided negatives on prob-
lems such as 1 − 4 by reversing the order of the numbers and solving 4 − 1 = 3; 
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others ignored all of the negative signs in the problems. When solving -6 + -4, 
Student 2.P07 drew six dots and then four dots and answered ten. Being more 
explicit about ignoring the negatives, when solving -4  +  -3 = 7, Student 3.B14 
crossed out the negative signs and said, “I did four plus three equals seven.” When 
asked why she crossed out the negatives, she responded, “Because I didn’t wanted 
them.” In fact, she felt free to change anything that did not work for her. On 1 – 4 
she “switched these numbers” and solved it as 4 – 1. Further, on -7 – -9, she changed 
the problem to 10 – 6 because, in her words, “Seven wasn’t big enough. So I just 
changed it into, seven to a bigger number; nine to a smaller number.” Similarly, 
Student 3.B09 ignored all of the negatives. If the absolute value of the second num-
ber was larger or equal to the absolute value of the first number in the subtraction 
problems, she generally answered with the absolute value of the first number, essen-
tially ignoring the second numbers.

Even though these students did not include negatives, many of them indicated 
through their strategies that they paid attention to the negative signs in the problems. 
One way they did this was by interpreting negatives as worth zero; several students 
articulated reasoning that the numbers were taken away. For example, when solving 
-9 + 2 = 2, Student 3.F02 stated, “I thought that it said like, minus. So, I already had 
a nine, and I minused – like I took nine away, and then I had a zero, and I get two, 
and it’s like plus two.” Therefore, this student interpreted the problem as 9 – 9 + 2, 
leveraging the binary meaning of the minus sign to subtract the number from itself.

However, this was not the only use of the binary meaning. At the extreme, 
Student 3.J05 answered 0 for almost every problem because she used subtraction in 
multiple ways. Typically, she subtracted negatives from themselves (i.e., -8 or “eight 
minus” meant 8 – 8). This somehow led her to an answer for 0 on -9 + 2. She said, 
“Because nine minus plus two equals zero.” Further, on problems such as 4 – 5, she 
also answered 0 because, “If you have four and minus five, it equals zero.” She 
consistently used a binary meaning of the minus sign. Placement in this group was 
associated with providing significantly more answers of zero on the subtraction 
problems (correlation of 0.283), possibly because they were more likely to ignore 
the negatives on the arithmetic problems and answer 0 for problems such as -3 – 3, 
-8 – -8, and -5 – -5 or because they reasoned that they couldn’t take any more away 
on problems such as 4 – 5 or -2 – 3 (interpreted as 2 – 3).

Another student who consistently used the binary meaning was Student 2.Y02, 
who solved integer addition problems by subtracting the smaller absolute value 
from the larger absolute value. For example, when solving -6 + -4 and answering 2, 
he stated, “Minus six plus minus four and then, um, I had so I did, um, I drew six 
and I marked out four and then, um, two was my answer.” Therefore, although he 
read that “-6” had a “minus,” he used it as positive but then interpreted the second 
negative sign as a subtraction sign. Further, for 6 + -8 he said, “Six minus eight, so 
I drew eight since it’s a little bigger. I took away six.” Along the same lines, when 
solving problems where students had to subtract a negative, some students saw the 
symbols as two subtraction signs. Student 3.D08 when solving 9 – -2 answered 5 
and said, “Because I thought it was two minuses, so I just had put five,” essentially 
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solving 9 – 2 – 2. Student 3.F02, similar to 3.D08, took away the second number 
twice when subtracting a negative number in solving 3 – -1 and explained, “Because 
three minus one and then like—this one I thought it minused two—like one more, 
and then I put one.”

Negative Answers on Arithmetic Even though many students did not include neg-
ative integers on their number paths, 18 of these 169 students provided meaningful 
negative answers for at least one arithmetic problem. Beyond a focus on the binary 
meaning of the minus sign, students in this category also frequently applied the sym-
metric meaning of the minus sign. Student 2.P02 was rather unique in his treatment 
of the numbers. He played around with the relations among numbers based on fact 
families or familiar sequences while also attending to the negative. For example, 
when solving -4 + 6, he answered -8: “I knew two plus two equals four and then I 
added two and then six, then I went six and then eight and then got that [-8].” The 
student saw 2, 4, 6, and 8 as related, but although he talked about them as positive in 
his solution process, he provided a negative answer. Other students added the abso-
lute value of the integers and added the negative sign to the answer; whereas, some 
subtracted first and added the negative sign to their answer. Student 2.O08 in solving 
-6 + -4 said, “Negative six plus negative four equals two...Negative two. ‘Cause both 
of the numbers have negative and there’s two.” When asked how he knew it would 
be negative two, he replied, “Because it’s subtracting.” This response suggests that 
he either interpreted the negative sign in front of the four with both a binary (subtrac-
tion) meaning as well as a symmetric meaning or interpreted the negative sign in 
front of the six with a symmetric meaning and the negative in front of the four with 
a binary meaning. Student 3.L01 displayed a strong symmetric meaning of the 
minus sign. All of his answers were negative with over 80% of them consistent with 
subtracting the smaller absolute value from the larger absolute value and making the 
answer negative, regardless of the signs of the numbers. For example, on -7 – -9, he 
answered -2; on -3 – 3, he answered -0; and on -5 – -5, he answered -0.

Similar to students in the previous part, some of these students also treated nega-
tive numbers as worth zero in their arithmetic responses. Student 3.H06 interpreted 
the negative numbers as zero in some problems. For example, when solving 9 – -2, 
she indicated that -2 “equal zero [so] you get nine.” Yet, her interpretation of nega-
tives as worth zero was more complex. When solving subtraction problems with two 
negatives, she provided negative answers (e.g., solving -5 – -5 as -10 and -7 – -9 as 
-16). When describing her solution to -2 – -6 as -8, she said, “I’m in the zeroes on 
the number line.” If subtraction is interpreted as moving to the left on a number line, 
her description would match and suggests that she may have some unary conception 
of negatives as locations on a number line “in the zeroes.” There was clear evidence 
that at least one other student treated negatives as attached to a numeral (unary 
meaning). Student 3.B13 started at a negative number and counted toward the nega-
tive direction, indicating a unary understanding of the minus sign. He solved -4 + -3 
by counting, “Negative four, negative five, negative six, negative seven.” However, 
as with the previous student, Student 3.H06, Student 3.B13 solved 9  – -2 and 
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answered 9 by indicating, “Negative two doesn’t make anything,” interpreting it as 
worth zero.

Discussion Many of the students exhibited initial mental models for integer order 
and value in these tasks. Their strategies (ignoring of the negative signs and chang-
ing problems so that the larger absolute value was first) highlight the strength of 
their mental models for whole number operations and the structure they expect to 
find in arithmetic problems. As seen with previous negative integer research, stu-
dents’ play with the problems where they had to subtract a number of larger magni-
tude from a number of smaller magnitude revealed what they know. Those who 
reversed the order of the numbers tried to apply the commutative property to sub-
traction, whereas others subtracted and got zero because they could not take any 
more away (Bofferding, 2011). The expectation that they could commute numbers 
with subtraction is further evidence that even young students look for structure in 
mathematics. By restricting the numbers they expose children to (i.e., only present-
ing whole numbers in early years), adults inadvertently provide situations where 
students are forced to try to find structure in limited situations.

On the other hand, a handful of students played around with the negative signs as 
they tried to make sense of them. Based on their mental models of whole numbers, 
where minus signs indicate subtraction, it is logical that they would interpret nega-
tives as a binary sign as well. Students who interpret negative numbers as numbers 
subtracted from themselves are not far off the mark (and exhibit more of a transition 
I mental model; see Bofferding, 2014). Indeed, instead of interpreting -5 as 5 – 5, 
one could interpret it as the result of 0 – 5. Student 3.H06 provided some indication 
that these “zero numbers” can be ordered (as on a number path); however, she only 
answered with negative solutions if both minuend and subtrahend were negative. 
This suggests that she was operating with a divided number line mental model 
(Peled et al., 1989) and had not developed special rules to cross between negative 
and positive sides. Acknowledgment of negatives as their own type of number 
(located separately from positives on a number path) is a key step. Students who 
solely rely on the binary meaning of the minus sign and subtract twice for problems 
such as 9 – -2 would benefit from exploring both negatives as locations as well as 
the distance meaning of subtraction. By considering the distance between two num-
bers, students could reason that the distance from -2 to 9 is 11 (Whitacre, Schoen, 
Champagne, & Goddard, 2016–2017).

Finally, Student 3.B13 presents an interesting case because he did not include 
negatives on his number path but was able to count into the negatives when solving 
some of the problems. It is possible he forgot about them until he saw them on the 
test, or the number path question itself may have been the issue. The question asked 
students to fill in the missing numbers, but students may have thought this only 
referred to the whole numbers or “normal numbers” as many described them. 
Another possibility is that due to their school context, they believed they were 
expected to only fill in whole numbers; in fact, some students who knew about 
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negative numbers specifically asked us if they could fill them in on their number 
paths. This suggests that the rigidness of school-based tasks could limit students’ 
willingness to play and thus find or demonstrate additional order and structure in 
mathematics. If we take the opening quote by Davis to heart, this could lead to a 
lack of play and students concluding that mathematics is a set of rules to memorize, 
a belief held by many students (National Research Council, 2001).

 Students Who Included Negatives on the Number Path

Whole Number Answers on Arithmetic Interestingly, 25 students among 74 stu-
dents, who had negative numbers on their number path, did not include negative 
numbers in their arithmetic problems, or their use of negative answers did not con-
vey a meaningful strategy. Not all these students placed the negative integers on the 
number path in the correct order. Also, some of these students used their own nota-
tion of the negative sign when filling in the numbers below zero (e.g., 11N, 10N, 
9N, 8N, 7N, 6N, 5N, 4N, 3N, 2N, 1N, 0, 1, 2, 3, 4, 5) but did not include them on 
the arithmetic problems. The arithmetic results of those students who used their own 
notation for negatives on the number path highlight the importance of connecting 
their notation to the formal notation. Three of these students ignored all of the nega-
tive signs and added the integers based on their absolute values (e.g., -9 + 2 = 11, 
5 + -2 = 7). Therefore, the arithmetic items potentially underestimated these stu-
dents’ ability to reason about integer operations compared to if they had been given 
problems using their own notation. Even some who correctly completed the number 
path using formal negative notation ignored the negative sign in the problems and 
added the integers with their absolute value.

Some students paid attention to the negatives in the problems and played around 
with the meaning of negatives such that their responses did not include negative 
integers. Student 2.R04 when solving -6 + -4 said, “Since it’s both negatives, so it 
would equal zero. Because [if] it was six plus four it would be ten, but it’s negative 
six plus negative four so it’s zero.” Unlike students who put whole numbers on their 
number line, Student 2.R04 did not talk about negatives as taking away themselves 
but talked about them as being “nothing,” suggesting he saw the negative as attached 
to the number, a unary meaning of the minus sign, but attributed a value of zero to 
negatives.

On the other hand, Student 2.V06 described the negatives as “taking away,” play-
ing with the binary meaning of the minus sign as seen with other children. In solv-
ing -2 + 0, she said, “Take away two plus zero, and it equals zero.” For addition 
problems starting with the smaller absolute value number, she answered 0. For 
example, when solving 6 + -8, she explained, “You can’t take away eight so I just 
took away all of them.” She even did this if the first number was the one that was 
negative, as in -4  +  6 which she answered with 0, consistently using the binary 
meaning of the negative sign. Others, such as Student 2.R01, only subtracted the 
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integers when the second number was negative; otherwise she either treated the 
negatives as worth zero or ignored the negative signs, answering with nonnegative 
numbers. Treating the negative sign as the subtraction function was more prevalent 
among students who worked on subtraction problems.

Negative Answers on Arithmetic As mentioned, 74 students among 243 second 
graders had negative numbers on their number path. More than half of these 74 
students (49 students) provided negative numbers in their arithmetic responses, and 
often their treatment of the negative sign varied. Student 3.J04 was an anomaly in 
this group. To form her answers, she took the numerals from the problem and put 
them together to make a two-digit number, which she made negative in one instance 
(e.g., -5 – 9 = -59). On the other hand, many of these 49 students ordered the nega-
tive integers on the number path in nonstandard ways, which for a few corresponded 
to their arithmetic strategies and responses. For example, Student 3.J02 had -0 
instead of 0 on the number path; likewise, he answered -0 in arithmetic problems 
like -8 – -8. He also answered -0 for the majority of the other problems, such as 
-3 – 3 as well as 4 – 5. Student 3.J02 was not the only student who responded with 
-0 for some problems. Student 3.C13 had both 0 and -0 on the number path and also 
answered -0 for -3 – 3 and -5 – -5; similarly, she typically subtracted the smaller 
absolute value from the larger and made the answer negative. This suggests a focus 
on the symmetric meaning of the minus sign. Other students expressed the symmet-
ric meaning more clearly, such as Student 2. O09 who solved -6 + -4 = -10 and 
explained, “Because I knew that six plus four equals ten, so I thought that it would 
be the same in negatives.”

Similar to the previous groups of students, one of the frequent uses of the minus 
sign for these students was applying the binary meaning as subtracting two integers. 
Student 2.Y09 in solving -6 + -4 answered 2 and said, “Minus six plus minus four, 
I had six and then I went back four and I got two” and for -9 + 2 answered 7 and 
explained, “Nine minus two plus two equals seven. I just went back two.” Student 
2.O09 sometimes treated the negative sign as subtraction and explained his response 
for -5 + 5, “Because negative five plus five would be like five minus five.” Unlike 
the other groups who had students subtracting numbers from themselves, making 
negatives result in zero values (i.e., negatives became worth zero only after being 
subtracted from themselves), students in this group tended to acknowledge nega-
tives as a separate class of numbers, to which they ascribed the value of zero – treat-
ing the negative sign with its unary meaning but worth 0. For example, Student 2.
R10 in solving -5 + 5 answered 5 and said, “Because that’s a negative number. It 
means that it’s one of the zeros.” Also, Student 2.R09 explained her answer for 
4 + -5 as 4, “Because five, because negative five is um, is worth none.”

A couple of students applied the unary meaning to the negative signs but also 
interpreted them with an additional meaning. Student 2.O09, for example, described 
his answer for -3 + 1 = -2, “I knew that it’d go up except it was subtraction...’cause 
I knew that three minus one would equal two...because I knew that it was negative 
number instead of an actual number.” He talked about going up from -3, treating the 
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negative with its unary meaning, talked about the problem related to subtraction 
(binary meaning), and also used the symmetric meaning, relating his answer of -2 
to 2. Likewise, Student 2.U01, who applied the unary meaning of the minus sign in 
some problems, solved -1 + -7 = -8 and explained, “Negative one plus negative 
seven is kinda one plus seven. But I did, but I counted one and got negative eight.” 
Therefore, the student both counted within the negatives (unary meaning) and 
related the problem to its positive counterpart (symmetric meaning). Although he 
talked about the symmetric meaning, he had a strong unary meaning of the minus 
sign and answered almost every arithmetic problem correctly. He knew that adding 
a negative resulted in a more negative answer, and for -9 + 2 = -7, he explained, “I 
started at negative nine and then counted backwards, then it’s negative eight then 
negative seven.”

Students’ treatment of negative numbers as points on the number line or in the 
counting list (the use of the unary meaning of the minus sign) sets this group apart 
from students in the other groups. Their use of negatives did not always align with 
formal procedures; however, they exhibited a system of rules that likely reflected 
their positive number understanding. Student 3.H05 started to assign movements to 
numbers. She described her answer for -9 + 2 as -11, “Because you’re in the nega-
tives, and you want to go up to two more. So, I found out it was eleven.” Her mean-
ing of going up corresponds to a positive number notion of addition. Note that she 
also called her answer 11, even though she wrote -11. Further, she explained her 
response for -7 – -9, “Negative seven minus negative nine equals negative two... I 
started at negative nine, and I went back seven, and I landed on negative two.” Even 
when subtracting two positive numbers, she always started with the larger number 
(e.g., solving 1 – 4 as 3), and the direction she counted was consistent with a posi-
tive notion of subtraction where the magnitude of the answer is smaller than the 
initial number.

Student 2.O07 had a different, yet consistent, way of reasoning about integer 
operations. She consistently started at the initial number and described the direc-
tional movements, as if using a mental number line, on that initial number. If the 
initial number in the addition problem was positive, she clarified, “If you wanted to 
go down, you could be like seven plus negative three equals four.” She solved all 
problems of the form positive plus negative correctly, counting down from the posi-
tive number. All addition problems with the initial numbers as negative corre-
sponded to an upward movement to her, regardless of the sign of the second number. 
In solving -5 + 5 = 0, she reasoned, “Negative five and if you add five, you would 
get negative four, negative three, negative two, negative one, zero.” When asked how 
she knew when to go up, she provided another example, “Like when it’s negative 
nine plus two equals negative seven.” Consequently, she correctly answered all 
problems of the form negative plus positive. However, she also used an upward 
movement to solve negative plus negative problems. Therefore, she explained her 
answer for -6 + -4, “I started with negative six, negative five, negative four, negative 
three, negative two.” Further she responded 6 for -1 + -7 by applying the same strat-
egy (starting at -1 and moving more positive 7).
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Discussion Although it is less surprising that students who represented negatives 
on the number path with their own notation would ignore them on the arithmetic 
problems, it is more surprising that those who included negatives would ignore 
them. However, this makes sense in terms of conceptual change and integer order 
and value mental models. Students may have an understanding of the order of the 
negative numbers before attaching value meaning to them (Bofferding, 2014). In 
fact, some of the students may have copied the numbers from the classroom number 
lines. Therefore, they found other ways to make sense of the symbols that fit into 
their existing mental models of whole number values.

When we look beyond answers as being correct or incorrect and look at how 
students play around with numbers, we learn what elements of numerical structure 
stand out to students. For those who did not provide negative answers but inter-
preted negative signs as subtraction signs, their answers suggest patterns in stu-
dents’ thinking. For some, the minus sign meant subtraction regardless of its 
position, and they always subtracted from left to right, so -4 + 6 meant 4 - 6 just as 
6 + -8 meant 6 – 8. For others, negatives at the beginning of a number sentence 
meant the number was subtracted from itself, in which case -4 + 6 meant 4 – 4 + 6. 
Distinguishing between these two situations might be an initial step toward inter-
preting negative signs as different from subtraction signs.

One of the striking differences between students who used negatives on their 
number paths and those who did not was the increasing number of students who 
treated negatives as numbers (or locations on a number path). Several of these stu-
dents were able to count in the negatives and through zero, similar to young students 
in other studies (e.g., Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2011). Rather 
than playing around with the meaning of the negative signs, their play centered on 
the meaning of the operations in relation to negative numbers. Acknowledging this 
play as legitimate sensemaking, regardless of correct or incorrect answers, is impor-
tant because their play highlights powerful reasoning on their part as they try to 
coordinate concepts related to magnitude, order, addition, and subtraction. Analyzing 
these attempts can help teachers and researchers identify potential areas to focus on 
in instruction and continued research. For example, Student 2.O07 differentiated 
between the direction of movement when adding a positive number to a positive 
number and a negative number to a positive number. Unlike with others who focus 
on the magnitude of numbers, this focus on direction helped her make sense of add-
ing a positive to a negative as going up (movement to the right on a number line). 
Likewise, in a comparison between second and fifth graders, Aqazade (2017) found 
that second graders who compared worked examples of the problem comparisons 
5 + 3 versus -5 + 3 (highlighting the consistent direction when adding a positive 
number) followed by -2 + -5 versus 2 + -5 (highlighting the consistent direction 
when adding a negative number) made larger gains and performed higher than fifth 

L. Bofferding et al.



21

graders by posttest. One hypothesis for why the fifth graders made fewer gains was 
that they were more set in their initial strategies and less open to playing around and 
changing the way they thought.

 Making Space for Learning

By shifting to a lens of play, introducing concepts that may seem “too abstract” for 
children based on an adult perspective suddenly gives children the freedom to play 
around and ultimately provides us with insight into how they are trying to make 
sense of the world. The results presented here highlight some important moments in 
children’s conceptual change journey from whole number to integer understanding. 
One key concept revolves around students’ interpretation of the negative sign and 
how it relates to integer values. On the one hand, some children interpret the sign as 
disconnected and representing a subtraction sign. These students interpret negatives 
as subtracted from themselves and worth zero (Bofferding, 2014). Subtly, but strik-
ingly different, another subset of students interprets the negative as attached to 
numeral to form a negative number, which they also concluded had a value of zero. 
Some of these students treated the negatives as locations on a number path while 
simultaneously considering them to all have zero values; often they preferred one 
aspect over another in their arithmetic answers.

Another key concept involves students’ interpretation of the operations. For 
many students, addition (even with negatives) involves a process of “going up.” 
However, their interpretation of what “going up” means differed. In the case of 
Student 3.H05, going up meant getting a higher absolute value either in the positives 
or negatives, depending on the initial number in the problem. Yet for Student 2.O07, 
going up corresponded to moving to the right on a number path; although this 
allowed her to add positive numbers to negative ones, it did not lead to correct 
answers when adding two negatives. This points to the importance of focusing on 
the meaning of operating with directed magnitudes and helping students reason 
about the differences between operating with a positive and negative number in 
conjunction with addressing their overall meanings of the operations.

The wealth of information we can learn from students’ opportunities to play with 
new concepts has implications on the types of tasks we give to students. Providing 
students with problems that challenge their existing mental models can illuminate 
their current mental models as well as “what is not yet known as it simultaneously 
offers space to support learning” (Davis, 1996, p. 222) and encourage mathematical 
wonder. In this view, assessment is less about determining students’ mastery and 
more about understanding their efforts to find structure in mathematics.
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 Appendix

Year 1: addition arithmetic problems

-5 + 5 = -2 + 0 = -4 + 6 =

-9 + 2 = -3 + 1 = -1 + 8 =
5 + -2 = 4 + -5 = 9 + -9 =
6 + -8 = 7 + -3 = 0 + -9 =
-6 + -4 = -1 + -7 =

Year 2: addition and subtraction arithmetic problems

-4 + -3 = -9 + 2 = 4 + -6 = -8 + 8 =

1 – 4 = 4 – 5 = 0 – 9 = 9 – -2 =
3 – -1 = 1 – -6 = 6 – -7 = -7 – 3 =
-3 – 3 = -5 – 9 = -2 – 3 = -7 – -9 =
-2 – - 6 = -8 – -5 = -2 – -1 = -8 – -8 =
-5 – -5 =
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Chapter 2
Integer Play and Playing with Integers

Nicole M. Wessman-Enzinger

Abstract This chapter describes instances of play within a teaching episode on 
integer addition and subtraction. Specifically, this chapter makes the theoretical dis-
tinction between integer play and playing with integers. Describing instances of 
integer play and playing with integers is important for facilitating this type of intel-
lectual play in the future. The playful curiosities arising out of integer addition and 
subtraction tended to be concepts that we think of prerequisite knowledge (e.g., 
magnitude or order, sign of zero) or knowledge that is more nuanced for integer 
addition and subtraction (e.g., how negative and positive integers can “balance” 
each other). Instances of integer play and playing with integers are connected to the 
work of mathematicians, highlighting the importance of play in school 
mathematics.

Embracing the identity of a mathematician or participating in the work of a mathe-
matician may seem like a foreign idea, especially to elementary school students. 
Yet, children are more capable of approaching mathematics similar to research 
mathematicians than they realize:

Young children develop mathematical strategies, grapple with important mathematical 
ideas, use mathematics in their play, and play with mathematics. Young children often enjoy 
their mathematical work and play. Indeed, despite its immaturity, young children’s mathe-
matics bears some resemblance to research mathematicians’ activity. Both young children 
and mathematicians ask and think about deep questions, invent solutions, apply mathemat-
ics to solve real problems, and play with mathematics. (Ginsburg, 2006, p. 158)

A key idea expressed by Ginsburg is the idea of play. He posits that through play 
students deeply engage in mathematics, reminiscent of mathematicians. The idea of 
fusing play with mathematics comes at a pivotal time in education and society. 
Increased educational testing (Ravitch, 2010), demands to meet expectations of 
standards (e.g., National Governors Association Center for Best Practices and 
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Council of Chief State School Officers [NGA and CCSSO], 2010), and increased 
needs for children to pursue STEM careers in the future (Ellis, Fosdick, & 
Rasmussen, 2016; Olson & Riordan, 2012) are just some of the contemporary pres-
sures. As stress continues to build around the increase in testing and expectations in 
standards, there is also a push to extend play throughout elementary school (Parks, 
2015). Including play in mathematics may reduce stressful mathematical experi-
ences. Engaging children in playful experiences of mathematicians may also have 
the potential to provide increased opportunities for access to more complex mathe-
matical concepts. Although there are calls for mathematical play (Ginsburg, 2006) 
and prolonged play in school (Parks, 2015), most of these play experiences are 
described with young children. But, are children in late elementary school able to 
learn advanced mathematical concepts through play? This chapter illuminates the 
potential of play for supporting children’s mathematical thinking and learning about 
integers and integer operations in Grade 5.

 Elements of Play

Children, like research mathematicians, engage in mathematical play and playful 
mathematics (Ginsburg, 2006). Ginsburg classified mathematical play as engaging 
in mathematics embedded in play. For instance, when building block towers, chil-
dren may count their blocks or compare the heights of block towers as they play. 
Ginsburg also classified playful mathematics as play centered on mathematics. This 
may happen when students engage in play that is purposefully mathematical—like 
playing a walking game on a number line.

These types of play, mathematical play and playful mathematics, should not be 
reserved for just young children (Parks, 2015) or just mathematical topics typically 
advocated at their grade level (Featherstone, 2000). Play can help them investigate 
new concepts as well. Parks (2015) lamented about the need for play throughout 
elementary school, “as children move through the primary grades and have fewer 
and fewer opportunities for play, finding ways to bring choice, excitement, move-
ment, imagination, and curiosity into formal lessons becomes more and more 
important” (p. 112). We know that children are capable of sophisticated reasoning 
about integers (Bofferding, 2014) and integer addition and subtraction (Bishop 
et al., 2014). Mathematical play and playful mathematics may be a space for chil-
dren to engage in topics, like integers, at later elementary grades and before age 
levels recommended in standards (NGA & CCSSO, 2010).

Identifying elements of mathematical play and playful mathematics (see 
Table 2.1), even with older children, can help distinguish the intellectual, but playful, 
experiences that children engage in as they play with integers (Featherstone, 2000; 
Parks, 2015). Burghardt (2011) described essential criteria for play: spontaneous or 
pleasurable, not fully functional, different from similar serious behaviors, repeated, 
and initiated in the absence of stress. First, play must be spontaneous and pleasur-
able—it is a necessary requirement that play is fun and enjoyable for children. 
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Second, play is not fully functional because it is not necessary for survival but has 
some functional aspect. Play may be functional, like building a castle out of blocks 
for a doll. In this way, play may serve some sort of function and have delayed bene-
fits. Third, play must also include some qualities that differentiate it from serious 
behaviors. Children dancing or pretending to be an animal, for example, are different 
than typical behaviors in the surrounding environment. Fourth, play also includes 
elements of repetition because children will often repeatedly play until a skill is mas-
tered. For example, children may try to build a tall block tower. As they build this 
tower, it may topple over, but they will continue to repeatedly build this tower until it 
stands. Last, play must be initiated in the absence of stress—play is voluntary and 
takes place in a safe, relaxed environment. Burghardt noted that all of these criteria 
must be met in some capacity for true play. However, play includes additional crite-
ria, such as social engagement, creative thinking, appealing materials, physical 
movement, and imagination (Parks, 2015).

Insight into how these elements of play are present as children engage in integer 
play and play with integers is needed. Identifying elements of play and describing 
instances of them provides insight into the opportunities and spaces for deep, intel-
lectual, and mathematical thought. Describing instances of intellectual play may 
also offer insight into how play may be supported in school mathematics throughout 
elementary school.

 Imaginative Play Supports Thinking and Learning 
About Integers

One of the prevalent themes in the literature across history is that the thinking and 
learning about integer addition and subtraction is notoriously challenging (e.g., 
Bishop et  al., 2014; Piaget, 1948; Thomaidis, 1993). Yet, we are gaining deeper 
insights into the ways that children think about integers (Bofferding, 2014) and 
integer addition and subtraction (Bishop et al., 2014; Bofferding, 2010; see Chap. 3). 
One reason the negative integers may be so challenging is the lack of physical 
embodiment of them (Martínez, 2006; Peled & Carraher, 2008). That is, the nega-
tive integers cannot be used as objects that physically exist (e.g., -2 fish) without 
opposites and an abstract one-to-one mapping of an integer to an object (e.g., stating 
that a red chip represents -1). Because of the physical constraints of the negative 

Table 2.1 Elements of play

Criteria for play (Burghardt, 2011) Additional criteria for play (Parks, 2015)

Spontaneous or pleasurable Opportunities for social engagement
Not fully functional Creative thinking
Different from similar serious behaviors Appealing materials
Repeated Physical movement
Initiated in the absence of stress Imagination

2 Integer Play and Playing with Integers
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integers, the integers are not as naturally accessible in play as the whole numbers or 
natural numbers.

Even so, Featherstone (2000) illustrated that play can be built around the imagi-
native world of integers. She presented an illustration of a Grade 3 student journal-
ing about additive inverses in a playful way: “-pat + pat = 0” (p. 14). Educators and 
researchers also utilize games for the teaching and learning of integer addition and 
subtraction (e.g., Bofferding & Hoffman, 2014; Wessman-Enzinger & Bofferding, 
2014). Games may be the space to encourage the imaginative mathematical play 
that Featherstone discussed. Play often centers on mathematics (Ginsburg, 2006; 
Parks, 2015), such as playing on a linear board game (e.g., Bofferding & Hoffman, 
2014; Siegler & Ramani, 2009).

Yet, mathematical play is not just playing with a game but is play with numbers 
(Featherstone, 2000; Ginsburg, 2006; Steffe & Wiegel, 1994). Boaler (2016) sup-
ports play with numbers for all students: “The best and most important start we can 
give our students is to encourage them to play with numbers and shapes, thinking 
about what patterns and ideas they can see” (p. 34). Featherstone (2000) argued that 
as children engage with integers, this may be a “territory for mathematically imagi-
native play” (p. 20). She also connected some features of play to exploring integers 
in elementary school. For example, one of the defined attributes of play is that play 
exists in a separate, outside world (Huizinga, 1955). That is, the child is able to step 
outside of reality into this other world. Featherstone (2000) proposed that the inte-
gers themselves are this imaginative world. She wrote, “The territory below zero is 
a separate world for elementary students. It is an outside the ‘real’ world of natural 
numbers - numbers that are in daily use both inside and outside of school” (p. 20). 
This type of imaginative play may be a way to share integers sooner and prolong 
play in schools.

We need more descriptions and insight into this imaginary world of play with 
integers that the children often step into. This chapter highlights how these different 
types of play, playing a game and engaging in mathematically imaginative play, 
work together to support thinking and learning about integers and integer addition 
and subtraction. Specially, this chapter illustrates specific instances of integer play 
and playing with integers and connects these instances to the elements of play 
described by Burghardt (2011) and Parks (2015). Then, these instances of play 
(integer play and playing with integers) are connected to the work of research math-
ematicians to show the potential for play in upper elementary grades.

 Context of the Study

The data reported on in this chapter comes from a 12-week teaching experiment 
(Steffe & Thompson, 2000) with three Grade 5 students designed to examine the 
teaching and learning of integers, specifically negative integers. The teaching exper-
iment was comprised of nine group sessions and eight individual sessions for each 
child. During these sessions, the students were introduced to four conceptual 
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models for integer addition and subtraction ([CMIAS], Wessman-Enzinger & 
Mooney, 2014)—bookkeeping, counterbalance, translation, and relativity—through 
the use of various contextualized problems and activities. Although these CMIAS 
were introduced throughout the teaching experiment, it was not expected that the 
students would use only these models; there were opportunities for students to think 
about the addition and subtraction of integers freely as they engaged in activities 
during the group sessions.

The mathematics that the students discussed and the misconceptions they held 
influenced the content and development of the group sessions of the teaching exper-
iment. I served as the teacher-researcher for this teaching experiment. A second 
researcher was the witness for most of the group sessions. He took field notes during 
the group sessions. In addition to taking field notes, he also periodically asked ques-
tions of the participants during the sessions. After each group session with the stu-
dents, the witness and I debriefed about the students’ thinking and learning that 
appeared to be emerging during the sessions. We also discussed plans for the next 
group session, and I considered his observations and suggestions for the next 
instructional moves, based on the students’ responses in that session. After each 
individual and group session, I wrote reflections about what I noticed as the teacher- 
researcher, what I thought the next instructional moves should be, and why I thought 
that move should be made.

The focus of this chapter is on the fourth group session because it serves as an 
example of the playful mathematics imbedded in mathematical play (Ginsburg, 
2006). This group session incorporated playing an integer-focused card game, dur-
ing which the students engaged with mathematics in ways that we had not planned. 
I present this case to illustrate the power of mathematical play for creating opportu-
nities for play with mathematics and to show how such play can support mathemati-
cal thinking.

 Integer Play

The mathematical goals of the integer play in the group session constituted adding 
integers, subtracting integers, developing a counterbalance conceptual model 
(Wessman-Enzinger & Mooney, 2014), and distinguishing the minus symbol from 
the negative symbol.

In the card game, Integers: Draw or Discard, drawing cards aligned with inte-
ger addition and discarding cards aligned with integer subtraction (Bofferding & 
Wessman-Enzinger, 2015; Wessman-Enzinger & Bofferding, 2014); therefore, the 
game fostered discussion of both addition and subtraction during this session. 
After including the drawn cards to their hand, the children determined their total 
points of their cards by adding. Discarding a card was similar to subtraction—as 
the point value of the card was taken away from the total hand. Thus, if students 
discarded a negative integer card, they considered the effects of subtracting a nega-
tive integer.

2 Integer Play and Playing with Integers
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Developing thinking about integers with a counterbalance conceptual model 
(Wessman-Enzinger & Mooney, 2014) constituted another mathematical goal of the 
integer play. Because students often develop their conceptions of number with dis-
crete, countable objects, developing thinking that supports this is important. In con-
trast to movements on a number line, thinking with a counterbalance conceptual 
model provides the opportunity to think about integers as “tangible.” Within a coun-
terbalance conceptual model, integers are conceptualized as two distinct quantities 
that neutralize. Ideas of neutralization are also important in mathematics from con-
texts like electron charges to areas beneath curves in calculus. However, as the stu-
dents began this group session in the teaching experiment, the students did not 
appear to see the “neutralization” in the quantities. To emphasize this “neutraliza-
tion” with a context, I decided to use a card game that uses integer cards from -8 to 
8 (Bofferding & Wessman-Enzinger, 2015; Wessman-Enzinger & Bofferding, 
2014). I selected this card game because the cards are integer quantities that would 
remain present in their hands of cards, giving the students opportunities to experi-
ence neutralization and, consequently, the potential to develop the counterbalance 
conceptual model. For example, if a student had a hand of 2, -2, and 7, it was worth 
the same in this game as a hand of 3, -3, and 7.

Central to the notion of counterbalance, another goal included that children begin 
to make distinctions between the subtraction symbol and negative symbol (Gallardo 
& Rojano, 1994). For those reasons, after game play, the children were asked to 
make sense of fictitious children’s hands of cards and write number sentences mod-
eling the drawing or discarding of cards. This was done to help promote thinking 
and learning about both integer subtraction and the differentiation between the neg-
ative symbol (e.g., used when writing an integer in a number sentence) and the 
subtraction symbol (e.g., used when writing a number sentence for discarding). 
Some of the ways that these students engaged in these types of mathematical ideas 
during the integer play will be discussed in the following section.

Integer play with this card game satisfied Burghardt’s (2011) essential criteria for 
play. This game provided the opportunity for pleasurable experiences because the 
children demonstrated excitement about playing the game and generally enjoyed 
playing with cards. This integer card game included not fully functional behaviors 
as the game was not necessary for survival but had the potential to satisfy the math-
ematical goals highlighted above. The game served as an activity different from 
similar serious behavior—the game included negative integers, which the children 
did not use during regular school instruction, and the children played the game out-
side of math class during their free time. The children played several rounds of the 
game and asked to keep playing after the game concluded—this illustrates repeti-
tion in play. Initiated in the absence of stress, the children volunteered to participate 
in this game play, which took place separate from formal instruction in a room 
outside of their classroom. The following excerpts will illustrate some of the math-
ematical goals achieved through this integer play and highlight the additional crite-
ria of play achieved (Parks, 2015).
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 Integer Play: Addition of Integers

From the inauguration of the teaching experiment, the children illustrated an ability 
to add integers with success. Consequently, as the children engaged in the game 
play, they naturally added their cards with ease and did not initiate discussion about 
addition. In the first move of the game, Kim drew two cards:

Kim:  Negative seven and eight.
Me: She had negative seven and eight. What do you think her point total is?
Alice:  One.
Jace:  One.
Me:  Why do you all think it’s one?
Jace:  Because eight minus seven equals one.

All three students performed calculations repeatedly for the function of deter-
mining their scores. However, the students did not reference addition. Even when 
Jace needed to add two cards in this excerpt, -7 + 8, he interpreted this as 8 – 7, 
suggesting an interpretation of the negative as a subtraction sign (Bofferding, 2010). 
Rather than discussion about addition per se, the children’s discussion focused on 
the discard of cards or how to get the largest point total, which often included mak-
ing decisions between drawing a card (adding) or discarding a card (subtracting). 
This consequently resulted in children talking about situations where they were 
confronted with initial ideas of subtraction; they considered situations where it was 
better to discard larger negative integers from their card hands (subtraction) rather 
than to draw smaller negative integers to their card hands (addition), which was a 
mathematical expectation of this game (see, e.g., Bofferding & Wessman-Enzinger, 
2015; Wessman-Enzinger & Bofferding, 2014). It was expected that the main 
opportunities for thinking and learning would be centered on the subtraction of 
integers and developing a counterbalance conceptual model (Wessman-Enzinger & 
Mooney, 2014), which are described next.

 Integer Play: Subtraction of Integers

All three of the children discarded negative cards (e.g., -2) throughout the game and 
recognized that this increased the total points of their hands. The children success-
fully played ten rounds of the game, where each child confronted the option of 
discarding a card with a negative integer. Each child did this action and increased 
their point total; yet, the children did not necessarily explicitly recognize this physi-
cal action in the game play as subtraction. For this reason, at the end of the game, 
the children were asked to write number sentences representing some of their hands 
and fictitious children’s hands of cards in order to see if they conceptualized dis-
carding cards as subtraction. However, the children had difficulty writing number 
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sentences. When the children began writing number sentences, they did not use 
subtraction for discarding cards; they would, instead, write the addition of the posi-
tive score. I prompted the children to think about how they could write number 
sentences that preserved the negativity of their cards. In the last minutes of the 
group’s session, they began writing number sentences that involved the subtraction 
of integers. Jace and Alice worked together on writing a number sentence on a 
whiteboard together, while Kim observed, for discarding a -5 card from a fictitious 
student’s hand of cards. The fictitious student’s hand of cards included -3, -5, and 8, 
with a -2 card as an option to draw; therefore, they had decided it was best to take 
the current hand of cards (worth 0 points) and discard the -5.

Alice  (Writes 0 + 5 while whispering)
Jace:  (Whispers)
Alice: Can you speak a little louder?
Jace:  Sure. I did zero (points at the 0 in 0 – -5 = 5) because that’s what he had 

after the first problem. And then I did minus negative points (points at the 
“–” and then “-5”) because he discarded the negative five and now he has 
five because there’s not longer a negative five in the problem. In the first 
problem that he did. So that just adds five to it. Technically (gestures with 
fingers and makes “air quotes”).

Alice:  (Looks at me) Well, I don’t get how he got his answer of five.
Kim:  I don’t get it.
Jace:  Alice, you’re just doing what I did here (points at Alice’s writing: 0 + 5).
Kim:  (Gets up out of seat and walks to the board where Jace and Alice are.)
Alice:  Yeah, but I don’t get how he get got five.
Kim:  This was his first problem (circles Alice’s number sentence before she 

simplified to find the initial point total: 8 + -3 + -5). And then this is the 
second problem (circles Jace’s number sentence 0 – -5 = 5).

Alice:  Yeah, but I don’t get how he got this answer (points at 5).

Kim wrote a number sentence with addition for discarding a -5 card. Although 
Jace was able to write a number sentence with subtraction and potentially make this 
connection at the end of this session, as Kim and Alice questioned him, he stated 
that he was confused too. In this excerpt, the children have generalized that their 
point total will go up by the absolute value of the negative they discard, a sophisti-
cated observation. What remained was a matter of facilitating the children in con-
necting this generalization to subtracting a negative, which is an idea that may be 
developed later.

As the students shared this type of thinking about integers, they engaged in an 
opportunity for social engagement (Parks, 2015). Alice and Kim communicated to 
Jace their confusion, and Jace explained his thinking while they listened. This 
excerpt also illustrates physical movement and use of materials that are appealing 
(Parks, 2015). At first, Alice and Jace moved from the table to the whiteboard to 
discuss writing a number sentence, and then Kim followed. During the teaching 
experiment, the children often left the site where the cameras were to go write on 
the whiteboard. The whiteboard was an appealing department from their position at 
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the table with paper and pencil. In general, when the students engaged in deep 
thinking together, they would move to this space, much like mathematicians around 
a chalkboard.

Given the challenges of writing a number sentence for the moves made in integer 
game play, subsequent sessions were developed to address subtracting negative 
integers. The challenges associated with the subtraction of integers lingered through-
out the weeks of the teaching experience. The children’s difficulty writing subtrac-
tion number sentences, but ease with discarding a negative and adding the amount 
to the deck, supports discussion about the difficulty of subtracting integers (e.g., 
Bofferding & Wessman-Enzinger, 2017) and supports research that demonstrates 
children’s thinking is often different than adult’s thinking (e.g., Bishop et al., 2014; 
Bofferding, 2014). However, this excerpt was included in demonstration of the ini-
tial thinking about integer subtraction that can happen during game play. Examining 
children’s discussions during play experiences provides insight into their thinking, 
which may be supported later.

 Integer Play: Counterbalance

From the beginning of the teaching experiment and throughout this group session, 
the children did not have difficulty with adding integers. However, despite their 
abilities to successfully add integers, the children did not all appear to draw on a 
counterbalance conceptual model. The counterbalance conceptual model involves 
children conceptualizing the addition of integers as integers that neutralize or bal-
ance each other out (Wessman-Enzinger & Mooney, 2014). In the following excerpt, 
Kim is faced with a decision to either discard a -7 card or to draw a +7 card. These 
moves have the same effect on her total points in her hand, and the children confront 
and reflect on this in the following excerpt.

Kim:  It’s the same, I think.
Alice:  You could have … never mind.
Jace:  No, because it would be zero, too.
Alice:  I know something she [Kim] could do and it would make her score even 

higher, but… I’m not going to say it.
Kim:  I don’t think it could have.
Me:  What do you think would make her score even higher?
Alice:  If she picked this up (points at the 7 card).
Kim:  I don’t care really.
Jace:  No, because she would still have the same amount.
Alice:  Because she would have, then she would have, oh yeah… she would still 

have seven.
Jace:  Yeah, because negative seven plus seven equal zero. So, should have still 

have…
Kim:  Boom. Now I have eight points. Yay.
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In this excerpt, Kim initially thought that discarding a -7 (subtracting -7) might 
be the same as drawing a +7 (adding 7). Alice thought that drawing a +7 card would 
make the score higher, than discarding a -7. The children discussed this. As part of 
that discussion, Jace provided the justification that 7 + -7 = 0—utilizing additive 
inverses is an important component when beginning to make sense of the counter-
balance conceptual model. Jace reflected on this more than once, later during game 
play, stating:

Alright, so. I have eight even though I have two eights in here. Actually, I have three if I 
count the negative eight. So… (writes on paper). Yeah, so I had an eight. I got a negative 
eight, so it’s zero. So just got another eight and now it’s eight.

Jace verbally recognized that a + -a = 0 in two instances during this group ses-
sion. Although Kim and Alice did not verbally make those observations, they par-
ticipated in the discussions where Jace shared this with them. Developing ideas 
about the additive inverses of integers is an important component to developing the 
use of the counterbalance conceptual model (Wessman-Enzinger, 2015; Wessman-
Enzinger & Mooney, 2014). This excerpt highlights creative thinking (Parks, 2015) 
from Jace. Jace, without prompting from his peers or me, shared what he noticed 
about inverses. In this sense, Jace created this mathematics and shared his thinking 
about this observation. Although his peers did not ask him questions about his 
observations about inverses, his openness exposed Alice and Kim to this idea.

 Integer Play: Minus Sign Versus Negative Sign

As the children engaged with integers through the game play, Jace highlighted that 
the role of a minus sign and negative sign is distinct (e.g., Bofferding, 2014)—a 
learning goal of the game with inclusion of the negatives on cards (use of negative 
sign) and discarding cards (use of minus sign when writing a number sentence). As 
the children wrote number sentences for representative hands of cards, Jace stated, 
“When you have a subtraction symbol (points at the ‘minus’ symbol) and a negative 
symbol (points at the negative number) you are just adding,” referring to the number 
sentence 0 – -5 = 5. Kim, not convinced, stated, “Well, you are actually at zero.” 
Jace responded, “If you take away a negative number that means that the negative 
number is no longer there. So like (starts writing on the board) five minus negative 
three would equal eight.”

In this excerpt, Jace was trying to develop a rule for subtracting negative integers. 
For example, when Jace solved -7 + 8 in the previous section, he utilized 8–7 with-
out discussion about this procedure. In this excerpt, Jace focused on the nuances of 
the sign and explicitly verbalized his procedure, but Kim and Alice were not con-
vinced. Although it is noteworthy that Jace was trying to develop a rule or procedure 
for himself, through this discourse, he distinguished the negative symbol from the 
subtraction symbol. In this excerpt, the students focused on the minus symbol and 
the negative symbol. As they focused on the signs, treating the negative integer with 
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its sign different than a minus sign represents the use of materials that are appealing 
(Parks, 2015). The students, prior to and during the teaching experiment, did not 
experience negative integers during their typical school day. In fact, according to 
Common Core State Standards for Mathematics recommendations (NGA & 
CCSSO, 2010), these students would not encounter subtraction of integers until 
2 years later, and, as participants in this study, the students were attuned to this 
because they mentioned how they did not work with negative numbers during their 
typical school day and only within this teaching experiment. And, again, this nego-
tiation on the differentiation of the role of the subtraction symbol and the negative 
symbol illustrates opportunity for social engagement between the students (Parks, 
2015). This social engagement element of play was pivotal for addressing the math-
ematical goals of the integer play. In the past two excerpts, Jace verbalized a good 
understanding of concepts such as integer subtraction and symbol use. Through 
integer play, the students all engaged with these mathematical goals as they asked 
questions, discussed, and listened based on their understandings.

Although making sense of integer addition and subtraction, the counterbalance 
conceptual model, and differentiating the negative sign from the minus sign consti-
tuted the intended mathematical goals of the integer play, it was not important that 
the children mastered these ideas. Through conversation with each other, they were 
exposed to other ideas, like the ones that Jace presented in the past two excerpts that 
they had not played around with yet. Play is an ongoing activity that children use to 
help make sense of situations, and we cannot expect mastery immediately—espe-
cially with difficult ideas of integer subtraction. Providing opportunities for engage-
ment with integer play is the point, because through play the children have the 
opportunity to work through different ideas and try new concepts out. Furthermore, 
the students thought about and engaged in other mathematics as they were playful 
with the integers in ways that were not planned by myself and the witness to the 
teaching experiment. The subsequent section highlights the robust mathematical 
ideas that may immerge when children play with integers.

 Playing with Integers

The students engaged in integer play as they interacted in the game, Integers: Draw 
or Discard. Although immersed in integer play, the students played with integers in 
ways that occurred outside of the mathematical objectives of the game—playing 
with the integers. As the students created, wondered, imagined, and questioned with 
integers, they played with the integers. Three cases illustrating how the children 
played with the integers in this group session will be presented next. Two of cases 
illustrate the robust thinking and wondering they engaged in directly tied to integer 
addition and subtraction. Although the third illustration of playing with the integers 
does not connect to integer addition and subtraction, it connects to other advanced 
mathematical ideas. Each of these playing with integer cases will be linked to the 
work of mathematicians.
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 Playing with Integers: Order Versus Magnitude

Before the students began engaging in integer play, I explained the directions of the 
card game. I then asked the children who should go first. The following transcript 
illustrates the children playing with integers in this setting.

Me:  So I was thinking... How do we decide who goes first though?
Kim:  Rock, paper, scissors.
Alice:  Or, who draws the highest card?
Kim:  Yeah, draw highest card.
Jace:  Yeah.
Me:  Ok, so everyone takes...
Jace:  Everyone takes one card and whoever has the highest.

(Alice, Jace, and Kim draw cards. Alice draws a -4 card, Jace draws a -8 card, 
and Kim draws a -7 card.)

Kim:  I totally lost.
Alice:  I did too.
Jace:  I got negative eight.
Alice:  I got negative four.
Me:  Ok. And, you got what? 
Kim:  Negative seven...
Jace:  So she goes first (points at Alice with -4).
Kim:  (points at Jace with -8) So Jace’s is the highest actually.
Alice:  No, I am.
Jace:  No, well...
Me:  So, who is the highest? 
Alice: (raises card in the air) Me!
Kim:  Jace because his is the biggest in the negatives. Because we all have nega-

tives, so.
Alice:  Well, mine would be the biggest.
Jace:  Well, she’s the closest to one (pointing to Alice).
Me:  So somebody said that they think Jace’s is the biggest because it’s nega-

tive eight.
Alice:  (Shakes head no.)
Me:  And, then Alice says no. So why did you think that Jace’s is the biggest?
Kim: I don’t know. They’re all negative numbers and just like find out which 

one is bigger.
Jace:  (Gasps.) I was wondering why you would want to discard cards. I’m like 

if they are all whatever why would you want to put one down. Ok, now I 
see.

Kim:  Now I know why (holds the -8 card up in the air).
Me:  And what’s yours?
Alice:  Negative four (holds up card).
Me:  So which one do you think is bigger?
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Alice:  Mine.
Me:  Why do you think yours is bigger?
Alice:  It’s closest to one. It’s highest out of all of them.
Kim:  Well, yeah.
Jace:  Mmm-hmm. 
Kim:  So I’m second. I’m second (waves hands and card in the air) .

After this, I suggested that the children draw two new cards and start the game play. 
Although they never explicitly verbalized who should go first, Alice played first.

This excerpt highlights the elements of play: function, creativity, social engage-
ment, and absence of stress. The children’s suggestion of how to decide who should 
go first illustrated a functional component of playfulness (Burghardt, 2011); the 
students wanted to play the game and needed to decide who should go first, result-
ing in this mathematical discussion. This excerpt is playful because the children 
illustrated creative thinking (Parks, 2015); they created the ideas of order and mag-
nitude when comparing integers. This excerpt is also playful because the children 
participated in social engagement (Parks, 2015); although the students did not ver-
balize a conclusive agreement on which card was “biggest,” they decided to let 
Alice go first and played without conflict. The children freely had this discussion in 
the absence of stress (Burghardt, 2011); the children decided how they would deter-
mine who would go first in excitement to begin game play. During this freely chosen 
activity, the cards unexpectedly, and serendipitously, revealed all negative integers.

Distinguishing between order and magnitude of the integers is an important com-
ponent of what it means to understand the integers and represents perquisite knowl-
edge for integer addition and subtraction (Bofferding, 2014). Through deciding who 
should play the game first, the children played with the integers as they initiated a 
discussion about order and magnitude. Alice drew a -4 card; Jace drew a -8 card; and 
Kim drew a -7 card. The children found themselves in a situation grappling with order 
versus magnitude during the comparison of three negative integers: -4, -7, -8. Kim 
stated that -8 was “bigger” than the other numbers because -8 is “more negative”—
employing magnitude-based reasoning (Bofferding, 2014). Alice and Jace reasoned 
that -4 is “highest” and “biggest” because it is closer to 1—employing order-based 
reasoning (Bofferding, 2014). Language issues of “bigger” and “higher” are also 
important tenants of the prerequisite knowledge that children need to make sense of as 
they begin to learning addition and subtraction (Bofferding & Hoffman, 2015).

As a society, we culturally emphasize order over magnitude with integer compari-
sons. That is, when comparing numbers like -4, -7, and -8, -4 > -8 is expected because 
of order, -4 is close to zero on the number line or -4 is more to the right on the number 
line than -8. However, often the work of mathematicians is magnitude based. That is, 
there are times when -8 is “bigger” than -4. For example, consider two velocity vec-
tors, one with magnitude -8 and another with magnitude -4. The vector with a mag-
nitude -8 would be considered “bigger.” Also, this excerpt illustrates the children 
engaging in play that became an unresolved mathematical problem for them around 
order and magnitude. Sometimes mathematicians work on problems that are not 
resolved right away. This is the expected and normative work of mathematicians.
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 Playing with Integers: Permutations

Throughout the entire session, as the children played the integer game, they deter-
mined their total points in the game with the sum of the cards in their hand. Each of 
the children successfully wrote his or her total points on the recording sheet. However, 
throughout the entire session, the children would make jokes about having a point 
total that was different from what they were recording. The children physically 
moved their cards around on the table in different positions, using only cards with 
positive integers represented on them, to make “pretend” point totals. The excerpt of 
transcript below is from the first instance of this type of play in the session.

Alice:  I have forty points. (Arranges cards 4 and 0 next to each other to look 
like 40.)

(Kim continues with game and draws a card.)

Kim:  I will just take this one. (Takes cards and writes on recording sheet.)
Alice:  Kim has like one hundred.
Kim:  Nine.
Alice.  Or, eighteen points. (Reaches over and touches Kim’s cards, moving the 1 

and 8 card next to each other.)

The children continued engaging in the integer play with the stated rules of the 
game; however, several times during this integer play, the children continued to 
arrange their positive cards, and notably not their negative cards, into different, 
“pretend” point totals. Although initiated by Alice, Kim did this later in the integer 
game play. Kim stated, “I made up thirty-eight and you guys are up in the eight 
hundreds”—referring to ordering the positive integer cards and notably not writing 
these point totals down. Alice and Jace participated in making permutations of their 
cards repeatedly as well. Looking at her hand that consisted of both positive and 
negative integers, she pulled the cards 0, 4, and 8 out of the hand. Discussing her 
actual point total, Alice whispered to Jace, “I have twelve. You have two more than 
me” and continued playfully, “I have eight hundred and four.” Jace replied, “I’m 
going to lose. She has eight hundred and forty”—helping Alice make a larger valued 
number out of her current permutation.

This excerpt highlights elements of play: spontaneity, different from similar seri-
ous behaviors, repeated, creativity, and imagination. Without prompting the children 
engaged in extra, unplanned mathematics. The children played with the integers by 
making permutations with their positive integers spontaneously—an element of 
playfulness (Burghardt, 2011). This excerpt is also different from similar serious 
behaviors (Burghardt, 2011); in fact, the children attuned to this difference and did 
not record these “pretend,” permutated scores on their recording sheet. This excerpt 
is playful because it illustrates the children engaging in an act that was pleasurable 
and lighthearted to them (Burghardt, 2011); the children treated these permutations 
as pretend scores as they continued with the expected directions of the game and 
recorded different point scores than they verbally stated with the permutations. The 
children repeated this type of play throughout the session (Burghardt, 2011). This 
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example is also playful because it illustrates the creative thinking and imaginations 
of the children (Parks, 2015); they created this play with permutations and imagined 
larger scores than they actually had based on the rules of the integer game.

The children constructed permutations with the positive integers only. They 
ordered their positive integer cards, utilized the place value system, and made new 
point totals from the permutation that would give the largest positive number. The 
children implicitly recognized that the base-10 system utilizes positive digits in the 
place value system, rather than negative digits. That is, if you have -1 and -8 cards, 
they were more than likely not permutated because -1 and -8 are not utilized as 
digits to make numbers. In order to use the negative cards, the students would have 
needed to take a negative card and place it first, like -1 and 8 to make -18 or 8 – 1. 
However, they did not do this. In addition to constructing permutations with the 
positive integer cards, they reasoned about what permutation provided the largest 
positive number. In this sense, as the children played with the integers, they also 
played with the idea of permutations. Although permutations are an important 
mathematical concept, it is not explicitly needed prerequisite knowledge for the 
teaching and learning of integer addition and subtraction. This is a consequence of 
the freedom of play; without prompting, the children engaged in extra mathematics. 
Although not a mathematical goal of original integer play, the children fearlessly 
played with integers in a mathematically productive way.

The ways that the children played with the integers in this excerpt mirrors the 
ways that mathematicians play with numbers as well. Similar to the work of the 
children in this excerpt, mathematicians engage in recreational mathematics (see, 
e.g., Journal of Recreational Mathematics). Some mathematics is simply for the joy 
and interest of doing mathematics (e.g., logic puzzles, happy numbers, star tan-
grams). In fact, often within the domain of recreational mathematics, permutations 
or combinations with integers are necessary. For example, pentominoes are com-
mon puzzles accessible to children but are also the basis for some interesting recre-
ational mathematics (see, e.g., Golomb, 1994; Wessman-Enzinger, 2013). A 
pentomino is created by permutations of the five unit squares in such a way that 
each square touches another square on at least one side—creating 12 pentominoes. 
Some recreational mathematics topics have included creating twin pentomino tow-
ers (e.g., stacking pentominoes vertically, creating the same-shaped towers with 
different pieces). Although the children’s play did not directly relate to integer addi-
tion and subtraction, the children did play with integers through permutations—a 
mathematically substantial way linked to the work of mathematicians (see, e.g., 
Knuth, 2000).

 Playing with Integers: Zero

After the children played ten rounds of the game, they were shown various hands of 
cards from fictitious children. Alice, Jace, and Kim considered these hands of cards, 
played with their physical cards, and decided what move the fictitious children 
should make. The children also wrote number sentences for the point totals of the 
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various hands when drawing or discarding cards. As the children attempted to write 
a number sentence for a hand of cards, Jace posed a question.

Jace:  I have a question. Would zero count as a negative number?
Me:  Do you think that zero would count as a negative number?
Alice:  No.
Kim:  Hmm... No.
Jace:  Well, it’s not a whole number.
Kim:  I think it would actually equal both.
Me:  You think it would equal both?
Kim:  I mean it would be both. (Shakes hand side to side).
Alice:  I think it’s kind of in the middle.
Jace:  Because zero is nothing.
Me:  Hmmm.
Jace:  And, negative numbers are nothing. But, it doesn’t have a negative symbol 

in front of it.
Alice:  Zero’s like not a number because it’s nothing.
Jace:  Well, so is negative numbers.
Kim:  (Laughs.)
Alice:  Yeah, but they’re something.
Jace:  My mind is blown.
Alice: (Laughs.)
Kim:  Zero is sort of important. It’s like the line below the whole numbers to let 

you know when you are starting the negatives.
Alice: I think the answer for this one (points at the sheet of paper, returning to the 

trying to write a number sentence for a hand of cards) is five, but I don’t 
get my number sentence.

The children grappled the nature of zero in this excerpt. They initiated a discus-
sion about whether zero is negative or not. In addition to discussing whether zero is 
negative or not, Alice wondered if zero is not even a number, which then prompted 
Jace to reflect on the physical embodiment of the integers, stating that “negative 
numbers are nothing” also. Children often have misconceptions about zero (e.g., 
Bofferding & Alexander, 2011; Gallardo & Hernández, 2006; Seidelmann, 2004), 
and making sense of zero as neither a positive nor negative number is important. 
Recognizing that zero is neither positive nor negative is a component of highlight-
ing the symmetry of the negatives with zero as the center.

This excerpt highlights elements of play: spontaneity, imagination, social 
engagement, creativity, and stress-free initiation. This excerpt is playful because 
Jace spontaneously asked a question about whether zero is negative, also  highlighting 
his imaginative thinking about the integers (Burghardt, 2011). Also illustrating 
playfulness, the children engaged in social engagement, considered Jace’s question, 
and shared their opinions (Parks, 2015). This excerpt is also playful because the 
children illustrated creative thinking (Parks, 2015); they thought that maybe zero 
was not a number, maybe zero was both positive and negative, or maybe zero was 
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just a number in the middle. Illustrating an initiation in a stress-free environment, in 
a freely chosen discussion, Alice decided to transition from this conversation back 
to the task of writing a number sentence (Burghardt, 2011).

The ways that the children contemplated the nature of zero in this excerpt mimics 
the historical struggles mathematicians faced as they made sense of zero as well. 
Gallardo and Hernández (2006) wrote about this, “Piaget (1960) states that one of the 
great discoveries in the history of mathematics was the fact that the zero and nega-
tives were converted into numbers” (p. 153). Historically, mathematicians have also 
grappled with similar ideas about the nature of zero (Kaplan, 1999), and these chil-
dren did as well through their wonderings of the positivity and negativity of zero.

 Discussion

This chapter described both instances of integer play and playing with integers 
within a specific group session of a teaching experiment on integer addition and 
subtraction. Describing instances of integer play (e.g., a game with integers) and 
playing with integers (e.g., contemplating the negativity of zero) that children and 
students engage in is important in order to facilitate these types of play in the future. 
Although the descriptions of integer play and playing with integers in this chapter 
come from a specific instructional experience designed for integer addition and sub-
traction for Grade 5 students, these instances specify the rich creativity and mean-
ingful mathematics that children play with. Not only do these instances of play 
highlight robust mathematics of children connected to the work of research mathe-
matics, but integer play is a way to share integer instruction earlier than recommen-
dations, and playing with integers is a way to prolong play in school and can also 
serve as a way to provide equitable instruction for children.

 Integer Play as a Way to Bring Integers to Curriculum Sooner

We are situated in an era where research illustrates that young children are capable 
of reasoning about integers (e.g., Bofferding, 2014); yet, standards do not suggest 
instruction with integers until later grades (NGA & CSSSO, 2010), and most cur-
riculum in the USA supports this as well (Whitacre et  al., 2011). Illustrating 
instances of integer play and playing with integers may provide an outlet for bring-
ing thinking and learning with integers to earlier grades. Although it is not novel to 
suggest integer instruction earlier (see, e.g., Bofferding, 2014), current recommen-
dations currently maintain integer operations in Grade 7. Yet, Bofferding and 
Hoffman (2015) illustrated that children are capable of engaging with integers, as 
young as kindergarten, in game play, and this type of game play is productive in 
developing conceptions of numbers.
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Why Integers? Although Grade 5 is not much sooner than recommendations in 
standards (e.g., NGA & CCSSO, 2010), even playing with integer operations 
2 years prior to formal instruction will be beneficial to break generalizations formed 
by whole numbers (e.g., adding always makes larger, Bofferding & Wessman- 
Enzinger, 2017). Children are capable of many things, but there should be a focus 
on integers in elementary school to confront misconceptions of working with only 
positive integers. As illustrated in both this chapter and entire book, by working 
with integers, children confront the ideas that:

• Addition does not always make the sum “larger.”
• Subtraction does not always make the difference “smaller.”
• “Larger” and “smaller” have different meanings with order-based and magnitude- 

based reasoning when extending beyond positive numbers.
• The number line does not just extend infinitely in only one direction.

Because the physical embodiment of the negative integers is not as natural as the 
counting numbers (e.g., 1, 2, 3, …) or positive real numbers (e.g., 1/2, 0.4), there is 
something inherently playful with the integers that is due to its challenging nature 
compared to other numbers. By engaging in work with integers, children potentially 
gain a deeper understanding of the number systems they are, by standard recom-
mendations, supposed to learn. As illustrated in this chapter, the children also gain 
more than that when working with integers—they gain experiences of thinking like 
a mathematician as they create uses of integer operations, make sense of magnitude- 
and order-based reasoning, or even make permutations of positive integers.

Yes, we need to teach operations with whole numbers and positive integers and 
positive rational numbers as the standards recommend. But, is that truly possible 
when we are potentially generating and establishing deep misconceptions (e.g., sub-
traction always makes smaller)? Not only do we need to utilize integer play and 
utilize it sooner than recommendations, but we also need to allow for children to 
play with integers and examine the ways that children play with integers as they 
engage in this type of play.

 Integer Play and Playing with Integers as a Way to Prolong  
Play in Schools

Parks (2015) shared the importance of incorporating play beyond early childhood—
suggesting that even children in Grades 2 and 3 should have time set aside for play. 
Featherstone (2000) illustrated in a Grade 3 classroom that the use of negative inte-
gers opened a space for imaginative mathematical play in the classroom. The 
instances presented in this chapter of children playing with integers illustrated more 
elements of play than even in the integer play section. As the children played with 
integers, they enjoyed their creative mathematics, which included extra mathemat-
ics than the planned mathematical goals of the game. For example, as the children 
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made their permutations of positive integers, they were joking with each other. They 
laughed, spoke in silly voices, and did not take their permutated score seriously. As 
they discarded negative integers and made sense of zero scores, they laughed and 
teased each other around a ficitious game with pretend scores.

Alice:  I have eight thousand and ... (Alice making a joke as she permutated her 
positive cards.)

Kim:  (Takes the card from the center pile and writes on the paper). Oh my god, 
I will just have to add it. Now I have negative fifteen. Sad day.

Jace:  (J flips the center card.) Oh my god!

(laughter)

Jace:  (Discards his final card.) I hope you guys are happy. I have nothing. Wait 
no, I should take that one. Now, Kim you are in second place.

Kim:  (Claps hands together) Woot!

When the game ended, the children expressed continued joy about engaging in 
this play by asking to continue to play.

Jace:  We are the champions.
Kim:  Do you have another one (holding up a recording sheet)?

This points to a twofold implication centered on prolonged play in school. First, 
utilizing games in later elementary grades, when typical conventions of play may 
not have as a prominent of a role, is one way to prolong play in schools. While the 
use of game play does not necessarily dictate play (e.g., a game on multiplication 
facts will likely not have the same results), integer play and playing with integers 
offer enough imagination and challenge to support authentic play. Second, playing 
with integers effectively engages students in mathematics at a time when many 
children seem scared of it—providing a space for children to be fearless and cre-
ative in mathematics.

 Playing with Integers as an Equity Tool

With integer play, teachers determine the play and set the mathematical goals. I, for 
instance, planned to use an integer game (Bofferding & Wessman-Enzinger, 2015; 
Wessman-Enzinger & Bofferding, 2014) and started the group session with prede-
termined mathematical goals. In the selected excerpts highlighted in this chapter, 
Jace appeared to conceptualize the integers in these intended ways and explained 
this reasoning to his peers, Alice and Kim. However, when playing with integers, 
the students set the agenda and determined what mathematics would be explored. In 
the integer play, Jace seemed to shine: noticing inverses and differentiating the use 
of the minus symbol from negative symbol. But, when playing with the integers, 
other students brought their mathematics to the table. Alice and Kim questioned the 
role of zero and compared the nuances in order and magnitude, a goal I did not plan. 
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Playing with integers not only provided opportunity for earlier integer instruction 
and prolonged play in school but also provided an equitable opportunity for all stu-
dents to be successful mathematically. Because of the freedom of playing with inte-
gers, rather than just integer play, the children entered the play and mathematics in 
their own way, freely sharing their creative, playful, and valuable ideas—like per-
mutations. Providing space for playing with integers is a pedagogical tool for equi-
table practices in school mathematics.

 Integer Play and Playing with Integers as a Space  
for Future Research

The children created, invented, and played with the integers—this is the beauty of 
games. With integer play and playing with integers, there are opportunities for 
unlimited mathematical experiences—the children in these excerpts played with 
more mathematics than planned in the intended mathematical goals of the game. As 
researchers and educators, we want to pick games where this potential for playing 
with integers is large, and the only way we can know that for sure is by studying 
them. Then, if additional opportunities for mathematics arise, we can modify the 
games to encourage it more. For example, a revised version of the game could 
require that whoever draws the largest card has to go first to encourage more debates 
about order and magnitude like Alice, Jace, and Kim engaged in.

 Conclusion

These instances of integer play highlight that children are capable of thinking about 
integer addition and subtraction. Through integer play, children encountered oppor-
tunities for playing with integers in novel ways. The excerpts of playing with inte-
gers illustrate the playful curiosities arising out of integer addition and subtraction 
that tended to be concepts that we think of as “prerequisite knowledge” (e.g., mag-
nitude or order, sign of zero). Yet, students also began developing integer knowledge 
that is more nuanced for integer addition and subtraction (e.g., how negatives and 
positives can “balance” each other) during integer play. Because the children dem-
onstrated capability in solving some integer addition and subtraction problems in 
this session and throughout the teaching experiment, these examples of integer play 
and playing with integers highlights that learning about typical prerequisite knowl-
edge (e.g., order, magnitude, use of minus sign) may be developed in tandem with 
integer addition and subtraction. Furthermore, not only did the children engage in 
thinking about addition and subtraction of integers, as well as other integer con-
cepts, the children engaged in the work of mathematicians. As children played with 
the integers and engaged in the work of young mathematicians, they did the think-
ing and learning most important to integers: imaginative and creative play.
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Chapter 3
Students’ Thinking About Integer Open 
Number Sentences

Jessica P. Bishop, Lisa L. Lamb, Randolph A. Philipp, Ian Whitacre, 
and Bonnie P. Schappelle

Abstract We share a subset of the 41 underlying strategies that comprise five ways 
of reasoning about integer addition and subtraction: formal, order-based, analogy-
based, computational, and emergent. The examples of the strategies are designed to 
provide clear comparisons and contrasts to support both teachers and researchers in 
understanding specific strategies within the ways of reasoning. The ability to cate-
gorize strategies into one of five ways of reasoning may enable teachers to organize 
knowledge of student thinking in ways that are useable and accessible for them and 
provide researchers with sufficient information about the strategies and ways of 
reasoning such that they can reliably build on this work.

Imagine how a student might solve the problem -3 + 6 =  . Below we share several 
responses we heard from K–12 students who participated in our study.

Oscar: Oscar reaches for a provided number line and places his pen at -3. He 
moves his pen to the right one unit at a time while he counts, “One, 
two, three, four, five, six.” His pen is now at 3 on the number line, and 
he answers, “Three” (Grade 7).

Alex: “It’s like I owe my friend three dollars. And my mom gives me six 
dollars. I pay my friend three of the dollars that I got from my mom, 
and I still have three dollars, so my answer is three” (Grade 4).

Cole: “Three. The signs [for -3 and 6] are different, so I subtracted them and 
took the sign of the bigger number.” When asked what he subtracted, 
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Cole continued, “I subtracted six minus three, which is three. Six is 
bigger than three, so I knew the answer had to be positive since six is 
positive.” When asked why it mattered which number was larger, 
Cole posed a related problem of -6 + 3. “Look, if it was, uh, like nega-
tive six plus three, you still subtract six minus three because they’re 
different signs. But if six is negative [with emphasis], then the answer 
is negative three” (Grade 7).

Fran-Olga: “I’ll just start by counting. [Fran-Olga moves her lips, presumably 
counting under her breath.] I don’t know. It’s either negative nine or 
three.” When asked to explain how she arrived at each answer, Fran-
Olga replied, “Well if I go down into the negatives, it’s -4, -5, -6, -7, 
-8, -9. But if I go the other way, then [it’s] -2, -1, 0, 1, 2, 3. [Long 
pause] Maybe it’s switched. Wait. When I did three minus five, it [the 
operation in the problem] was minusing, and this one [this problem] 
is plussing. I’m thinking that since this one [points to 3 – 5 =  ] was 
minus and I was going into the negatives, that this one [points to 
-3 + 6 =  ] goes up. I think it’s three now” (Grade 2).

These responses are representative of the reasoning students across multiple 
grade levels used when solving open number sentences such as -3  +  6  =  , 
5 –   = 8, and  + -2 = -10. When students solved these types of problems and 
shared their responses with us, we found that we could characterize their thinking 
about integer open number sentences into one of five broad ways of reasoning: 
order-based, analogy-based, computational, formal, and emergent. For us, a way of 
reasoning (WoR) about integer addition and subtraction involves a conceptualiza-
tion of signed numbers in which the student draws on certain affordances or math-
ematical properties of the underlying conceptualization to engage in integer 
arithmetic. For example, in using an order-based WoR, one draws on the ordered 
and sequential nature of the set of integers and uses that property to reason about 
integer addition. We see this approach in both Oscar’s and Fran-Olga’s responses. In 
contrast, in a computational WoR, one treats numbers more abstractly and relies on 
rules and procedures to solve problems as we see in Cole’s response.

Although we briefly describe the five broad ways of reasoning (for a more detailed 
description, see Bishop et al., 2014), our goal in this chapter is to share the underlying 
strategies students used within each WoR about integer addition and subtraction. Our 
hope is that researchers and teachers will find both the more general ways of reason-
ing and the specific and detailed strategies useful to better understand students’ 
approaches to solving open number sentences and to guide future instruction.

 Connections to Theory and Building From Existing Research

Our focus is on students’ mathematical thinking in the context of signed numbers, 
with a particular focus on how children think about integer addition and subtraction. 
Within mathematics education is a well-established tradition of studying students’ 
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understanding of mathematical topics, including whole-number operations 
(Carpenter, Fennema, Franke, Levi, & Empson, 2014; Fuson, 1992), fractions 
(Empson & Levi, 2011; Hackenberg, 2010; Steffe & Olive, 2010), quantitative rea-
soning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Moore, 2010), limits and infin-
ity (Swinyard & Larsen, 2012; Tall & Vinner, 1981; Williams, 1991), and integers 
(Bishop et  al., 2014; Bofferding, 2014; Peled, 1991). Drawing from a Piagetian 
tradition, researchers working in this vein are generally interested in “… the way the 
child reasoned and the difficulties he encountered, the mistakes he made, his rea-
sons for making them, and the methods he came up with in order to get to the right 
answers” (Piaget, as quoted in an interview with Bringuier, 1980, p. 9). Studies of 
students’ mathematical thinking and cognition are grounded in constructivist theo-
ries of knowing and learning, and researchers within this tradition view students’ 
mathematical thinking as important in its own right and distinct from established 
disciplinary views of a given topic as well as commonplace adult conceptions of 
mathematical topics.

Although a common constructivist heritage unites research in this tradition, 
scholars vary in their research designs and data sources (e.g., paired interviews in 
teaching experiment settings, individual, clinical interviews, or design experiments 
in classroom settings), their units of analysis (e.g., student reasoning about a par-
ticular task or evidence of construction of a particular mental scheme/structure), and 
the extent to which they incorporate Piagetian constructs such as operations, struc-
tures, and interiorization/internalized operations into analyses. In this chapter, we 
do not analyze students’ mathematical thinking by looking for evidence of particu-
lar schemes, structures, or mental operations (e.g., levels of units). Instead we docu-
ment strategies that students use when solving integer addition and subtraction 
problems. Through these more detailed strategies and their relationships to broader 
ways of reasoning, we seek to identify, describe, and categorize key features and 
patterns in students’ problem-solving approaches that are general enough to provide 
a sense of coherence, yet are nuanced enough to sufficiently differentiate among 
students’ solutions. We now turn to the literature base for a brief review of research 
related to students’ conceptions of integers and the specific strategies they bring to 
bear when solving problems.

Students’ struggles operating with negative numbers are well documented 
(Christou & Vosniadou, 2012; Gallardo, 1995; Kloosterman, 2012; Vlassis, 2002). 
Whereas Mora and Reck (2004) identified rules and procedures that students 
attempted to use when solving problems with negative numbers, others have found 
that children can make productive use of order, leveraging the sequential and 
ordered nature of numbers, to solve such problems, particularly with number lines 
(e.g., Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2011; Bishop, Lamb, Philipp, 
Whitacre, & Schappelle, 2014; Bofferding, 2014; Peled, 1991; Peled, Mukhopadhyay, 
& Resnick, 1989). Those using other lines of research have studied students’ use of 
metaphors (see, e.g., Chaps. 5 and 6) and the efficacy of different contexts when 
engaging with integers and integer arithmetic (see, e.g., Chaps. 4 and 9). For exam-
ple, Chiu (2001) identified categories of metaphors that students and experts used 
when solving integer problems, and Stephan and Akyuz (2012) developed an 

3 Students’ Thinking About Integer Open Number Sentences



50

instructional sequence about financial contexts (with a focus on net worth and incor-
porating the use of number lines) that positively supported students’ understanding 
of integer addition and subtraction. Further, Murray (1985) and Bishop, Lamb, 
Philipp, Whitacre, and Schappelle (2016a, 2016b) found that some students could 
apply logical deductions based on the underlying structure of our number system to 
solve or explain their reasoning about integer open number sentences. Murray found 
that students used logic to solve problems by comparing a previously solved prob-
lem and a related new problem (e.g., 5 + -3 and 5 – -3) to aid in solving the new 
problem.

Because our focus in this chapter is on students’ strategies for integer addition 
and subtraction, our above synthesis of existing research was also focused on differ-
ent problem-solving approaches. In Table  3.1, we summarize problem-solving 
approaches documented in other scholar’s work on integers and integer operations 
along with a brief example and relevant references for each.

Table 3.1 Literature-based problem-solving approaches for integer arithmetic

Problem-solving 
approach for 
integer arithmetic Example/explanation References

Rules and 
procedures

Operations with negative numbers are 
performed using rules, either correctly or 
incorrectly (e.g., applying rules for 
multiplication of signed numbers to addition 
and subtraction problems).

Chiu (2001) and Mora and 
Reck (2004)

Financial/
transactional 
context (debt, net 
worth, etc.)

Operations with negative numbers are 
related to money or other transactional 
contexts (giving/receiving) in which 
negatives are typically associated with debt 
or owing.

Chiu (2001), Peled and 
Carraher (2006), and Stephan 
and Akyuz (2012)

Other 
oppositional 
contexts and 
quantities

Negative numbers are used to represent a 
quantity of items with an unfavorable 
connotation (and in opposition to the 
positive quantity). For example, using two 
colors of chips or blocks to represent 
positive and negative numbers.

Chiu (2001) and Peled (1991)

Analogy to whole 
number

Negative numbers are related to whole 
numbers when solving integer arithmetic 
problems (e.g., using the known fact that 
5 – 2 = 3 to evaluate the unknown 
expression -5 – -2).

Human and Murray (1987) 
and Murray (1985)

Number line, 
motion/movement

Imposing an ordering on signed numbers or 
using an existing ordering (as provided in a 
number line) and reasoning about addition/
subtraction as moving forward and 
backward.

Chiu (2001), Behrend and 
Mohs (2005–2006), 
Bofferding (2014), Murray 
(1985), Peled et al. (1989), 
Peled (1991), and Stephan 
and Akyuz (2012)

Logic Comparing related problems such as 6 + -2 
and 6 + 2 and using a fundamental 
mathematical property (e.g., inverse 
operations) to solve the related problem.

Human and Murray (1987)
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Across the literature that documents differing conceptions of integers and integer 
arithmetic, we see a variety of productive problem-solving approaches. In this chap-
ter we build on this research by describing students’ integer strategies, including 
those in Table 3.1, and organizing those strategies within the broader ways of rea-
soning. We hope that this expanded framework, which combines both ways of rea-
soning and strategies, will support teachers to develop and use this knowledge in 
their instruction.

 Conceptual Framework

Our goal within this chapter is to present a more nuanced and complete view of our 
ways -of -reasoning framework by defining and exemplifying many of the strategies 
within each WoR. To do so, we briefly describe the broader ways of reasoning into 
which the more detailed strategies are organized (see also Bishop et al., 2014; Bishop 
et al., 2016a for previous versions of the ways of reasoning). As mentioned earlier, a 
way of reasoning (WoR) is a general conceptualization and approach to solving inte-
ger addition and subtraction problems that is characterized on the bases of key fea-
tures of students’ solutions and the underlying views of number and operations at 
work. We identified five ways of reasoning that students across all participant groups 
in our study used when solving open number sentences: order-based, analogy-based, 
computational, formal, and emergent. (In earlier publications, we used different 
names for analogy-based and emergent reasoning, referring to analogy-based as mag-
nitude and emergent as developmental or limited.) In Table 3.2 we define each WoR.

In the responses shared in the introduction to this chapter, four of the five ways of 
reasoning are represented. Alex’s comparison of negative numbers to debt is an 
example of analogy-based reasoning, whereas Cole used computational reasoning 
when he invoked rules and properties in his solution. Oscar and Fran-Olga used 
order-based reasoning by ordering spoken number words and their corresponding 
written symbols to determine what was before and after a given number and then 
using these sequences to solve the problem. Fran-Olga’s response also reflects a 
formal way of reasoning: In her explanation she compared the operations of addition 
and subtraction and used her informal understanding of inverses to argue that her 
answer was a necessary consequence of the relation between addition and subtrac-
tion and her assumptions from a previous problem. Within each WoR we wanted to 
identify specific and detailed strategies students brought to bear on each task (e.g., 
counting as a particular instantiation of the order-based WoR seen in Fran-Olga’s 
response or the use of a number line as seen in Oscar’s order-based WoR). A strategy 
is a subcategory of a particular WoR that further describes and differentiates student 
responses within the broader WoR. We view the five ways of reasoning as an organiz-
ing structure into which we can categorize more detailed strategies on the basis of 
the underlying views of number and operation leveraged in a given strategy’s use. 
Given this view, the research questions guiding our study were the following: What 
strategies do students use when solving open number sentences with integers, and 
what is the relation among strategies and the broader ways of reasoning?
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 Study Background and Methods

 Participants

The data and findings we share are from a larger program of research wherein we 
investigated student’s' conceptions of integers and integer operations across multi-
ple grade levels. We interviewed 160 students at 11 schools in five districts in a large 
urban city in the Southwestern United States. Forty students at each of Grades 2, 4, 
7, and 11 were randomly selected from students who returned consent forms. We 
chose these grades to provide a cross-sectional view of integer reasoning at different 

Table 3.2 Ways of reasoning

Ways of 
reasoning Definition

Order-based In this way of reasoning, one leverages the sequential and ordered nature of 
numbers to reason about a problem. Strategies include use of the number line 
with motion as well as counting forward or backward by 1s or another 
incrementing amount.

Analogy-based This way of reasoning is characterized by relating numbers and, in particular, 
signed numbers, to another idea, concept, or object and reasoning about 
negative numbers on the basis of behaviors observed in this other concept. At 
times, signed numbers may be related to contexts (e.g., debt or digging holes). 
Analogy-based reasoning is often tied to ideas about cardinality and 
understanding a number as having magnitude.

Formal In this way of reasoning, signed numbers are treated as formal objects that exist 
in a system and are subject to mathematical principles that govern behavior. 
Students may leverage the ideas of structural similarity, well-defined 
expressions, the structure of our number system, and fundamental principles 
(such as the field properties). This way of reasoning includes generalizing 
beyond a specific case by making a comparison to another, known, problem 
and appropriately adjusting one’s heuristic so that the logic of the approach 
remains consistent, or generalizing beyond a specific case to apply properties of 
classes of numbers, such as generalizations about zero.

Computational In this way of reasoning, one uses a procedure, rule, or calculation to arrive at 
an answer. For example, some students used a rule to change the operation of a 
given problem along with the corresponding sign of the subtrahend or second 
addend (i.e., changing 6 – -2 to 6 + 2 or 5 + -7 to 5 – 7). Students often 
explained these changes by referring to rules like “Keep Change Change” (keep 
the sign of the first quantity, change the operation, and change the sign of the 
second quantity). For a strategy to be placed into this category, the student may 
state a procedure or rule with or without sharing a justification.

Emergent This category of reasoning often reflects preliminary attempts to compute with 
signed numbers. For many strategies in this category, the domain of possible 
solutions is locally restricted to nonnegatives. For example, a child may 
overgeneralize that addition always makes larger and, as a result, claim that a 
problem for which the sum is less than one of the addends (6 +   = 4) has no 
answer. The domain of possible solutions appears to be restricted to natural 
numbers, and the effect (or possible effect) of adding a negative number is not 
considered.
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grade levels. The second and fourth graders provided insight into children’s think-
ing before school instruction; the seventh graders reflected students’ thinking imme-
diately after school instruction on integers; and the 11th graders were chosen to 
represent the endpoint of students’ integer reasoning in the K–12 setting.1 During 
the interviews we noticed that some of our elementary-grade participants had 
knowledge of integers, whereas others did not. Consequently, we reorganized our 
second- and fourth-grade participant groups for analysis purposes. All students 
were placed into one of four groups: college-track ([CT], n = 40, eleventh-grade 
students), post instruction ([PI], n = 40, seventh-grade students who had recently 
completed instruction in integers), before instruction, with negatives ([BIN], n = 39, 
second and fourth graders with knowledge of negatives), and no evidence of nega-
tives ([NEN], n = 41, second and fourth graders without knowledge of negatives). 
Group placements for second and fourth graders were made on the basis of responses 
to the introductory questions in the interview (see questions 1–4 in the Appendix).

 Problem-Solving Interview

As part of the larger study, we developed, piloted, and revised a problem-solving 
interview over a period of 2 years. In addition to the 160 participants described in 
the previous section, we conducted pilot interviews with an additional 90  K–12 
students across four interview cycles, each of which was focused on different grade 
levels of students (i.e., the first interview cycle targeted K–2 students, the second 
cycle targeted high school students, the third Grades 3–5, and the last cycle focused 
on middle school students). In each interview cycle, we tested new tasks and contin-
ued to refine the sequencing and phrasing of existing tasks to identify tasks likely to 
elicit students’ integer reasoning.

Drawing from Piaget’s method of clinical interviewing (Ginsburg, 1997), our 
initial goal with the interviews was to balance flexibility and standardization. Piaget 
described his approach as follows:

You ask, you select, you fix the questions in advance. How can we, with our adult minds, 
know what will be interesting? If you follow the child wherever his answers lead spontane-
ously, instead of guiding him with preplanned questions, you can find out something new. 
… Of course there are three or four questions we always ask, but beyond that we can 
explore the whole area instead of sticking to fixed questions. (Piaget, as cited by Bringuier, 
1980, p. 24)

Our pilot interviews were consistent with Piaget’s description of his method. For 
example, it was not initially apparent to us that the open number sentences 
-3 + 6 =   and 6 + -3 =  might encourage different reasoning; as adult experts, 

1 Note that we restricted our eleventh-grade participants to college-track students, that is, students 
who were enrolled in either calculus or precalculus during their eleventh-grade year. Our goal with 
the eleventh-grade students was to identify the best-case scenario for integer understanding when 
students finish their high school education.
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we viewed -3 + 6 and 6 + -3 as equivalent because of the commutative property of 
addition. As we discovered in the pilot interviews, the location of -3 as the first or 
second addend influenced some students’ approaches to the problem. Similarly, we 
were surprised when the seemingly similar problems of 6 – -2 =   and -5 – -3 =   
(both involve subtracting a negative quantity) yielded widely differing responses 
from some children. One of our goals in conducting the pilot interviews was to 
pursue and uncover these differences in reasoning and the underlying conceptions 
from which they emerged. As a result, we routinely posed follow-up tasks to con-
firm or refute our working hypotheses about the ways students were reasoning and 
what features made problems more and less difficult. Because we customized fol-
low-up questions on the basis of the specifics of the student’s responses in the 
moment, they were not preplanned or standardized.

However, from the beginning of the project, our goal was to develop a standard-
ized set of questions that would be posed to all students in the main study and from 
which we could compare students’ reasoning within and across grade levels. In 
early 2011 we finalized the problem-solving interview and began conducting 160 
interviews across the participant groups described earlier using a standardized set of 
questions. The one-on-one interview lasted 60–90 minutes and consisted of 56 total 
problems including introductory questions, open number sentences, context prob-
lems, comparison problems, and tasks involving variables and algebra (see Appendix 
for the complete interview). We found that solving open number sentences provided 
productive opportunities for students to reason about signed numbers; consequently, 
the analyses and findings we share in this chapter are based on the 25 open number 
sentences posed to students. (These open number sentences are questions 9–14, 
16–28, and 30–35 in the interview shared in the Appendix.)

 Analysis

For each open number sentence in each interview, we assigned a code for correct-
ness and a code for the strategy (or strategies) the student used when solving the 
given problem. Each strategy was subsumed in one of the five ways of reasoning. 
For some problems, students used multiple ways of reasoning and, therefore, 
received more than one WoR code. Across all ways of reasoning, we identified a 
total of 41 strategies.2 We developed our set of codes for the 41 strategies (and the 5 
ways of reasoning) iteratively over a 3-year period. Moreover, this set of codes 
comprehensively captures the strategies students in our study used. Although some 
of the strategy codes we created are documented in existing literature (e.g., logic, 
use of number lines, converting to context), we did not use these codes a priori. 
Instead, we used a grounded theory approach to analysis so that our codes emerged 
from the student responses in the interviews (Corbin & Strauss, 2008).

2 Two of these strategies, unclear (assigned when a strategy was not clear) and other (assigned 
when a student’s response did not match an existing WoR or strategy), were used rarely and were 
not associated with one particular WoR. Although we include unclear and other as strategies, they 
are not subcategories of any single WoR.

J. P. Bishop et al.



55

 Findings

In the text that follows, we expand the ways of reasoning framework by identifying 
and exemplifying the most common strategies within each WoR. We hope our cate-
gorizations will help readers to identify important differences and similarities 
among strategies and recognize the complexity and richness of students’ thinking 
about integer addition and subtraction.

 Common Strategies Within Ways of Reasoning

Across all ways of reasoning, we identified 41 total strategies. Table 3.3 identifies 
the most frequently invoked strategies within each WoR along with their overall 
percentage use. In general, we share the three most common strategies within each 
WoR in the following sections.3

3 Because computational was the most frequently used WoR, we share more of the strategies within 
this WoR, and because the strategies other than negatives like positives and converts to context 
within analogy-based WoR were used so infrequently, we share only those two.

Table 3.3 Examples of strategies within ways of reasoning and frequency of use

Way of 
reasoning Strategy examples

Percentage use (of total problems 
posed)

Order-based Number line 16.21%
Jumping to zero 3.73%
Counting by ones 3.26%

Analogy-based Negatives like positives 6.82%
Converts to context 3.32%

Computational Keep change change 16.21%
Negative sign subtractive 7.86%
Changes order of terms 6.67%
Equation 6.39%
Same signs/different signs 3.73%

Formal Infers sign 8.41%
Generalization about zero/additive 
inverses

2.63%

Logical necessity <1%
Emergent Addition makes larger/subtraction makes 

smaller
14.01%

Ignores sign 10.78%
Pascal 1.18%
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Order-Based Order-based reasoning was used on about one fourth of all problems 
posed. In this WoR, one leverages the sequential and ordered nature of numbers to 
reason about a problem. The most common strategies within this WoR were the 
number line/motion strategy, the jumping to zero strategy, and the counting by ones 
strategy. The number line/motion strategy was the most common within the order-
based WoR, used on 16% of the problems posed. When using the number line/
motion strategy, students treated the first addend and the sum (or the minuend and 
difference) as locations on the number line and the second addend (or subtrahend) 
as the number to move. The operations usually determined the direction of 
 movement. To receive this code, students had to either explicitly use motion on a 
number line or share that they imagined moving on a number line when solving. For 
example, for the problem shared in the introduction, -3 + 6 =  , Oscar’s strategy 
exemplifies number line/motion. His starting point is -3, the operation of addition 
indicates movement to the right, the second addend indicates the number to move, 
and the unknown is the ending location.

Another relatively common strategy demonstrating an order-based WoR that stu-
dents used was counting by ones. Ellie, a second-grade student, counted up by ones 
to solve -3 + 6 =   and from -2 to 4 to solve the problem -2 +   = 4. She counted 
aloud saying, “Minus 2, minus 1 (raises one finger), zero (raises another finger).” 
She paused. “Wait, I lost count.” Ellie then restarted her count, “Minus 2, minus 1 
(raises one finger), zero (raises second finger), 1 (raises third finger), 2 (raises fourth 
finger), 3 (raises fifth finger), 4 (raises sixth finger).” Ellie’s final answer was 6. We 
conjecture that Ellie’s pause and restart (“I lost count”) may indicate the additional 
cognitive demand required to begin her counting sequence with a negative number 
rather than a natural number. But her ability to successfully extend her counting 
sequence may be attributable to the fact that the direction of her counting was con-
sistent with the addition of natural numbers (addition makes larger and thus one 
counts up toward the positive numbers to arrive at a sum). When, for example, Ellie 
solved the problem -5 + -1 =  , she adopted a different strategy and incorrectly 
answered -4; she may have abandoned a counting strategy for this problem because 
adding -1 to -5 would indicate a movement left on the number line for addition, or 
movement in the opposite direction than one would move with natural numbers.

The last strategy within the order-based WoR we share here is jumping to zero, 
which was used on just more than 3% of the problems posed. Opal’s response to the 
problem -3 + 6 =   exemplifies this strategy. Opal answered, “Three, “and then 
explained saying, “Half of 6 is 3, so then that would bring it [the running total] to 
the 0. And 3 more would bring it to the 3. And that would equal 6.” Opal’s strategy 
can be represented mathematically with the following series of equivalent expres-
sions: -3 + 6 = -3 + (3 + 3) = (-3 + 3) + 3 = 0 + 3. By decomposing 6 into 3 plus 3, 
Opal was able to “jump to zero” by adding one of the 3s to -3. In general, this strat-
egy involves strategically decomposing a number to obtain additive inverses so that 
the resultant partial sum is zero. However, students are unlikely to recognize either 
the underlying mathematical property they are implicitly using or its significance. 
We conjecture that Opal was treating zero like other decade numbers (e.g., 10 and 20) 
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and using her knowledge of decomposition and incrementing to reach a friendly 
number as part of her computation. We believe that this type of order-based reason-
ing can be leveraged to formalize and explicitly name the concept of additive 
inverses that is at work in this strategy and encourage its continued use as 
appropriate.

Analogy-Based This WoR is characterized by relating signed numbers to another 
idea, concept, or object, often countable amounts or quantities, and reasoning about 
signed numbers on the basis of behaviors observed in this other concept. We named 
this WoR analogy-based because students created an analogy between signed num-
bers and some other concept. Analogy-based reasoning was used on about 13% of 
all problems posed.

Students compared negative numbers to positive numbers using a strategy we 
named negatives like positives, on about 7% of all problems. This strategy involves 
computing with negative numbers through explicit comparison to computing with 
positive numbers. This strategy was used productively across all grade levels. 
Consider Ricardo’s (Grade 11) response to -5 + -1 =  : “Negative five plus nega-
tive one equals negative six. I thought about this by changing this whole thing into 
a positive. So I just ignored the negatives for a little bit. So I knew five plus one 
equals six. But since it was negative, I added the negative after.” When asked if 
changing the problem into a positive always worked, he replied, “So like this prob-
lem was applicable to change it to a positive since there were two negative numbers. 
But if you had like a negative and a positive, then that would be different.” Ricardo 
was an 11th grader, but we also had many younger students who used this strategy. 
As an example, consider Jacob’s (Grade 1) strategy for solving -7 –   = -5. “Well 
for this one I need little cubes. … It would be like real numbers, but you just add the 
minus sign. You just do seven plus, well actually, seven minus two equals five. 
That’s the answer for real numbers, so I just added a negative to all of them, and 
there is my answer.” In these examples, we see that both Ricardo and Jacob com-
pared the mathematical behavior of negative numbers to the behavior of positive 
numbers (or “real” numbers in Jacob’s case) to solve problems involving the addi-
tion or subtraction of two negative integers.

Students also explicitly related signed numbers to contexts (e.g., debt or digging 
holes) on about 3% of all problems posed. Central to the converts to context strategy 
is that students used a context such as debt, digging holes, or bad guys that they 
deemed as related to negative numbers. As an example, consider Alex’s solution to 
the problem in the introduction, -3 + 6 =  , in which he interpreted -3 as represent-
ing a debt of $3 and 6 as gaining $6 from his mother. After taking $3 from the 
money he was given to repay his debt, he had $3 left. Another use of converts to 
context was relating signed numbers to digging and refilling holes. For example, 
Sawyer explained his answer of -3 to the problem -5 +   = -8 by relating operations 
with negative numbers to digging and burying (his word for refilling) holes. For this 
problem he started with a hole five units deep: “Okay, if it [the unknown] would 
have been positive three, it would have canceled out; it would have buried some of 
the hole. [Instead] it’s like we are digging a deeper hole and trying to get to negative 
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eight.” He applied the same context to think about the problem -2 +   = 4: “We 
start from negative two, and so it’s like a hole and you need to fill it in.” For Sawyer, 
the signs of the starting and ending numbers indicated whether he had a hole or a 
mound of dirt. He related the unknown in this problem to the action of filling in or 
burying the hole so that the result was a pile of dirt above ground.

Formal In a formal WoR, students treat negative numbers as formal objects that 
exist in a mathematical system and are subject to fundamental mathematical prin-
ciples that govern their behavior. Students may generalize beyond a specific case to 
apply properties of classes of numbers or leverage underlying structures of our 
number system to make conjectures about which properties hold and do not hold 
upon successive extensions. Formal reasoning was used on just fewer than 12% of 
all problems posed.

The most common strategy within the formal WoR, infers sign, used on about 8% 
of all problems, involves examining the structural features of the problem—the 
operation in conjunction with the signs of the given numbers—to determine the sign 
of the answer prior to determining its magnitude. As an example of infers sign, 
consider Jane’s thinking when solving the open number sentence  + 6 = 2. “Um, 
now we’re trying to find, we know the number has to be negative. … The number 
that we’re actually adding by [six], it’s more than the actual, than our answer [two]. 
… So it has to be negative. So then if you know basic subtraction and addition, you 
know six minus what equal two. So it’d be four. … And it’d be negative four.” 
Before she identified the magnitude of the unknown, Jane first determined the sign 
of the unknown by considering the operation, the signs of the given numbers, and 
their relative magnitudes. We considered this strategy to be a formal WoR because 
Jane is essentially making a claim about a class of problems—addition problems 
such that the sum is smaller than an addend (or, in other cases, subtraction problems 
such that the difference is greater than the minuend, like 5 –   = 8).

Sometimes students made generalizations that explicitly referenced the idea of 
additive inverses or the fact that the difference between any number and itself is 
zero. When a student invoked a general principle that a – a = 0 or a + (-a) = 0 (for 
a ∈ Ζ), we assigned the code generalization about 0/additive inverses. (Although 
we combine these strategies in our discussion here, we recognize important distinc-
tions in them.) When using the generalization about 0 strategy, students needed to 
indicate that the given problem was an instantiation of the generalization that any 
number minus itself is 0. One of our fourth-grade students, David, used this strategy 
when explaining how he thought about -5 – -5 =  : “I know that any number sub-
tract itself is zero.” Because his language suggests that this is a general property and 
not true for just these particular numbers, we assigned the generalization about 0 
code to David’s response.

Although the additive inverses strategy is related to generalization about 0, when 
using the additive inverses strategy, the student needed to explicitly mention three 
aspects we deemed critical to understanding additive inverses deeply: (a) the rela-
tion between a and -a (i.e., that they are inverses or opposites), (b) that the quantities 
are “canceling” (i.e., specify the importance of the operation of addition for additive 
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inverses and the identity element of 0), and (c) that this claim is not specific to the 
numbers in the problem but is a generalization. For example, when solving the open 
number sentence 3 +   = 0, Belinda (an 11th grader) explained her answer of -3 
saying, “I know that the opposite of three is negative three. And whenever you add 
things that are the same number but with different signs, positive or negative, it 
equals zero.” Belinda identified the inverse relation between three and negative 
three describing them as opposites and also specified the operation and identity ele-
ment involved (addition and zero). We interpreted her use of “whenever,” the indexi-
cal noun “thing,” and the second-person pronoun of “you” to indicate that Belinda 
was generalizing beyond the specific numbers given in the problem. Similarly, con-
sider Kate’s response to the problem -8 +   = 0. She reasoned that, “If it [the sum] 
is going to equal zero, the way to cancel the eight out is to have the same number 
but have it in negative form.” If Kate had stopped there with her explanation, she 
would not have received the additive inverses code. Although she alludes to the 
inverse relationship, identifies the importance of zero as the identity element, and 
seems to be moving toward a generalization with the phrase “same number in nega-
tive form,” it’s not clear how the canceling occurs. Critically, for us, the operation of 
addition had not yet been mentioned.4 However, Kate did continue her explanation. 
“Because the same number on opposite sides of zero cancel each other out when 
you add them.” In her last sentence, Kate indicated the importance of the operation 
of addition, and her language was more clearly generalized.

Another strategy within the formal WoR, logical necessity, was invoked infre-
quently but has promise for supporting powerful mathematical ideas. In the 
 introduction, Fran-Olga used logical necessity in her response to -3 + 6 =  . She 
was unsure which way to count (an order-based WoR) and considered answers of -9 
and 3. After comparing the expressions -3 + 6 and 3 – 5, Fran-Olga settled on an 
answer of three. Because, on an earlier subtraction problem of 3 – 5, she had counted 
down “into the negatives,” then for a problem that involved “plussing,” Fran-Olga 
concluded she needed to count up. The key aspect of her reasoning was that “plus-
sing” and “minusing” are inverse operations: If minusing goes down, then plussing 
goes up. Fran-Olga knew that addition and subtraction behaved oppositely in oper-
ating with whole numbers. She conjectured that the operations would still behave 
oppositely upon extension to the set of integers. In logical necessity, a student 
makes a comparison to another, known, problem and appropriately adjusts his or her 
reasoning so that the underlying logic of the system and the approach remain con-
sistent; in this example, Fran-Olga maintained consistency with what she knew to 
be true for whole numbers. (We share an extensive examination of logical necessity 
in Bishop et al., 2016a, 2016b).

4 Instead, Kate would have been assigned the strategy code, magnitude, which falls in the analogy-
based WoR category. Magnitude strategies were used when students’ responses indicated that they 
viewed a negative quantity as having magnitude, which enabled negative quantities to “cancel” an 
oppositional, positive quantity. Sometimes the “canceling” language was used when students used 
different colored chips to model and solve a problem. In these situations, another analogy-based 
strategy of chips was assigned as opposed to the magnitude code.
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Computational A strategy coded as a computational WoR was based on a proce-
dure, rule, or calculation. Because the most common WoR was computational, 
employed on about 40% of all problems posed, we share more strategies with this 
WoR to highlight the variety of computational strategies students in our study used. 
KCC, the most prevalent rule, is so named because many students shared the mne-
monic Keep Change Change to indicate that they Keep the sign of the first number, 
Change the operation, and Change the sign of the second number. KCC was the 
most common strategy code across all ways of reasoning, used on about 16% of all 
problems.5 The key feature of KCC is that the operation and second addend (or 
subtrahend) in the original expression are both changed to their opposites. In most 
instances, students referred to a mnemonic like KCC, boom boom, or the double 
stick trick when invoking this rule. But some students simply used the rule absent 
an accompanying memory aid, stating something like, “When a negative and a 
minus sign are together, they count as an addition.” In both cases, the response was 
assigned the KCC strategy code. We exemplify this strategy in the following two 
responses and highlight the difficulty students typically had when asked to justify 
the validity of this rule. Gabriel, an 11th grader, invoked a mnemonic while solving 
the problem 5 –   = 8.

Gabriel:  Negative three. Boom boom [writes -3  in the blank and when he 
states, “Boom boom,” he draws two vertical line segments, one 
through the subtraction sign and one through the negative sign in 
-3].

Interviewer:  Okay. So where does that boom boom come from? What was that?
Gabriel:  It’s magic.
Interviewer:  Tell me a little bit more about the boom boom.
Gabriel:  I remember learning in sixth grade or something, when you subtract 

a negative, you just do boom boom. And you add it I guess.
Interviewer:  Okay, and why does that work?
Gabriel:  Newton’s third law—I don’t know. Because you’re taking away 

something that’s negative? [Rising intonation]. Uh. [15-second 
pause] It just works.

Bea also gave an answer of -3 to the problem 5 –   = 8: “Just because, negative 
three, then I do the double stick trick. There is a minus [and a] negative so you add.” 
When asked what the “double stick trick” was, Bea clarified, “Okay, when you have 
a subtraction sign [points to subtraction symbol in the expression 5 – -3 = 8] and 
then a negative number [points to negative sign for -3], they call it a double stick 
trick when you do this. [She draws two vertical lines, one through the subtraction 
sign the other through the negative sign in -3 so that the expression 5 – -3 = 8 is 
transformed into 5 + +3 = 8.] And so five plus three is eight.”

The next two most common computational strategies—negative sign subtractive 
and changes order of terms—were used on roughly 8% and 7% of problems posed, 

5 The percentage use of 16% was driven by the CT students, who used KCC on 31.40% of all prob-
lems posed, sometimes in conjunction with another WoR.
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respectively. Claire’s response to the problem -3 + 6 =   reflects both of these 
strategies. “It’s three. I know that six minus three is three. I just changed the order 
of the numbers and since three is negative, I subtracted.” The interviewer pressed 
Claire, saying, “But the problem was negative three plus six. You subtracted and 
started with six instead of negative three.” Claire again reiterated, “I just changed 
the order of the numbers and since three is negative, I subtracted.” The interviewer 
continued, “Okay. When you changed the order of the numbers, I’m curious if you 
thought of the problem as six plus negative three, and then changed to subtraction? 
Or when you switched it, if you immediately thought of the problem as six minus 
three.” Claire responded, “I immediately thought of it as a subtraction problem.” In 
the strategy of negative sign subtractive, students indicate that the negative sign in 
the written symbolic form of a negative number, the - in -3, indicates the process of 
subtraction. Instead of being viewed as a quantity or mathematical object in its own 
right, -3 is understood as a quantity to be subtracted. Thus, Claire interpreted -3 to 
mean “subtract three.” This strategy, which was used in all participant groups in our 
study, was one of the earlier historical conceptions mathematicians had for negative 
numbers (see Henley, 1999, for a discussion of “subtractive numbers”). In particu-
lar, almost two thirds of the college-track students used this strategy to solve the 
problem -3 + 6 =   by subtracting three from six.

Similar to most college-track students, Claire responded to the problem 
-3 + 6 =   by using negative sign subtractive simultaneously and in combination 
with changes order of terms to transform the original expression of -3 + 6 to the 
equivalent expression of 6 – 3. Claire was clear that she did not use the following 
sequence of transformations: -3 + 6 → 6 + -3 → 6 – 3, but instead went straight to 
the last expression. Her response exemplifies changes order of terms because she 
essentially applied the commutative property of addition to change the order of the 
addends, but she simultaneously changed what was an addition problem to a sub-
traction problem by interpreting -3 as subtractive, which is why her response was 
also assigned the negative sign subtractive strategy code. The college-track students 
were especially fluent, but almost always implicit, when changing the meaning of 
the minus sign from a negative number to subtraction.

Sometimes students added or subtracted a number to both sides of the open num-
ber sentence to “isolate the box.” We named this strategy equation because students 
used properties of equality often associated with school-based instruction for solv-
ing one- and two-step equations. For example, Belinda’s explanation for her solu-
tion to 6 +   = 4 was “I just subtracted six from both sides and got negative two.” 
Many students explained that they had to “do the same thing to both sides,” and 
some students insisted on rewriting the number sentences so that the box was 
replaced with a variable (i.e., 6 +   = 4 was rewritten as 6 + x = 4).

The last computational strategy we share was named the same signs/different 
signs rule, and it was used on just fewer than 4% of problem responses. This is a 
rule that applies only to addition problems, though we saw many students apply it 
incorrectly to subtraction problems. The same signs/different signs rule can be 
stated as follows: If the signs of the addends are the same, add their magnitudes, 
and keep the sign for the sum. If the signs are of the addends are different, find the 
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difference of their magnitudes, and the difference should take the sign of the 
number with the larger magnitude. Cole’s response to 6 + -3 =  , shown in the 
introduction, is an example of this strategy. Because -3 and 6 had opposite signs, 
he subtracted three from six and assigned to that difference the sign of the addend 
with the larger magnitude, 6, which was positive. One student we interviewed 
recited a song to help her remember this rule (to the tune of Row, Row, Row Your 
Boat): “Same signs, add and keep. Different signs, subtract. Take the sign of the 
larger one, then you’ll be exact.”

Emergent The emergent WoR reflects students’ initial attempts to compute with 
signed numbers. We chose the name emergent because many of the strategies stu-
dents used in this WoR were not only sensible but with appropriate support could 
provide a strong foundation for integer reasoning from which more sophisticated 
strategies and ways of reasoning could emerge. Some students who had not yet 
heard of negative numbers ignored the negative sign or treated it as a subtraction 
symbol. Other students sometimes selectively restricted the domain of possible 
solutions to nonnegatives. Overall, emergent reasoning was used on about one third 
of all problems posed. The most common such strategy was addition makes larger/
subtraction makes smaller (AML/SMS), used on 14% of all problems posed.6 The 
AML/SMS strategy stems from the overgeneralizations that addition always makes 
larger and subtraction always makes smaller and is related to conceptualizations of 
addition and subtraction as increasing and decreasing the cardinality of a set (Bishop 
et  al., 2011; Bishop et  al., 2014). For example, consider Oscar’s response when 
solving 5 –   = 8. “Cuz, this [points to 8 in the written problem] is bigger than that 
[points to 5]. And if you minus three, if that [points to the minus sign] was a plus, 
um, it would be possible. … You couldn’t take away, fff, fi, three out of five to equal 
eight ‘cuz it would just equal two.” Oscar then wrote “No” in the box. Ryan, too, 
used the subtraction makes smaller strategy for the same problem saying, “I 
wouldn’t be able to do it because it would always be behind eight if it was minus 
something. Because if it was minus zero it would be five. It [the difference] would 
always be behind eight.” Although both of these students had heard of negative 
numbers, they appeared to restrict the domain of possible solutions to whole num-
bers and did not consider the effect (or possible effect) of subtracting a negative 
number.

The second most common strategy within emergent reasoning was ignores sign. 
In this strategy students either ignore the negative sign throughout and treat it as 
though it does not exist or they initially ignore the negative sign and then account 
for it after finding a solution. The strategy ignores sign was used in just fewer than 
11% of the problems posed and was mainly driven by second- and fourth-grade 
students in our study. Dahlia, a second grader, ignored the negative signs when solv-
ing -5 + -1 =   and treated -5 and -1 as if they were whole numbers. She read the 
problem aloud as “Five plus one” and immediately answered six. Dahlia then 

6 This percentage was driven by the BIN and NEN students, who used AML/SMS on 27.21% and 
32.44% of all problems posed, respectively.
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demonstrated the fact on her fingers saying, “Five (she held out five fingers on one 
hand) plus one (she held out her thumb on her other hand) would equal six.” In 
contrast, Javier read the open number sentence   –  5  =  -1 as “Box minus five 
equals negative one.” He initially wrote 6 in the box and then revised his answer to 
-6. He explained, “Six minus five equals one. So I used negative six minus five so it 
could be negative one.” Javier appeared to initially ignore the negative in -1 and 
solve instead the related number sentence of  – 5 = 1. When asked why the 6 was 
negative, he replied, “Because I, because if I don’t have a negative and I subtract 
minus five, I won’t be able to have negative one.” Javier reasoned that for the differ-
ence to be negative one as opposed to one, the unknown needed to be negative. 
Thus, he assigned a negative sign to the unknown on the basis of the absence or 
presence of other negative numbers in the problem. Moreover, how Javier inter-
preted or made sense of signed numbers is unclear; he may have attended only to 
surface features embedded in the symbolization of these numbers.

Another strategy in the emergent WoR was used for open number sentences in 
which the magnitude of the subtrahend was larger than the magnitude of the minu-
end (e.g., 3 – 5 =  , -2 – 7 =  , -7 – -9 =  ). Students often declared that these 
problems were “not possible” to solve or gave an answer of zero. Consider Sam’s 
response to the problem 3 – 5 =  : “Three minus five is zero because you have 
three and you can’t take away five. So take away the three, and it leaves you with 
zero.” (When asked to solve 3 – 4 =   and 3 – 3 =  , Sam answered 0 to both.) 
Similarly, Andrew was puzzled by the same task and said that solving 3 – 5 =   was 
“not possible.” He shared his thinking, saying, “How come there’s three and take 
away five? I don’t have enough. ‘Cuz look there’s three (holding up three fingers) 
and I cannot take away five ‘cuz there’s not enough.” We named this strategy Pascal 
for the mathematician and philosopher Blaise Pascal who gave a response not unlike 
Sam’s. In his collection of unpublished philosophical and religious writings entitled 
Pensées, Pascal stated, “I know some who cannot understand that to take four from 
nothing leaves nothing” (1669/1941, p. 25).

 Discussion and Implications

Because of their documented effectiveness in supporting students’ learning, frame-
works of students’ mathematical thinking are deeply rooted in mathematics educa-
tion research (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, Fennema, 
Peterson, Chiang, & Loef, 1989). In this chapter, we have contributed a descriptive 
framework for organizing and making sense of students’ problem-solving strategies 
by relating them to the broader ways of reasoning about integer addition and sub-
traction. By combining strategies and ways of reasoning in our framework, we dis-
tinguish key details of student thinking in a way that provides organization and 
structure to student thinking in the realm of integers. Knowledge of specific strate-
gies is beneficial because it can help teachers recognize and encourage the use of 
multiple, appropriate strategies and build toward more sophisticated strategies both 
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within and across ways of reasoning (e.g., counting vs. jumping to zero vs. additive 
inverses). This knowledge also helps teachers to support students to select and use 
efficient strategies that are based on key features of problems. For example, we 
found that students often use jumping to zero (or another order-based WoR strategy) 
for problems like -5 +   = 3 (an addition problem starting with a negative quantity, 
ending with a positive quantity, and with an unknown, positive, change value). (See 
Lamb, Bishop, Philipp, Whitacre, & Schappelle, 2017, for a discussion of integer 
addition and subtraction problem types and their relation to ways of reasoning.) And 
finally, the knowledge to differentiate multiple instantiations of a specific WoR (i.e., 
differentiating strategies within a WoR) can support the identification of common 
characteristics that unite those strategies within the WoR.

As discussed in the beginning of this chapter (see Table 3.1), researchers investi-
gating the teaching, learning, and historical development of signed numbers have 
contributed studies and descriptions of students’ thinking about integers that are 
consistent with both our broader ways of reasoning and many of the strategies we 
documented in this chapter (Bofferding, 2014; Chiu, 2001; Murray, 1985; Peled, 
1991; Stephan & Akyuz, 2012). We extend this work by organizing key distinctions 
and patterns in children’s solutions into a coherent framework that leverages the 
broader ways of reasoning as its central organizing feature.

 Connecting Key Mathematics to Student Strategies

We believe the ways of reasoning framework holds promise for teachers because it 
can support their abilities to assess and interpret student thinking in the moment. 
Moreover, the strategies students use draw on important mathematical ideas. 
Therefore, knowing and recognizing differences among students’ ways of reasoning 
and strategies as well as the underlying mathematical ideas embedded in specific 
strategies is important pedagogical content knowledge for teachers. However, the 
mathematical ideas in students’ strategies are often unstated, unclear, or implicit, 
and teachers can experience difficulty in eliciting those ideas from students. We 
note that though we have selected the examples in this chapter for their clarity, stu-
dent thinking is not always complete or clearly articulated; thus, in practice, asking 
probing questions to help elicit student thinking and connect student-generated 
strategies to underlying mathematical ideas is helpful. Further, at times, students 
may be unaware of the strategies they used. Providing students opportunities to 
regularly share their thinking may have multiple benefits. Students can become both 
more able to meaningfully communicate their mathematical ideas and more aware 
of the strategies that they actually used. Additionally, by making their own strategies 
more explicit to themselves, students may be able to use those strategies for prob-
lems with similar structure. In the following sections, we return to several strategies 
discussed earlier in the chapter, identify the key mathematical ideas embedded in 
these strategies, and offer suggestions for teachers to explore and make connections 
to those mathematical ideas.
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Jumping to Zero and Additive Inverses We view the strategy jumping to zero, 
which is order-based, as significant for two reasons. First, students who jump to 
zero may recognize that decomposing numbers to get to a friendly number (in this 
case, 0) enables them to solve problems more efficiently than does counting by 
ones. Second, we suspect that the use of jumping to zero may be an important pre-
cursor to reasoning more formally about additive inverses—that is, using the addi-
tive inverse strategy in the formal WoR. For example, after sharing her strategy to 
-3 + 6 =  , Opal and her classmates might be asked to consider the relation between 
3 and -3 and what it means to be opposites. These types of conversations could sup-
port students to generalize the specific instantiation of the property 
-3 + 3 = 0 = 3 + (-3) to all integers. In this case, we envision using the initial order-
based reasoning to develop formal reasoning.

AML/SMS and Infers Sign In related work (Lamb et al., 2017), we shared how 
kernels of inferring the sign are present in AML/SMS strategies. We reiterate here 
that we believe that some strategies within the emergent WoR provide productive 
starting points for students’ learning about negative numbers. For example, students 
who express AML/SMS strategies provide evidence that they have noticed features 
of the number system with which they have heretofore engaged, and thus they have 
recognized the underlying structure of addition and subtraction in the domain of 
natural numbers: Addition makes larger and subtraction makes smaller. After they 
have worked with negative values a, c, or both in problems with the form a ± b = c, 
teachers and researchers can support students to develop a more nuanced assess-
ment of their claims by having students consider what might happen to sums or 
differences when the b value is negative. This examination may support students in 
understanding the conditions under which AML/SMS holds and in recognizing that 
when AML does not hold, the sum may be less than or equal to a. When SMS does 
not hold, the difference may be greater than or equal to a. In this case, we envision 
using the initial emergent reasoning to develop formal reasoning.

Negative as Subtractive and Symbolic Flexibility In our research, we found that 
students often productively and appropriately treat the negative sign as a subtraction 
sign to efficiently solve open number sentences (i.e., the negative sign subtractive 
strategy in the computational WoR). We view the ability to seamlessly move between 
meanings of the minus sign and the operation as a desirable outcome of instruction 
(Arcavi, 1994; Lamb et al., 2012). For example, our college-track students success-
fully treated the subtraction sign as a negative number or treated a negative number 
as the operation of subtraction on almost one fourth of all problems they solved. 
However, the students who shared these strategies may have been so efficient and 
fluid when computing that they may not have recognized how or that they changed 
the problem. One goal may be to support students to be more explicit about when 
they are changing the meaning of the minus sign to aid their computations. See 
Lamb et al. (2012) for additional information and suggestions.

Negatives Like Positives and Ignores Sign We shared examples of two strategies 
that seem similar, negatives like positives and ignores sign, but were categorized as 
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an analogy-based WoR and an emergent WoR, respectively. Despite the strategies’ 
similarity, we provided evidence to support our claim that students were doing more 
than appending a sign when invoking negatives like positives. Rather, we deter-
mined that students had invoked negatives like positives only when they provided 
evidence of attending to more than surface features of the problem in their solutions. 
That is, had the students initially ignored signs, computed an answer, and appended 
a sign after computing, the responses would have been coded as ignore signs. We 
view negatives like positives as a productive strategy that teachers can leverage to 
discuss with students when the strategy is useful, to explore reasons the strategy 
makes sense mathematically, and to discuss important ideas including equivalent 
expressions and negation.

 Final Thoughts

In this chapter, we shared five broad ways of reasoning about integer addition and 
subtraction and 16 (of the 41 identified) strategies that are subsumed under those 
ways of reasoning. Although we have shared the ways of reasoning in previous 
work, herein we sought to share some of the most common strategies with examples 
that provide clear comparisons and contrasts to support both teachers and research-
ers in understanding specific strategies within the ways of reasoning. The ability to 
categorize strategies into one of five ways of reasoning may enable teachers to orga-
nize knowledge of student thinking in ways that are useable and accessible for them 
and provide researchers with sufficient information about the strategies and ways of 
reasoning such that they can reliably build on this work.

Acknowledgments This manuscript is based on work supported by the National Science 
Foundation (NSF) under grant number DRL-0918780. Any opinions, findings, conclusions, and 
recommendations expressed in this material are those of the authors and do not necessarily reflect 
the views of NSF.

 Appendix

 Problem-Solving Interview7

 1. Name a big number. Can you name a bigger number?
 2. Name a small number. Can you name a smaller number? If the child responds, 

“One,” ask, “What if I gave that away? What number would you have then?” If 
the child responds, “Zero,” ask, “Is there a number smaller than zero?”

7 Students who provided no evidence of having knowledge of negative numbers (NENs) did not 
respond to items 16–22 or 30–35.
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 3. Can you count backward, starting at 5? If the child stops at 0 or 1, ask, “Can you 
keep counting back?” (If the child continues to count back, have the child stop 
counting at −5).

Note. For Grades 2 and 4 students, the interviewer did not pose Question 4 
unless the student had previously mentioned the term negative. The interviewer 
did not introduce the term negative or the notation for negative numbers unless 
the child mentioned them in responses to Questions 1–3.

 4. What can you tell me about negative numbers?
 5. 5 + 6 = 
 6. 4 +   = 9
 7.  – 4 = 6
 8. 8 –   = 4
 9. 3 – 5 = 
 10. 6 +   = 4
 11. 5 –   = 8
 12.  + 6 = 2
 13. -3 + 6 = 
 14. -8 – 3 = 
 15. Yesterday you borrowed $8 from your friend to buy a school t-shirt. Today you 

borrowed another $5 from the same friend to buy lunch. What’s the situation 
now?

 16. -2 +   = 4
 17.  – 5 = -1
 18. -9 +   = -4
 19. -2 –   = -8
 20. -5 +   = -8
 21. -3 –   = 2
 22. -8 –   = -2
 23. -8 +   = 0
 24. -5 + -1 = 
 25. -5 – -3 = 
 26. 6 – -2 = 
 27. 6 + -3 = 
 28. 3 +   = 0
 29. There is a bird flying 20 feet above the surface of the water and a fish swimming 

5 feet below the surface of the water. (Show picture of fish, bird, water surface.)
How many feet higher is the bird than the fish?

 30. -5 – -5 = 
 31. -7 – -9 = 
 32.  + -7 = -3
 33.  + -2 = -10
 34. 3 –   = -6
 35. -2 – 7 = 
 36. -8 Point to -8. Can you read this? What does it mean?
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For each pair of numbers, circle the larger, write “=” if they are equal, or write 
“?” if there is not enough information to tell which one is larger.

 37.   3 7
 38. -7 3
 39. -5 -6
 40. +20 20
 41. -0 0
 42. -9 0
 43. - -4 -4
 44. -(-4) -4
 45. -5 -100
 46.  - 
 47. Is there anything you can write in the blank to make the following statement 

true?
5 = -____

For PI and CT students, we posed questions 48–54.
Circle the larger, write “=” if they are equal, or write “?” if there is not enough 

information to determine.

 48. x x + x
 49. x x + 1
 50. x + y x – y
 51. -x x
 52. 7 x
 53. x -7
 54. If x < y, compare -x and -y.

For CT students, we posed questions 55 and 56.

 55. What can you tell me about absolute value?

 56a. Someone wrote this down as the definition of absolute value.

For any real number x, the absolute value of x is denoted by |x| and is defined as

 
x

x x

x x
={

if

if

≥
<
0

0  

Can you read this to me (point to definition of absolute value)? What does this 
mean? Do you think this makes sense for the definition of absolute value? Why?

 56b. According to this definition, explain what the absolute value of -2 is.

Pose this follow-up question, if needed: I am confused because negative 2 is less 
than zero. Doesn’t this (circling the –x in the definition for absolute value) mean 
that my answer should be negative?
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The main purpose of this chapter is to document the reasoning of three students, two 
with disabilities and one with mathematical difficulties, as they participated in and 
contributed to the classroom mathematical practices established by a seventh-grade 
class during integer instruction. The integer instructional sequence was designed to 
support students’ increasingly sophisticated reasoning about integers and meaning 
making for integer addition and subtraction. This chapter builds on our prior work 
that identified the classroom mathematical practices established by the teacher and 
students during implementation of the integer sequence (Stephan & Akyuz, 2012). 
In particular, because the integer sequence was implemented in an inclusive setting, 
we have the unique opportunity to document the learning of two students with dis-
abilities and one with difficulties as they participated in an inquiry environment, 
contributing to the development of the classroom mathematical practices. These 
three students participated in a classroom teaching experiment held in a co-taught 
classroom in which students with disabilities were included with regular education 
students. Therefore, the three case studies we present illustrate a rare analysis of the 
integer learning of students with disabilities. The primary research question that we 
seek to answer through this chapter is, how do students with learning disabilities 
make meaningful contributions to the development of classroom mathematical 
practices and gain intellectual autonomy in the process of learning integer concepts 
and operations?

 Research on Teaching Integers

Learning integers is considered by some researchers to be the first time students 
encounter algebraic situations, particularly due to the abstract nature of negative 
numbers (Gallardo, 2002). Students have difficulty conceptualizing numbers less 
than zero, creating negative numbers as mathematical objects, and formalizing rules 
for integer arithmetic (Gallardo, 2002; Hefendehl-Hebeker, 1991; Liebeck, 1990). 
Understanding that the opposite of a negative number is a positive number is par-
ticularly challenging (Lytle, 1994; Smith, 1995). This is not surprising as histori-
cally negative numbers were considered “absurd” early in their conception because 
mathematicians had not developed a way to understand numbers less than zero (e.g., 
see Bishop et  al., 2014). Even though many contexts and instructional strategies 
exist to support students’ understanding of negative numbers, there is no consensus 
about how to teach negative numbers. Most studies focus on modeling negative 
numbers with physical objects, while grounding the mathematical activity in expe-
rientially real contexts (De Bock, Deprez, Van Dooren, Roelens, & Verschaffel, 
2011; Kaminski, Sloutsky, & Heckler, 2008; Linchevski & Williams, 1999; Lytle, 
1994; Smith, 1995; Streefland, 1996). For example, Battista (1983) suggested using 
two-colored chips to represent positively and negatively charged particles. 
Linchevski and Williams (1999), for their part, designed a disco scenario in which 
students keep track of the number of attendees entering and leaving a disco stage 
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using a double-wired abacus. Many researchers also emphasize that negative 
numbers cannot be modeled with physical objects because you cannot have fewer 
than zero number of objects (see, e.g., Bishop et al., 2014). Five minus two, for 
example, can be modeled using five counters and removing two. However, when 
young students are asked problems such as 2−5, they struggle with taking five away 
when there are only two counters initially. Students often change the problem to 
5−2 and subtract to get 3 as they do not have a full comprehension of negative num-
bers (e.g., Murray, 1985).

In addition to using different contexts, one of the important tools used in teach-
ing integers in school is the number line (e.g., Heeffer, 2011). It can help students 
visualize the position of numbers relative to each other and to construct unary, 
binary, and symmetric meanings of the minus sign (Vlassis, 2004). Here, unary 
refers to the quantity as a negative object; in other words, the sign is “attached to 
the number” (Vlassis, 2008, p. 561). Binary refers to actions such as taking away, 
completing (as in how much more is needed to have 25, if you have 10) and find-
ing difference between numbers (Gallardo & Rojano, 1994). Finally, symmetric 
refers to the symbol that signifies taking the opposite of a number. For the expres-
sion -(-10), the first negative sign would signify the operation of taking the oppo-
site of -10. Researchers state that the number line can support the unary and 
symmetrical meaning of signs and can support representations where operations 
between integers are displayed on the number line with the binary nature of signs 
(Vlassis, 2004).

For integers, a combination of the number line model and real-life contexts can 
make the number line more meaningful for elementary and middle school students 
(Beswick, 2011; Stephan & Akyuz, 2012). For example, vertical number lines can 
be used meaningfully when paired with a financial context. Students can explain 
assets, debts, and net worth concepts flexibly on a vertical number line while giv-
ing meaning to negative integers and learning operations of addition and subtrac-
tion of integers (Akyuz, Stephan, & Dixon, 2012). However, in classrooms, number 
lines are usually represented horizontally so teachers can easily place them on the 
wall or the board, and mathematics textbooks support using horizontal models in 
solutions or representations (Beswick, 2011). One of the important points here is 
to support the number line with a context where students can make sense of it. For 
instance, if a context involving going “up” and “down” in net worth is used, 
employing a vertical number line instead of a horizontal one may be more mean-
ingful for students.

As a consequence of the results from prior research, we designed an integer 
instructional sequence that uses finance as a context and a vertical number line as a 
potential model (see Stephan and Akyuz (2012) for more information). Our goal 
was to support seventh-graders’ development of meaning for integer addition and 
subtraction in a more inquiry, autonomous fashion rather than by direct instruction. 
Because our research site was an inclusive stetting that involved both regular and 
special education students, we hoped that our context, model, and inquiry instruc-
tion would be supportive of students with disabilities as well.
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 Teaching Integers to Students with Mathematical Disabilities 
and Difficulties

Several students in the classroom had been diagnosed with some type of disability; 
therefore, it is important to define what we mean by the term mathematical disabil-
ity. Mathematical disabilities (MD) are neurologically based disorders that impede 
the learning of mathematics; they are cognitive impairments in mathematical ability 
that do not stem from poor instruction or other factors (Mazzocco, 2007). In fact, 
Mazzocco distinguishes MD from mathematics difficulties, the latter referring to 
students who do poorly in mathematics because of poor instruction or other disor-
ders like ADHD or mathematics anxiety (Shalev, 2007).

Although direct instruction is promoted as the primary method of instruction 
with students with special needs, it is becoming increasingly common for research-
ers of mathematics disabilities to advocate for a blended approach to instruction, 
which incorporates techniques from both direct and inquiry instruction (Hudson, 
Miller, & Butler, 2006; Scheuermann, Deshler, & Schumaker, 2009). For example, 
to teach integers, special education researchers suggest using (1) manipulatives 
such as two-colored chips that signify positive or negative numbers (Lytle, 1994) or 
(2) online algebra tiles with temperature or elevation contexts (Maccini & Ruhl, 
2000). The teacher then models how to use the manipulatives correctly and provides 
multiple opportunities for the students to learn her method. Using manipulatives or 
visual models to teach is typically acknowledged as the contribution from the 
inquiry approach, while explicit teaching of the way to use the manipulatives incor-
porates direct instruction.

Related to the blended approach, special education researchers also advocate the 
use of a technique known as concrete-representational-abstract, abbreviated as CRA 
(Witzel, Mercer, & Miller, 2003). In this technique, students with disabilities are 
first allowed to experiment with physical manipulatives to develop intuition for the 
underlying arithmetic and algebraic operations. These concrete experiences are then 
augmented with representational activities, in which students are shown how to 
represent the same information using pictures, figures, and drawings. It is only after 
the students have mastered these concrete and representational approaches that the 
instruction transitions to more abstract concepts that involve the use of variables and 
equations. This approach has shown to improve the mathematics performance of 
students with disabilities under paired instruction experiments (Witzel et al., 2003).

In this chapter, we offer an approach to teaching integers for understanding that, 
on the surface, looks like the blended instructional model elaborated above. 
However, our view is that the blended model is a superficial conjoining of instruc-
tional strategies that are used in both explicit and implicit models. Rather, we con-
tend that inquiry instruction has been watered down to superficial techniques and no 
longer preserves the fundamental belief that distinguishes it from traditional, direct 
instruction: developing students’ intellectual autonomy (Kamii, 1982; Piaget, 
1948/1973).
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Intellectual autonomy refers to the belief that one is responsible for making sense 
of problematic situations and does not rely on the authority of others to govern their 
reasoning. Heteronomy refers to the belief that one’s thinking is governed by out-
side authorities. For example, students who are heteronomous would rely on the 
teacher to show them how to solve a problem, while autonomous students believe 
that it is their responsibility to explore the situation. Students who are heteronomous 
can be heard saying, “Can you tell me how to do this?” or “the calculator said the 
answer was 29, so I must be wrong.” Autonomous students might say things such 
as, “Wait, don’t tell me, let me figure it out first” or “the calculator said the answer 
is 29. I must have punched something in wrong because that doesn’t make sense.” 
Individuals who teach integers for heteronomy might use manipulatives, but they 
would show students how to use them and have them practice for proficiency. 
Teachers teaching for autonomy would focus on problem solving first and let stu-
dents choose manipulatives as reasoning devices, not show a set of steps that must 
be used with them.

In this chapter, we present three case studies that illustrate the development of 
integer reasoning from a seventh-grade classroom design experiment in which the 
teachers used a genuine inquiry approach, teaching integers for autonomy. Two of 
the students had an Individualized Education Plan (IEP1) that contained their diag-
noses (one with a mathematics disability and the other with a language disability) 
and education plans with goals for improvement. Since the third student had not 
been formally tested for disability services, at best we can conclude that he had a 
mathematical difficulty because he had scored in the lowest 25% of students on the 
state achievement test. For ease of reading, we will continue to refer to this group of 
students as a group with special needs, recognizing that the third student who has 
not been formally diagnosed yet is in the lowest 25% in mathematics achievement. 
In the sections that follow, we describe the teachers and class context involved in the 
study and the integer instructional sequence that was implemented during the class-
room design experiment. We follow with our methodology for conducting the study 
and analyzing the learning of the classroom.

 Context

The integer instructional sequence was implemented in a public middle school 
(grades 6–8, ages 11–13) in Central Florida, United States. There were approxi-
mately 1500 students enrolled in the school, which served students from a variety of 
backgrounds, primarily middle class. When the experiment was conducted, the first 
author had 3 years full-time teaching experience. Prior to that, she had been a math-
ematics education professor and specialized in designing instruction to support 

1 In the United States, by law, a student who is diagnosed with a disability must have an 
Individualized Education Plan (IEP) created that lists the services to be provided as well as ways 
to measure the student’s progress.
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inquiry-teaching approaches consistent with Principles and Standards for School 
Mathematics (National Council of Teachers of Mathematics [NCTM], 2000). The 
class consisted of 13 boys, including the 3 identified with mathematical difficulties, 
and 7 girls. Five of the students (two of which appear in this chapter) had been for-
mally diagnosed as having learning disabilities, and over half the class was perform-
ing below grade level (one of which is the third student in this case study). There 
was also a 10-year veteran co-teacher who was certified in special education. 
Stephan and her co-teacher had co-taught for 3  years. The classroom teaching 
experiment was conducted in the third quarter of the school year. Therefore, norms 
consistent with establishing a standards-based environment (NCTM, 2000) had 
already been set and were relatively stable during the instruction reported here 
(Akyuz, 2010).

 Integers Instructional Sequence

To develop the instructional sequence, we followed the tenets of Realistic 
Mathematics Education (RME) (Freudenthal, 1973; Gravemeijer, 1994). Although 
the origins of RME are in mathematics, the heuristics align well with the concrete- 
representational- abstract (CRA) design approach recently developed in the special 
education field (Maccini & Gagnon, 2005). First, RME suggests that instruction 
start with an experientially real context for students, meaning that students do not 
have to have actually experienced the situation but have to be able to imagine them-
selves in it. The experientially real context underlying the integer sequence involved 
determining a person’s financial net worth. After students discussed that assets and 
debts comprise a net worth, the teacher introduced a financial worth statement (for 
a full description of the instructional sequence, see Stephan & Akyuz, 2012). 
Working with the financial statement was a way to ground students in a concrete 
situation that provided the semantic grounding for future abstract mathematical 
activity. This is similar to the concrete phase mentioned in the CRA special educa-
tion approach. The first set of activities asked students to compare the net worth of 
two people. Although they were encouraged to solve the problem any way they 
wished, students typically added the assets, added the debts, and subtracted one 
total from the other total. Students began to understand that debts reduce net worth, 
whereas assets increase net worth. These net worth statements presented both assets 
and debts as positive whole numbers; situations and activities later on introduced 
positive and negative signs.

A second heuristic of RME suggests that the mathematical activities should build 
students’ reasoning gradually from the concrete to the abstract (see Miller & 
Hudson, 2007; Witzel et  al., 2003). Teachers should use manipulatives, pictures, 
tools, and other items to reinforce students’ reasoning with imagery. Instruction 
should be intentionally designed so that students reorganize their thinking progres-
sively toward more abstract ideas. In line with this heuristic, the previous activities 
encouraged students to build meaningful imagery and understanding for net worth 
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as a combination of assets and debts or quantities that are opposites. The next set of 
tasks continued this idea by progressively presenting assets and debts in a more 
integer-like format. At this point, introducing assets and debts with signs was 
enough to move students from the concrete to slightly more abstract thinking. In the 
preceding task, students were able to organize their mathematical activities within 
an experientially real context. They were able to develop the relation between assets 
and debts as affecting a net worth in opposite ways.

The next tasks focused on transactions or operations. Instead of figuring out a 
person’s net worth, transaction tasks encouraged students to take an already deter-
mined net worth and alter it with a transaction. Students were asked to judge the 
effect that various transactions have on net worth, such as when making good or bad 
decisions. For example, students were asked to determine whether Ann, who had 
taken away a $200 asset, had made a decision that was good or bad for her net 
worth. During the whole class discussion, the teacher introduced a way of symbol-
izing each transaction. In Ann’s case of -(+200), the first sign symbolized the action 
(add or subtract), and the second symbolized an asset or debt. Students wrote each 
transaction on the page using symbols.

The third heuristic of RME is that students should be encouraged to create mod-
els of their concrete activity. These models should become reasoning devices for 
more abstract thinking. The next set of tasks, also categorized as transaction tasks, 
consisted of word problems such as this: Nancy has a net worth of $5000. A debt of 
$3000 is taken away. Is this good or bad? What is her net worth now? Students were 
also asked to write a situation in a number sentence, such as +$5000 − (-$3000) = 
$8000. The progression involved presenting problems with words and then present-
ing problems with symbols only. Students had to find the new net worth each time. 
Additionally, we introduced the empty, vertical number line (VNL) as a way to help 
students structure their operations. For the Nancy problem, students might have 
inscribed their reasoning as follows (see Fig. 4.1):

The vertical number line begins as a model of performing transactions on net 
worth; it later becomes a model for reasoning with integer quantities. By the time 
students encountered these last few examples, they were making calculation mis-
takes only, not conceptual ones. Although the three heuristics do not correlate per-
fectly with the CRA approach from the special education literature, the instructional 
sequence is consistent with the notion of moving from concrete to more abstract 
activity.

 Methodology

In this section we detail the research methodology that guided the classroom-based 
teaching experiment (Cobb & Yackel, 1996) on integers. We first explain the theo-
retical perspective and associated framework used to guide our analysis. Then, we 
turn to the data collection and analysis technique.
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 Theoretical Perspective

The theory we draw on to make sense of students’ learning, while we are in a class-
room or when we are conducting analyses at the completion of an experiment, is a 
version of social constructivism called the emergent perspective (see Cobb & 
Yackel, 1996; Stephan, Bowers, Cobb & Gravemeijer, 2003; Stephan & Cobb, 
2003). Briefly, this theory draws from constructivist theories that specify learning as 
an organic, autoregulated series of cognitive reorganizations (Steffe, von Glasersfeld, 
Richards, & Cobb, 1983; von Glasersfeld, 1995) and interactionist theories that 
emphasize learning as a social accomplishment (Bauersfeld, 1992; Blumer, 1969). 
The emergent perspective is one attempt to transcend the individual versus social 
dichotomy by taking learning to be both simultaneously. In other words, learning is 
characterized as both an individual and a social process with neither taking primacy 
over the other. Students are viewed as reorganizing their learning as they both par-
ticipate in and contribute to the social (and mathematical) context of which they are 
a part. Motivated by this theoretical perspective, Cobb and Yackel (1996) con-
structed an interpretive framework useful for detailing the learning of a classroom 
community and its participants.

The Interpretative Framework Cobb and Yackel (1996) developed the frame-
work that guides our analyses of student learning. This interpretive framework 
emerged out of an attempt to conduct analyses that coordinate individual students’ 
mathematical development with the social context of the classroom (see Table 4.1). 

Fig. 4.1 Inscription of 
5000 − (-3000)
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The left side of the framework draws on an interactionist (i.e., social) view of 
 communal or collective classroom processes (Bauersfeld, Krummheuer, & Voigt, 
1988; Blumer, 1969). The individual perspective draws on psychological construc-
tivist views of students’ activity as they participate in the development of these 
communal processes (von Glasersfeld, 1995). The relation between the two sides of 
the framework is said to be reflexive.

A mathematical practice can be described as the taken-as-shared ways of reason-
ing and arguing mathematically (Cobb, Stephan, McClain, & Gravemeijer, 2001). 
Classroom mathematical practices (CMPs) evolve as the teacher and students dis-
cuss situations, problems, and solution methods and often include aspects of sym-
bolizing and notating (Cobb, Gravemeijer, Yackel, McClain, & Whitenack, 1997). 
We have already documented the classroom mathematical practices of the seventh- 
grade classroom as the integers instructional sequence was implemented:

Practice 1: Interpreting net worth as a positive or negative quantity
Practice 2: Using zero as a point of reference for calculations
Practice 3: Comparing zero as a point of reference for calculations
Practice 4: Reasoning with a vertical number line to determine the results of addition and 

subtraction operations
Practice 5: Determining the meaning of positive/negative signs (for more details, see 

Stephan & Akyuz, 2012)

In this chapter we offer an analysis using a sociological lens that complements 
the documentation of the mathematical practices. The ways in which three students 
with disabilities participated in and contributed to the constitution of the classroom 
mathematical practices above complete the picture of the learning of the classroom 
community that was begun with the 2012 analysis. This analysis also provides 
insight into the ways in which students, particularly those with disabilities, make 
meaning for integer operations.

 Data Collection and Analysis

The teacher (Stephan) and researcher (Akyuz) conducted pre- and post-interviews 
with all 20 students to assess their understanding of integers. In addition, pretests 
and posttests were administered to each student to document learning from a quan-
titative point of view. All pretest and posttest questions were drawn from Smith’s 

Table 4.1 The interpretive framework for analyzing classrooms

Social perspective Individual perspective

Classroom social norms Beliefs about own role, others’ roles, and the general 
nature of mathematical activity in school

Sociomathematical norms Mathematical beliefs and values
Classroom mathematical practices Mathematical conceptions
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(1995) study and included both procedural and conceptual problems. Results from 
both pre-interviews and pretests indicated that students had some previous knowl-
edge of integer operations, and students were far more successful with addition of 
integers than with subtraction.

Once the integer instruction began (in March, 2009), data collection continued 
for 5 weeks and included the class observations recorded through video and audio 
recordings, field notes taken by the second author, daily interviews of the teacher 
(first author) by the second author, and the weekly meetings consisting of three 
other seventh-grade teachers and both authors. At the time of the experiment, the 
school district had adopted Connected Mathematics Project (Lappan, Fey, 
Fitzgerald, Friel, & Phillips, 1998), a reform textbook, which advocated a student- 
centered approach to teaching. Units within this textbook take at minimum 4 weeks 
to teach; thus, 5  weeks was a realistic and acceptable time period for our 
instruction.

The data utilized for the analysis in this chapter came from the pretests, posttests, 
and corresponding interviews with each student as well as small group and whole 
class discussions. All pre- and post-interviews with the three students were tran-
scribed. Additionally, all whole class discussions and small group sessions with the 
three students were transcribed. We color-coded all instances of talk from any of the 
three case study students (Nathan, red; Stuart, green; Seth, purple). Then, we cut 
and pasted each student’s sentences into a spreadsheet, along with the day on which 
the speech occurred, and coded each instance according to the specific classroom 
mathematical practice (CMP) that the student’s statement referred to. For example, 
Table 4.2 shows a portion of our coding scheme in which we listed every contribu-
tion that a student made in whole class or small group discussion.

We then used the coding from the spreadsheet as data to analyze each student’s 
way of participating in or contributing to the classroom mathematical practices by 
looking at, say, Nathan’s growth from the beginning of the table to the end. We also 
analyzed each student’s pre- and post-interviews to document each student’s integer 
reasoning before and after the instructional intervention. In the forthcoming analy-
sis, we begin with results from each student’s interviews and then present case stud-
ies that show their growth across instruction. First, we introduce the participants in 
the classroom teaching experiment and the instructional sequence for integers.

 Pre-interviews

For the current study, three students, Nathan, Stuart, and Seth, were chosen for the 
current analysis based upon three facts: (1) each student can be categorized as hav-
ing either a cognitive or mathematical disability with an IEP or a mathematical dif-
ficulty, (2) the three of them worked in a small group together almost the entire 
school year, and (3) each student participated verbally in both whole class and small 
group for a significant amount of time, thus allowing for a fruitful analysis.
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 Introducing Nathan

Nathan had been diagnosed with a learning disability prior to the start of the school 
year and was assigned to Ms. Smith, the special education co-teacher. On the state 
achievement test for the sixth grade, Nathan had earned a level 1 qualification, the 
lowest achievement score possible (which ranges from 1 to 5, 3 and higher being 
proficient). His IEP included extra time on homework assignments, quizzes, and 
tests as well as specific mathematics calculation proficiency goals. His mathemati-
cal confidence was very low coming into the seventh grade, and Nathan struggled 
with basic computations. In addition to being enrolled in the co-taught regular 
mathematics session, he was assigned to the same regular education teacher for 
another mathematics class session, which was designed to support students who 
were underperforming on the state test. Thus, Nathan had two class periods of math-
ematics with the same regular education teacher: one, in a co-taught setting with 
both a regular and a special education teacher and the other only with the regular 
education teacher and students who were also underperforming.

Rather than explain how Nathan solved each interview task separately, we draw 
some general conclusions about his integer reasoning and computation. Nathan had 

Student Contribution CMP Day
Teacher: Nathan says, how did you get negative 400?
Nathan: Yes, I did not understand that part.

CMP 1b 19

Nathan: Yes. Since he was negative, 8,400 is negative so and 
she subtracted by the positive 8,000 since it is more than zero
he is still in negative.

CMP1b 19

Teacher: He pays off…say it again Stuart; real loud.
Stuart: He pays off debts by using assets.
Teacher: So he uses his assets to pay off his debts.

CMP 1a 19

Teacher: All right. What is his pay off amount? How much he pays
off
Nathan: 8,400 and he still has to pay 400 dollars.

CMP 1a 19
?

Seth: So he goes negative 400. She called this as pay off (T 
writes - 400 next to 8,000). That is gonna take 8,000 dollars to
pay off and then he still in debt.

CMP2a 19

Teacher: Seth, do you think Carl will be in a bad spot or in a good 
spot?
Seth: In a bad spot.
Seth: First of all…the debit is how much he owes, this is how
much he owns.
Student: It is not debit, it is debt.
Teacher: Whatever, you all know what he means.
Seth: He owes more than he owns.
Stuart: Do not use any words, just say own and owes.

CMP1b 20

Table 4.2 A sample of the spreadsheet used in coding students’ reasoning as related to a classroom 
mathematical practice (CMP)
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difficulty interpreting both realistic problems as well as computing number 
sentences. For example, on the temperature problem (Fig. 4.2), Nathan drew two 
and one-half tally marks to stand for 25 degrees. He drew three full tallies directly 
underneath those and matched up the two long tallies in each group, saying,

A tally mark stands for ten…10, 20, and that would be the 5. Then, 30 would be the 10, 20, 
30. Then, you match these up (pointing to the two tally marks from the 25 and the two tally 
marks from the 30) and then you have 15 left.

Nathan simply looked at the remaining tally from the bottom group and the one- 
half tally from the top group and put them together to conclude that the temperature 
must be 15 degrees. He then added that the 15 must be negative because “you start 
with less and subtract by more, [so] you would get a lower number.” The answer -15 
is coincidentally correct but with erroneous reasoning. Nathan’s calculations did not 
take into account that the temperature started with -10 degrees. Consider if the start-
ing temperature were -30 °F; Nathan’s strategy would still have given him -15 as his 
answer, but the correct answer is actually -35 °F. He used tally marks to represent 
only two of the quantities in the problem (rising 25 °F and falling 30 °F) and lost 
track of their meaning, combining leftover amounts after deleting the two tallies that 
matched. This is a typical strategy of someone with a mathematics difficulty; in the 
absence of meaning for their problem solving, the student sometimes manipulates 
the quantities in what appears to be random combinations.

When it came to questions about assets and debts (see Fig.  4.3), Nathan first 
analyzed each person’s situation, saying that Kim was in a bad situation because she 
had a lot of debt, Mark is doing well, and so is Linda. Hence, Nathan seemed to have 
an intuition that debts and assets are connected, but he could not combine those in a 
meaningful way. When the researcher pushed him to determine who was in the best 
financial state, he attempted to find the difference between assets and debts by 
dividing, say 1500 by 500. When asked what the 3 in his calculation stood for, he 
replied, skeptically, “The difference…I don’t know” and abandoned division. 
Eventually, he argued that Mark was on top because he had the most money ($3000 
versus $2500 and $500), focusing only on the positive value for each student and 
not the debt.

For the bare number problems such as 9 + (-12), -6 + (-3), 5 – (-7), and -4 – (+8), 
Nathan only constructed a correct answer for the second one, but it was a coinci-
dence (his answers in order: -21, -9, -2, +4). Nathan looked at the sign in the middle 
of the problem and performed that operation no matter what the sign of the second 

Fig. 4.2 Nathan’s reasoning on the temperature problem
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addend was and adjusted the sign by giving his answer the sign of the largest addend. 
For example, 9 + (-12) was -21 because the plus sign in the middle led him to add 9 
and 12 to get 21. Since the 12 had a minus sign and was larger than 9, his answer 
was -21.

In conclusion, Nathan’s pre-instruction interview indicated that he had difficulty 
making meaning out of the quantities in word problems related to negative amounts 
and that, on bare number problems, he was able to make sense out of adding two 
negatives but did not make sense of adding or subtracting negatives.

 Introducing Seth

Seth had an IEP and was listed on the special educator’s roster because of a lan-
guage processing difficulty as opposed to a mathematics difficulty. However, Seth 
had difficulty articulating his thinking both out loud and in written form, often leav-
ing out words, not writing complete sentences and using words that were nonsensi-
cal or incorrect for the argument he was making. He had difficulty putting into 
words the mathematical connections that he had formed. Because he was proficient 
on the state test, he did not have an extra mathematics class. He also had high con-
fidence in mathematics reasoning but low confidence in articulating an argument 
both in oral and written form.

Like Stuart, Seth had a strong sense of how debts and assets affect each other to 
form a net result. For problems involving money, such as that in Fig. 4.3, Seth also 
analyzed each situation and concluded fairly quickly and confidently that Linda 
would be in the best financial situation. To make this decision, he found the differ-
ence in the two positive numbers (asset and debt) for each person and argued that 
Kim would be in the worst situation because he [sic] had 500 minus 1500 and would 
be in the negative 1000. Additionally, Seth argued that Kim only has $500 and has 
$1500 debt and needs “1000 more dollars to get back to zero. Zero is the diameter 
around here.”

For the temperature problem (see Fig. 4.4), Seth said that he kept the -10 tem-
perature alone for the morning and subtracted 30 from 25.

Fig. 4.3 The college student question
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Seth:  This is hard, but I think I can do it…I subtract both of them 25 by 30 and I get -15. 
Negative 15 minus negative 10…we’re taking away from the negatives and since 
they’re both negatives, they gonna go up to the positives since negative is the exact 
opposite of positive. You’ve got 5 bigger Fahrenheit right there.

In this excerpt, Seth illustrated that he knew that rising and falling temperatures 
had opposite effects on each other but was unable to manage the symbolic meaning 
to calculate a correct difference. When attempting to take into account the morning 
temperature of -10, again he indicated that he remembered a rule that two negatives 
make a positive, but he did not make meaning of that rule in this context.

Finally, for all number sentences, Seth erroneously used the strategy of subtract-
ing the smaller number from the bigger and keeping the sign of the bigger number. 
This produced incorrect answers to all but the first problem, 9 + (-12). When asked 
to explain his solution to the first two again, Seth spontaneously drew a horizontal 
number line to show left and right movements, depending on the problem. This led 
him to change his answer to the second problem -6 + (-3) to get -9.

In conclusion, Seth had a strong sense of the opposite effects that positive and 
negative quantities have on one another. However, like Stuart, he had difficulty 
interpreting his actions in purely symbolic situations and at times in context.

 Introducing Stuart

Stuart was considered a student with a mathematical difficulty as he performed in 
the lowest 25 percentile on his mathematics achievement test with a non-proficient 
score of 2 on the state test. He was on the regular education teacher’s roster and did 
not have an IEP like Nathan and Seth. Since Stuart was underperforming on the 
state test, he, like Nathan, was assigned an extra support mathematics class with the 
same regular education teacher.

Stuart had a strong sense of how debts and assets affect each other to form a net 
result. For problems involving money, such as that in Fig. 4.3 (the college student 
question), Stuart analyzed each situation and concluded fairly quickly and confidently 

Fig. 4.4 Seth’s solution to the temperature problem
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that Linda would be in the best financial situation. To make this decision, Stuart found 
the difference in the two positive numbers (asset and debt) for each person and argued 
that Linda would be in the best situation because she has “$1500 left” after she rids 
herself of the $1000 debt.

For the temperature problem (see Fig.  4.4), Stuart started by finding what he 
termed a range by subtracting 25° from 30° to get -5°. When asked about the -10°, 
Stuart said that this number did not really matter, and he did not take it into account. 
Like Nathan, Stuart worked only with the temperature change and did not consider 
the original temperature.

For the bare number problems such as 9 + (-12), -6 + (-3), 5 – (-7), and -4 – (8), 
Stuart recalled integer addition and subtraction rules he had been taught the previ-
ous year and attempted to implement them for the problems. For the first two prob-
lems, he used them correctly and, when asked why they worked, simply repeated 
the rules he said he was taught. For 5 – (-7), he found -2 because the subtraction sign 
prompted him to subtract the 7 and 5 to get 2, but he was not clear why it would be 
a -2. For the last problem, he claimed that he added 8 to the -4 to get a 4.

In conclusion, Stuart had some sense of the effect that negatives (debts) and 
positives (assets) have on each other and applied this in other contextual situations, 
such as temperature. However, when it came to bare symbolic questions, he had 
difficulty interpreting the meaning of the positive and negative signs and their 
implications for action. Stuart fell back on integer operation rules that he had been 
taught previously.

 Implications of Pre-interview Results for Instruction

The analysis of these three students’ reasoning, when added to our analysis of their 
classmates’ interviews, led us to make the following conclusions about our instruc-
tional starting and ending points:

 1. Students could reason with positive and negative quantities in a context, know-
ing that positive and negative quantities had an opposite effect on each other. 
Even students reasoning like Nathan understood this, despite not counting the 
debt in their final assessment.

 2. The first conclusion led us to believe that we had chosen a realistic starting point 
for instruction that would build on students’ notions of the relations between 
assets and debts (+ and − quantities). All three case study students could reason 
meaningfully with positive and negative quantities having opposite effects on 
each other. One of our learning goals initially, therefore, was to help students 
make meaning for net worth as a combination of positive and negative 
quantities.

 3. Finally, given the spontaneous use of horizontal number lines by Seth and three 
other students, we were encouraged that students’ reasoning with the empty, ver-
tical number line might serve as a model of their transactions with net worths and 
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shift to a model for reasoning about integer quantities. We also conjectured that 
the vertical direction could evoke more meaningful and contextual imagery for 
students who had otherwise been using a horizontal number line mechanically.

In the next section, we describe how each case study student participated in and 
contributed to the development of the CMPs that emerged during the class sessions. 
We then present an analysis of each student’s post-interview integer tasks, compar-
ing their reasoning with pre-interview results.

 Case Studies

The following analysis is organized by students’ participation in and contribution to 
the five classroom mathematical practices (CMPs). Rather than present each case 
separately, we merge them together within each CMP, which has the advantage of 
showing the diversity in reasoning as well as how the three students negotiated 
meaning, at times, together in their small group.

 Classroom Mathematical Practice One

The first classroom mathematical practice that was established involved making 
meaning for net worth as a combination of assets and debts (or in integer terms, 
signed quantities; Fig. 4.5). The first day of the instructional sequence, the teacher 
introduced the context through a story about Oprah Winfrey and asked students to 
name assets and debts that may contribute to her net worth. After discussions about 
a net worth statement, students were given an activity sheet that had Cindy’s and 
Bobby’s fictional net worth statements on it, and they were to determine which per-
son was worth more (see Fig. 4.6).

Students were not told how to determine a person’s net worth; they were merely 
asked to establish who was worth more and were left to small group exploration to 
come to a conclusion. The following small group discussion signifies how Seth and 
Stuart attempted to make sense of net worth.

Stuart: What did you get for total debts? Cindy?
Seth: 190.
Stuart: How did you use the total assets and total debts to get the net worth?
Seth: 305 minus 190.
Stuart: What’d you do to get them?
Seth: Debt means you need money. Asset means you gain money.
Stuart:  Ah! I get it! How would you…1700 [referring to Bobby’s net worth]. We need a 

calculator.

This excerpt shows that Stuart was initially unsure of the way assets and debts 
interact to create a net worth, as seen when he asked Seth how he combined the total 
assets and debts to get net worth. This might be surprising given Stuart’s interview 
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solutions in which he found the difference between debts and assets quite readily. 
However, net worth was a new term for him, and it may not have been readily 
 apparent that net worth is the combination of assets and debts. As soon as Seth 
reminded Stuart that debt is money that you need, and assets are money you gain, 
Stuart was able to create a meaningful strategy for calculating net worth, which he 
began to implement for Bobby. In other words, a simple reminder that assets and 
debts have opposite meaning prompted Stuart to combine the two by finding their 

Practice 1: Interpreting net worth as a positive or negative quantity
a) Net worth is a combination of a positive and a negative value [when the assets and debts are both 

nonzero].
b) When a negative value is greater than [in absolute value] a positive, the combination is negative.

Fig. 4.5 Classroom mathematical practice one (Stephan & Akyuz, 2012, p. 442)

Fig. 4.6 Cindy and Bobby activity sheet
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difference. For Nathan’s part, he interpreted net worth as the difference between 
total assets and debts and even argued correctly in a whole class discussion that a 
–$190,000 net worth is not a debt.

Dusty: The negative 190,000 is how much Brad is in debt.
Teacher:  (She writes the board) Dusty says it is how much Brad in debt. You all agree 

with that?
Students: Yes.
Teacher: Who doesn’t agree with that? Nathan?
Nathan: I think it is how much the net worth Brad has.
Teacher:  [writes on the board: Nathan: It is net worth.] Why do not you think it is his 

debt? [other students try to answer]. Nathan? Hold on, hold on [other students 
trying to talk out of turn]!

Nathan: Because, I do not know. I just do not get it [Dusty’s interpretation].

Nathan rejected Dusty’s argument that Brad’s final amount signified his debt, 
implying that Nathan understood net worth to stand for the difference between debts 
and assets, not just debt itself. Nathan’s reasoning about net worth can be seen 
simultaneously as his mathematical understanding and as a contribution to the 
emerging classroom mathematical practice.

By Day 3 of the instructional sequence, all three students were interpreting net 
worth as the difference between total assets and debts and understanding that when 
the total debt is bigger (in absolute value) than the total assets, then the resulting net 
worth is negative. In a small group discussion of the Brad and Angelina task, Nathan 
corrected Stuart who claimed incorrectly that Brad’s net worth was +190,000.

Stuart: Brad’s NW is 190,000.
Nathan: I don’t get that. −190,000. He’s a LOT less.
Stuart: We picked Angelina [T visits their desks].
Teacher: Because?
Seth: [Angelina is] 90,000 POSITIVE. Negative means less than the positive.
Nathan: What they said!

Nathan’s rebuttal suggests that he understood that when your total debts out-
weigh your assets, the net worth should be called negative. Additionally, when com-
paring Brad’s −190,000 net worth to Angelina’s net worth of +90,000, Nathan 
understood that negative values are less than positive ones.

As the instructional sequence progressed, students developed two main ways to 
determine net worth. For example, consider the activity sheet that was given to stu-
dents on Day 3 of the experiment (Fig. 4.7). Most students developed at least one of 
three ways to find each client’s net worth. The first method was to work through the 
assets and debts linearly, such as 5900 − 1700, then use that total of 4200 − 2000 to 
get 2200, and then add 800 to get a total of +$3000 for Client One. The second 
method resembled students’ interpretation of net worth as the difference between 
total assets and debts: 5900 + 800 = 6700 total assets; 1700 + 2000 = 3700 total 
debts; 6700 − 3700 = 3000 net worth. For his part, Nathan typically used the linear 
method to calculate a person’s net worth, while Seth and Stuart used the total assets, 
total debts, and difference method fairly consistently.
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In summary (Table 4.3), all three students reached a point by Day 3 of the instruc-
tional sequence in which they understood that net worth is a difference of assets and 
debts and that the higher value determines the sign of the net worth. Their  interactions 
with each other in small group provided the opportunity for Stuart to reorganize his 
thinking, with Seth and Nathan creating that understanding almost immediately.

Fig. 4.7 Worst client activity sheet

Table 4.3 Summary of students’ participation in and contribution to CMP1

Student Participation in/contribution to CMP1

Nathan Immediate sense that net worth is combination of total assets and debts  
(participation in CMP1)
The higher quantity determines the sign of the net worth (contribution to CMP1)

Seth Immediate sense that net worth is combination of total assets and debts  
(participation in CMP1; aided Stuart in his development)

Stuart No immediate sense that net worth is combination of total assets and debts but stable 
by Day 3 (participation in CMP1)
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 Classroom Mathematical Practices Two and Three

We discuss the three students’ participation in and contribution to classroom math-
ematical practices two and three together because several of the mathematical ideas 
from both practices emerged simultaneously and became taken-as-shared at the 
same time (see Fig. 4.8). Therefore, in writing the analysis, it became impossible to 
separate the two and is easier to read together than separately. In other classroom 
design experiments, we have also found that the establishment of CMPs is not nec-
essarily linear in time but can overlap (Rasmussen & Stephan, 2008).

All three students used the term “payoff” in their reasoning when finding net 
worth. For example, when referring to Client Two’s net worth (Fig. 4.7), Nathan 
said, “[he has] 8,400 [of debt], and he still has to pay 400 dollars.” Consider Seth’s 
whole class contribution, “So he goes negative 400 [net worth]. She called this a 
payoff [Teacher writes the word, “payoff” next to 8000 on the board]. That is gonna 
take Norman 8000 dollars to pay off and then he is still in debt.” The metaphor of 
paying off became a consistent communication and imagery device to help students 
both make sense of and justify to others their actions with the quantities. In this way, 
both Nathan and Seth’s whole class explanations can be considered as an act of 
contributing to the constitution of the first taken-as-shared idea under classroom 
mathematical practice two (referencing zero to determine net worth). While their 
statements did not explicitly mention the term “zero,” the action of paying off means 
using your assets’ value to get to zero assets, and if there is any amount left to pay 
off, it means there is a negative net worth.

Paying off continued to be strong imagery for all three students, especially as the 
tasks changed to comparing net worths rather than computing net worths. On Day 
5, the teacher posed a task that prompted students to compare the net worths of two 
individuals (Fig. 4.9). In small group, Nathan, Seth, and Stuart each quickly deter-
mined that Gilligan is worth more than Mary Ann by $1000 (i.e., 3000 − 2000), and 
when the teacher visited their group to report that some other students claimed the 
answer was 5000, Nathan said, “Trust me, 5000 is wrong!” and Seth demanded, 
“Can I defend 1000!?” The ensuing whole class discussion was pivotal for all stu-
dents’ development—Nathan, Stuart, and Seth in particular.

Practice 2: Using zero as a point of reference for calculations
a) Referencing zero to determine net worth
b) Referencing zero to compare two net worths
c) Referencing zero to add or subtract integers
d) Cancelling equal positive and negative quantities

Practice 3: Comparing integers using a vertical number line
a) Higher [in absolute value] negative numbers are farther away from zero.
b) Structuring the gap between two integers to find the difference

Fig. 4.8 Classroom mathematical practices two and three

M. Stephan and D. Akyuz



95

Seth:  …So we want to find out how much Gilligan [places 3000 appropriately on the 
vertical number line]. This is Gilligan, right?

Teacher: Yes, 3000 was Gilligan’s.
Seth:  So, I found out how much more money that Gilligan has than whoever is [Seth 

writes -2000 in the red area of the VNL, and Teacher writes Mary Ann next to 
it]. So basically what you do is 3000 plus 2000 but it is not like this (draws 
arrow from zero to 3000), it is here in the negatives, but it does not make it all 
the way since it starts from the zero and it cut short 1000, since the 1000 
between them.

Teacher:  You guys need to put your hands up. Wait, your hand is not up to show your 
point of view, your hands are up to question Seth’s. All right, there is a big 
difference.

Dusty: Why did you add 3000 to negative 2000?
Seth:  Because we try to find out how much more Gilligan has than Mary Ann. So 

what we did was 3000 plus 2000 since it is negative I believe we do minus. It 
just goes down or -5000 [Seth is imagining starting with Gilligan and moving 
down toward Mary Ann’s net worth, thus a negative 5000].

Teacher: Did it clear it up? It did not for me. Okay you got more questions.
Bradley:  See what I do not understand is you are in negative 2000 but Gilligan is 3000 

more, it will take Mary Ann 2000 just to go back to zero [Seth writes 
3000 − 2000 = 1000].

Stuart:  How much more, more is even in bold letters, is Gilligan worth more than Mary 
Ann? Show on a net worth line [paraphrasing the directions]. This is the 
net worth line, correct? More, which means basically you have 2000 in debts 
and you got 3000 here, we are trying to find how many…wait a second now I 
understand [why it’s 5000]. Never mind!

Bradley:  Yes. Mary Ann is in negative 2000, she just paid 2000 to just to get up to zero 
[He writes on the Dusty’s solution]. I put plus 2000 because she just paid 2000 
and then she has to pay 3000 to get up to here [to Gilligan’s net worth].

Stuart: You are in the red.
Bradley: She needs to pay 3000.
Teacher:  So I think Bradley what you are saying is the gap between here and here 

[between -2000 and 0], 2000 both Gage and Bradley have said that she had 
2000 dollars to get to black and then 3000 to get up Gilligan, so total 5000.

Fig. 4.9 First task 
involving comparing, not 
computing, net worths
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This whole class discussion was a pivotal exchange in many ways. First, Seth 
and Stuart’s incorrect solution was critical for making meaning of the gap between 
two different-signed integers. Both Seth and Stuart argued that the difference 
between 3000 and -2000 was 1000 until Stuart reasoned with the VNL to make 
sense of the distance between the two. Second, reasoning with the VNL provided 
the visual support for mathematizing the gap between the two integers. The imagery 
of paying off was evoked by students to justify why the gap was 5000 rather than 
1000, and the color-coding of the VNL made it possible to show exactly where the 
transition between paying off (i.e., getting to zero) and needing more money was 
located. Participation in this conversation was significant for Stuart in two ways. He 
drew on going through zero strategies and paying off imagery for the remainder of 
the experiment. Additionally, when Stuart was in doubt of a solution, he backed up 
his answer by drawing a VNL for support. Seth, too, reasoned with the VNL to 
structure the gap between two integer quantities, particularly when the strategy 
necessitated going through zero. Their reasoning in this episode constitutes both 
evidence of their current integer understanding as well as contributions to the sec-
ond taken-as-shared mathematical idea in CMP2 and CMP3.

At the beginning of class the next day, the teacher posed the problem in Fig. 4.10. 
All three students were structuring the gap between two integers in very meaningful 
ways using the VNL:

Seth and Stuart: I got it!
Nathan:  I got the answer. Do you guys? 18,000? I did the line for the zero. I put 

-10,000 and drew an arrow going up. 10,000 going up and then added 
8000 to go the rest of the way up.

This small group excerpt shows that Stuart and Seth both solved the new problem 
very quickly with Nathan explaining by structuring the space between the two inte-
gers in two chunks that go through zero. This way of reasoning became stable on 
this day when comparing net worths but also recurred at a later part of the instruc-
tional sequence when performing operations. For example, to solve a problem like 
125 + (-225), Nathan organized his reasoning on the VNL to go through zero as a 
strategy, as illustrated in our prior report (Stephan & Akyuz, 2012):

Nathan:  It is 225 how much he owes minus how much he has right now. We subtract 
from -100.

Teacher: What is your number line about?

8000

-10,000

Fig. 4.10 How much more 
is 8000 than −10,000
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Nathan:  I went 125 down [from 125 to 0] and 100 more [from 0 to -100] and added up 
them and gave me 225.

Teacher: Gage, what do you want to add?
Gage: 125 is the original and when you go to zero, 100 is left.
Dusty: What is the bottom?
Nathan:  I went 125 to zero and then zero to 100 and 100 to zero and added them up 

(p. 455).

In this example, Nathan, like many students, used a going through zero strategy 
to solve operations with the VNL. Participation in the previous taken-as-shared 
activity of structuring the space between two integer amounts evolved now to struc-
turing the number line through zero to solve number sentences (CMP2 idea 3, 
CMP3 idea 2). Seth and Stuart also used this strategy and way of using zero as a 
reference in their calculations.

One final mathematical idea became taken-as-shared in classroom mathematical 
practice #2: the invention of Seth’s cancellation method. During the small group 
work on the worst client problem, Seth invented an efficient way to determine the 
net worth of Client One (Fig. 4.11) by canceling the +60,000 with the combination 
of -15,000 and -45,000.

In the whole class discussion on Day 3, Seth shared this strategy with classmates:

Seth:  What I did was, I added it [−15,000 and −45,000] and this turned out to be 60, 
and there is another 60,000. So basically what I did was cross this off [car loan, 
boat loan, and retirement fund] since these two cancel each other off so it is 
equal to zero.

Mark: There is also 1000 there.
Teacher: He is getting there.
Seth: So since there is only 1000, I skipped the adding zero to 1000.
Teacher: How about Carl? I want everyone to explain Seth’s steps.
Carl: He added 15,000 to 45,000. He got 60,000.
Teacher: And what is this stand for Carl?
Carl: Car loan and boat loan.
Teacher: What are the names for these guys?
Students: Debts.
Teacher: Okay debts. Keep going Carl.
Carl:  And then he saw the retirement fund and just said that 60,000 minus 60,000 is 

zero. And there was a bank balance which was 1000, and that was his net 
worth.

Teacher:  That was pretty cool, wasn’t it? How many people added the assets and got 
61,000? You added all these assets and got 61,000, and then how many people 
subtracted 60,000 from it? That was another way I saw around the room.

Tisha: An easy way.
Teacher: What is easier?

Bank Balance: +$1000
Car Loan: -$15,000
Boat Loan: -$45,000
Retirement Fund: +$60,000

Net Worth: $

Fig. 4.11 Client One’s net 
worth statement
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Tisha:  That [referring to totaling assets and totaling debts, then finding the 
difference].

Teacher:  Easy for you but this was one easier for Seth. He said he cancels these out. He 
used this word “cancel out” [Teacher writes the word on the board]. So I am 
gonna put this Seth’s Cancel Out Method [writes on the board].

This excerpt marks the first time that Seth’s canceling strategy is made public in the 
discourse. Most students had still been using one of two strategies (difference between 
total assets and total debts or adding and subtracting linearly). However, Seth’s verbal-
ization on Day 3 contributed to the establishment of the cancellation reasoning as a 
taken-as-shared mathematical idea in CMP2. In fact, days later, other students used 
and referred to Seth’s cancellation method, indicating that it was taken-as-shared.

Table 4.4 summarizes the ongoing mathematical development of Seth, Nathan, 
and Stuart up to this point in CMP2 and CMP3. One theme was clear in analyzing 
these three students’ reasoning as they participated in CMP2 and CMP3: the emer-
gence of the VNL and payoff metaphor as powerful reasoning devices for structur-
ing their mathematical activity around zero as a reference point.

 Classroom Mathematical Practice Four

As the instructional activities progressed, we introduced tasks that we hoped would 
help students develop meaning for operations with integers. We knew from the lit-
erature (e.g., Liebeck, 1990) that students tend to perform well when adding inte-
gers but show a decline in scores on problems that involve subtracting integers. 

Table 4.4 Students’ reasoning as they participated in and contributed to CMP2 and CMP3

Student Participation in/contribution to CMP2 and CMP3

Nathan Initially, Nathan had difficulty interpreting and structuring the distance between two 
integer amounts on the VNL; after a major contribution in class, Nathan developed 
strong imagery for going through zero to structure the gap between two numbers 
using the VNL. The payoff imagery was also strong, supportive imagery for Nathan 
(contribution to CMP2 and participation in CMP3). Going through zero became a 
very powerful reasoning tool even when performing calculations on bare number 
problems (participation in CMP2)

Seth Seth’s reasoning involved simple, mechanical operations until his lack of structuring 
the distance between 3000 and −2000 was questioned in whole class. It is during his 
argument that he began to see the virtue of using the number line to structure the 
gap between two integer quantities, and he reasoned with zero as a referent point 
from here on (contribution to CMP2 and CMP3 and participation in CMP3). 
Additionally, Seth contributed to the establishment of CMP2 when he offered the 
cancellation method as another zero-reference strategy (contribution to CMP2)

Stuart Stuart’s integer reasoning was also crucial in the process of constituting CMP2 and 
CMP3 when he used the VNL to structure the distance between 3000 and −2000 
(contribution to CMP2 and CMP3 and participation in CMP3). We contend that 
reasoning with the VNL to correct his thinking made such an impact on Stuart that 
he continued to use the VNL in future reasoning but particularly when checking his 
answers for correctness (participation in CMP2 and CMP3)
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Therefore, our class spent considerable time and mathematical activity trying to 
make meaning for both adding and subtracting an amount from a beginning net 
worth. Our approach was to place operations in the context of performing a variety 
of transactions on a net worth, support students’ meaningful interpretation of these 
operations, and gradually symbolize these transactions with two integer signs. As 
students engaged in instructional activities with these goals, two classroom-level 
mathematical practices emerged. In this section we focus on Nathan, Seth, and 
Stuart’s mathematical development as they participated in and contributed to the 
fourth practice, which had three taken-as-shared ideas associated with it (Fig. 4.12).

We first introduced the idea of transactions by posing the problem called Don’t 
Cry Over Spilled Milk: The activity sheet showed a fictional net worth statement 
with assets and debts labeled on it, but Abigail had spilled milk on it and all that was 
showing were a couple of assets and debts and her final net worth. The text below 
this ruined net worth statement read, Abigail lost an asset (a valuable coin) worth 
$8000. She wanted to figure out what she was worth now that the asset was taken 
away from her net worth statement. BUT the only copy of her net worth statement 
she could find has milk stains on it. Can you help her figure out her net worth now? 
(Stephan, 2009, p. 20). Students could see that her original net worth was −$10,000.

In small group work, Seth started the discussion by revealing his thinking to Stuart 
and Nathan: “That’s gonna make her net worth go lower. So I did 10,000 + -8000. 
The key word I’m focusing on is negative.” Seth immediately saw that the transaction 
of losing a coin would make Abigail’s net worth go lower. Although he referred to 
10,000 without a negative (possibly due to his language disability), Seth’s conclusion 
was -18,000 as a final net worth. However, Nathan and Stuart did not respond to 
Seth’s claim during the small group work; yet, in the follow-up whole class discus-
sion, they appear to have the same interpretation, as seen when Nathan argued that 
Abigail’s new net worth would be -18,000. For another problem in which a fictional 
character named James added a $500 asset, Nathan created a realistic scenario to 
explain, “If he won a lottery, 500 dollars, he is adding to his net worth.”

The next task was designed to focus students’ attention only on the transactions, 
not the computational result of them. For example, students were asked to determine 
if the following transactions by fictional characters were good or bad: Ann took 
away an asset of (+$200) from her net worth statement, Bradley added an asset of 
(+$3000), Christian took away an asset of (+$50), and Ernie took away a debt of 
(-$5400). Nathan exclaimed that this task was easy and got all of them correct. Seth 
and Stuart got all but one correct due to misreading the problem. This illustrates that, 
when put into context, even subtracting a debt, “−(-),” made sense to students; they 
argued that it is a good thing to take away debt. None of these students had difficulty 

Practice 4: Reasoning with a vertical number line to determine the results of addition and subtraction 
operations

a) Transactions can have a positive or negative effect on a quantity.
b) A vertical number line can be used to find the results of integer operations.
c) Subtraction of integers is not commutative.

Fig. 4.12 Classroom mathematical practice four
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writing the transactions in symbols either (e.g., Ann’s transaction was symbolized 
as – (+200); similarly, Bradley, + (+3000); Christian, − (+50); and Ernie, − (-5400)). 
However, the trouble began when attempting to coordinate the symbols and context 
to determine the new net worth after a particular transaction had taken place. For 
example on Day 9, Nathan and Stuart discussed the problem of finding Maria’s new 
net worth if the following happened: 50 − (-100).

Nathan:  How do you know [it’s a positive net worth]? She has a negative number.
Stuart: You’re taking away a debt so that gives you a boost.

Nathan tended to focus mainly on the sign between the two numbers, as in his 
pre-interview work, and perform that operation. Stuart and Seth, for their part, had 
much more success coordinating transactions with a starting number posed in sym-
bols. These excerpts illustrate the reasoning of each student as they participated in 
and contributed to the taken-as-shared idea that transactions can have a positive or 
negative effect on a quantity (CMP4).

While Seth and Stuart were successful by Day 9 (3 days after introducing trans-
actions with symbols), Nathan did not create a stable meaning and strategy until 
Day 20, 15 class periods after its first introduction. One of the tools that was crucial 
to Nathan’s reorganization was the VNL. Consider the whole class discussion about 
the following problem (Fig. 4.13) that asked which VNL properly signifies the num-
ber sentence 4000 + (-8000).

Seth: Curly seems impossible.
Nathan:  I know what we did wrong. You start at 4000, you’re adding some more [debt]. 

You have to kind of subtract 4000 from 8000 [to get -4000, so Mo’s solution].
Teacher:  Nathan says he started with 4000 and you are adding on  [debt], so you end 

up [going] 4000 down to zero.

Seth also used the VNL for solving number problems. In a whole class discus-
sion on Day 15, Seth explained his answer to the problem -426 + (29).

Seth:  I only like number lines when I’m explaining. You add asset of 29. There is no 
negative sign there. Mathematicians do not put a sign there. So it is -426 to go up 
29 so it is -397 (Fig. 4.14).

$4000

$12,000

$4000 $4000

-$4000

-$12,000

8000

8000

Lany Curly Mo

8000

Fig. 4.13 Which VNL 
represents 4000 + (−8000)
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Seth’s explanation with his drawing can be cast as both his mathematical reason-
ing and a contribution to CMP4, particularly the idea that the VNL can be used to 
find the results of integer operations. Stuart also used the VNL as a reasoning device 
exemplified at the beginning of the whole class discussion on Day 17 for -7 – 9 
(Fig. 4.15).

Stuart:  I am going to make a number line. We are already down here -7 and what hap-
pened is that Norman rented a car he has to pay for it, so it is minus 9. That is -16.

The summary of each student’s mathematical development can be seen in 
Table 4.5. One common theme is that the vertical number line was essential in sup-
porting each student’s mathematical reorganizations as they participated in and con-
tributed to the establishment of the fourth mathematical practice. Also, none of the 
students contributed much to the establishment of the third taken-as-shared idea that 
subtraction of integers is not commutative, and there is no data to suggest the mean-
ings they held for this idea.

 Classroom Mathematical Practice Five

The remainder of the instructional sequence focused on the dual nature of the nega-
tive sign as both a characteristic of an object and as a transformation (Thompson & 
Dreyfus, 1988) or a state versus an operator (Glaeser, 1981; Streefland, 1996). 
In other words, a negative sign can be interpreted dynamically as “taking away” or 
statically as “negative” (Vlassis, 2004). Additionally, tasks were designed to sup-
port students exploring the “multiplication rules” (i.e., two of the same signs make 

-397

-426

Fig. 4.14 Seth’s drawing 
for the problem -426 + (29)

-7

-16 -9

Fig. 4.15 Stuart’s drawing 
for his solution to -7 − 9
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a positive, two different signs make a negative). The final classroom mathematical 
practice that emerged involved the establishment of the following two mathematical 
ideas (Fig. 4.16).

Seth and Stuart developed a strong sense that two positives or negatives had the 
same effect on net worth. In fact, Stuart was credited in the whole class discussion 
as the first person to offer that idea as a conjecture and had it named after him. On 
Day 8, students solved the problem, Maria has a net worth of 50 and − (−100) hap-
pens to her. What is her new net worth? In the course of the whole class conversa-
tion, Stuart exclaimed:

Stuart: Wait a second, now I have a conjecture. If you write the symbol like that.
Teacher: Like what?
Stuart:  You do – (-) and if you do + (+) you get the same answer if the numbers are 

same.
Teacher:  Same thing is happening, I think we already have mentioned that [Adam men-

tioned it].
Teacher:  It is smart decision, same thing happens, doesn’t it? [Mark writes a conjecture 

and gives it to her, she reads it]. Actually, that is exactly what Stuart and Adam 
said.

Although Adam noticed the same idea in the discussion previously, for Stuart, 
this was a brand new conjecture. He excitedly presented it to the class, and the 
teacher acknowledged both he and Adam for their unique contribution. As it turned 

Practice 5: Determining the meaning of positive/negative signs
a) Different operations (transactions) can have the same effect on a quantity.
b) A minus sign is different from a negative sign.

Fig. 4.16 Classroom mathematical practice five

Table 4.5 Each student’s participation in and contribution to CMP4

Student Participation in/contribution to CMP4

Nathan While Nathan had no difficulty interpreting the meaning of transactions in the 
context of adding or subtracting assets and debts, when it came to coordinating 
these interpretations with symbols in order to solve a transaction problem, it took 
him a total of 15 class periods to solidify his reasoning (participation in and 
contribution to CMP4)

Seth Seth had no difficulty interpreting the meaning of transactions in context either and 
seemed to develop a stable understanding and strategy for coordinating transactions 
with net worths to calculate new net worths. This stability was rather quick in that it 
took three class periods, even though he had slight numerical (not integer) errors 
(participation in CMP4)

Stuart Stuart also had no difficulty interpreting the meaning of transactions in context and 
seemed to develop a stable understanding and strategy for coordinating transactions 
with net worths to calculate new net worths. This stability was fast in that it took 
three class periods, even though there were slight numerical (not integer) errors 
(participation in CMP4)
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out, in small group work in previous days, both Seth and Stuart noticed the same 
idea but did not generalize it to all integer pairs the way that Stuart did in class. In 
this way, Stuart’s reasoning shows his mathematical abstraction and counts as a 
contribution to the establishment of CMP5. Later, the teacher asked Stuart to help 
her write his conjecture on the board (see Stephan & Akyuz, 2012, p. 455) and that 
is where opposite signs were said to have a bad effect on net worth (in addition to 
two of the same signs having a good effect). Nathan, on the other hand, recognized 
that a – (-) and a + (+) would individually make an improvement on his net worth, 
but never appeared to generalize these and opposite-signed pairs for all integers. A 
summary of the students’ reasoning in the fifth classroom mathematical practice is 
summarized in Table 4.6.

 Post-Interviews

As the analysis indicates, the students made incredible progress in their integer 
development. All three worked together in a small group, developing rapport and 
integer reasoning with mutual support. Their post-interview results suggest that each 
student became proficient at solving the bare number problems that they had such 
difficulty with before. In fact, Nathan, Seth, and Stuart correctly solved all of the bare 
number sentences, the temperature problem, and the money situation that was 
described in the pre-interview section. Nathan and Seth both used the language of 
assets, debts, and net worths in order to explain their solutions to each bare number 
problem. Stuart, on the other hand, solved the first one, 9 + (-12), by simply adding 
to get -21. When asked to explain, he paused and said that he wanted to check his 
work on a number line, drew it, and changed his answer to -3 (see Fig. 4.17).

Table 4.6 Each student’s participation in and contribution to CMP5

Student Participation in/contribution to CMP5

Nathan Nathan did not contribute to the establishment of CMP5
Seth Seth did not contribute to the establishment of CMP5
Stuart Stuart contributed mostly to the establishment of the first mathematical idea in CMP5. 

He offered a conjecture that two of the same signs would produce a good result for net 
worth and later that opposite signs would have a bad effect (contribution to CMP5)

Fig. 4.17 Stuart’s solution 
to the first number problem
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For all future bare number problems, Stuart reasoned with a VNL and produced 
accurate interpretations and results. Additionally, he used a VNL for the tempera-
ture problem and stated that it helped him organize so many numbers (see Fig. 4.18).

Seth and Nathan both solved the temperature problem correctly this time by 
starting with -10, moving up 25 to +15° and down 30 more to -15° with no drawn 
number line. However, when pressed for an explanation, Seth could be seen gestur-
ing up and down an invisible vertical number line on the table as he explained going 
to zero and then 15 degrees lower to his final answer.

The most significant findings involve the comparison between their scores on the 
integer pretest and posttest (see Table 4.7). All three students’ scores for integer 
addition were already high on the pretest, but they made significant increases. Most 
notably, all three students made statistically significant gains on integer subtraction 
questions, a result that had eluded most research programs in the past (for more 
details see Stephan & Akyuz, 2012).

 Conclusion

Our goal in this study was to examine how three students who have disabilities or 
math difficulties participated in and contributed to the development of the mathe-
matical practices identified by Stephan and Akyuz (2012). To do so, we provided the 
mathematical reasoning of three students and how their reasoning supported the 
development of mathematical practices. Since we had rich data sources, such as 
small group audiotapes, videotapes of classroom sessions, pre-post interviews, test 

Fig. 4.18 Stuart’s solution 
to the temperature problem

Table 4.7 Case study of students’ test score results (30 is the highest score possible)

Pretest raw score correct Posttest raw score correct
Addition Subtraction Addition Subtraction

Nathan 24 3 26 25
Seth 24 8 26 21
Stuart 16 2 20 14
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scores of students, and students’ artifacts from each class session, we could examine 
their reasoning and determine how it contributed to each mathematical practice.

The pre-interviews and pretests provided us with useful insights about the three 
students’ understanding of integers before the beginning of the instruction. We first 
found that although students could do reasoning and calculations with positive and 
negative integers, they mostly did not understand the meaning of their operations. 
Second, we observed that students felt more comfortable in some contexts than oth-
ers. For instance, while the students appeared to struggle more with a temperature 
context, they seemed to be more successful with an “owing” and “owning” context. 
This gave us confidence about the net worth-based instructional sequence that was 
planned. Finally, we observed that students spontaneously attempted to use the hori-
zontal number line during the solutions of the interview questions (see, e.g., 
Mukhopadhyay, Resnick, & Schauble, 1990). This also supported our intuition that 
a vertical number line, which matches better with the concept of “going up” and 
“going down” in finance contexts, could serve as a helpful tool during reasoning 
with integer problems.

After the instruction started, we observed how these three students contributed to 
the development of mathematical practices. From the analyses, we can conclude 
that the three students actively participated in the class and had a chance to develop 
intellectual autonomy (Kamii, 1982; Piaget, 1948/1973), answering our primary 
research question. This suggests that, if a suitable environment is created, even stu-
dents who have disabilities and difficulties can make contributions to and partici-
pate in  the development of classroom mathematical practices. This finding 
contributes to the existing literature in that most of the earlier studies advocate the 
use of a concrete-representational-abstract (CRA) approach to teach mathematics to 
students with disabilities and disorders (Miller & Hudson, 2007; Witzel et  al., 
2003). The current work shows that under a genuine inquiry approach (as opposed 
to blended inquiry Hudson et al., 2006; Scheuermann et al., 2009) that is empow-
ered by a realistic instructional context, students with disabilities can also develop 
autonomy without resorting to direct instruction that limits their intellectual auton-
omy. In other words, the struggling students in this study were not given a manipu-
lative and shown what to do with it. Rather, the students created meaning for their 
activity with integer quantities as they made sense of situations on their own or with 
partners. The VNL inscription was not imposed in a top-down manner, with certain 
steps to be memorized, but rather in a way that allowed students to use it in ways 
that made sense with their current reasoning.

Another important result we found was that the vertical number line served as a 
valuable tool in helping with the students’ reasoning. In the CRA approach advo-
cated by special education, instruction typically begins with a concrete, physical 
manipulative and proceeds toward more abstract representations and then symbols. 
However, because negative numbers cannot be genuinely represented with physical 
objects, using a concrete manipulative is not a viable starting point for integer oper-
ations, in our view. Rather, we found that grounding instruction in a realistic context 
of finance, coupled with the inscriptional device (VNL) and student imagery (e.g., 
paying off), was a more supportive instructional approach. We conjecture that the 
vertical number line worked well as it directly matched to the concept of going up 
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and down in finance. It seems therefore appropriate to suggest that the tool that is 
used as an aid in reasoning should be compatible with the image and the words used 
within the context. A future comparison study could provide more evidence regard-
ing how vertical and horizontal number lines affect the understanding of students 
within different contexts.

Finally, when we analyzed students’ post-interviews and posttests, we found that 
the three students had a significant improvement in understanding integers, espe-
cially operations with negative numbers. Additionally, state test scores showed us 
that these students not only became successful in negative numbers but also with the 
other topics taught throughout the year. Nathan’s test score increased from level 1 to 
level 3 (low non-proficiency to proficient), Stuart’s from level 2 to level 3 (non- 
proficient to proficient), and Seth’s from level 3 to level 5 (low proficient to the 
highest level of proficiency). We argue that students’ growth is due in large part to 
the increased opportunity to explore and discuss mathmeatical ideas with their peers 
rather than be shown one method by the teacher. This underscores the importance of 
giving more opportunities to students with disabilities in which they can utilize their 
own cognitive resources to solve problems in conceptually meaningful ways.
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Chapter 5
Take It Away or Walk the Other Way? 
Finding Positive Solutions for Integer 
Subtraction

Julie Nurnberger-Haag

Abstract Practicing teachers as well as researchers, mathematicians, and teacher 
educators have offered opinions and theoretical critiques of the multiple models 
used to teach integer arithmetic. Few studies, however, have investigated what stu-
dents learn with models or empirically compared affordances and constraints of 
integer models. This led me to investigate how 160 fifth- and sixth-grade students 
who were learning integer arithmetic for the first time could benefit from a particu-
lar model. Each integer model encouraged students to conceive of numbers using 
distinct conceptual metaphors and move in certain ways to represent integer sub-
traction. Thus, I used embodied cognition to illuminate ways a manipulative-based 
cancellation model (chip model) and a physically enacted number line model (walk-
it-off model) differentially impacted students’ subtraction knowledge. Integer sub-
traction, particularly the idea that subtracting a negative number could create a 
positive solution is especially difficult for students regardless of age, so assessment 
of this construct deserved a special focus in the test design of the larger study. This 
chapter reports students’ accuracy and reasoning on this difficult subtraction type 
5 weeks after instruction with their assigned model. Findings for practice suggest 
the walk-it-off model was more effective as the first model students used and more 
research is needed.

Internationally, middle-grade students find integer arithmetic difficult, and some of 
the issues students have with subsequent mathematics are due to these difficulties 
(Altiparmak & Özdoğan, 2010; Bishop et  al., 2014; Gallardo, 2002; Ryan & 
Williams, 2007). About three decades ago, Thompson and Dreyfus (1988) identified 
the need for research to compare how different instructional models impact stu-
dents’ learning of integer addition and subtraction. Although this research is still in 
its infancy (e.g., Liebeck, 1990; Nurnberger-Haag, 2015; Tsang, Blair, Bofferding, 
& Schwartz, 2015), in practice, multiple instructional models are promoted in the 
methods textbooks from which prospective teachers learn how to teach integer 
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arithmetic (e.g., Reys, Lindquist, Lambin, & Smith, 2014; van de Walle, Karp, & 
Bay-Williams, 2010). These models are then reinforced by many of the mathematics 
textbooks that schools expect in-service teachers to use with students. Although 
students physically move (or imagine moving) to use some integer models, embod-
ied cognition perspectives are just beginning to be used to design studies that com-
pare and analyze these models. Thus, to inform practice as well as research, I use 
perspectives and research from embodied cognition (Barsalou, 2008; Goldin-
Meadow, Cook, & Mitchell, 2009; Lakoff & Núñez, 2000) to illuminate the ways a 
manipulative-based cancellation model and a physically enacted number line model 
differentially impacted students’ learning of integer subtraction.

 Integer Arithmetic and Instructional Model Research

The literature review focuses first on prior research about integer addition and sub-
traction relevant to the current study, followed by investigations of integer models.

 Integer Arithmetic Knowledge

Robust integer knowledge encompasses many ways of thinking, ordering numbers, 
arithmetic proficiency with the four primary operations, multiple meanings of the 
negative sign, and applications to various contexts (e.g., Bofferding, 2014; Chiu, 
2001; Lakoff & Núñez, 2000; National Governors Association Center for Best 
Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010; 
Thompson & Dreyfus, 1988; Vlassis, 2008). The Common Core State Standards for 
Mathematics (NGA & CCSSO, 2010) used in the United States suggests that sixth-
grade students should learn what negative numbers are and notation for the opposite 
of positive numbers. It is not until seventh grade when students are scheduled to 
learn the primary operations of rational numbers, which include integers (NGA & 
CCSSO, 2010).

Elsewhere I analyze student data of all four primary operations together as well 
as other integer constructs (Nurnberger-Haag, 2015) because students’ reasoning 
among the operations is related. For example, after learning addition and subtrac-
tion, some students mistakenly treat the negative signs in products as though they 
are subtraction signs (Ryan & Williams, 2007; Vlassis, 2008). Given the difficulty 
arising from integer subtraction, it deserves a closer look. In particular, the idea that 
subtraction of negative numbers could yield positive solutions is challenging (Ryan 
& Williams, 2007). With nonnegative integers, subtraction is more difficult than 
addition (Fuson, 1990), so this is one reason subtraction of negative numbers is also 
difficult. Periasamy and Zaman (2009) who created a 24-item measure of integer 
subtraction found 14-year-olds in Malaysia who had studied integer arithmetic still 
found many subtraction problems involving negative numbers troublesome. 
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Depending on the problem types, accuracy of items ranged from about 38% to 63% 
on single-digit (SD) subtraction tasks and from about 36% to 66% on double-digit 
(DD) subtraction tasks. Only about half of the students answered -5 – 2 correctly 
(Periasamy & Zaman, 2009, p. 366), but a broader sample of the same age students 
in the United Kingdom fared worse on a similar problem, with about one-third cor-
rectly answering the problem -6 – 3 (Ryan & Williams, 2007, p. 218). In Periasamy 
and Zaman’s (2009) study, students had the most difficulty on all types in which the 
minuend was a negative number (both SD and DD subtraction problems).

Another reason that subtraction of integers is problematic is that students typi-
cally generalize from whole-number operations and often have been explicitly told 
that adding makes a number have a greater solution, whereas subtracting makes a 
number smaller (Karp, Bush, & Dougherty, 2014). Although the items just described 
are consistent with this generalization, some integer subtraction problem-structures 
violate this generalization and pose additional difficulties for students. Regardless 
of whether the problems were SD or DD, only about 40% of students could accu-
rately answer problems with the structure N1 – N2 where N < 0 and N2 has a greater 
absolute value (Periasamy & Zaman, 2009, p. 376–77). Such problems not only 
contradict the generalization from whole numbers by having solutions greater than 
the minuends, but students must accept that what began as a negative number 
became a positive solution.

 Instruction of Integer Subtraction and Addition Using Models

Three categories of instructional methods for teaching integers are typical: (a) can-
cellation models in which two objects cancel, (b) number line models, or (c) abstract 
methods (Küchemann, 1981). However, educators, including researchers, disagree 
about the efficacy of these methods. Since this report focuses on integer models, 
cancellation and number line models are discussed in more detail.

Cancellation Models Models for “which the integers are regarded as discrete enti-
ties or objects, constructed in such a way that the positive integers cancel out the 
negative integers” are cancellation models (Küchemann, 1981, p. 87). Cancellation 
models may be rooted in contexts such as hot and cold cubes or charged particles, 
may involve games, or may be acontextual, such as color-coded objects (Cotter, 
1969; Goldin & Shteingold, 2001; Jencks & Peck, 1977; Liebeck, 1990; Linchevski 
& Williams, 1999; Ponce, 2007). Such models may foster students’ learning of 
integer subtraction because students can literally remove or take away objects that 
represent positives and negatives analogous to how they used to represent subtrac-
tion of whole numbers (Küchemann, 1981; Liebeck, 1990). Others see additional 
mathematical value of representing integer operations with things that cancel 
because the models could allow students to explore that taking away positive num-
bers or adding negative numbers corresponds to subtraction as adding the additive 
inverse (French, 2001; Linchevski & Williams, 1999; Semadeni, 1984).
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Of the many cancellation models portrayed in practitioner journals, online, in 
mathematics textbooks, as well as in textbooks for how to teach mathematics, chip 
models are prevalent. These models typically represent opposite numbers with dif-
ferent-colored chips (e.g., Lappan, Fey, Fitzgerald, Friel, & Phillips, 2006; van de 
Walle, Karp, & Bay-Williams, 2010). Some researchers share the perspective that 
chip models and some other cancellation approaches do not reflect real mathematics 
but are “formed artificially” for instruction in school mathematics (Roussat, 2010; 
Schwarz, Kohn, & Resnick, 1993–1994; Umland, 2011; Vig, Murray, & Star, 2014). 
In a theoretical analysis, Vig, Murray, and Star (2014) explained that rules to use 
models that are not mathematical rules are where the models “break” (Vig et al., 
p. 74). For example, some integer subtraction problem-structures break or violate 
mathematical rules because students need to add more chips in order to have enough 
chips to subtract (Vig, Murray, & Star, 2014). Although Liebeck (1990) promoted a 
cancellation model, she also noted that students found these problem types, in which 
they needed to add more chips before subtracting, the most difficult. Thompson and 
Dreyfus (1988) also noted that cancellation models fail to represent the “negation” 
or opposite operation meaning of the negative sign (p.131). These analyses have not 
considered embodied cognition. In the Theoretical Influences section, I will further 
analyze these issues with chip models in terms of embodied cognition.

Number Line Models Students’ learning of integer addition and subtraction with 
number line models has been studied in various contexts such as temperature, eleva-
tion, and animals or humans on a number line or elevator (e.g., Sfard, 2007; 
Thompson & Dreyfus, 1988). Proponents claim using number lines for integer 
instruction is better than cancellation models precisely because they avoid treating 
numbers as things, and number lines are also disciplinary representations 
(Freudenthal, 1973; Thompson & Dreyfus, 1988). With little empirical evidence, 
some argue that students find number lines intuitive for addition and subtraction 
(Freudenthal, 1973), whereas others claim number lines are not helpful for integer 
subtraction (Küchemann, 1981). These publications refer to “the” number line 
model as though students and educators use the representation of a number line in a 
uniform way (e.g., Küchemann, 1981; Liebeck, 1990). I use the term typical num-
ber line model to refer to this model that authors have typically referred to as “the” 
number line. I will discuss variations of number line models as part of the theoreti-
cal perspectives section.

Typical number line models have been theoretically critiqued about the ways 
they represent addition and subtraction (Bofferding, 2014; Nurnberger-Haag, 2007; 
Stephan & Akyuz, 2012). Difficulties and benefits students have using a number 
line to add and subtract have been investigated with students from at least kindergar-
ten to sixth grade and beyond (e.g., Bofferding, 2014; Bruno & Martinon, 1999; 
Ernest, 1985; Thompson & Dreyfus, 1988). For example, Thompson and Dreyfus 
(1988) found that after instruction on addition, the two sixth-grade students still had 
difficulty with problem-structures that did not have solutions that were the sum of 
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the magnitudes (e.g., -30 + 20 was more difficult than -30 + -20). The aspects of the 
study that are most salient for the analysis here are the instruction group size, time, 
and model used. The students experienced more specialized instruction than possi-
ble in typical classrooms, because each student worked with a researcher for what 
Thompson and Dreyfus (1988) called “11 highly individualized lessons” over the 
course of 6 weeks (p. 130). After using a number line model, students still had dif-
ficulty with integer addition. Although such individualized research informs the 
field about how students think, the fact that students still found addition so difficult 
after individualized instruction, which is impractical in real classrooms, is trouble-
some (Thompson & Dreyfus, 1988). This also opens the question of how well cer-
tain number line models support students’ learning of integer subtraction, given that 
subtraction is more difficult.

Research Needed to Compare Models How, if at all, can models support building 
procedural fluency and conceptual understanding of integer subtraction? At least 
one study used traditional cognitive perspectives to experimentally compare a num-
ber line model to no model (Moreno & Mayer, 1999). From mathematics education 
perspectives, research of addition and subtraction using cancellation or number line 
models has investigated how students learn with a single, researcher-developed 
model embedded in a context (Linchevski & Williams, 1999; Pettis & Glancy, 2015; 
Stephan & Akyus, 2012; see also, Chaps. 4 and 10). For the single operation of addi-
tion, Tsang, Blair, Bofferding, and Schwartz (2015) investigated a hybrid model that 
integrated cancellation on a number line (stacking and folding conditions) com-
pared to what seemed to have been a typical number line model (jumping condi-
tion). This study found no calculation accuracy differences between conditions for 
addition, but the students in the folding condition more frequently expressed a sym-
metric conception of integers, which is an important aspect of integer knowledge 
(Tsang, Blair, Bofferding, & Schwartz, 2015).

To my knowledge the only existing study to compare a cancellation model (not a 
hybrid model) to a number line model is an often-cited study, which compared stu-
dents’ addition and subtraction performance after students were assigned to learn 
with a manipulative chip model embedded in a context or an acontextual number 
line model that students enacted by walking (Liebeck, 1990). That report concluded 
the chip model with a scoring context was better than the number line model tested 
(which was a typical number line model). Although that study is frequently cited, 
there were many limitations that invalidate the conclusions. For example, the instruc-
tional approach in each condition was quite different, different teachers instructed 
each condition, and only ten students participated in each group. Moreover, no pre-
test was used to verify similarity of groups prior to instruction or to make it possible 
to identify whether instruction was the reason for student knowledge found at the 
time of testing, not to mention that all of the problems on the delayed posttest (the 
only test given) had numbers with an absolute value less than or equal to 3.
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 Theoretical Influences

In spite of the dearth of research about the benefits and problems with individual 
models, the same students may be exposed to multiple instructional models. 
Minimally, curricular and methods textbooks often promote one model from each 
class of cancellation and number line models. On the one hand, some textbooks 
state differences exist and argue the merits of either a cancellation model or a num-
ber line over the other as previously described (e.g., Küchemann, 1981; Thompson 
& Dreyfus, 1988). On the other hand, a popular methods text informed future teach-
ers there are no differences: “Although the two models appear quite different [chip 
and number line], they are alike mathematically” (van de Walle, Karp, & Bay-
Williams, 2010, p. 499). This perspective that two models are the same because the 
targeted performance is the same limits the field’s understanding of how different 
models foster different ways of thinking, such as the conceptual metaphors students 
enact with such models and how this influences student learning.

 Conceptual Metaphor Theory

Given emerging research about how cognition is embodied (Barsalou, 2008; Gibbs, 
2011), it behooves us to investigate how the ways students are encouraged to move 
and think during mathematics learning influences their achievement and under-
standing. Conceptual metaphor theory (CMT) and empirical research showing that 
how humans move is part of cognition would seem to be crucial perspectives to shed 
light on ways integer instructional models may differentially impact cognition and 
learning.

The “fallacy …that metaphor is only about the ways we talk and not about con-
ceptualization and reasoning” (Lakoff & Johnson, 2003/1980, p. 245), likely, has 
been a barrier to educational researchers considering conceptual metaphor theory as 
a theoretical frame. So let’s consider an example of a conceptual metaphor unre-
lated to mathematics to illustrate how humans pervasively use conceptual meta-
phors to reason about concepts. For example, to conceive of the abstract concept of 
what an “idea” is, humans across many cultures conceive of “ideas” in terms of vari-
ous conceptual metaphors that afford different inferences or meanings about that 
concept (Lakoff & Johnson, 2003/1980). Some examples are IDEAS ARE 
BUILDINGS, IDEAS ARE PRODUCTS, IDEAS ARE RESOURCES, or IDEAS 
ARE LIGHT-SOURCES. None of these ways of conceiving of abstract “ideas” fit 
literal meanings because ideas do not really have foundations, are not concrete 
things that can be made in factories or resources obtained from the world, nor are 
ideas visible to the human eye. Yet, humans make sense of such an abstract concept 
by thinking about them in terms of their prior physical experiences with founda-
tions, things that can be tangibly bought or produced, or seen. CMT has been exten-
sively debated and critiqued, especially in terms of its applicability to mathematics 
(Gibbs, 2011; Lakoff & Núñez, 2000; Sinclair & Schiralli, 2003; Wood, 2010). Yet, 
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when Gibbs (2011) reviewed these critiques and empirical evidence, he concluded 
that “CMT …has great explanatory power,…as well as for broader theories of 
human cognition” (p. 556).

Drawing on the theoretical work of Lakoff and Núñez (2000), Chiu (2001) empiri-
cally found evidence that facility with multiple conceptual metaphors may character-
ize expert understanding of integer arithmetic. For example, conceiving of negatives 
as objects that cancel with positives may be necessary for ideas of chemical reac-
tions, but it distinctly differs from the ways people think about numbers as lengths or 
positions on a number line. To rely exclusively on either conception could interfere 
with students’ developing understanding in varied contexts that draw on other meta-
phors, such as thermometers or elevation. Research of procedural and conceptual use 
of integer arithmetic via conceptual metaphors is in its infancy. Thus far, investiga-
tions have assessed what metaphors people used while thinking (Nurnberger-Haag, 
2013; Chiu, 2001; Kilhamn, 2011), rather than how specific metaphor-based physical 
motions that integer models promote impact students’ learning.

In this chapter I use CMT to analyze integer arithmetic learning with models 
because it affords a theoretical lens based on broader theories of human cognition to 
distinguish the mathematical representations from the distinct ways humans think 
about these representations. The ARITHMETIC AS COLLECTING OBJECTS,1 
ARITHMETIC AS MEASURING, and ARITHMETIC AS MOVING ALONG A 
PATH metaphors are conceptual metaphors relevant to cancellation and number line 
models (Kilhamn, 2011; Lakoff & Núñez, 2000; Nurnberger-Haag, 2013, 2015). 
Chip models in particular encourage an object-based conception of what a negative 
quantity is and that to calculate with negative numbers, a person collects and regroups 
these positive and negative objects in various ways (COLLECTING OBJECTS met-
aphor). Although all number line models use a commonly accepted representation of 
a number line, there at least two ways to think with a number line by drawing on 
different conceptual metaphors. As Descartes did, a number line representation can 
be thought of using a MEASURING metaphor (Berlinghoff & Gouvêa, 2002; Lakoff 
& Núñez, 2000) in which numbers are thought of as simply the end of a length. 
Number line representations can also be thought of with a MOVING ALONG A 
PATH metaphor (Kilhamn, 2011; Lakoff & Núñez, 2000; Nurnberger-Haag, 2007), 
in which numbers can be conceived of as points on a line found by moving to that 
point and operations can be conceived of as motion along that line.

 Integer Model Movements

How people physically move impacts their cognition (Antle, Corness, & Bevans, 
2013; Barsalou, 2008; Glenberg & Kaschak, 2002; Kontra, Fischer, Lyons, & 
Beilock, 2015). When adults and children physically move in ways that are 

1 I use the verb forms as opposed to the noun forms of the metaphors to better reflect the patterns 
of interacting with the world as part of an ongoing dynamic system, in other words “enactive meta-
phors” (Gallagher, & Lindgren, 2015; Nurnberger-Haag, 2014; Smith, 2005).
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consistent with intended ideas, this aids cognition, whereas when prompted to move 
in ways that are inconsistent with intended ideas, this interferes with cognition 
(Anelli, Lugli, Baroni, Borghi, & Nicoletti, 2014; Day & Goldstone, 2011; Glenberg 
& Kaschak, 2002; Goldin-Meadow, Cook, & Mitchell, 2009; Kontra, Fischer, 
Lyons, & Beilock, 2015). Just as humans’ cognition is influenced outside of the 
classroom by their physical body movements, students’ cognition may be just as 
influenced or potentially more so when learning something difficult and effortful in 
classrooms. Evidence has shown that when students’ physical motions are consis-
tent with both whole-number and integer arithmetic operations, students learn more 
than when their physical motions are inconsistent with the intended operations 
(Goldin-Meadow, Cook, & Mitchell, 2009; Nurnberger-Haag, 2015). Research 
about the difficult topic of integer subtraction would benefit from understanding 
how students’ explicit or implicit physical motions with such models and the con-
ceptual metaphors models encourage students to enact may influence learning. I 
define model movements as the patterns of physical motions found when different 
students and teachers enact particular models, not the idiosyncratic motions of indi-
viduals. Different patterns of model movements with chips constitute different mod-
els as do the unique sets of ways students can move on number lines.

Number Line Model-Movement Consistency with Subtraction A typical num-
ber line model often found in schools and online resources (e.g., Math Forum, 2001) 
has students enact a MOVING ON A PATH metaphor by facing the positive or 
negative direction depending on the sign of a number (negative or positive number, 
respectively). To represent an addition or subtraction operation, students move for-
ward (addition) or backward (subtraction). In other words, typical number line mod-
els inform students to use the signs of the problem to follow a fixed system of which 
direction to face and which direction to move. Typical number line models do not 
include an opposite meaning of the “-” symbols, because they represent “-” with 
backwards and forwards motion or positive or negative facing directions. Although 
children in gym class are sometimes asked to run drills backwards and forwards, 
walking backwards is not typical of how humans move.

In contrast, students always walk forward with the walk-it-off number line model 
(referred to subsequently as walk-it-off; Nurnberger-Haag, 2007), which  encourages 
students to enact the same metaphor with movements that differ from a typical num-
ber line model and different ways of thinking about how those movements represent 
the mathematical symbols. The meaning of the “-” symbol as the opposite was 
designed into the walk-it-off model to promote the opposite operator meaning of the 
negative sign important in algebra that was missing from typical number line mod-
els and chip models (Nurnberger-Haag, 2007; Thompson & Dreyfus, 1988). From 
an embodied perspective, since humans typically walk forward in the world or spe-
cifically when walking on a path, this may feel more intuitive to enact a MOVING 
ON A PATH metaphor using forward motion. Students begin facing the whole num-
bers with which they are most familiar and read the signs (negative signs, positive 
signs, or addition and subtraction signs) to decide in what direction to move relative 
to their current position. In other words, the walk-it-off model has students consider 
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whether to change direction or go in the opposite direction (Nurnberger-Haag, 
2007). To subtract with the walk-it-off model, the minuend is a location on a num-
ber line. Students always begin facing toward the default positive numbers, rather 
than determined by the sign since the minuend is a location not a direction. A sub-
traction sign means turn the opposite direction (an addition sign means to maintain 
direction). The subtrahend is a directed magnitude, so this signals whether to turn 
the opposite direction and also the distance to move. That is, if the subtrahend is 
positive, a student maintains the direction and walks the given magnitude, but if the 
number is negative, then the student turns the opposite direction and walks the given 
distance. Figure 5.1 illustrates an example problem.

To summarize then the key difference between typical number line models and 
the walk-it-off model is that typical models tell students which direction to face, 
whereas “+” and “-” symbols in the walk-it-off model mean whether to change 
direction (Nurnberger-Haag, 2007). When the symbol “-” represents subtraction or 
a directed subtrahend in the walk-it-off model, the symbol means turn the opposite 
direction, and the sign “+” means continue in the same direction (Nurnberger-Haag, 
2007). For this reason, the walk-it-off model was the MOVING ON A PATH meta-
phor-based model used in this study.

Chip Model-Movement Consistency with Subtraction Just as there are multiple 
ways to move on number lines that constitute different models, I use embodied perspec-
tives on learning to point out there are also multiple chip models (see, e.g., Chap. 10). 
In this chapter I refer to the common chip model, shown in Figure 5.1, as extra-zero-

Fig. 5.1 An example of how a group from each integer model condition solved the problem 
-3 – -7 during instruction
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value-when-needed chip model and the other chip models as extra-zero-value-at-
setup (see Chapter 10 this volume). Although the timing of movements differ among 
these chip models, the language students can use to describe their physical move-
ments is the same for both models, such as “put in,” “take out,” or “take away.” With 
the extra-zero-value-at-setup chip model, at the onset of any problem, students put in 
several chips, which represents a zero value (e.g., several white chips and the same 
number of black chips). Regardless of the target problem, students who enact an 
extra-zero-value-at-setup model use multiple chips to represent zero at the onset. 
However, students who use the more common chip model only put in this inconsis-
tent zero value when the problem-structure creates this need (extra-zero-value-when-
needed). For example, to do the problem -5 – -3 with the common chip model, a 
student can begin with five negative chips and remove three negatives to model the 
subtraction operation without adding any quantities of chips that are inconsistent 
with the mathematical problem. In contrast, the problem -5 – 2 would require putting 
in or collecting enough objects to remove two positives (i.e., two positives and two 
negatives). From an embodied perspective, it is only because the model expects stu-
dents to think of negatives as physical things (i.e., a COLLECTING OBJECTS met-
aphor) that to do the problem -3 – -7 in Fig. 5.1, students actually move in ways that 
complete the problem -3  +  (-7 +7)  –  -7. Although the problem could be accom-
plished by putting in various zero value quantities (e.g., see Chap. 10), the chip 
model necessitates that students move chips in these certain ways due to the nature 
of the model in which actual objects represent negative quantities. Therefore, as 
shown in these examples, the structure of each subtraction problem requires different 
sequences of model movements and different model-movement consistencies.

Although someone might argue that the extra-zero-value-at-setup is simpler than 
the extra-zero-value-when-needed chip model, each is more simple or complex in 
different ways. The first requires extra work for all problem types, and students 
must anticipate how large of a field of objects they need to represent additive 
inverses. This makes this model more complex in one way, yet simpler in that all 
extra motions occur at setup. In contrast, with an extra-zero-value-when-needed 
model, students enact extra motions to add zero values before performing an 
 operation, which may be simpler because students only think of unnecessary quan-
tities if needed. Consequently, for this first study comparing a COLLECTING 
OBJECTS-based integer model to a MOVING ON A PATH integer model, the mod-
els compared were walk-it-off and extra-zero-value-when-needed, which, in the rest 
of the chapter, I will simply refer to as chip model.

 Focus of Study

The purpose of the larger study from which this data was drawn was to investigate 
benefits and issues with using either this chip model or the walk-it-off model as the 
first model students use in formal instruction of all four primary operations with 
negative numbers. An original goal was to better understand which conceptual 
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metaphor might better support initial procedural and conceptual learning of integer 
arithmetic, and the focus on metaphor-based models was, in part, to provide theo-
retical and practical insights educators could use in their own classrooms. Many 
metaphor-based model pairs could have been compared, but in light of cognitive 
alignment between theorized model movements and integer arithmetic, to begin this 
research of comparing metaphor-based models, I selected the potentially most-
aligned model for each metaphor.

Given that the larger-scale analyses of integer arithmetic with all operations 
found that longer-term results 5 weeks after instruction can differ from performance 
on day-after tests (Nurnberger-Haag, 2015), the analysis here focuses on this lon-
ger-term understanding by analyzing delayed posttests. This chapter focuses on 
how students reasoned after instruction of a single integer model that promoted 
either the COLLECTING OBJECTS metaphor or the MOVING ON A PATH meta-
phor with respect to subtraction of negative numbers. Earlier analyses demonstrated 
that the walk-it-off model better supported overall integer arithmetic performance 
than the studied chip model (Nurnberger-Haag, 2015), but this analysis focuses in-
depth on how students reasoned in terms of conceptual metaphors on counterintui-
tive integer subtraction problems. Similar to how another study focused on a very 
specific aspect of integer knowledge, such as the property of additive inverses 
(Tsang, Blair, Bofferding, & Schwartz, 2015), this analysis focuses on whether and 
in what ways students who used either model were able in the longer term (5 weeks 
after instruction) to produce positive solutions when subtraction problem-structures 
warranted it (i.e., solutions were greater than zero) and if they could extend their 
understanding to more difficult problems of the same type. The specific research 
questions reported here are as follows:

• Which, if either, model better supports students to accept solutions greater than 
zero (positive solutions) for appropriate integer subtraction problems?

• Which, if either, integer model better supports students to extend their knowl-
edge to larger magnitudes not experienced during subtraction instruction?

• In terms of conceptual metaphor theory, how did students reason on single-digit 
subtraction compared to double-digit subtraction? What similarities and differ-
ences occurred due to integer model?

 Methods

The data reported here were collected as part of a larger pre-post-delayed posttest 
instructional study, in which I randomly assigned classes in two rural districts to 
instruction with the COLLECTING OBJECTS-based (extra-zero-value-when-
needed chip model) integer model or the MOVING ON A PATH-based (walk-it-off 
number line) integer model. I taught both models in both districts during the year 
prior to when negative number arithmetic is taught in each district. The state website 
indicated that the students at this grade level at both districts (first semester sixth 
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grade at District A and second semester fifth grade at District B) were primarily 
European American, and 45% of the students were eligible for free or reduced 
lunch. I taught four classes with the chip model, and the other four classes experi-
enced the same lessons with the walk-it-off number line model. Overall, the eight-
lesson unit addressed ordering numbers, addition, subtraction, multiplication, and 
division. Analyses of pretest integer operations and whole-number fact tests con-
firmed that the students assigned to a chip model or walk-it-off model instructional 
conditions were not significantly different (Nurnberger-Haag, 2015). Rather than 
posttests, to assess longer-term learning, the focus of this chapter was on the delayed 
posttests of students assigned to the chip model (n  =  80) and walk-it off model 
(n = 80); their pretests were considered to look for confirmatory or contradictory 
evidence that instruction supported learning.

 Data Sources

The seven-item Explain and Draw Test (EDT) used open-response items intended to 
elicit explanations using words and drawings. The EDT assessed all the constructs 
students experienced during instruction (ordering numbers, addition, subtraction, 
multiplication, division) and an additional construct not taught regarding the nota-
tion for opposites of expressions. The EDT included two subtraction problems: (1) 
a SD subtraction problem that assessed students’ ability to provide a positive answer 
when subtracting two negatives (e.g., “Show the students what -3 – -5 means.”) and 
(2) a DD subtraction problem that assessed if either integer model used during 
instruction better supported students’ ability to extend their reasoning to larger mag-
nitudes than experienced during instruction (e.g., “Show the students what -52 – -85 
means.”). The wording of the items was informed by Chiu (2001), and EDT direc-
tions prompted students to “explain in words and by drawing” so that another stu-
dent their age who had not already learned this would understand.

 Instruction

When I first learned about chip models in 1991, I wished my prior teachers had 
taught me with the chip model, because as someone who understood integer opera-
tions, I thought it made so much sense and continued to think so throughout my 
teacher training and later teaching. In fact, as a student teacher, I found the typical 
number line model problematic in terms of how it represented the numbers and 
operations, which is why I set out to design a number line model that incorporated 
the opposite meaning of a negative sign (Nurnberger-Haag, 2007). It was my own 
students who helped me understand that what I thought was intuitive about chip 
models may not be so for students. This prompted my desire to better understand 
how students learn integer arithmetic with chip and number line models.
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For this first study comparing chip and number line models, I assigned students 
to trios that reflected a range of pretest scores on a 46-item skill-based integer oper-
ation test and a whole-number single-digit fact test of the 4 primary operations 
(used as a proxy for prior student achievement in arithmetic). Students worked on 
tasks with their assigned trio (or duo if class size required it) during the entire unit. 
After trios worked on sets of related tasks or other learning opportunities, I led 
whole-class discussions about their processes.

The instructional unit consisted of eight lessons. Figure 5.2 illustrates the focus 
of each lesson’s instruction. Since this chapter focuses on particular types of sub-
traction problems, details relevant to subtraction are discussed further. During 
instruction, students primarily had opportunities to subtract single-digit numbers 
and sometimes double-digit numbers ranging from -20 to 20. Further, student groups 
explored tasks such as writing addition and subtraction equations to make 0 and -4. 
These task prompts had additional constraints to ensure that students grappled with 
at least one equation involving subtraction of a negative number. The students also 
played a dice game to provoke students to discover that subtraction can make a num-
ber larger, smaller, or maintain the same solution depending on the quantities sub-
tracted. I never taught the students rules typical of algebra textbooks. At the end of 
the unit, however, students were prompted to individually make generalizing conjec-
tures, some of which were selected for small group debate as never true, sometimes 
true, or always true with follow-up class discussion (Heck & DeFord, 2012).

Students had several opportunities to explore the range of subtraction problem 
types of negative numbers with their respective model. Instruction began by build-
ing on students’ understanding of concepts and procedures of addition and subtrac-
tion with nonnegative integers to enact the assigned metaphor and then extending 
the metaphor to work with negative numbers. In this way, even though the final 
efficient uses of each model involved particular procedures, these procedures were 
built from and connected to students’ prior understanding. In the chip model classes, 
students were first encouraged to build on their whole-number understanding of 
addition and subtraction with a COLLECTING OBJECTS metaphor by using black 
chips to act out these operations, and they identified that white was the opposite of 
black, so they agreed to treat white chips as negative numbers. I then encouraged 
them to grapple with how to move chips when there were insufficient chips of the 
right kind to remove. In the classes where students were assigned to use the walk-it-
off model, students were given 10-foot open-number lines (i.e., students had to draw 

Fig. 5.2 Primary topic focus for each of the eight lessons
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any tick marks or numbers) to place on the floor then try whole-number addition 
and subtraction by physically enacting a MOVING ON A PATH metaphor. I then 
had them consider how their movements must differ for subtracting a whole number 
versus a negative number. For each model, we explicitly discussed the meanings of 
each symbol within bare-number problems (operations and signs composing numer-
als) .

 Data Analysis

Two coders qualitatively coded the 160 EDT delayed posttests. I was one coder and 
at the time of this analysis had 20 years teaching experience. The second coder was 
a doctoral student with a master’s degree in mathematics and 11  years teaching 
experience. Since pseudonyms can evoke unintentional bias, I use students’ ran-
domly assigned identification numbers. Gender pronouns are used solely to aide 
readability.

Single-Digit Problem with a Positive Solution For this analysis of 160 students’ 
delayed posttest solutions to the SD item, success was defined as a solution greater 
than zero with supporting reasoning (i.e., explanations that did not contradict the 
solution provided, even if the students made a calculation error). I removed 19 stu-
dents whose explanations supported their positive solution but actually explained a 
different problem (such as when attempting to solve -3 – -5, the solution given really 
explained 0 – -3 = 3; or when the student used a rule such as “subtracting two nega-
tive numbers always has a positive answer” that was mathematically valid for this 
problem-structure but would be inaccurate if a student used the rule to solve -5 – -3). 
On the SD item, 56 students (35%) provided positive solutions with reasoning that 
did not contradict their solution or the original problem. Note that although coders 
allowed for positive solutions with calculation errors, 54 of the 56 students’ positive 
solutions on the EDT SD subtraction problem were accurate.

Extension to Double-Digit Subtraction Analyses of extension from SD to DD 
subtraction included accuracy, consistency or sameness of reasoning from one prob-
lem-structure to the other, and conceptual metaphor expressed.

Extension The goal of the extension analysis was to determine successful or unsuc-
cessful extension from SD to DD subtraction, where successful extension involved 
students providing accurate solutions with reasoning that could support the solution 
on both SD and DD problems (we allowed for calculation errors if the processes 
could lead to accurate solutions). To develop these final categories, both coders 
conducted multiple passes of the data, determining ways that students extended 
their understanding. In a single pass, the coders independently coded each student’s 
delayed posttest in order of randomly assigned identification numbers. The coders 
then discussed the codes and, to prevent coding drift in a later week, conducted 
additional passes in the same way to confirm and refine existing codes. A final pass 
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of the data was conducted beginning with the assigned code (i.e., evidence of exten-
sion, potential extension, no evidence of extension, or evidence did not extend) to 
confirm that a student with this code in comparison with the other students with the 
same code was still validly coded. Two of 56 codes were changed (96.4% agree-
ment from prior coding pass) because both coders agreed with each other that the 
prior code was not accurate. Inter-coder agreement of the final data was 100%.

Sameness of Reasoning from SD to DD While blind to students’ assigned integer 
model, each coder documented whether the reasoning the student used on the DD 
problem was the same as the reasoning used on the SD problem. The a priori codes 
used were same, different, unable to code for sameness, or missing due to a skipped 
problem.

Conceptual Metaphor Coding Although students may be most likely to express 
the same conceptual metaphor they experienced during instruction, this should not 
be assumed. Each model encourages students to enact a particular metaphor; how-
ever, students may conceive of numbers using a different metaphor because the 
assigned model differed from their prior conceptions or other reasons. 
Consequently, whether students expressed a particular conceptual metaphor was 
documented blind to student condition and then compared to the assigned model 
only after this analysis.

Students could use one or more conceptual metaphors or no metaphor. We cate-
gorized a student’s response as a COLLECTING OBJECTS metaphor if the words 
or the drawings involved particular objects or things (e.g., “take away negatives” or 
“take out more”; drawings of circles or actual objects). Documentation of a 
MOVING ON A PATH metaphor occurred if students indicated with words or 
drawings that something or someone moved along a drawn or imagined line or path 
(e.g., “walk six,” “go lower into the negatives”; drawn arrows or hops along the line) 
and if the locations or points on a number line were considered numbers (e.g., “here 
is zero”). MEASURING was documented if static distances were shown (e.g., the 
distance between two numbers on a number line). If no reasoning was provided, this 
was coded as no metaphor expressed, regardless of whether an answer was provided 
or the entire problem was skipped. The no metaphor code was also used if these 
conceptual metaphors were not found, such as if the reasoning stated a generaliza-
tion or rule. In the rare instances in which the reasoning did not fit into any of these 
categories or where an explanation could not be distinguished between types, 
coders documented this as unable to code metaphor.

 Findings

To provide an overview, I first compare frequency of student success by integer 
model on the delayed posttest SD problem that was similar to instruction (N = 160). 
Then I analyze the subset of students who successfully answered the SD problem 

5 Take It Away or Walk the Other Way? Finding Positive Solutions for Integer…



124

(n = 56) to determine whether they extended their understanding of single-digit sub-
traction to the DD problem. This analysis of extension beyond instruction was 
explored in several ways. First I explore whether students changed their reasoning 
approach from SD to DD subtraction as well as the relationship of the change to 
accuracy on the DD problem. Then I detail how students’ expression of conceptual 
metaphor related to their solution accuracy and the conceptual metaphor they enacted 
during instruction. In the rest of the findings for efficiency, SD will stand for the 
“single-digit subtraction problem” and DD as “double-digit subtraction problem.”

 Subtraction Problems Similar to Instruction

This section reports on student responses to subtraction items that have positive 
solutions. Students who learned with the walk-it-off model provided positive solu-
tions 1.8 times more than those who had learned with the chip model (36 walk and 
20 chip). Close to half of the students who learned with the walk-it-off model pro-
vided positive solutions to these subtraction problems (45%), whereas a quarter of 
the students who learned with chips did so (25%). The students’ pretests were then 
checked to consider if any of the students correctly answered this type of subtrac-
tion problem prior to instruction. Only two students (3.6%) accurately answered SD 
at pretest with a reasonable supporting explanation, and they also correctly answered 
DD. Both of these students experienced the walk-it-off model instruction and con-
tinued to accurately answer both SD and DD at delayed posttest.

 Extension Beyond Instruction

When considering the entire sample of 160 EDT delayed posttests, 35% (28/80) of 
students who learned with the walk-it-off model successfully extended their SD 
understanding beyond the instructional tasks to DD, whereas 14% (11/80) of stu-
dents who learned with chips did so.

Frequencies of Extension Success Categories About 70% of the 56 students who 
were successful on SD extended this knowledge to DD. Table 5.1 displays whether 
students extended their knowledge from SD to DD by integer model and the strength 
of that evidence. Recall from the Methods section that coders were blind to student 
condition at the time of analysis. I retrospectively added model condition to 
Table 5.1 during the next phase of analysis and reporting.

Successful Extension Frequency Five weeks after instruction, about 2.5 times as 
many students who learned with the walk-it-off model (n = 28) than students who 
learned with chips (n = 11) successfully extended their understanding from SD to 
DD. Figure 5.3 displays SD and DD explanations of a student from each model who 
successfully extended. Looking only at the strongest evidence of successful exten-
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sion in the first row of Table 5.1, four times as many students who learned with the 
walk-it-off model as chips provided clear evidence that they extended their under-
standing from SD to DD (if the two students extended at pretest are removed, the 
rate is 3.6 times).

Unsuccessful Extension Frequency Notice in Table 5.1 that equal numbers of stu-
dents who learned with chip or walk-it-off intentionally skipped the DD task, pro-
viding no evidence of extension. I considered these skipped items unsuccessful 
extension, because in typical classroom instruction, a skipped problem is counted 
incorrect. Similar numbers of students using either model gave responses demon-
strating they did not extend their understanding (see Table 5.1).

Analysis of Extension Reasoning Overall, the students who were successful used 
the same reasoning for SD and DD. Only students who changed their reasoning 
approach were unsuccessful at extending to double-digit magnitudes greater than 

Fig. 5.3 Examples of students from each integer model who successfully extended their reasoning 
from SD to DD
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20. Maintaining or switching reasoning approaches did not seem to depend on the 
integer model the students experienced during instruction, which the figures will 
help illustrate.

During instruction, I did not explicitly teach students how to represent their 
physical motions in written form. This would have unnecessarily privileged written 
representations over the physical enactments. While solving tasks during instruc-
tion, students were required only (a) to physically enact the models as a trio and (b) 
write solutions as equations (e.g., -3 – -7 = 4) on each individual’s papers. During 
whole-class discussions of their group work, we typically reenacted their processes 
with physical chips on a document camera or by walking on a number line. Near the 
end of the unit, students were encouraged to only use paper and pencil during group 
work (although physically enacting the models was still an option), so it was only at 
the end of the unit, when students themselves drew to represent the models, that we 
put these drawn representations on the board as a shared representation.

Successful Student Reasoning Single-Digit to Double-Digit Overall students who 
were successful on DD applied the same reasoning they used on SD. Of the 39 stu-
dents who successfully extended from SD to DD, 35 explicitly expressed the same 
reasoning on the DD question as they did on the SD. Revisit Fig. 5.3 to see exam-
ples of students from each model whose delayed posttest responses showed suc-
cessful extension. The remaining four students who were successful on SD and DD 
provided accurate solutions but chose not to explain or draw their reasoning on one 
of the problems. Not only did students continue with the same reasoning, but stu-
dents who successfully extended from SD to DD typically used the conceptual 
metaphor they enacted during their instruction, which the student responses in 
Fig. 5.3 portray. All chip model students coded as successful extension (n = 11) 
expressed a COLLECTING OBJECTS metaphor on SD and also DD. Most of the 
successful walk-it-off model students (n = 26) expressed a MOVING ON A PATH 
metaphor on both SD and DD.

The 11 students who used a COLLECTING OBJECTS metaphor successfully 
on SD and DD each drew positive and negative chips. To solve -4 – -6, some stu-
dents drew four negatives and six negatives to represent the minuend and subtra-

Table 5.1 DD extension status for students who successfully solved the SD by integer model

Extension Chip Walk Total

Successful
Evidence of extension 5 20 25
Potential extension 6 8 14
Unsuccessful
No evidence of extension 5 5 10
Evidence did not extend 4 3 7
Total 20 36 56
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hend, respectively, and then determined how to continue. Student 3075 (see Fig. 5.3) 
provides an example of one of the students who used the more advanced strategy of 
only drawing the necessary chips to have enough chips to remove for the subtra-
hend. Student 3075 drew four negatives to represent the minuend and then either 
knew two more negatives were sufficient, or through the process of drawing the 
objects near the bottom of the work space, the student was able to recognize two 
negatives were sufficient and drew a line to continue connecting those two extra 
negatives with the original four. The student added two more positives to represent 
“add 0.”

Student 3111 on SD and DD was able to identify the minuend as a starting 
location or point on the number line path and then treat the subtraction operation 
and the subtrahend as directed movements consistent with the MOVING ON A 
PATH metaphor enacted with the walk-it-off model. Some walk-it-off students, 
such as student 3145, explicitly described in words how to move relative to their 
current position by going in “the opposite direction.” Although student 3111 did not 
use the word “opposite,” he explained on both SD and DD why he turned the oppo-
site direction (see Fig. 5.3). The drawing of -52 as a point on the number line sup-
plemented by the written explanation shows the student recognized the number -52 
as a location on a path “Start on -52,” whereas each of the other “-” symbols sig-
naled him to turn. If we look only at the written words, this idea of “turn” may seem 
ambiguous. However, note at the top of the workspace the student first drew the 
number line with labels to describe how to move on the path. Only after this did the 
student supplement this drawing with written explanations to describe the reason 
for turning, such as “turn for the – sign then turn for the – sign.” The arrows in the 
drawings clearly show the direction the student meant when he used the word “turn.”

In Fig. 5.3 on SD, notice that both the student who learned with the chip model 
and the student who learned with the walk-it-off model represented each integer 
using the respective conceptual metaphor. The chip student showed each -1 with a 
circle around it as though -1 was an object or chip, and the student who used the 
walk-it-off model showed a tick mark to represent the positions of each integer on 
the path from -5 to 5. Both of these students exemplify that they continued to use the 
same respective conceptual metaphor of COLLECTING OBJECTS or MOVING 
ON A PATH in a more abstract way for DD. Rather than showing 36 objects to 
represent the number 36, student 3075, who used the COLLECTING OBJECTS 
metaphor, expressed -36 as a single unit object that required an additional unit 
object representing 39 negatives in order to make it possible to remove 75 negatives. 
Similarly, student 3111, who used the walk-it-off model, marked multiples of ten on 
the number lines instead of each tick mark and then positioned the starting and end-
ing locations appropriately relative to these multiples.

Unsuccessful Student Reasoning Single-Digit to Double-Digit Of the 17 students 
who unsuccessfully extended knowledge from SD to DD, 11 skipped DD. Figure 5.4 
shows the detailed explanations of a student from each model who was successful 
on SD but skipped DD.
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Student 3005 represented each numeral in the subtraction problem using a 
COLLECTING OBJECTS metaphor and treated the colors used in chip model 
instruction as appropriately arbitrary representations (he used black for negatives, 
whereas during the study instruction, black represented positives). Using few words, 
student 3005 explained more than most other chip model students did about the ideas 
used to solve the problem. Although student 3005 did not explain why two negatives 
and two positives were added to the three negatives, he circled them and labeled 
these “0” and wrote under it “cancel each other out.” The student also used the phrase 
“goes out” to represent subtraction of the five objects circled to take out. The student 
then indicated that what is left are the two objects the student keyed as positives.

In spite of the diagrams that seem to indicate the student not only understands 
procedures for subtraction using a COLLECTING OBJECTS metaphor but may 
have some conceptual understanding, the student skipped the DD problem provid-
ing no evidence that the student could extend understanding to more difficult prob-
lems. For student 3005 to take a similar approach on DD would have meant drawing 
52 negatives and then draw many more to discover how many extra negatives and 

Fig. 5.4 Examples of students from each integer model who successfully provided positive solu-
tions to SD but intentionally skipped DD (no evidence of extension)
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positives were needed. The effort demands of using a COLLECTING OBJECTS 
metaphor in which he treated each -1 as its own object may have been a reason the 
student did not persevere to attempt this problem.

On SD student 3017 treated the number -4 as a point or location on a path and 
started thinking about and described in writing that the subtraction operation makes 
“you…turn the opposite direction.” The student seemed to realize she had not told 
the fictitious student audience which way to face to begin, so she added that you 
start positive, so then turning the opposite direction means you turned negative, and 
then “because of the negative sign” that means to return to the positive direction. 
The student associated each symbol with the reasons for direction changes. This 
student, like student 3020 in Fig. 5.5, then communicated that this process resulted 
in the concept of what the fictitious audience student would recognize as “add” on 
a number line. Perhaps similar to student 3005, the effort of making a mark to rep-
resent each numeral (and insufficient room) may have been the reason why student 
3017 did not use MOVING ON A PATH metaphor for DD.

Fig. 5.5 Examples of students from each integer model who successfully answered SD using a 
conceptual metaphor consistent with instruction and then unsuccessfully switched to using a tradi-
tional subtraction algorithm for DD
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Students who unsuccessfully attempted DD, in spite of being successful on SD, 
changed the way they reasoned to explain DD. The most common change was that 
they abandoned use of a conceptual metaphor (four students). The two students who 
had learned with chips and the two students who had learned with the walk-it-off 
model each used the model from their respective instruction, and thus also the 
respective conceptual metaphor, to answer SD. When they explained DD, however, 
each of these students used vertical algorithms. Figure 5.5 shows an example stu-
dent from each model who accurately answered SD but then inaccurately answered 
DD in this way. Mathematically we can “take -6 from -4.” It is only when a person 
uses a COLLECTING OBJECTS metaphor to think of the number -6 as six objects 
that it is in some sense true that “we can’t take -6 from -4” as student 3093 stated. In 
other words, we cannot take 6 negative chips away when there are too few negative 
chips available in the representational space. This shows evidence that when solving 
problems with single-digits, the students’ ideas of negative numbers were firmly 
rooted in the COLLECTING OBJECTS metaphor promoted by the model the stu-
dent experienced during instruction. On the DD item, due to the rectangles drawn, 
one might wonder if the student from the chip model may have been trying to think 
of this problem in terms of COLLECTING OBJECTS; however, the student did not 
appear to use these drawings as she did on SD. As several students shared when 
turning in their tests, the student may have drawn something to satisfy the directions 
to draw rather than to reason. Although instruction included a few problems in the 
range from -20 to 20 and the student was able to replicate prior use of objects for 
SD, when asked to perform a DD, student 3093 abandoned a COLLECTING 
OBJECTS metaphor to unsuccessfully use an abstract vertical algorithm.

Note that although student 3020’s work was not completely correct because she 
drew a vertical number line reverse of the culturally accepted and disciplinary ver-
sion of a number line, the directions and distances the student moved on the path 
were consistent with the path she drew. In other words, how the student used a 
MOVING ON A PATH metaphor to reason with the number line tool was correct in 
relation to the drawn representation. Student 3020 did not use words to explain in as 
many details as some other students why she turned twice. Notice, however, the 
ways the student did represent the meaning. She circled -5 as the starting location 
and then positioned the rest of the problem next to that. So with the remaining sym-
bols of the problem she explained “– -7” by writing, “You would turn twice,” which 
indicates she understood that each “-” symbol meant to turn the other direction. 
More significantly, the student’s words expressed a generalization that this idea of 
turning twice when subtracting a negative number on the number line in this prob-
lem means a person “end[s] up adding.”

On SD, students 3093 and 3020 each from different models represented numbers 
using an individual symbol for every number they considered, which was effective 
in terms of accuracy but was an inefficient and effortful strategy. The strategy would 
have been unwieldy to apply to DD because the students would have needed to 
represent each integer as a point on a path or with individual objects.

Notice that although the student who had used chips and the student who used 
walk-it-off abandoned their conceptual metaphor in favor of a vertical algorithm on 
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DD, the students did this differently. When rewriting the expression, student 3093 
changed the problem to an inequivalent addition problem with the larger magnitude 
number on top, as is typical with whole-number problems. Although the student 
attempted to explain and may have recognized from prior experience and the SD 
that the solution would be positive, the student work did not support the positive 
solution. In contrast, the walk-it-off model student accurately converted the hori-
zontal subtraction problem to a vertical problem representation, but as her solution 
for DD evinces, student 3020 had not yet generalized that subtracting a negative 
number would mean addition as a universal abstraction.

There are two other interesting cases displayed in Figs. 5.6 and 5.7, respectively. 
Only a single individual used the same conceptual metaphor on the pretest and 
delayed posttest SD that was inconsistent with the conceptual metaphor the student 
enacted during model-based instruction. Student 3078 used a chip model during 
instruction. However, on the delayed posttest SD, this student used the MOVING 
ON A PATH metaphor consistent with the conceptual metaphor that he had 

Fig. 5.6 The students from each integer model who successfully used a conceptual metaphor on 
SD inconsistent with the instructional model and then unsuccessfully extended to DD
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expressed on the pretest but inconsistent with the chip model instruction (see 
Fig. 5.6). When solving DD, he switched to no metaphor by calculating with a verti-
cal subtraction algorithm. Although he said the solution would “come up as a posi-
tive number,” the solution the student gave was negative (“-39”), similar to others 
who used a traditional subtraction algorithm. Note in Fig. 5.6 that none of the stu-
dents who learned with the MOVING ON A PATH metaphor-based model expressed 
a COLLECTING OBJECTS metaphor on SD.

Figure 5.7 shows a unique case of the one student from each model who, when 
faced with DD, used a different conceptual metaphor than that which helped them 
be successful on SD.  Student 3195 used a COLLECTING OBJECTS metaphor 
consistent with the chip model he used during class but unsuccessfully switched to 
a MOVING ON A PATH metaphor to explain DD.  Student 3009 explained SD 
using a MOVING ON A PATH metaphor with the walk-it-off model but then aban-
doned this metaphor and instead seemed to draw on a COLLECTING OBJECTS 

Fig. 5.7 Examples of students from each integer model who switched conceptual metaphor 
expressed from SD to DD, from a conceptual metaphor consistent with the integer model of 
instruction to using the other conceptual metaphor not experienced in the lesson
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metaphor, also unsuccessfully. Note the language that student 3009 used in 
DD. Rather than referring to numbers as points or distance on a number line as in 
SD, she discussed numbers as things that cannot be removed with the language 
“taken out of.” In this case, the COLLECTING OBJECTS metaphor interfered with 
her ability to determine a positive solution.

 Discussion

Skill-based assessments, particularly forced-choice items common with standard-
ized tests, lead to false-positives in which students obtain accurate answers for inac-
curate reasons. In contrast, the EDT subtraction items afforded insights into student 
reasoning. Since prior to instruction only 2 of the 56 students were correct on sin-
gle-digit subtraction, the study instruction of both chip and walk-it-off models can 
be inferred as the reason that these students who learned with either model had 
longer-term success on the delayed posttest. After just eight lessons of all four oper-
ations (addition, subtraction, multiplication, and division), the walk-it-off model in 
this study facilitated more students than the chip model to overcome the difficult 
overgeneralization that subtraction leads to a smaller solution.

As previously noted, large-scale data showed that only 40% of 14-year-olds 
accurately gave positive solutions to subtraction problems (Periasamy & Zaman, 
2009, pp. 376–377). Students, however, could have used inaccurate reasoning to 
correctly answer these forced-choice items. Indeed, if the current study of 
11–12-year-olds had included the 19 students with positive solutions but inaccurate 
reasoning, the accuracy rate would have been 47%. Given the documented difficul-
ties older students have, it was unsurprising that many students in this study still 
found these counterintuitive problems difficult after using either model. Although 
this chapter exclusively reported the assessment of these subtraction problem-struc-
tures, these constituted a small portion of their integer instruction, because during 
the eight lessons students experienced all possible problem-structures of all four 
operations. Yet, within this limited timeframe, the walk-it-off model better sup-
ported students to solve these counterintuitive subtraction items compared to the 
reported large-scale data of older students as well as compared to a chip model in 
this study. Recall that almost half of the students who used the walk-it-off model 
compared to about one-quarter of students who learned with chips provided answers 
greater than zero with reasoning that supported those positive solutions.

Moreover, in spite of the 5-week delay, the walk-it-off model more so than the 
chip model also facilitated more students to extend this knowledge to larger double-
digit problems with the same problem-structure. Recall that four times more stu-
dents who learned with the walk-it-off model provided clear evidence of extending 
this knowledge with supporting explanations. This research empirically supported 
others’ theoretical critiques that the chip model breaks for subtraction (Vig, Murray, 
& Star, 2014). The results of the current analysis are also consistent with the larger 
study in which Nurnberger-Haag (2015) assessed calculation accuracy without 
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attending to reasoning and found that this chip model could interfere with accuracy 
on some problem types for all operations except addition.

 Interpreting Results in Terms of Theory

Empirical and theoretical work from embodied cognition affords perspectives as to 
why (a) some conceptual metaphor-based model may support learning and (b) rea-
sons the walk-it-off model may have better supported this sample of students to 
make sense of the counterintuitive effect that subtraction could make a solution, not 
only larger but also positive.

Conceptual Metaphors Support Initial Learning of Integer Arithmetic Chiu 
(2001) found that initial learners were more successful when their reasoning about 
integer arithmetic was grounded in some conceptual metaphor. That is, compared to 
adults, initial learners were more accurate when they conceived of integer opera-
tions grounded in more real-world experience than abstract rules, regardless of 
which metaphor the initial learners used (Chiu, 2001). Results from the current 
study provide additional evidence to support Chiu’s assertion, because 26 out of the 
28 successful extenders expressed the same conceptual metaphor (either 
COLLECTING OBJECTS or MOVING ON A PATH) on single-digit and double-
digit subtraction items. Conversely, those students who used a conceptual metaphor 
to find a positive solution for single-digit subtraction, but did not use that conceptual 
metaphor for double-digit subtraction, were unable to extend what they knew. This 
is also consistent with Chiu’s (2001) finding that initial learners who used abstract 
approaches were less successful than those who used a conceptual metaphor to 
problem solve. This finding that using a conceptual metaphor aids success is impor-
tant, because it contributes additional empirical evidence to the sometimes philo-
sophical or anecdotal justification for recommendations about whether arithmetic 
should be taught only at the abstract symbolic level using algebraic rules or with 
more “concrete” methods (e.g., French, 2001; Freudenthal, 1973; Uttal, Scudder, & 
DeLoache, 1997).

Instructional Activities Need to Support Conceptual Metaphors Due to the dif-
ficulty of integer arithmetic compared to whole-number arithmetic, for such coun-
terintuitive subtraction problems as explored here, instructional support may be 
needed to effectively reason with any conceptual metaphor. Both evidence of stu-
dent success and failure to extend support this claim. For example, the 39 students 
shown in Fig. 5.3 successfully solved DD by reenacting the instructed conceptual 
metaphor at delayed posttest. In contrast, students may struggle to extend their rea-
soning if their instructional support promotes a model different from what they 
already used effectively (as shown by the student in Fig. 5.6). Another potential 
barrier for educators and researchers to consider is how to support students who 
may successfully use a conceptual metaphor to continue using the same conceptual 
metaphor in more efficient ways. The contrast of strategies and success between 
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students in Fig. 5.5 who drew every object or tick mark compared to students in 
Fig.  5.3 suggests that some students may need support to use efficient ways of 
thinking with either metaphor. Finally, the students shown in Fig. 5.7 provided evi-
dence that after they had experienced an instructional model that allowed them to 
enact a particular conceptual metaphor, they were successful using this metaphor to 
solve problems similar to instruction; however, for DD if they switched to a differ-
ent metaphor that they had not experienced during instruction, they were no longer 
successful. In other words, regardless of which metaphor students used (whether 
students successfully used a COLLECTING OBJECTS or MOVING ON A PATH 
metaphor) on the easier single-digit subtraction problem, when these students 
switched to the other conceptual metaphor for which they had not had instructional 
support, they were no longer successful. Future research should compare concep-
tual metaphor-based integer models to each other as this study did, as well as com-
pare conceptual metaphor-based integer models to approaches that exclusively 
scaffold students’ conceptual metaphor-based thinking without introducing a model.

MOVING ON A PATH Metaphor Better Supports Initial Learning The results 
presented here suggest that when educators choose how to begin integer instruction, 
a MOVING ON A PATH metaphor may be more helpful than a COLLECTING 
OBJECTS metaphor to help students develop concepts of subtraction with negative 
numbers. This is consistent with another prior report, which did not draw on CMT, 
which described that using objects to think about integer arithmetic was more dif-
ficult than using a number line (Bishop, Lamb, Philipp, Schappelle, & Whitacre, 
2011). From an embodied perspective, Chiu (2001) found that children used a meta-
phor of motion more frequently than an objects metaphor both as a strategy to solve 
problems and in explanations to show their understanding. Thus, consistent with 
embodied as well as constructivist theories of learning, this suggests a MOVING 
ON A PATH metaphor may be the most likely candidate from which to begin inte-
ger instruction.

Potential factors not accounted for in this analysis such as working memory and 
spatial visualization ability leave open questions for future research (Moreno & 
Mayer, 1999; Raghubar, Barnes, & Hecht, 2010). It behooves us to investigate if 
students who have stronger working memory and visualization skills are better able 
to use any COLLECTING OBJECTS metaphor-based models, because of the num-
ber of objects that needs to be manipulated, whether physically or through mental 
visualization or drawing. Compared to the number of objects needed to represent 
single-digit quantities, COLLECTING OBJECTS may require these skills in order 
to keep track and move around the larger number of objects required to conceive of 
a number like -85 and the additional objects needed to cancel some of these quanti-
ties. Future research could explore if these demands to track increasing quantities of 
objects are more difficult than simply moving farther down a path. Moreover, since 
robust integer understanding requires integration of multiple conceptual metaphor-
based ways of thinking as well as abstracted ways of thinking (Chiu, 2001), much 
research is needed to consider sequencing and connecting instruction that draw on 
these multiple ways of conceiving of integer arithmetic.
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Model Movements in Relation to Conceptual Metaphor As we know, however, 
there are multiple factors involved with each model that was used. A more explana-
tory view is likely complex. Certain models may better support student learning and 
thinking due to interactions of factors such as the underlying conceptual metaphor 
a model promotes and model movements students enact. The prior publications that 
claimed a number line model was more problematic than a cancellation model used 
the number line in typical ways (see, e.g., Küchemann, 1981; Liebeck, 1990) rather 
than the model movements students enacted in this study. An analysis of student 
learning with the walk-it-off model or a chip model on all four integer arithmetic 
operations grouped by whether particular problem-structures required students to 
move in ways that contradicted the problem operations demonstrated that these con-
tradictory chip model movements interfered with student success (Nurnberger-
Haag, 2015). The current findings about student learning of integer subtraction fit 
with other research in embodied cognition that the congruence or consistency of 
humans’ physical movements with the target ideas influences thinking and learning 
(Anelli, Lugli, Baroni, Borghi, & Nicoletti, 2014; Goldin-Meadow, Cook, & 
Mitchell, 2009; Kontra, Fischer, Lyons, & Beilock, 2015). If students were to enact 
the chip model to do any of the subtraction problems analyzed in this study, they had 
to move in inconsistent ways: they had to add (i.e., put in additional chips) in order 
to subtract (i.e., have enough negatives to remove). The fact that so many fewer 
students who learned with the chip model were initially successful on the single-
digit problems similar to their instruction suggests future research is needed to 
investigate sensemaking with either model. Perspectives that consider the model 
movements in relation to the conceptual metaphor are likely needed. It may be use-
ful to consider dynamic systems approaches (e.g., Smith, 2005) for future investiga-
tions of integer learning with models, because integer arithmetic may be grounded 
in multiple conceptual metaphors (Chiu, 2001; Lakoff & Núñez, 2000), typical inte-
ger models draw on different conceptual metaphors (Kilhamn, 2011; Nurnberger-
Haag, 2013) or integrate multiple conceptual metaphors (e.g., Tsang, Blair, 
Bofferding, & Schwartz, 2015), and different model movements may differentially 
impact learning (Nurnberger-Haag, 2015).

 Conclusions

The subtraction problems analyzed in this chapter involve a difficult subtraction 
problem-structure because they have solutions that contradict students’ generaliza-
tions from whole-number arithmetic that subtraction always makes a number 
smaller (Karp, Bush, & Dougherty, 2014). This overgeneralization is based on prior 
experiences with taking away concrete objects and other ways of subtracting natural 
numbers. Yet, those students who were most successful overcoming this generaliza-
tion did so not by abstract rules but by expressing a conceptual metaphor grounded 
in embodied experiences of enacting an integer model during instruction.

When students found themselves in situations of subtracting negative numbers 
that warranted a solution greater than zero, walking the other way compared to tak-
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ing it away better helped students find their way to those positive solutions. More 
walk-it-off students provided positive solutions to single-digit subtraction problems 
(e.g., -3 – -5) similar to instruction, and more of the students who used this model 
were able to apply their understanding to new subtraction problems with larger 
magnitude (e.g., -36 – -75). This was the case even though the entire unit of instruc-
tion on all four operations was shorter than the length of prior research studies that 
exclusively taught only addition or addition and subtraction operations (e.g., 
Linchevski & Williams, 1999; Stephan & Akyuz, 2012; Thompson & Dreyfus, 
1988). Consequently, future research should investigate instruction of all operations 
(four primary operations and opposite operators) without models compared to mod-
els, as well as compare models that enact the same conceptual metaphors to uncover 
relative merits of different approaches during typical length units.

Procedural fluency with negative numbers is currently far from reality for most 
students across the world (Ryan & Williams, 2007; Periasamy & Zaman, 2009). We 
need students to develop this procedural fluency with the conceptual understanding 
that allows them to recognize whether solutions would be positive or negative even 
if students use a calculator for the actual calculations (National Council of Teachers 
of Mathematics, 2014). This analysis began to address such issues, focusing primarily 
on procedural fluency of subtraction and the underlying conceptual metaphor used 
to reason about those procedures. For example, between those using a COLLECTING 
OBJECTS metaphor or a MOVING ON A PATH metaphor, it was only students 
using a MOVING ON A PATH metaphor consistent with the walk-it-off model who 
commented that subtracting the negative number resulted in “adding” (see Figs. 5.4 
and 5.5). These realizations were based on the symbol meanings of the “-” signs 
indicating to turn the opposite direction twice on a number line. Given that students 
who used chip model or walk-it-off had the same instructional tasks, such data sug-
gests the need for future research about how to support these generalizations. Such 
comments may reveal ways to scaffold students to make more formal generaliza-
tions grounded in a conceptual understanding through recognizing patterns of solu-
tions for particular problem types rather than simply memorizing that subtraction 
means adding the opposite.

More nuanced analyses with new data are needed related to varied conceptual 
understandings. Research methods that interview students about their written expla-
nations would be needed to ascertain reasons students in either model chose not to 
articulate in their explanations why (a) when using a COLLECTING OBJECTS 
metaphor that zero can be represented with both positives and negatives or (b) why 
it made sense when using a MOVING ON A PATH metaphor that subtraction signs 
and the negative sign of the subtrahend could mean turn or go in the “opposite direc-
tion.” One potential reason is that students simply learned procedures of their 
respective model to answer these skill-based problems with little conceptual under-
standing. Alternatively, although chip models and walk-it-off models involve proce-
dures, the students may have connected these procedures with meaning so well as 
their concepts consolidated during the five-week delay that they did not believe 
these ideas required explanation. Methodological designs that plan for such data 
analysis using theoretical frameworks such as cognitive demand (Stein, Grover, & 
Henningsen, 1996) in relation to embodied cognition might offer such insights as to 

5 Take It Away or Walk the Other Way? Finding Positive Solutions for Integer…



138

what, if any, aspects are simply procedural or what aspects of model use facilitate 
intuitive understandings of integer arithmetic.

The findings of this study offer insights about conceptual metaphors as a factor 
of student thinking that could be used as part of a learner profile to select cases of 
students to participate in teaching experiments. In order to truly begin instruction 
from an individual student’s current thinking, we need to consider student thinking 
in terms of broader theories of cognition such as CMT.  Such approaches would 
likely support educators and researchers to come closer to designing instruction that 
capitalizes on an individual’s current thinking when instruction begins. Furthermore, 
this study in light of Wood’s (2010) finding that students who drew on different 
conceptual metaphors to explain their ideas about fractions may fail to communi-
cate with each other suggests that research that draws on social theories of learning 
would benefit from considering how students who think in terms of different con-
ceptual metaphors communicate with each other about integer operations. Thus, to 
optimize instructional approaches that begin from each student’s thinking, future 
investigations are warranted in which educators group students within heteroge-
neous achievement levels but homogenously in terms of conceptual metaphor pro-
files. Including the conceptual metaphors students express prior to instruction as 
part of learner profiles might also be important to account for in statistical analyses 
in larger-scale studies that otherwise do not draw on embodied cognitive perspec-
tives. If we consider the bases of students’ conceptions of integers in these ways in 
terms of the conceptual metaphors on which they draw, this might help us truly offer 
instructional practices that build on students’ thinking and differentiate integer 
instruction in real classrooms in ways not previously considered.
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Chapter 6
Different Differences: Metaphorical 
Interpretations of “Difference” in Integer 
Addition and Subtraction

Cecilia Kilhamn

Abstract Mathematically speaking, a difference is the result of a subtraction. 
However, when the number domain is extended from natural numbers to integers, 
the separation of the magnitude of a number from its value creates “different differ-
ences,” where the connection to subtraction is no longer straightforward. Based on 
video-recorded lessons and individual student interviews with 21 students in a 
Swedish year 8 class, a conceptual metaphor analysis of the discourse shows how 
ambiguous the term difference can be and how an implicit use of metaphors can 
create confusion in relation to addition and subtraction with integers.

 Seeking the Difference: A Vignette

We enter a classroom where a subtraction problem is being discussed.1 On the board 
the teacher has written: 283 – 275 = __. As the students solve the problem, different 
strategies emerge. Some students explain that they “jump back” or “take away” by 
starting on 283 and jumping back 275 steps, ending up on 8. Another student’s sug-
gestion is “to start on 275 and jump up 8 steps to 283, so the answer is 8,” saying 
that he “found the difference between 275 and 283 because the numbers are close.” 
The teacher represents the two strategies on the board, using an open number line as 
shown in Fig. 6.1, describing the second strategy as “adding-on.”
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1 The vignette is a transcript of a classroom video that was recorded and distributed as part of a 
professional development program for teaching basic arithmetic (Dolk & Fosnot, 2006). The pur-
pose of the video is to illustrate how teachers can introduce the number line model for subtraction 
to enhance mathematical reflection. This video is not part of the empirical data reported in the 
result section.
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Then the teacher asks the students to compare the two strategies and discuss why 
it seems to work to do addition with a subtraction problem. In the “adding-on” strat-
egy represented on the bottom line in Fig. 6.1, students describe 8 as “the differ-
ence.” In the “take-away” strategy represented on the top line in Fig. 6.1, they do 
not; when moving backward, 8 is referred to as “the answer,” not the “difference.” 
One student says, “It is different differences, in the first, 275 is the difference 
between 283 and 8, and in the second, 8 is the difference between 283 and 275.” So, 
the teacher asks if the first strategy, counting down steps 275 from 283, is, in fact, an 
illustration of another problem where 275 is the difference. He writes on the board:

283 – 8 = 275
275 + 8 = 283

This vignette highlights the complexity of subtraction and the elusive meaning of 
the word difference. Moving backward or counting down does not always generate 
what is perceived of as a difference. For a student who solves subtraction thinking 
about a backward motion or using a counting-down strategy, the difference is the 
subtrahend rather than the answer.

 Introduction

This chapter reports on difficulties concerning integer addition and subtraction that 
are closely related to the meaning of the word difference and metaphorical interpre-
tations of numbers and operations in the switch from natural numbers to integers. 
Teaching and learning about integers, sometimes referred to as signed or directed 

Fig. 6.1 Two strategies for solving 283 – 275 using the open number line
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numbers, is an ongoing discussion in mathematics education research (e.g., 
Freudenthal, 1983; Glaeser, 1981; Heeffer, 2008; Mumford, 2010; Schubring, 2005) 
and is considered of vital importance for the learning of algebra (Vlassis, 2002). 
When students encounter the new number domain, they often inappropriately use 
natural number reasoning, interpreting operations with integers through their expe-
riences with positive numbers (e.g., Bruno & Martinón, 1999; Petit, Laird, & 
Marsden, 2010). The result of a subtraction is called “difference.” In the domain of 
natural numbers, the difference is the result of a subtraction of a smaller number 
from a greater number. It is the difference in magnitude when two numbers are 
compared. When a greater positive number is subtracted from a smaller positive 
number, the result becomes negative, and an extension of the number domain is 
needed. In the new number domain, the meaning of difference is not always the 
same, nor is it always clear which of the two numbers is the greater number. For 
example, -3 is greater than -5, -3 > -5, by order, whereas -5 has a larger magnitude 
(absolute value) than -3, |-5| > |-3|, an issue central to students’ synthetic mental 
models for integer order and value (Bofferding, 2014). Hence, for integers, the sepa-
ration of magnitude from the ordered value of a number creates new differences. 
Consequently, the connection between the idea of a difference and the result of a 
subtraction is ambiguous.

Subtraction situations with natural numbers are characterized in terms of change, 
or compare/equalize (Fuson, 1992). In change situations, a state or set is trans-
formed into a different state, described as a state-translation-state problem (Marthe, 
1979; Wessman-Enzinger & Tobias, 2015). Such situations are commonly described 
as take-away situations where the difference is the answer to the question: “What is 
left?” In comparison situations, state-state-translation or state-state-state situations 
(Marthe, 1979; Wessman-Enzinger & Tobias, 2015), there are two states or sets, and 
the difference is what can be added to or removed from one to make it equal to the 
other. In comparison situations, the difference is the answer to questions of the type: 
How many more? How much less? Take-away situations dominate in natural num-
ber arithmetic, but they create difficulties when a larger number is taken away from 
a smaller number. On the other hand, compare situations may also be confusing 
since the direction of the comparison is not intuitive. Regarding the transition from 
natural numbers to integers, Fuson (1992) writes:

… consideration of the full range of addition and subtraction situations requires an exten-
sion to the integers (including negative as well as positive whole numbers), which necessi-
tates an avoidance of terminology or educational practices in the lower grades that interfere 
with later comprehension of these integers. (pp. 246–247)

A difference, according to Fuson, already involves an integer quality since it is 
relative, containing information about both who has more or less and the quantity of 
the difference. Switching from take-away situations to comparison situations is 
critical for subtraction of negative numbers (Kullberg, 2010; Marton & Pang, 2006). 
Also Wessman-Enzinger and Tobias (2015) advocate for the importance of posing 
problems of different types, since state-translation-state problems do not facilitate 
reasoning about all types of integer subtractions. The language used to describe 
subtraction situations and solution strategies may differ in different situations. Since 
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numbers and mathematical operations are abstract entities, we speak of them meta-
phorically (English, 1997; Pimm, 1981; Sfard, 1994). Expressions such as “take 
away,” “jumping backward,” “smaller number,” and “difference” all relate back to 
embodied experiences that may be different for different people. Although meta-
phors and analogies are essential for us in order to talk about abstract entities, they 
may also attach features to these entities that are misleading in new situations. When 
investigating young students’ reasoning about integer addition and subtraction, 
Bofferding (2010) found that the language used to describe solution processes 
revealed conflicting conceptions of addition and subtraction. What happens, for 
instance, when we switch from take-away situations to comparison situations or 
from natural numbers to integers? Does terminology used in the classroom also 
change or are students expected to be able to transfer the abstract meaning of words 
they have connected to subtraction? Are teachers aware of the metaphorical mean-
ings of the words they use, and do they make these meanings explicit in the class-
room discourse? These are some of the questions that initiated a study of metaphorical 
interpretations of the idea of difference reported in this chapter.

 Conceptual Metaphors for Arithmetic

In recent years, researchers have highlighted the importance of metaphors in mathe-
matics education (Danesi, 2003; English, 1997; Frant, Acevedo, & Font, 2005; 
Parzysz, Pesci, & Bergsten, 2005). Lakoff and Núñez (2000), for example, claim that 
mathematics would not exist without its metaphors. Building on a theory of concep-
tual metaphors (Lakoff & Johnson, 1980), Lakoff and Núñez assert that basic arith-
metic is understood through four “grounding metaphors.” Since mathematical objects 
are created through these metaphors, the objects inherit the structure of the experi-
ences that shape the source domains of the metaphors. While metaphors help us 
make sense of concepts by providing coherent structure, they highlight some features 
but hide others. Since different metaphors are used to structure different aspects of a 
concept, several metaphors are needed to fully understand a rich concept. Each meta-
phor contributes unique and sometimes contradictory features. The number 5 can, for 
example, be described as the fifth in an ordered row (an ordinal number) or as five 
objects in a set (a cardinal number). These two features of five are not the same: they 
draw meaning from different experiences. When speaking of five, we use our experi-
ences as source domains for different metaphors, which exist simultaneously and 
come to the forefront in different situations. All abstract mathematical objects are, 
according to the theory, conceptually grounded in firsthand embodied experiences of 
four grounding metaphors for arithmetic (Lakoff & Núñez, 2000). Three of these that 
are clearly in play in the classroom discourse analyzed in the study are:

• Measurement, where numbers are seen as length of segments
• Motion along a path, where numbers are seen as point locations or movements
• Object collection, where numbers are seen as collections or sets of objects
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Describing difference as a distance between two numbers is using the measure-
ment metaphor, whereas moving up or down on the number line is using experi-
ences of motion along a path to describe numbers and operations. In the vignette 
above, these two metaphors are blended. Additionally, the words “take away,” origi-
nating in the object collection metaphor, are used when moving backward on the 
number line. Removing objects, rather than movement, is the embodied experience 
for “taking away.”2

In previous research (Küchemann, 1981), the most difficult subtractions involv-
ing integers were found to be items of two types:

 (1) -2 – -5 = __ (44% correct solutions)
 (2) -2 – +3 = __ (36% correct solutions)

In both items, interpreting subtraction as taking away objects is difficult. It does not 
make sense to take away more negative objects than you have to start with (1) or to 
take away positive objects from negative objects (2). The first of the two test items 
can be seen as a distance on a number line (measurement), whereas the second can-
not, since the distance is 5 but the difference is -5. If seen as movements on a num-
ber line where subtraction is usually mapped as a backward movement, the first item 
involves subtracting a negative, which would imply a backward movement (some-
times illustrated by a car that turns around and then reverses, ending up advancing 
its position). Since the direction relates to both the bearing and the movement, it 
becomes ambiguous. Similar items were problematic in the study reported here, 
where analysis of the classroom discourse reveals an implicit and incoherent use of 
metaphors. In order to better understand students’ difficulties, the following research 
question was posed: What metaphors involving a difference appear in the classroom 
discourse when adding and subtracting integers, and how do these metaphors influ-
ence students’ sensemaking?

 Methods

 Data Collection

The empirical data described in this chapter was collected as part of a larger project 
investigating students’ development of number sense, where 1 class of 21 students 
was studied over a period of 3 years (school years 6–8, ages 12–15) using partici-
pant observation and recurrent individual interviews (Kilhamn, 2011). The focus of 
this chapter is the data collected during year 8 when negative numbers were intro-
duced. In total, seven lessons in year 8 contained work on the topic of negative 
numbers. These were all video recorded, transcribed verbatim, and translated into 
English by the author. At the end of year 8, each student was asked to comment on 

2 For a more thorough analysis of these metaphors, see Kilhamn (2011).
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episodes from these videos during a stimulated recall interview. The textbook unit 
on negative numbers was seen as part of the classroom discourse since a substantial 
part of the video-recorded lessons included individual work in the textbook.3 All 
students and their parents provided informed consent. The teacher was a qualified 
mathematics and science teacher with many years of experience teaching mathe-
matics in years 7–9. Since the aim of the research project was to investigate authen-
tic teaching with an interest in student sensemaking, no experimental or design-based 
elements were included.

 Analytical Framework

Difference as a mathematical idea appeared in the classroom discourse in various 
forms. Here, discourse is defined as the use of specific words, narratives, proce-
dures, and visual mediators (Sfard, 2008). The analytical focus is the metaphorical 
meanings of the word difference and other related words such as subtraction, addi-
tion, negative number, large number, and small number. The words and narratives 
that were produced, along with related visual mediators in the form of illustrations 
and mathematical symbols, were analyzed in terms of their metaphorical underpin-
nings. For example, a procedure that is part of this discourse is the use of sign rules 
when rewriting a symbolic expression including several minus signs. The classroom 
discourse includes the voices of the teacher, the textbook, and the students. Hence, 
teacher instruction, student work, and textbook activities were included in the anal-
ysis whenever the idea of difference appeared. I paid special attention to situations 
where conflicting narratives emerged. A conflict may appear when what was previ-
ously considered true is questioned, so that a change of discourse is necessary in 
order to resolve the conflict (Sfard, 2008). For example, in the domain of natural 
numbers, the smallest number is 1, but when an extension is made to include inte-
gers, there is no longer a smallest number. Discursive changes to resolve this con-
flict could either be changes in the narrative about what is actually true about 
numbers or a change in what defines the word smallest, giving it different meanings 
in different number domains. To understand a metaphor, the analogy from which it 
is created needs to be “unpacked.” The analytical tool chosen here is adapted from 
Lakoff and Núñez (2000), in which the metaphor is described in terms of features of 
the source domain (e.g., objects, temperatures, distances) that are used to communi-
cate about the target domain (i.e., the mathematical content), along with the attri-
butes of the target domain to which they correspond. In particular, mappings of the 
word difference are analyzed in various metaphors.

Before looking at the classroom discourse, I describe and analyze two metaphors 
mapping the difference between numbers. These two metaphors were frequently 

3 Carlsson, S., Hake, K. B., & Öberg, B. (2002). Matte direkt, år 8. Stockholm: Bonniers.
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referred to in the classroom discourse analyzed in this chapter but were seldom 
made explicit or contrasted. The description of the two metaphors is followed by a 
number of excerpts illustrating these metaphors within the classroom discourse, 
along with a discussion of problems and misunderstandings that arose as a result.

 Analysis of Two Metaphors

In the following analysis of the difference between numbers in two metaphors, it is 
necessary to distinguish between the two different aspects of size of a number. The 
term magnitude refers to what is often written as the absolute value: |a| for the mag-
nitude of any number a. The signed numbers +8 and -8 are said to have the same 
magnitude, |8|. Each number also has a value that relates to the order of numbers in 
the number system, such that …-2 < -1 < 0 < +1 < +2…. Thus, -8 is less than 8, -8 
< +8, but the magnitudes are equal, |-8| = |+8|. Although -3 is said to be a smaller 
number than -2, it is also commonly referred to as a “larger negative number” 
(Hertel & Wessman-Enzinger, 2017). Bofferding (2010) observed these conflicting 
interpretations among young students dealing with integer addition. She writes:

… adding a smaller positive to a larger negative number (e.g., -8 + 4) results in a larger 
number further to the right on the number line but which has a smaller absolute value. 
Likewise adding a negative to a negative number (e.g., -2 + -5) results in a number with a 
larger absolute value but which is further to the left on the number line. (p. 708)

In the classroom discourse explored here, the distinction between these two 
aspects of size was never made explicit. The two metaphors that frequently appeared 
in the discourse involving negative numbers were the object collection metaphor 
and the measurement metaphor.

 Object Collection Metaphor: Comparing Sets

The teacher used the word difference for situations she identified as a comparison 
between sets. In the object collection metaphor, difference is mapped onto subtrac-
tion when the number of objects in two collections is compared. In the domain of 
natural numbers, this could be visualized as in Fig. 6.2. In the figure, both collec-
tions are illustrated as separate sets, but the metaphor is similar if the smaller set is 
included in the larger set, as in the problem: There are 8 apples, 5 are green, how 
many are not green? The difference is the result of subtracting the smaller number 
from the larger number. In the domain of natural numbers, the magnitude and the 
value coincide, and many students learn as a rule to always subtract the smaller from 
the larger. The meaning of the word difference is clear in a comparison situation. In 
the domain of integers, this mapping can be done in a similar fashion if both num-
bers are negative.
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This mapping is consistent with the meaning of subtraction of positive num-
bers (Bruno & Martinón, 1999). However, in this mapping it is the magnitudes 
that are considered rather than the values. The smaller magnitude is subtracted 
from the larger magnitude. If the numbers are negative, the magnitude is opposite 
in relation to the value (i.e., the number with the smaller value has the greater 
magnitude). Finding the difference between the two numbers -8 and -5, for exam-
ple, is similar to finding the difference between a debt of 8 and a debt of 5. The 
difference is a debt of 3 and is mapped onto the subtraction -8 – -5 = -3. The dif-
ference, considered as a magnitude, can be said to be smaller than the original 
collection (i.e., a debt of 3 is a smaller debt than a debt of 8, even if the value of 
-3 is larger than that of -8). The mapping, however, only works for subtractions 
(-a) – (-b) where |a| > |b|; it does not work as a mapping for the subtraction -5 – -8. 
In this metaphor, the difference is a collection of objects, and the smallest collec-
tion of objects is the empty collection, which means that the difference is always 
a magnitude.

A special case of the object collection metaphor is when objects of different 
types (positive and negative) are compared. Figure 6.3 illustrates the situation of 
finding the difference between a negative and a positive number in an object collec-
tion metaphor. An example of this mapping is when the teacher refers to -8 and +5 
as “a debt of 8” and “a gain of 5.” The inconsistent feature is that difference is 
mapped onto the addition of -8 and +5, not the subtraction (i.e., -8 + +5 = -3 or +5 
+ -8 = -3). The idea is that opposites “pair off,” and the difference consists of the 
objects that are left unpaired. This notion of “pairing off” relates to the aspect of 
total zero described by Gallardo and Hernández (2006). In mathematical terms, this 
is represented as a sum rather than a difference, but in the teacher’s discourse, it is 
talked of as a difference, drawing on the same idea of comparing sets that was the 
origin of the term difference in the object collection metaphor. With objects of dif-
ferent types, it is, however, no longer relevant to see one set as included in the other.

The metaphor just described is embedded in the sign rules formulated in the 
Brahmasphuta-siddhanta (628, as cited in Mumford, 2010), where it is written con-
cerning addition of integers, “[The sum] of two positives is positive, of two nega-
tives, negative; of a negative and a positive [the sum] is their difference…” and 
concerning subtraction, “[if] a larger [number is to be subtracted] from a smaller, 
their difference is reversed—negative becomes positive and positive negative” 

Fig. 6.2 Object collection metaphor. The difference is a comparison of two sets of objects and 
shows the result of the subtraction |8| – |5|= |3|. In the domain of natural numbers, this illustrates 
8 – 5 = 3, and in the domain of integers, it illustrates -8 – -5 = -3
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[emphasis inserted] (p. 123). The word difference can in this way come to be associ-
ated with both addition and subtraction. However, as we shall see in the excerpts, 
the teacher tries to bridge this inconsistency by saying that the students should 
“think subtraction” 8 – 5 = 3 when they “write addition” (-8) + 5 = (-3). They will 
know what sign to put in the answer by considering which type of objects there were 
more of at the start.

 Measurement Metaphor: Distance

In the video-recorded lessons analyzed in this study, the textbook was frequently 
used as a teaching tool, and students spent a large portion of the lesson time working 
individually in their textbooks. In addition to the teacher’s frequent use of an object 
collection metaphor, the textbook emphasized a measurement metaphor to describe 
difference. In this metaphor, in the domain of natural numbers, difference is mapped 
onto the distance between two locations or points. It is mapped onto the subtraction 
of the smaller number from the larger number, but the difference itself is a distance 
and as such can only be a magnitude. As the source domain does not normally 
include experiences of negative distances, it does not allow for subtraction of a 
larger number from a smaller number.

Figure 6.4 shows how the number domain is extended to integers in the textbook. 
The difference is still referred to as the distance between two points and is mapped 
onto the subtraction of the smaller value from the larger value as for natural num-
bers. This can, for instance, be written as 3 – -4 = 7. Contrary to the metaphor in the 
natural number domain, the distance here could also be mapped onto addition of the 
magnitudes (i.e., 3 + 4 = 7).

The textbook illustrates the equivalence between the two expressions as shown 
in Fig. 6.4. In the expression 3 – -4 = 7, the numbers 3 and -4 are interpreted as 
locations and the difference is the distance between them. In the expression 3 + 4 
= 7, in fact, all three numbers are interpreted as distances: two distances added 
together becomes a longer distance. In the classroom, the teacher used this pic-
ture to help students visualize the sign rule of “two negatives make a positive” 
(i.e., changing 3 – -4 into 3 + 4). An assumption in this metaphor is that a distance 

Fig. 6.3 Object collection metaphor in the domain of integers. The difference here is the result of 
the addition -8 + +5 = -3, where five of each type pair off and three negatives remain
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cannot be  negative, so it only works when subtracting a smaller value from a 
larger value. There is nothing in the source domain of our experiences of dis-
tances that maps onto a subtraction of a number with a larger value from a smaller 
value, such as -10  – 6 = -16. When referring to the difference as a distance 
between two points, the calculations -10 – 6 and 6 – -10 would be the same since 
the distance between the numbers is 16 in both cases, just as the distance between 
two cities is the same whichever direction you travel. That conclusion is in con-
flict with other narratives about subtraction as noncommutative. Consequently, in 
order to know whether the answer is -16 or +16, it is necessary to extend the 
metaphor to include direction. In the textbook, the introduction of this metaphor 
was followed by non-contextualized tasks with the structure a – b where a > b. 
No problem included a subtraction with a negative difference, and nothing was 
said about the restrictions connected to the metaphor, so the inherent conflict did 
not surface.

 Finding the Difference Between Numbers with Different Signs

We have seen that in a situation where one number is positive and one is negative, 
the phrase “find the difference between the numbers” can have different meanings 
and induce different procedures depending on the metaphorical meaning attached to 
it, summarized in Fig. 6.5.

Participants in a discourse may not think in terms of the same metaphor when 
using the phrase “finding the difference between the numbers.” This presents a 
dilemma, where confusion as to whether to use addition or subtraction and mag-
nitudes or values could be the result. In both of the metaphors, an introduction of 
directed differences is possible but would entail an extension of the metaphor that 
is not found in the empirical data of this study. A “negative number of negative 
objects” and a “negative distance between locations” are word constructions far 
removed from intuition, creating narratives that would need to be subject to very 
explicit negotiation of meaning in order to be useful extensions of the 
metaphors.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Fig. 6.4 Measurement metaphor involving integers. The difference is a result of the subtraction 
3 – -4 = 7 or the addition 3 + 4 = 7
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 Examples from the Classroom

This section contains episodes where the idea of “finding the difference between 
two numbers” surfaced as a main issue in the classroom interaction. The difference 
between two numbers was sometimes associated with the difference between two 
magnitudes in an addition of numbers with opposite signs and sometimes associated 
with the difference in value in a subtraction of two numbers.

 Whole-Class Instruction: 4 + (-6)

In an episode from the first negative number lesson, the teacher discusses with the 
class how to work out the sum of 4 positive (green dots) and 6 negative (red dots). 
One student has suggested writing this as “four plus minus-six” and the teacher 
writes 4 + (-6). Another student, Ove, suggests 4 – 6. The teacher makes a distinc-
tion between “how to think” and “how to write.” Although the original operation is 
an addition, both Ove and the teacher, in two different ways, interpret the situation 
as a subtraction in the following excerpt.4

Fig. 6.5 Overview of how the two metaphors map a difference between two numbers with differ-
ent signs (one positive and one negative). The different mappings are named A for the object col-
lection metaphor and B1 and B2 for the measurement metaphor

4 Transcript orthography: … means a short pause; […] indicates removed words or utterances; 
[word] indicates what the conversation is about; (word) clarifies an action/gesture; emphasis in 
bold writing is added by the author as part of the analysis.
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Excerpt 6.1: Whole-Class Instruction

1 Teacher [4 + (-6)] How were you supposed to work this out?
2 It looks rather strange when there are two, Ove,
3 when there is both a plus and a minus next to each other, it looks a bit strange.
4 So how do you explain your thinking?
5 How are you supposed to think when you work it out?
6 Ove You think 4 minus 6
7 Teacher Well, 4 minus 6,
8 and how then, do you think when you work out 4 minus 6?
9 Ove You think, eh, just 4 take away 6, you have a debt then
10 Teacher You get a debt then, ok, of 2.
11 The question is, we know they are different so to speak
12 something which is positive and something which is negative,

is what we have here,
13 and then we must work out the difference between them
14 The difference between 6 and 4 is 2, yes
15 and there were more debts, there were more on the red dice that are debts.

Ove sees this as a take-away situation by interpreting the minus sign as a subtrac-
tion [Excerpt 6.1, line 9]. In his discourse, both 4 and 6 are positive numbers; money 
is taken away, but since we do not have enough, we end up with a debt. Only the 
answer is a negative number. In his metaphor, the mappings onto the operations are 
the same as in the domain of natural numbers. Ove can take away more than he has 
and end up having a debt (but he would have difficulty taking away a debt unless he 
had one to start with). The teacher tries to make a distinction between how to write 
and how to think [lines 1–5]. She sees the situation as a comparison situation 
between two opposite types of objects [lines 11–14]. The difference is a difference 
in magnitude between 6 and 4, which is a natural number subtraction, and she con-
siders the sign separately [line 15]. The situation described by the teacher is an 
example of (A) in Fig. 6.5 above: the sum of two values of opposite kinds results in 
a difference expressed as a magnitude where the sign of the number is determined 
separately. (See also Fig. 6.3 for an illustration of the metaphor.) The teacher says 
6 – 4 = 2 where 2 is negative, whereas Ove says 4 – 6 = a debt of 2.

 George’s Problem: Subtracting a Negative from a Negative, 
-2 – -7

When working on subtraction tasks in his textbook, George becomes uncertain and 
calls for the teacher, seeking support for a conjecture. He says, “A negative number 
minus another negative number will always be a positive number.” He makes this 
conjecture when trying to solve a problem where he is asked to write two negative 
numbers in the brackets to make the equivalence true: ( ) – ( ) = 5. A long discussion 
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follows where the teacher gives counterexamples to his conjecture and talks about 
situations of taking away a “smaller debt from a larger debt” and still ending up with 
a debt (i.e., a negative number). In all these examples, subtraction is seen as taking 
away one type of object from a greater amount of the same type of objects, as illus-
trated in Fig. 6.2. Then George asks about the task (-2) – (-7) = 5, which is a subtrac-
tion of a type that does not correspond to anything in the source domain of the metaphor 
the teacher had been using. Excerpt 6.2 shows how the teacher converts this into the 
addition problem -2 + 7 using a sign rule and then interprets the addition of two num-
bers with different signs metaphorically as “finding the difference between the two 
numbers,” in line with the discourse in the whole-class introduction in Excerpt 6.1.

Excerpt 6.2: Subtracting a Negative from a Negative

1 George [George has suggested (-2) – (-7) = 5] How about this, 
is it right?

2 Minus 2 minus minus-seven5 is 5?
3 Teacher Minus 2 minus minus-seven becomes plus 7, doesn’t 

it?
4 George yes
5 Teacher And minus 2 plus 7,
6 the difference between 2 and 7 is 5,
7 which were there more of, positive or negative?
8 George Positive
9 Teacher Precisely, so therefore it’s plus-five.

It is implicit in the teacher’s reasoning that she needs to simplify the expres-
sion -2 – -7 into -2 + 7 by applying a sign rule. The teacher then interprets -2 + 7 
within an object metaphor, talking of the numbers as objects of different kinds 
where the difference is mapped onto addition [Excerpt 6.2, lines 5–6]. However, 
it is the difference in the magnitude of the numbers that is compared, and which-
ever type there are more of determines the sign [Excerpt 6.2, line 7]. This is 
another example of (A) in Fig. 6.5.

 Lina’s Problem: Adding a Negative and a Positive, -12.8 + 7.88

Excerpt 6.3 is from the third lesson in the sequence about negative numbers. Tina 
and Lina are working with the task: (-12.8) – (-7.88). They simplify the expression 
using a sign rule and come up with -12.8 + 7.88 but do not know how to go on.

5 In a Swedish school context, negative numbers are most commonly spoken of as minus-numbers. 
The distinction between “minus seven” meaning subtract seven and “minus-seven” meaning nega-
tive seven is very difficult to discern. To make this clearer in the excerpts, negative numbers such 
as (−7) are expressed in words: minus-seven.
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Excerpt 6.3: Adding a Negative and a Positive

1 Teacher You need to take the difference, between, you have minus 12 point 8 and plus 8 
point, eh 7 point 88. So you need to work out the difference between them.

2 You get the difference by pressing 12 point 8 minus 7 point 88.
3 And you get 4 point 92, and then you know that the answer is minus. Because you 

saw, 12 is bigger than 7.
4 Tina But did you take minus now?
5 Teacher Now I just took the normal, 12 point, I took the difference between them, 12 

point 8 and 7 point 88, equals, and then I got 4 point 92.
6 And then, I know the answer is minus 492, 4 point 92. Because there were more 

minuses, weren’t there?
[…]

11 Teacher No they are different, so you just take the difference.
12 Lina Yes… (Lina tries doing it on the calculator pressing 12.8 + 7.88)
13 Teacher Oops, you plussed6 them
14 Lina But wasn’t I supposed to plus, there were two minus signs?
15 Teacher That one is minus. And that one is plus. And they should be plussed together.
16 But now it’s minus 12 point, and then they are different signs. Then it’s minus.
17 Lina I don’t understand anything.
18 Teacher You owe me 12 kronor
19 Lina Yes
20 Teacher And you are given 7 kronor
21 Lina Yes
22 Teacher Well, then what you get, is a difference
23 Lina How do you calculate it?
24 Teacher Minus
25 Lina You do minus?

In Excerpt 6.3, lines 1–6, the teacher is talking metaphorically about the task 
-12.8 + 7.88 in line with what she did in the whole-class instruction. The addition of 
two numbers with opposite signs is interpreted as a comparison of two collections 
of different types of objects (see Fig. 6.3). This comparison is then mapped onto a 
subtraction of magnitudes: 12.8 – 7.88. The teacher uses the term “normal differ-
ence” [line 5] indicating that she now considers only the magnitudes and treats the 
numbers as quantities. Lina wants to do an addition since there was a plus sign 
indicating addition [line 14], and despite the teacher’s persistence, Lina is still sur-
prised in the end that the teacher uses minus [line 25]. In lines 15–16, the teacher is 
inconsistent about whether to map onto addition or subtraction, trying to distinguish 
between writing it as an addition and thinking of it as a subtraction. Compared to 
George’s problem, this task is complicated by the fact that it is the negative number 
that has the larger magnitude, which means that the answer is negative.

6 In a Swedish school mathematics context, the verbs adding and subtracting are often spoken of as 
“plussing” and “minusing.”
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Throughout the episode, the subtraction is transformed and reinterpreted several 
times:

 (a) -12.8 – -7.88 is changed into -12.8 + 7.88 [using a sign rule].
 (b) -12.8 + 7.88 is interpreted as a difference, although it is an addition [line 1, line 

15], and therefore transformed into 12.8 – 7.88 [line 2, line 16].
 (c) 12.8 – 7.88 is worked out on the calculator, producing the answer 4.92 [line 3], 

which is interpreted as -4.92 [line 3].

Although the whole episode has a procedural focus, there are clear metaphorical 
meanings related to the object collection metaphor in the words used by the teacher, 
such as difference and “more minuses” [line 6] and the example of owing 12 kronor 
and giving 7 kronor [lines 18–20]. Although we could argue that the use of a calcu-
lator afforded the possibility of simply pressing −12.8  +  7.88 and getting the 
answer -4.92, that strategy would not be useful without a calculator. In another 
episode when Olle is working on a similar task, -12.8 + 3.02, he does not have a 
calculator at hand and wants to work it out using a pen and pencil algorithm. The 
procedure is the same: he needs to work out 12.8 – 3.02 first and then interpret the 
answer as negative. The difference is mapped onto addition when it is written but 
onto subtraction of magnitudes when it is calculated

We have now seen several examples where words and narratives from an object 
collection metaphor introduced by the teacher influenced the classroom discourse 
about negative numbers. The textbook relies on a measurement metaphor using con-
texts such as a number line, time line, and thermometer. In the following example, 
we see one student, Tomas, using the textbook discourse when discussing a tem-
perature problem.

 Interpreting a Difference as More Than Zero

In the stimulated recall interview with Tomas, an episode from one of the classroom 
videos was viewed as a probe for discussing difference. The episode was taken from 
the last lesson on the topic of negative numbers, where students came to the white-
board in pairs to present and solve a negative number story problem they had con-
structed. Tomas and Hans presented their problem:

It is 22° inside and -13° outside. What is the temperature difference?
22 – (-13) = 35. The difference is 35°.

When solving the task they used the words “difference” and “degrees” from the 
context of the task. They said: “You need to take the difference between twenty-two 
degrees and minus thirteen. And so that is thirty-five degrees. So it makes plus, two 
minus (pointing to the two minus signs), and so you get the difference.” This epi-
sode is discussed in the interview with Tomas as shown in Excerpt 6.4 (where Int. is 
the interviewer).

6 Different Differences: Metaphorical Interpretations of “Difference” in Integer…



158

Excerpt 6.4a: Interpreting a Difference as More Than Zero

499 Int. How do you know that you should take 22 minus minus-thirteen?
500 Tomas Because, that’s what you need to do to work out the difference
501 Int. yes?
502 Tomas Then you need to take minus, I mean, the big number minus, the, smaller
503 Int. yes?
504 Tomas and so you’ve got minus 13 as the smallest number
505 Int. yes ok, is it always the bigger number first?
506 Tomas eh… or yes, otherwise you get a negative number, that can… that’s not a … 

well… yes that’s how it is, you need to take the big…

Tomas interprets “finding the difference” as a question of subtracting the smaller 
value from the larger value but works out the answer by adding the two magnitudes, 
as in (B2) in Fig. 6.5. To further explore Tomas’s way of thinking, the interviewer 
introduces a new problem where the magnitude and the value diverge by asking 
Tomas about the difference in temperature if it is -35° outside and +20° inside; i.e., 
-35 < +20 but |35| > |20|. The interviewer then continues with a non-contextualized 
addition of a negative number and a positive number: -35 + 20.

Excerpt 6.4b: Interpreting a Difference as More Than Zero (continued)

508 Tomas Then you take eh, that, plus 20 minus minus-thirty-five
509 Int. Mm? and so that’s biggest? [pointing to 20]
510 Tomas Yes

[…]
517 Int. If I calculate this 20 minus minus-thirty-five. What does that make?
518 Tomas That’s ehm, 55
519 Int. Mm… and how about if I work this out [writes −35 + 20] minus 35 plus 20, what 

does that make?
520 Tomas Well that makes ff… minus 15
521 Int. So then, which is the difference between these numbers, is it 55 or is it 15?
522 Tomas Eh it’s 55

[…]
525 Int. How do you know that you need to put the biggest number first?
526 Tomas …you know…well, but you always have to kind of something to… if you’ve got 

something, some difference
527 Int. Mm?
528 Tomas Then you need to have one higher and one lower
529 Int. Mm?
530 Tomas And eh, if you want to work out, a eh…. positive number which is what you need 

to get
531 Int. Mm?
532 Tomas If you want to work out the difference that is, the only way is, take the biggest…
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533 Int. Mm, good explanation. Why does the difference have to be a positive number?
534 Tomas Because, ehm, that’s smaller. It always has to be… a… you know it always has to 

be… something, smaller than… bigger. So there kind of has to be a… difference 
between them

535 I Mm?
536 Tomas And so it’s positive

Tomas clearly conceives of a difference as a nonnegative number or rather as a 
magnitude. The difference between two numbers is associated with a procedure 
coherent with a measurement metaphor (see Chap. 9 in this book for more about this 
use of measurement metaphor and temperature). He can work out -35 + 20 correctly 
but does not consider it a difference [Excerpt 6.4b, line 521–522], so his mapping of 
a difference is more in line with that of the textbook than the teacher’s discourse 
involving an object collection metaphor. His metaphorical meaning of the word dif-
ference is that a difference is a number larger than zero, a positive number [line 530].

The discourse in this classroom has provided the students with two quite differ-
ent metaphors involving negative numbers: an object collection metaphor and a 
measurement metaphor. The above analysis showed that the meaning of the word 
difference was elusive and at times contradictory when related to integers. As shown 
in Fig. 6.5, a difference could be connected to writing addition but thinking subtrac-
tion (A) or to writing subtraction but thinking addition (B1 and B2). In all cases, the 
difference is a magnitude, and if the answer is negative (as in some cases of A), the 
sign has to be dealt with separately. With regard to the measurement metaphor (B), 
there was no narrative in the discourse involving a negative difference

 Metaphorical Meanings Affecting Student Achievement

For a teacher of mathematics, an important question is whether this metaphorical 
reasoning has any impact on students’ achievement. We shall look at the students’ 
solutions to a problem about temperature differences that appeared on the test at the 
end of the chapter on negative numbers:

Problem7 The temperature in the freezer was -14°C
The temperature in the room was +20 °C
How many degrees difference were there between  
the freezer and the room?

With a real thermometer at hand, the problem would have been trivial for a 
student in Sweden, where temperatures below zero are discussed every winter. 
However, the task was not simply to determine the difference between two 

7 Two test versions were used: one had the numbers −12 and + 20 and the other −14 and + 20. For 
comparison reasons they are all referred to here as though they were − 14 and + 20.
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temperatures but also to represent it appropriately. The variety of solutions 
presented by the students indicates confusion concerning whether to add or 
subtract and whether to use magnitudes or values. Table 6.1 shows that, out of 
21 students, correct answers were given by 9 students who modeled the differ-
ence as an addition of magnitudes and by 5 students who modeled it as a sub-
traction of values, all in line with the measurement metaphor (as described in 
Fig. 6.5b). Seven out of 21 students (33%) suggested mathematically incorrect 
calculations or representations, choosing a wrong combination of operation 
and magnitude/value.

Data suggests that although teacher, textbook, and students all used the same 
words, these had different metaphorical underpinnings and therefore created differ-
ent narratives. Problems arose when the participants in the lesson were unaware of 
this and meanings were taken as shared although they differed. When conflicting 
narratives emerged, they were not discussed and never resolved, resulting in uncer-
tainty for the students.

 Discussion

Two main points about the discourse can be noted in these results. First, the teacher 
conveyed that there are two different discourses: what you think and what you write 
(e.g., thinking subtraction but writing addition). Maybe this distinction could be 
described more constructively as a distinction between representing the problem 
with signed numbers and solving it using natural numbers. Second, in these lessons 

Table 6.1 Students’ solutions to a question about temperature differences (n = 21)

Mapping of 
difference Solution n %

Addition 14 + 20 = 34
With a clear reference to a visual representation of a number line

4

14 + 20 = 34 Without further comment 5
Total number of correct answers 14 67
Addition -14 + 20 = 34

Correct result but incorrect representation. The first temperature is 
written as a signed number but in the calculation the magnitude is 
used

1

(-14) + 20 = 6 Adding the two values 2
Subtraction 20 – 14 = 6 Finding the difference between the magnitudes instead 

of the values
2

14 – 20 = 34
Correct result but incorrect representation. Writing a subtraction 
but calculating an addition

1

Others (Incorrect) 1
Total number of incorrect answers 7 33
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most of the metaphorical reasoning came from the teacher. The students more often 
used mathematical terminology, which suggests that they were attempting an intra- 
mathematical discourse or that they were only interested in establishing a proce-
dure. According to Sfard (2007), it is necessary to change the mathematical 
meta-rules in order to make sense of negative numbers; rather than justifying narra-
tives about negative number operations through real-world examples or concrete 
models, students need to accept an intra-mathematical justification. In this study, 
the teacher guided the students into metaphorical reasoning by only using models 
and metaphorical justifications, thereby staying completely within the old meta-
rule. However, the models used were only concrete in an imagined sort of way: 
there was no use of money and thermometers to justify the reasoning in a hands-on 
manner. Furthermore, the teacher left the concrete models when she formulated a 
sign rule as a procedure of exchanging two minus signs with a plus sign; but, even 
when students applied the rule correctly, they had problems making sense of the 
calculation and getting a correct answer. Many times metaphors appeared implic-
itly, and the teacher might not have been aware of them. The examples above illus-
trate how underlying and implicit metaphors are sometimes taken for granted but 
are actually not a shared reference. There was no explicit or shared understanding 
of a “difference between two signed numbers,” and consequently the students were 
uncertain about how to solve such problems. There was no shared understanding of 
what “taking away a debt” meant. Font, Bolite, and Acevedo (2010) observed in a 
study of teachers’ use of metaphors that “There was no control over metaphors 
while teachers were unaware of using them” (p.  148). Becoming aware of the 
underpinning metaphors would seem to be a necessary requirement for better 
understanding here.

Another important finding concerns terminology relating to the size of numbers 
and whether to consider magnitudes or values of signed numbers. There were no 
words in the classroom discourse to distinguish between the two different aspects 
of size that diverge for negative numbers: a smaller negative number has a larger 
absolute value. Difference was, for most of the students, associated with magni-
tudes and must therefore be more than zero, as Tomas expressed in Excerpt 6.4. 
Various researchers have emphasized the importance and difficulty of distinguish-
ing between the magnitude and direction of negative numbers (Altiparmak & 
Özdoan, 2010; Ball, 1993). These results support previous results and suggest the 
necessity of using appropriate words to distinguish between the two meanings of 
size, for example, by introducing the idea of absolute value along with signed num-
bers. The rather imprecise discourse of the mathematics classroom could have 
influenced these students’ achievement. Great uncertainty prevailed among the stu-
dents concerning the meaning of the phrase “take the difference between the num-
bers,” which was influenced by the different contexts where this phrase has been 
used and the different metaphors these contexts become source domains for. 
Consequently, the students did not develop a discourse rich enough to deal with 
“different differences.”
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 Implications

In the empirical data for this study, integers were talked about mainly as object 
collections in take-away or add-on situations often involving money or as distances 
in measuring instances such as the distance on a number line, time line, or thermom-
eter. When there were tasks involving adding one positive with one negative num-
ber, the numbers were interpreted as object collections and treated as magnitudes to 
find the difference. Very rarely did any motion along a path appear. However, in the 
vignette at the start of this chapter, addition and subtraction were presented as 
motions in terms of jumps up or down the number line. In all the metaphors 
discussed so far, the common problem is the connection between subtraction and 
the meaning of the word difference. When the word difference appears in a new situ-
ation with a new meaning, a conflict may emerge. One way to resolve that conflict 
is to spend time making the meaning of the words we use explicit, detaching them 
from their metaphorical meaning to allow them to represent generalized features of 
abstract mathematical concepts. Freudenthal (1983) writes, “however one proceeds 
in extending the number concept, it is necessary that the fact and the mental process 
of extending are made conscious” (p. 460). The extension of the number concept 
needs to become part of the discourse, and to this end an appropriate use of words 
with clear meanings in metaphorical reasoning is essential. Precisely the kind of 
reflective mathematizing illustrated in the introductory vignette is needed.

In the case of subtracting integers, most of the ambiguity of the word difference 
comes from the fact that we call the answer to a subtraction with positive numbers 
a difference although we represent it as something else: as the remainder in a take- 
away situation or the location we end up on in a backward movement. Neither of 
these two meanings of difference is related to the everyday meaning of difference as 
dissimilarity or inequity of size when comparing two things, nor are they easy to 
extend to subtracting integers. In the measurement metaphor, the difference is a 
distance between two locations, akin to an everyday experience of differences, but 
not generalizable to integer subtractions due to its lack of direction.

Returning to the introductory vignette, we can imagine how the discussion con-
tinues. Although it is a lesson about positive whole-number subtraction and not 
about subtracting negative numbers, it goes to the heart of how we talk about sub-
traction. We left the class with the question, “Why does it work to do addition in a 
subtraction problem?” The answer to that question lies in how we define the term 
difference. In the subtraction sentence 283 – 275 = 8, the answer 8 is called the 
difference between the two numbers. Not because it is the number we end up on 
when we move backward 275 steps. Not because it is what remains after we have 
removed 275 objects. The answer 8 is called the difference because it is what we 
need to add to the subtrahend 275 to make it the same as the minuend 283. This 
explanation connects addition with subtraction: a − b = x ↔ b + x = a. When a 
subtraction is rewritten as an addition, the motion in the metaphor (x) can have 
direction and be represented by a positive or a negative number: how much more 
(+x) or how much less (-x) one needs in order to be equal to the other. Taking away, 
moving backward, and measuring distances are simply procedures used to work 
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out that difference, sometimes useful and sometimes not. To realize this, we need 
to move away from take-away situations in favor of compare/equalize situations 
(Fuson, 1992), whatever the metaphor for numbers may be. I will venture to 
describe how this could be done using two hypothetical extensions of the ideas 
brought forward in the introductory vignette, taking them further to illustrate the 
subtractions -2 – -5 = 3 and -5 – -2 = -3. In both items, the absolute difference 
between the numbers is the same, but the directed difference (i.e., the difference as 
the answer in a subtraction) is not. The metaphorical meaning of numbers and 
operations in the following illustrations can be generalized to all subtractions 
involving integers. The point of explicitly (re)defining subtraction and difference in 
this way is to connect subtraction with addition. In both examples, a [state1 + trans-
lation = state2] addition is connected to a [state2 – state1 = translation] subtraction.

 Using an Object Collection Metaphor

If collection a contains 2 negatives and collection b contains 5 negatives, the sub-
traction a − b is -2 – -5. It illustrates the difference between the two numbers inter-
preted as: How many objects of what kind do we need to add to collection b to make 
it the same as collection a? In other words -5 + x = -2. Adding 3 positive objects to 
5 negative objects will result in 2 negative objects, given the conceptual understand-
ing of zero as a total zero, made up of opposites (Gallardo & Hernández, 2006). The 
difference is +3 because -5 + +3 = -2. Within the context of debts and gains from the 
classroom described above, the subtraction -2 – -5 would be discussed as follows: 
The difference between these two economic states is what I need to add to the sec-
ond one to make it equal to the first one. A debt of 5 needs to have a gain of 3 added 
to be equal to a debt of 2. The important issue when talking about differences of 
states is the order of comparison (Kullberg, 2010). Reversely, the subtraction -5 – -2 
illustrates the difference between the two numbers interpreted as: How many objects 
of what kind do we need to add to -2 to make it the same as -5? In this case the 
difference is -3 because -2 + -3 = -5.

 Using a Movement Along a Path Metaphor

If a is the location -2 (i.e., 2 below zero) and b is the location -5, then the subtraction 
a − b is written as -2 – -5 and interpreted as: How far and in what direction do I need 
to move to get from b to a? In other words -5 + x = -2. In this case, the difference is 
+3 because -5 + +3 = -2 (see the top arrow in Fig. 6.6). Similarly, -5 – -2 illustrates 
the difference between the two numbers interpreted as: How far and in what direc-
tion do I need to move to get from -2 to arrive at -5? The difference is -3 because -2 
+ -3 = -5 (see the bottom arrow in Fig. 6.6).

6 Different Differences: Metaphorical Interpretations of “Difference” in Integer…
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In order to understand subtraction as difference in this way, a thorough under-
standing of addition of integers is essential, including an operational and conceptual 
understanding of the number zero. Engaging students in the kind of reflective inves-
tigations about subtraction and its relation to addition described in the introductory 
vignette and the final examples will pave the way for the change of meta-rules that 
Sfard (2007) calls for when integers enter the scene.
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Chapter 7
Challenges of Promoting Conceptual 
Change with Instructional Contexts

Laura Bofferding

Abstract This chapter focuses on the interaction of two first graders as they attempt 
to make sense of a particular instructional context for learning negative numbers. 
The context is one where they move an elevator to a building’s floors above and 
below ground in order to model integer addition and subtraction problems. In par-
ticular, the focus of the activity was to discover that solving problems such as 4 – 1 
and 1 – 4 will result in different answers. The two students misinterpret each other, 
model the problems in multiple ways with the elevator (and to varying extents), but 
also work cooperatively at times as they complete the activity. Their efforts high-
light the difficulties they encounter when working with ready-made contexts and in 
obtaining solutions that do not fit their prior experiences. The results present a brief 
view of the conceptual change process and support a stronger focus on connecting 
to students’ prior thinking when introducing new instructional contexts.

Conceptual change is often a lengthy and difficult process, especially in cases where 
new concepts are counterintuitive and do not align with observable phenomenon 
(Vosniadou, 2013). In the case of negative integers, students have particular diffi-
culty negotiating the values of negatives (Ball, 1993; Bofferding, 2014). Negative 
quantities are not tangible in the world in the way that positive quantities are 
(Martínez, 2006), and this is reflected in children’s counting sequences which start 
“One, two, three…” and may sometimes include zero when counting backward 
(Bofferding, 2014; Clements & Sarama, 2014) – neither sequence typically includes 
negative numbers. Further, students’ early experiences with whole numbers can cre-
ate barriers for their later learning of integers. Murray (1985) captured this well 
when identifying eighth- and ninth-grade students who could solve a variety of 
negative integer problems but solved 3 – 8 as 8 – 3. For this problem type, young 
children will also reverse the numbers or answer 0 (Peled, Mukhopadhyay, & 
Resnick, 1989), arguing that there are not enough to subtract (Bofferding, 2010).

L. Bofferding (*) 
Purdue University, West Lafayette, IN, USA
e-mail: lbofferd@purdue.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90692-8_7&domain=pdf
mailto:lbofferd@purdue.edu


168

Although it may at times seem elusive, there are mechanisms for promoting con-
ceptual change through instruction. One such way is to present students with 
 situations in which they have the opportunity to confront their current way of think-
ing with a different yet plausible one. For example, for children who think the Earth 
is flat, Vosniadou and Skopeliti (2014) suggest that teachers show them how the 
Earth can appear flat to a person standing on the ground but appears round to an 
astronaut in space, rather than just telling them that it is round. In this way, they can 
understand why they have the perception they do but that it is limited. Similarly, for 
children who ignore negative signs, providing contexts where they have to compare 
problems with and without negative signs can help them begin to notice them 
(Aqazade, Bofferding, & Farmer, 2016; Bofferding, 2014).

A complementary way to promote conceptual change is to have students work 
with others in order to encourage them to reconsider their own thinking (Vosniadou, 
2007). Children naturally challenge each other as they work, providing opportuni-
ties to discuss different reasoning (Inagaki & Hatano, 2013) or explore a concept in 
new ways (Parks, 2015). In the latter case, Parks provides an example of two chil-
dren covering a Lego plate with Legos. When Ivan sees the tricky gaps left, he starts 
to build upward; however, Cliff demonstrates how they can continue to fill in some 
of the spaces by using narrow pieces and rotating them. They then work to com-
pletely fill the bottom, sometimes moving pieces in order to meet their goal. In this 
case, Cliff helps Ivan consider the gaps from a new perspective, which ultimately 
leads him to see covering the whole plate as possible. In a similar vein, it is impor-
tant to help children see problems, such as 3 – 8 from a new perspective, an integer 
perspective.

 Framework

 Conceptual Change Involving Integers

Children, through interacting with the world and other people, initially learn about 
whole number concepts (Clements & Sarama, 2014; Vosniadou, Vamvakoussi, & 
Skopeliti, 2008). They count the number of rocks they find, they learn about con-
cepts of more as they get another cracker, they use one-to-one correspondence when 
giving each person a fork, and they experience order with time and lining up objects 
by size (Baroody, Lai, & Mix, 2006). Elsewhere, I illuminated a series of mental 
models that children exhibit concerning integer order and values, arising from such 
initial experiences with number and building to formal characterizations of integers 
(as determined by Western culture) (Bofferding, 2014). Next, I provide descriptions 
of these integer order and value mental models.

Children who exhibit an initial mental model for integer order and values rely on 
whole number cues and ignore extraneous signs (i.e., negative signs); other children 
might order negative numbers apart from positive ones (because they look different) 
but still work with them as equivalent to positive numbers (e.g., -5 = 5). Some children 
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demonstrate an inclination toward considering negative numbers as different in value 
than positive numbers, primarily because they interpret the negative sign as a subtrac-
tion sign. For instance, some children will exclaim that negatives are worth zero 
(Schwarz, Kohn, & Resnick, 1993–1994), in some cases clarifying that the number is 
taken away (Bofferding, 2014). These children exhibit a transition I mental model 
since they are transitioning from treating negatives as equivalent to positives, but they 
do not distinguish among negative values as they are all considered worth zero 
(Bofferding, 2014).

When children accept that negative numbers have values in their own right (and 
are not just amounts being taken away), many will consider negatives to be less than 
positives but larger negatives to be more than smaller ones (e.g., -5 > -3). These 
students are classified as exhibiting synthetic mental models because their treatment 
of negatives is a synthesis of their initial mental models (i.e., numbers with larger 
magnitude are greater) and a modification based on new information (i.e., negatives 
are less than zero). Depending on the context, such thinking could be correct (e.g., 
in terms of coldness, -10 °F is more than -2 °F) (Bofferding & Farmer, 2018); how-
ever, in terms of formal mathematics, children need to learn that -3 > -5 unless 
otherwise dictated by the context of the question. Children who are grappling with 
this idea will sometimes switch between choosing the larger or smaller negative as 
greater. These children exhibit transition II mental models, as opposed to children 
who exhibit formal mental models and reason formally about negative integer order 
and values on a consistent basis.

There are potential implications of children’s integer mental models in regard to 
their solutions to integer addition and subtraction problems. If a child exhibits an 
initial mental model, it would make sense for them to solve integer problems as if 
they are positive number problems (e.g., solve -3 + 5 as 3 + 5 = 8). Further, without 
knowledge of negatives, they may reverse numbers in problems, such as 2 – 5 (solv-
ing it as 5 – 2), or indicate that the answer is zero because they cannot take any more 
away. A child exhibiting a transition I mental model would likely treat negatives as 
either positive or zero (e.g., potentially solving -3 + 5 as 0 + 5 = 5). Therefore, 
understanding how children interpret integer order and values can provide impor-
tant insight into their choices when solving integer addition and subtraction prob-
lems and vice versa. Further, knowing how children think about integers can help 
teachers tailor lessons to help students reconsider their integer mental models (e.g., 
whether the negative sign matters) and provoke the conceptual change process.

 Conceptual Models and Problem Types Involving Integers

As discussed, children’s experiences with numbers can expose them to new ways of 
thinking about integer order, values, and operations, challenging their integer men-
tal models. Likewise, contexts that teachers or students impose on integer problems 
reflect underlying properties of integers in relation to operations (i.e., conceptual 
models) (Wessman-Enzinger & Mooney, 2014) that may interact with students’ 
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mental models of integers. Therefore, it is important to consider the different integer 
conceptual models children might use to reason about instructional contexts. There 
are several integer conceptual models that children will use when thinking about 
integer problems (Wessman-Enzinger & Mooney, 2014) and that instructional 
contexts try to support.

The counterbalance conceptual model is rooted in discrete quantities but requires 
some imagination on the part of the child; adding equal amounts of positive and 
negative quantities results in zero, even though the actual quantities added still 
remain (Wessman-Enzinger & Mooney, 2014). In terms of instruction, the “chip” 
instructional context is often used to support counterbalance thinking. In one ver-
sion of the chip instructional context, one positive chip cancels out one negative 
chip (e.g., Liebeck, 1990). Another context is net worth, where $1 in assets cancels 
out $1 in debt (Stephan & Akyuz, 2012). Based on the problem types identified by 
Marthe (1979, 1982; see Table 7.1 for a brief summary), problems using a chip 
context lend themselves to State-State-State (SSS) problems, which involve the 
composition of directed states (e.g., two initial and a final state). For example, 5 
positive chips and 7 negative chips result in an overall “charge” of -2, much like an 
asset of $5 and debt of -$7 results in a net worth of -$2.

The bookkeeping conceptual model is also rooted in discrete quantity but fur-
ther capitalizes on students’ use of the counting sequence to think about solving 
addition and subtraction. Bookkeeping is perhaps a natural conceptual model for 
students as it involves thinking about gains and losses, where zero is neither a 
gain nor a loss (Wessman-Enzinger & Mooney, 2014). Mukhopadhyay, Resnick, 
and Schauble (1990) drew on children’s bookkeeping conceptual models by pre-
senting stories about a boy who gains and loses money and asking the children to 
comment on the boy’s situation. These types of problems typically follow a 
State-Transformation- State (STS) problem structure, where there is an initial 
state, followed by a transformation, which leads to a final state (Marthe, 1979, 
1982) (e.g., Henri started with a bank balance of $2 [state], lost $5 [transforma-
tion], and ended with -$2 [state]). They might also involve a combination of 
transformations, the Transformation- Transformation- Transformation (TTT) 
problem type, when gains and losses are treated relative to some unknown start-
ing point (Marthe, 1979, 1982) (e.g., Henri earned $2 [transformation] and then 
lost $5 [transformation], resulting in a change of -$3). However, the challenge 

Table 7.1 Marthe’s (1979, 1982) problem types and correspondence to conceptual models

Problem types Description Conceptual models

State-State-State (SSS) Combine two static amounts; 
remove a static amount from  
a static amount

Counterbalance

State-Transformation-State (STS) Make a change to a static  
amount

Bookkeeping; 
translation

Transformation- 
Transformation- Transformation

(TTT) Combine or undo changes Bookkeeping; 
translation
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with the bookkeeping conceptual model is that children may not reason about 
negative numbers, e.g., interpreting debts as money owed (Mukhopadhyay et al., 
1990; Whitacre, Bishop, Philipp, Lamb, & Schappelle, 2015).

The translation conceptual model incorporates students’ use of the counting 
sequence with an added focus on movement and directed magnitude that could 
more explicitly support reasoning about negative integers; further, it involves work 
with continuous instead of discrete quantities. In this model, often supported by a 
number line (Caldwell, Karp, & Bay-Williams, 2011), positive numbers represent 
movement in one direction, negative numbers represent movement in the opposite 
direction, and zero represents no movement (Wessman-Enzinger & Mooney, 2014). 
Multiple contexts support a translation conceptual model: temperature, elevation, 
and movements up and down in an elevator, which typically draw on the STS and 
TTT problem types described by Marthe. A benefit of these contexts is that their use 
can build on students’ use of counting to solve positive number problems, and chil-
dren can leverage the counting process to solve problems with negatives (e.g., 
Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2011). Further, these contexts 
relate to real-life situations.

 Situating the Data

Although particular instructional contexts align more with some conceptual models 
than others, there is no guarantee that students will use the optimal conceptual 
model when reasoning about them or that one particular conceptual model will 
spark conceptual change. In this chapter, I present a case of two students as they 
negotiate being asked to use a specific instructional context as they solve positive 
integer subtraction problems with negative answers. In particular, after illustrating 
their use of the elevator context for solving addition problems, I focus on how their 
use of the context interacts with their own integer mental models, subtraction strate-
gies, and interpretations of the number sentences.

The data presented in this chapter comes from a larger study involving a pretest, 
8-lesson intervention, posttest design. The pretest and posttest contained questions 
that targeted students’ understanding of integer order and values, as well as of inte-
ger addition and subtraction (see Bofferding, 2014 for more details). Using methods 
described in Bofferding (2014), I classified students’ integer mental models on both 
the pretest and posttest. The main data of focus involves the interaction of two stu-
dents during the pair work time of one of the lessons. To analyze their interaction, I 
identified how they interpreted the problems they were solving (as SSS, STS, or 
TTT problems), what conceptual models they drew on, and the integer mental mod-
els characterizing their responses.

There is much written on children’s addition and subtraction strategies that I will 
not repeat here (see Clements & Sarama, 2014 for a nice overview); however, before 
introducing the two case study students, a relevant distinction to note are two ways 
of thinking about the operations: either as a change in magnitude (i.e., counting up 
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or down) or in terms of movement (i.e., going to the right or left on a number line). 
With positive number addition and subtraction, these two align: addition means 
counting to the right on the number line, which corresponds to an increase in num-
ber magnitude (and vice versa with subtraction). With negative numbers, this is not 
always the case. For example, “-3 + 5 = 2” involves a decrease in overall magnitude 
but, when starting from -3, involves a movement to the right on the number line 
(Bofferding, 2014).

As the focus of this chapter is on the interactions between a pair of students, 
social interaction also comes into play. When negotiating mathematics problems, 
pairs of children often do best if they are similar in terms of mathematical develop-
ment, except in cases where weaker children encourage active participation out of 
their partners (Yackel, Cobb, & Wood, 1991). There are several potential benefits of 
having children work together as described by Yackel et al.:

As the children work together and strive to communicate, opportunities arise naturally for 
them to verbalize their thinking, explain or justify their solutions, and ask for clarifications. 
Further, attempts to resolve conflicts lead to both the opportunity to reconceptualize a prob-
lem and thus construct a framework for another solution method, and the opportunity to 
analyze an erroneous solution method and provide a clarifying explanation. (p. 401)

Children can interact with each other’s ideas with different levels of engage-
ment. According to Webb et al. (2014), high-level engagement involves explicit 
acknowledgment of another child’s strategy and either adding detail to it, referenc-
ing it in relation to another strategy, or challenging it based on an alternative strat-
egy. Medium-level engagement, they suggest, involves acknowledging or 
challenging another person’s strategy without adding to it. Finally, with low-level 
engagement, students either talk about or agree or disagree with another strategy in 
vague ways (e.g., not being specific about what aspects they agree with). The 
extent to which students present new ideas and challenge each other could play a 
role in their conceptual change. This chapter illuminates the messiness involved for 
children as they sort through integer ideas with a partner and highlights the chal-
lenges of promoting conceptual change while also offering some suggestions for 
mitigating the difficulties.

 Focus Students’ Before-Unit Pretest Integer Reasoning

The two girls, Dinah (ID: 207) and Indira (ID: 402), who are the focus of this chap-
ter were first graders (6.5- and 7-year-olds) from two different classrooms at the 
same public elementary school in northern California. They chose to work together 
for this lesson. Dinah exhibited an initial, whole number mental model for integer 
order and values on the pretest. When filling in missing numbers on a number line, 
she only used positive numbers and left out zero (5, 4, 3, 2, 1, 2, 3, 4, 5), and she 
always chose the number with highest absolute value when determining which inte-
ger was greater. Indira exhibited a transition I mental model on the pretest, suggest-
ing she saw a difference between numbers with and without a negative sign but was 
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still trying to determine what that meant in terms of number values. Although she 
did not fill in any negative numbers on her number line (0, 1, 2, 3, 4, 5), when order-
ing a set of integer cards, she ordered the negative numbers before the positive but 
in reverse order (-3, -5, -9, 0, 2, 3). Further, when comparing integers, she inter-
preted negatives as worth zero. When comparing -5 and 3, she claimed, “Five minus 
five is zero, and three is greater,” and when comparing -2 and -7, she further 
explained, “Seven is greater than two, but they’re both zero.”

In pretest interviews prior to integer instruction, when asked if the problems 
3 – 1 vs. 1 – 3, 5 – 8 vs. 8 – 5, and 9 – 6 vs. 6 – 9 would have the same answer, both 
girls thought they would because the problems had the same numbers. Likewise, 
when asked to solve 3 – 9, 6 – 8, and 1 – 4, Dinah reversed the numbers and got 
positive answers. Indira did this for 1 – 4, but answered zero for 3 – 9 and 6 – 8. On 
the rest of the integer problems, the girls ignored the negative signs, although Dinah 
occasionally interpreted the negative sign as an indication to subtract (e.g., 
-9 + 2 = 7, 7+ -3 = 4). A summary of these results appears in Table 7.2.

 Integer Instruction

Before the activity of interest here, the students had four other lessons related to 
negative numbers as part of an integer intervention. Two involved focusing on the 
differences between positive and negative symbols, and one involved putting inte-
gers in order. The fourth lesson involved sharing two cakes with four people and 
four cakes with two people to help students be receptive to the idea that if the 
numbers switch in a problem, it can sometimes lead to different answers. At the 
beginning of their fifth lesson, the students were shown a visual of an elevator in a 
building that had floors above and below ground (see Fig. 7.1). The students helped 
label the floors and showed how to move the elevator on the visual to solve 0 + 5 
and 5 + 0. Students were then given a worksheet (see Fig. 7.2) and told that they 

Table 7.2 Summary of Dinah and Indira’s pretest performance

Pretest section Dinah Indira

Empty number line 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5
Ordering numbers Mostly absolute value Negatives reversed before zero

-3, 0, 2, 3, -5, -9 (0 = least) -3, -5, -9, 0, 2, 3 (0 = least)
Comparing numbers Based on absolute value Negatives equal zero

-5 > 3 3 > -5 (because -5 = 0)
Are these equal: 1 – 3 vs. 
3 – 1?

Yes Yes

Solving 1 – 4, 3 – 9, 6 – 8 Reversed numbers Reversed numbers or answered 0
Arithmetic strategies Ignore negatives Ignore negatives; use negatives  

as subtraction signs
Order and value mental model Initial: whole number Transition I
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should move the elevator on their boards to solve the problems and then indicate if 
each pair of reversed problems had the same answer. The elevator context was 
chosen to give students a realistic situation where subtracting a larger number from 
a smaller one would make sense in order to help them see that such problems are 
possible and to realize that subtraction problems with the numbers reversed would 
have different answers (e.g., 5 – 3 = 2 but 3 – 5 = -2). The following description 
and analysis focuses on Dinah and Indira as they work to complete the worksheet 
together.

 A Closer Look

In the next sections, I present the results of the interaction between Indira and Dinah 
as they solve the problems on the worksheet illustrated in Fig. 7.2. First, I include 
their negotiations around the addition problems; next, I provide their debates around 
the subtraction problems. Their interactions, presented in the present tense 
(exchanges), appear on the left side of the page with my corresponding analysis 
(what we can learn from the exchange) on the right side.

Fig. 7.1 Elevator context
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 Solving Addition Problems: Finding Positive Answers

Let’s take a look at how the two girls begin to navigate the first set of addition prob-
lems at the top of the worksheet.

Exchange #1 What can we learn from this exchange?

Indira has the recording sheet in 
front of her, while Dinah controls 
the elevator. Indira reads the first 
problem, “Four plus one.” Dinah 
repeats this twice while grabbing 
the elevator, putting it at floor four 
and moving it up to the fifth floor, 
“Equals five.” Dinah hands a pencil 
to Indira who writes “5” on the 
sheet.

The girls quickly assumed roles and effectively modeled 
and completed the first problem using the elevator. Dinah 
treated the problem as an STS problem, starting the 
elevator at the fourth floor and moving up one floor.

Fig. 7.2 Worksheet that 
students completed while 
moving the elevator to 
solve problems
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Exchange #1 What can we learn from this exchange?

Dinah suggests they move onto the 
next problem. Both of them state, 
“One plus four,” and then Dinah 
moves the elevator piece to floor 
one and moves the piece up as she 
counts up four. However, she 
answers, “One.”

Dinah again treated the problem as an STS problem but 
lost track of what she was supposed to report. She 
reported the initial, as opposed to the final, state.

Indira moves the elevator to the 
ground floor and responds, “No. It’s 
supposed to be one plus four equals 
five.” She moves the elevator up to 
the fourth floor by counting, “One, 
two, three, four,” and then, as she 
moves the elevator up to the fifth 
floor, states, “Four plus one equals 
five.” Next to “1 + 4 =” she then 
writes “5.”

Indira, exhibiting high-level engagement, took over, 
modeling the problem as a TTT problem. However, 
although she was solving “1 + 4,” she modeled “4 + 1,” 
starting at the ground floor, moving up four floors, and 
then one more floor.

Indira already stated the problem and answer, so her 
switching of the numbers may have not been a conscious 
choice. The carefree nature with which she and other 
children change problems similar to this may explain their 
willingness to do the same with subtraction problems. In 
this case, she continued to model the problem, even 
though she had already stated the answer. Indira’s 
procedure also led to the correct answer; however, the 
goal was for them to model the problem as written in 
preparation for working with subtraction.

Now we return to the girls as they begin to work on the next set of problems, 
comparing “3 + 2” and “2 + 3.”

Exchange #2 What can we learn from this exchange?

Indira reads the next problem, “Three 
plus two.” Dinah starts the elevator at 
the third floor and moves it to the fifth 
floor while counting, “One, two.” Indira 
seems to have accidentally skipped 
ahead as she retorts, “No, two plus 
three” and grabs the elevator from 
Dinah.

Similar to the previous pair of problems, Dinah 
controlled the elevator initially, using it to show the 
translation from the third floor to the fifth floor. At this 
point, the girls no longer worked in unison.

Dinah continues on with the original 
problem, stating, “Equals five,” and 
points to the sheet where Indira is 
supposed to write the answer. Ignoring 
Dinah, Indira places the elevator at the 
ground floor and moves it to the first 
floor and then the second floor. Dinah 
interrupts her, “No, see if we move 
there (points to the ground floor), then 
it’s plus two, three, and then one.”

Indira refocused on making translations from the 
ground floor, but Dinah took issue with Indira’s 
process, insinuating that she might be moving an extra 
floor; although they were not working together, they 
still exhibited a high-level of engagement.
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Exchange #2 What can we learn from this exchange?

Dinah takes the elevator and places it at 
the first floor, then the second, and third 
before stopping. Then she moves it to 
the fourth. Indira corrects her by 
moving it up one more floor, saying, 
“Two” to indicate that Dinah had only 
counted on one. She writes “2” next to 
“3 + 2=” and then erases the answer to 
the problem above it (1 + 4=) and 
asserts, “Let’s do this again.”

Perhaps because Indira then corrected Dinah (to 
count on “two” more instead of one), Indira overly 
focused on the word “two” and wrote this down as the 
answer. Although both girls tried to use the context, 
they continued to do so in different ways; Dinah 
focused on the initial value as a state with each floor 
acting as a discrete unit (reflective of a bookkeeping 
conceptual model), whereas Indira focused on it as a 
transformation where distance from zero is important 
(reflective of a translation conceptual model).

We join the girls again as Indira, having gotten sidetracked, revisits a previous 
problem (1 + 4 =) while Dinah continues on to the next problem on the sheet (2 + 3 =).

Exchange #3
What can we learn from this 
exchange?

Indira, solving “1 + 4,” places the elevator at the ground 
floor (zero) and moves it to the first floor, then the second 
floor, and then the third. Dinah, meanwhile, continues to the 
next problem, “2 + 3=,” stating, “Two and then three.” 
Trying to continue with her solution to “1 + 4=,” Indira 
moves the elevator to the fourth floor. Dinah completes her 
thought without using the elevator, “Equals five” while 
Indira writes “4” for “1 + 4” and circles, “No” on the right 
side of the paper, indicating that “4 + 1” and “1 + 4” do not 
have the same answers.

It is unclear how Indira got an 
answer of “4” for “1 + 4,” but 
she continued to start her 
counting at the ground level. On 
the other hand, Dinah continued 
to start at the first number but 
began to abandon using the 
elevator, perhaps making the 
movement in her head.

Dinah now looks back at what Indira wrote for “3 + 2 =,” 
“Equals two? That’s, that’s supposed to be…” Then she 
looks up to “1 + 4 = 4” and points to it exclaiming, “Oh, 
that’s an ugly four!” Dinah takes the recording sheet and 
gives Indira the elevator sheet. “It is not four. It is five,” 
declares Dinah as she erases the “4” and writes “5” instead. 
Indira tries to defend her answer of four, but Dinah quickly 
moves on to review the next problem “3 + 2 = .” Indira 
places the elevator at the ground floor and then moves it 
upward while counting, “One, two, three, four, five.”

Dinah, irritated by Indira’s 
incorrect answer and “ugly” 
writing, took control of writing. 
However, they continued to go 
through the problems together to 
check their previous answers with 
a medium-level of engagement.

Dinah responds, “Oh five” and erases the “2.” Confirming 
Indira’s movements, she demonstrates the addition with her 
fingers. First she says “See, like three” and holds three 
fingers. “Three and then two more.” Dinah then puts up two 
more fingers. “Five.” She writes “5” next to both “3 + 2=” 
and “2 + 3=.” Indira points to the right side of the paper, and 
Dinah circles “yes.” Indira then points to the area above, and 
Dinah erases the “no” and circles “yes” for that section as 
well.

Although Indira continued to use 
the elevator, Dinah switched to 
demonstrating addition using her 
fingers, reflecting a bookkeeping 
conceptual model (i.e., gains and 
losses). Even though Dinah was 
not using the context as intended, 
both students’ methods led to 
agreement, and their discussion 
indicated a high level of 
engagement.
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 Solving Subtraction Problems: The Potential for Negative 
Answers

Let’s take a look at how the two girls begin to tackle the subtraction problems, hav-
ing successfully completed the addition problems. The need for negative numbers 
has the potential to challenge their current integer mental models.

Exchange #4 What can we learn from this exchange?

The girls then move on to the 
subtraction problems. Abandoning 
her prior strategy of using the 
elevator, Indira points to “4 – 1 =,” 
puts up four fingers, puts one of 
them down, and says, “Four minus 
one. Three.” Then, she moves the 
elevator from the ground floor down 
to floor negative three and responds, 
“Three.”

Interestingly, although Indira used her fingers to solve 
“4 – 1” (suggestive of a bookkeeping conceptual model), 
she switched back to using the elevator for “1 – 4.”At this 
point, though, it is unclear whether she switched back to 
using a translation conceptual model or continued to use 
the bookkeeping conceptual model. She started at 0, 
which is what she did on the addition problems, reflecting 
a translation conceptual model. However, we did not see 
her move up to one before going down four (although this 
would make sense as she got an answer of -3). Her switch 
back to using the elevator suggests she knew that the 
problem, although it looked similar to “4 – 1,” was 
unfamiliar.

She points to the recording sheet, 
and Dinah writes down “3” for the 
answers to “4 – 1 =” and “1 – 4 =.” 
Dinah confirms, “Three and three.” 
Indira checks what Dinah wrote and 
exclaims, “What?!” as she motions 
to the elevator located next to -3.

Indira correctly moved the elevator to floor -3 but called it 
“three.” However, she appeared to notice that the 3 that 
Dinah wrote was missing a negative sign, as she indicated 
the location of -3, which provides further evidence that she 
exhibits a transition I mental model for integers.

Dinah erases the “3” saying, “One 
minus four is,” but Indira interrupts 
by saying, “One minus four,” and 
moving the elevator back up to “0.” 
She moves it down four, hovering 
around -4.

Yet, Indira continued to struggle with the use of the 
elevator model; when she tried to show Dinah how she 
got her answer, she started at the ground floor instead of 
the first floor. Perhaps this reflects her desire to start at 
the ground floor for addition, but instead of moving up to 
floor 1 first, she moved down four floors. This provides 
further evidence that she might have been switching from 
relying on a translation conceptual model to a 
bookkeeping conceptual model.

However, Dinah continues to ignore 
Indira’s use of the elevator, 
explaining, “One minus four – 
there’s no way you can do that, so 
it’s zero.” At this point, the girls 
begin an inaudible argument, and 
Indira makes some reference to “the 
teacher.” Ultimately, they agree on 
writing “3,” and Indira circles “yes” 
to indicate that the answers to 
“4 – 1” and “1 – 4” are the same.

Relying on her knowledge of whole numbers, Dinah 
discounted Indira’s actions and asserted that they cannot 
take away four, leaving them with an answer of zero. Her 
reasoning indicates that she still has an initial mental 
model for integers. Ultimately, the girls answered both 
problems with 3, ignoring the negative sign. They 
continued to show medium to high levels of engagement 
throughout.

Now we return to the girls as they move on to complete the rest of the 
worksheet.
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Exchange #5 What can we learn from this exchange?

Moving on to “3 – 2=,” Indira puts the 
elevator at -3, and then as Dinah reads, 
“Three minus two,” Indira moves the elevator 
to -1 and says, “One.” Dinah writes down “1.” 

Indira solved “3 – 2 =” by starting at -3, 
perhaps because the elevator was in the 
negatives from the previous problem. 
Interestingly, to subtract, she moved the elevator 
up (which usually indicates addition), toward 
numbers with smaller magnitude.

Dinah then continues, “Two minus three – oh, 
it switches!” She says this excitedly, waving 
her hands back and forth across each other to 
illustrate the switching. Indira places the 
elevator at -2 and goes down three floors to -5 
but says, “Five.”

For “2 – 3 =,” Indira continued to start in the 
negatives, at -2, but then moved the elevator 
down (consistent with subtracting a positive 
number). Unlike with the addition problems, she 
modeled the subtraction ones as STS problems. 
Further, her tendency to interchange the positive 
and negative numbers suggests she is still 
developing an understanding of the difference 
between them, and her uncertainty as to whether 
she should move up or down suggests she was 
trying to make sense of whether she should pay 
attention to magnitude or direction primarily.

Dinah, however, is not listening to Indira and 
writes down “1” instead. Indira urges, “Put a 
negative” and points to the “1” after 
“3 – 2 = .” Dinah instead puts a negative 
before the “1” for “2 – 3 = .” Indira tries 
again, saying ,“Negative” and pointing to the 
“1” after “3 – 2 = .” Dinah adds a negative 
and then circles “yes” to indicate those two 
problems have the same answer. 

Indira continued to see the negative sign as 
important because she insisted that Dinah 
include it in the answer. However, as the two girls 
were not always focused on the same problem, 
Dinah ended up putting negative signs on both 
answers. Although Dinah finally noticed the 
difference in the order of the numbers in the 
problems — “It switches” — this did not 
influence how she solved or answered the 
problems. At this point, they correct each other 
using a lower level of engagement, not really 
interacting with the changes they urge each other 
to make.

Indira points to the bottom problems and as 
she taps them says, “Five. Five, five, five.” 
Dinah writes “5” for the answer to both 
“5 – 0=” and “0 – 5 = .” Indira argues, “No, 
they’re not the same,” and points to the “no” 
but then changes her mind and points to 
“yes”, saying, “Yes.” Dinah circles the “yes,” 
and Indira raises her hand to have me check 
their work.

Until the last set of problems, Indira used the 
elevator to solve the majority of the problems, 
especially when subtracting a larger number 
from a smaller. She abandoned this with the 
problems involving zero, possibly because in her 
experience zero involves no change, and ignored 
the change in number order in the number 
sentence.

 Checking the Work

Once I (as the teacher for the activity) join the girls, I quickly notice several incor-
rect answers. I ask them to show and tell me how they solved “4 – 1 =” and “1 – 4 
=.” Indira places the elevator at 0, but I suggest she “start at one.” Dinah takes over 
and places the elevator at floor 1. I then guide, “Go minus four.” Dinah once again 
moves the piece down four spaces and provides the answer, “Three.” I probe “What 
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kind of three?” and point to the negative in front of the three. “Negative three,” 
states Dinah. I encourage them to check their other answers and walk away. Let’s 
look at what happens when I am no longer helping them.

Exchange #6 What can we learn from this exchange?

As I walk away, Indira adds a negative to the 
“3” for “4 – 1 =” (instead of “1 – 4 =”). Dinah, 
again annoyed with Indira’s handwriting, 
claims, “That’s not how you do a negative,” 
reaches across, and writes a “better” negative. 
Indira switches the papers so she has the 
elevator again (and Dinah has the recording 
sheet).

Indira put the negative on the answer to the 
wrong problem, suggesting she was not paying 
careful attention to the differences in the two 
problems. Dinah continued to take control of 
the writing, and Indira switched back to 
controlling the elevator without complaint.

Indira puts the elevator at 2 but says, “Start at 
five…” Dinah interrupts stating, “Minus zero!” 
and puts the elevator at zero.

Both students at this point were confused as to 
which problem they were addressing and not 
communicating effectively.

Pointing at the recording sheet where they 
circled “yes” for “4 – 1” and “1 – 4” having 
the same answer, Indira commands, “Erase 
this if it’s no.” Dinah starts to erase the “yes” 
for the next set of questions but completes 
Indira’s request with some redirection  
from her.

Indira took a more commanding role at this 
point, continuing to re-explain to Dinah until 
Dinah did what she requested.

Moving on to check 3 – 2, Indira suggests, 
“You start at 3.” She puts the elevator on floor 
3 and moves it down two. “One,” she says and 
points to “3 – 2 = -1.” “Change it.” “All the 
time I have to erase,” complains Dinah. 
“Okay.” “Because you’re the eraser, because 
you’re the writer,” retorts Indira. Next, Indira 
puts the elevator at 2 and moves it down to 0. 
“Zero. Zero,” she repeats as she points to 
“2 – 3 =,” “right up here.” Dinah rechecks by 
putting the elevator at 2, “Two minus three. 
One, two, three” and moves the elevator down 
to -1. Confused, Indira comments, “No, it 
starts from two, minus three.” Dinah repeats 
the same process and ends at -1. After a bit of 
argument, Indira concedes, “Okay, the 
negative one.” “Which one, which one is it?” 
asks Dinah, who has lost her place on the 
recording sheet. Indira points to “2 – 3 =” and 
repeats, “Negative one.” Dinah notices that 
they had circled “yes” for those problems 
being the same and corrects it, “No, that’s not 
the same.”

Indira modeled 3 – 2 easily, interpreting it 
again as an STS problem. This might have been 
influenced by the way I prompted them to solve 
the problems. However, when solving 2 – 3, she 
prematurely stopped at zero. At this point, 
Dinah took a more active role in double- 
checking her partner with the use of the 
elevator, also interpreting it as an STS problem. 
Perhaps because she used the same 
interpretation as Indira, she was able to 
convince Indira that the correct answer was -1. 
This was another instance of high-level 
engagement between the pair. They then 
worked together to determine where to change 
the answer on the worksheet. This exchange is 
striking as it represents a moment when the two 
work together in a similar way to solve the 
problem.
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Exchange #6 What can we learn from this exchange?

Indira asserts that the final pair of problems “is 
the same” and raises her hand to have me 
check their work again. However, Dinah tells 
her, “We need to correct it first.” She points to 
floor five, saying, “Five.” Indira moves the 
elevator to floor five. “Minus zero,” reads 
Dinah. “Zero – Five.” At this point I arrive and 
ask about the last problem “0 – 5.” “If you start 
at zero and you go minus five…” Indira puts 
the elevator at zero, and I prompt, “Zero minus 
five.” Indira moves the elevator down five 
spaces to -5. “Negative five,” answers Dinah. 
Indira adds a negative sign to their answer. I 
ask, “What do you notice about subtraction?” 
“Wait,” says Indira and changes their answer to 
“no” for whether “5 – 0” and “0 – 5” have the 
same answers. After I repeat the question, 
Dinah responds, “Um, they’re gonna be not the 
same.”

Dinah, perhaps because of her personality, 
insisted that they check the final set of 
problems. Dinah adeptly used the STS 
interpretation and answered with negatives. 
She was also able to articulate that the answers 
were not the same with the subtraction 
problems. Indira was confident in her answers 
to “5 – 0 = 5” and “0 – 5 = 5” before Dinah 
made her check the answers but eventually 
came to agree with Dinah.

 Recap

Initially, when solving the addition problems, Dinah interpreted the problems as 
STS problems and started the elevator at the initial number while Indira mod-
eled them as TTT problems and started the elevator at zero. Due to the differ-
ences in their methods, Dinah questioned what Indira was doing and often 
seemed suspicious of her answers. Her attention to what Indira was doing led 
her to correct one of Indira’s answers and then check her other ones. Dinah also 
abandoned the use of the elevator, opting to use fingers instead – which may 
have seemed more natural to her given her interpretation of the problems as STS 
and bookkeeping problems.

When they moved to solving the subtraction problems, Indira appeared to 
switch back and forth between interpreting problems from a translation to a book-
keeping point of view, sometimes starting the elevator at zero as before but not 
moving it the initial value. Dinah continued to use fingers as she had for addition, 
and this led her to answering 0 on problems where the elevator would have moved 
to a negative floor. This was consistent with her whole number mental model. 
Indira switched to interpreting the problems as STS problems and incorrectly 
started the elevator in the negatives on multiple occasions. Yet, her use of nega-
tives started moving her toward a synthetic mental model; she was inconsistent in 
whether she moved the elevator up or down from the negative floors. Although 
Dinah noticed that the order of the numbers in the problems was switched, this did 
not affect her solutions.
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After I helped them check their work and rethink about how to use the elevator, 
Dinah went back to modeling the problems as STS problems with the elevator and 
moving into the negatives, helping her begin to accept negatives as a different type 
of number. She used this process to correct Indira.

 Focus Students’ End of Unit Posttest Reasoning

Following this lesson, the girls participated in three more lessons that focused on 
helping them think about adding a positive number as moving in a more positive 
direction, adding a negative as moving in a more negative direction, subtracting a 
positive as moving in a less positive direction, and subtracting a negative as moving 
in a less negative direction. By the posttest, Dinah had progressed slightly and 
exhibited an initial, absolute value mental model for integer order and values. 
Unlike on the pretest, she could now fill in negative values on the number line 
(although she left out zero on one). However, she continued to order the integers as 
if they were all positive and chose the larger integer based on magnitude. Indira, on 
the other hand, exhibited a transition II mental model (as opposed to transition I on 
the pretest). She correctly filled in negatives on the number lines. When ordering the 
integers, she always put negatives to the left of (or below) positives, although she 
was not consistent in whether she ordered them by reversed magnitude versus mag-
nitude (-2, -4, -8, 1, 5, 7 — similar to her response on the pretest — versus -9, -7, 
-5, 0, 3, 8). However, she correctly and consistently determined which of two inte-
gers was greater.

When asked if the problems 3 – 1 vs. 1 – 3, 5 – 8 vs. 8 – 5, and 9 – 6 vs. 6 – 9 
would have the same answer, both girls thought they would because the problems 
had the same numbers, just as they had on the pretest. Likewise, when asked to 
solve 3 – 9, 6 – 8, and 1 – 4, they both reversed the numbers and got positive answers. 
Dinah gave positive answers for the rest of the integer problems (e.g., -7 + -1 = 8), 
whereas Indira gave several negative answers but often switched between counting 
up or counting down for similar problems. For example, Indira solved -7 + -1 = -8 
but then -6 + -4 = -2. See Table 7.3 for a summary of the posttest results.

Overall, both Dinah and Indira made some conceptual progress. Dinah went 
from not using any negatives to labeling them as points to the left of zero on the 
number line. Meanwhile, Indira transitioned from interpreting negatives as worth 
zero (and not part of calculations) to using them in her arithmetic solutions.

 Discussion and Implications

As exemplified through the case of Indira and Dinah, conceptual change is difficult 
because multiple concepts are often at play within any one activity. Further, these 
concepts are frequently intertwined. More specifically, in this activity, students 
worked with the elevator model, which supported both bookkeeping and translation 
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conceptual models, providing the girls with the opportunity to consider the numbers 
involved as discrete or continuous quantities. The model also allowed them to inter-
pret the problems as STS or TTT problem types. On top of these interpretations, 
their strategies were also influenced by how willing they were to accept negative 
numbers based on their integer mental models. These elements both supported and 
constrained their thinking, in particular as they shifted among them.

Indira began the elevator activity already distinguishing between positive and 
negative numbers. She had a strong focus on the movement of the elevator for the 
addition problems, always starting at zero. In this way, she interpreted the problems 
as a series of translations, reflecting continuous quantities and a translation concep-
tual model. With the shift to subtraction, she also changed her use of the problems. 
She switched to starting at the initial number (as she interpreted it) and then moving 
and modeling them as STS problems and reflecting discrete quantities and a book-
keeping conceptual model. Although she started on the negative-numbered floors 
for the subtraction problems instead of their positive counterparts, her willingness 
to use the negative-numbered floors illuminates her acceptance of negatives. Yet, 
she did not notice that she was starting on the negative floors as opposed to the posi-
tive ones. On the other hand, she did insist that Dinah add a negative to one of the 
answers, indicating that negative signs hold relevance to her. Her switch in methods 
from those reflective of a translation conceptual model on the addition problems to 
those reflective of a bookkeeping conceptual model on the subtraction problems 
might reflect a decreasing level of comfort with the subtraction problems. If 
 interpreting problems in terms of bookkeeping is generally easier, it may explain 
why Wessman-Enzinger and Mooney (2014) found that more students used book-
keeping contexts than translation contexts.

Dinah began the elevator activity at a point when she did not distinguish between 
positive and negative numbers. She also relied on interpreting the problems as 
involving discrete quantities. Instead of using the elevator, she often began by 
using recall or her fingers to show the answers to the addition problems. When she 
did use the elevator, she modeled the problems as STS problems. Her focus on 

Table 7.3 Summary of Dinah and Indira’s posttest performance

Pretest section Dinah Indira

Empty number line -4, -3, -2, -1, 1, 2, 3, 4, 5 -3, -2, -1, 0, 1, 2, 3, 4, 5
Ordering numbers Absolute value Negatives reversed before zero

1, -2, -4, 5, 7, -8 -2, -4, -8, 1, 5, 7
Absolute value Negatives ordered correctly
0, 3, -5, -6, 8, -9 -9, -7, -5, 0, 3, 8

Comparing numbers Based on absolute value Correct
Are these equal: 1 – 3 vs. 
3 – 1?

Yes Yes

Solving 1 – 4, 3 – 9, 6 – 8 Reversed numbers Reversed numbers
Arithmetic strategies Ignore negatives Some negative answers; confused  

about direction to count
Order and value mental model Initial: absolute value Transition II
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discrete quantities, together with ignoring the negative signs, was reflected in her 
reluctance to consider the possibility that the answer to 1 – 4 could be less than (or 
below) zero. Unintentionally drawing on a bookkeeping conceptual model, I 
walked the girls though solving the subtraction problems as STS problems. This 
aligned with Dinah’s way of interpreting the problems, and once she accepted that 
I wanted her to act out the problem, she quickly took it up and used negative 
answers.

 Challenges with Imposed Instructional Contexts

Dinah’s interactions, in particular, illustrate that ready-made contexts based on the 
conceptual models (the elevator context) may not be accepted by students, espe-
cially without repeated encouragement or multiple opportunities to grapple with 
these contexts over time. Even though the point of the activity was to use the eleva-
tor to solve the problems, Dinah continually referred to her prior knowledge or use 
of fingers to get the answers, even when Indira got a conflicting answer using the 
elevator. Although she used the elevator at the end after I intervened, the process did 
not lead to lasting change; she continued to provide only positive answers days later 
on the posttest. This provides evidence that instruction around a particular idea 
might be more productive if it builds on conceptual models and contexts students 
are already using. In Dinah’s case, this could involve building off her use of fingers 
to align with counting and using a bookkeeping conceptual model. In Indira’s case, 
this could involve helping her interpret the subtraction problems as TTT problems. 
This could have supported her thinking about the numbers as continuous quantities 
and drawn more attention to the initial numbers, helping her see that they were posi-
tive. Further, teachers could be more explicit about the differences between the 
models and methods they are asking students to use and the models and methods 
students typically use.

Indira’s reluctance to revisit “5 – 0 = 5” and “0 – 5 = 5” provides insight into why 
students so readily answer with positive answers or do not use the model they are 
being asked to use. They feel so confident in their answers! Her prior work with zero 
up to this point would have led her to believe that the presence of zero does not 
impact the other number; they do not see a conflict with their current understanding 
(Vosniadou & Skopeliti, 2014). Therefore, the problem seemed easy – no elevator 
needed. Likewise, she used her fingers for “4 – 1” (using a familiar method for a 
familiar problem) but then used the elevator for “1 – 4,” a problem that likely did not 
look familiar to her. Dinah had a hard time accepting the negative numbers (arguing 
that you can’t subtract a larger number from a smaller one) even when Indira showed 
her how to use the elevator to get a negative answer. Although not feasible in this 
research lesson, highlighting such tensions would be important to do in classroom 
discussions to draw students’ attention to solving the problems in more than one 
way in order to check their answers.
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 Incremental Conceptual Change

The pairing of these two girls resulted in interesting interactions, especially com-
pared to other groupings in the class. Both displayed rather strong personalities – 
perhaps they felt more comfortable with each other because they chose to work 
together – and were willing to challenge each other on different aspects of finding 
the answers; this led to a high level of engagement (Webb et al., 2014), which helped 
them resolve conflicts (Yackel et al., 1991). Dinah and Indira exhibited behaviors 
tending toward initial mental models at the beginning, although Indira had some 
knowledge of negatives initially, putting her at a higher mental model level. Further, 
the two used different methods to solve the worksheet problems. Indira was more 
willing to use the elevator (and where it ended up) to support her assertions, while 
Dinah appealed to reasoning, often based on her use of fingers and knowledge of 
whole number problems. Indira’s assertions to use the negative signs may have 
helped Dinah become more aware of them, while Dinah’s objections may have 
helped Indira solidify her arguments (although they may also have led her to using 
more recall later rather than thinking about how to solve problems using the eleva-
tor). Perhaps due to their high level of engagement with each other’s solutions, they 
were able to push each other to participate more (Yackel et al., 1991), which often 
corresponds to a higher level of achievement (Webb et al., 2014). On the other hand, 
if Dinah had been paired with someone who used their fingers to count into the 
negatives, it is possible she would have gained even more because she initially 
relied on justifying her answers with her fingers but insisted that they could not take 
larger numbers away from smaller ones. Therefore, it is important to continue think-
ing about ways to create student pairings that could best support conceptual change 
for all. It might be that pairing students at different developmental levels can still be 
effective if the higher-level student helps the weaker student build on his or her 
methods in productive ways.

The elevator model supported both bookkeeping and translation conceptual mod-
els. Further, it helped Indira make sense of unfamiliar problems and begin to use 
negative numbers. Dinah even used it effectively by the end of the lesson and noticed 
that the answers were not the same if the numbers switched places in subtraction 
problems. Although they both seemed successful at the end, neither of them provided 
negative answers for similar subtraction problems (e.g., 1 – 4) on the posttest. The 
incremental progress in conceptual change they seemed to make did not translate to 
long-term change, or it remained bound to that particular context. Yet, they both did 
exhibit some conceptual change from pretest to posttest and had mini breakthroughs 
during the activity that reflected changes in conceptual model use. The anecdote 
presented here reinforces the difficulty of shifting away from a whole number mental 
model of integers (initially exhibited by Dinah who eventually began to see the 
importance of the negative sign). It also shows the importance of the transition men-
tal models. Students in transition from one mental model to the next may exhibit 
behaviors of either the less or more advanced mental model. Indira benefitted from 
using negatives in ways that contradicted her prior notion of negatives as indicating 
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a number being taken away. However, both students would likely have benefitted 
from making more connections back to the use of the elevator in later lessons to help 
them make sense of problems such as “1 – 4.” Promoting conceptual change takes 
time, and repeated opportunities to grapple with the ideas in ways that both build on 
and challenge their current way of thinking can help support this process.
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Chapter 8
Nuances of Prospective Teachers’ 
Interpretations of Integer Word Problems

Laura Bofferding and Nicole M. Wessman-Enzinger

Abstract This chapter identifies the ways in which 15 prospective teachers engage 
the strands of mathematical proficiency as they solve word problems involving inte-
ger addition and subtraction. The prospective teachers, through think-aloud inter-
views, demonstrated a strong focus on solving problems using procedures, which 
some did not explain and others explained in detail. Number line representations 
were popular ways to illustrate solution methods, especially to highlight distances 
to and from zero. Further, some problems elicited a variety of strategies, while oth-
ers mainly elicited procedures. The collective think-aloud data reveal strong, inter-
connected strands that could help individuals reflect on procedural versus conceptual 
knowledge and how best to explain and make connections among the ideas involved 
in the problems.

Negative eight minus negative five…it’s like a double negative, kind of, um, I’ll have to 
make it a plus positive five, because you can’t subtract negative five. I don’t really know 
how to explain that, but I was taught that somewhere. (Interview with  Jackie, October 
16, 2012)

As illustrated in the quote from Jackie in the opening vignette, prospective teach-
ers (PTs), both elementary and secondary, face a daunting task as they prepare to 
teach mathematics. Not only must they make sense of students’ thinking and foster 
their learning, but they also have to confront their own mathematical learning and 
consider how to effectively explain and troubleshoot concepts that they may not 
have had the opportunity to learn sufficiently. Yet, even though PTs may benefit 
from some relearning of mathematics concepts, they have a rich knowledge and 
experiential base that they draw on, such as the procedural knowledge that subtract-
ing a negative number can be solved by instead adding a positive number. Further, 
each PT can bring important insight to mathematics pedagogy courses, one place 
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where building on PTs’ collective knowledge should be capitalized on. In this chap-
ter, we use the context of integer addition and subtraction to explore PTs’ individual 
and collective mathematical proficiency.

 Framework for Mathematical Proficiency

The strands of mathematical proficiency provide a helpful framework for analyzing 
PTs’ individual and collective knowledge because they capture the type of knowl-
edge and characteristics we want all students and teachers to exhibit (National 
Research Council [NRC], 2001). The five strands—procedural fluency, conceptual 
understanding, strategic competence, adaptive reasoning, and productive disposi-
tion—support each other, and all are needed for successful mathematical 
development.

 Procedural Fluency

“Procedural fluency refers to knowledge of procedures, knowledge of when and 
how to use them appropriately, and skill in performing them flexibly, accurately, and 
efficiently” (NRC, 2001, p. 121). When working with integer addition and subtrac-
tion, rules such as “adding a negative is equivalent to subtracting a positive” or 
“subtracting a negative is the same as adding a positive” help people solve problems 
efficiently, but these rules are not always used with mathematical integrity (Hertel 
& Wessman-Enzinger, 2017). Yet, PTs are fairly adept at using procedural rules to 
solve integer addition and subtraction number problems (Bofferding & Richardson, 
2013; Steiner, 2009). Based on dissertation data, Steiner (2009) found that 79 PTs 
were able to solve symbolic integer addition problems correctly 94–100% of the 
time. For subtraction problems with negative numbers, their accuracy fell to 76–92% 
correct. Kajander and Holm (2013) explored PTs’ responses to 5 – (-3) and found 
that just over 50% of the 128 participants articulated a rule that two negatives make 
a positive in order to solve the problem. Others did not explain how they got their 
answer or gave an incorrect explanation.

Through utilizing think-alouds (e.g., Ericsson & Simon, 1993), Bofferding and 
Richardson (2013) found that PTs manipulated equations in multiple ways in order 
to make the problems easier to solve, depending on their preferred strategy. Some 
PTs tended to change the equations using procedural rules so that they contained 
either all positive or all negative numbers. Others changed the problems so that they 
involved adding or subtracting a positive number only. Finally, the one PT who 
relied on a canceling strategy preferred to change problems so that she was adding 
positives or adding a positive and negative so that she could cancel easily.

Being able to translate word problems into appropriate equations is also impor-
tant. In a study of 137 PTs in their second year of study in Spain, Almeida and 
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Bruno (2014) found that PTs’ accuracy in solving word problems differed depend-
ing on the type of word problem and whether the second or third quantity was miss-
ing. For example, PTs had 92% accuracy on solving change problems where the 
answer was missing, 88% accuracy on change problems where the change was 
missing, and 68% accuracy on compare problems where the answer was missing.

 Conceptual Understanding

“Conceptual understanding refers to an integrated and functional grasp of mathe-
matical ideas” (NRC, 2001, p. 118) and involves “the comprehension and connec-
tion of concepts, operations, and relations” (National Council of Teachers of 
Mathematics [NCTM], 2014, p.  7). In fact, NCTM (2014) describes conceptual 
understanding as the foundation on which procedural fluency develops and encour-
ages teachers to “build procedural fluency from conceptual understanding” (p. 10). 
Recommendations include utilizing discourse and purposeful tasks to elicit student 
thinking as a way to use conceptual understanding to leverage the development of 
procedures (NCTM, 2014). Although recommendations state procedural under-
standing should develop from conceptual understanding (NCTM, 2014), Sfard 
(2001) posited that procedural understanding and conceptual understanding often 
work synergistically together. Further, Star (2005) pointed to the difficult nuances 
of distinguishing between procedural and conceptual understanding.

In terms of what conceptual understanding could mean for integers specifically, 
Kilhamn (2009) delineated mathematical ideas that are important for understanding 
integer operations conceptually (which she refers to as number sense). The first 
component of conceptual understanding for integer operations she described is intu-
itions associated with numbers. For example, negative integers can be interpreted as 
taking away, which is developed in the whole number domain. This type of reason-
ing may work with negatives but can break down for number sentences like 0 – -5 
(Bofferding & Wessman-Enzinger, 2017).

The second component for understanding integers conceptually is the ability to 
make magnitude comparisons. For instance, she describes a child who, when com-
paring -2 and -4, may struggle to determine which is “larger.” Kilhamn (2009) dif-
ferentiates between magnitude (absolute value) and relative size (order). This is 
consistent with the magnitude-based and order-based reasoning described in this 
book (see, e.g., Chap. 2 in this book) and also the results illustrated in Bofferding 
(2010, 2014). Even PTs are drawn to the magnitude of negative numbers and deci-
mals. In a study of 94 PTs’ understanding of negative decimal placement on a num-
ber line, Widjaja, Stacey, and Steinle (2011) highlighted 1 PT who reversed the 
order of the negative decimals, placing -1.2 closer to 0 than -0.5. Additionally, they 
presented cases of some PTs who ordered decimals in the form of -0.X correctly, 
while others placed them immediately to the right of zero or placed them as if they 
were positive. Similar strategies emerged when students placed negative integers on 
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a number line (Bofferding, 2014). These responses may reflect PTs’ mental number 
lines (Bofferding, 2014; Kilhamn, 2009).

The third component Kilhamn (2009) described for conceptual understanding of 
integers is the ability to benchmark or recognize patterns between the numbers. 
Kilhamn pointed to the example of how integers often neutralize each other, with 
zero representing a point of symmetry. A few PTs in Bofferding and Richardson’s 
(2013) study explained that they solved -4 + 6 by first adding 4, the opposite of -4, 
and then adding two more. Such strategies demonstrate an understanding of additive 
inverses as well as decomposition of numbers.

Finally, the last conception that Kilhamn highlighted is possessing knowledge 
of the effects of operations on numbers. Bofferding and Richardson (2013) found 
that most PTs relied on procedural explanations for operations; however, one PT 
solved -8  – -8 conceptually by explaining, “When you subtract a number from 
itself you get zero” (p. 116). Such generalizations demonstrate a solid understand-
ing of quantity within takeaway situations. However, Kilhamn also pointed out that 
interpreting subtraction as takeaway can be limiting and advocates for more work 
around the distance metaphor (see, e.g., Chap. 6 in this book).

 Strategic Competence

“Strategic competence refers to the ability to formulate mathematical problems, 
represent them, and solve them… They should know a variety of solution strategies 
as well as which strategies might be useful for solving a specific problem” (NRC, 
2001, p. 124). For example, it can be efficient to draw on counterbalance conceptual 
models (Wessman-Enzinger, 2015; Wessman-Enzinger & Mooney, 2014) when 
adding positive and negative numbers, although counterbalance situations are more 
difficult when they involve subtraction problems where the subtrahend has a larger 
absolute value than the minuend (e.g., -2 – 5).

PTs often used horizontal or vertical number lines to help illustrate relations in 
the problems (Almeida & Bruno, 2014; Bofferding & Richardson, 2013). When 
determining the distance between a negative and positive point, some PTs calcu-
lated to and from zero (Almeida & Bruno, 2014; Bofferding & Richardson, 2013; 
Peled, Mukhopadhyay, & Renick, 1989), utilizing a divided number line model 
(Peled et al., 1989), while others used a continuous calculation, often counting from 
one point to the next to determine the distance (Almeida & Bruno, 2014; Bofferding 
& Richardson, 2013; Peled et al., 1989). Bofferding and Richardson (2013) also 
described one PT who used a hills and holes context (i.e., where one hill cancels out 
one hole) to reason correctly about the operations.

Solving contextual problems can be more difficult because the context first needs 
to be translated into a numerical problem. When solving integer word problems 
involving temperature, a group of PTs in Spain used six main strategies: using an 
operation with positive numbers (and discussing how it fit the negative situation), 
using an operation with negative numbers, using a number line, counting, just  giving 
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a verbal explanation without demonstrating a more specific strategy, and making a 
drawing (Almeida & Bruno, 2014). Although PTs often used one method, they 
sometimes combined multiple methods. In one case, a PT made a drawing of a sun 
next to the morning temperature and a drawing of a moon next to the change in 
temperature, used an operation with negative numbers, and drew a number line to 
show the result in the drop in temperature. Further, they solved the problems from a 
positive perspective (e.g., calculating 4  – -5  =  9 and indicating the temperature 
dropped 9 degrees instead of -5 – 4 = -9) almost as often as they solved the problems 
from a negative perspective (Almeida & Bruno, 2014). These results are similar to 
those found with secondary students, who may take the view of the lender or bor-
rower in money contexts (Whitacre et al., 2015).

Almeida and Bruno (2014) also illustrated that some of the PTs incorrectly for-
mulated the problems, either because they misinterpreted the problems or because 
they were “number grabbing” (National Research Council, 2001, p. 124) or just 
choosing an operation with the numbers given in the problem. Instead of starting at 
2 m (location of a bird) and finding the altitude 6 m below that (altitude of a fish), 
they assumed the fish was at -6 m and found the distance between the two (Almeida 
& Bruno, 2014).

 Adaptive Reasoning

“Adaptive reasoning refers to the capacity to think logically about the relationships 
among concepts and situations” (NRC, 2001, p. 129). PTs justify their algorithms in 
different ways (Bofferding & Richardson, 2013), and the use of contexts can help 
PTs reason about the meaning of integer operations. For example, Bofferding and 
Richardson (2013) described one PT who counted further into the negatives for 
problems such as -3 – 5 and -5 – 9 because she thought of a hole (negative number) 
that was getting deeper; therefore, she mapped taking away a positive with digging 
a hole. This same PT was able to explain why subtracting a negative is equivalent to 
adding by reasoning that taking away a hole is similar to adding a hill.

The use of analogies is a common way both PTs and children will justify solu-
tions to integer problems (Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2016; 
Bofferding & Richardson, 2013; Bofferding & Wessman-Enzinger, 2017). For 
example, several PTs solved -7 + -1 = -8 by adding 7 + 1 = 8 and then making the 
answer negative, indicating that the two problems are solved in similar ways 
(Bofferding & Richardson, 2013). This reasoning works well for those who under-
stand that -7 + -1 is equivalent to -(7 + 1); however, children who do not understand 
this relation will also use the same reasoning but misapply it to other situations. For 
example, they may argue that -3 + 1 = -4 because 3 + 1 = 4, and the 3 was negative 
(Bofferding, 2010; Fagnant, Vlassis & Crahay, 2005; Schwarz, Kohn, & Resnick, 
1993–1994). Therefore, PTs need to be careful about how they use these justifica-
tions with students.
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 Productive Disposition

“Productive disposition refers to the tendency to see sense in mathematics, to per-
ceive it as both useful and worthwhile, to believe that steady effort in learning math-
ematics pays off, and to see oneself as an effective learner and doer of mathematics” 
(NRC, 2001, p. 131). Prospective teachers and teachers need a productive disposi-
tion of inquiry in order to provide better opportunities and authentic mathematical 
experiences for their students (NRC/NSF, 1996; NRC, 1999). Part of being a doer 
of mathematics includes a disposition of inquiry in mathematics and authentic 
mathematical experiences and includes a willingness to try new problems or 
unsolved problems. Furthermore, dispositions of learners and doers of mathematics 
include curiosity and wonder (The Math Forum, 2016). In general, many PTs are 
eager to develop their mathematical understanding (Holm & Kajander, 2011). 
However, in one study, PTs with high mathematics anxiety were less likely to agree 
that they could teach mathematics effectively (Bursal & Paznokas, 2006). Therefore, 
even if they have a productive disposition toward their own mathematics learning, 
they may still have anxiety about their mathematics teaching.

 Capturing PTs’ Integer Reasoning

The 15 prospective teachers who participated in this research came from a large 
public university in the Midwest. Eight of the PTs were training to be secondary 
teachers, and seven were training to become elementary teachers. Two of the PTs 
were male, but to maintain anonymity, all are referred to as “she” in this chapter. 
Although the PTs were at various points of completion in their programs, they had 
all taken some mathematics content coursework in the mathematics department.

Each of these PTs participated in an individual, structured think-aloud interview 
as they solved integer problems. The focus of this chapter is on their solutions to 
eight word problems (see Table 8.1). The word problems were chosen to represent 
equalize, join, and separate problem types (Fuson, 1992). PTs saw each problem on 
a separate piece of paper and were instructed to say aloud everything they were 
thinking in their heads, which helped make their thinking available to us (Ericsson, 
2006; Ericsson & Simon, 1993). Aside from transcribing the interviews, we also 
collected any written work they generated.

 Analyzing PTs’ Integer Reasoning

To aid in our coding, we created a spreadsheet and listed PTs’ responses to each 
word problem on a different sheet. For each word problem, we created columns for 
the five strands of competency and added three additional columns: one for 
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language use, one for illustrations they made on their paper (written) or talked about 
using (either explicitly drawn or implicitly used), and one for the equations they 
wrote on their paper (written) or talked about verbally (explicit or implicit).

Utilizing Tesch’s (1990) steps for developing codes and the coding process, we 
coded the think-aloud data across participants, going through the PTs’ responses 
one word problem at a time (Tesch referred to this as clustering topics), identifying 
the use of various strands of mathematical proficiency (i.e., procedural knowledge, 
conceptual knowledge, strategic competence, adaptive reasoning, productive dispo-
sitions). Both authors coded each separately. We then compared our codes and dis-
cussed any differences to decide on the final codes after discussion. When coding 
and negotiating the final codes we decided under which strand, if any, each sentence 
within a PT’s think-aloud would fall. In some cases one statement fell under multi-
ple strands, which is not surprising given the interdependent nature of the strands.

 Strategies

As part of a second round of coding, we identified a set of strategies that PTs used 
when solving the problems.

Translation Strategies coded under the larger heading of translation involved find-
ing the distance from one number to the other number, such as on a number line. 
There were several subcategories to this code.

Table 8.1 Eight integer word problems that PTs solved while talking aloud

Word problem Equivalent numerical problem and notes

1) Kyle has -2 points. Jill has 9 points. Who is 
winning? How many more points does Kyle need to 
get to catch up to Jill?

9 – -2 (equalize; also equivalent to a 
join, change unknown problem: 
-2 + __ = 9)

2) Andy has 6 points. Joan has -7 points. How many 
more points does Andy have than Joan?

6 – -7 (equalize; also equivalent to a 
join, change unknown problem)

3) Sam started with 6 points. Then he lost 8 points. 
What is his score?

6 – 8 (separate)

4) Devin had -3 points and then lost 5 more. What is 
her score?

-3 – 5 (separate)

5) Ina started with -1 point and gets 8 points. What is 
her score?

-1 + 8 (join)

6) Eric has -6 points. Aki has -2 points. Who is 
winning? How many more points does Eric need to 
get to catch up to Aki?

-2 – -6 (equalize; also equivalent to a 
join, change unknown problem: 
-6 + __ = -2)

7) Brianna started with a -4-point card.a Her opponent 
took -3 points from her. What is her score?

-4 – -3 (separate)

8) Paola started with 7-point card. Then she drew a 
-3-point card. What is her score?

7 + -3 (join)

aFor some PTs, we had to clarify that she had a card hand worth -4 points
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Counting This strategy refers to instances when a PT started at one number and 
counted to the other number, such as when determining how many more points one 
person had than another (e.g., Schwarz et al., 1993–1994). It also refers to instances 
when they started at one number and counted a change, such as when determining a 
person’s new score.

Referent: 0 This strategy was often seen when PTs were determining how many 
more points one person had than another. Instead of counting each number individu-
ally, some PTs identified the distance between each score and 0 and added those 
distances together (e.g., the nullification strategy in Schwarz et al., 1993–1994).

Subitize Distance Rather than count or chunk the distance based on a reference 
point, some PTs knew the distance based on the numbers. This strategy is similar to 
recalling the answer except that PTs indicated that they were interpreting the dis-
tance between two points.

Counterbalance The counterbalance strategy focused on comparing the magni-
tudes of the quantities involved, usually when positive and negative quantities can-
celed each other out (e.g., Wessman-Enzinger, 2015).

Analogy Analogy strategies were ones where PTs considered the magnitude of the 
quantities and either compared the problem to a whole number one they knew or 
solved the problem as a whole number problem. Then, often referring to the context, 
they made their answers negative (e.g., the symmetrization strategy in Schwarz 
et al., 1993–1994).

Procedure Solving a problem using a procedure involved the PTs manipulating 
the equivalent equations for a word problem (e.g., Gallardo, 1994; Guerrero & 
Martinez, 1982; Ryan, Williams, & Doig, 1998). This could involve an algebraic 
equation manipulation, where PTs set up an equation with the missing value listed 
as an unknown (i.e., “x”). Then, they solved for the unknown by adding or subtract-
ing values from each side of the equation. It could also involve setting up the initial 
problem and changing the operation and sign (e.g., changing subtracting a negative 
into adding a positive, see the computational strategy in Bishop, Lamb, Philipp, 
Whitacre, and Schappelle’s chapter of this book).

Recall Instances where the PT stated the answer to the problem without any other 
explanation were coded as recall. If the PT indicated the answer first and then indi-
cated that you could figure it out another way, we gave them credit for both recall 
and their other stated strategies.
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 PTs’ Collective Integer Reasoning

 Utilizing the First Four Strands of Proficiency

Across the range of problems, PTs’ use of procedural fluency, conceptual under-
standing, strategic competence, and adaptive reasoning varied. Next, we illuminate 
some common ways they used these strands of proficiency on three representative 
problems: one where PTs relied primarily on procedural fluency, one where they 
used a mix of procedural fluency and conceptual understanding, and one where they 
use zero as a referent.

Finding the New Score: 7 + -3 The problem for 7 + -3 (#8 in Tables 8.1 and 8.2) 
is one for which PTs primarily relied on procedural fluency with varying levels of 
detail. Two of the PTs immediately indicated that the answer would be 4, while 
seven others clarified it would be 4 because the problem is 7 – 3. Those seven PTs 
more explicitly translated the situation into an equation, a hallmark of strategic rea-
soning. A strict reading of the problem, however, aligns with the problem 7 + -3, if 
one is maintaining consistency of number sentence to problem type (Wessman- 
Enzinger, in press). Six PTs, nearly half of the participants, articulated this and 
further indicated that 7 + -3 is 7 – 3, which is why the answer would be 4. Adrianna’s 
response was typical of these PTs: “So we’re taking seven and then adding a nega-
tive three which is seven minus three, which is four.”

Although representing the problem in either way displays strategic competence, 
such an explanation does not make explicit the reason why the two expressions are 
equivalent, a key part of a justification that would indicate deep analytical reason-
ing. Jackie mentioned that the problem “kinda looks like seven minus negative 
three,” misspeaking by saying “minus” instead of “plus” and focusing on the visual 
aspects of the signs. Two others provided a more explicit connection by clarifying 
that they could change the problems because adding a negative is “the same thing 
as” subtracting a positive. One of the PTs, Anna, even circled the plus and negative 
signs in her written equation to draw attention to them. As mentioned before, most 
of the PTs’ explanations for this problem tended toward procedural rules; however, 
Kelsey talked about more conceptual ideas related to the problem. She determined 
that there were more positives than negatives by focusing on the two magnitudes 
(seven positives versus three negatives) and used this knowledge to argue for why 
the answer would be positive.

Losing Points: -3 – 5 Compared to the previous problem (7 + -3), PTs’ solutions 
for -3 – 5 (#4 in Tables 8.1 and 8.2) involved a greater mix of procedural fluency and 
conceptual understanding while also drawing on analogies and number line repre-
sentations. Six PTs made procedural statements only, providing either just the 
answer (-8) or talking about the equation or equations they would use. For example, 
Ramona described the problem as -3 – 5, “He started with negative three then lost 
five more, so you’re going to be subtracting five, which is negative eight.” The 
remaining PTs used additional strategies alongside the procedures. Adrianna also 
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identified the problem as -3 – 5 but then used procedural rules to create an equiva-
lent problem (-3 + -5), saying, “We add the two numbers together—three and five—
and then add a negative so that’s negative eight.” She used an analogy to help make 
sense of the problem, thinking strategically about the relations between problems. 
However, she did not explain why she could use the procedure she did. On the other 
hand, Kelsey relied on a more procedural connection between -3 – 5 and -3 + -5, 
explaining that this happens “when you do the slash and dash” (referring to chang-
ing the minus to a plus and adding a negative sign to 5). Yet, drawing on analytical 
reasoning, she also provided a justification based on conceptual knowledge, stating, 
“You can kind of think of it [5] as a negative already since he’s losing it…it’s just 
going to take him further down into the negatives.”

A couple of the PTs did not provide explicit equations in their explanations but 
explained their solutions using more conceptual descriptions. Karey drew a number 
line and counted to show the result of losing five more points. She connected the 
idea of “losing” with moving to the left on the number line, a translation, and 
counted, “Negative four, negative five, negative six, negative seven, negative eight.” 
Karey demonstrated strategic competence in terms of the representation, but her 
counting method was less efficient than reasoning about the relations among the 
numbers. Anna indicated that she would “minus 5” but drew on counterbalance as 
a strategy by using a hills and holes context: “So then we have a hole of negative 
three and we are taking five more away, which is a total of eight, because five plus 
three is eight.” In a traditional use of the counterbalance conceptual model, the PT 
would need to add five zero pairs of hills and holes so that she could remove five 
hills, leaving her with eight holes. Instead, she appears to have rethought the prob-
lem as -3 + -5 or getting five more holes. Unfortunately, her discussion around the 
answer was decontextualized and did not include reference to the “8” representing 
holes (i.e., -8), and she wrote the answer as positive. A stronger focus on analytical 
reasoning may have helped her attune to her incomplete reasoning.

How Many More Points: 6 – - 7 PTs’ solutions to 6 – -7 (#2 in Table 8.1) were 
particularly interesting in terms of their mention of positive versus negative quanti-
ties as well as their use of zero as a reference point. 11 out of the 15 PTs explicitly 
drew on conceptual understanding and referred to positive quantities being greater 
or better than negative quantities when explaining which person was winning the 
game. Such responses involved “A positive number is larger than a negative num-
ber” (Addison); “The negative number is of lesser value than a positive number” 
(Joanna); “He’s above zero, and Joan is less than zero” (Ashley); and “Positive 
points are good points” (Jackie). Drawing on her analytical reasoning to make sense 
of the context of Joan’s negative score, Kelsey reflected, “I would assume that Joan 
has lost points.” Audrey also indicated that “negative typically is bad unless you’re 
playing golf.” Not all PTs had an easy time with the context surrounding this prob-
lem. Two of the PTs (Karey and Kirsten) argued that it is not possible to have nega-
tive points, yet they continued to solve the problem anyway.
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Adrianna clearly illustrated strategic competence as she explained the meaning 
of the problem, “When I see how many more points or how much more is something 
than another thing um I take the first thing minus the second thing.” Similarly, 
Addison clarified that she needed “to see the difference” between the two numbers. 
In order to find this difference, Jackie counted the tick marks from -7 to 6, while ten 
of the PTs added the distances to and from the endpoints (-7 and 6) to 0. In two of 
these cases, the PTs did not explicitly mention zero; for example, Kirsten explained, 
“I knew you had to go back 6, then 7 more, so 13.” Both of these PTs started at six 
and chunked backward; yet, they knew that the answer would be positive. These PTs 
thought about how many points ahead the winner was. In other cases, as with Kelsey, 
PTs justified that they were determining how many points the loser would need to 
get to the winner. Therefore, they started at -7 and chunked forward. In terms of 
analytical reasoning, Octavia’s justification of her procedure was less convincing. 
She said, “From zero, it’s six points, and seven points from zero.” In relation to the 
context, this explanation may not be as clear to students because the PT added two 
distances from zero as opposed to finding the distance between the two scores.

Aside from PTs who found the difference using a number line, the other four PTs 
focused less on visualizing the context and solved the problem procedurally by 
manipulating the equations. Ramona explained, “You’re gonna take the winner’s 
points, six, subtract them from the loser’s points, which is negative seven. You’re 
gonna get positive thirteen.” However, the equation -7 – 6 would get -13. She got 
confused about which number needed to be subtracted from which number. The 
other three all set up the problem as 6 – -7. Both Adrianna and Ashley indicated that 
this is the same as solving six plus seven, while Rochelle more explicitly explained, 
“When you’re subtracting a negative, you’re actually adding the number.” Although 
such explanations can be helpful, it may be difficult for students to understand why 
that is the case. This is where utilizing the number line can support PTs’ analytical 
reasoning. Karey justified this relation saying, “To get to zero, Joan has to like gain 
seven more points, and then to get to where Andy is… she has to gain six more, so 
it’s seven plus six, thirteen.” Such explanations could add meaning to the procedural 
equation manipulations.

 Strategy Use Across Problems

Although an element of strategic competence is that one should make use of “a 
variety of solution strategies,” one also needs to identify “which strategies might be 
useful for solving a specific problem” (National Research Council, 2001, p. 124). 
Table 8.2 illustrates various strategies that PTs used for each problem type.

It is interesting to note that problems like #8 (7 + -3) were not as productive for 
eliciting a variety of strategies from PTs. In fact, other than recalling the answer or 
using procedural rules, only one PT used a more conceptually driven strategy on 
this problem. In stark contrast, problem #3 (6 – 8) elicited all of the strategies, and 
problem #2 (6 – -7) had the largest number of PTs reasoning about distances in rela-
tion to 0. Finally, problem #7 (-4 – -3) involved the greatest use of analogy as a 
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strategy with six PTs using this strategy. Of the analogies, three of the PTs related 
-4 – -3 to 4 – 3 and reasoned similarly to Karey who said, “Cause if I think about 
having four things and someone takes away three, then I’m gonna have one left. If 
it’s negatives it works the same way.” The other three PTs had a variation of the 
reasoning expressed by Alexa, who changed the problem to -4 + 3 and then changed 
it again to 3 – 4. From here, she reasoned that 3 – 4 is like 4 – 3 but in the other 
direction; so, since 4 – 3 = 1, 3 – 4 = -1. Table 8.3 presents a summary of the strate-
gies each participant used across all of the word problems.

Three of the PTs overwhelmingly relied on using procedures or recall to solve 
the problems. In particular, Ramona used recall for all of the problems except for 
problem #8 (7 + -3), on which she first used a procedural rule to change the problem 
to 7 – 3. Ashley also relied heavily on procedural rules and recall, only using reason-
ing about distances relative to zero for the problem 6 – 8. It is interesting that this 
problem prompted reasoning related to zero as this strategy was most prevalent on 
the first two problems, especially 6 – -7. Traditionally, problems similar to 6 – 8 are 
hard problems for upper elementary students to solve because they are used to 
thinking that they cannot subtract a larger number from a smaller one (Murray, 
1985). It may be that tying the problem to number order helped Ashley overcome 
this inclination. Finally, Kirsten primarily recalled answers but used zero as a refer-
ent on 6 – -7. Yet, she explained this strategy after stating the answer, which sug-
gests she may have been using similar processes on other problems but doing it so 
quickly that she did not talk about them. She acknowledged on number problems 
given before those discussed here that she was forgetting to talk aloud.

The rest of the PTs used reasoning that made conceptual elements of the prob-
lems more explicit on at least two problems, with Kelsey leading the way in terms 
of number of strategies used. She used all of the above strategies, except counting 
and recall. In fact, she also used consistent strategies for similar problem types, sug-
gesting strong strategic competence. When solving the first two problems exploring 
a difference in points between two people, 9 – -2 and 6 – -7, she calculated the dis-
tance using a referent to 0; likewise, when solving a similar problem with two nega-
tive point values, problem #6 (-2  – -6), she subitized the distance. She solved 
problems #3, 5, and 8 using magnitude reasoning. Although problem #3 (6 – 8) did 
not initially involve addition of a positive and negative number like the other two 
problems, she interpreted the problem as 6 + -8. On -3 – 5, she changed the problem 
to adding a negative and recalled the answer, and for -4 – -3, she constructed an 
analogy with 4 – 3. She clearly attended to the different meanings of the problems, 
and her strategies reflected that.

 Productive Dispositions

The PTs provided evidence of productive dispositions in multiple ways as they 
considered what children or students thought, connected their reasoning to the 
real world, persevered in problem-solving, changed their minds about solutions 
flexibly, and critiqued the wording of some of the problems. Table 8.4 illustrates 
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some of the ways across the different problem types that the PTs considered the 
potential responses and thoughts of students who might encounter similar 
problems.

These PTs demonstrated awareness that although mathematics should make 
sense, there are ways in which it may not make sense to children. They considered 
that children might find comparing the magnitude of 6 and -7 challenging and antic-
ipated that children might get confused with the wording of a problem. They also 
suggested that children might incorporate counting strategies as a logical way to 
make sense of the problems.

In addition to considering children’s thinking, the PTs also connected their num-
ber sentences and word problems to the real world, further demonstrating that math-
ematics should make sense. Table 8.5 illustrates some of the statements that PTs 
made that connect to the real world.

The questions PTs had pointed to important issues about the contexts of the 
problems, because in the cases of the “Who is winning?” questions, the answers 
would differ depending on if the game was golf (as some wondered) or another 
game where the highest (positive) number is best. Their questions illuminate ways 
the questions could possibly be strengthened by indicating the specific game 
being played or indicating more clearly what a winning score is. The question 
about having a -4-point card and losing negative three points was also worded 
poorly; PTs had to think about the -4 as being broken up into separate cards. Yet, 
even in these cases, the PTs persisted. Table 8.6 illustrates how PTs persevered 
through solving problems.

Overall, when PTs identified that they did not know something, they kept mov-
ing forward without much pause, suggesting they had confidence in their abilities to 
solve the problems. They either rectified their initial confusion or found a different 
way of solving the problem.

Table 8.4 Evidence that PTs considered what children or students might think

Number 
sentence

Prospective 
teacher PTs’ statements

6 – -7 Anna So students might originally think that, oh, seven is greater than six, 
so clearly Joan has to be winning, but the negative is important no 
matter how negative it is. A negative number is still less than any 
positive number.

-1 + 8 Karey A kid would probably go like one, two, three, four, five, six, seven.
-2 – -6 Anna A more negative number is less than a less negative number. So in this 

case, which would really confuse students, a negative two points is 
better than the negative six points.... So that means that Eric needs 
four points to catch up to Aki, which can be done by counting as well 
on fingers, which I’m sure students would do.

-3 – 5 Jackie So this one um, cause of the wording is like you could easily get 
confused with that, I mean I shouldn’t but, kids could get confused 
with that, um, you could just change this two, like take out the word 
lost, and then um do like negative three then negative five more 
points, and so that would be like three plus five equals eight, but 
they’re both negatives, so it would be three.

8 Nuances of Prospective Teachers’ Interpretations of Integer Word Problems
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 Discussion

 Building on Collective Knowledge

Although the PTs were not asked to explain how to solve the problem as they would 
to a student, their think-aloud data provides an indication of how they think about 
the problems. Therefore, if they are inclined to rely on procedural knowledge, they 
need to be aware of this so that they can better prepare additional conceptual expla-
nations for students. On an individual level, many of the PTs’ responses to the ques-
tions could be concerning, such as relying on how an expression looks to determine 
if they are equivalent, misreading an addition problem as a subtraction problem (as 
with reading 7 + -3 as 7 – -3), or using an analogy without explanation (as with -3 – 
5 compared to -3 + -5). However, if we look at the collective responses, a richer 
picture emerges.

Table 8.5 Evidence that PTs made connections to the real world

Number 
sentence

Prospective 
teacher PTs’ statements

6 – -7 Audrey What game are they playing? Golf? They could be playing golf. 
Who’s winning? How many more points does the winner have than 
the loser? Depends on what game we’re playing.

2 – -6 Audrey Are we still assuming that we’re not playing golf?
7 + -3 Karey Oh, so it’s like a game, for some reason I was thinking of like, of 

like a soccer game or something for points.
7 + -3 Kirsten What are these people playing?
-4 – -3 Kirsten Wait a minute, how can this 4, this is a...Oh, ok. So maybe these 

are like four cards with -1s on each.
-4 – -3 Ophelia So what’s the card?

Table 8.6 Evidence that PTs persevered

Number 
sentence

Prospective 
teacher PTs’ statements

6 – -7 Kirsten So, in my head I’m thinking, well you can’t have negative six 
points um, he has six points and Joan has negative seven. Andy is 
winning.

-2 – -6 Ashley I don’t know if it’s -2 – -6? Which is -2 + 6, which is 62, which is 
four.

-2 – -6 Kelsey I don’t know what the problem would be. But on the number line, 
you would just have to move four spots to get to negative two for 
them to be tied.

6 – 8 Jackie It’d probably come out looking like six plus minus eight, I mean 
negative eight, something like that, but I’m just going to do um, 
I’m going to flip it, and do eight minus six.

-4 – -3 Ashley I don’t understand the question. I guess it’s negative one.
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Although most of the PTs relied on procedural rules to solve 7 + -3, one PT shared 
a strategy that involved comparing the magnitudes of 7 and -3 and drawing on a 
counterbalance strategy or neutralizing with a magnitude perspective. Collectively, 
the counterbalance strategy from Kelsey paired with the procedures provided by 
other PTs provides an opportunity to think about how procedural knowledge may 
build from conceptual knowledge for problems such as 7 + -3. Taken together, their 
responses provide a nice link from how 7 + -3 could translate into 7 – 3.

Similarly, for -3 – 5, Kelsey provided a clear explanation for why -3 – 5 is equiv-
alent to -3 +  -5, drawing on reasoning that both operations include a movement 
further into the negatives. This adds a level of explicitness to Adrianna’s analogy 
and also helps illustrate why subtracting hills is equivalent to adding holes. Paired 
with the number lines they drew, the strategies used by the PTs are rich and could 
help students approach the problem in several ways. However, in order for PTs to 
capitalize on their peers’ strategies, they would need to share and discuss the con-
nections in their own content or pedagogy classes.

PTs’ responses to 6 – -7 highlighted the potential importance of utilizing a num-
ber line representation with students. Although counting strategies for determining 
how many more points 6 is from -7 are productive, a referent to 0 was an efficient 
strategy for the PTs. As teachers, these PTs will have to make sense of all of the 
counting strategies: counting from 6 to -7, counting from -7 to 6, finding the dis-
tance from 6 from -7, moving backward from 6 to -7 on a number line, and utilizing 
a referent to 0. In terms of directed distances, moving backward from 6 to -7 should 
result in -13, unless the count is contextualized. PTs need to be aware of these 
nuances in order to know when to prompt students for more information. In addition 
to making sense of all of these strategies, PTs as teachers will also need to connect 
these strategies and decide what to focus classroom discussion on. And, when they 
pose a problem, like problem #2 with 6 – -7, they will need to consider what strategy 
or strategies they are hoping to elicit through that problem. Through the collective 
responses of the PTs, they illustrated a preference for a referent to 0 but also sup-
plied a variety of other ways that children may think about this problem as well.

Having discussions in mathematics content or pedagogy courses around prob-
lems, such as the ones PTs solved here, provides an important opportunity for PTs 
to learn from each other by hearing explanations that enrich their own understand-
ing and by having the opportunity to challenge each other’s explanations and 
encourage more detailed explanations. The collective knowledge of the PTs is com-
prehensive and powerful for leveraging these types of conversations.

 Choosing Productive Problems

Ultimately, PTs will need to choose which problems to pose in their own class-
rooms. The results around PTs’ strategy use presented here provide an interesting 
perspective on the utility of different integer word problem types. For instance, the 
strategies used for #8 (7 + -3) to other problems such as #3 (6 – 8) or #6 (-2 – -6) in 
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Table 8.2 are quite different. With the exception of all but one PT, the strategies 
used with 7 + -3 consisted of recall or procedures. However, with problems like 
6 – 8 and -2 – -6, PTs employed all (or nearly all) of the strategies. Therefore, some 
problem types may elicit the use of a variety of strategies more than others. If PTs 
are hoping to support discourse that includes such a variety of strategies, then they 
will need to make conscious decisions about what problems to include in their dis-
cussions. On the other hand, if they want to have discussions around the equiva-
lence of one problem type to another, then focusing on a problem such as 7 + -3 
might be helpful.

 Productive Dispositions

Contexts, and particularly contexts for integer operations, can be interpreted in dif-
ferent ways. PTs sought to understand the context and make sense of the meaning. 
When asked, for example, who was winning a game, as a collective group, they 
contributed that winning depends on the game. Due to the nature of integers, some-
times having the most negative points wins (e.g., golf), and sometimes having the 
most positive points wins. Questioning contexts and making sense of the world 
around them are an important part of mathematical reasoning that mathematics 
teacher educators and researchers can draw out—capitalizing on what they are 
doing well and leveraging discussions about that to help others think in new ways.

Too often literature and discourse around PTs assume a deficit perspective, espe-
cially when it comes to mathematics. We challenge deficit perspectives here by 
arguing that mathematics teacher educators can leverage the collective groups’ 
responses to build a stronger understanding for all PTs. Mathematics teacher educa-
tors can do this whether the PTs’ strength is in applying procedures, using illustra-
tions to support their reasoning, or making their understanding explicit. As a 
collective, PTs are naturally good at many things: they persevere, make connections 
to the world and children, think about what makes sense, and connect written prob-
lems to symbolic representations. Mathematics teacher educators can bring these 
into focus through targeted discussions, helping the PTs work toward a richer con-
ceptualization of mathematics.
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Chapter 9
Prospective Teachers’ Attention 
to Children’s Thinking About Integers, 
Temperature, and Distance

Jennifer M. Tobias, Nicole M. Wessman-Enzinger, and Dana Olanoff

Abstract The study reported on in this chapter describes the justifications that 
elementary and middle school prospective teachers (PTs) made as they examined 
the temperature story that a Grade 5 student posed for an integer subtraction number 
sentence. The ways that the PTs made sense of the student’s story that used integer 
subtraction as distance are described, providing further insight into the ways that 
PTs may reason about temperature stories in relation to an integer subtraction num-
ber sentence. PTs’ justifications focused on attributes like order, rather than a mag-
nitude discrepancy in the story. PTs need more experience examining stories for 
integer addition and subtraction in order to promote discussion and reflection on the 
various complexities of posing stories for integer addition and subtraction number 
sentences: consistency, realism, and subtraction as distance.

Nineteenth-century German mathematician, Leopold Kronecker, is credited for 
saying, “God made the integers, all else is the work of man” (Leopold Kronecker, 
n.d.). Part of that work of man includes the development of the Celsius and Fahrenheit 
scales. Both of these linear scales include negative integers that are often used as a 
context in the teaching and learning of integers (e.g., Almeida & Bruno, 2014; 
Wessman-Enzinger & Salem, 2018). This chapter focuses on the nuanced knowl-
edge that prospective teachers (PTs) may engage in as they work with integer 
subtraction and make sense of children’s thinking in the context of temperature.
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 Theoretical Perspective: Specialized Content Knowledge 
for Teaching Integer Subtraction

Understanding the different models of subtraction, like take-away and distance 
(Selter, Prediger, Nührenbörger, & Hußmann, 2012), is a component of mathemati-
cal knowledge for teaching (MKT). MKT highlights the types of mathematical con-
tent and pedagogical knowledge specific to the teaching of mathematics (Ball & 
Bass, 2003; Ball, Thames, & Phelps, 2008). The MKT construct illustrates knowl-
edge that goes beyond the notion of “more content” and points to very specific kinds 
of content knowledge, like specialized content knowledge (SCK) and knowledge of 
content and students (KCS). SCK and KCS include understanding the mathematical 
errors that students may make (Ball et al., 2008) or attending to the mathematics 
embedded in student thinking (Jacobs, Lamb, & Philipp, 2010). Important SCK and 
KCS knowledge for integer addition and subtraction includes using the integers 
with appropriate contexts and recognizing when and how children use various con-
texts appropriately or inappropriately in relation to their model of subtraction. For 
example, a realistic monetary context for -5 – -2 = -3 could include removing debts 
and thinking about subtraction as take-away (e.g., removing 2 dollars of debt from 
5 dollars of debt).

PTs often have experiences with take-away subtraction; however, they often do 
not have sufficient experience with subtraction as distance (see, e.g., Chap. 6). 
Subtraction as distance is one model that supports interpreting integer number sen-
tences, especially in the context of finding the difference between two temperatures. 
Because it is important for PTs to both use subtraction as distance (Tillema, 2012) 
and the context of temperature (National Governors Association Center for Best 
Practices and Council of Chief State School Officers [NGA and CCSSO], 2010) with 
integers, we highlight results from a study where PTs made sense of a temperature 
story posed by a Grade 5 student about an integer subtraction number sentence. 
Specifically, we describe the ways that PTs attended to a singular child’s tempera-
ture story involving distance  and temperature for an integer subtraction number 
sentence.

Research tells us that PTs struggle to think conceptually about integer addition 
and subtraction; often they focus only on procedures (Bofferding & Richardson, 
2013). When PTs are asked to reason conceptually and pose stories for integer addi-
tion and subtraction number sentences, they often do not use temperature contexts 
(Wessman-Enzinger & Tobias, 2015). When they do  use temperature, PTs often 
struggle to realistically  pose stories involving subtracting a negative number 
(Wessman-Enzinger & Salem, 2018; Wessman-Enzinger & Tobias, 2015). Yet, in 
their work as teachers, PTs will need to be able to pose stories for integer number 
sentences  and work within the context of temperature (NGA & CCSSO, 2010). 
Additionally, PTs will need to make sense of stories that children pose, judge 
whether or not the stories are realistic, and evaluate children’s use of mathematical 
operations.
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215

Research has shown that both children and PTs have difficulties when posing 
stories for integer number sentences (e.g., Mukhopadhyay, 1997), and they find 
temperature stories particularly challenging (Wessman-Enzinger & Tobias, 2015). 
Some of these difficulties include posing unrealistic stories and changing the num-
ber sentence to a different number sentence (Kilhamn, 2009; Mukhopadhyay, 1997; 
Wessman-Enzinger & Mooney, 2014). Mukhopadhyay (1997) asked children to 
solve problems involving negative integers and tell a story that matched the equa-
tions. She hypothesized that the difficulties they had could be attributed to the vari-
ous mental models the students were possibly employing. If the mental model a 
child draws on, for example, does not support a continuous number line with nega-
tives, they may pose an unrealistic story for a number sentence like 6 – 8 = ◻ (e.g., 
“I had six pencils and lost eight pencils.”)

Similarly, Kilhamn (2009) asked PTs to solve and describe their thinking for 
number sentences (e.g., -8 – -3= ◻). Kilhamn found that only a small subset of PTs 
incorporated a model or context in their mathematical explanations; those who did 
use a model or context used either number lines or temperature to explain their 
reasoning.

In addition to posing temperature stories as teachers, PTs will also need to make 
sense of the stories that children pose about temperatures if they use problem pos-
ing. Yet, we know that attending to children’s thinking is difficult for teachers 
(Jacobs et al., 2010)—so making sense of a child’s posed temperature story is likely 
a productive, yet cognitively demanding, task for PTs.

The studies above included both children and PTs posing stories, but very few of 
them explicitly focused on a particular context. Focusing on a singular context pro-
vides robust insight into PTs’ conceptual understanding of the integers (Wessman-
Enzinger & Tobias, 2015). We chose temperature as a context for a number of 
reasons: (a) teachers will need to use temperature (NGA & CCSSO, 2010), (b) 
temperature is one of the more complex contexts (Schwarz, Kohn, & Resnick, 
1993–1994), and (c) we lack insight into how PTs attend to children’s thinking 
about integers and temperature. Although we are gaining insight into the ways PTs 
reason about integers (Almeida & Bruno, 2014; Bofferding & Richardson, 2013), 
this chapter adds to the existing research by focusing on how PTs made sense of a 
child’s thinking in a temperature context for an integer subtraction problem that 
highlights subtraction as distance (Selter et al., 2012). Next, we share a more in-
depth literature review. This guided the development of our study and provided 
insight into what we know about the SCK and KCS of PTs and about thinking about 
integer subtraction.

 Challenges of Thinking About Integer Subtraction

Research has only recently begun to focus on PTs’ efforts to make sense of integer 
subtraction (e.g., Almeida & Bruno, 2014; Bofferding & Richardson, 2013). 
Although research has shown that both children and PTs have demonstrated 
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sophisticated reasoning about integers, thinking and learning about integers are not 
without challenges. Perhaps the negative integers are challenging, even for univer-
sity students and PTs (Piaget, 1948), because when children learn about the nega-
tive integers in later grades, they often have to overcome more than a decade of 
experiences of operating with positive numbers to accommodate the negative inte-
gers. Additionally, the negative integers are already naturally challenging due to 
their lack of physical embodiment (Martínez, 2006). Although the literature spans 
different ages and grade levels, the commonalities of the challenges about integer 
addition and subtraction are consistent, and we can expect PTs to have similar 
difficulties with integer subtraction. These challenges include the following:

• Analogies to whole numbers may break down, for example, 2–7 may seem 
impossible to students (e.g., Bazzini, 1990; Booth, 1989).

• Subtraction is sometimes interpreted as commutative like addition (e.g., Bell, 
O’Brien, Shiu, 1980; Bofferding, 2010; Murray, 1985).

• More and less have different meanings with integers (e.g., Bell, 1984; Bofferding, 
2010, 2014; Bofferding & Farmer, 2018; Guerrero & Martinez, 1982).

• Studies have shown that students sometimes perform operations with the nega-
tives by omitting signs and then adding them in later (e.g., Ayres, 2000; Bell 
et al., 1980).

• In some contexts, the negative sign may only denote locations and not subtrac-
tion (e.g., Bell, 1984; Gallardo, 1995).

• Changing direction and passing through zero change the difficulty of a problem 
(e.g., Bell, 1993; Bell et  al., 1980; Bishop, Lamb, Philipp, Whitacre, & 
Schappelle, 2014; Bofferding, 2010, 2014; Bofferding & Hoffman, 2014; 
Gallardo, 1995).

• Students have difficulty distinguishing between states and transformations (e.g., 
Gallardo, 2003; Marthe, 1982).

We discuss these challenges in more detail below.

Analogies: Subtraction and Commutativity Students often make analogies from 
problems with only positive integers to problems with negative integers, and one 
challenge is that their analogies may break down (Bofferding & Wessman-Enzinger, 
2017). For example, students may incorrectly make an analogy, comparing 2 – 7 to 
7 – 2 (Bofferding, 2010). That is, some students extend the commutative property of 
addition to subtraction, incorrectly equating 2 – 7 to 7 – 2. Or, some students may 
think that problems like 2 – 7 are impossible (e.g., Bazzini, 1990; Booth, 1989). 
Students have to overcome their whole number experiences and recognize that sub-
traction is not commutative like addition. If students only use positive integers in 
instruction, subtraction might seem as if it is commutative (e.g., Bell et al., 1980; 
Bofferding, 2011; Murray, 1985). In relation to the study reported on in this chapter, 
analogies do not work well with temperature problems. For instance, -6 – -5 is a 
number sentence that students often compare to 6–5 and solve with the take-away 
model of subtraction (Bofferding & Wessman-Enzinger, 2017). However, this anal-
ogy is not appropriate in the context of temperature, as you cannot interpret -6 – -5 
using a take-away model of subtraction.
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Language: More or Less in the Context of Integers and Temperature Another 
common challenge is that more and less can have different meanings in the context 
of negative integers (e.g., Bell, 1984, Bofferding, 2010, 2014; Bofferding & Farmer, 
2018; Guerrero & Martinez, 1982). That is, as you move right along the number 
line, numbers become more positive and less negative. Similarly, as you move left 
along the number line, numbers become more negative and less positive (Bofferding, 
2014). Bofferding and Farmer (2018) related this to temperature when they had 
students consider temperatures like -2 degrees and -5 degrees and consider which of 
these temperatures is most hot or most cold. Although this is about comparison of 
order and magnitude and our chapter is about subtraction, this research highlights 
the importance of considering the nuances of language PTs engage in when making 
sense of children’s reasoning about integer subtraction in the context of 
temperature.

Signs: Confounding Signs, Relative Numbers, and Translations Another chal-
lenge that students have to navigate is the use of the minus sign (i.e., “-”). The minus 
sign has multiple meanings (i.e., unary, binary, opposite) that students may con-
found (Bofferding, 2014; Gallardo & Rojano, 1994; Vlassis, 2004, 2008). Students 
often operate with the negative integers by simply omitting or “ignoring” the minus 
sign and then adding it later (e.g., Ayres, 2000; Bell et al., 1980). For example, to 
solve -5 – 4, a student may solve 5 – 4 = 1 and then apply a minus sign back in the 
number sentence (-5 – 4 = -1), resulting in an incorrect answer. Additionally, the 
minus sign is used to denote location, as well as subtraction, and this can be confus-
ing to students (e.g., Bell, 1984; Gallardo, 1995). For example, for problems like 
10 – -2, some students may interpret this as subtracting twice (Bofferding, 2010). 
Students may think that 10 – -2 represents the problem 10 – 2 – 2, rather than rep-
resenting the distance between two locations, 10 and -2, on a number line.

 Integer Subtraction Number Sentences

Although subtraction with integers is challenging, not all integer subtraction num-
ber sentences are equally challenging (e.g., Hativa & Cohen, 1995; Marthe, 1982). 
Hativa and Cohen (1995) illustrated that some number sentence types are more 
intuitive than others. For example, -a – -b, where a > b > 0, is an easier number 
sentence type than -a – b because students can use analogies (e.g., -5 – -2 is like 
5 – 2, but -5 – 2 is not like 5 – 2). Similarly, Marthe (1982) found that number sen-
tences like x + b = c were more challenging for students when b and c had different 
signs. Overall, researchers have identified that different number sentence types for 
addition and subtraction of integers have varying difficulties (see, e.g., Chap. 3). 
However, they have not all agreed on what constitutes a different problem type. For 
example, Mukhopadhyay, Resnick, and Schauble (1990) consider -2 + 5 and -7 + 5 
to be the same number sentence type. However, others (e.g., Bofferding, 2010; 
Peled, 1991) recognize that magnitude affects the problem type (see Table  9.1), 
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differentiating between -2 + 5 and -7 + 5. With magnitude considerations, there are 
12 different number sentence types for integer subtraction. If zero is included in 
these problem types (i.e., a – 0, 0 – a, -a – 0, 0 – -a), then there are 16 different 
problem types.

When considering the number sentence types in the second column of Table 9.1, 
Murray (1985) found that number sentence types like -A – -b, -a – -B, -A – b, and 
A – -b were the most challenging for students. Other researchers found that the 
problem type -A – -b was not as challenging for students (e.g., Wheeler, Pearla, 
Bell, & Gattengo, 1981), and Peled (1991) found that problem types A – -b and a – 
-B were the most challenging for students. In our study reported here, we used the 
number sentence -14 – -20 = ◻, of the form -a – -B. We used a problem where the 
subtrahend (-B) was negative to encourage the PTs to look at integer subtraction in 
the context of distance, rather than as temperature increasing or decreasing (i.e., 
where the subtrahend would be positive).

 Conceptions About Integer Subtraction

Recent research on students’ conceptions and strategies for subtraction of integers 
(Bofferding, 2010, 2011; see, also, Chaps. 3 and 8) and investigations into students’ 
ways of reasoning when solving open number sentences with integers (Bishop, 
Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014; Bishop, Lamb, Philipp, 
Whitacre, & Schappelle, 2014) have focused on the productive ways that students 
can operate with the subtraction of integers but also point out ways that whole num-
ber reasoning can interfere with extending that knowledge to the integers. For 
example, curriculum materials for mathematics in elementary school, including 
reform curricula, advocate for the use of “fact family” instruction. This type of 
instruction focuses on highlighting the relations between operations that create a 
“family” of facts (e.g., 2 + 3 = 5, 5 – 3 = 2). Bofferding (2011) challenged the pres-
ent role of fact family instruction by advocating for the use of negative integers with 
young children. Addition is commutative with addition (e.g., 2 + 3 = 3 + 2 = 5); 
however, subtraction is not commutative with subtraction (e.g., 3–2 ≠ 2–3). Since 
negative numbers are not typically taught in first grade, many students develop the 

Table 9.1 Number sentence types for integer subtraction in literature

Number sentence types 
without magnitude Number sentence types with magnitude

a, b > 0 a, b, A, B, c > 0 where the capital letter indicates the greatest 
magnitude in the number sentence

a – b -A – b, -a – B, c – c
a – -b A – -b, a – -B, c – -c
-a – b -A – b, -a – B, -c – c
-a – -b -A – -b, -a – -B, -c – -c
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misconception that subtraction is commutative because addition is commutative. 
Likewise, students may pose similar temperature stores for 3–2 and 2–3, and PTs 
need to understand that 3–2 and 2–3, although not commutative, can also represent 
a similar context. Consider the following two stories and how they are similar, even 
though they represent different number sentences:

Temperature Story 1: It is 2 degrees in Fairbanks, Alaska and 3 degrees in Juno, Alaska. 
What is the difference in the temperatures of the two cities? (3 – 2 = 1, where 1 represents 
that there is 1 degree difference in the temperatures.)

Temperature Story 2: It is 2 degrees in Fairbanks, Alaska and 3 degrees in Juno, Alaska. 
What is the difference in temperature from Fairbanks to Juno? (2 – 3 = -1, where -1 repre-
sents that it is 1 degree colder in Fairbanks.)

These different stories point to the necessity for PTs to also be able to make sense 
of the magnitude of integers. Bishop, Lamb, Philipp, Whitacre, Schappelle, and 
Lewis (2014) and Bofferding and Richardson (2013) found that both children and 
PTs tended to use magnitude-based reasoning about the integers. That is, the chil-
dren typically thought about the magnitude of -3 in comparison with the magnitude 
of 6 in the problem -3 + 6. In fact, Kilhamn (2009) argued that the ability to make 
numerical magnitude comparisons is an important component to understanding the 
integers (see also Bofferding, 2014 and Chap. 2).

Although tied to whole number reasoning and reasoning about magnitudes, con-
ceptions about integers are also grounded in definitions of subtraction; two ways 
that subtraction can be conceptualized are as take-away and as distance (Selter et al. 
2012). Subtraction as take-away has limitations with integer subtraction because for 
problem types like 1 – -3, when taking away, discrete objects may not physically 
exist (Bofferding & Wessman-Enzinger, 2017). For this reason, reasoning about 
subtraction as distance and directed distance supports integer subtraction. But, rea-
soning about integer subtraction with directed distance points to another challenge: 
students have difficulty distinguishing between states and translations with the inte-
gers (e.g., Marthe, 1982; Gallardo, 2003; see, also, Chaps. 6 and 7). That is, -2 can 
represent a state, like a temperature of -2 degrees Fahrenheit or a location on a 
number line, or -2 can represent a translation of dropping 2 degrees Fahrenheit or a 
movement two units left on a number line (Schwarz et al., 1993–1994; Wessman-
Enzinger & Tobias, 2015). (Schwarz et  al., 1993–1994) highlighted this as an 
important component to utilizing temperature contexts. When using temperature 
and integer subtraction, there are many dimensions to coordinate. Prospective teach-
ers need to coordinate the realism of the temperature story (Mukhopadhyay, 1997) 
with the structure of the number sentence (Kilhman, 2009; Roswell & Norwood, 
1999) and interpret the language of integers contextually with temperature 
(Bofferding & Farmer, 2018).

Although many researchers have highlighted the challenges that students have 
with changing directions and passing through zero on number line (e.g., Bell, 1993; 
Bell et al., 1980; Bofferding, 2010, 2014; Bofferding & Hoffman, 2014; Bishop, 
Lamb, Philipp, Whitacre, & Schappelle, 2014; Gallardo, 1995), students may con-
ceptualize integer subtraction with distance or movement (Bofferding & Wessman-
Enzinger, 2017). When considering number sentences like -1 – -3, students tend to 
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think about crossing zero on the number line if the problem is interpreted as a move-
ment of three units from -1 to 2 (Bishop, Lamb, Philipp, Whitacre, & Schappelle, 
2014). However, if students interpret -1 – -3 as the distance between -1 and -3 on the 
number line, the problem may not be as challenging (Bofferding & Wessman-
Enzinger, 2017). In terms of temperature, conceptualizing -1  – -3 as a distance 
between two temperatures is important for prospective teachers to experience 
(Wessman-Enzinger & Salem, 2018) because it exposes them to more challenging 
number sentence types and subtraction as distance, a model with which they have 
less experience.

 Research Question

As a field we need to learn more about how PTs make appropriate sense of integers 
in temperature contexts (CCSSO & NGA, 2010) and, specifically, how they make 
sense of children’s posed stories for integer subtraction in the context of tempera-
ture. The research question that guided our work for this study was:

What do PTs attend to as they evaluate a child’s temperature story for integer subtraction 
that uses distance?

 Methods

While enrolled in an introductory mathematics content course designed specifically 
for prospective teachers, elementary and middle school PTs (100 total) participated 
in a study focused on integer addition and subtraction. The design of the mathemat-
ics content course promoted conceptually oriented discourse around number and 
operations. Preparing PTs to become mathematics educators, we1 encouraged PTs 
to solve problems in multiple ways, present their own solution strategies, and under-
stand the reasoning of others as a part of this course (Cobb & Yackel, 1996).

 Data Collection

We collected data across four sections of the course over two academic semesters, 
Fall 2013 and Spring 2014, during a unit focused on integer addition and subtrac-
tion. Instruction on integer addition and subtraction immediately followed instruc-
tion on whole number operations. The PTs participated in activities that included 
creating contexts for number sentences, discussing the validity of contexts in 

1 The first two authors were the instructors for this course.
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relation to temperature, as well as examining other PTs’ and children’s written work 
with integer addition and subtraction (for further discussion of some of these activi-
ties, see Wessman-Enzinger & Tobias, 2015). We also collected PTs’ work on 
in-class activities, homework, and an end-of-unit exam.

Although we collected data for several activities, the focus of this chapter is on the 
findings from an integer addition and subtraction problem given on the end-of-unit 
exam, which included integers. The exam question required PTs to analyze stories 
written by Grade 5 students for different integer number sentences. This chapter 
focuses on the story written by Parker, for the number sentence -14  – -20 = ◻  
(see Table 9.2).

Parker’s story and the corresponding number sentence used a state-state-transla-
tion problem type instead of the commonly utilized state-translation-state problem 
type (Wessman-Enzinger & Tobias, 2015). Therefore, the story supported thinking 
about subtraction as distance rather than subtraction as take-away (Selter et  al., 
2012)—a challenging concept for students.

Research has shown that students may avoid the use of negative numbers in con-
text; for example, a student may discuss $60 of debt rather than having -$60 
(Whitacre et al., 2015). This story posed by Parker contains a similar challenge—
stating 6° colder, which is equivalent to a -6° difference. Using 6° colder potentially 
could be the fifth grader avoiding the use of negative. Furthermore, “6° colder” 
aligns to the number sentence -20 – -14 = -6, rather than -14 – -20 = 6. Thus, one 
version of a consistent story for -14 – -20 = 6 includes framing the refrigerator as 6° 
warmer than the freezer.

 Data Analysis

We examined and analyzed the PTs’ responses for the Parker Task, looking at both 
their answers to whether the story made sense with the corresponding number sen-
tence and their justifications. We used constant comparative methods (Merriam, 
1998) to analyze PTs’ responses. During our analysis of Parker, we examined the 

Table 9.2 The Parker Task

Student Number sentence Story

Parker -14 – -20 = ◻ The freezer is -20°. The refrigerator is 
-14°.
The freezer is 6° colder than the 
refrigerator.

Note. The table shows the number sentence given to a fifth-grade student and the story written. 
Decide if the story makes sense with the number sentence provided. Write a “Y” for yes, if you 
think that the story matches the number sentence. Write “No” for no if you think the story does not 
match the number sentence. Explain your reasoning.
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PTs’ written language for how they attended to consistency and subtraction as dis-
tance. We also determined which reason, of those they listed, was the main justifica-
tion for why the PT indicated the student’s answer was correct or incorrect.

We individually coded each PT’s response. Within our analysis of PTs’ responses, 
we looked for two things:

• Did the PT attend to the consistency issues in relating the story to the number 
sentence?

• Did the PT mention the relation between the idea of distance in the story and the 
operation of subtraction?

After coding for each theme, the authors then met weekly to discuss their codes. 
All disagreements were negotiated and resolved. Table 9.3 illustrates our coding 
scheme centered on consistency and subtraction as distance.

 Results and Discussion

Seventy-three out of 100 PT responses included a statement that Parker’s story 
matched the number sentence -14 – -20 = 6, 26 PTs said his story did not match, and 
4 PTs said both yes and no. Our results indicated that when determining if Parker’s 
story was consistent with the number sentence, many PTs attended to the order or 
magnitude of -20 and -14 or the answer of 6 versus -6 (see Table 9.4). PTs also 
discussed procedures when making consistency explanations. Additionally, approx-
imately half (51%) of the PTs mentioned difference or distance in their explanations 
(see Table 9.4). What follows is a discussion highlighting the varying explanations 
the PTs wrote.

 Consistency

The Story Matched the Number Sentence PTs who reasoned that the story 
matched indicated this was because both numbers (-14 and -20) and/or the solution 
of 6 was accounted for and represented in Parker’s story. The following two 

Table 9.3 Codes for Parker Task

The Parker Task

Consistency Does the PT mention a 
consistency issue, e.g., that the 
story shows -20 – -14 = -6 
instead of -14 – -20 = 6? 
(yes = 1/no = 0)

PT includes: (0) no consistency issue; (1) order 
of the numbers -20 and -14; (2) 6 versus -6; (3) 
confounds magnitude (e.g., states, “-14 is 
bigger than -20”); (4) others.

Distance Does the PT mention difference 
or distance in their justification? 
(yes =1/no =0)
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 examples illustrate where PTs reason that the -14, -20, and/or 6 are accounted for in 
Parker’s story:

Yes, because the number sentence shows what the freezer and refrigerator are.

This does match up because the answer to the number sentence is 6. And the answer in the 
story is 6. It also makes sense because the -20 and the -14 are accounted for in the 
solution.

Both of the PTs’ responses above indicate that they compared the number sen-
tence to Parker’s story only in terms of the numbers given in the problem, not if the 
story was consistent (i.e., referencing an operation) with the number sentence itself. 
For many PTs, this was enough evidence for them to conclude that Parker was 
correct.

Other PTs confounded the magnitude of -14 and -20, using that as a justification 
for whether the story matched the number sentence. One PT, for instance, discussed 
the “largeness” of the numbers, that -14 is greater than -20:

Parker’s number sentence and story did match up. Parker fully understood the concept of 
subtracting & negative and took the temperature of the freezer minus the temperature of the 
fridge to figure out how much colder the freezer was than the fridge. Parker also understood 
that to get the correct answer the larger number -14 must come first. This is why Parker’s 
story and number sentence correctly match up.

This PT, focusing on the order of the numbers, concluded that -14 should be first 
in the number sentence because “the larger number -14 must come first”; thus 
Parker’s story matched.

Other PTs stated that the story matched but provided reasoning that was different 
than the order or magnitude of the numbers. In particular, eight PTs’ explanations 
that supported the story matching included the argument that Parker’s story matched 
because subtracting a negative was the same as adding, thus giving you the correct 
answer of 6. It is noteworthy to point out that neither the number sentence nor the 
story posed by Parker included addition, yet eight PTs referenced addition, an 
example of which is shown in Fig. 9.1.

Rather than connecting Parker’s story in the temperature context to subtracting a 
negative number, these types of explanations related the problem to an equivalent 
problem expressed as addition to conclude that Parker was correct.

The Story Did Not Match the Number Sentence The PTs that responded that 
Parker’s story did not match the number sentence (26 out of 100) also had varied 
reasoning for why Parker was incorrect. The majority of responses that said that the 
story did not match indicated that the story showed -20 – -14 = -6 instead of -14 – 
-20 = 6, as in the explanation below:

The number sentence doesn’t match the story because the numbers were talked about in the 
story the opposite way than in the number sentence.

Though many PTs mentioned the order of the -14 and -20, a few of the PTs stated 
that Parker was solving for a different number sentence. The following explana-
tions, for example, support different number sentences:
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No, I would say this number sentence does not match up because as I read this problem I 
would do -20 minus 6, because since it is getting colder we subtract, equals -14 (the tem-
perature of the refrigerator).

No, although Parker would get the right answer his equation is also wrong. You can’t sub-
tract a negative in temperature because you can’t go down a negative degree. If the freezer 
is 6o colder than the refrigerator than the correct equation would be -14 (refrigerator) – 6 
(how much colder it is) = -20. Therefore, although his answer would be right, the equation 
is wrong.

Parker should have made his # [number] sentence to match his story, such as putting -20 + 
14 = -6.o But, if you look at Parker’s problem differently, it can seem right because even 
though he put the refrigerator before the freezer, he is making a comparison of the 2 to get 
how much colder the freezer is and it is 6o colder.

Though the first PT created a new number sentence that was mathematically incor-
rect (stating -20 – 6 = -14), she related the subtraction in the problem to getting 
colder or dropping a temperature, thus interpreting Parker’s story as take-away 
instead of comparison. This was the same reasoning the second PT used when writ-
ing, “…you can’t go down a negative degree.” Both PTs’ responses attended to the 
idea that Parker was incorrect because the order of the entire number sentence did 
not match his story. Similarly, the third explanation described the problem as 

Fig. 9.1 PT referenced that subtracting a negative is the same as adding

Table 9.4 Classifications of written explanations from the PTs

Consistency explanations
Difference or distance 
explanations

Does not mention a consistency issue Mentions difference or distance

Number of PTs = 59 Number of PTs = 49
Mentions the order of the numbers -20 and -14 Does not mention difference or 

distance

Number of PTs = 25 Number of PTs = 51
References 6 versus -6 (i.e., 6 degrees colder versus 6 
degrees warmer)
Number of PTs = 1
Confounds magnitude (e.g., -14 is bigger than -20)
Number of PTs = 2
Other reasoning

Number of PTs = 19

Note. The counts in the first column sum over 100 because we assigned some PTs’ explanations 
more than one code
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comparison and stated that though the order of the numbers was switched in the 
story that making a comparison between the refrigerator and freezer to determine 
that the freezer is 6 degrees colder can make his story seem correct.

These explanations highlight different number sentences for Parker’s story: -20 – 
6 = -14, -14 – 6 = -20, and -20 + 14 = -6, respectively. In the topic of subtraction as 
comparison versus take-away, there is more than one number sentence to represent 
a subtraction as comparison situation. Both the second and third PTs’ responses 
alluded to comparison, whereas the first discussed take-away as getting colder.

Notably, only two PTs focused on the solution of 6. They explained that when 
Parker stated that the freezer is 6 degrees colder, this would actually represent -6 not 
positive 6. The following PT compared 6 versus -6 to decide that the story does not 
match the number sentence:

I said no for Parker. I like how he was thinking but his last part would make the answer -6 
not 6. I would change that part to say the fridge is 6 warmer than the freezer. This would 
give you a positive 6.

By changing the wording of the solution to talk about the refrigerator being 
warmer than the freezer, the PT noticed that Parker actually discussed a solution of 
-6 not positive 6 as represented in the number sentence.

In summary, only about a quarter of the PTs responded that Parker’s story did not 
match, and their justifications mostly centered on the order of -14 and -20. But, the 
order of the numbers is only part of the story. Although -20 – -14 and -14 – -20 may 
represent the same distance, interpreting the -6 and 6 is not the same. Yet, only two 
prospective teachers mentioned the discrepancy between 6 and -6. Overall, most 
PTs responded that the story did match the number sentence. The story represents 
difference of temperatures, which is a strong use of integer subtraction. However, 
the nuance of 6 degrees colder is an important observation for PTs to make if they 
are to interpret student work and lead discussions around mathematical work.

 Distance

Fifty-one of the PTs related Parker’s story to either the difference or distance 
between the refrigerator and freezer temperature. PTs that used the distance or dif-
ference either briefly mentioned that this is what Parker was finding in his story or 
used this as a main justification for why he was correct (see Fig. 9.2).

By relating Parker’s story to finding a distance or difference between -14 and -20, 
PTs either stated that he was correct because the order of the numbers does not mat-
ter or that the difference between the two temperatures is 6°; thus Parker was cor-
rect. If the PTs did not mention distance, they generally mentioned consistency 
issues instead.

The first response from a PT in Fig. 9.2 mentions the order of -14 and -20 in 
relation to the difference “because when talking about the difference it’s the 
spaces apart not the negative number.” This type of reasoning is correct if we are 
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 referencing the absolute value or magnitude. But, with integers, we can use 
directed distance. With directed distance, -20 – -14 and -14 – -20 both represent 
distance; but -20 – -14 = -6 is moving -6 units from -14 to -20, and -14 – -20 = 6 
is moving +6 units from -20 to -14. In relation to Parker’s temperature context and 
the number sentence, this means the distinction between 6° colder and 6° warmer 
matters. The second response in Fig. 9.2 highlights this distance between the two 
numbers, -14 and -20, and emphasizes the directed distance of moving from -14 
to -20 with arrows above the number line. It is interesting to note that this PT 
ordered these numbers in an unconventional way, with -14 to the left and -20 to 
the right. In this way, the PT shows the temperature getting colder despite not 
mentioning the 6 versus -6.

Overall, although potentially due to the written nature of this task, it is notewor-
thy that none of the PTs mentioned directed distance. Directed distance is an impor-
tant part of incorporating negative integers into distance models of subtraction. The 
majority of PTs responded that the numbers in the story matched the numbers in the 
number sentence as their main justification for whether the number sentence 
matched Parker’s temperature story. Likewise, the majority of PT responses that 
claimed Parker’s story did not match provided justification that the numbers in 
Parker’s story were presented in the opposite order as they were in the number sen-
tence. We found few PTs that presented other reasoning such as the solution of 6 
versus -6 or confounded the magnitudes of -14 and -20. Other PTs used the presence 

Fig. 9.2 PTs used difference/distance to justify why Parker is correct
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of difference or distance of the two numbers in the story to determine if Parker was 
correct or not but did not mention the directed distance.

 Implications

Our study is an inaugural description of the ways PTs attend to children’s thinking 
about integers in a temperature context involving distance. We purposefully selected 
a difficult problem type (-a – -B) for determining what understandings of integers 
PTs use. This helps us understand how PTs analyze children’s thinking about inte-
gers and temperature; it also faciliates our thinking around what is needed for inte-
ger instruction  with PTs. PTs will teach integers in the future, both within and 
without a temperature context. Specifically, PTs will need to (a) support children in 
developing a distance conception of subtraction and (b) make sense of children’s 
thinking about integers, temperature, and subtraction as distance.

Results indicated that very few PTs discussed the directed distance of 6 or -6. 
Yet, directed distance, not just order and operations, is a crucial component to 
understanding integers (Bofferding, 2010, 2014). Although many PTs noted the 
relation between distance and subtraction, the PTs did not attend to the direction. 
The assessment in this chapter occurred at the end of the integer instruction in our 
courses, where thinking about integers conceptually was promoted and PTs even 
posed stories themselves for integers. Consequently, we think that our future instruc-
tion with PTs should include opportunities for explicit discussions about directed 
distance while analyzing children’s thinking in contexts.

Our results also indicate that although context plays an important role in helping 
PTs understand different types of subtraction problems, not every PT attended to 
the context of the problem. In fact, only one PT recognized that Parker’s story indi-
cated -6 with “the freezer is 6 degrees colder” as opposed to +6. Also, 23 PTs dis-
regarded the context and instead focused on the order of the numbers in the problem. 
This is a surprising result to us because this exam question came after weeks of 
instruction focused on problem solving and reasoning with number concepts and 
operations. Consequently, more research is needed to determine the ways in which 
PTs develop an understanding of integers by analyzing children’s thinking from 
both a conceptual and procedural approach.

Instruction with integers is often overlooked in courses for PTs but can aid in 
PTs’ understanding of what it means to add and subtract numbers in multiple con-
texts. Much can be learned about subtraction as distance with integers. Since the 
same contexts for whole numbers do not necessarily work for integers, we cannot 
assume that PTs will readily connect their experiences in whole number contexts to 
integer contexts. Likewise, our results indicate that even when presented with a 
familiar context, like temperature, the context may not be taken into account and 
PTs may not readily extend it to making sense of children’s thinking. Thus, it is 
important that PTs  engage  with integers for  developing the skills necessary for 
teaching mathematics deeply and conceptually.
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Chapter 10
Using Models and Representations:  
Exploring the Chip Model for Integer 
Subtraction

Eileen Murray

Abstract Mathematics educators advocate for the use of models as an instructional 
practice that can potentially aid in building students’ understanding of difficult top-
ics. Integers and integer operations are historically problematic for students and are 
critically important in both arithmetic and the future study of algebra. In this chap-
ter, I explore one particular model for working with integers, a discrete model using 
colored chips. By doing so, I illustrate a tension that arises when deciding how to 
present a model during instruction and examine key questions about the use of mod-
els in mathematics teaching. How should mathematics teachers build connections 
between students’ informal understandings of mathematical content and formal 
mathematics? In what ways can teachers encourage students to use a model in ways 
that make sense while challenging the utility of the model for related problems?

One instructional practice mathematics educators have advocated for as a poten-
tially effective way to help build students’ understanding of mathematics is the use 
of models (Moyer-Packenham & Westenskow, 2013; Ross & Willson, 2012; Sowell, 
1989). Models are symbols, pictures, diagrams, graphs, or concrete materials that 
help students manage, document, communicate, or interpret mathematical ideas and 
phenomena (Beswick, 2011; Jones, 2010). Models provide opportunities for stu-
dents to use their everyday, intuitive knowledge to explore and make sense of math-
ematics (McNeil & Jarvin, 2007). Some research has shown that the use of models 
can help children construct meaningful ideas, enhance performance in class activi-
ties and assessments, and improve attitudes toward mathematics (Bolyard & Moyer-
Packenham, 2012; Clements, 1999; Moyer, 2001).

Nevertheless, the use of models does not guarantee successful mathematical 
learning. In order for effective learning to take place, teachers need to be knowledge-
able about the use of models and understand that mathematics does not exist in the 
models themselves; rather, the models allow for the exploration of mathematics 
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(Clements, 1999; Kamii, Lewis, & Kirkland, 2001; Moyer, 2001). Furthermore, if 
models are not recognized as valuable tools for mathematical learning, teachers may 
not create conditions conducive to allowing students to construct their own knowledge 
through interactions with the materials (McNeil & Jarvin, 2007; Moyer & Jones, 
2004). Therefore, it is important that educators are aware of how models best repre-
sent mathematical concepts and students’ learning of these concepts (Hall, 1998).

Understanding integers and integer operations is one important topic for which 
educators have promoted the use of models, but questions about the effectiveness 
and value of certain models for helping students understand this mathematical topic 
persist (Murray, 2011; Stephan & Akyuz, 2012; Vig, Murray, & Star, 2014). 
Nonetheless, models may be helpful in this domain because students have difficulty 
understanding negative numbers (Vlassis, 2008), accepting negatives’ usefulness 
and place in the number system, and interpreting negative numbers in particular 
real-world situations (Whitacre et al., 2011; Wessman-Enzinger & Mooney, 2014).

Operations with integers are a critically important concept for school mathematics, 
in both arithmetic and the future study of algebra (Peled & Carraher, 2008). However, 
students frequently struggle when trying to understand negative integers and opera-
tions with them—sometimes overgeneralizing their experiences with positive num-
bers (Bofferding, 2014; Whitacre et  al., 2011). Moreover, the difficulties students 
continue to face when attempting to create meaning for particular operations and con-
ventions for integers call into question the basic premise that students can transfer 
their learning of integers from concrete contexts to abstract domains (Stephan & 
Akyuz, 2012). These hurdles and other difficulties with negative integers have been a 
consistent theme in mathematics education literature for decades (Bishop et al., 2014; 
Gallardo, 2002; Hefendehl-Hebeker, 1991; Thomaidis, 1993; Vlassis, 2008).

The goal here is not to enter into the conversation about the effectiveness of mod-
els, either generally or for teaching integer arithmetic. Rather, by exploring one par-
ticular discrete model for working with integers that uses colored chips, I aim to 
illustrate an inescapable tension that arises in the instructional use of models: deciding 
whether to present models the way curricula dictate or the way teachers understand 
them or feel students understand them. In the section below, I provide information 
about models, including the theories underlying their use and research on a chip model 
for teaching integer operations. I then describe a teaching scenario that I experienced 
and use this instructional context to consider key questions about the use of models in 
mathematics teaching. For example, how should teachers build connections between 
students’ informal understandings of mathematical content and formal mathematics? 
In what ways can teachers encourage students to use a model in ways that make sense 
while challenging the utility of the model for various (related) problems?

 Background

The use of models has been documented in mathematics classrooms for decades 
(e.g., National Council of Teachers of Mathematics, 2000). However, much still 
needs to be understood with respect to how models are used and how teachers and 
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students understand them. The current work sought to understand one possible 
model for integer operations, methods of implementation, and the mathematics 
behind each method. In the sections that follow, I provide a more detailed definition 
of what I consider a model in this context and give examples of research on models 
while highlighting the conflicts that arise within this literature.

 Definition of Models

I employ the term model for use in the mathematics classroom as any structure of 
symbols, images, or concrete objects that represent mathematical concepts. That is, 
models can be “materials, visual sketches, paradigmatic situations, schemes, dia-
grams, and even symbols” (Van den Heuvel-Panhuizen, 2003, p. 13), which become 
useful when they are rooted in realistic, imaginable contexts and remain flexible so 
they can be applied on a more advanced or general level. In this study, I focus on a 
subset of models, manipulatives, rather than on all forms discussed in the literature.

Mathematicians and mathematics educators talk about manipulatives as manipu-
lative materials (Hall, 1998; Moyer, 2001), manipulative models (Clements, 1999), 
concrete manipulatives (Clements, 1999), or concrete materials or representations 
(Hall, 1998). Manipulatives are said to be “physical objects used to represent math-
ematical ideas” (National Research Council, 2001, p. 9) or “concrete objects use to 
help students understand abstract concepts” (McNeil & Jarvin, 2007, p. 310). Moyer 
(2001) describes manipulative materials as visual and tactile objects that students 
maneuver through hands-on experiences. In her definition of concrete representa-
tions, Sowell (1989) includes “materials such as beansticks, Cuisenaire rods, 
geoboards, paper folding, or other manipulative material under the supervision of a 
treatment administrator” (p. 499).

For the purposes of this work, I use the term manipulative as a way to capture 
physical tools1 that are used to help support students’ learning and that are manifes-
tations of mathematical concepts. Such tools are pre-constructed and presented to 
students, rather than constructed by the students themselves, and can be used to 
represent abstract mathematical ideas explicitly and concretely. Whether one pre-
fers the term representation, manipulative, or model, mathematics educators have 
long been researching theories underlying their use and debating their benefits in 
the teaching and learning of mathematics.

1 Recent work by Moyer et al. (2013) discusses virtual manipulatives, but this is outside the scope 
of this work and therefore is not discussed.
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 Manipulative Use in Mathematics Instruction

Manipulatives have numerous benefits for the teaching and learning of mathemat-
ics. One such benefit includes enhancing students’ memory and understanding 
through the physical actions they employ when using manipulatives (McNeil & 
Jarvin, 2007). Many studies endorse the use of manipulatives to help students com-
municate using mathematics, develop abstract reasoning, access real-world knowl-
edge and experience, and discover concepts through student-centered activities 
(Carbonneau, Marley, & Selig, 2013; Uribe-Flórez & Wilkins, 2016; Van den 
Heuvel-Panhuizen, 2003). The use of concrete representations can improve stu-
dents’ mathematical abilities, problem solving, and reasoning skills (Pape & 
Tchoshanov, 2001). Similarly, concrete representations help transform everyday 
knowledge to mathematical understandings (Linchevski & Williams, 1999).

Effective instructional use of manipulatives provides students with the control 
and flexibility needed to make connections among different pieces of knowledge 
and should “have characteristics that mirror, or are consistent with, cognitive and 
mathematical structures” (Clements, 1999, p. 50). However, as with any curriculum 
or instructional approach, implementation matters—the use of manipulatives them-
selves does not guarantee success (Carbonneau et al., 2013). Students could fail to 
link the use of manipulatives with the appropriate mathematical concepts if they 
learn to use manipulatives in rote ways (Clements, 1999; Moyer, 2001). This failure 
to engage students in substantive mathematics as they use manipulatives is one rea-
son why manipulatives may not be employed successfully (McNeil & Jarvin, 2007), 
as the connection between the manipulative and the mathematical concepts may not 
be transparent enough for students to grasp (Uttal, O’Doherty, Newland, Hand, & 
DeLoache, 2009; Uttal, Scudder, & DeLoache, 1997). Because of these difficulties, 
manipulatives are not a panacea for instruction and teachers should take steps to 
explicitly build connections between their students’ informal understandings and 
formal mathematical symbols or concepts.

Another problem with using manipulatives resides in their dual representation—
a manipulative is a representation of a mathematical concept or procedure as well as 
an object in its own right. Some studies have shown that perceptually rich manipula-
tives (e.g., actual objects) or representations of an actual object (e.g., fake money) 
might hinder learning because of the irrelevant information contained in the manip-
ulative or because students may not recognize and interpret the dual nature of the 
manipulative (Uttal et al., 2009). This dual representation is difficult for many stu-
dents to understand and may overwhelm students’ limited cognitive resources.

Additionally, the nature of instruction can influence the effect of manipulatives 
on mathematics learning. Some researchers have highlighted the importance of 
instructional guidance because of the difficulties students have with understanding 
how the physical manipulation of objects is related to the mathematical concepts 
being addressed (Martin, 2009; Sarama & Clements, 2009). Related to the dual 
nature of manipulatives, some research has shown that more direct instruction and 
“the scripted manipulation of objects helps students establish connections between 
concrete representations and their abstract referents (i.e., words), which in turn 
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enhances comprehension” (Carbonneau et al., 2013, p. 395). Others say this guid-
ance might impede learning because it can confine students to particular interpreta-
tions (Martin, 2009). Further research is needed to untangle this debate. One idea 
may be to look more carefully at how learning objectives and teachers’ understand-
ing of manipulatives might play a role in the level of instructional guidance.

Beyond the issues with manipulatives themselves, the concept of integers is a 
difficult one for students and may compound instructional difficulties. In the next 
section, I discuss research on integers and integer operations to help situate this 
content in student learning and connect it to the work with manipulatives.

 Research on Teaching Integer Operations

For decades mathematicians and mathematics educators have considered the diffi-
culties most students have with learning how to interpret and manipulate integers 
(e.g., Hefendehl-Hebeker, 1991; Vlassis, 2008). Students may have difficulties with 
the “meaning of the numerical system and the direction and multitude of the num-
ber,” the “meaning of arithmetic operations,” and/or the “meaning of the minus 
sign” (Altiparmak & Özdoğan, 2010, p. 31). Others have shown how problems with 
algebraic symbols can be the root of students’ difficulties with negative numbers 
(Lamb et al., 2012; Vlassis, 2008). In particular, negative numbers are fundamen-
tally linked with algebraic language and symbols and thus with how the minus sign 
is used. The different uses of the minus sign (e.g., unary operator, binary operator, 
and symmetric operator for negative numbers) make it necessary for students to be 
able to be flexible in their thinking about the sign in order to make sense of vari-
ables, algebraic expressions, calculations, and algebraic equations.

Prior to first encountering negative numbers, students work with only positive 
numbers that can be directly applied to numerous real-world situations, including 
counting objects and measuring quantities. Thus, as students learn about negative 
numbers, they may have difficulties if they continue to think of the negative num-
bers as measuring physical quantities. The shift of moving beyond the concrete 
requires time and considerable conceptual change, which could make the use of 
manipulatives a natural tool for instruction. By using discrete manipulatives, stu-
dents may work with integers in a familiar setting within a context that helps them 
understand the conceptual jump from counting numbers to integers.

Flores (2008) used colored chips and zero pairs (i.e., additive inverses) to help 
students learn about integer subtraction. The use of discrete objects could allow 
students to take a concrete approach to negative numbers and help them internalize 
their understandings. Hayes and Stacey (1999) found that students who learned 
about negative numbers using integer tiles performed better on a posttest when com-
pared to students who used the number line. They concluded that instruction focused 
on “neutralization and neutral pair” or a zero pair method2 made operations “easier 

2 The zero pair method is based on the principle that opposites sum to zero. By combining an equal 
number of red and black chips, students learn that such collections of chips will always add to zero. 
Therefore, students can add zero pairs, when necessary, to problems in order to help complete 
particular operations.
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to demonstrate, explain and understand, countering to some extent a criticism of the 
model due to the difficulty that some students find with such, according to some 
critics, ‘unnatural’ processes” (p.  8). Liebeck (1990) reported on students using 
counters to keep score in a card game in which cards instructed students to add 
either scores (black counters representing positive numbers) or forfeits (red coun-
ters representing negative numbers). Her goal was to see how students would under-
stand different representations of the same number, e.g., 3 = 4 + -1, and different 
representations of manipulations with the counters, e.g., 3 – -1 = 3 + 1. Liebeck 
found the students who were taught using counters were able to construct their own 
strategies for operations on negative numbers and to reproduce, apply, and extend 
their knowledge on assessments.

As the above section illustrates, there have been many attempts to use manipula-
tives for instruction of integers and integer operations in an effort to alleviate difficul-
ties students encounter as they learn about negative numbers and to help build deeper 
understandings of underlying concepts. But while there has been literature discuss-
ing manipulatives and how to use them with students, less attention has been paid to 
how the teachers themselves view the manipulatives and the instructional challenges 
that are inherent in their use. In particular, with so many manipulatives to choose 
from, teachers are required to know a great deal about the affordances and constraints 
of different types (Vig et al., 2014). As the landscape of manipulative use becomes 
more complex, mathematics educators must take a step back to look more closely at 
teachers’ use and understanding of manipulatives. The study described here seeks to 
make a contribution to this area by considering carefully teachers’ knowledge of and 
use of manipulatives for teaching integer operations.

 Method

Through a series of after-school meetings with two seventh-grade mathematics 
teachers, the goal of this work was to help teachers plan for and understand the 
implementation of the chip model for integer operations. The research question 
guiding this work is as follows: How does a seventh-grade teaching team under-
stand and implement the chip model for integer subtraction? Below I describe the 
larger study within which this work is situated, the research site along with the 
nature of the mathematics curriculum, two of the teachers who participated in this 
study, and the data sources and analysis for this study.

 Context

This work is situated within the context of a larger study, which was designed to add 
to the research base on effective teaching strategies that incorporate higher-order 
thinking skills for all learners. I used a professional development strategy incorpo-
rating the cyclical process of teaching (Loucks-Horsley, Hewson, Love, & Stiles, 
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1998; Roth McDuffie & Mather, 2006; Silver, Clark, Ghousseini, Charalambous, & 
Sealy, 2007; Smith, 2001), which is used to provide teachers with practice-based 
experiences from which they can learn about instructional strategies and student 
thinking. The particular cyclical process in this work is called a reflective teaching 
cycle ([RTC], Smith, 2001) and consists of three stages: planning, teaching or act-
ing, and reflecting. In planning, teachers decide what to teach and spend time under-
standing the mathematics in the task, their students’ prior knowledge, their 
mathematical goals, and how they can achieve them. After planning, teachers enact 
their idea by implementing their plans in the classroom. During the teaching or act-
ing phase, teachers make decisions about how to engage students in learning and 
what changes to make in their pedagogy, if any. After teaching, teachers reflect on 
the type of thinking students engaged in during the lesson and how deeply they 
grappled with the mathematics. Teachers consider what students did and said to 
help them gain access to students’ understanding of the central mathematical ideas 
of the lesson to aid in this reflection.

The RTC is effective when used in a one-on-one setting with a teacher and 
teacher educator (Roth, Mather, & Reynolds, 2004) or in large professional devel-
opment workshops (Silver et al., 2007). For the larger study, I extended this litera-
ture base by engaging a team of two seventh-grade mathematics teachers in a series 
of RTCs and examining how this series of cycles influenced teachers’ selection and 
implementation of tasks that had the potential to facilitate higher-order thinking. 
During the course of the larger study, the teachers worked through two units of 
instruction. The work presented here focuses on cycles from the unit on rational 
numbers, specifically those that revolved around integer addition and subtraction.

 Research Site

The study was conducted in an urban school district in the southeastern area of the 
United States. At the time of the larger study, the district served over 12,000 stu-
dents in 14 elementary, 4 middle, and 2 high schools. Of these institutions, nearly 
32% did not meet adequate yearly progress (AYP)3 as described in the No Child 
Left Behind (NCLB) legislation for the 2008–2009 school year, including three of 
the four middle schools in this study. The student population was approximately 
53% African American, 21% Hispanic, 20% White, 2% Asian/Pacific Islander, and 
4% multiracial, with close to 70% of its students listed as economically 
disadvantaged.

The study took place in Helix Middle School (pseudonym), which enrolled close 
to 500 students. The school’s demographics were slightly different from the district 

3 Adequate yearly progress is a measure by which schools are held accountable for student perfor-
mance under the 2001 No Child Left Behind (NCLB) federal law. NCLB was the version of the 
Elementary and Secondary Education Act in the United States from 2002 to 2015. The current law 
is the Every Student Succeeds Act.
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with a population of approximately 58% African American, 32% Hispanic, 7% 
White, and over 90% economically disadvantaged. The school was on its fourth 
principal in 4 years and had not met AYP for the previous 6 years.

At Helix, each teacher instructed five classes a day and was allotted one period 
for planning. Two of the five planning periods each week were allotted for content 
planning—one day for content teachers to plan and the other day for them to share 
and modify plans with special education teachers. All mathematics teachers in the 
district used the Connected Mathematics 2 (CMP2) textbook as their main resource. 
In the present study, I focus on the seventh-grade instructional unit, Accentuate the 
Negative, focused on positive and negative rational numbers. The goals for this unit 
include using appropriate notation to indicate positive and negative numbers, under-
standing the relations between a number and its additive inverse, and developing 
algorithms for adding, subtracting, multiplying, and dividing positive and negative 
numbers. In the early part of the unit, students are encouraged to explore and use 
two models to represent addition and subtraction of integers: the number line and 
the chip model. The chip model uses both physical and drawn representations to 
provide students with experiences manipulating integers as they learn how to per-
form operations on integers.

According to the instructor materials for this unit, the objective in using the chip 
model for integer subtraction within that curricular material is to learn how to flex-
ibly rename integers using different combinations of positive and negative chips. 
For example, when posed with the problem -4 – 2, the CMP2 suggests students 
rename -4 as −6 + 2 in order to have positive chips from which to subtract 2 (i.e., 
-4 – 2 = (-6 + 2) – 2 = −6 + (2 – 2) = -6 + 0 = -6). See Fig. 10.1, where each black 
chip represents positive one and each red chip represents negative one.

This general approach of renaming integers in order to anticipate upcoming 
operations is quite common in CMP2 and in the use of chip models generally. In the 
present problem of -4 – 2, note that -4 can be renamed in many ways, such as 
-5 + 1, -6 + 2, -7 + 3, etc. However, cognizant of the impending need to subtract 2, 
the renaming of -4 as -6 + 2 could be viewed as optimal, as one that has the two 
black chips available to subtract. This use of the chip model requires a particular 
renaming that indicates awareness of the specific nature of the upcoming computa-
tions. As a result, how one renames -4 is different for the problem -4 – 2 versus the 
problem -4 – 3; in the former, -4 is renamed as -6 + 2, while in the latter, -4 is 
renamed as -7 + 3.

Fig. 10.1 Chip model for -4 – 2.
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 Participants

The two seventh-grade mathematics teachers, Clark and Tess, both began teaching 
at Helix the same year. In their first year, both were assigned to the eighth grade and 
moved together to the seventh grade in their second year. During this study, Clark 
and Tess were in their second year teaching seventh grade.

Clark is an African American man in his 50s who had been teaching for 19 years 
at both elementary and middle school levels. Tess is a White woman in her 40s com-
ing from an educational psychology background and who was in her third year of 
teaching. Since Clark and Tess had been working together in the same grade level 
for 3 years, they had developed a good working relationship and enjoyed talking 
with each other about teaching. They were eager to engage in professional conversa-
tions because they were still learning about the seventh-grade curriculum and were 
thus excited to participate in the study.

 Data Sources

I collected data during each RTC. As stated above, each cycle included planning and 
reflection meetings with the teachers. During these meetings, we collectively 
planned for instruction and reflected on the teachers’ practice. Clark and Tess had 
the opportunity to critically examine their own and each other’s practice, challenge 
each other’s thinking, give support, and provide feedback on pedagogical strategies 
and classroom management. I acted as a facilitator and participant observer by 
prompting the teachers with questions to better understand their reasoning for 
selecting or implementing tasks in particular ways, suggesting different pedagogi-
cal strategies, and considering how the teachers’ actions might affect student learn-
ing. Transcripts and notes from the planning and reflection meetings helped me 
address the research questions by allowing me to investigate the influence of our 
conversations on the teachers’ selection and implementation of mathematical tasks. 
My notes also helped me record any mathematical ideas that were discussed through 
drawn representations or symbolic calculations. During the teaching phase of each 
cycle, I observed both teachers independently implementing the planned lesson. 
These observations provided me with information about how the teachers intro-
duced problematic aspects of the tasks and used questioning during instruction. This 
information allowed me to cater future cycles to the needs of the teachers and gave 
me the opportunity to observe the influence the cycles were having on the teachers’ 
decisions and pedagogical moves.

In all, we engaged in seven cycles from September to November 2009, which 
spanned two instructional units (see Table 10.1).

For this chapter, I report on three of the four cycles (RTCs 4, 5, 6) that occurred 
during the implementation of the Accentuate the Negative unit. During these meet-
ings, the teachers discussed lessons concerning the addition and subtraction of 
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integers, including the use of a discrete chip model to support students’ meaning 
making of these operations. Meetings generally occurred after school and lasted 
60–90 min. In this chapter, I focus specifically on how the seventh-grade teaching 
team understood and implemented a discrete model for integer subtraction.

 Data Analysis

I analyzed the data using thematic analysis (Schwandt, 2007) in order to code sec-
tions of the transcripts according to emerging themes. I began my analysis by read-
ing through all transcripts from the planning and reflection meetings and divided the 
text into episodes. An episode is a section of text in which the conversation was 
about a particular topic, and each episode would end when the focus of the talk 
changed. For example, if the teachers were discussing what tasks they would be 
using and then began to consider the mathematical goals of the task, I would create 
two episodes: one for the task they would be using and one for the discussion about 
the mathematical goals. During this process, I took notes about each episode that 
reflected general observations of the conversation as well as my initial attempt to 
categorize the episodes based on the larger study’s research questions. This open 
coding allowed me to develop main themes that became organizational categories 
for my data (Emerson, Fretz, & Shaw, 1995; Maxwell, 2005). Because the larger 
study focused on the teachers’ facilitation or hindrance of higher-order thinking, my 
initial analysis concentrated on how the episodes were related to higher-order think-
ing. I developed substantive categories (Maxwell, 2005) to describe the nature of 
the episodes to help me develop a general theory of what was happening during the 
reflective teaching cycles.

Following the organizational and substantive categorization of the data, I reex-
amined the data by creating documents that included one planning meeting tran-
scription, observation notes from each teacher’s class, and one reflection meeting 
transcription for each cycle. I read the documents together to get a sense of the 
events that transpired in each cycle and wrote narratives to tell the story of each 

Table 10.1 Reflective teaching cycles

RTC Unit Planning Observation Reflection

1 Variables and patterns Wednesday, 9/16 Thursday, 9/17 Thursday, 9/17
2 Variables and patterns Tuesday, 9/22 Wednesday, 9/23 Thursday, 9/24
3 Variables and patterns Tuesday, 9/29 Thursday, 10/1 Thursday, 10/1
4 Variables and patterns 

Accentuate the negative
Tuesday, 10/13 Thursday, 10/15 Tuesday, 10/20

5 Accentuate the negative Tuesday-Wednesday, 
10/20–21

Friday, 10/23 Tuesday, 10/27

6 Accentuate the negative Wednesday, 10/28 Thursday, 10/29 Thursday, 10/29
7 Accentuate the negative Wednesday, 11/4 Thursday, 11/5 Friday, 11/6
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individual cycle. During this analysis, I found the series of conversations the teach-
ers and I had during the Accentuate the Negative instructional unit about using a 
chip model to subtract integers particularly interesting, in that the teachers’ selec-
tion and implementation of tasks was different for this unit than previous ones. I 
thus decided to further investigate the ways in which the teachers and I discussed 
this chip model to explore the ways the teachers approached this content and how 
their understanding and use of the chip model impacted the nature of the opportuni-
ties their students had to learn about operations with integers. The goal of this addi-
tional analysis was to understand each of the possible methods of implementation 
and the mathematics behind each method.

 Results

As noted above, Clark and Tess were teaching a seventh-grade unit of CMP2 enti-
tled Accentuate the Negative. Because of the timing of the cycles, the teachers and 
I did not plan for every lesson in the unit but did discuss many of the issues that 
arose in their classrooms around the content of the unit. Table  10.2 outlines the 
nature of the conversations during the meetings and the ways in which the conversa-
tions focused on integers and integer subtraction.

In the sections to follow, I discuss the ways Clark and Tess understood and 
implemented the chip model with subtraction. These descriptions are based on a 
holistic analysis of the three cycles summarized above. That is to say, while the 
original units of analysis for the larger study were the cycles themselves, for the 
purpose of this analysis, I use these three cycles together and the discussions in the 
meetings to describe how the teachers understood and implemented the chip model. 
My own observation notes as well as the teachers’ self-reported actions in the class-
room also support this implementation analysis.

 Tess

Tess liked the instructor material’s description of how to use the chip model; par-
ticularly how the investigations helped her students formulate understandings of 
negative numbers and negative number operations. She felt that this approach would 
be successful for her students, and as a result, her instruction closely aligned with 
the curriculum’s teaching guide. Specifically, Tess highlighted how to add the opti-
mal number of zero pairs in integer subtraction problems in her classes, which 
matched the curriculum’s suggested use of chips. She felt this particular strategy 
would help her students develop a deeper understanding of integers and become 
comfortable with manipulating them before formalizing algorithms for addition and 
subtraction. For example, as Tess reflected on the benefit of the chip model, she 
talked about the feeling of quantity. “So seeing all those reds means the feeling of 
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negative is a stronger negative. The feeling of quantity. You don’t necessarily get 
that with the number line” (Tess, reflection meeting, RTC 5).

Tess wanted to use the investigations focused on addition and subtraction with the 
chip model to help her students build an intuitive understanding of concepts. She 
argued that the students were not supposed to be “learning how to subtract” but rather 
“learning how to do that [subtraction] on a chipboard.” However, as Tess used the 
model to help students perform integer subtraction, she provided steps for the stu-
dents to follow, which allowed them to determine the optimal number of zero pairs 
needed for renaming integers. Thus, in Tess’s instruction, she did not allow students 
to rename integers in any way that would work but rather led them toward a particu-
lar renaming, which seemed to work for her students. Tess described her classes:

My kids understand it the way the book has it and the way I’ve been teaching it. I’ve got 
some pretty low kids. Because it seems like it’s more directly what it’s saying. Like, an 
operation is an operation. You’re adding or subtracting. So you start with your 5 and then 

Table 10.2 Summary of planning and reflection meetings in RTCs 4, 5, and 6

RTC Planning Reflection

4 Plan for initial lesson of unit. 
Objectives: understand opposites on 
the number line; the existence of 
negative numbers

Attend to how the task of finding the 
difference between scores was confusing for 
the students because of the word “difference”
Start to think about planning for next 
investigations—specifically a discrete model 
with X’s and O’s for positive and negative 
numbers. Start to discuss zero pairs
Clark reports on situation in an unobserved 
class where he explained to the students how 
to subtract using the chip model (discussed 
below as Clark’s method)

5 Revisit discussion from last reflection 
meeting—using chip model for integer 
subtraction

Press teachers about their use of subtraction 
in the lesson that was focused on addition. 
Tess, in particular, explains her motivation is 
for her students to “move flexibly” between 8 
plus negative 12 and 8 minus 12

Plan for next lesson in unit. Objectives: 
formulate algorithms for addition of 
positive and negative numbers, have 
students think about the meaning of 
the operations, and use different 
representations (discrete model and 
number line)

6 Reflect on classes not observed and 
situations in which integer subtraction 
arose. Teachers recount pedagogical 
strategies used, including using the 
chip model (Clark) and contexts (Tess) 
to understand subtraction

Talk about the “turn turn” and “change 
change” ideas that came up in Tess’s class as 
well as the mention of “two negatives makes 
a positive”

Plan different lessons for teachers. 
Tess’s lesson will include a review of 
integer addition and subtraction along 
with an assessment

Teachers attribute students’ difficulties with 
chip model to their problems with 
understanding the use of zero pairs
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you do what you have to do to it. So, you don’t do another step first. You either see, “Can I 
take away 3 [i.e., 5 – 3]? Yeah. I could just take away 3 or, if I can’t take away 7 [i.e., 5 – 7] 
and in that case I’m gonna have to add 2 zero pairs or, yeah. Because I can take away 5 and 
then 2 positives and then I’d end up with negative 2. (Tess, planning meeting RTC 5)

In her arguments for this method, she said that it would help students develop 
number sense and be better equipped to develop algorithms for integer subtraction. 
Tess’s instruction provided a scripted way to use the chip model, but she did not 
seem to explicitly draw connections between the use of the model and the mathe-
matical concepts. As discussed above, such scripted manipulation may help stu-
dents develop understandings of mathematical concepts (Carbonneau et al., 2013), 
but explicit connections are necessary for students to develop a sense of the inter-
connectedness of mathematical ideas (Clements, 1999). Therefore, it is unclear 
whether Tess’s students built links between their formal and informal understand-
ings of integer subtraction (McNeil & Jarvin, 2007) and whether Tess was able to 
strike the appropriate balance between too much and too little direction when stu-
dents use manipulatives (Glenberg, Brown, & Levin, 2007; Marley, Levin, & 
Glenberg, 2007; Marley, Szabo, Levin, & Glenberg, 2011).

Tess’s understanding of the function of minus sign as a unary, binary, or sym-
metric may have also impacted her decisions to script the use of the chip model and 
not draw explicit connections between the model and the mathematics. In our plan-
ning meeting during RTC 5, in which we discussed the investigation where students 
would think about the meaning of the operations and use different representations 
(discrete model and number line), the teachers discussed the meaning of opposite. I 
suggested prompting students to create various number sentences equaling the same 
value using “opposite signs.” Clark asked if the negative sign could be called the 
opposite sign, to which I replied, “It’s just opposite numbers because if I start with 
a negative, then opposite’s positive. So, it’s not the opposite sign” (Murray, planning 
meeting, RTC 5). Tess then recalled talking to students about addition and subtrac-
tion being opposites and described that students typically had trouble with the ideas 
of opposite and inverse. This language is indicative of the confusion of the function 
of the minus sign in different contexts. Clark and I were discussing the symmetric 
function of the minus sign, representing the action of taking the opposite of a num-
ber, while Tess was talking about the binary function of the minus sign as an opera-
tional sign (Vlassis, 2008). This confusion continued to surface in the reflection 
meeting when Tess mentioned the importance of her students’ ability “to see the 
flexibility between eight plus negative 12 of eight minus 12” (Tess, reflection meet-
ing, RTC 5).

During the sixth cycle, the multidimensionality of the minus sign continued to 
impact Tess’s thinking and instruction. For this cycle, Tess decided to spend part of 
the time reviewing integer addition and subtraction before giving a short assess-
ment. During the observation, students began to talk about rules they were using to 
decide on solution strategies for basic problems. Ideas such as “turn turn” or “change 
change” surfaced as students struggled with understanding how to subtract a nega-
tive number. At one point, one student mentioned, “Taking away negative makes 
positive,” while another said, “Two negatives make a positive.” To combat misuse of 
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these ideas, Tess told her students to instead consider the number sentences 5–3 and 
5 – -3 on the number line because the chips were “too hard.” She then provided the 
students with a context (not recorded in notes) for why -7 – 8 was different from 
-7 + -8. Even so, 10 min after this discussion, Tess told her students that they could 
change 10 – 2 to 10 + -2 without providing a rational.

The problems Tess’s students encountered with the use of negative numbers and 
the chip model seemed to be linked to the use of the minus symbol and the incon-
sistent language used to explain what was happening in different problems. In order 
for students to make sense of integers and operations with negative numbers, stu-
dents should be flexible in their understanding of the different functions of the 
minus sign (Vlassis, 2008), something not apparent in these lessons or Tess’s 
instruction.

 Clark

As Clark came to understand integer subtraction using the chip model, he had con-
cerns about the model’s ability to help his students with the operation. As a result of 
Clark’s experiences with the unit in his first year of teaching the seventh grade, dur-
ing this second year, Clark expressed doubts that his students would be able to select 
the particular renaming for a given problem that is inherent to the suggested use of 
chips. Clark recalled a situation from the previous year in which another mathemat-
ics educator, Dr. White, had helped him understand the chips for the first time.

Yeah, because see remember last year when we taught this we kept talking about doing the 
opposite? Remember that? And I remember, and I guess I’m so stuck on the, the pairs, the 
zero pairs because I learned that from Dr. White and it’s, it’s like, “This is easy. We can do 
it this way!” You know? And that was the biggest difference. Because the kids were con-
fused last year because we kept saying, “Adding the opposite. Adding the opposite.” It was 
always adding the opposite. … Add the opposite. … Inverse, that kind of a thing. And that 
got the kids confused. [Clark, planning meeting, RTC 5]

Through this experience, Clark developed his own way of understanding the use 
of the chips to teach his class in the current year. Dr. White had helped Clark see 
how one could think about a simple subtraction problem, such as 2 – 1, as 2 sub-
tracts a positive 1. Therefore, in using the chips and zero pairs, “if I got 2 minus 1 
and I got the zero pairs there, I’ll take one positive away, all right, I got a negative 
and I still got 2 positives over here. I take them off and I got one left. And that’s, 
that stuck with me because, man, this is an easier way to teach it” (Clark, planning 
meeting, RTC 5).

We can see from this comment that Clark was trying to get in front of the prob-
lem students ran into in figuring out the renaming of integers in order to use the 
chips. That is, from Clark’s perspective, his students were, and would, be confused 
about why the curriculum materials suggested renaming for 2 – 5 (optimally renam-
ing the 2 as -3 + 5) versus 5 – 2, which did not require renaming. In other words, 
Clark felt that his students would not see why some problems required renaming 
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when using the chip model while others did not. Therefore, as an alternative to the 
curriculum’s prescribed way of using the chip model, Clark implemented the chip 
model in a way that he said made sense and worked every time and that he could 
explain. Clark wanted a method where students would perform the same steps for 
each problem—instead of sometimes renaming and sometimes not. In Clark’s 
words, while his method might involve an extra step, “it’s a step that they’ll [the 
students] do consistently and they’re more apt to get the problem right because 
they’re doing the same thing over and over again. Then they’ll start remembering” 
(Clark, reflection meeting RTC 4). Below I describe the method Clark taught his 
students to use whenever they came in contact with an integer subtraction 
problem.

Clark described what he told his students in class when he taught them his 
method:

[W]henever I’m doing subtraction, I’m thinking any number after the subtraction sign is a 
pair, what we call a zero pair, a set of zero pairs… So, let’s illustrate that, and let’s see. Start 
out with five pluses. …[and] because we have two over here, we’re going to set up two sets 
of pairs—one positive, one negative. …But what does the subtraction tell me? Subtract the 
two what? The two positives. Now, I’ve gotten rid of my two positives. …So what do I do 
next? I create my pairs. I’m getting rid of my pairs. And what’s my answer? I got three posi-
tives left. (Clark, reflection meeting, RTC 4)

Clark’s method deviates from the recommended way of using the chip model in 
two ways. First, it is less dependent on problem conditions, given that the same 
steps can be applied for all subtraction problems, with no concern for the optimal 
renaming. Second, Clark’s method is less efficient for some problems. I elaborate 
on these differences below by considering how Clark’s method and the recom-
mended method for using the chip model differ for the problems 5 – 2 and 5 – -2.

For 5 – 2, the method advocated by the curriculum would suggest that students 
take the 5 positive chips, rewrite 5 as the sum of 3 and 2 (e.g., separate the 5 chips 
into groups of 3 and 2), and then remove the 2 chips to represent subtraction. 
Mathematically, this way of using the chips can be represented as: 5 – 2 = (3 + 2) 
-2 = 3 + (2 – 2) = 3 + 0 = 3. For the problem 5 – -2, instead of renaming 5 as 3 + 2, 
the optimal renaming is 7 + -2. By doing this, two chips can be removed to represent 
subtraction: 5 – -2 = (7 + -2) – -2 = 7 + (-2 – -2) = 7 + 0 = 7. See Fig. 10.2 for an 
illustration of Clark’s method versus the CMP2 method for this problem.

As noted above, to use chips to model integer subtraction as the curriculum advo-
cates, it is helpful to determine how to optimally rename the minuend for each 
individual problem. As a result, note that the task of renaming 5 as 7 + -2 is non-
trivial for students; thus, it may seem necessary for students to already have some 
sense of the relative magnitudes of the numbers in order to successfully model inte-
ger subtraction using chips. Clark’s method eliminates the students’ need to con-
sider the optimal number of zero pairs students should add in order to subtract two 
numbers. This results in a series of steps that are identical for 5 – 2 and for 5 – -2 
(see Fig. 10.3). For all subtraction problems, one only needs to create zero pairs 
based on the magnitude of the subtrahend (e.g., 2, in both 5 – 2 and 5 – -2) and then 
proceed with the subtraction.
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It is clear that Clark’s method is generalizable but arguably not maximally effi-
cient. For some problems, students perform unnecessary actions by adding zero 
pairs to the problem where they are not needed. For 5 – -2, Clark’s method is as 
efficient as the curriculum recommended method. But for 5 – 2, adding two zero 
pairs is unnecessary and introduces extra steps in the modeling process. For other 
problems, such as 2 – 5, Clark’s method has students adding more zero pairs than 
the CMP2 curriculum would advocate (e.g., five instead of three), which may be 
considered inefficient or unnecessary. Thus, while in Clark’s method, zero pairs are 
used in all problems, CMP2 would say that for some problems, zero pairs are unnec-
essary, and in others, students should add the minimum number necessary to com-
plete a given operation.

Clark felt that the benefits of having a generalizable method outweighed these 
inefficiencies. Clark liked that his students were able to consistently compute cor-
rect answers without having to worry about “changing signs and all this other stuff.” 

Fig. 10.2 Clark’s method of integer subtraction versus CMP2 method for 5 – 2
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He felt that his method made it easier for his students to use the model for subtrac-
tion because it was “consistent” and was “just as good” as how the curriculum 
described the use of the model. In Clark’s words:

There are two of them because each number’s gonna represent, I’m gonna represent these 
pairs for each one of these numbers so I can show you how to do this. …and it makes it 
easier for the kids to see it, and it’s more consistent…because the kids see, “Okay, it says 
subtract a negative 2 from here so I’m gonna take these two negatives and now I got nothing 
but positives left. If it say subtract a positive 2 I take the two positives out and then I got 
nothing left…” (Clark, reflection meeting, RTC 4)

According to CMP2, the intended goal of the model is for students to understand 
how integers can be represented using different combinations of chips. In under-
standing these representations, students would determine which renaming was most 
useful in particular subtraction problems. In essence, CMP2 intends for students to 
consider when and why zero pairs are needed in order to develop a sense of integer 
subtraction. Clark’s method removed this decision-making process. This modifica-
tion could be seen as reducing the level of thinking needed to engage in the task or 

Fig. 10.3 Clark’s method for 5 – 2 and 5 – -2
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(on the other hand) as an asset because it made the model more generalizable since 
it could be used for all problems algorithmically and successfully. Therefore, just as 
with Tess’s scripted instruction, similar questions arise with respect to how Clark’s 
instruction may not have provided students with a way to make meaningful connec-
tions between the manipulative and the mathematical structure (Clements, 1999).

In addition to the use of zero pairs and renaming integers, the issue of the minus 
sign of a binary or symmetric operator is also a factor in Clark’s use of the chips for 
integer subtraction. This issue surfaced when Clark first introduced his method to us 
in the reflection meeting in cycle 4. Both Tess and I saw how Clark’s method was 
actually changing the nature of the problem. In particular, Tess claimed that Clark’s 
method changed the problem from subtraction (5 – 2) to addition (5 + -2). Clark was 
not considering the minuend and subtrahend. Instead, he started with the minuend 
and added zero to get the expression 5 + (-2 + +2). The next step was to remove +2 
(which formed a zero pair with the original minuend of 2) to end up with 5 + -2. In 
this way, Clark was changing the function of the minus sign from binary to sym-
metric to help make the use of the chips easier for his students. In addition, because 
Clark was subtracting the +2 from the zero pair rather than the original minuend, 
Tess believed that he was not highlighting the correct subtraction. Tess felt that 
these two issues fundamentally changed the mathematical goals of the investiga-
tion, which were to help students understand opposites on the number line, under-
stand the existence of negative numbers, and have students think about the meaning 
of addition and subtraction using the number line and the chip model.

 Discussion

As apparent from the preceding sections, Clark and Tess’s understanding and imple-
mentation of the chip model for subtraction were different in some ways and similar 
in others. The differences lay in the way in which the teachers wanted their students 
to use zero pairs (optimal number of zero pairs versus adding the magnitude of the 
subtrahend) and how they wanted their students to consider the purpose of and use of 
the chips (exploring the nature of integers and subtraction versus performing compu-
tation to get the correct answer). The similarities lay in the way in which the teachers 
actually had their students engage in activities and their own understanding of the 
different functions of the minus sign. In particular, both teachers provided steps on 
how to use the chip model, and both teachers moved between the binary and sym-
metric functions of the minus sign without explicit attention to this difference.

Clark’s method was fundamentally different than the intended use of the model. 
Tess understood this difference as relating to how students were instructed to use the 
chips in the curriculum—that adding the optimal number of zero pairs only when 
necessary was integral to the curriculum’s suggested use of chips. Tess wanted to 
implement the intended curriculum and believed that by doing so she would enable 
her students to gain a deeper understanding of the operation of subtraction. 
According to her, deviating from this would only confuse the students and detract 
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from the mathematical goals of the lesson. Tess felt that Clark’s method was essen-
tially asking students to memorize a process with the model that might lead to stu-
dents misusing or misapplying the method. Tess wanted to make sure she followed 
the pacing of the curriculum and instead wanted to use the current investigation to 
help her students build an intuitive understanding of operations and the chip model. 
In Tess’s words:

Clark’s putting a rule in there instead of teaching with what the numbers are asking you to 
do, which is what I understood from reading the book, is it’s intuitively asking you to start 
here and then what you’re gonna do. But now I have to think of a rule. Well, is this addition 
or subtraction? And what am I gonna do in either case? And that’s not what, with my kids, 
I’m not presenting it as we’re learning subtraction and addition yet because that’s the next 
chapter. And you don’t have to do that.

As the two teachers discussed their difference of opinion about how to use the 
chips to model subtraction, at no point did they try to connect the steps their stu-
dents were using to the mathematical structure of the number sentences, and it did 
not seem that this structure was transparent to the teachers. The apparent lack of 
seeing the structure of the number sentences could be heard in the teachers’ discus-
sion of opposite and inverse, as well as their repeated references equating subtrac-
tion to adding the opposite. We also never discussed what the zero pairs might mean 
to the students or how their use might help the students deepen their understanding 
of integer subtraction. Therefore, it is unclear if the teachers succeeded in building 
connections between the manipulative and the operation, an important component 
of successful teaching with manipulatives (Clements, 1999; Moyer, 2001). 
Moreover, it is unclear whether the teachers understood if the chip model was being 
used in conjunction with the mathematical structure of the numerical expressions, 
another necessary factor (Carbonneau et al., 2013).

As the discussion of Clark’s method continued throughout cycles 4, 5, and 6, we 
collectively examined his method, considered what it meant mathematically, and 
debated how his pedagogical strategy might be affecting student learning. 
Throughout the conversations, the arguments from both sides never really changed. 
Clark continued to defend his choice with evidence of his students’ success and 
ability to use the model for computations and generalizations about the operation. 
For example, during the sixth reflection meeting, Clark shared a story from his 
classroom in which he responded to a student computing the problem, -5 – -7. At 
first, the student computed the answer as -12 using the number line. Clark encour-
aged the student to try the problem again using the chip model. As the student did 
so, Clark had him describe his steps.

Clark: So he took away seven negatives. I said, “Okay, so now what?” He said, 
“Now I got to take these pairs and pair them together.” And he said, “Oh, 
I got a positive two.” I said, “So what happened with the number line and 
the chips? They don’t coincide, so something’s wrong. What’s going on?” 
I’m trying to make him look at it. And he said, “Um … I’m adding.” “Oh,” 
he said, “I’m adding here.” And I said, “Huh?”

Eileen: How did he know it was adding?
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Clark: Because he said, “The only way this could be a positive two, I had to add. 
Something had to be positive somewhere.” And so he looked at it and he 
said, “Well, this had to be positive now, so that’s adding.”

The student calculated the answer using the chip model and saw that it was not 
the same as his previous answer. He decided the chip method was correct without 
considering why his answers were inconsistent. Clark asked the student to think 
about what had happened by evaluating why the statements were contradictory. The 
student instead made a generalization about subtracting a negative number, which is 
what Clark wanted his students to do; that is, he wanted them to use the method to 
draw conclusions about computations. The question remains, however, what did the 
student actually understand? Did the student understand the meaning of the zero 
pairs he was using? Did the student understand the difference in the function of the 
minus sign? Why did the student accept the chip model answer above the number 
line calculation? Based on this reported classroom event, it is unclear whether this 
concrete approach to negative numbers actually helped Clark’s student internalize 
his understanding about integer subtraction, and unlike Flores (2008) or Hayes and 
Stacey (1999), I cannot be sure if Clark’s instruction focused on the zero pair method 
made subtraction easier to explain and understand for his student.

Despite this evidence, Tess continued to argue that Clark’s method was not suc-
cessful because it did not follow the intended curriculum, changed the problem, and 
altered the mathematical goals of the lesson. The conversation below is representa-
tive of both teachers’ thinking.

Tess:  My kids understand it the way the book has it and the way I’ve been 
teaching it. I’ve got some pretty low kids. Because it seems like it’s more 
directly what it’s saying. Like, an operation is an operation. You’re adding 
or subtracting. So you start with your 5 and then you do what you have to 
do to it. So, you don’t do another step first. You either see “Can I take 
away 3? Yeah. I could just take away 3 or” If I can’t take away 7 and in 
that case I’m gonna have to add 2 zero pairs or, yeah. Because I can take 
away 5 and then 2 positives and then I’d end up with negative 2. But I 
don’t see why I would add 7 zero pairs and then…Does that make sense? 
Are you following me?

Clark:  I’m hearing you all and I’m understand what you’re saying. I understand 
exactly what you’re saying.

Tess: Okay. So I don’t need to write it.
Clark: But I’m just looking at it…some consistency because there are gonna be 

some cases where you gotta use the zero pairs and what I was trying to do 
was eliminate the guess work and saying, “Okay, if I did this, this way 
every time, and it does work every time, then I can see my patterns and 
then I can generalize what is really going on here.”

Eileen: I guess I felt like at this point in the unit that we did want the guesswork. 
That we did want them troubling with ‘what do these numbers mean and 
how can I deal with these quantities?’ I felt like we did want them to 
puzzle with these ideas and then later, you know, [Clark: Come back to 
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it.] in 2 and 3, then it becomes “All right, we’ve struggled with this. We’ve 
puzzled this. Now let’s go and look for patterns we can use to actually 
perform the operations.”

Tess:  That’s what I was gonna say, is that the chip thing falls away, right? Once 
you learn how to do it you don’t need the chips ever again, really ever 
again.

When connecting these arguments to the teachers’ understanding of the manipu-
lative and its use in this context, it seems that Clark’s understanding focused on 
allowing students to learn and implement a routine, which did not vary based on the 
particular problems and, when done correctly, resulted in the right answer. His goal 
was to provide students with a way to experience success without considering how 
to rename integers, use zero pairs, or understand the function of the minus sign. 
Alternatively, Tess understood the model to be a stepping stone toward understand-
ing the operation and eventually establishing rules or algorithms for integer opera-
tions. The goal, to her, was to develop knowledge beyond simply being able to 
calculate using the chips. However, as Tess introduced the model and helped stu-
dents use it to perform integer subtraction, she also provided steps for the students 
to follow and also did not make clear the function of the minus sign and how it may 
change as students considered problems in different ways (e.g., 10  –  2 versus 
10 + -2). In essence, Tess appeared to proceduralize her method in a way that was 
not dissimilar to how Clark proceduralized his method. The steps that Tess instructed 
her students to follow involved determining the optimal number of zero pairs needed 
for renaming integers. In her arguments for this method, she said that it would help 
students develop number sense and be better equipped to develop algorithms for 
integer subtraction. But as I observed her classes, it was unclear if her students were 
engaging in thinking about what the renaming was, why they were doing it, or how 
they were to come up with the answers—or instead whether they were merely fol-
lowing the steps in the method that Tess demonstrated and formalized for them. 
Therefore, the assumed benefit of students’ thinking about the optimal renaming of 
the integers may have been lost. Furthermore, Tess’s procedure for her method was 
more complicated and difficult to implement than Clark’s, given that Tess’s proce-
dure necessarily included a conditional step of when and how to rename an integer 
in a problem. Finally, neither teacher addressed the function of the minus sign and 
how they were (or were not) changing it in different number sentences.

 Conclusion

As the above arguments suggest, the mathematical goals for the use of chip models 
need to be better understood. Tess’s use of her chip model appears to be quite com-
mon; my experience in this study, as well as in other professional development 
work, has made me aware of how many teachers see the optimal renaming feature 
as integral to proper use of the chip model. Teachers think that students can gain 
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deeper understanding of the nature of integers and integer operations by determin-
ing the optimal number of zero pairs needed to solve a given problem. This percep-
tion is also explicitly supported and legitimized by CMP2.

However, Clark’s modification to this method sheds light on how the optimal 
renaming feature of the model may not be its most important feature. Optimal 
renaming became, in Tess’s class, merely a way that the use of the chip model 
turned into a procedure for computing the answers to subtraction problems. For 
Tess, there was one right way to rename the subtrahend, and the task was to deter-
mine this one correct way to use the model. As such, I began to wonder if Tess’s use 
of the model was actually any better than Clark’s—it may, in fact, be worse (because 
Tess’s procedure was more difficult to implement than Clark’s).

Through observations and conversations with Tess and Clark, I came to believe 
that the focus on the optimal renaming of the subtrahend is misguided, as doing so 
may not even encourage students to develop flexibility with integers (which in turn 
helps in developing understanding of subtraction). In order for this to happen, the 
model itself needs to be flexible in order for students to be able to reinvent the model 
and use it independently, adapt it to new situations, and relate the model to their own 
informal strategies (Van den Heuvel-Panhuizen, 2003).

The goal of the current analysis is not to evaluate the chip model but to raise 
questions about how teachers implement the chip model and understand its use in 
integer arithmetic. I use the case of Clark and Tess to question whether certain 
assumptions about the model’s use, especially the optimal renaming aspect, are 
valid and interpreted by teachers. Moreover, my interactions with Clark and Tess 
suggest that there may be some taken-for-granted assumptions about models in gen-
eral. Certain models seem to have found a home in the elementary curriculum, 
including chip models for integer subtraction, the number line positional model for 
integer multiplication and division, and the area model for binomial multiplication. 
Although the number of commonly used and accepted models has grown, it is also 
the case that the use of such models is based on limited research on teachers’ imple-
mentation and understanding of models as well as the numerous ways that models 
can be interpreted and implemented in the classroom.

Among these many models teachers can use in curricula and standards, should 
teachers accept them as is or should teachers devote time to carefully considering 
the optimal use of each model? If teachers do not think about the models they are 
expected to use from a variety of viewpoints—mathematically appropriate and con-
crete versus abstract—teachers may not reflect in a way that challenges their taken-
for-granted assumptions about the model or mathematics. In addition, there are still 
unanswered questions about models, their effectiveness, and the best ways to use 
them. For example, while there is agreement on the importance of models for build-
ing connections between students’ informal understandings and formal mathemat-
ics (McNeil & Jarvin, 2007), it is not at all clear exactly how these connections are 
best made. Moreover, teachers must possess strong content knowledge in order to 
use models appropriately and well. Clark and Tess’s content knowledge could have 
been one factor in their decisions to use the chips in particular ways. Teachers’ con-
tent knowledge in general could be a factor in the tension teachers feel in using 
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models and understanding them. In the end, teachers should be aware of the argu-
ments for and against any model and its use to think critically about how and why 
they should use them in their own instruction. Clearly, we need more research into 
how teachers are engaging in model use and how they understand models. We also 
need to pay more attention to how teachers view models and the instructional chal-
lenges that are inherent in their use. As this research unfolds, the mathematics edu-
cation community will be better situated to understand the instructional challenges 
that are inherent in teachers’ need to be familiar with and competent with a growing 
number of new models.
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Chapter 11
Commentary on Chapters 1 to 3: Using 
Meaningful Analogies to Reflect  
on and Make Sense of Integers

Arthur J. Baroody

Abstract Ginsburg (1977) observed that children typically develop surprisingly 
powerful informal (everyday) knowledge of mathematics and that mathematical 
learning difficulties often arise when formal instruction does not build on this exist-
ing knowledge. By using meaningful analogies teachers can help connect new for-
mal instruction to students’ existing informal knowledge and thus comprehend and 
learn it. The chapters by Bofferding et al., Wessman and Enzinger, and Bishop et al. 
vividly underscore these key points in the domain of integer addition and subtrac-
tion. These chapters richly illustrate how children can make sense of this domain 
even before formal instruction. How—in the absence of meaningful instruction 
(e.g., meaningful analogies)—their informal knowledge has key limitations. How 
playing games that embody a meaningful analogy can be help children construct a 
deeper understanding of integer addition and subtraction. In brief, relating integer 
addition and subtraction to a meaningful analogy has important implications for 
both assessing and promoting this critically important knowledge.

Given my training as a teacher and as an educational and developmental psycholo-
gist (particularly with the tuition of Herbert P. Ginsburg), my focus is on how we 
can make formal, largely written, mathematics meaningful to students. Ginsburg 
(1977) observed that an important source of mathematical learning difficulties is the 
gap between formal instruction and children’s existing informal (everyday) knowl-
edge of mathematics. More generally, if school instruction fails to relate new con-
tent to what already makes sense to children, they may well not comprehend the 
new instruction and may learn the new content by rote, in a partial fashion, or not 
all—none of which are good long-term pedagogical options.
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Consider, for example, the topic of integer addition and subtraction—a topic that 
is baffling for many students (and teachers). Although children’s existing (whole-
number) knowledge of addition and subtraction may support some similar aspects 
of integer addition and subtraction, it does not take into account how integer addi-
tion and subtraction are different from whole-number addition and subtraction 
(Glancy & Pettis, 2017). Thus, children’s informal knowledge may not be helpful, 
or actually interfere, with their formal  learning. To make matters worse, formal 
instruction on addition and subtraction of integers too often makes little or no 
attempt to relate the topic to children’s informal knowledge but instead focuses on 
memorizing rules by rote. As a result, with only the rarest of exceptions, my former 
preservice teachers were either not prepared to help children understand the rules of 
integer addition or subtraction or had forgotten the less intuitive rules, namely, how 
to subtract negative integers (e.g., -5 – [-3] or -3 – [-5]) or integers with different 
signs (e.g., +5 – [-3] or [-3] – [+5]). As Bofferding, Aqazade, and Farmer (this vol-
ume) found with elementary-level students, many of my preservice teachers did not 
clearly distinguish between operation signs (e.g., the minus sign) and directional 
signs (the negative sign).

In effort to make integer addition and subtraction meaningful to my preservice 
teachers, I relied heavily on analogies such as everyday experiences of credit and 
debt or net worth (Baroody & Coslick, 1998). One particularly valuable aspect of 
such analogies is that they required a student to distinguish explicitly between oper-
ation signs (e.g., the minus sign) and directional signs (the negative sign). For 
instance, for +5 – (-3), the positive integer +5 represents a “credit,” the negative 
integer -3 represents a “debit,” and the minus sign (still) represents “take away” (the 
operation of subtraction). Another particularly valuable aspect of such analogies is 
that students can accurately operate on integers without rules and can, indeed, redis-
cover for themselves the rules for adding and subtracting integers. The value of 
rediscovering such rules for themselves involves students in (inductive and deduc-
tive) reasoning, can help students better appreciate the true nature of mathematics, 
and can be empowering for students. Importantly, the meaningful learning and 
memorization of the rules makes it more likely students will retain the rules and 
apply them flexibly and appropriately to new problems.

 Bofferding, Aqazade, and Farmer: Chap. 1

As a moderate constructivist, I am particularly appreciative that Bofferding et al. 
quoted Davis (1996) on the value of play as a means of exploring new ideas (finding 
order or devising new meaning) in a supportive (at least somewhat bounded or 
structured) manner. As Bofferding et al. suggest, however, not all play situations are 
of equal pedagogical value (Baroody, Clements, & Sarama, in press). For example, 
Aze’s (1989) location movement activity (a child moves on a number line as class-
mates indicate how much to add or subtract) can model the addition or subtraction 
of positive integers but not negative integers. Using blocks as an aid may not help 
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with cases where more blocks need to be removed than are present (e.g., 3 take 
away 4). In contrast, Wessman-Enzinger and Mooney’s (2014) counterbalance con-
ceptual model, which may be supported by chips of two colors, can represent addi-
tion and subtraction of both positive and negative integers.

Relating a concrete model to a meaningful analogy can transform it into a power-
ful learning tool. For instance, a “car analogy” can transform the previously men-
tioned number line-based location movement model into one that can represent the 
addition and subtraction of both positive and negative integers. With this analogy, 
the first integer represents where a car (facing right) is on a number line. A plus sign 
indicates that the car continues to face right, whereas a minus sign indicates that the 
car turns around and faces left. If the second term is a positive integer, the car drives 
forward the magnitude of the integer; if a negative integer, the car drives in reverse 
the distance indicated.

Liebeck’s (1990) model with two-color counters is related to an analogy of 
sorts—a black counter equals a score for a team, and a red counter indicates a 
(score) forfeit. For instance, +3 + (-1) = +2 translates into three scores plus a forfeit, 
and +3 – (-1) = +4 translates into three scores and the reversal of (taking away) a 
forfeit. The equation -5 – (-3) = -2 translates into five forfeits and three reversals, 
which would seem to require rather poor officiating, for a final score of two forfeits. 
The equation -1 – (-3) = +2 translates into the potentially difficult to imagine situa-
tion of one forfeit and reversing (taking away) three forfeits for a net score of two. 
From an informal change take-away view of subtraction, how can one start with 1 
forfeit and then reverse more forfeits than are available? Nevertheless, Bofferding 
et al., referring to results from Williams, Linchevski, and Kutscher’s (2008) study, 
noted children “were able to reason that removing a bead from one team corre-
sponded to gaining a bead on the other team.” However, this insight does not trans-
late easily into formal symbolism. Removing a bead from one team, which would 
seem to suggest – (+1), corresponds to or equals (=) gaining a bead for the other 
team, which would seem to suggest + (+1) but – (+1) ≠ + (+1).

An analogy for black and red counters that is consistent with an informal change 
take-away view of subtraction and  readily translates into formal equations is the 
“charged-particle analogy.” For -3 – (-5), this analogy requires imagining starting 
with a box with three red counters or a net charge of -3. For the analogy to work 
with such a problem, a student must assume the box also contains an infinite but 
equal number of black and red counters that effectively neutralize each other. The 
minus sign indicates that counters need to be removed (taken away) from the box. 
(A plus sign indicates that counters need to be added to the box.) The -5 indicates 
that five red counters (negative charges) need to be removed from the box—three 
counters representing the net negative charge of -3 and two more red counters from 
the infinite pair of neutral charges. This now leaves two black chips (positive 
charges) unpaired with a negative charge for a new net charge of +2. For a similar 
analogy, see Glancy and Pettis’ (2017) buoys and anchors model.

Bofferding et  al.’s number path and integer arithmetic tasks have ecological 
validity because integers and integer addition or subtraction are too often introduced 
to children in school without real-world contexts (i.e., in a relatively sterile manner). 
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Consider, though, whether using analogies in the task instructions may have changed 
the results. What if the instructions of the number path task had been modified to 
include, say, “The 5 here indicates 5 degrees (or 5 feet above sea level)? Fill in the 
missing numbers on the thermometer (measuring stick) below.” It seems possible 
that putting the task into a meaningful context (e.g., using the analogy of tempera-
ture or elevation) might have connected better with children’s existing (informal) 
knowledge or prompted more playful and effective logical reasoning than a task 
with no context. Might it have significantly reduced the number of students who 
stopped after entering positive numbers or whole numbers, used repeating patterns, 
filled in the first 12 spaces with 0, entered a -0 as well as 0, or started the negative 
numbers with a number other than -1? Future research will tell.

Bofferding et al. indicated that meaningful analogies, such as temperature, eleva-
tion, or net worth, would be helpful with children who already use a negative num-
ber ray to help think about integer order and explore the continuum from most 
negative to most positive. Indeed, such analogies might be helpful with all the 
 children in their sample, including the less developmentally advanced ones. For 
example, for the half that used only positive or whole numbers to fill in the number 
path, Bofferding et al. recommended: “Teachers could encourage students to con-
sider what numbers go on the other side of zero and to think about how to notate 
them and to provide them with opportunities to think about numbers continuing 
indefinitely in both directions.” Such efforts might benefit greatly by using familiar 
analogies such as temperature, elevation, or net worth. Such analogies might 
also benefit students who leveraged patterns or symmetry with comparing “patterns 
in increasing magnitudes from zero (e.g., 1, 2, 3 versus -1, -2, -3) and exploring how 
they are similar yet different in terms of how they are ordered (i.e., -3, -2, -1 versus 
1, 2, 3).”

Meaningful analogies, such as credit-debit (net worth), may be especially helpful 
for students who otherwise assume subtraction is commutative (e.g., treat 1 – 4 as 
4  – 1), ignore confusing symbolism, or treat negative numbers as zero. Yes, 
“acknowledgement of negatives as their own type of number (located separately 
from positives on a number path) is a key step,” and a meaningful analogy such as 
credit-debit (net worth) might be invaluable in taking this step. Integers after all 
were invented because there are many circumstances where the whole numbers, 
which indicate magnitude only, are inadequate. Some situations, such as the busi-
ness world, require knowing the direction of a number as well as its magnitude. For 
example, a credit of 1 million dollars is very different than a debit of a million dol-
lars. Not coincidentally, integers may have been first invented to deal with such 
differences in the business world.
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 Wessman-Enzinger: Chap. 2

As a long-time proponent of using games to teach mathematics throughout the ele-
mentary curriculum (Baroody, 1987; Baroody & Coslick, 1998), I was delighted to 
read Wessman-Enzinger’s analysis of how games can prompt reflection about inte-
gers. The Integers: Draw or Discard card game presents a player with the option of 
drawing an integer card or discarding an integer card. A particularly good feature of 
the game included a clear distinction between operations (drawing a card = adding 
a positive or negative integer and discarding a card = subtracting an integer) and 
direction of magnitude. Another good feature is that the game does not rely merely 
on luck to win; a thoughtful strategy plays an important role also. Yet other particu-
larly good features are that the game embodies the counterbalance conceptual model 
(or the charged-particles analogy) relatively directly but as structured play. In brief, 
the Integers: Draw or Discard card game provides a rich and motivating opportu-
nity to explore informally the effects of addition or subtraction on integers. For 
instance, children quickly learned that discarding (subtracting) a large negative card 
had a larger impact on the net value than drawing (adding) a small negative and that 
discarding a negative was the equivalent of adding its magnitude to their net score 
(e.g., discarding -3 resulted in a net of 3).

Wessman-Enzinger’s analysis underscores the important role teachers can and 
should play in using math games as an instructional tool. Games are not a substitute 
for good teaching but a tool in the service of good teaching. Perhaps unsurprisingly, 
the children initially did not connect the teacher-taught counterbalance conceptual 
model to their game playing. For example, in justifying a draw of cards involving -7 
and 8 having a net effect of one, Jace argued, “because eight minus seven equals 
one.” He treated the -7 as minus seven instead of, as the model implies, the addition 
of negative seven. Moreover, the children did not equate discarding a card with sub-
traction. To help students make these connections, which they may not have made 
otherwise, the teacher encouraged them to write number sentences. Without a clear 
model or analogy to guide their actions, the students initially struggled to do so. 
When they finally started writing number sentences, they still did not equate dis-
carding with subtraction but instead treated discarding, say, -3 as adding 3.

In a paragon of constructivist teaching, the teacher did not simply tell (impose) the 
connection with counterbalance conceptual model but prompted the students to think 
how they could preserve the negative value of a negative card. The teacher did this by 
encouraging the students to consider a fictitious hand, such as -3, -5, and 8 with the 
option of drawing a -2 card. The students concluded discarding -5 was better than 
drawing -2. Although some students represented this move as 0 (the net of the held 
cards) + 5 (the effect of discarding -5), one student did hit upon 0 – -5 = 5.1

1 Teachers of older students with less time to make the connection could ask students to write an 
equation representing holding a -3 card, drawing -5 and 8 cards, and the net: -3 + -5 + 8 = 0. They 
could then be encouraged to write an equation for discarding (subtracting) the -5 card: -3 + -5 + 8 – 
-5 = 0 – -5 = 5. A teacher could also encourage students to consider the parallels with a charged-
particles analogy: holding a -3 card is analogous to starting with a net charge of -3 in the box, 
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The debate over which is “bigger” provided an opportunity for a teacher to note 
that both Kim, who advocated for -8, and Alice or Jace, who advocated for -4, 
were—mathematically speaking—correct. On one hand, -8 is the more negative 
and, in terms of magnitude alone or absolute value, greater than -4. On the other 
hand, -4 is the least negative and, in terms of ordering integers by magnitude and 
direction, is greater than -8. The use of an analogy could serve to drive this distinc-
tion home (e.g., $8 of debt is more than $4 of debt, but $4 of debt is better than $8 
of debt in terms of net worth). Such a discussion would not only help students 
understand concepts such as absolute value and integers more deeply, it would 
underscore the importance of being mathematically precise and that “the correct 
answer” depends on the parameters specified.

Consider also the opportunity provided by Alice’s comment, “I think it’s kind of 
the middle.” A teacher could prompt:, “Can you think of an example in the real 
world where zero is in the middle?” Three example responses are: 

• A zero balance indicates one has neither credits nor debits.
• Zero degrees Celsius separates above freezing from below freezing 

temperatures.
• An altitude of zero feet (sea level) separates above sea level and below sea level.

Note that, whereas a net worth of $0 is consistent with children’s informal view 
that that 0 means nothing, 0° Celsius is not the absence of a subjective perception of 
hot or cold and an altitude of 0 feet does not indicate the absence of a height. Such 
a discussion might have dissuaded Alice from concluding that, “zero’s like not a 
number because it’s nothing.”

Burghardt’s (2011) elements of play raise issues and do not address a key crite-
rion for using play as a pedagogical tool. The criterion spontaneous or pleasurable 
seems to equate two, not necessarily compatible, aspects of play. For example, a 
teacher-introduced game such as Integers: Draw or Discard may not be spontane-
ous (performed as a result of a sudden inner impulse and without external stimulus), 
but it was pleasurable and, thus, welcomed and engaging. Put differently, it does not 
seem that play must be both spontaneous and pleasurable to be of pedagogical 
value. The criterion “initiated in the absence of stress” overlooks that some forms of 
entertainment, such as playing a competitive game, a cooperative game against a 
time or other limit, or riding a roller coaster, are undertaken to experience tension 
(albeit without real consequences).

More importantly, for pedagogical purposes, it is critical to distinguish between 
play for the sake of play (spontaneous free play), which has a useful role of its own, 
and play for the purpose of  learning or setting the table for learning academic 
knowledge (e.g., teacher-imposed math game). In his critiques of progressive edu-
cation, Dewey (1963) distinguished between educative experiences, which lead to 
worthwhile learning or a basis for later learning, and mis-educative experiences, 

drawing a -5 and 8 card is analogous to adding five negative (-5) and eight positive charges to the 
box, which results in a neutral net charge. Discarding a -5 is equivalent to taking away five negative 
charges, which leaves five positive charges uncoupled for a net charge of +5. Note that the informal 
language of the charged-particles analogy translates relatively directly into formal equations.
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which—even if fun—do not promote learning. Clearly, much of the children’s effort 
when playing the Integers: Draw or Discard can be characterized as educative 
experiences. However, the children’s spontaneous, imaginative, and creative play 
involving “pretend” point totals did not appear to advance thinking about integers—
though one could argue that it advanced their number sense in some way.

 Bishop, Lamb, Philipp, Whitacre, and Schappelle: Chap. 3

The chapter by Bishop et al. is based on a semi-structured clinical interview method 
(a standard set of initial questions with flexible follow-up questions to explore a 
child’s thinking). The method is difficult to implement, but it can—as Bishop et al.’s 
results show—provide a rich source of data on children’s thinking. On one hand, 
one general positive impression of their report is that children can use a wide variety 
of strategies—including impressive informal or self-invented strategies—to solve 
integer addition and subtraction problems. On the other hand, their report reveals 
important gaps in children’s knowledge of integer addition and subtraction. This is 
not surprising for younger children, who have not had formal instruction on the 
topic. The knowledge gaps of older students who had received formal instruction, 
however, are a testament to the poor quality of integer instruction in this country 
(e.g., the gap between such instruction and children’s informal knowledge).

Consistent with Piaget’s (1964) principle of assimilation and moderate novelty 
principle, many young children—without formal instruction—determined the out-
come of integer addition or subtraction in cases for which their knowledge of whole-
number arithmetic was applicable but not in cases for which was not (see also 
Glancy & Pettis, 2017). The chapter by Bishop et al. illustrates vividly how children 
might apply existing knowledge. Consider the case of Fran-Olga, who confronted 
with the novel equation of -3 + 6 = ☐, concluded she could count up to six for an 
answer of 3 or count down to six for answer of -9. She correctly settled on the for-
mer because she knew addition and subtraction were inverse operations, recalled 
that for a prior “minussing problem (3 – 5) she had counted down, and reasoned that 
for the present ‘plussing’” problem (-3 + 6) she should count in the opposite direc-
tion. Reasoning with logical necessity—comparing a novel problem to known prob-
lem and making the appropriate adjustments so that the underlying logic of the 
system and strategy remain consistent—is impressive for any elementary student. 
Moreover, Fran-Olga correctly answered -5 – -3 using analogy-based reasoning: 
negative numbers behave like positive numbers. If 5 – 3 is 2, then -5 – -3 could be 2 
also (J. Bishop, personal communication, November 6, 2017).

However, while applying emergent reasoning, Fran-Olga incorrectly answered 
the highly novel equation 6 – -2 = ☐ (J. Bishop, personal communication, November 
6, 2017). What accounts for Fran-Olga’s strategy choices and why she was able to 
solve -5 – -3 = ☐ but not the similar problem 6 – -2 = ☐?2 It appears that the second 

2 Glancy and Pettis (2017) similarly found a discrepancy in success between (-5) – (-2), which was 
relatively easy, and (-3) – (-5), (-5) – 3, and 5 – (-2), which were relatively difficult.
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grader did not understand integers or operations on them and, as a result, resorted 
to using local strategies on an ad hoc basis, rather than apply a general and coherent 
strategy. In such situations, children often attempt to relate a novel problem to what 
they do know. If their initial search does not help, they sometimes search other 
aspects of known knowledge. For -3 + 6 = ☐, Fran-Olga was able to assimilate the 
problem to her extant knowledge of inverse operations and counting and used logi-
cal necessity. Perhaps unable to apply this knowledge and way of reasoning (WoR) 
to -5 – -3 = ☐, she searched for other extant knowledge and another solution method. 
This led her to hit upon analogy-based reasoning (perhaps ignoring the directional 
symbols and treating the problem as 5 – 3). In both cases where she could find a 
connection to whole-number operations (moderately novel problems), assimilation 
efforts fortuitously afforded her correct solutions to problems she probably did not 
understand. Unable to connect the highly novel equation 6 – -2 = ☐ to her knowl-
edge of operations on whole numbers, she was unable to apply successfully logical 
necessity or analogy-based reasoning and (unsuccessfully) drew on what she knew 
to answer as best she could (emergent reasoning). Still, given that the rules for sub-
tracting negative integers do not conform to the rules governing the subtraction of 
whole numbers, it is commendable she found way to solve -5  – -3  =  ☐, 
if not 6 – -2 = ☐.

Nevertheless, Fran-Olga’s reasoning is based on conceptually shaky grounds 
and, as a result, is logically incoherent. The strategy for (correctly) solving 
-3 + 6 = ☐ was based on the overly broad rule that “plussing” means count to the 
right and “minusing” means counting in the opposite direction. Unfortunately, this 
overly broad rule results in the wrong answer for -5 – -3 = ☐ and is logically incon-
sistent with the relatively meaning-free analogy-based reasoning used to solve the 
problem correctly. Similarly, if the overly broad rule were applied to 6 – -2 = ☐, it 
would require disregarding the directional symbol for -2 and moving in the wrong 
direction.

The case of Fran-Olga illustrates why mathematics educators emphasize the 
integration of conceptual understanding, procedural knowledge, and (strategic) rea-
soning (Battista, 2016; National Research Council, 2001). Conceptual understand-
ing guides the invention and application of a procedure or WoR, and understanding 
a child’s present understanding or developmental level provides guidance on how to 
design instruction to help her advance to the next developmental level. Research 
indicates that children can reason logically about familiar (“concrete”) or—as the 
case of Fran-Olga illustrates—moderately familiar situations but not unfamiliar 
(“abstract”) ones (Ennis, 1975; Evans, 1982). In this respect, young children are 
very much like adults who do or do not understand (are or are not familiar with) how 
a television works trying to troubleshoot a TV malfunction.

Consider what Fran-Olga might have done if negative integers were related to the 
analogy of a debt—perhaps making it possible to more fully assimilate integer addi-
tion and subtraction problems and reason in a logically consistent manner. She may 
have reasoned that adding a credit of six to a debt of three cancels the debt and 
leaves a surplus of three. The beauty of credit-debit analogy is that it is easily appli-
cable and logically consistent across the range of integer addition and subtraction 
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problems, including -5 – -3 = ☐ (if you start with a debt of $5 and take away $3 of 
the debt, it leaves you only $2 in debt) and 6 – -2 = ☐ (a credit of $6 and take away 
a previous debt of $2 results in an improved net worth of $8). Indeed, it is possible 
that the girl might have recognized that taking away a debt was equivalent to adding 
a credit.

A limitation of the WoR taxonomy as presented—at least for pedagogical pur-
poses—is that it does not differentiate between a WoR or a particular strategy that is 
based on conceptual understanding and those that are not. For example, the problem 
with knowing only that Oscar uses an order-based WoR or that Cole uses a compu-
tational WoR is that we do not know if their procedures have been memorized by 
rote or meaningfully memorized (i.e., can be connected to conceptual understand-
ings). This distinction is critical because the former typically results in routine 
expertise—knowledge that can be applied to familiar but not unfamiliar problems or 
contexts—and the latter permits adaptive expertise—knowledge that can be applied 
flexibly and creatively even to novel problems or in new contexts (Hatano, 2003). 
Put differently, as a network of conceptual and procedural knowledge, adaptive 
expertise is more likely than routine expertise to permit a child to reason coherently 
and successfully across a range of related new problems. Another advantage of 
adaptive expertise over routine expertise is that the former is significantly more 
likely to be retained or, if forgotten, reconstructed.

Bishop et al.’s data paint a particularly gloomy picture of formal integer instruc-
tion. The participants used logical necessity, which requires applying conceptual 
understanding, on less than 1% of all problems posed. They relied on meaningful 
analogies only about 3% of the time. In contrast, participants relied most heavily on 
the computational WoR—40% of the time. This is not bad in itself, but what is trou-
bling is that given the opportunity to explain or justify their rule, participants in the 
examples reportedly did not logically relate it to meaningful everyday experiences 
(meaningful analogies) or meaningful mathematical concepts. For example, note 
that Cole’s justification for -3 + 6 = 3 is entirely in terms of rules. Asked to justify 
his boom-boom (“magical?”) strategy (to take away a negative integer, add the inte-
ger), Gabriel verges on a meaningful explanation (“Because you’re taking away 
something that’s negative?”) but—apparently because he did not understand the 
rule—ultimately deployed the rationale provided by uncomprehending students, 
parents, and teachers everywhere (“It just works”). Such cases underscore the 
observations of Ginsburg (1977) 31 years ago that the main problem with formal 
mathematics instruction is the gap between formal instruction and children’s exist-
ing informal knowledge and those of Brownell (1935) 83  years ago that school 
instruction relies too heavily on memorization of arithmetic by rote instead of 
meaningful memorization. Although one student had a cute mnemonic for recalling 
the rules of adding and subtracting integers (sung to the tune of Row, Row, Row Your 
Boat), would not it be better for students in the long run for them to understand such 
operations in terms of a meaningful analogy?
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Abstract These four chapters describe studies of using models for integer addition 
and subtraction. The models draw principally on the two grounding metaphors of 
object collection and motion along a path. A strength of all chapters is detailed 
analysis of how the models are and can be implemented and how they influence 
student’s learning. Together the chapters demonstrate that teaching with any model 
requires care and attention to achieve conceptual clarity. Teachers need to act 
entirely within in the world of the model, only later adding other models to round 
out the mathematical picture. The teaching of integers is a key point for maintaining 
students' confidence that mathematics is a subject that makes sense. These chapters 
demonstrate how use of models can assist in this goal.

These four chapters all describe studies of students’ learning about integer addition 
and subtraction by using models. Chapter 4 by Michelle Stephan and Didem Akyuz 
provides a case study of three students with disabilities learning to use a financial 
model of assets, debts, and net worth. Chapter 5 by Julie Nurnberger-Haag com-
pares the outcomes of using two models—positive and negative chips and walking 
on a number line. Chapter 6 by Cecilia Kilhamn looks specifically at the surpris-
ingly complex idea of ‘difference’ in the context of money and measurement mod-
els. Chapter 7 by Laura Bofferding provides a developmental sequence of mental 
models to frame a study of very young students learning about integers with an 
elevator model.

The variety of models discussed above immediately draws attention to the fact 
that there are many models for teaching about integers and that it is almost univer-
sally agreed that teaching with a model is essential for this topic. Some of the mod-
els are sets of physical objects to be manipulated, some are visual representations, 
and others are abstract. The four chapters look at which models can be best used, 
how they should be used and for whom, and how they impact learning. Together the 
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chapters reinforce an important message: that models are helpful but that teaching 
with any model requires care and attention to achieve conceptual clarity. The chap-
ters also point to areas where further research would be fruitful.

My initial reading of these four chapters highlighted the diversity in these stud-
ies. Although all were concerned with teaching similar content (addition and sub-
traction of integers), they worked with students with a large age range from year 1 
to year 8. Teaching time for the integer topic varied from 1 week to 5 weeks. Two 
chapters are mainly case studies within teaching interventions: one reports an 
experiment involving eight classes, and the other reports observations of ‘normal’ 
 teaching. The theoretical perspectives were also varied and included deep content-
related cognitive analysis, sociocultural analysis, theories of embodied cognition, 
conceptual change, and conceptual metaphors. This variety is an example of how 
important problems in the teaching of mathematics benefit from research from 
many different perspectives.

In the following sections, I discuss some of the major themes that emerge from a 
reading of these four chapters. Before doing this, I want to raise two concerns. 
Firstly, the topic name ‘integers’ is not a good one, even though it sounds like 
important mathematics. All four chapters focused almost exclusively on calcula-
tions with positive and negative whole numbers—integers. Yet research shows that 
working with negative numbers that are not integers needs special teaching. Many 
students need to be taught explicitly even about the ordering of negative decimals 
and fractions (see, e.g. Widjaja, Stacey, & Steinle, 2011). Naming this topic ‘nega-
tive numbers’ or ‘directed numbers’ might encourage proper attention to this. Of 
course, it is sensible to start with negative integers only, to minimize cognitive load 
by avoiding calculation difficulties, but gradually all number types should be 
included. There are only a few instances of nonintegers in these chapters. A related 
point arises in Nurnberger-Haag’s Chap. 5, where students are tested to see how 
well they can generalize ideas taught with small numbers to double digit numbers. 
Many students had difficulty, and some work samples showed false generalizations 
as students tried to extend addition and subtraction algorithms to negative integers. 
Teachers need to address the full range of numbers explicitly.

The second criticism is a criticism of our field of mathematics education in gen-
eral, which is illustrated by these four chapters. Mathematics education will advance 
in a more scholarly way when the research literature is more cohesive and studies 
build more directly on each other. One of the ways to do this is to develop careful 
and consistent terminology with agreed meanings and, as far as possible, to use 
similar frameworks unless there is a strong imperative for variation. Many examples 
of the lack of cohesion in the research literature are demonstrated within these four 
chapters. Terms such as value and magnitude are used inconsistently, and absolute 
value, the mathematical standard, could be used more often. The cancellation mod-
els of Chap. 5 are the counterbalance models of Chap. 7. Models and metaphors, 
mental models, conceptual models, and instructional contexts are not always clearly 
distinguished or defined. The classification of additive situations by Marthe (1979) 
(e.g. state-transformation-state (STS)) was used in two chapters, but this (or an 
alternative) could have been used to advantage throughout. Drawing together the 
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ideas in the chapters of this book could be a stimulus towards more cohesion and 
agreement on frameworks. The chapters highlight the need, but they also offer pos-
sibilities such as Bofferding’s developmental list of mental models and the classifi-
cations used in each chapter. Across mathematics education, we need to identify 
good terminology and frameworks to make standard and then use them consistently 
to build a stronger mathematics education edifice.

 The Main Challenges the Chapters Address

Underlying all four chapters is the goal of helping students build a strong under-
standing of the meaning of negative numbers as objects and then their addition and 
subtraction. Also shared is the conviction that building this understanding requires 
the use of one or more models. The initial idea of a negative number—having less 
than zero things—is very puzzling but quite wonderful, and there are instances 
reported in the chapters of students who do not yet accept it. In general, however, 
using a negative number just as a label for an ‘underground’ number (Groves & 
Stacey, 1998) in a context is not difficult even for very young children. This is well 
demonstrated by Bofferding in Chap. 7 using the context of an elevator going above 
and below ground. In many simple situations, there is an obvious purpose in using 
these ‘directed numbers’ as labels with the number component indicating distance 
from an often arbitrary zero point and the sign + or – indicating in which direction. 
Moreover, even very young children can work within such a context to answer ques-
tions such as ‘Where is the elevator if it starts at floor -2, then goes up 6 floors?’ and 
‘Which floor is highest, floor 3 or floor -5?’ and ‘Which floor is furthest from the 
ground level 0: floor 3 or floor -5?’ and ‘How many floors are between floor -3 and 
floor 7?’ In context, there is little difficulty in finding locations after various move-
ments or in determining order (both which is highest and which is furthest from the 
origin).

However, the difficulty ramps up very quickly when the labels transform to 
become numbers, interacting with others; this is first done through the operations 
of addition and subtraction. The easy questions become much more challenging 
when they are mapped onto the formal system of addition and subtraction. As 
pointed out in Kilhamn’s Chap. 6, the real reasons for extending the labels to num-
bers and defining the operations in the standard way are inherently intra-mathemat-
ical: to create a set of directed numbers all seamlessly obeying the same rules. For 
example, a seamless number system enables us to calculate 29  +  36  – 46 as 
29 + (-10) = 19 instead of only as (29 + 36) – 46 = 65 – 46 = 19. Before negative 
numbers were accepted, there had to be many special cases of formulas (e.g. for 
solving a quadratic equation) so that subtraction of a greater from a lesser could be 
avoided at every stage. Students at the age for learning integers are insufficiently 
mathematically sophisticated to appreciate what is really being achieved by this 
seamless number system. The outcome is that dealing with abstract ‘naked num-
ber’ expressions (and soon algebraic expressions) becomes the main skill to be 
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mastered in the integer topic, and the main teaching challenge is to give number 
expressions ‘concrete’ meaning. Decades of research into student performance 
have pinpointed where the most errors occur, especially with expressions involving 
counter-intuitive actions such as (-2) – (-7) and (-2) – (+7). All the chapters build 
on this research.

 The Models

Taken together, the four chapters give a broad overview of the models available for 
teaching about integers. A strength of all chapters is the detailed analysis of how the 
models are implemented and how they assist student’s learning. Drawing on the 
observations that abstract mathematics can only be understood in terms of meta-
phors, two chapters classify available models through the ‘grounding metaphors’ 
(Lakoff & Núñez, 2000) for arithmetic that they employ: especially motion along a 
path and object collection.

 Object Collection Models

Object collection is the most fundamental metaphor for early learning about natural 
number and in the most basic version, number corresponds to the cardinality of the 
set of objects, addition corresponds to combining sets, and subtraction to taking 
objects from a set (the simplest idea of subtraction). Several chapters point to the 
difficulties that arise when students’ conceptions are tied too narrowly to the basic 
object collection metaphor. Extending this model leads to various instantiations of 
the counterbalance/cancellation model, often implemented with positive and nega-
tive chips that annihilate each other. The advantage of this model is that number is 
again represented by cardinality of a set of objects (after cancellation). Addition can 
again be represented by combining sets, again with cancellation as required. Very 
importantly, subtraction can again be interpreted as taking away one set from 
another. This interpretation is straightforward when the numbers have the same sign 
(e.g. taking away two positive chips from seven positive chips or two negative chips 
from seven negative chips), but it is more complex when the two numbers have dif-
ferent signs (e.g. taking two positive chips from three negative chips). In those 
cases, additional chips with a total value of zero must be added to enable the ‘take-
away’ step. This is an example of the very important mathematical manoeuvre of 
replacing a number by an equivalent form of the same number. Other examples are 
to replace a fraction by an equivalent fraction in order to add, or to replace 63 by 
(50 + 13) when subtracting 29 with the standard decomposition subtraction algo-
rithm. It is also important in algebra, for example, to add and subtract a term (with 
net addition 0) in order to 'complete the square'. However, it is well known as a dif-
ficult step for students in all of these contexts, and the discussions of this model in 
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these chapters highlight this difficulty for integers. In recommending an approach, 
a curriculum developer must weigh up the benefit of encountering an important 
mathematical principle against the cost of losing some students.

Nurnberger-Haag in Chap. 5 reports a very careful comparison of the subtraction 
success of students using the chip model and a number line model, importantly 
measured at a delayed post-test. She gives many insights into the working of both 
models. She draws on the theory of embodied cognition to propose that the 
 incongruity in the chip model of putting in (adding) extra chips to subtract is one of 
the reasons why the chip model students were less successful. More studies such as 
this are called for, since there is inconsistency in the research. Hayes (1998), for 
example, found chip model students had an advantage over number line students for 
a year after initial instruction.

 Number Line Models

The various number line models draw on Lakoff and Núñez’s (2000) ‘motion along 
a path’ metaphor with some aspects of measurement metaphor. These models can 
be fully abstract (moving along a ‘number line’ without any other referents) or draw 
on real-world contexts (elevator, height above sea level, temperature scales, walking 
north and south, walking east and west, etc.). In each model, a complexity is that 
numbers are represented by, and represent, both locations and movements. 
Operations are modelled by, and model, movements along the line with the associ-
ated number specifying magnitude and direction. Vertical number lines also tap into 
the fundamental up-down conceptual metaphor that originates in bodily experience 
(Lakoff & Johnson, 1980).

Complications that arise through the dual representation of number by location 
and movement arise in the analysis within each of the chapters. A good example is 
provided by Bofferding in Chap. 7, in the careful analysis of how two girls work 
together. One girl interprets 4 + 1 as a state of an elevator being transformed: start 
at the fourth floor and move up one. The other interprets it as two movements being 
carried out: start at zero, move the elevator up four floors and then up another, reach-
ing floor 5. Of course, both of these interpretations are valid, and they are inter-
changeable for experts, but they can be quite different for learners. The detailed 
analysis of how the two girls work together shows miscommunication within the 
pair. There are several other instances of contradictory uses of the model along with 
resolution of some conflicts, and it leads to a call for more research on how to create 
student pairings that minimize miscommunication and best support conceptual 
change for all. Bofferding’s observation applies as much to teachers’ interactions 
with students as it does to interactions between students.

Nurnberger-Haag in Chap. 5 also presents a careful discussion of the different 
ways in which symbolic expressions such as -3 – (-7) can be embodied/enacted on 
a number line. She believes the differences to be sufficiently significant to talk about 
number line models (plural), not ‘the number line model’. She carefully justifies her 

12 Commentary on Chapters 4 to 7: Students’ Learning of Integer Addition…



274

choice of the ‘walk-it-off’ model, which simplifies the rules that students must learn 
to model an integer expression. Her empirical study demonstrates its success. Some 
number line models have very complicated rules about interpretations of the ‘–’ 
sign for which direction to face along the number line and whether to walk back-
wards or forwards. Some textbooks I have seen present rules that are very hard to 
remember, appear quite arbitrary, and fail to distinguish between the unary and the 
binary minus sign. A number line model for interpreting multi-term arithmetic 
expressions is not simple! One of the main messages from this and other chapters 
(especially Chap. 6) is that teachers need to be thoroughly prepared and clear about 
how they will present and talk about a model.

 Models to Explain or to Illustrate

In Chap. 4, Stephan and Akyuz provide a thorough discussion of the learning, class 
participation, and problem solving methods of three students who struggle to learn 
mathematics. The students had previously learned about integers, including rules 
for calculating expressions such as -4 – (-8), and used a horizontal number line. 
They found that these students with disabilities improved to mastery in 5 weeks, 
mainly using a financial model (labelled the bookkeeping model in Chap. 7). 
Stephan and Akyuz use a hybrid model where finance is a real-world context 
(model) and a vertical number line is a visual but abstract model. They need three 
real-world concepts to represent numbers: assets and debts and net worth (the com-
bination of assets and debts). Mostly, assets and debts are like movements on a line 
in a number line model, and net worth is like position, but in practice students must 
think more flexibly than this (as they must with number line models). Initially debts 
were seen as positive amounts of money; later they were symbolized with a negative 
sign. The vertical number line began as a model of performing transactions on net 
worths; it later became a model for reasoning with integer quantities.

In this chapter, Stephan and Akyuz emphasize that they want mathematical 
activity to be grounded in experientially real contexts as in the other chapters but 
that their main goal is to develop intellectual autonomy, so that students can use the 
model to learn concepts and skills and also use it to work out how to solve prob-
lems for themselves. To do this, they need to build the relevant real-world con-
cepts, which may at first sight appear quite simple (e.g. net worth is a combination 
of assets and debts) but provide challenge for their students. Also, they need to 
make a strong link to mathematical notation (e.g. taking away a debt increases net 
worth, $5000 – (-$3000) = $8000) because the goal is to work with ‘naked’ number 
expressions.

This chapter highlights that instruction that might use the same model can in 
practice be very different in intent. It is possible to teach with models using a direct 
instruction approach. For example, students might be told unmotivated rules for 
marching up and down a number line to illustrate an expression such as 5 – (-3) and 
then physically practise following these rules to get answers. Students may ‘under-
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stand’ that 5 – (-3) = 8 because that is where you arrive after following the given 
marching rules: a concrete embodiment of rules which are as apparently arbitrary as 
symbolic rules. Alternatively, with a different quality of understanding, they may 
‘understand’ that 5 – (-3) = 8 because this makes sense in the real-world situation 
that the numbers are modelling: removing a debt is the same as gaining an asset, the 
difference between a temperature of 5 °C and of -3 °C. Just as being told that a 
particular teaching episode uses a model does not determine the quality of 
 understanding that students might have gained from the instruction. A model can be 
used to explain and construct the symbolic rules for integer expressions, or it can be 
used to illustrate given rules. Mathematics can model the real world, but in school it 
is often the real world that models mathematics.

 In Search of Conceptual Clarity

Each of the chapters, through detailed analysis of student learning, highlights the 
need for conceptual clarity in teaching episodes. Kilhamn’s Chap. 6 is the strongest 
example, providing a careful analysis of the use of the word ‘difference’ in class-
room instruction and its links to subtraction. Analysis of videos of classroom dis-
course (verbal and written) reveals implicit and incoherent use of metaphors, even 
from a respected teacher. Over seven lessons, the word difference was unsurpris-
ingly mapped onto subtraction when the sizes of two collections were compared, 
but the teacher also used the word difference for addition as in (-8) + 5. The oppo-
sites paired off and the difference was represented by the objects left unpaired (-3). 
(Written symbolically, the teacher is mentally calculating (-8) + 5 = -(8 – 5).) The 
teacher suggested students ‘write addition’ but ‘think subtraction’. Another com-
plexity is that when the word ‘difference’ is used in a measurement sense, as the 
distance between two points on a number line, the metaphor of distance is inade-
quate to deal with differences (answers to subtraction) being either positive or nega-
tive: it needs to be extended. The transcripts revealed that there was no shared 
understanding of a difference between (signed) numbers. It was also the case that 
many times metaphors appeared implicitly in the discourse with participants prob-
ably unaware of them. Kilhamn makes the important point that metaphors might be 
taken for granted, but they are not always a shared reference. Using metaphors in a 
consistent way that builds students understanding requires teachers to live fully in 
the world of the model, without drawing on ‘outside’ ideas that do not make sense 
in the world in which the students are expected to work.

Conceptual clarity in instruction with models seems important. However, over 
the years of school, students need to be able to draw on multiple useful models and 
metaphors to discuss and think about mathematics. As Kilhamn notes in Chap. 6, 
‘While metaphors help us make sense of concepts by providing coherent structure, 
they highlight some features, but hide others. Since different metaphors are used to 
structure different aspects of a concept, several metaphors are needed to fully under-
stand a rich concept’.
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 Conclusion

Negative numbers are a mind-boggling topic. How can there be less than zero 
things? How can it be that a minus times minus equals a plus? How can we calculate 
with these amazing new numbers, and what does it mean? How can taking away 
make something bigger? Addition and subtraction of integers (or directed numbers 
more generally) is certainly a conceptually fascinating topic. The difficulty for 
learners is the need, for a variety of reasons, to come to operate with integer expres-
sions and, soon after, with algebraic expressions that strongly draw on this new 
knowledge. This can be an entirely symbolic exercise, driven by rules. There are 
well-documented dangers in this. Students who just learn rules come to accept that 
it is not possible to reason autonomously to solve mathematical problems. And this 
is fatal to mathematical development. The teaching of integers is a key point for 
sense-making, and these chapters have demonstrated the care with which this needs 
to be done with the many models that are available.
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The crucial role of teachers in introducing integers to children is highlighted in 
Chaps. 8, 9, and 10, comprising this section. The three chapters discuss (prospec-
tive) teachers’ conceptions of integer equations, of children’s thinking about inte-
ger expressions, and of the role of some didactical models used in teaching integer 
addition and subtraction. These different aspects of teacher knowledge and con-
ceptions draw an important picture of characteristics and issues that should be 
taken into account by teacher educators in preparing teachers for teaching 
integers.

If we were asked to solve the problem -4 – 2 = ☐, we might think about -4 as a 
point on the number line and view the second minus sign as a subtraction sign ask-
ing us to perform a subtraction transformation on -4. We would then subtract 2 by 
moving “down” from -4 to -6. Some of us could possibly think about -4 – 2 = ☐ as 
involving the distance between two points on the number line, 2 and -4, and figure 
out that the transformation -6 takes us from 2 to -4. However, if we were teachers, 
we might be expected to think about the problem quite differently. Chapter 10 pres-
ents a textbook solution of this problem using a didactical model (i.e., a two-colored 
chip model). Without getting into all the details, the model offers a sense of quantity, 
where positive or negative quantities can be taken away from positive or negative 
quantities correspondingly. It suggests reorganizing the given number to enable 
quantity manipulation by using a renaming method. In the given case, -4 can be 
renamed in many ways (e.g., -8 + 4, -7 + 3, -6 + 2), and the student is expected to 
choose an optimal “new name” of a number for subtraction. In this case it would be 
renaming -4 as -6 + 2, getting -4 – 2 = (-6 + 2) – 2 = -6 + (2 – 2) = -6 + 0 = -6.

This example demonstrates only some of the complexities emerging in teaching 
integers: the minus sign has several meanings, the operation of subtraction has dif-
ferent definitions and constructs, and a didactical model offered by the textbook 
might seem to be complicating the solution. As can be seen, some of these difficul-
ties are inherent in the integer topic itself making it difficult for textbook writers. In 
addition, and unlike earlier encountered numbers and operations, textbook writers 
face the difficulty of finding meaningful contexts for introducing integers. These 
problematic issues demonstrate the immense difficulty involved in teaching integers 
and the importance of the research presented in this section.

In Part A of our commentary, we summarize the main contributions of each of 
the chapters, focusing on the central findings and on important issues brought up by 
each chapter.

Part B offers connections between the chapters together with a meta-perspective 
of some of the issues by discussing more general educational implications. In this 
part we also take the opportunity to express our own insights emerging and associ-
ated with the ideas presented in the three chapters.
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 Part A: Findings, Issues, and Conclusions in Chaps. 8, 9, 
and 10

The three chapters have different foci and different research tools. Chapters 8 and 9 
focus on teacher knowledge and conceptions, revealing them through their own 
solution of word problems (Chap. 8) or through their evaluation of children’s 
answers (Chap. 9). Chapter 10 investigates teacher instructional approaches by 
interviewing and observing two teachers as they introduce a certain didactical model 
in class.

 Bofferding and Wessman-Enzinger: Chap. 8

This chapter aims to identify PT’s mathematical knowledge related to integer addi-
tion and subtraction as it is exhibited through their solution of word problems. The 
research questions ask about the personal and the collective mathematical knowl-
edge of PTs related to this topic.

The solutions of 15 PTs (7 elementary and 8 secondary teachers) to 8-word prob-
lems were analyzed using a framework of 5 strands of mathematical proficiency. 
The strands include procedural and conceptual knowledge, strategic knowledge 
(e.g., use of tools such as representations), adaptive knowledge (e.g., making con-
nections), and productive disposition (e.g., seeing the role of mathematics).

The first 6-word problems included problems such as Andy has 6 points. Joan 
has -7 points. How many more points does Andy have than Joan? Although the 
problem did not describe clearly the meaning of the points, they were regarded by 
the PTs as numbers on the number line, and the question was perceived to be about 
the difference between the numbers. The PTs were expected to write an equation 
without much deliberation. This was especially evident in the last two problems, 
where the situation was even less clear than in the first problems. Problem 7 asked: 
Briana started with a -4-point card. Her opponent took -3 points from her. What is 
her score? The authors noted that for some PTs, they had to clarify that card meant 
a card hand worth -4 points, but no other explanations were reported. This point 
will be discussed in the second part, where we discuss the process and the goals of 
mathematizing a word problem.

The results present both individual and collective knowledge. On the one hand, 
the PTs exhibited a rich repertoire of solution strategies including counting up, using 
0 as a point of reference, and more. They expressed ideas for neutralizing amounts, 
for example, as they counterbalanced positive with negative values in performing -4 
+ 6 by splitting the 6 into +4 and +2 so that the +4 neutralizes the -4. Another way to 
cancel amounts was demonstrated by one of the PTs who explained that -8 – -8 = 0 
because when you subtract a number from itself, you get zero. Yet, on the other hand, 
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most of the PTs’ explanations were based on their procedural knowledge, and there 
was a tendency to directly write a simple expression such as 7 – 3 rather than 7 + -3 
without explaining why this was “legitimate.” The authors noted that some of the 
responses could be concerning and that only a few PTs could offer conceptual expla-
nations to actions such as the abovementioned simplification.

The authors offer two main conclusions: (a) the difference between individual 
PT knowledge and collective knowledge has led to suggesting that teacher educa-
tors leverage the collective groups’ responses by creating opportunities such as tar-
geted discussions for sharing knowledge and building a stronger understanding for 
all PTs and (b) the observed differences between word problems in eliciting strate-
gies has led to recommending making conscious decisions about what problems to 
include in class discussions.

An additional recommendation involves the authors’ belief that in preparing for 
working with students, teachers should be able to offer conceptual explanations 
related to the procedures or concepts they are about to teach. Therefore, they recom-
mend making PTs aware of their own explanations, especially if they tend to rely on 
procedural knowledge.

 Tobias, Wessman-Enzinger, and Olanoff: Chap. 9

In this chapter the authors use prospective teacher evaluations of a student’s answer 
as a window into PTs’ conceptions and their views of children’s work in integer 
subtraction in the context of temperature. The task is aimed at answering the spe-
cific research question: What do PTs attend to when they evaluate a child’s tem-
perature story for integer subtraction that uses distance?

The reactions of 100 elementary and middle school PTs to the story written by a 
fifth grade student named Parker were analyzed. Given the expression -14  – 
-20 = Parker wrote: The freezer is -20°. The refrigerator is -14°. The freezer is 6° 
colder than the refrigerator. The PTs were supposed to decide whether the story 
matched the symbolic expression and to explain their answer.

As can be seen, the numbers in the symbolic expression are represented in the 
story as points on a number line. The authors use the term “states” referring to ear-
lier work— thus the meaning of subtraction is the move or the distance between the 
states. Parker concludes that “The freezer is 6° colder than the refrigerator” rather 
than “The refrigerator is 6° warmer than the freezer.” Both descriptions fit the given 
states’ relationship but seem to be evaluated differently on the “fit the given sym-
bolic expression” criteria.

The authors analyzed the PTs responses while looking for evidence of noting 
that Parker uses a distance (or difference) meaning. They also looked for evidence 
of PTs’ realization of Parker’s “inconsistency” in writing a story that is supposedly 
represented by -20 – -14 = -6 rather than -14 – -20 = +6. This attitude toward the 
mapping between a symbolic expression and a word problem will be discussed 
further on together with a similar mapping issue mentioned in Chap. 8.
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The results indicated that about half of the PTs noted the distance meaning, but 
only about a quarter of the PTs thought that the story did not match the symbolic 
expression. The latter claim was supported by different types of explanations. Most 
of the PTs mentioned the order of numbers in the story (that does not correspond to 
their order in the equation), and only 2 PTs mentioned that the story represented a 
solution of -6 rather than 6.

The authors seem to be disappointed with the results. They conclude both PTs’ 
ability to make sense of children’s thinking and their awareness of central factors in 
a context that is used for teaching integers (such as temperature) are deficient. 
Therefore, the authors suggest that teacher education should include opportunities 
for analyzing children’s thinking in such a context and conduct explicit discussions 
of relevant features.

 Murray: Chap. 10

While Chaps. 8 and 9 investigate teacher conceptions about integer equations, this 
chapter deals with instruction and specifically with the use of a certain didactical 
model, a chip model, for teaching integer addition and subtraction. The research goal 
is to call attention to the tension between curricula and instruction when a teacher has 
to decide whether to use a didactical model exactly in the way presented in the text-
book or make adjustments on her own initiatives, using her personal understanding 
of the model and her experience and knowledge about children’s thinking.

Two 7th grade mathematics teachers from the same school were observed as they 
used the same curriculum (Connected Mathematics Project 2 [CMP2]) teaching 
addition and subtraction of integers using a chip model. The research questions 
were focused on these two teachers asking how they used the chip model and how, 
in turn, their instruction impacted the nature of their students’ opportunities to learn 
these integer operations.

As it turned out (or perhaps this is the reason for choosing them), the two teachers, 
Tess and Clark, used the chip model in different ways. While the curriculum intended 
that students use a renaming strategy and choose an optimal number renaming in a 
given integer subtraction problem, both teachers offered their students different pro-
cedures, circumventing the need to make such a choice. Tess taught her students a 
specific procedure for determining exactly when and how to add zero pairs. Clark 
used his own understanding of the model in creating and teaching a procedure that 
was more general and often less efficient than the textbook procedure.

The author concludes that teacher understanding and implementation of a model, 
such as the chip model, are an important issue that should be considered beyond the 
question whether a certain model has merits. In addition, the author highlights the 
need for teachers to understand the assumptions and roles of a given didactical 
model and of the roles of models in general. She suggests that this understanding 
would be supported by strong content knowledge and by familiarity with the fea-
tures of a variety of models.
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 Part B: Beyond Research Findings—Emerging Central Issues

The summaries of the three chapters, while being very brief, present sufficient evi-
dence of the chapters’ significant contribution to teacher education. Still, in this 
section, we aim to show that their contribution goes beyond the research findings 
and the answers to the research questions. In a similar manner, to Chap. 8’s observa-
tions of individual knowledge versus collective teacher knowledge, when the three 
chapters are viewed together, their collective observations highlight crucial issues.

Each of the chapters offers a window to teacher knowledge related to integers 
and at the same time gives an example of a task that enables teacher educators to 
diagnose this knowledge. In Chap. 8, PTs are asked to mathematize and solve word 
problems that involve integers; Chap. 9 asks them to evaluate student work of writ-
ing stories that fit given symbolic integer equations; and Chap. 10 describes an 
observation and reflection process that includes teacher interviews.

Using these different windows to teacher knowledge and conceptions, the com-
bined research findings converge to several central topics that should be of concern 
to teacher educators: (a) the relation between word problems and integer symbolic 
expressions and (b) the role of didactical models for integer instruction. The range 
of conceptions demonstrated in the chapters with regard to these issues and the fact 
that in some cases we do not see eye to eye with the authors’ explicit or implicit 
beliefs support the necessity of discussing these topics.

 1. Context and symbolic expressions with integers

In their first encounters with numbers and with the operations of addition and 
subtraction, children are given many everyday examples that either define or apply 
the new mathematical concepts in contexts that are familiar to them. This practice is 
difficult to employ with integers. In a way, this supposed downside might have an 
advantage: it forces us to better differentiate between the mathematical world and 
the real world and clarify the role of mathematical concepts in mathematizing 
situations.

To say it more explicitly, the many everyday situations that involve putting things 
together, for example, become almost automatically associated with the mathemati-
cal additive structure. In addition, the natural language of these situations is very 
similar to the mathematical language of the mathematical operations. These strong 
relations inhibit us from perceiving the process of problem-solving as involving a 
decision about mathematizing the given story, i.e., fitting a mathematical structure 
to the situation. We were warned about it by Nesher (1980) who describes the prob-
lematic nature of word problems. Nesher gives an example of children solving a 
problem involving mixing jugs of water at 40° and 80°, thinking that the combined 
mixture should be (40 + 80)°. Their answer reflects the didactical contract or rules 
of the problem-solving game. We use this example to make us aware of not offering 
situations that require some deliberation on whether addition is relevant. With the 
less instantly available contexts for integers, hopefully the offered word problems 
would be of a different nature.
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Although much less prevailing than with natural numbers, some helpful relevant 
contexts are still available for integers. While a few centuries ago even mathemati-
cians found it difficult to accept the concept of negative numbers, nowadays the 
existence of some realistic contexts that make use of numbers with a negative sign 
facilitates the recognition of their existence. Such contexts can potentially facilitate 
the conception of numbers that do not necessarily stand for a quantity. Why “poten-
tially”? Because while the immediate contexts that come to mind (Ball, 1993) are 
temperature (with the use of below zero temperature) and money (because one 
might owe money), they might not be similarly accepted. For example, as described 
by Ball (1993) and Peled and Carraher (2008), much confusion arises in symboliz-
ing debt situations.

Besides the fact that temperature is a context that actually uses negative numbers, 
this context has another critical merit. As discussed in Chap. 9, it is essential to 
introduce the difference or distance meaning of subtraction in addition to the more 
familiar take-away meaning, and the temperature context offers an opportunity to 
do so. Thus, it is of no surprise that two of the three chapters discuss this context.

Early encounters with the difference/distance concept begin with natural number 
comparison and with “compare” word problems. The latter are considered the most 
difficult problems among additive one step word problems. There are several sources 
for their difficulty, and one of the central reasons is the conceptual difficulty to accept 
the use of subtraction in determining by how much one set is bigger than another set. 
Hatano and Inagaki (1998) describe an argument between a first grader and his class-
mates who want to subtract the number of girls in class from the number of boys in 
order to answer the question how many boys more than girls. The first grader cannot 
accept this operation claiming that one cannot “take away” girls from boys.

On top of the conceptual difficulty involved with accepting subtraction as a rel-
evant mathematical model for finding the difference or distance between two val-
ues, the temperature context introduces another difficulty (i.e., the direction of the 
distance). Chapter 8 refers to Almeida and Bruno (2014) who asked PTs to solve 
word problems involving temperature and detailed different strategies used by the 
PTs. One of the problems asked was about the change in temperature given that the 
morning temperature was 4° and the night temperature was −5°. Although Almeida 
and Bruno accept as correct different ways with different equations as long as the 
explanation and conclusion were right, their findings are described in Chap. 8 as 
follows: They [the PTs] solve the problems from a positive perspective (e.g., calcu-
lating 4 – -5 = 9 and indicating the temperature dropped 9 degrees instead [our 
highlight] of -5 – 4 = -9) almost as often as they solved the problems from a negative 
perspective.

Chapter 9 deals with a similar correspondence between a temperature story and an 
equation. In section A, we presented Parker’s problem and the PTs’ task to check 
whether the story that Parker wrote matches the number sentence he was given. In 
their analysis, the authors check PTs’ responses for consistency, namely, Does the PT 
mention that the story shows -20 – -14 = −6 instead [our highlight] of -14 – -20 = 6, 
and in the discussion, they declare that the true inconsistency in Parker’s story is that 
+6 was used contextually with “colder.”
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Indeed, there is some conflict between the mathematical order defined on degree 
of temperature (a bigger number goes with a higher temperature) and the dimension 
of “coldness.” When we turn Parker’s story into a problem: The freezer is -20° and 
the refrigerator is -14°. How much colder is the freezer than the refrigerator?; this 
conflict makes it natural to make a transformation within the situation saying that 
the question is equivalent to asking how much warmer the refrigerator is than the 
freezer. Thus, we get the expression -14 – -20 = 6, the expression Parker was given 
originally, from which we can deduce that the freezer is 6° colder than the 
 refrigerator. Note that a similar transformation, studied by Verschaffel (1994), is 
used in compare word problems, where the relation is given in an inconvenient 
direction.

With regard to the authors’ concern that the given number sentence involved the 
number +6 but was verbally described in the story by “6 degrees colder,” we turn to 
research discussing the beliefs developed by children following traditional problem- 
solving. These experiences led children to undesired beliefs about word problems as 
exhibited in Noga’s story problem. They also resulted in about a third of the children 
in a US national assessment test (Carpenter, Lindquist, Matthews, & Silver, 1983) 
answering that “31 remainder 12” busses are needed to move soldiers in busses. 
According to Schoenfeld (1987), their performance showed that they developed 
wrong beliefs about “what mathematics is all about.”

Our point is that the symbolic expression is only a means to get to the realistic 
conclusion and solve the given word problem. The number sentence used in the 
solution of a word problem does not have to represent the realistic action or the 
exact numbers described in the story. For example, if the story involves an action of 
reducing an amount, the operation in the symbolic expression (e.g., in some 
“change” additive problems) does not have to be subtraction.

Actually this discussion shows that we are missing the point. This conclusion is 
strengthened when we turn to the 8-word problems given to the PTs in Chap. 8. The 
authors call the problems “word problems,” but they are very sterile; no explanation 
is given about the situation, and the added value of giving the “word problems” 
rather than directly presenting the mathematical expressions is unclear. Problems of 
this type made Noga, a first grader, compose the problem: In the morning I read 20 
books, and in the afternoon, I read 10 more books. How many books did I read? She 
explained: All the teacher really wants is that we write a mathematical expression.

Not only was the situation not explained, but also the PTs’ answers were evalu-
ated in a way that misses the idea of mathematizing a word problem. Problem #8 
asks: Paola started with 7-point card. Then she drew a -3-point card. What is her 
score? The authors’ expected symbolic expression is 7 +  -3 = 4; this expression 
might be expected (and even then its use is not a must) in special situations where 
four different actions are described (as in the didactical postman model where bills 
can be given or taken away and checks can be given or taken away), and there is a 
rational and realistic reason to represent each action differently.

The story in problem #8 seems to involve a game where one picks up a card (or 
roles a dice) and the card might tell her to move forward (+3) or backward (-3). The 
natural action is simple addition in the first case and simple subtraction in the second. 
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Thus, the natural expression for the problem is 7 – 3. The authors seem to think dif-
ferently, and when such an answer is given, they expect the PT to give an explanation 
for supposedly moving from 7 + -3 to 7 – 3.

The expectation of a very specific equation in both chapters indicates the use of 
word problems as a tool to introduce meanings to symbolic expressions. As sum-
marized in part A, the authors have a good cause exhibited in relevant research ques-
tions. They aim to expose teacher conceptions and teacher knowledge about integer 
operations and succeed in bringing valuable research findings. However, such work 
with teachers should be done with caution to avoid creating undesired beliefs about 
the roles and goals of word problems and about the evaluation of children’s 
solutions.

Being reminded of Nesher’s (1980) temperature example mentioned earlier, we 
would like teacher educators to introduce PTs to integer word problems that encour-
age analyzing the situation, making assumptions and considerations, and deliberat-
ing about the mathematical structure that might be relevant. These problems are 
termed modeling problems since they involve a modeling process, and much 
research is done nowadays on their effect.

When we introduce such a problem in teaching integer operations, a mathemati-
cal model using integers might be “competing” against another model (e.g., a prob-
lem might involve a game situation similar to problem #8  in Chap. 8) such as a 
simple additive structure. We believe that the arguments brought up in such a “com-
petition” would deepen the understanding of each of the competing mathematical 
structures. Thus, at the same time, we would acquire an important goal of problem- 
solving, namely, the ability to decide when an integer model is relevant, and also 
promote the understanding of the mathematical concepts of integers and integer 
operations.

 2. The role of didactical models (e.g., the chip model)

Speaking of goals leads us naturally to the second central issue, the use of didac-
tical models, a term used by Thompson (2002), in teaching integer operations. This 
issue is strongly connected to word problems via the fact that a concept has different 
senses or meanings. In general, when a concept has several meanings (termed con-
structs in Kieren’s (1976) fraction analysis) this means that there exist different 
types of applications, i.e., word problems involving situations of different categories 
where the concept can be applied.

What does this have to do with didactical models? Going back to the child in 
Hatano and Inagaki’s (1998) example, this child was given a word problem involv-
ing the situation of a difference (or distance). He was reluctant to use subtraction 
because he had been taught [only] the take-away meaning of subtraction and was 
most likely exposed to word problems of the take-away category. As exhibited in 
this example, when children are taught a new concept using a didactical model that 
has a certain meaning, they can be expected to encounter difficulty in applying the 
concept in word problems that are associated with another meaning.

This means that the choice of a didactical model, such as the chip model dis-
cussed in Chap. 10, involves a decision made by the program and textbook writers 
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about meaning and applications. Since the teacher, like the two teachers described 
in Chap. 10, is supposed to introduce the subject using the textbook’s model, she 
should know (a) that the role of the model is not just to define and help children 
perform integer operations and (b) that the model has some specific meaning she 
should be aware of.

It is difficult to tell how much of this knowledge the two teachers possess. Their 
reasons for offering alternative procedures for using the chip model seem to attri-
bute much importance to the correct performance of integer operations. Although 
they do it in different ways, both teachers are sensitive to their students’ difficulties 
and create safe procedures for them. This focus on procedures is understandable in 
light of the fact that the described chip model is an artifact that uses sterile non- 
contextual manipulatives.

In contrast, Linchevski and Williams (1999) combined a version of a chip model 
with a disco context in creating a didactical model that uses RME (Realistic 
Mathematics Education) principles (Gravemeijer, 1999). Linchevski and Williams 
are mentioned in Chap. 10 as an example of using concrete manipulatives demon-
strating that concrete representations help transform everyday knowledge to math-
ematical understanding. However, it should be clarified that the source of power of 
the disco model is not in being concrete but in being constructed using RME prin-
ciples. That is, it is designed in a way that facilitates students’ reinvention of math-
ematical rules or mathematical structures based on their analysis and organization 
of the situation. For example, according to Linchevski and Williams, students who 
participated in the disco experiment came up with ideas equivalent to the use of a 
zero pair on their own as a strategy invented to cope with an encountered chip 
shortage.

Chapter 10 discusses and stresses the importance of teacher extensive general 
knowledge about models and their roles. Our current discussion of didactical mod-
els supports this opinion and points to several important teacher knowledge compo-
nents such as the meaning of the model and the nature of the model, for example, 
whether it is artificial or realistic. The chapter also suggests that strong mathemati-
cal knowledge helps teachers in acquiring the desired knowledge. Indeed, such 
knowledge is crucial since we would like teachers to understand the mathematical 
principles behind models and their associated procedures.

Both Clark and Tess circumvent procedural steps that are based on the renaming 
principle used in the textbook’s procedure. It is difficult to tell whether they appreciate 
it and how aware they are of the mathematical principles behind different procedures. 
We experienced discussions with PTs and teachers in which they expressed reluctance 
to use an alternative multi-digit subtraction procedure because of being change averse 
and without being able to offer principle-based arguments for their decisions. 
Specifically, they were not able to tell that the traditional procedure is based on renam-
ing the minuend while the alternative procedure (called the French or the Italian sub-
traction) is based on adding the same amount to the minuend and subtrahend.

Good teachers should have the knowledge and ability to understand the princi-
ples and the goals behind procedures, the meanings of models, and the relations 
between models and word problems. Their meta-knowledge of principles and struc-
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tures would enable them to make helpful connections between different procedures 
that are based on similar principles (Peled & Segalis, 2005; Peled & Zaslavsky, 
2008) and thus support children’s meaningful learning.

 Concluding Remarks

All three chapters in this section make significant contributions to preservice and 
in-service teacher education for promoting the learning of integer operations. In 
addition to the different specific findings on the nature of teacher knowledge and 
practice in this subject, all chapters agree on the need to improve the quality of this 
knowledge. Special attention is given to the need to promote conceptual knowledge 
and sensitivity to children’s work, related to integer operations. One of the chapters 
suggests doing that by taking advantage of collective knowledge and encouraging 
teacher group discussions.

A more global view of the chapters and of the description of PTs and teacher 
work exposes some rigidity in their beliefs and practice. This is exhibited in the 
focus on procedural knowledge, in evaluating and constructing the mapping between 
stories and symbolic equations, and in the effort made by the two teachers to facili-
tate their students’ procedural fluency. These actions imply focusing on integer 
operations as a central goal, while the didactical model and the word problems serve 
as means to construct and strengthen them.

This is a legitimate goal as long as teachers also see the larger plan and are aware 
of the goals and principles behind their actions. As is also true in life, there is a tight 
connection between goal clarification and flexibility. Without seeing the bigger pic-
ture, we might fanatically stick to some action rules that do not serve our main 
goals. Our role as teacher educators, as we and the chapters’ authors probably agree, 
is to develop teachers’ deep knowledge about the roles and goals of all the players 
and contributors (including models and word problems) in constructing integer 
operations’ knowledge.
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Abstract The conclusion contains a response to the chapters and commentary in 
this book describing the thinking, models, and metaphors for integer addition and 
subtraction. This response includes three main sections: establishing landmarks, 
valuing emergent thinking, and critiquing integer instructional models. First, we 
further discuss the need to establish landmarks, or use clearly defined language 
(e.g., order, magnitude, strategies), in our work with integers. Second, we suggest 
that valuing emergent thinking within the research on thinking and learning of inte-
ger operations is important and entails less focus on correct strategies and places 
more value on the development of integer understanding. And, last, we critique the 
consistent rhetoric of “meaningful” for both contexts and instructional models by 
highlighting that what is meaningful to children may not be meaningful to teachers 
and researchers (and vice versa). We end the conclusion by posing questions for 
future research in the realm of thinking and learning within integer addition and 
subtraction.

The ideas presented throughout this book offer a view of the integer landscape—a 
landscape of multiple theoretical perspectives (e.g., realistic mathematics educa-
tion, metaphors, play), various mathematical topics (e.g., order, absolute value, 
addition, subtraction), and different domains (e.g., children’s reasoning about inte-
gers versus prospective teacher’s reasoning about integers). Throughout this book, 
one can traverse the integer landscape and experience a conversation about the 
thinking and learning of integer addition and subtraction.
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 Revisiting the Commentaries

 Defining the Landmarks

The map? I will first make it. (Patrick White, Voss)

A map of the integer landscape needs established landmarks. Within her com-
mentary, Stacey challenges us to connect our work by using common language—an 
essential element to map building. What are the important “landmarks” needed on 
our map? What language can we agree on as a community in order to navigate the 
integer landscape and move forward? Throughout the chapters and across the integer 
literature, researchers use a multitude of words to describe how children think about 
and solve problems as well as to describe the conditions provided for their instruction 
and for generating solutions. Such words include strategies, ways of reasoning, men-
tal models, conceptual models, conceptual metaphors, integer models, instructional 
contexts, and others.

Models and Contexts Conceptual models involve broad ways of thinking about 
integer problems in terms of the various roles of zero, which numbers are manipu-
lated, and how they are manipulated (see, e.g., Wessman-Enzinger, 2015; Wessman- 
Enzinger & Mooney, 2014). Generally, conceptual models represent larger 
categories under which integer models (e.g., chip models, number line models) fall. 
In turn, these integer models often embody one or more conceptual metaphors (e.g., 
COLLECTING OBJECTS, MEASURING). For example, the counterbalance con-
ceptual model is a general way to describe the underlying features of the two- 
colored chip model with zero pairs (Flores, 2008), the floats and anchors model 
(Glancy & Pettis, 2017), the balloon model (Janvier, 1985), and the charged particle 
model (Battista, 1983). Bofferding, in Chap. 7 of this book, describes one such 
instantiation of a conceptual model as an instructional context instead of an integer 
model, to emphasize that children did not create these integer models on their own; 
however, instructional model might be more appropriate. Moving forward, this may 
be an important distinction to make: between children’s use of models (which we 
could call integer models) and teachers’ use of models (which we could call instruc-
tional models). As described by Nurnberger-Haag in Chap. 5 of this book, these 
models, and the conceptual model of counterbalance more globally, involve a 
COLLECTING OBJECTS conceptual metaphor (treating both positives and nega-
tives as things with rules for how they interact). Solving integer problems using an 
integer model or instructional model, which draw on a conceptual model, involves 
the use of one or more strategies, two of which were described for the chip model in 
Chap. 10 of this book by Murray.

On a similar but slightly different path, in Chap. 3 of this book, Bishop, Lamb, 
Philipp, Whitacre, and Schappelle (2016) describe ways of reasoning, which are 
other broad ways of thinking that draw on different mathematical properties (e.g., 
order) than the conceptual models. Therefore, the strategies that fall under a par-
ticular way of reasoning may or may not involve integer models or instructional 
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models. For example, using movements along a number line or counting by ones 
are strategies that fall under the order-based way of reasoning (see also Schwarz, 
Kohn, & Resnick, 1993–1994). However, the former strategy involves an integer 
model; whereas, the latter one does not. Diverging from both conceptual models 
and ways of reasoning, mental models as used by Bofferding (2014; see also 
Chap. 7) focus on conceptualizations of concepts inherent to numbers (i.e., sym-
bols, linear order, and absolute value) and operations. Use of conceptual models, 
ways of reasoning, and strategies can help clarify students’ mental models. Do we 
need all of these ways of describing integer problems and integer thinking? Are 
there ways of merging them? If we do not merge them, then at the very least, we 
need to be more explicit about the meaning of the terms we do use.

Strategies Students use a variety of strategies to solve integer addition and sub-
traction problems; however, these strategies are not consistently named or defined. 
For example, in this book, logical necessity, defined in Chap. 3, includes comparing 
related problems and using a fundamental mathematical property (e.g., inverse 
operations) to solve the related problem. Within Chap. 8, some of these types of 
strategies are still considered analogies, as they involve comparisons between 
related problems. Based on these definitions, comparing to -5 – 4 to -5 + -4 could be 
an analogy or logical necessity.

Within this book and the literature, the use of analogy, a strategy highlighted by 
many researchers, has been used haphazardly at times. One definition of analogy 
used in the commentary from Baroody and other integer literature (e.g., Bishop 
et al., 2016) involves relating integers to contexts. For example, they consider mak-
ing sense of integers with temperature, debits and credits, or other models as an 
analogy. In Chap. 8 and other integer literature (e.g., Bofferding, 2011; Murray, 
1985; Wessman-Enzinger, 2017), the use of analogy involves the act of construct-
ing comparisons with other numerical problems (e.g., making an analogy by com-
paring 2  +  3 and -2  +  -3). Knowing that children draw upon analogy-based 
reasoning (Vosniadou, 1989) and that children may use different types of compari-
sons (Bishop et  al., 2016; Bofferding, 2011; Bofferding & Wessman-Enzinger, 
2017), perhaps we should consider drawing on prior definitions of analogy outside 
of the domain of integer addition and subtraction. Vosniadou (1989), for example, 
characterized the mechanism behind analogical reasoning as the following: (a) 
“retrieving a source system (Y), which is similar to X in some way”; (b) “mapping 
a relational structure from Y to X”; and (c) “evaluating the applicability of this 
relationship structure for X” (p. 422). She also highlighted two different types of 
analogies: between-domain and within-domain analogies. It is possible that theo-
retical descriptions of analogy like this could help guide us as a community of 
integer researchers.

For integers, within-domain and between-domain analogies depend upon what 
we call different “domains.” If we consider whole numbers or positive integers to be 
a different domain than integers (positive and negative), then comparing problems 
like -2 + -3 to 2 + 3 are between-domain analogies and comparing problems like 
-5 – 4 to -5 + -4 are within-domain analogies. When we consider contexts, it could 
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be that comparing integers to a context is a between-domain analogy, and the 
numerical analogies are within-domain analogies. Making these decisions about 
and using theory related to analogical reasoning could help researchers frame their 
work more cohesively, build on each other’s work, and learn more deeply about 
children’s analogical reasoning.

Order and Magnitude How much is a negative worth and how do we talk about 
it? Cardinality refers to the size of a set. Quantity also suggests a positive amount of 
things that are countable, although some researchers talk about negative quantities 
(which might be counterintuitive to students). Both magnitude and absolute value 
refer to the size of numbers in terms of distance from zero (where direction is not 
considered), also in terms of positive numbers or zero. Value, while similar to abso-
lute value, is a broader term, although some specify positive values versus negative 
values. There are two cases for which vocabulary around the worth of integers 
would be helpful: the instance where we need to talk about numbers’ relative dis-
tances from zero and the instance where we need to talk about negatives’ worth in 
terms of order, where smaller negatives are considered larger, mathematically, than 
larger negatives. We propose, as Kaye suggested in her commentary, that we adopt 
absolute value for the first instance related to relative distances, and for the second 
instance related to order, we suggest that we adopt linear value.

 Valuing Emergent Thinking

A path is a prior interpretation of the best way to traverse a landscape. (Rebecca Solnit, 
Wanderlust: A History of Walking)

Our prior interpretations of integer paths include visions of determining “best 
models” or goals of “correct” answers (e.g., -7 < -5, recognizing that 0 is a number). 
What if getting correct answers mattered less? And, valuing all thinking mattered 
more? When thinking about integers matters more than achieving correctness or 
participating in the cultural norms of integer instruction, then valuing emergent 
thinking is a higher priority. In his commentary, Baroody pointed out the concerns 
of overlooking emergent thinking and focusing on the “gloomy” state of integer 
instruction centered on achievement. Similarly, Peled and Klemer in their commen-
tary pointed out the dangers of expecting students to write certain number sen-
tences, when many expressions may represent certain situations (e.g., -20  – -14 
versus -14 – -20). They, instead, suggest an open perspective of allowing for dis-
course and finding the various perspectives of a problem.

Even when students struggle, they are capable of accomplishing robust mathe-
matics. We see this theme throughout the book. For instance, the young children in 
Chap. 1 constructed notation or ordered integers unconventionally but did so in 
sophisticated and playful ways that may contribute to deeper reasoning about inte-
gers later. Consider how the students in Chap. 2 struggled to write subtraction 
number sentences yet constructed unprompted conversations about linear values 
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versus absolute values. Consider the vast array of strategies produced by children 
in Chap. 3. Specifically, in Chap. 3 and other literature (e.g., Bishop et al., 2014), 
we read about emergent thinking. Yet, we know little about the nuances of that 
emergent thinking or what distinguishes it from other ways of thinking. We need to 
value emergent thinking enough to not only explore it more but also find ways to 
incorporate or capitalize on emergent thinking in school instruction. It may be that 
a focus on mental models and conceptual change could help in this process (e.g., 
Bofferding, 2014).

 Meaningful Integer Instruction

There are always two people in every picture: the photographer and the viewer. (Ansel 
Adams)

To those who critiqued Ansel Adam’s landscape photography as having “no peo-
ple,” he notoriously responded that there are people: the photographer and the 
viewer. In some ways, this is like the use of meaningfulness with integer instruc-
tional models. It is easy to critique the lack of meaning within a context or advocate 
for a particular instructional model. But, similar to the photographs of landscapes, 
there are two viewers: the teacher-researcher and the student. Where a teacher or 
researcher sees meaning within an integer instructional model, a student may not; 
where a student sees meaning within an integer instructional model, a teacher or 
researcher may not. As we consider the meaningfulness of integer instructional 
models, we need to be conscientious of the different viewers and viewpoints.

In his commentary, Baroody pointed to the necessity of meaningful integer 
instruction and encouraged the use of temperature or debits and credits. Yet, lan-
guage complicates the use of models. Temperature is an example of a context that is 
meaningful, yet complicated—consider the difficulties of identifying the “least warm 
temperature” with negative integers (Bofferding & Farmer, 2018). In addition to 
complications with language, there are complications with the instructional models 
themselves. In fact, in their commentary, Peled and Klemer point out that children 
may not use negatives with certain instructional models, such as debits and credits, 
which is why some students have an easy time with them (e.g., Mukhopadhyay, 
Resnick, & Schauble, 1990; Whitacre et al., 2015). This complication is why Stephan 
and Akyuz (see Chap. 4) use net worth, as an alternative to debits and credits alone; 
it forces students to operate with both positive and negative integers.

When students do connect integers to contexts, they may make unconventional 
connections (Mukhopadhyay et  al., 1990; Wessman-Enzinger & Mooney, 2014). 
Students may talk about “wanting chocolate bars” or “losing pencils” instead of 
gains or losses of money. Although students’ unconventional connections might 
seem contrived, researchers have also critiqued typical integer instructional models 
and contexts for being contrived (Ball, 1993). Thus, we are left wondering: What 
constitutes meaningful instructional models for integers? The results in Chap. 7 point 
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to the idea that top-down instructional models may not be as productive as bottom-up 
student-generated models without some explicit connection to students’ thinking.

For the difficulties with two-colored chip models, Peled and Klemer point us to 
the pairing of this model with a disco experiment (Linchevski & Williams, 1999) 
using Realistic Mathematics Education (RME) tenants (see, e.g., Chap. 4 for RME 
and model use). Although there are difficulties with the two-colored chip model use, 
as illustrated in Chap. 10, Peled and Klemer suggest that students can reinvent strat-
egies for two-colored chip models if supported with meaningful contexts. Thus, in 
order to support discourse and reinventions of mathematics, we need to first learn 
how others think to find the meaningful contexts. And, it is possible that the use of 
a chip model from students might not be reinventions but actual inventions that may 
differ from what we presently use or advocate for in curricula. What students may 
find meaningful may not already be meaningful to the teacher-researcher. Students 
may play with language as they explore models: “That’s the warmest cold tempera-
ture.” Or, they may play with ideas: “What is biggest, -5 or -7?” (linear value based 
versus absolute value based). Through students’ playful engagement, we can learn 
what is a truly meaningful instructional model. Using this information, together 
with an understanding of how teachers (and prospective teachers) reason and use 
models within their curricula and classrooms, researchers and teacher leaders will 
be better prepared to structure effective learning opportunities for educators.

 On the Horizon

As we look back and survey the landscape, we see the beauty of the land and all that 
has been accomplished with integer addition and subtraction. But, we also need to 
look forward and think about ways that we can both preserve and enhance the land-
scape. Preserving the landscape includes continuing research agendas that have 
established strong roots in the domain of integer addition and subtraction; enhanc-
ing the landscape requires us to think innovatively in ways that extend and build on 
the current work. Any of the following questions could help preserve or move the 
field toward the horizon:

• How can reasoning about integers be done in playful ways so integers may be 
integrated into school mathematics sooner?

• How is prerequisite knowledge (i.e., order, linear value, absolute value) related 
to reasoning about addition and subtraction?

• How are different (student-invented) strategies for integer additions and subtrac-
tion supported in classrooms?

• How do students’ strategies (and the various frameworks) for integer addition 
and subtraction relate to their strategies for integer multiplication and division?

• How do we support prospective teachers in learning this rich and dynamic topic 
(i.e., integers and children’s reasoning about integers), especially when integers 
are overlooked in current teacher preparation programs?
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