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Abstract. Programming languages based on the actor model, such as
Erlang, avoid some concurrency bugs by design. However, other concur-
rency bugs, such as message order violations and livelocks, can still show
up in programs. These hard-to-find bugs can be more easily detected
by using causal-consistent reversible debugging, a debugging technique
that allows one to traverse a computation both forward and backward.
Most notably, causal consistency implies that, when going backward, an
action can only be undone provided that its consequences, if any, have
been undone beforehand. To the best of our knowledge, we present the
first causal-consistent reversible debugger for Erlang, which may help
programmers to detect and fix various kinds of bugs, including message
order violations and livelocks.

1 Introduction

Over the last years, concurrent programming has become a common practice.
However, it is also a difficult and error-prone activity, since concurrency enables
faulty behaviours, such as deadlocks and livelocks, which are hard to avoid, detect
and fix. One of the reasons for these difficulties is that these behaviours may show
up only in some extremely rare circumstances (e.g., for some unusual scheduling).

A recent analysis [16] reveals that most of the approaches to software vali-
dation and debugging in message-passing concurrent languages like Erlang are
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based on some form of static analysis (e.g., Dialyzer [15], McErlang [6], Soter [5])
or testing (e.g., QuickCheck [3], PropEr [18], Concuerror [10], CutEr [9]). How-
ever, these techniques are helpful only to find some specific categories of prob-
lems. On the other hand, traditional debuggers (like the one included in the
OTP Erlang distribution) are sometimes not particularly useful when an unusual
interleaving brings up an error, since recompiling the program for debugging may
give rise to a completely different execution behaviour. In this setting, causal-
consistent reversible debugging [7] may be useful to complement the previous
approaches. Here, one can run a program in the debugger in a controlled man-
ner. If something (potentially) incorrect shows up, the user can stop the forward
computation and go backwards—in a causal-consistent way—to look for the
origin of the problem. In this context, we say that a backward step is causal con-
sistent [4,12] if an action cannot be undone until all the actions that depend on
it have already been undone. Causal-consistent reversibility is particularly rele-
vant for debugging because it allows us to undo the actions of a given process in
a stepwise manner while ignoring the actions of the remaining processes, unless
they are causally related. In a traditional reversible debugger, one can only go
backwards in exactly the reverse order of the forward execution, which makes
focusing on undoing the actions of a given process much more difficult, since
they can be interleaved with completely unrelated actions from other processes.

The main contributions of this paper are the following. We have designed
and implemented CauDEr, a publicly available software tool for causal-consistent
reversible debugging of (a subset of) Erlang programs. The tool builds upon
some recent developments on the causal-consistent reversible semantics of
Erlang [13,17], though we also introduce (in Sect. 3) a new rollback semantics
which is especially tailored for reversible debugging. In this semantics, one can
for instance run a program backwards up to the sending of a particular mes-
sage, the creation of a given process, or the introduction of a binding for some
variable. We present our tool and illustrate its use for finding bugs that would
be difficult to deal with using the previously available tools (Sect. 4). We use
a concurrent implementation of the dining philosophers problem as a running
example. CauDEr is publicly available from https://github.com/mistupv/cauder.

2 The Language

Erlang is a message passing concurrent and distributed functional programming
language. We define our technique for (a subset of) Core Erlang [2], which is used
as an intermediate representation during the compilation of Erlang programs. In
this section, we describe the syntax and semantics of the subset of Core Erlang
we are interested in.

The syntax of the language can be found in Fig. 1. A module is a sequence
of function definitions, where each function name f/n (atom/arity) has an asso-
ciated definition of the form fun (X1, . . . , Xn) → e. We consider that a program
consists of a single module for simplicity. The body of a function is an expression,
which can include variables, literals, function names, lists, tuples, calls to built-in

https://github.com/mistupv/cauder
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module ::= module Atom = fun1, . . . , funn

fun ::= fname = fun (X1, . . . , Xn) → expr
fname ::= Atom/Integer

lit ::= Atom | Integer | Float | [ ]
expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}

| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2
pat ::= Var lit [pat1 pat2] pat1, . . . , patn

Fig. 1. Language syntax rules

functions—mainly arithmetic and relational operators—, function applications,
case expressions, let bindings, and receive expressions; furthermore, we also con-
sider the functions spawn, “!” (for sending a message), and self() that are usually
considered built-ins in the Erlang language. As is common practice, we assume
that X is a fresh variable in a let binding of the form let X = expr1 in expr2.

In this language, we distinguish expressions, patterns, and values. In con-
trast to expressions, patterns are built from variables, literals, lists, and tuples.
Finally, values are built from literals, lists, and tuples, i.e., they are ground (with-
out variables) patterns. Expressions are denoted by e, e′, e1, e2, . . ., patterns by
pat, pat′, pat1, pat2, . . . and values by v, v′, v1, v2, . . . Atoms are written in roman
letters, while variables start with an uppercase letter. A substitution θ is a map-
ping from variables to expressions, and Dom(θ) = {X ∈ Var | X �= θ(X)}
is its domain. Substitutions are usually denoted by sets of bindings like, e.g.,
{X1 �→ v1, . . . , Xn �→ vn}. Substitutions are extended to morphisms from expres-
sions to expressions in the natural way. The identity substitution is denoted by
id. Composition of substitutions is denoted by juxtaposition, i.e., θθ′ denotes a
substitution θ′′ such that θ′′(X) = θ′(θ(X)) for all X ∈ Var .

In a case expression “case e of pat1 when e1 → e′
1; . . . ; patn when en →

e′
n end”, we first evaluate e to a value, say v; then, we find (if it exists) the first

clause pati when ei → e′
i such that v matches pati (i.e., there exists a substitution

σ for the variables of pati such that v = patiσ) and eiσ—the guard—reduces to
true; then, the case expression reduces to e′

iσ. Note that guards can only contain
calls to built-in functions (typically, arithmetic and relational operators).

Concurrent Features. In this work, we consider that a system is a pool of pro-
cesses that can only interact through message sending and receiving (i.e., there
is no shared memory). Each process has an associated pid (process identifier),
which is unique in a system. Here, pids are ordinary values. Formally, a process
is denoted by a tuple 〈p, (θ, e), q〉 where p is the pid of the process, (θ, e) is the
control—which consists of an environment (a substitution) and an expression to
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be evaluated—and q is the process’ mailbox, a FIFO queue with the sequence
of messages that have been sent to the process.

A running system, which we denote by Γ ;Π, is composed by Γ , the global
mailbox, which is a multiset of pairs of the form (target process pid,message),
and Π, which is a pool of processes. Π is denoted by an expression of the form

〈p1, (θ1, e1), q1〉 | · · · | 〈pn, (θn, en), qn〉

Here, “ |” denotes an associative and commutative operator. We typically denote
a system by an expression of the form Γ ; 〈p, (θ, e), q〉 | Π to point out that
〈p, (θ, e), q〉 is an arbitrary process of the pool. Intuitively, Γ stores messages
after they are sent, and before they are inserted in the target mailbox. Here, Γ
(which is similar to the “ether” in [21]) is an artificial device used in our seman-
tics to guarantee that all admissible message interleavings can be modelled.

In the following, we denote by on a sequence of syntactic objects o1, . . . , on

for some n.
The functions with side effects are self(), “!”, spawn, and receive. The expres-

sion self() returns the pid of a process, while p!v sends a message v to the process
with pid p. New processes are spawned with a call of the form spawn(a/n, [vn]),
so that the new process begins with the evaluation of apply a/n (vn). Finally,
an expression “receive patn when en → e′

n end” traverses the messages in the
process’ queue until one of them matches a branch in the receive statement;
i.e., it should find the first message v in the process’ queue (if any) such that
case v of pat1 when e1 → e′

1; . . . ; patn when en → e′
n end can be reduced; then,

the receive expression evaluates to the same expression to which the above case
expression would be evaluated, with the additional side effect of deleting the mes-
sage v from the process’ queue. If there is no matching message in the queue,
the process suspends its execution until a matching message arrives.

Figure 2 shows an Erlang program implementing a simple client-server scheme
with one server and two clients (a), as well as its translation into Core Erlang (b),
where C, X and Y are anonymous variables introduced during the translation
process to represent sequences of actions using let expressions. The execution
starts with a call to function main/0. It first spawns two processes that execute
functions server/0 and client/1, respectively, and then calls to function client/1
too. Client requests have the form {P, req}, where P is the pid of the client.
The server receives the message, returns a message ack to the client, and calls
to function server/0 again in an endless loop. After processing the two requests,
the server will suspend waiting for another request.

Following [13], the semantics of the language is defined in a modular way,
so that the labelled transition relation �−→ models the evaluation of expressions
and ↪→ models the reduction of systems. Relation �−→ follows a typical call-by-
value semantics for side-effect free expressions;1 in this case, reduction steps
are labelled with τ . For the remaining functions, the expression rules cannot

1 Because of lack of space, we are not presenting the rules of
�−→ here, but refer the

interested reader to [13].
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main() ->

S = spawn(server/0, []),

spawn(client/1, [S]),

client(S).

server() ->

receive

{P, req} ->

P ! ack,

server()

end.

client(S) ->

S ! {self(), req},

receive

ack -> ok

end.

main/0 = fun () → let S = spawn(server/0, [ ])
in let C = spawn(client/0, [S])
in apply client/0 (S)

server/0 = fun () → receive
{P, req} →
let X = P ! ack
in apply server/0 ()

end

client/1 = fun (S) → let Y = S ! {self(), req}
in receive

ack → ok
end

(a) Erlang (b) Core Erlang

Fig. 2. A simple client server

complete the reduction of an expression since some information is not locally
available. In these cases, the steps are labelled with the information needed to
complete the reduction within the system rules of Fig. 3. For sending a message,
an expression p′′ !v is reduced to v with the side-effect of (eventually) storing the
message v in the mailbox of process p′′. The associated label is thus send(p′′, v)
so that rule Send can complete the step by adding the pair (p′′, v) to the global
mailbox Γ .

The remaining functions, receive, spawn and self, are reduced to a fresh distin-
guished symbol κ (a sort of future) in the expression rules, since the value cannot
be determined locally. Therefore, in these cases, the labels also include κ. Then,
the system rules of Fig. 3 will bind κ to its correct value: the selected expression
in rule Receive and a pid in rules Spawn and Self .

To be more precise, for a receive statement, the label has the form rec(κ, cln)
where cln are the clauses of the receive statement. In rule Receive, the auxiliary
function matchrec is used to find the first message in the queue that matches a
clause, then returning a triple with the matching substitution θi, the selected
branch ei and the selected message v. Here, q\\v denotes a new queue that results
from q by removing the oldest occurrence of message v.

For a spawn, the label has the form spawn(κ, a/n, [vn]), where a/n and [vn]
are the arguments of spawn. Rule Spawn then adds a new process with a fresh
pid p′ initialised with the application apply a/n (v1, . . . , vn) and an empty queue.

For a self, only κ is needed in the label. Rule Self then proceeds in the obvious
way by binding κ to the pid of the process.

The rules presented so far allow one to store messages in the global mailbox,
but not to deliver them. This is the task of the scheduler, which is modelled
by rule Sched . This rule nondeterministically chooses a pair (p, v) in the global
mailbox Γ and delivers the message v to the target process p. Note also that Γ
is a multiset, so we use “∪” as multiset union.
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(Seq)
θ, e

τ−→ θ′, e′

Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ; 〈p, (θ′, e′), q〉 | Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′

Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ∪ (p′′, v); 〈p, (θ′, e′), q〉 | Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(cln, q) = (θi, ei, v)
Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ; 〈p, (θ′θi, e′{κ �→ ei}), q\\v〉 | Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ; 〈p, (θ′, e′{κ �→ p′}), q〉 | 〈p′, (id, apply a/n (vn)), [ ]〉 | Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ; 〈p, (θ′, e′{κ �→ p}), q〉 | Π

(Sched)
Γ (p, v) ; p, (θ, e), q Π ↪ Γ ; p, (θ, e), v :q Π

Fig. 3. Standard semantics: system rules

3 Causal-Consistent Reversible Debugging

In this section, we present a causal-consistent reversible semantics for the con-
sidered language. The semantics is based on the reversible semantics for Erlang
introduced in [13,17]. In particular, [13] presents an uncontrolled reversible
semantics, which is highly non-deterministic, and a controlled semantics that
performs a backward computation up to a given checkpoint in a mostly deter-
ministic way. Here, we build on the uncontrolled semantics, and define a new
controlled semantics which is more appropriate as a basis for a causal-consistent
reversible debugger than the one in [13].

First, following [13], we introduce an instrumented version of the standard
semantics. For this purpose, we exploit a typical Landauer’s embedding [11]
and include a “history” h in the states. In contrast to the standard semantics,
messages now include a unique identifier (i.e., a timestamp λ). These identifiers
are required to avoid mixing different messages with the same value (and possibly
also with the same sender and/or receiver). More details can be found in [13].

The transition rules of the forward reversible semantics can be found in Fig. 4.
They are an easy—and conservative—extension of the semantics in Fig. 3 by
adding histories to processes. In the histories, we use terms headed by construc-
tors τ , check, send, rec, spawn, and self to record the steps performed by the
forward semantics. Note that the auxiliary function matchrec now deals with
messages of the form {v, λ}, trivially extending the original function in the stan-
dard semantics by ignoring λ when computing the first matching message.

Rollback Debugging Semantics. Now, we introduce a novel rollback seman-
tics to undo the actions of a given process. Here, processes in “rollback” mode are
annotated using 	 
Ψ , where Ψ is a set with the requested rollbacks. In particular,
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(Seq)
θ, e

τ−→ θ′, e′

Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ; 〈p, τ(θ, e) :h, (θ′, e′), q〉 | Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′ λ is a fresh identifier
Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ∪ (p′′, {v, λ}); 〈p, send(θ, e, p′′, {v, λ}) :h, (θ′, e′), q〉 | Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(cln, q) = (θi, ei, {v, λ})
Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ; 〈p, rec(θ, e, {v, λ}, q) :h, (θ′θi, e′{κ �→ ei}), q\\{v, λ}〉 | Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ; 〈p, spawn(θ, e, p′) :h, (θ′, e′{κ �→ p′}), q〉

| 〈p′, [ ], (id, apply a/n (vn)), [ ]〉 | Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ; 〈p, self(θ, e) :h, (θ′, e′{κ �→ p}), q〉 | Π

(Sched)
Γ (p, v, λ ) ; p, h, (θ, e), q Π ⇀ Γ ; p, h, (θ, e), v, λ :q Π

Fig. 4. Forward reversible semantics

we consider the following rollbacks to undo the actions of a given process in a
causal-consistent way:

– s: one backward step;
– λ⇑: a backward derivation up to the sending of a message labelled with λ;
– λ⇓: a backward derivation up to the delivery of a message labelled with λ;
– λrec: a backward derivation up to the receive of a message labelled with λ;
– spp: a backward derivation up to the spawning of the process with pid p;
– sp: a backward derivation up to the creation of the annotated process;
– X: a backward derivation up to the introduction of variable X.

In the following, in order to simplify the reduction rules, we consider that our
semantics satisfies the following structural equivalence:

(SC1 ) Γ ; 	〈p, h, (θ, e), q〉
∅ | Π ≡ Γ ; 〈p, h, (θ, e), q〉 | Π
(SC2 ) Γ ; 	〈p, [ ], (θ, e), [ ]〉
Ψ | Π ≡ Γ ; 〈p, [ ], (θ, e), [ ]〉 | Π

Therefore, when the set of rollbacks is empty or the process is back to its initial
state, we consider that the required rollback has been completed.

Our rollback debugging semantics is modelled with the reduction relation
↽, defined by the rules in Fig. 5. Here, we assume that Ψ �= ∅ (but Ψ ′ might be
empty). Let us briefly explain the rules of the rollback semantics:

– Some actions can be directly undone. This is the case dealt with by rules
Seq , Send1 , Receive, Spawn1 , Self , and Sched . In every rule, we remove the
corresponding rollback request from Ψ . In particular, all of them remove s
(since a causal-consistent step has been performed). Rule Seq additionally
removes the variables whose bindings were introduced in the last step; rule
Send1 removes λ⇑ (representing the sending of the message with identifier λ);
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(Seq)
Γ ; �〈p, τ(θ, e) :h, (θ′, e′), q〉�Ψ | Π ↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\({s}∪V) | Π

where V = Dom(θ′)\Dom(θ)

(Send1 )
Γ ∪ {(p′, {v, λ})}; �〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉�Ψ | Π

↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\{s,λ⇑} | Π

(Send2 )
Γ ; �〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉�Ψ | �〈p′, h ′, (θ′′, e′′), q′〉�Ψ ′ | Π
↽ Γ ; �〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉�Ψ | �〈p′, h ′, (θ′′, e′′), q′〉�Ψ ′∪{λ⇓} | Π

if (p′, {v, λ}) does not occur in Γ and λ⇓ 	∈ Ψ ′

(Receive)
Γ ; �〈p, rec(θ, e, {v, λ}, q) :h, (θ′, e′), q\\{v, λ}〉�Ψ | Π

↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\{s,λrec} | Π

(Spawn1 )
Γ ; �〈p, spawn(θ, e, p′′) :h, (θ′, e′), q〉�Ψ | �〈p′′, [ ], (θ′′, e′′), [ ]〉�Ψ ′ | Π

↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\{s,spp′′ } | Π

(Spawn2 )
Γ ; �〈p, spawn(θ, e, p′′) :h, (θ, e), q〉�Ψ | �〈p′′, h ′′, (θ′′, e′′), q′′〉�Ψ ′ | Π
↽ Γ ; �〈p, spawn(θ, e, p′′) :h, (θ, e), q〉�Ψ | �〈p′′, h ′′, (θ′′, e′′), q′′〉�Ψ ′∪{sp} | Π

if h ′′ 	= [ ] ∨ q′′ 	= [ ] and sp 	∈ Ψ ′

(Self ) Γ ; �〈p, self(θ, e) :h, (θ′, e′), q〉�Ψ | Π ↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\{s} | Π

(Sched)
Γ ; �〈p, h, (θ, e), {v, λ} :q〉�Ψ | Π ↽ Γ ∪ (p, {v, λ}); �〈p, h, (θ, e), q〉�Ψ\{s,λ⇓} | Π

if the topmost rec(. . .) item in h (if any) has the
form rec(θ′, e′, v′, λ′ , q′) with q′ v′, λ′ = v, λ :q

Fig. 5. Rollback debugging semantics

rule Receive removes λrec (representing the receiving of the message with
identifier λ); rule Spawn1 removes spp′′ (representing the spawning of the
process with pid p′′); and rule Sched removes λ⇓ (representing the delivery
of the message with identifier λ). Note also that rule Sched requires a side
condition to avoid the (incorrect) commutation of rules Receive and Sched
(see [13] for more details on this issue).

– Other actions require some dependencies to be undone first. This is the case
of rules Send2 and Spawn2 . In the first case, rule Send2 applies in order to
“propagate” the rollback mode to the receiver of the message, so that rules
Sched and Send1 can be eventually applied. In the second case, rule Spawn2
applies to propagate the rollback mode to process p′′ so that, eventually, rule
Spawn1 can be applied. Observe that the rollback sp introduced by the rule
Spawn2 does not need to be removed from Ψ since the complete process is
deleted from Π in rule Spawn1 .

The correctness of the new rollback semantics can be shown following a simi-
lar scheme as in [13] for proving the correctness of the rollback semantics for
checkpoints.

We now introduce an operator that performs a causal-consistent backward
derivation and is parameterised by a system, a pid and a set of rollback requests:

rb(Γ ; 〈p, h, (θ, e), q〉 | Π, p, Ψ) = Γ ′;Π ′ if Γ ; 	〈p, h, (θ, e), q〉
Ψ | Π ↽∗ Γ ′;Π ′ �↽
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The operator adds a set of rollback requests to a given process2 and then per-
forms as many steps as possible using the rollback debugging semantics.

By using the above parametric operator, we can easily define several rollback
operators that are useful for debugging. Our first operator, rollback(Γ ;Π, p), just
performs a causal-consistent backward step for process p:

rollback(Γ ;Π, p) = rb(Γ ;Π, p, {s})

Notice that this may trigger the execution of any number of backward steps in
other processes in order to first undo the consequences, if any, of the step in p.

This operator can easily be extended to an arbitrary number of steps:

rollback(Γ ;Π, p, n) =

⎧
⎨

⎩

Γ ;Π if n = 0
rollback(Γ ′;Π ′, p, n − 1) if n > 0 and

rollback(Γ ;Π, p) = Γ ′;Π ′

Also, we might be interested in going backward until a relevant action is undone.
For instance, we introduce below operators that go backward up to, respectively,
the sending of a message with a particular identifier λ, the receiving of a message
with a particular identifier λ, and the spawning of a process with pid p′:

rollback(Γ ;Π, p, λ⇑) = rb(Γ ;Π, p, {λ⇑})
rollback(Γ ;Π, p, λrec) = rb(Γ ;Π, p, {λrec})
rollback(Γ ;Π, p, spp′) = rb(Γ ;Π, p, {spp′})

Note that p is a parameter of the three operators, but it could also be auto-
matically computed (from λ in the first two rules, from p′ in the last one) by
inspecting the histories of the processes in Π. This is actually what CauDEr does.

Finally, we consider an operator that performs backward steps up to the
introduction of a binding for a given variable:

rollback(Γ ;Π, p,X) = rb(Γ ;Π, p, {X})

Here, p cannot be computed automatically from X, since variables are local and,
hence, variable X may occur in several processes; thus, p is needed to uniquely
identify the process of interest.3

4 CauDEr: A Causal-Consistent Reversible Debugger

The CauDEr implementation is conveniently bundled together with a graphical
user interface to facilitate the interaction of users with the reversible debugger.

CauDEr works as follows: when it is started, the first step is to select an Erlang
source file. The selected source file is then translated into Core Erlang, and the
2 Actually, in this work, we only consider a single rollback request at a time, so Ψ
is always a singleton. Nevertheless, our formalisation considers that Ψ is a set for
notational convenience and, also, in order to accept multiple rollbacks in the future.

3 Actually, in CauDEr, uniqueness of variable names is enforced via renaming.



256 I. Lanese et al.

Fig. 6. CauDEr screenshot

resulting code is shown in the Code tab. Then, the user can choose any of the
functions from the module and write the arguments that she wants to evaluate
the function with. An initial system state, with an empty global mailbox and a
single process performing the specified function application, appears in the State
tab when the user presses the START button. Now, the user can explore possi-
ble program executions both forward and backward, according to three different
modes, corresponding to the three tabs on the top right of the window in Fig. 6.
In the Manual mode, the user selects a process or message identifier, and but-
tons corresponding to forward and backward enabled reductions for the chosen
process/message are available. Note that a backward reduction is enabled only if
the action has no causal dependencies that need to be undone (single backward
reductions correspond to applications of rules Seq , Send1 , Receive, Spawn1 ,
Self , and Sched in Fig. 5, see the uncontrolled reversible semantics in [13] for
more details). In the Automatic mode one can decide the direction (forward or
backward) and the number of steps to be performed. Actual steps are selected
by a suitable scheduler. Currently, two (random) schedulers are available, one
of which gives priority to processes w.r.t. the scheduling of messages (as in the
“normalisation” strategy described in [13]), while the other has a uniform distri-
bution. None of these schedulers mimics the Erlang/OTP scheduler. Indeed, it
would be very hard to replicate this behaviour, as it depends on many parameters
(threads, workload, etc.). However, this is not necessary, since we are only inter-
ested in reproducing the errors that occur in actual executions, and we discuss in
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future work how to obtain this without the need of mimicking the Erlang/OTP
scheduler. The Automatic tab also includes a Normalize button, that executes all
enabled actions but message schedulings. The last tab, Rollback, implements the
rollback operators described in Sect. 3.

While exploring the execution, two tabs are updated to provide information
on the system and its execution. The State tab describes the current system,
including the global mailbox GM, and, for each process, the following compo-
nents: the local mailbox LM, the history H, the environment ENV, and the expres-
sion under evaluation EXP. Identifiers of messages are highlighted in colour. This
tab can be configured to hide any component of the process representation. Also,
we consider two levels of abstraction for both histories and environments: for his-
tories, we can either show all the actions or just the concurrent actions (send,
receive and spawn); for environments, we can either show all variable bindings
(called the full environment) or only the bindings for those variables occurring
in the current expression (called the relevant environment).

The Trace tab gives a linearised description of the concurrent actions per-
formed in the system, namely sends and receives of messages, and spawns of
processes. This is aimed at giving a global picture of the system evolution, to
highlight anomalies that might be caused by bugs.

A further tab is available, Roll Log, which is updated in case of rollbacks. It
shows which actions have been actually undone upon a rollback request. This
tab allows one to understand the causal dependencies of the target process of
the rollback request, frequently highlighting undesired or missing dependencies
directly caused by bugs.

The release version (v1.0) of CauDEr is fully written in Erlang, and it is pub-
licly available from https://github.com/mistupv/cauder under the MIT license.
The only requirement to build the application is to have Erlang/OTP installed
and built with wxWidgets. The repository also includes some documentation
and a few examples to easily test the application.

4.1 The CauDEr Workflow

A typical debugging session with CauDEr proceeds as follows. First, the user
may run the program some steps forward using the Automatic mode in order
to exercise the code. After each sequence of forward steps, she looks at the
program output (which is not on the CauDEr window, but in the console where
CauDEr has been launched) and possibly at the State and Trace tabs to check for
abnormal behaviours. The State tab helps to identify these behaviours within a
single process, while the Trace tab highlights anomalies in the global behaviour.

If the user identifies an unexpected action, she can undo it by using any (or
a combination) of the available rollback commands. The Roll Log tab provides
information on the causal-consistent rollbacks performed (in some cases, this log
is enough to highlight the bug). From there, the user typically switches to the
Manual mode in order to precisely control the doing or undoing of actions in
a specific state. This may involve performing other rollbacks to reach previous

https://github.com/mistupv/cauder
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states. Our experience says that inspecting the full environment during the Man-
ual exploration is quite helpful to locate bugs caused by sequential code.

4.2 Finding Concurrency Bugs with CauDEr

We use as a running example to illustrate the use of our debugger the well-known
problem of dining philosophers. Here, we have a process for each philosopher
and for each fork. We avoid implementations that are known to deadlock by
using an arbitrator process, the waiter, that acts as an intermediary between
philosophers and forks. In particular, if a philosopher wants to eat, he asks the
waiter to get the forks. The waiter checks whether both forks are free or not.
In the first case, he asks the forks to become used, and sends a message eat to
the philosopher. Otherwise he sends a message think to the philosopher. When a
philosopher is done eating, he sends a message eaten to the waiter, who in turn
will release (i.e., set to free) the corresponding forks. The full Erlang code of the
(correct) example, dining.erl, is available from https://github.com/mistupv/
dining-philos.

Message Order Violation Scenario. Here, we consider the buggy version
of the program that can be found in file dining simple bug.erl of the above
repository. In this example, running the program forward using the Automatic
mode for about 600 steps is enough to discern something wrong. In particular,
the user notices in the output that some philosophers are told to think when
they should be told to eat, even at the beginning of the execution. Since the bug
appears so early, it is probably a local bug, hence the user first focuses on the
State tab. When the user considers the waiter process, she sees in the history
an unexpected sequence of concurrent events of the following form (shown in
reverse chronological order):

. . . ,send(’think’,10),rec(’free’,9),send({’get state’,2},8),
rec({’hungry’,12},6),send({’get state’,2},7),rec({’hungry’,9},2), . . .

Here, the waiter has requested the state of a fork with send({’get state’,2},7),
where 2 is the process id of the waiter itself and 7 the message id. Unexpectedly,
the waiter has received a message hungry as a reply, instead of a message free
or used. To get more insight on this, the user decides to rollback the receive of
{’hungry’,12}, which has 6 as message id. As a result, the rollback gets the system
back to a state where send({’get state’,2},7) is the last concurrent event for the
waiter process. Finally, the user switches to the Manual mode and notices that the
next available action for the waiter process is to receive the message {’hungry’,12}
in the receive construct from the ask state function. Function ask state is called
by the waiter process when it receives a hungry request from a philosopher (to
get the state of the two forks). Obviously, a further message hungry should not
be received here. The user easily realises then that the pattern in the receive is
too general (in fact, it acts as a catch-all clause) and, as a result, the receive
is matching also messages from other forks and even philosophers. Indeed, after

https://github.com/mistupv/dining-philos
https://github.com/mistupv/dining-philos
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sending the message get state to a fork, the programmer assumed that the next
incoming message will be the state of the fork. However, the function is being
evaluated in the context of the waiter process, where many other messages could
arrive, e.g., messages hungry or eaten from philosophers.

It would not be easy to find the same bug using a standard debugger. Indeed,
one would need to find where the wrong message hungry is sent, and put there
a breakpoint. However, in many cases, no scheduling error will occur, hence
many attempts would be needed. With a standard reversible debugger (like
Actoverse [19]) one could look for the point where the wrong message is received,
but it would be difficult to stop the execution at the exact message. Watch points
do not help much, since all such messages are equal, but only some of them are
received in the wrong receive operation. Indeed, in this example, the CauDEr
facility of rollbacking a specific message receiving, coupled with the addition of
unique identifiers to messages, is a key in ensuring the success of the debugging
session.

Livelock Scenario. Now, we consider the buggy version of the dining philoso-
phers that can be found in file dining bug.erl of our repository. In this case,
the output of the program shows that, after executing some 2000 steps with the
Automatic mode, some philosophers are always told to think, while others are
always told to eat. In contrast to the previous example, this bug becomes visible
only late in the execution, possibly only after some particular pattern of message
exchanges has taken place (this is why it is harder to debug). In order to analyse
the message exchanges the user should focus on the Trace tab first. By carefully
examining it, the user realises that, in some cases, after receiving a message
eaten from a philosopher, the waiter sends the two messages {’set state’,’free’,2}
to release the forks to the same fork:

Proc. 2 receives {’eaten’,10} (28)
Proc. 2 sends {’set state’,’free’,2} to Proc. 5 (57)
Proc. 5 receives {’set state’,’free’,2} (57)
Proc. 5 sends {’been set’,5} to Proc. 2 (58)
Proc. 2 receives {’been set’,5} (58)
Proc. 2 sends {’set state’,’free’,2} to Proc. 5 (59)
Proc. 5 receives {’set state’,’free’,2} (59)
Proc. 5 sends {’been set’,5} to Proc. 2 (60)
Proc. 2 receives {’been set’,5} (60)

Then, the user rollbacks the sending of the last message from the waiter process
(the one with message id 59) and chooses to show the full environment (a clever
decision). Surprisingly, the computed values for LeftForkId and RightForkId are
equal. She decides to rollback also the sending of message with id 57, but she
cannot see anything wrong there, so the computed value for RightForkId must
be wrong. Now the user focuses on the corresponding line on the code, and she
notices that the operands of the modulo operator have been swapped, which is
the source of the erroneous behaviour.
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This kind of livelocks are typically hard to find with other debugging tools.
For instance, Concuerror [10] requires a finite computation, which is not the case
in this scenario where the involved processes keep doing actions all the time but
no global progress is achieved (i.e., some philosophers never eat).

5 Related Work

Causal-consistent debugging has been introduced by CaReDeb [7], in the context
of language μOz. The present paper improves on CaReDeb in many directions.
First, μOz is only a toy language where no realistic programs can be written (e.g.,
it supports only integers and a few arithmetic operations). Second, μOz is not
distributed, since messages are atomically moved from the sender to a message
queue, and from the queue to the target process. This makes its causality model,
hence the definition of a causal-consistent reversible semantics, much simpler.
Third, in [7] the precise semantics of debugging operators is not fully specified.
Finally, the implementation described in [7] is just a proof-of-concept.

More in general, our work is in the research thread of causal-consistent
reversibility (see [12] for a survey), first introduced in [4] in the context of process
calculus CCS. Most of the works in this area are indeed on process calculi, but
for the work on μOz already discussed (the theory was introduced in [14]) and a
line of work on the coordination language μklaim [8]. However, μklaim is a toy
language too. Hence, we are the first ones to consider a mainstream program-
ming language. A first approach to the definition of a causal-consistent semantics
of Erlang was presented in [17], and extended in [13]. While we based CauDEr
on the uncontrolled semantics therein (and on its proof-of-concept implementa-
tion), we provided in the present paper an updated controlled semantics more
suitable for debugging, and a mature implementation with a complete interface
and many facilities for debugging. Moreover, our tool is able to deal with a larger
subset of the language, mainly in terms of built-in functions and data structures.

While CaReDeb is the only other causal-consistent debugger we are aware
of, two other reversible debuggers for actor systems exist. Actoverse [19] deals
with Akka-based applications. It provides many relevant features which are com-
plementary to ours. These include a partial-order graphical representation of
message exchanges that would nicely match our causal-consistent approach,
message-oriented breakpoints that allow one to force specific interleavings in
message schedulings, and facilities for session replay to ensure bugs reappear
when executing forward again. In contrast, Actoverse provides less facilities for
state inspection and management than us (e.g., it has nothing similar to our
Roll var command). Also, the paper does not include any theoretical framework
defining the behaviour of the debugger. EDD is a declarative debugger for Erlang
(see [1] for a version dealing with sequential Erlang). EDD tracks the concurrent
actions of an execution and allows the user to select any of them to start the
questions. Declarative debugging is essentially orthogonal to our approach.

Causeway [20] is not a full-fledged debugger but a post-mortem trace anal-
yser, i.e., it performs no execution, but just explores a trace of a run. It con-
centrates on message passing aspects, e.g., it does not allow one to explore the
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state of single processes (states are not in the logs analysed by Causeway). On
the contrary it provides nice mechanisms to abstract and filter different kinds of
communications, allowing the user to decide at each stage of the debugging pro-
cess which messages are of interest. These mechanisms would be an interesting
addition for CauDEr.

6 Discussion

In this work, we have presented the design of CauDEr, a causal-consistent
reversible debugger for Erlang. It is based on the reversible semantics introduced
in [13,17], though we have introduced in this paper a new rollback semantics
which is especially appropriate for debugging Erlang programs. We have shown
in the paper that some bugs can be more easily located using our new tool, thus
filling a gap in the collection of debugging tools for Erlang.

Currently, our debugger may run a program either forward or backward (in
the latter case, in a causal-consistent way). After a backward computation that
undoes some steps, we can resume the forward computation, though there are no
guarantees that we will reproduce the previous forward steps. Some debuggers
(so-called omniscient or back-in-time debuggers) allow us to move both forward
and backward along a particular execution. As a future work, we plan to define
a similar approach but ensuring that once we resume a forward computation, we
can follow the same previous forward steps or some other causal-consistent steps.
Such an approach might be useful, e.g., to determine which processes depend on
a particular computation step and, thus, ease the location of a bug.

Another interesting line of future work involves the possibility of captur-
ing a faulty behaviour during execution in the standard environment, and then
replaying it in the debugger. For instance, we could instrument source programs
so that their execution in a standard environment writes a log in a file. Then,
when the program ends up with an error, we could use this log as an input to
the debugger in order to explore this particular faulty behaviour (as postmortem
debuggers do). This approach can be applied even if the standard environment
is distributed and there is no common notion of time, since causal-consistent
reversibility relies only on a notion of causality.

For the same reason we could also develop a fully distributed debugger, where
each process is equipped with debugging facilities, and a central console allows
us to coordinate them. This would strongly improve scalability, since most of the
computational effort (running and backtracking programs) would be distributed.
However, this step requires a semantics without any synchronous interaction
(e.g., rules Send2 and Spawn2 would need to be replaced by a more complex
asynchronous protocol).
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concurrency. In: Logozzo, F., Fäahndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp.
454–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-
9 24

6. Fredlund, L.A., Svensson, H.: McErlang: a model checker for a distributed func-
tional programming language. In: ICFP, pp. 125–136. ACM (2007)

7. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

8. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a
tuple-based language. J. Log. Algebr. Meth. Program. 88, 99–120 (2017)

9. Giantsios, A., Papaspyrou, N., Sagonas, K.: Concolic testing for functional lan-
guages. In: PPDP, pp. 137–148. ACM (2015)

10. Gotovos, A., Christakis, M., Sagonas, K.: Test-driven development of concurrent
programs using Concuerror. In: 10th ACM SIGPLAN Workshop on Erlang, pp.
51–61. ACM (2011)

11. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

12. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114, 19 (2014)

13. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang
(2017). Submitted for publication. http://users.dsic.upv.es/∼gvidal/lnpv17/paper.
pdf

14. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30793-5 1

15. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
PPDP, pp. 167–178. ACM Press (2006)
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