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Abstract. We present a mutable array programming library for the Coq
proof assistant which enables simple reasoning method based on Ssre-
flect/Mathematical Components, and extractions of the efficient OCaml
programs using in-place updates. To refine the performance of extracted
programs, we improved the extraction plugin of Coq. The improvements
are based on trivial transformations for purely functional programs and
reduce the construction and destruction costs of (co)inductive objects,
and function call costs effectively. As a concrete application for our
library and the improved extraction plugin, we provide efficient imple-
mentations, proofs, and benchmarks of two algorithms: the union–find
data structure and the quicksort algorithm.

1 Introduction

The program extraction mechanism [7–9,15] of the Coq proof assistant [20]
is a code generation method for obtaining certified functional programs from
constructive formal proofs and definitions by eliminating the non-informative
part and widely used for developments of high-reliability software. For example,
the CompCert project [6] uses Coq and its program extraction mechanism for
obtaining a formally verified and executable C compiler which guarantees the
correctness of the translation.

Verification and code generation (including extraction) of programs with
side effects are important issues to apply proof assistants to realistic software
developments. Particularly, in-place updates of mutable objects are important
to increase the efficiency of programs. There are many recent studies to support
writing, reasoning about, and generating programs with side effects in proof
assistants, e.g., Coq (Ynot) [13], Isabelle/HOL [2], Idris [1], and F� [17]. Ynot is
such a representative Coq library which can handle various kind of side-effects,
e.g., accessing reference cells, non-termination, throwing/catching exceptions,
and I/O. Ynot is based on an axiomatic extension for Coq called Hoare Type
Theory (HTT) [12] and supports reasoning with separation logic [14] which are
good at its expressiveness, but not good at reducing proof burden in Coq.

This study establishes a novel, lightweight, and axiom-free method for veri-
fication and extraction of efficient programs using mutable arrays. Our library
supports a simple monadic DSL for mutable array programming and powerful
and simple reasoning method, and which is achieved by focusing only on mutable
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arrays and doing away with more side-effects such as reference cells and local
states. Our contribution consists of three parts:

– In Sect. 3, we define a state monad specialized for mutable array
programming—the array state monad—and give two interpretations of it for
reasoning and program extraction. The former interpretation is defined in a
purely functional way with building blocks taken from the Ssreflect/Math-
ematical Components (MathComp) library [11,21] and makes it possible to
reduce the reasoning tasks on effectful programs to those on purely functional
programs. The latter interpretation enables extraction of efficient effectful
programs and provides encapsulation function like runST of state threads [5]
which corresponds to the interpretation function in the former interpreta-
tion. The encapsulation mechanism converts effectful functions written by
the array state monad to referential transparent functions and it also enables
encapsulation of proofs.

– In Sect. 4, we present two new optimization techniques for the program extrac-
tion plugin. The optimizations are based on well-known transformations of
purely functional programs, but effectively reduce the execution time of pro-
grams extracted with our library. More generally, the optimizations are espe-
cially effective for two cases: 1. proofs using mathematical structures and its
theories provided by the MathComp library and 2. programs using monads
that have functional types, e.g., State, Reader, and Continuation monads.

– In Sect. 5, we demonstrate elegant formalization techniques for programs
using mutable arrays, and efficiency of the extracted programs using our
library and the improved extraction, through the two applications—the
union–find data structure and the quicksort algorithm.
Our formalization of the quicksort algorithm uses the theory of permuta-
tions provided by the perm library of MathComp, and we show that some
properties of permutations are also helpful for the reasoning of the quick-
sort algorithm. We also show benchmark results of the applications, and it
indicates that performances of extracted programs using our library and the
improved extraction are comparable to handwritten OCaml implementations
of same algorithms and much better than purely functional implementations
of the same kind of algorithms.

The source code of our library, the improved extraction plugin, case studies,
benchmark scripts and patches for existing libraries are available at:

https://github.com/pi8027/efficient-finfun.

2 Finite Types and Finite Functions in Coq

This section briefly introduces the fintype and finfun libraries from the Math-
Comp library with some modifications. The former provides an interface for
types with finitely many elements—finite types. The latter provides a type of
functions with finite domains—finite functions or finfuns—which is used as a

https://github.com/pi8027/efficient-finfun
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representation of arrays in this paper and relies on the former part. Key defini-
tions and lemmas of the both libraries are listed in Table 1 and described below.
In our previous work [16], we modified these libraries to improve the efficiency
of code extracted from proofs.

2.1 A Finite Type Library—fintype

A finite type is a type with finitely many elements. The fintype library provides
definitions of a class of finite types (finType) and its basic operations. The class
of finite types is defined as a canonical structure [10] which contains a type
and a witness of its finiteness. In the original fintype library, such finiteness of a
type T is characterized by a duplicate-free enumeration of elements of T. In the
modified one, it is recharacterized by a pair of the natural cardinal number c
and a bijection between T and a finite ordinal type ’I_c = {0, ..., c - 1}.
The bijection is given by a pair of an encoding function of type T → ’I_c and
a decoding function of type ’I_c → T.

The two most basic operations on finite types are the enumeration (enum)
and the cardinality (#|_|) of a subset of a finite type. We also provide accessors
for the cardinal number and the bijection used by the new characterization
of finiteness. The former is notation, and the latter is fin_encode and
fin_decode functions. For any is equal to #|T| and more
efficiently computable than #|T|.

Many canonical finType instances are given by the MathComp library:
unit, bool, finite ordinals ’I_n, option, sum, prod, finite functions with a finite
codomain, finite subsets {set T}, symmetric groups {perm T}, and more.

2.2 A Finite Function Library—finfun

The finfun library provides definitions of a type of finfuns ({ffun T → U}) and
its basic operations. Finfuns from T to U is defined as #|T| tuples of U. Tuples
are size-fixed lists defined in the tuple library, and easily translated to arrays in
extracted programs by the Extract Inductive command.
Inductive finfun_type (T : finType) (U : Type) := Finfun of #|T|.-tuple U.

The two most basic operations of finfuns are the application (fun_of_fin)
and the construction from CiC functions (finfun). The application
fun_of_fin f i is the (fin_encode i)-th element of the underlying tuple of
f. The construction finfun f is the finfun extensionally equal to f, and the
underlying tuple of it associates f (fin_encode i) for each i-th element. Both
of them can be efficiently computable by using Array.get and Array.init func-
tions respectively in extracted OCaml programs.

The application fun_of_fin f i can be expressed as f i because
fun_of_fin is the coercion from finfuns to CiC functions. The finfun library
also provides constructor notations [ffun i ⇒ e] and [ffun ⇒ e] that are
equivalent to finfun (fun i ⇒ e) and finfun (fun _ ⇒ e) respectively.
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3 Representing Mutable Arrays in Coq

The state monad [22] is useful to represent computations with states in purely
functional languages such as Haskell and Coq. Actions of the state monad have
types of the form S → S × A where S is a state type and A is a return type.
They take the initial state as its arguments, and returns the result of the type
A paired with the final state. To represent various computations with mutable
arrays, we need an array state monad that hold two conditions: (C1) it can
handle multi-dimensional and multiple mutable arrays, and (C2) it never needs
copy operations on arrays.

The former part of (C1)—handling multi-dimensional arrays—is achieved
naturally by representing arrays by finfuns, because the finfuns of type {ffun I1×
· · · × In → A} correspond to the multi-dimensional arrays of A indexed by
I1, . . . , In.

Monad transformers are well-known methods to compose monadic effects,
and the state monad transformer seem to be suitable for solving the latter part
of (C1)—handling multiple arrays. However, if we allow one to compose the array
state monad and other monads, the condition (C2) does not hold. For example,
the actions of the monad that is a composition of the state monad transformer
and the list monad have a type S → list(S×A), and it needs to copy the state on
each branch of computation. Therefore, the array state monad should be defined
in a more refined way.

We solve the above problem by defining the array state monad as an inductive
data type that has a restricted set of primitive operations shown below:
Definition Sign : Type := seq (finType * Type).

Implicit Types (I J K : finType) (sig : Sign).

Inductive AState : Sign → Type → Type :=
| astate_ret_ : ∀{sig} {A : Type}, A → AState sig A
| astate_bind_ :

∀{sig} {A B : Type}, AState sig A → (A → AState sig B) → AState sig B
| astate_lift_ :

∀{I} {T : Type} {sig} {A : Type}, AState sig A → AState ((I, T) :: sig) A
| astate_GET_ : ∀{I} {T : Type} {sig}, ’I_#|I| → AState ((I, T) :: sig) T
| astate_SET_ :

∀{I} {T : Type} {sig}, ’I_#|I| → T → AState ((I, T) :: sig) unit.

AState [:: (I1, T1); ...; (In, Tn)] A is a type of array state monad
actions with I1, ..., In indexed mutable arrays of T1, ..., Tn respectively
and the return type A. The first argument of AState is called a signature and
indicates types of mutable arrays. Let Σ be a metavariable of signatures, and
Σi means i-th element of the signature Σ. We refer to the array corresponds to
the Σi as the i-th array (of the signature Σ).

Each constructor of AState corresponds to return, bind, lift, get and set
operators. The lift operator can lift array state monad actions of a signature Σ
to that with a signature (I, T ) ::Σ, and lifted actions does not affect the first
array. Get and set operators can only access the first array. The lift operator
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is necessary to get and set element of an array after the second, and it is also
useful for modular programming.

We also define aliases for all constructors of AState to avoid the construction
and destruction costs of tuples in extracted OCaml programs1, e.g.:
Definition astate_ret {sig A} a := @astate_ret_ sig A a.

Primitive get and set operators take an index of type ’I_#|I|. Indices of
type I are also applicable by using the encoding function.
Notation astate_get i := (astate_GET (fin_encode i)).
Notation astate_set i x := (astate_SET (fin_encode i) x).

Programs represented by AState values cannot run directly. We give an inter-
pretation for the array state monad by a translation to the functions of type
S → S × A, where S is a type of mutable arrays defined as follows:
Fixpoint states_AState sig : Type :=
if sig is (Ix, T) :: sig’ then states_AState sig’ * {ffun Ix → T} else unit.

states_AState takes a signature [(I1, T1); . . . ; (In, Tn)], and returns a Carte-
sian product of all types of arrays in the signature: unit×{ffun In → Tn}×· · ·×
{ffun I1 → T1}. We choose this order of types to omit parenthesis, because the
× and (·, ·) operators have left associativity in Coq.

The translation is defined as follows:
Definition ffun_set

(I : finType) (T : Type) (i : I) (x : T) (f : {ffun I → T}) :=
[ffun j ⇒ if j == i then x else f j].

Definition runt_AState sig (A : Type) : Type :=
states_AState sig → states_AState sig * A.

Definition run_AState : ∀sig A, AState sig A → runt_AState sig A :=
@AState_rect (fun sig A _ ⇒ runt_AState sig A)
(* return *) (fun _ _ a s ⇒ (s, a))
(* bind *) (fun _ _ _ _ f _ g s ⇒ let (s’, a) := f s in g a s’)
(* lift *) (fun _ _ _ _ _ f ’(s, a) ⇒ let (s’, x) := f s in (s’, a, x))
(* get *) (fun _ _ _ i s ⇒ (s, s.2 (fin_decode i)))
(* set *) (fun _ _ _ i x ’(s, a) ⇒ (s, ffun_set (fin_decode i) x a, tt)).

ffun_set is a pure set function for finfuns. It takes an index i : T , a value
x : A and a finfun f : {ffun T → A}, and returns a new finfun f ′ which is equal
to f except that the i-th element is changed to x. run_AState is a interpretation
function for the array state monad which is inductively defined on AState values.

3.1 Program Extraction for the Array State Monad

This section provides a method to extract efficient stateful OCaml programs
from Coq proofs which use the array state monad. In another point of view, we

1 In OCaml programs, arguments of constructors are parenthesized and comma sepa-
rated. If a constructor is replaced with some function by the Extraction Inductive
command, arguments of the constructor are interpreted as tuples.
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give an another interpretation for array state monad by the OCaml program
extraction.

In stateful settings, state propagation can be achieved by in-place updates
instead of state monad style propagation, and moreover it is not needed to
return a new state in each action. We defined the array state monad as an
inductive data type only because to restrict primitive operations and its case
analysis is never used except for run_AState. Thus we interpret array state
monad actions as OCaml functions which take states and return its result by
the Extract Inductive command:
Definition runt_AState_ sig (A : Type) : Type := states_AState sig → A.

Extract Inductive AState ⇒ "runt_AState_"
[(* return *) " (fun a s -> a)"
(* bind *) " (fun (f, g) s -> let r = f s in g r s)"
(* lift *) " (fun f s -> let (ss, _) = Obj.magic s in f ss)"
(* get *) " (fun i s -> let (_, s1) = Obj.magic s in s1.(i))"
(* set *) " (fun (i, x) s -> let (_, s1) = Obj.magic s in s1.(i) <- x)"]
"(* It is not permitted to use AState_rect in extracted code. *)".

We also give same realizations of aliases for the constructors of AState:
Extract Inlined Constant astate_ret ⇒ "(fun a s -> a)".
Extract Inlined Constant astate_bind ⇒ "(fun f g s -> let r = f s in g r s)".
...

Finally, we provide an encapsulation function for the array state monad as a
realization of the run_AState function:
Extract Constant run_AState ⇒
"(fun sign f s ->
let rec copy sign s =
match sign with
| [] -> Obj.magic ()
| _ :: sign’ -> let (s’, a) = Obj.magic s in

Obj.magic (copy sign’ s’, Array.copy a) in
let s’ = copy sign s in
let r = Obj.magic f s’ in (s’, r))".

The encapsulation is achieved by duplicating all the input (initial) arrays by
Array.copy and using the copied arrays in the execution of effectful actions. As
a result, the range of in-place updates is limited to the copied arrays and it never
affects outside of the run_AState.

3.2 Small Example: Swap Two Elements

Let us show a small example — swap — of programming and verification with
the array state monad. The action swap(i, j) takes i-th and j-th values of the
first array by astate_get, and then set them reversely by astate_set.
Definition swap (I : finType) {A : Type} {sig : Sign} (i j : I) :
AState ((I, A) :: sig) unit :=
x ← astate_get i; y ← astate_get j; astate_set i y;; astate_set j x.

x ← t1; t2 and t1;; t2 are “do”-like notations which are equivalent to
astate_bind t1 (fun x ⇒ t2) and astate_bind t1 (fun _ ⇒ t2) respec-
tively. Correctness of the swap action is described by the following lemma.
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Lemma run_swap
(I : finType) (A : Type) (sig : Sign) (i j : I)
(f : {ffun I → A}) (fs : states_AState sig) :

run_AState (swap i j) (fs, f) = (fs, [ffun k ⇒ f (tperm i j k)], tt).

tperm i j : {perm I} is a permutation (bijection) on I which transposes i
and j. tperm i j k : I is j if k = i, i if k = i and otherwise k. This formula-
tion is useful for reasoning on a sequence of swap actions, e.g., sorting algorithms.

Operations of the array state monad can be erased from the goal by the
simplification tactic rewrite /=. More generally, the case analysis and the sim-
plification work as the erasure.
...
============================
(fs,
ffun_set (fin_decode (fin_encode j)) (f (fin_decode (fin_encode i)))
(ffun_set (fin_decode (fin_encode i)) (f (fin_decode (fin_encode j))) f),

tt) = (fs, [ffun k ⇒ f ((tperm i j) k)], tt)

The encoding/decoding functions can be erased by the fin_encodeK lemma.
Both sides of equation have the form of (fs, _, tt), thus we use the congruence
rule.
congr (_, _, _); rewrite !fin_encodeK.

...
============================
ffun_set j (f i) (ffun_set i (f j) f) = [ffun k ⇒ f ((tperm i j) k)]

To prove a equation of finfuns, we use the lemma of functional extensionality
ffunP. Applications of finfuns can be unfolded by the ffunE lemma.
apply/ffunP ⇒ k; rewrite !ffunE /=.

...
k : I
============================
(if k == j then f i else if k == i then f j else f k) = f ((tperm i j) k)

The remaining goal can be proved by case analysis on comparison and tperm.
case: tpermP; do!case: eqP; congruence. Qed.

The lift operator is also erased by similar method. Here is a correctness proof
of the lifted swap action.
Global Opaque swap.
Lemma run_lift_swap

(I I’ : finType) (A B : Type) (sig : Sign) (i j : I)
(f : {ffun I → A}) (g : {ffun I’ → B}) (fs : states_AState sig) :

run_AState (sig := [:: (I’, B), (I, A) & sig])
(astate_lift (swap i j)) (fs, f, g) =

(fs, [ffun k ⇒ f (tperm i j k)], g, tt).
Proof. by rewrite /= run_swap. Qed.
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4 Optimizations by an Improved Extraction Plugin

We provide two modifications for the extraction plugin to improve the efficiency
of extracted programs, particularly which use the array state monad. The Coq
program extraction translates Gallina2 programs to target languages (OCaml,
Haskell, Scheme, and JSON) and consists of three translations: 1. extraction
from Gallina to MiniML, an intermediate abstract language for program extrac-
tion, 2. simplification (optimization) of MiniML terms, and 3. translation from
MiniML to target languages.

The modifications are of the part 2 and 1 of the translation. The former
reduces the construction and destruction costs of (co)inductive objects by inlin-
ing. The latter reduces the function call costs by applying η-expansion to match
expressions and distributing the added arguments to each branch. Each opti-
mization is particularly effective for programs using the MathComp library and
monadic programs respectively.

4.1 Destructing Large Records

The MathComp library provides many mathematical structures [4] as canon-
ical structures, e.g., eqType, choiceType, countType, finType, etc. which are
represented as nested records in extracted programs. For example, the modi-
fied finType definition is translated to a nested record with 5 constructors and
11 fields by the program extraction. We implemented additional simplification
mechanisms for MiniML terms to prevent performance degradation caused by
handling such large records.

This section describes simplification rules for MiniML terms provided by
the original and improved extraction plugin. The rules act on type coercion
(Obj.magic in OCaml, and unsafeCoerce in Haskell) are omitted here because
of simplicity. The key simplification rule for unfolding pattern matchings pro-
vided by the original extraction plugin is generalized ι-reduction relation.

Definition 1 (Generalized ι-reduction). We inductively define an auxiliary
relation �cl

ι for a sequence of pattern-matching clauses cl = C1(x1) → u1 | · · · |
Cn(xn) → un by the following three rules:

Ci(t1, . . . , tm) �cl
ι

let xi,1 := t1 in . . .
let xi,m := tm in ui

(1)

t �cl
ι t′ ⇒ let x := u in t �cl

ι let x := u in t′ (2)

t1 �cl
ι t′1 ∧ · · · ∧ tm �cl

ι t′m ⇒
match t with
| D1(x1) → t1
| . . .
| Dm(xm) → tm

�cl
ι

match t with
| D1(x1) → t′1
| . . .
| Dm(xm) → t′m

(3)

The generalized ι-reduction relation �ι is defined as follows:

t �cl
ι t′ ⇒ (match t with cl) �ι t′ (4)

2 The specification language of Coq.
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The combination of the rules (1) and (4) provides simple ι-reduction. The
rules (2) and (3) allows to traverse nested match and let expressions in the head
of term t in the rule (4).

Other simplification rules are listed below.

(λx. t)u � let x := u in t (5)
let x := u in t � t[x := u] (t or u is atomic ,

or x occurs at most once)
(6)

(let x := t1 in t2) u1 . . . un � let x := t1 in t2 u1 . . . un (7)

(match t with
| C1(x1) → t1
| . . .
| Cn(xn) → tn

)u1 . . . um

�

match t with
| C1(x1) → t1 u1 . . . um

| . . .
| Cn(xn) → tn u1 . . . um

(8)

match t with
| C1(x1) → λy1 . . . ym. t1
| . . .
| Cn(xn) → λy1 . . . ym. tn

�
λy1 . . . ym. match t with

| C1(x1) → t1
| . . .
| Cn(xn) → tn

(9)

let x := (let y := t1 in t2) in t3 � let y := t1 in (let x := t2 in t3) (10)

let x := C(t1, . . . , tn) in u � let y1 := t1 in . . . let yn := tn in
let x := C(y1, . . . , yn) in u′ (11)

where u′ in the rule (11) is obtained by replacing all the subterms of the form
(match x with · · · | C(z1, . . . , zn) → t | . . . ) in the u with the term t[z1 :=
y1, . . . , zn := yn] which is a ι-reduced term of (match C(y1, . . . , yn) with · · · |
C(z1, . . . , zn) → t | . . . ).

All simplification rules are safe for purely functional programs, but not safe
for OCaml programs generally. The rules (6), (8) and (9) may change the exe-
cution order of code and skip executing some code, and other rules also help to
apply these rules. Therefore it is difficult to implement these rules as optimiza-
tions for OCaml programs, and it is appropriate to implement it as a MiniML
optimizer.

The generalized ι-reduction without the rule (2) and the rules (5) through (9)
are provided by the original extraction plugin. We additionally implemented the
rules (2), (10), and (11) to it. The rule (11) recursively destructs nested records,
and the rule (10) assist it in the case of a term of the form (let x := (let y :=
t in C(t1, . . . , tn)) in . . . ) occurred.

Let us exemplify a simplification process of the following definition3:
Definition example : nat → nat → nat → bool :=
let T := nat_eqType in fun x y z : T ⇒ (x == y) || (x == z) || (y == z).

3 nat_eqType is the canonical eqType instance of nat.
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The simplification process is as follows. Constants inlined by extraction are
underlined here. Identifiers nat_eqType, Equality.Pack, and Equality.Mixin
are abbreviated here as nateq, Packeq, and Mixineq.

let T := nateq in

λx y z. eq_op T x y ∨ eq_op T x z ∨ eq_op T y z

= let T := Packeq (Mixineq eqn . . . ) in λx y z.
(λT. match T with Packeq (Mixineq f _) → f) T x y

∨ (λT. match T with Packeq (Mixineq f _) → f) T x z
∨ (λT. match T with Packeq (Mixineq f _) → f) T y z

(unfold)

�∗ let T := Packeq (Mixineq eqn . . . ) in
λx y z. (match T with Packeq (Mixineq f _) → f) x y

∨ (match T with Packeq (Mixineq f _) → f) x z
∨ (match T with Packeq (Mixineq f _) → f) y z

(rules (5)
and (6))

� let a := Mixineq eqn . . . in let T := Packeq a in
λx y z. (match a with Mixineq f _ → f) x y

∨ (match a with Mixineq f _ → f) x z
∨ (match a with Mixineq f _ → f) y z

(rule (11))

� let c := eqn in let b := . . . in let a := Mixineq c b in
let T := Packeq a in λx y z. c x y ∨ c x z ∨ c y z

(rule (11))

�∗ λx y z. eqn x y ∨ eqn x z ∨ eqn y z (rule (6))

T can be unfolded by rules (6) and (4) if T has occurred only once. However,
we need the rule (11) to apply the ι-reduction over the let expressions which
cannot be simplified by the rule (6).

4.2 η-expansion on Case Analysis

Match expressions returning a function are commonly used in monadic program-
ming and dependently typed programming. However, they increase the number
of function calls and closure allocations and decrease the performance of pro-
grams. Let us consider the following monadic program that branches depending
on whether the integer state is even or odd:

get >>= λn : Z. if n mod 2 = 0 then f else g.

By unfolding the get and >>= in the above program, a match expression
returning a function4 can be found:

λn : Z. (if n mod 2 = 0 then f else g)n.

Another example from dependently typed programming is a map function
for size-fixed vectors:
4 if expressions are syntax sugar for match expressions in Coq.
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Fixpoint vec (n : nat) (A : Type) : Type :=
if n is S n’ then (A * vec n’ A) else unit.

Fixpoint vmap (A B : Type) (f : A → B) (n : nat) : vec n A → vec n B :=
if n is S n’ then fun ’(h, t) ⇒ (f h, vmap f t) else fun _ ⇒ tt.

The match expressions in the above examples can be optimized by the rules
(8) and (9) respectively, and those rules can be applied for many other cases.
However, these rules are not complete because of its syntactic restriction: match
expressions to which that rules are applied should have following arguments or
have λ-abstractions for each branch. Therefore, we apply the full η-expansion
on all match expressions in the process of extraction from Gallina to MiniML.5
The rule (8) can be applied for η-expanded match expressions.

We additionally provide new Vernacular command Extract Type Arity
to declare the arity of an inductive type which is realized by the
Extract Inductive command, because the Coq system cannot recognize that
the arity of AState is 1. Declared arities are used for full η-expansion described
above. This command can be used as follows: Extract Type Arity AState 1.

5 Case Studies

This section demonstrates our library and improved extraction plugin using two
applications: the union–find data structure and the quicksort algorithm. Here we
provide an overview of formalizations and the performance comparison between
the extracted code and other implementations for each application.

All the benchmark programs were compiled by OCaml 4.05.0+flambda
with optimization flags -O3 -remove-unused-arguments -unbox-closures
and performed on a Intel Core i5-7260U CPU @ 2.20GHz equipped with 32 GB
of RAM. Full major garbage collection and heap compaction are invoked before
each measurement. All benchmark results represent the median of 5 different
measurements with same parameters.

5.1 The Union–find Data Structure

We implemented and verified the union–find data structure with the path com-
pression and the weighted union rule [18,19]. The formalization takes 586 lines,
and most key properties and reasoning on the union–find can be easily written
out by using the path and fingraph library.

The benchmark results are shown in the Fig. 1. Here we compare the exe-
cution times of the OCaml code extracted from above formalization (optimized
and unoptimized6 version) and handwritten OCaml implementation of same
algorithm. The procedure to be measured here is the sequence of union n times

5 Implementing it as a part of the simplification of MiniML terms is difficult, because
MiniML is a type-free language.

6 It is extracted by disabling new optimization mechanisms described in Sect. 4, but
compiled with same OCaml compiler and optimization flags.
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Fig. 1. Benchmark results of the union–find data structure

and find n times on n vertices union–find data structure, where all parameters
of unions and finds are randomly selected. The time complexity of this proce-
dure is Θ(nα(n, n)) where α is a functional inverse of Ackermann’s function. The
results indicate that the OCaml implementation is about 1.1 times faster than
the optimized Coq implementation, the optimized Coq implementation is about
1.1 times faster than the unoptimized Coq implementation, and the execution
times of all implementations increase slightly more than linear.

5.2 The Quicksort Algorithm

We implemented and verified the quicksort algorithm by using the array state
monad. The formalization including partitioning and the upward/downward
search takes 365 lines, and the key properties are elegantly written out by using
the theory of permutations. Here we explain the formalization techniques used
for the quicksort algorithm by taking the partitioning function as an example.
The partitioning function for I indexed arrays of A and comparison function
cmp : A → A → bool7 has the following type:
partition : A → ∀i j : ’I_#|I|.+1, i ≤ j → AState [:: (I, A)] ’I_#|I|.+1

The partition takes a pivot of type and range of partition represented by
indices i j : ’I_#|I|.+1, reorders the elements of the arrays from index i to
j - 1 so that elements less than the pivot come before all the other elements,
and returns the partition position. We proved the correctness of partition as
the following lemma:

7 Here we assume that cmp is a total order and means “less than or equal to” in some
sense.
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CoInductive partition_spec
(pivot : A) (i j : ’I_#|I|.+1) (arr : {ffun I → A}) :

unit * {ffun I → A} * ’I_#|I|.+1 → Prop :=
PartitionSpec (p : {perm I}) (k : ’I_#|I|.+1) :
let arr’ := [ffun ix ⇒ arr (p ix)] in
(* 1 *) i ≤ k ≤ j →
(* 2 *) perm_on [set ix | i ≤ fin_encode ix < j] p →
(* 3 *) (∀ix : ’I_#|I|, i ≤ ix < k → ¬ cmp pivot (arr’ (fin_decode ix))) →
(* 4 *) (∀ix : ’I_#|I|, k ≤ ix < j → cmp pivot (arr’ (fin_decode ix))) →

partition_spec pivot i j arr (tt, arr’, k).

Lemma run_partition
(pivot : A) (i j : ’I_#|I|.+1) (Hij : i ≤ j) (arr : {ffun I → A}) :

partition_spec pivot i j arr (run_AState (partition pivot Hij) (tt, arr)).

The run_partition can be applied for goals including some executions
of partition without giving concrete parameters by using the simple idiom
case: run_partition, and it obtains the properties of partition described
below. It is achieved by a Ssreflect convention [11, Sect. 4.2.1], which means
separating the specification from the lemma as the coinductive type family
partition_spec.

In the specification partition_spec, the finfun arr, permutation p, and
index k indicates the initial state, permutation performed by the partition,
and partition position respectively, and the final state arr’ is represented by

Fig. 2. Benchmark results of the quicksort and mergesort
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[ffun ix ⇒ arr (p ix)] which means the finfun arr permuted by p. Prop-
erties of the partition are given as arguments of PartitionSpec and numbered
from 1 to 4 in above code. Each property has the following meaning:

1. the partition position k is between i and j,
2. the partition only replaces value in the range from i to j - 1,
3. values in the range from i to k - 1 are less than the pivot, and
4. values in the range from k to j - 1 are greater than or equal to the pivot.

Of particular interest is that the property 2 can be written in the form of
perm_on A p which means that the permutation p only displaces elements of A.
perm_on is used for constructing algebraic theory in the MathComp library, but
is also helpful for reasoning on sorting algorithms.

The benchmark results are shown in the Fig. 2. Here we compare the execution
times of following implementations of sorting algorithms for randomly generated
arrays or lists of integers: 1. Array.stable_sort and 2. Array.sort taken from
OCaml standard library, 3. handwritten OCaml implementation of the quicksort,
4. optimized and 5. unoptimized OCaml code extracted from above formalization,
and 6. OCaml code extracted from a Coq implementation of the bottom-up merge-
sort algorithm for lists. The results indicate that the implementation 5 (quicksort
in Coq, unoptimized) is slowest of those, the implementation 4 (quicksort in Coq,
optimized) is 1.7–1.8 times faster than implementations 5 and 6, and OCaml imple-
mentations 1, 2 and 3 are 1.07–1.8 times faster than the implementation 3.

6 Related Work

Ynot [13] is a representative Coq library for verification and extraction of
higher-order imperative programs. Ynot supports various kind of side-effects,
separation-logic-based reasoning method, and automation facility [3] for it, and
provides many example implementations of and formal proofs for data structures
and algorithms including the union–find data structure. The formal development
of the union–find provided by Ynot takes 1,067 lines of code, and our formal
development of it (see Sect. 5.1) takes 586 lines. Both implementations use almost
the same optimization strategies: the union by rank and the weighted union rule
respectively, and the path compression. This comparison indicates that Ynot is
good at its expressiveness, but our method has smaller proof burden.

7 Conclusion

We have established a novel, lightweight, and axiom-free method for verification
and extraction of efficient effectful programs using mutable arrays in Coq. This
method consists of the following two parts: a state monad specialized for mutable
array programming (the array state monad) and an improved extraction plugin
for Coq. The former enables a simple reasoning method for and safe extraction
of efficient effectful programs. The latter optimizes programs extracted from
formal developments using our library, and it is also effective for mathematical
structures provided by the MathComp library and monadic programs.
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We would like to improve this study with more expressive array state monad,
large and realistic examples, and correctness proof of our extraction method for
effectful programs.
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