
Functional Pearl: Folding Polynomials
of Polynomials

Chen-Mou Cheng1(B), Ruey-Lin Hsu2, and Shin-Cheng Mu3

1 National Taiwan University, Taipei, Taiwan
ccheng@cc.ee.ntu.edu.tw

2 National Central University, Taoyuan, Taiwan
petercommand@gmail.com

3 Academia Sinica, Taipei, Taiwan
scm@iis.sinica.edu.tw

Abstract. Polynomials are a central concept to many branches in math-
ematics and computer science. In particular, manipulation of polynomial
expressions can be used to model a wide variety of computation. In this
paper, we consider a simple recursive construction of multivariate polyno-
mials over a base ring such as the integers or a (finite) field. We show that
this construction allows inductive implementation of polynomial opera-
tions such as arithmetic, evaluation, substitution, etc. Furthermore, we
can transform a polynomial expression into in a sequence of arithmetic
expressions in the base ring and prove the correctness of this transfor-
mation in Agda. Combined with our recursive construction, this allows
for compiling polynomial expressions over a tower of extension fields into
scalar expressions over the ground field, for example. Such a technique is
not only interesting in its own right but also finds plentiful application
in research areas such as cryptography.

1 Introduction

A univariate polynomial over a base ring R is a finite sum of the form

anXn + an−1X
n−1 + · · · + a0,

where ai ∈ R are the coefficients, and X is called an indeterminate. The set
of univariate polynomials over R forms a ring, denoted as R[X]. We can allow
two or more indeterminates X1,X2, . . . , Xm and thus arrive at a multivariate
polynomial, a finite sum of the form

∑

i

aiX
e
(i)
1

1 X
e
(i)
2

2 · · · Xe(i)
m

m ,

where ai ∈ R are the coefficients, and the nonnegative integers e
(i)
j are the expo-

nents. The set of m-variate polynomials over R, denoted as R[X1,X2, . . . , Xm],
also forms a ring, referred to as a ring of polynomials.
c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 68–83, 2018.
https://doi.org/10.1007/978-3-319-90686-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_5&domain=pdf

Functional Pearl: Folding Polynomials of Polynomials 69

Polynomials are a central concept to many branches in mathematics and com-
puter science. In particular, manipulation of polynomial expressions can be used
to model a wide variety of computation. For example, every element of an alge-
braic extension field F over a base field K can be identified as a polynomial over
K, e.g., cf. Theorem 1.6, Chap. 5 of the (standard) textbook by Hungerford [6].
Addition in F is simply polynomial addition over K, whereas multiplication in
F is polynomial multiplication modulo the defining polynomial of F over K.
Let us use the familiar case of the complex numbers over the real numbers as
a concrete example. The complex numbers can be obtained by adjoining to the
real numbers a root i of the polynomial X2 + 1. In this case, every complex
number can be identified as a polynomial a + bi for a, b real. The addition of
a1 + b1i and a2 + b2i is simply (a1 + a2)+ (b1 + b2)i, whereas the multiplication,
(a1 + b1i)(a2 + b2i) mod i2 + 1 = (a1a2 − b1b2) + (a1b2 + a2b1)i.

In addition to arithmetic in an algebraic extension field, manipulation of
polynomial expressions also finds rich application in cryptography in particular.
A wide variety of cryptosystems can be implemented using polynomial expres-
sions over a finite field or Z/nZ, the ring of integers modulo n. In elliptic curve
cryptography [8], for example, we use the group structure of certain elliptic
curves over finite fields to do cryptography, and the group laws are often given
in polynomial expressions over finite fields. Another example is certain classes
of post-quantum cryptosystems, i.e., those expected to survive large quantum
computers’ attack. Among the most promising candidates, we have multivari-
ate cryptosystems [3] and several particularly efficient lattice-based cryptosys-
tems [4,7], for which encryption and decryption operations can be carried out
using polynomial expressions over finite fields or Z/nZ.

This pearl is initially motivated by our research in cryptography, where we
often have to deal with multivariate polynomials over various base rings, as
exemplified above. We also need to transform a polynomial expression into a
sequence of arithmetic expressions over its base ring. This is useful for, e.g.,
software implementation of cryptosystems on microprocessors with no native
hardware support for arithmetic operations with polynomials or integers of
cryptographic sizes, which typically range from a few hundreds to a few thou-
sands of bits. Again using multiplication of two complex numbers as an exam-
ple, we would need a sequence of real arithmetic expressions for implementing
z = zr + izi = (xr + ixi) × (yr + iyi) = xy:

t1 ← xr × yr;
t2 ← xi × yi;
t3 ← xr × yi;
t4 ← xi × yr;
zr ← t1 − t2;
zi ← t3 + t4.

Furthermore, we would like to have a precision that exceeds what our hardware
can natively support. For example, let us assume that we have a machine with

70 C.-M. Cheng et al.

native support for an integer type −R < x < R. In this case, we split each
variable ζ into a low part plus a high part: ζ = ζ(0)+Rζ(1), −R < ζ(0), ζ(1) < R.
Now let us assume that our machine has a multiplication instruction (c(0), c(1)) ←
a × b such that −R < a, b, c(0), c(1) < R and ab = c(0) + Rc(1). For simplicity,
let us further assume that our machine has n-ary addition instructions for n =
2, 3, 4: (c(0), c(1)) ← a1 + · · · + an such that −R < a1, . . . , an, c(0), c(1) < R and
a1 + · · ·+ an = c(0) +Rc(1). We can then have a suboptimal yet straightforward
implementation of, say, t1 = t

(0)
1 + Rt

(1)
1 + R2t

(2)
1 + R3t

(3)
1 = (x(0)

r + Rx
(1)
r) ×

(y(0)
r + Ry

(1)
r) = xr × yr as follows.

(t(0)1 , s
(1)
1) ← x

(0)
r × y

(0)
r ; //t

(0)
1 + Rs

(1)
1

(s(0)2 , s
(1)
2) ← x

(0)
r × y

(1)
r ; //Rs

(0)
2 + R2s

(1)
2

(s(0)3 , s
(1)
3) ← x

(1)
r × y

(0)
r ; //Rs

(0)
3 + R2s

(1)
3

(s(0)4 , s
(1)
4) ← x

(1)
r × y

(1)
r ; //R2s

(0)
4 + R3s

(1)
4

(t(1)1 , s
(1)
5) ← s

(1)
1 + s

(0)
2 + s

(0)
3 ; //Rt

(1)
1 + R2s

(1)
5

(t(2)1 , s
(1)
6) ← s

(1)
2 + s

(1)
3 + s

(0)
4 + s

(1)
5 ; //R2t

(2)
1 + R3s

(1)
6

(t(3)1 ,_) ← s
(1)
4 + s

(1)
6 . //R3t

(3)
1

It might be surprising that, with the advance of compiler technology today,
such programs are still mostly coded and optimized manually, sometimes in
assembly language, for maximal efficiency. Naturally, we would like to automate
this process as much as possible. Furthermore, with such security-critical appli-
cations, we would like to have machine-verified proofs that the transformation
and optimizations are correct.

In attempting toward this goal, we have come up with this pearl. It is
not yet practical but, we think, is neat and worth documenting. A key obser-
vation is that there is an isomorphism between multivariate polynomial ring
R[X1,X2 . . . , Xm] and univariate polynomial ring S[Xm] over the base ring
S = R[X1,X2, . . . , Xm−1], cf. Corollary 5.7, Chap. 3 of Hungerford [6]. This
allows us to define a datatype Poly for univariate polynomials, and reuse it
inductively to define multivariate polynomials — an n-variate polynomial can
be represented by Polyn (Poly applied n times). Most operations on the polyno-
mials can be defined either in terms of the fold induced by Poly, or by induction
on n, hence the title.

We explore the use of Polyn and its various implications in depth in Sect. 2.
Then in Sect. 3, we present implementations of common polynomial operations
such as evaluation, substitution, etc. We pay special attention to an operation
expand and prove its correctness, since it is essential in transforming polynomial
into scalar expressions. In Sect. 4, we show how to compile a polynomial function
into an assembly program that computes it. We present a simple compilation,
also defined in terms of fold, and prove its correctness, while leaving further opti-
mization to future work. The formulation in this pearl have been implemented
in both Haskell and Agda [9], the latter also used to verify our proofs. The code
is available on line at https://github.com/petercommand/ExtFieldComp.

https://github.com/petercommand/ExtFieldComp

Functional Pearl: Folding Polynomials of Polynomials 71

2 Univariate and Multivariate Polynomials

In this section, we present our representation for univariate and multivariate
polynomials, as well as their semantics. The following Agda datatype denotes a
univariate polynomial whose coefficients are of type A:1

data Poly (A : Set) : Set where
Ind : Poly A
Lit : A → Poly A
(:+) : Poly A → Poly A → Poly A
(:×) : Poly A → Poly A → Poly A ,

where Ind denotes the indeterminate, Lit denotes a constant (of type A), while
(:+) and (:×) respectively denote addition and multiplication. A polynomial
2x2 + 3x + 1 can be represented by the following expression of type Poly Z:

(Lit 2 :× Ind :× Ind) :+ (Lit 3 :× Ind) :+ Lit 1 .

Notice that the type parameter A is abstracted over the type of coefficients. This
allows us to represent polynomials whose coefficients have non-simple types —
in particular, polynomials whose coefficients are themselves polynomials. Do not
confuse this with the more conventional representation of arithmetic expressions:

data Expr A = Var A | Lit Int | Expr A :+ Expr A | Expr A :× Expr A ,

where the literals are usually assigned a fixed type (in this example, Int), and
the type parameter is abstracted over variables Var.

2.1 Univariate Polynomial and Its Semantics

In the categorical style outlined by Bird and de Moor [1], every regular datatype
gives rise to a fold, also called a catamorphism. The type Poly induces a fold that,
conventionally, takes four arguments, each replacing one of its four constructors.
To facilitate our discussion later, we group the last two arguments together. The
fold for Poly is thus given by:

foldP : {A B : Set} → B → (A → B) →
((B → B → B) × (B → B → B)) → Poly A → B

foldP x f ((⊕) , (⊗)) Ind = x
foldP x f ((⊕) , (⊗)) (Lit y) = f y
foldP x f ((⊕) , (⊗)) (e1 :+ e2) = foldP x f ((⊕) , (⊗)) e1 ⊕

foldP x f ((⊕) , (⊗)) e2
foldP x f ((⊕) , (⊗)) (e1 :× e2) = foldP x f ((⊕) , (⊗)) e1 ⊗

foldP x f ((⊕) , (⊗)) e2 ,

where arguments x, f, (⊕), and (⊗) respectively replace constructors Ind, Lit,
(:+), and (:×).
1 We use Haskell convention that infix data constructors start with a colon and, for
concise typesetting, write (:+) instead of the Agda notation _:+_. In the rest of the
paper we also occasionally use Haskell syntax for brevity.

72 C.-M. Cheng et al.

Evaluation. To evaluate a polynomial of type Poly A, we have to know how to
perform arithmetic operations for type A. Define

Ring : Set → Set
Ring A = ((A → A → A) × (A → A → A)) × A × A × (A → A) ,

the intention is that the tuple Ring A defines addition, multiplication, zero, one,
and negation for A (addition and multiplication are grouped together, for our
convenience later). In our Haskell implementation, Ring is a type class for types
whose addition and multiplication are defined. It can usually be inferred what
instance of Ring to use. When proving properties about foldP, however, it is
clearer to make the construction of Ring instances explicit.

With the presence of Ind, the semantics of Poly A should be A → A —
a function that takes the value of the indeterminate and returns a value. We
define the following operation that lifts pointwise the addition and multiplication
of some type B to A → B:

ring→ : ∀ {A B} → Ring B → Ring (A → B)
ring→ (((+) , (×)) ,0,1, neg) =
((λ f g x → f x + g x, λ f g x → f x × g x) , const 0, const 1, (neg ·)) ,

where const x y = x. The semantics of a univariate polynomial is thus given by:

sem1 : ∀ {A} → Ring A → Poly A → A → A
sem1 rng = foldP id const (fst (ring→ rng)) ,

where id x = x and fst retrieves the left component of a pair.

2.2 Bivariate Polynomials

To represent polynomials with two indeterminates, one might extend Poly with a
constructor Ind′ in addition to Ind. It turns out to be unnecessary — it is known
that the bivariate polynomial ring R[X,Y] is isomorphic to R[X][Y] (modulo
the operation litDist, to be defined later). That is, a polynomial over base ring
A with two indeterminates can be represented by Poly (Poly A).

To understand the isomorphism, consider the following expression:

e : Poly (Poly Z)
e = (Lit (Lit 3) :× Ind :× Lit (Ind :+ Lit 4)) :+ Lit Ind :+ Ind .

Note that to represent a literal 3, we have to write Lit (Lit 3), since the first
Lit takes a Poly Z as its argument. To evaluate e using sem1, we have to define
Ring (Poly Z). A natural choice is to connect two expressions using corresponding
constructors:

ringP : ∀ {A} → Ring A → Ring (Poly A)
ringP (, 0 , 1 , neg) = (((:+) , (:×)) , Lit 0 , Lit 1 , (Lit (neg 1) : x)) .

Functional Pearl: Folding Polynomials of Polynomials 73

With ringP defined, sem1 (ringP r) e has type Poly A → Poly A. Evaluating, for
example sem1 (ringP r) e (Ind :+ Lit 1), yields

e′ : Poly Z

e′ = (Lit 3 :× (Ind :+ Lit 1) :× (Ind :+ Lit 4)) :+ Ind :+ (Ind :+ Lit 1) .

Note that Lit Ind in e is replaced by the argument Ind :+ Lit 1. Furthermore,
one layer of Lit is removed, thus both Lit 3 and Ind :+ Lit 4 are exposed to the
outermost level. The expression e′ may then be evaluated by sem1 rngZ, where
rngZ : Ring Z. The result is a natural number. In general, the function sem2 that
evaluates Poly (Poly A) can be defined by:

sem2 : ∀ {A} → Ring A → Poly (Poly A) → Poly A → A → A
sem2 r e2 e1 x = sem1 r (sem1 (ringP r) e2 e1) x .

This is how Poly (Poly Z) simulates bivariate polynomials: the two indeter-
minates are respectively represented by Ind and Lit Ind. During evaluation, Ind
can be instantiated to an expression arg of type Poly Z, while Lit Ind can be
instantiated to a Z. If arg contains Ind, it refers to the next indeterminate.

What about expressions like Lit (Ind :+ Lit 4)? One can see that its semantics
is the same as Lit Ind :+ Lit (Lit 4), the expression we get by pushing Lit to the
leaves. In general, define the following function:

litDist : ∀ {A} → Poly (Poly A) → Poly (Poly A)
litDist = foldP Ind (foldP (Lit Ind) (Lit · Lit) ((:+) , (:×))) ((:+) , (:×)) .

The function traverses through the given expression and, upon encountering a
subtree Lit e, lifts e to Poly (Poly A) while distributing Lit inwards e. We can
prove the following theorem:

Theorem 1. For all e : Poly (Poly A) and r : Ring A, we have sem2 r
(litDist e) = sem2 r e.

2.3 Multivariate Polynomials

In general, as we have mentioned in Sect. 1, the multivariate polynomial
R[X1,X2 . . . , Xm] is isomorphic to univariate polynomial ring S[Xm] over the
base ring S = R[X1,X2, . . . , Xm−1] (modulo the distribution law of Lit). That
is, a polynomial over A with n indeterminates can be represented by Polyn A,
defined by

Polyzero A = A
Polysuc n A = Poly (Polyn A) .

To define the semantics of Polyn A, recall that, among its n indetermi-
nates, the outermost indeterminate shall be instantiated to an expression of

74 C.-M. Cheng et al.

type Polyn−1 A, the next indeterminate to Polyn−2 A..., and the inner most inde-
terminate to A, before yielding a value of type A. Define

DChain : Set → N → Set
DChain A zero = �
DChain A (suc n) = Polyn A × DChain A n ,

that is, DChain A n (the name standing for a “descending chain”) is a list of n
elements, with the first having type Polyn−1 A, the second Polyn−2 A, and so on.
The type � denotes the “unit” type, inhabited by exactly one term tt.

Given an implementation of Ring A, the semantics of Polyn A is a function
DChain A n → A, defined inductively as below:

sem : ∀ {A} → Ring A → (n : N) → Polyn A → DChain A n → A
sem r zero x tt = x
sem r (suc n) e (t , es) = sem r n (sem1 (ringP� r n) e t) es ,

where ringP� delivers the Ring (Polyn A) instance for all n:

ringP� : ∀ {A} → Ring A → ∀ n → Ring (Polyn A)
ringP� r zero = r
ringP� r (suc n) = ringP (ringP� r n) .

For n := 2 and 3, for example, sem r n expands to:

sem r 2 e (t1, t0, tt) = sem1 r (sem1 (ringP r) e t1) t0
= (sem1 r · sem1 (ringP r) e) t1 t0 ,

sem r 3 e (t2, t1, t0, tt) = sem1 r (sem1 (ringP r) (sem1 (ringP2 r) e t2) t1) t0
= (sem1 r · sem1 (ringP r) · sem1 (ringP2 r) e) t2 t1 t0 .

Essentially, sem r n is n-fold composition of sem1 (ringPi r), each interpreting
one level of the given expression.

3 Operations on Polynomials

Having defined a representation for multivariate polynomials, we ought to
demonstrate that this representation is feasible — that we can define most of
the operations we want. In fact, it turns that most of them can be defined either
in terms of foldP or by induction over the number of iterations Poly is applied.

3.1 Rotation

The first operation swaps the two outermost indeterminates of a Poly2 A, using
foldP. This function witnesses the isomorphism between R[X1, . . . , Xm−1][Xm]
and R[Xm,X1, . . . , Xm−2][Xm−1]. It is instructive comparing it with litDist.

rotaPoly2 : ∀ {A} → Poly2 A → Poly2 A
rotaPoly2 = foldP (Lit Ind) (foldP Ind (Lit · Lit) ((:+) , (:×))) ((:+) , (:×)) .

Functional Pearl: Folding Polynomials of Polynomials 75

In rotaPoly2, the outermost Ind is replaced by Lit Ind. When encountering Lit e,
the inner e is lifted to Poly2 A. The Ind inside e remains Ind, which becomes the
outermost indeterminate after lifting. Note that both litDist and rotaPoly2 apply
to Polyn A for all n � 2, since A can be instantiated to a polynomial as well.

Consider Poly3 A, a polynomial with (at least) three indeterminates. To
“rotate” the three indeterminates, that is, turn Lit2 Ind to Lit Ind, Lit Ind to
Ind, and Ind to Lit2 Ind, we can define:

rotaPoly3 = fmap rotaPoly2 · rotaPoly2 ,

where fmap is the usual “functorial map” function for Poly:

fmap : ∀ {A B} → (A → B) → Poly A → Poly B .

The first rotaPoly2 swaps the two outer indeterminates, while fmap rotaPoly2
swaps the inner two. To rotate the outermost four indeterminates of a Poly4 A,
we may define:

rotaPoly4 = fmap (fmap rotaPoly2) · rotaPoly3 .

In general, the following function rotates the first n indeterminates of the given
polynomial:

rotaPoly : ∀ {A} (n : N) → Polyn A → Polyn A
rotaPoly zero = id
rotaPoly (suc zero) = id
rotaPoly (suc (suc zero)) = rotaPoly2
rotaPoly (suc (suc (suc n))) = fmapsuc n rotaPoly2 · rotaPoly (suc (suc n)) .

Note that in the actual code we need to convince Agda that Polyn (Poly A) is
the same type as Poly (Polyn A) and use subst to coerce between the two types.
We omit those details for clarity.

Given m and n, rotaOuter n m compose rotaPoly n with itself m times. There-
fore, the outermost n indeterminates are rotated m times. It will be handy in
Sect. 3.2.

rotaOuter : ∀ {A} (n m : N) → Polyn A → Polyn A
rotaOuter n zero = id
rotaOuter n (suc m) = rotaOuter n m · rotaPoly n e .

3.2 Substitution

Substitution is another operation that one would expect. Given an expression
e, how do we substitute, for each occurrence of Ind, another expression e′, using
operations we have defined? Noticing that the type of sem1 can be instantiated
to Poly2 A → Poly A → Poly A, we may lift e to Poly2 A by wrapping it with Lit,
do a rotaPoly2 to swap the Ind in e to the outermost position, and use sem1 to
perform the substitution:

76 C.-M. Cheng et al.

substitute1 : ∀ {A} → Ring A → Poly A → Poly A → Poly A
substitute1 r e e′ = sem1 (ringP r) (rotaPoly2 (Lit e)) e′ .

What about e : Poly2 A? We may lift it to Poly4 A, perform two rotaPoly4 to
expose its two indeterminates, before using sem2:

substitute2 :: ∀ {A} → Ring A → Poly2 A → Poly2 A → Poly2 A → Poly2 A
substitute2 r e e′ e′′ =
sem2 (ringP (ringP r)) (rotaPoly4 (rotaPoly4 Lit (Lit e))) (Lit e′) e′′ .

Consider the general case with substituting the n indeterminates in e : Polyn A
for n expressions, each of type Polyn A. Let Vec B n be the type of vectors (lists
of fixed lengths) of length n. A general substitute can be defined by:

substitute : ∀ {A} n → Ring A → Polyn A → Vec (Polyn A) n → Polyn A
substitute {A} n r e es =
sem (ringP� r n) n (rotaOuter (n + n) n (liftPoly n (n + n) e))

(toDChain es) ,

where liftPoly n m (with n � m) lifts a Polyn A to Polym A by applying Lit;
rotaOuter (n + n) n, as defined in Sect. 3.1, composes rotaPoly (n+ n) with itself
n times, thereby moving the n original indeterminates of e to outermost positions;
the function toDChain : ∀ {A} n → Vec A n → DChain A n converts a vector to
a descending chain, informally,

toDChain [t2, t1, t0] = (Lit (Lit t2) , Lit t1, t0, tt) ;

finally, sem performs the substitution. Again, the actual code needs additional
proof terms (to convince Agda that n � n+ n) and type coercion (between
Polyn (Polym A) and Polym+n A), which are omitted here.

3.3 Expansion

Expansion is an operation we put specific emphasis on, since it is useful when
implementing cryptosystems on microprocessors with no native hardware sup-
port for arithmetic operations with polynomials or integers of cryptographic
sizes. Let us use a simple yet specific example for further exposition: the polyno-
mial expression over complex numbers (3+2i)x2+(2+i)x+1 can be represented
by Poly (R × R), whose semantics is a function (R × R) → (R × R). Let x be
x1 + x2i, the polynomial can be expanded as below:

(3 + 2i)(x1 + x2i)2 + (2 + i)(x1 + x2i) + 1

= (3x2
1 − 4x1x2 − 3x2

2) + (2x2
1 + 6x1x2 − 2x2

2)i + (2x1 − x2) + (x1 + 2x2)i + 1

= (3x2
1 + 2x1 − 4x1x2 − x2 − 3x2

2 + 1) + (2x2
1 + x1 + 6x1x2 + 2x2 − 2x2

2)i.

That is, a univariate polynomial over pairs, Poly (R × R), can be expanded to
(Poly2 R × Poly2 R), a pair of bivariate expressions. The expansion depends on
the definitions of addition and multiplication of complex numbers.

Functional Pearl: Folding Polynomials of Polynomials 77

It might turn out that R is represented by a fixed number of machine words:
R = Wordn. As mentioned before, in cryptosystems n could be hundreds. To
compute the value of the polynomial, Poly Wordn can be further expanded to
(Polyn Word)n, this time using arithmetic operations defined for Word. Now that
each polynomial is defined over Word, whose arithmetic operations are natively
supported, we may compile the expressions, in ways discussed in Sect. 4, into a
sequence of operations in assembly language. We also note that the roles played
by the indeterminates x and i are of fundamental difference: x might just repre-
sent the input of the computation modelled by the polynomial expression, which
will be substituted by some values at runtime, whereas i intends to model some
internal (algebraic) structures and is never substituted throughout the whole
computation.

Currently, such conversion and compilation are typically done by hand. We
define expansion in this section and compilation in the next, as well as proving
their correctness.

In general, a univariate polynomial over n-vectors, Poly (Vec A n), can be
expanded to a n-vector of n-variate polynomial, Vec (Polyn A) n. To formally
define expansion we need some helper functions. Firstly, genInd n generates a
vector Ind :: Lit Ind :: ... Litn−1 Ind :: []. It corresponds to expanding x to (x1, x2)
in the previous example.

genInd : ∀ {A} n → Vec (Polyn A) n
genInd zero = []
genInd (suc zero) = Ind :: []
genInd (suc (suc n)) = Ind :: map Lit (genInd (suc n)) .

Secondly, liftVal : ∀ {A} n → A → Polyn A lifts A to Polyn A by n applications of
Lit. The definition is routine.

Expansion can now be defined by:

expand : ∀ {A} n → Ring (Vec (Polyn A) n) → Poly (Vec A n) → Vec (Polyn A) n
expand n rv = foldP (genInd n) (map (liftVal n)) (fst rv)

For the Ind case, one indeterminant is expanded to n using genInd. For the Lit xs
case, xs : Vec A n can be lifted to Vec (Polyn A) n by map (liftVal n). For addition
and multiplication, we let rv decide how to combine vectors of expressions.

The function expand alone does not say much — all the complex work is done
in rv : Ring (Vec (Polyn A) n). To generate rv, we define the type of operations
that, given arithmetic operators for A, define ring instance for vectors of A:

RingVec : N → Set1
RingVec n = ∀ {A} → Ring A → Ring (Vec A n) .

For example, rComplex lifts arithmetic operations on A to that of complex num-
bers over A:

rComplex : RingVec 2
rComplex ((+) , (×) , 0 , 1 , neg) = ((+c) , (×c) , [0, 0], [1 , 0], negC)

78 C.-M. Cheng et al.

where [x1, y1] +c [x2, y2] = [x1 + x2, y1 + y2]
[x1, y1] ×c [x2, y2] = [x1 × x2 − y1 × y2 , x1 × y2 + x2 × y1]
x − y = x + neg 1 × y
negC [x, y] = [neg 1 × x1, neg 1 × y] .

To expand a polynomial of complex numbers Poly (Vec A 2), expand
demands an instance of Ring (Vec (Poly2 A) 2). One may thus call
expand 2 (rComplex (ringP2 r), where r : Ring A. That is, we use rComplex
to combine a pair of polynomials, designating ((:+) , (:×)) as addition and
multiplication.

Correctness. Intuitively, expand is correct if the expanded polynomial evaluates
to the same value as that of the original. To formally state the property, we have
to properly supply all the needed ingredients. Consider e : Poly (Vec A n) —
a polynomial whose coefficients are vectors of length n. Let r : Ring A define
arithmetic operators for A, and let ringVec : RingVec n define how arithmetic
operators for elements are lifted to vectors. We say that expand is correct if, for
all xs : Vec A n:

sem1 (ringVec r) e xs = map (λ e → sem r n e (toDChain xs))
(expand n (ringVec (ringP� r n)) e). (1)

On the lefthand side, e is evaluated by sem1, using operators supplied by
ringVec r. The value of the single indeterminant is xs : Vec A n, and the result
also has type Vec A n. On the righthand side, e is expanded to Vec (Polyn A) n,
for which we need an instance of Ring (Vec (Polyn A) n), generated by
ringVec (ringP� r n). Each polynomial in the vector is then evaluated individually
by sem r n. The function toDChain converts a vector to a descending chain. The n
elements in xs thus substitutes the n indeterminants of the expanded polynomial.

Interestingly, it turns out that expand is correct if ringVec is polymorphic —
that is, the way it computes vectors out of vectors depends only on the shape of
its inputs, regardless of the type and values of their elements.

Theorem 2. For all n, e : Poly (Vec A n), xs : Vec A n, r : Ring A, and
ringVec : RingVec, property (1) holds if ringVec is polymorphic.

Proof. Induction on e. For the base cases we need two lemmas:

– for all n, x, es : DChain A n, and r, we have sem r n (liftVal n x) es = x;
– for all n, xs : Vec A n, and r : Ring A, we have

map (λ e → sem r n e (toDChain xs)) (genInd n) = xs.

The inductive case where e := e1 :+ e2 eventually comes down to proving that
(abbreviating λ e → sem r n e (toDChain xs) to sem′):

map sem′ (expand ringVec n e1) +VA map sem′ (expand ringVec n e2) =
map sem′ (expand ringVec n e1 +VP expand ringVec n e2)

Functional Pearl: Folding Polynomials of Polynomials 79

where (+VA) = fst (fst (ringVec r)) defines addition on vectors of A’s, and
(+VP) = fst (fst (ringVec (ringP� r n))) on vectors of polynomials. But this is
implied by the free theorem of ringVec. Specifically, fst · fst · ringVec has type

{A : Set} → Ring A → (Vec A n → Vec A n → Vec A n) .

The free theorem it induces is

∀ (X Y : Set) n →
∀ (f : X → Y) (ring1 : Ring X) (ring2 : Ring Y) → P f ring1 ring2 →
∀ (xs ys : Vec X n) →
let (+V1) = fst (fst (ringVec ring1))

(+V2) = fst (fst (ringVec ring2))
in map f (xs +V1 ys) = map f xs +V2 map f ys ,

where P is given by:

P f ((+1) , (×1) , 01 , 11 , neg1) ((+2) , (×2) , 02 , 12 , neg2) =
∀ x1 x2 y1 y2 → f (x1 +1 x2) = f x1 +2 f x2 ∧

f (x1 ×1 x2) = f x1 ×2 f x2 ∧
f 01 = 02 ∧ f 11 = 12 ∧ f (neg1 x1) = neg2 (f x2) .

The conclusion of the free theorem is exactly what we need, while proving the
premise is routine. The case for e := e1 : × e2 is similar.

4 Compiling Polynomials

A potentially complex polynomial can be expanded, in several passes, to a vector
of polynomial over Word, which can be compiled separately. As we have men-
tioned, such compilation is useful for software implementation of cryptosystems.
Furthermore, even for hardware implementation, such compilation can be use-
ful, as we can break down a complicated polynomial expression into a sequence
of simpler arithmetic operations in a smaller algebraic structure, reducing the
design complexity.

We consider a simple imaginary machine with a heap, denoted by Heap,
that may abstractly be seen as mapping between memory addresses Addr and
machine words Word. Albeit its simplicity, we believe that such a model captures
the essential aspects of a wide variety of hardware and software implementations.
The operator (!!) : Heap → Addr → Word fetches the value stored in the given
address, while ringWord : Ring Word defines how words are added and multiplied.
The simple assembly language we consider consists of three instructions:

data TAC : Set where
Const : Addr → Word → TAC
Add : Addr → Addr → Addr → TAC
Mul : Addr → Addr → Addr → TAC ,

80 C.-M. Cheng et al.

Ins : Set
Ins = List TAC .

The command Const i v stores value v in address i, Add i j k fetches values stored
in addresses i and j and stores their sum in address k, and similarly with Mul.
Given a heap, executing an assembly program computes a new heap:

runIns : Heap → Ins → Heap .

To compile a program we employ a monad SSA, which support an operation alloc :
SSA Addr that returns the address of an unused cell in the heap. A naive approach
is to implement SSA by a state monad that keeps a counter of the highest address
that is allocated, while alloc returns the current value of the counter before
incrementing it — register allocation can be performed in a separate pass. To run
a SSA monad we use a function runSSA : ∀ {A St} → St → SSA St A → (A × St)
that takes a state St and yields a pair containing the result and the new state.

Compilation of a polynomial yields SSA (Addr × Ins), where the second com-
ponent of the pair is an assembly program, and the first component is the address
where the program, once run, stores the value of the polynomial. We define com-
pilation of Polyn Word by induction on n. For the base case Poly0 Word = Word,
we simply allocate a new cell and store the given value there using Const:

compile0 :Word → SSA (Addr × Ins)
compile0 v = alloc >>= λ addr →

return (addr , Const addr v :: []) .

To compile a polynomial of type Polyn Word, we assume that the value of the
n indeterminants are already computed and stored in the heap, the locations of
which are stored in a vector of n addresses.

compile : ∀ n → Vec Addr n → Polyn Word → SSA (Addr × Ins)
compile zero addr = compile0
compile (suc n) (x :: addr) =
foldP (return (x, [])) (compile n addr) (biOp Add, biOp Mul) .

In the clause for suc n, x is the address storing the value for the outermost inde-
terminant. To compile Ind, we simply return this address without generating any
code. To compile Lit e where e : Polyn Word, we inductively call compile n addr.
The generated code is combined by biOp op p1 p2, which runs p1 and p2 to
obtain the compiled code, allocate a new address dest, before generating a new
instruction op dest addr1 addr2:

biOp : (Addr → Addr → Addr → TAC)
→ SSA (Addr × Ins) → SSA (Addr × Ins) → SSA (Addr × Ins)

biOp op m1 m2 = m1 >>= λ (addr1 , ins1) →
m2 >>= λ (addr2 , ins2) → alloc >>= λ dest →
return (dest , ins1 ++ ins2 ++ (op dest addr1 addr2 :: [])) .

Functional Pearl: Folding Polynomials of Polynomials 81

The following function compiles a polynomial, runs the program, and
retrieves the resulting value from the heap:

compileRun : ∀ {n} → Vec Addr n → Addr → Polyn Word → Heap → Word
compileRun rs r0 e h =
let ((r , ins) ,) = runSSA r0 (compile rs e)
in runIns h ins !! r .

Correctness. Given a polynomial e, by correctness we intuitively mean that the
compiled program computes the value which e would be evaluated to. A formal
statement of correctness is complicated by the fact that e : Polyn A expects, as
arguments, n polynomials arranged as a descending chain, each of them expects
arguments as well, and ins expects their values to be stored in the heap.

Given a heap h, a chain es : DChain Word n, and a vector of addresses rs, the
predicate Consistent h es rs holds if the values of each polynomial in es is stored
in h at the corresponding address in rs. The predicate can be expressed by the
following Agda datatype:

data Consistent (h : Heap) :
∀ {n} → DChain Word n → Vec Addr n → Set where

[] : Consistent h tt []
(::) : ∀ {n : N} {es rs e r}

→ (h !! r ≡ sem n ringWord e es)
→ Consistent h es rs
→ Consistent h (e , es) (r :: rs) .

Observe that in the definition of (::) the descending chain es is supplied to each
invocation of sem to compute value of e, before e itself is accumulated to es.

The correctness of compile can be stated as:

compSem : ∀ (n : N) {h : Heap}
→ (e : Polyn Word)
→ (es : DChain Word n)
→ (rs : Vec Addr n) → (r0 : Addr)
→ Consistent h es rs
→ NoOverlap r0 rs
→ compileRun rs r0 e h ≡ sem n e es .

The predicate Consistent h es rs states that the values of the descending chain es
are stored in the corresponding addresses rs. The predicate NoOverlap r0 rs states
that, if an SSA monad is run with starting address r0, all subsequent allocated
addresses will not overlap with those in rs. With the naive counter-based imple-
mentation of SSA, NoOverlap r0 rs holds if r0 is larger than every element in rs.
The last line states that the polynomial e is compiled with argument addresses
es and starting address r0, and the value the program computes should be the
same as the semantics of e, given the descending chain es as arguments.

With all the setting up, the property compSem n e can be proved by induction
on n and e.

82 C.-M. Cheng et al.

5 Conclusions and Related Work

In dependently typed programming, a typical choice in implementing multivari-
ate polynomials is to represent de Bruin indices using Fin n, the type having
exactly n members. This is done in, for example, the RingSolver in the Agda
standard library [5], among many. The tagless-final representation [2] is another
alternative. In this paper, we have explored yet another alternative, chosen to
see how far we can go in exploiting the isomorphism between R[X1,X2 . . . , Xm]
and univariate polynomial ring R[X1,X2, . . . , Xm−1][Xm]. It turns out that we
can go quite far — we managed to represent multivariate polynomials using
univariate polynomials. Various operations on them can be defined inductively.
In particular, we defined how a polynomial of vectors can be expanded to a
vector of polynomials, and how a polynomial can be compiled to sequences of
scalar-manipulating instructions like assembly-language programs. The correct-
ness proofs of those operations also turn out to be straightforward inductions,
once we figure out how to precisely express the correctness property.

We note that the current expansion formula is provided by the programmer.
For example, in order to expand a complex polynomial expression into two real
ones, the programmer needs to provide (in a RingVec) the formula (a1+b1i)(a2+
b2i) mod i2 + 1 = (a1a2 − b1b2) + (a1b2 + a2b1)i. We can see that the divisor
polynomial of the modular relationship can actually give rise to an equational
type in which i2 + 1 = 0, or any pair of polynomials are considered “equal” if
their difference is a multiple of the polynomial i2+1. In the future, we would like
to further automate the derivation of this formula, so the programmer will only
need to give us the definition of the equational types under consideration. The
RingSolver [5] manipulates equations into normal forms to solve them, and the
solution can be used in Agda programs by reflection. It is interesting to explore
whether a similar approach may work for our purpose.

Acknowledgements. The authors would like to thank the members of IFIP Working
Group 2.1 for their valuable comments on the first presentation of this work.

References

1. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice Hall International Series
in Computer Science. Prentice Hall, Upper Saddle River (1997)

2. Carette, J., Kiselyov, O., Shan, C.-C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–543
(2009)

3. Chen,A.I.-T., Chen,C.-H.O.,Chen,M.-S., Cheng,C.-M.,Yang,B.-Y.: Practical-sized
instances of multivariate PKCs: rainbow, TTS, and �IC-derivatives. In: Buchmann,
J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88403-3_7

4. Crockett, E., Peikert, C.: Λoλ: functional lattice cryptography. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24–28, pp. 993–1005. ACM (2016)

https://doi.org/10.1007/978-3-540-88403-3_7

Functional Pearl: Folding Polynomials of Polynomials 83

5. Danielsson, N.A.: Ring Solver, the Agda standard library. https://github.com/agda/
agda-stdlib/blob/master/src/Algebra/RingSolver.agda

6. Hungerford, T.: Algebra. Graduate Texts in Mathematics. Springer, New York
(2003). https://doi.org/10.1007/978-1-4612-6101-8

7. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. IACR Cryptology ePrint Archive 2012:230 (2012)

8. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X_31

9. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

https://github.com/agda/agda-stdlib/blob/master/src/Algebra/RingSolver.agda
https://github.com/agda/agda-stdlib/blob/master/src/Algebra/RingSolver.agda
https://doi.org/10.1007/978-1-4612-6101-8
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31

	Functional Pearl: Folding Polynomials of Polynomials
	1 Introduction
	2 Univariate and Multivariate Polynomials
	2.1 Univariate Polynomial and Its Semantics
	2.2 Bivariate Polynomials
	2.3 Multivariate Polynomials

	3 Operations on Polynomials
	3.1 Rotation
	3.2 Substitution
	3.3 Expansion

	4 Compiling Polynomials
	5 Conclusions and Related Work
	References

