
Breaking Symmetries with Lex
Implications

Michael Codish1, Thorsten Ehlers2(B), Graeme Gange3, Avraham Itzhakov1,
and Peter J. Stuckey3,4

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

2 Department of Computer Science, Kiel University, Kiel, Germany
the@informatik.uni-kiel.de

3 Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia

4 Data61 CSIRO, Melbourne, Australia

Abstract. Breaking symmetries is crucial when solving hard combina-
torial problems. A common way to eliminate symmetries in CP/SAT is
to add symmetry breaking constraints. Ideally, symmetry breaking con-
straints should be complete and compact. The aim of this paper is to find
compact and complete symmetry breaks applicable when solving hard
combinatorial problems using CP/SAT approach. In particular: graph
search problems and matrix model problems where symmetry breaks are
often specified in terms of lex constraints. We show that sets of lex con-
straints can be expressed with only a small portion of their inner lex
implications which are a particular form of Horn clauses. We exploit this
fact and compute a compact encoding of the row-wise LexLeader and
state of the art partial symmetry breaking constraints. We illustrate the
approach for graph search problems and matrix model problems.

1 Introduction

When solving hard combinatorial problems, symmetry breaks play a crucial role.
When seeking solutions, the size of the search space is significantly reduced if
symmetries are eliminated. The search space can be explored more efficiently
when avoiding paths that lead to symmetric solutions and avoiding also those
that lead to symmetric non-solutions.

This paper deals with variable symmetry in constraint staisfaction problems
(CSP) where symmetry is a permutation defined over a set of variables that
preserves solutions. Given a CSP with variables x1, ..., xn, we say that σ is a
symmetry if for every assignment μ = {x1 = i1, ..., xn = in}, μ is a solution if
and only if {x1 = iσ(1), ..., xn = iσ(n)} is also a solution.

Supported by the Israel Science Foundation, grant 625/17 and the German Federal
Ministry of Education and Research, combined project 01IH15006A.

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 182–197, 2018.
https://doi.org/10.1007/978-3-319-90686-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_12&domain=pdf
http://orcid.org/0000-0003-2186-0459


Breaking Symmetries with Lex Implications 183

One common approach to eliminate symmetries is to introduce symmetry
breaking constraints [1–4] which rule out isomorphic solutions thus reducing the
size of the search space while preserving the set of solutions. Ideally, a symmetry
breaking constraint is satisfied by a single member of each equivalence class of
solutions, in which case it is said to be complete. However, computing such sym-
metry breaking constraints is, most often, intractable [2]. In practice, symmetry
breaking constraints are often partial, and typically rule out some, but not all of
the symmetries in the search. As noted in the survey by Walsh [5], often a few
simple constraints rule out most of the symmetries.

In many cases, symmetry breaking constraints, complete or partial, are
expressed in terms of lex constraints on the variables of the problem. Each lex
constraint, corresponds to one symmetry σ, and restricts the search space to
consider assignments which are lexicographically smaller than their permuted
form obtained according to σ. Typical examples are: graph search problems [6]
where rows and columns of the Boolean adjacency matrix can be reordered by
some permutation, and matrix models where rows and columns can be reordered
by a pair of permutations. For matrix models common partial symmetry breaks
described in terms of lex constraints include doubleLex [7] (denoted also lex 2 in
[8]) and snake-lex [9]. For graph search problems, Codish et al. [6] introduce par-
tial symmetry breaks (denoted sb� and sb∗

� ) which are refinements of doubleLex
for adjacency matrices.

Complete symmetry breaks can be obtained, for both types of problems,
by introducing a lex constraint for each reordering of the combinatorial object
(graph or matrix) [10]. For matrices, the reordering takes place by permuting
rows and columns [7]. For graphs, symmetric solutions can be obtained by per-
mutations of the vertices, which corresponds to simultaneously permuting both
rows and columns of the adjacency matrix. However, the number of lex con-
straints is overwhelming.

The aim of this research is to find compact and complete symmetry breaks
applicable when solving hard combinatorial problems. In particular: graph search
problems and matrix model problems.

In previous work, Itzhakov and Codish [11] present complete and compact
symmetry breaks for graphs based on so-called canonizing sets of permutations
where each permutation represents a lex constraint. Their approach is based
on the observation that many of the lex constraints expressed in terms of all
permutations (of rows and columns of the adjacency matrix) are redundant.
Itzhakov and Codish [11] compute compact symmetry breaking constraints for
graphs with 10 or less vertices. They observe, for example, that for 10 ver-
tices 7,853 lex constraints suffice to provide a complete symmetry break instead
of the 10! = 3,628,800 constraints introduced by the definition. Itzhakov and
Codish [11] report that this symmetry break takes 4 days to compute.

Heule [12] poses the question: How expensive is it to break all graph sym-
metries? Heule seeks an answer in terms of the number of clauses in a CNF
representation of the corresponding symmetry breaking constraint. For up to
n = 5 vertices, Heule computes size-optimal compact and complete symmetry



184 M. Codish et al.

breaks. A size-optimal complete symmetry break for graphs with 5 vertices con-
sists of only 12 clauses. In contrast, the symmetry break computed by Itzhakov
and Codish consists of 7 lex constraints, which can be encoded in 83 clauses.
For 5 < n ≤ 8 vertices, Heule computes complete symmetry breaks which are
significantly smaller than those computed by Itzhakov and Codish but which
are not determined to be optimal. For 8 vertices, the complete symmetry break
computed by Heule consists of 956 clauses (and takes two days to compute). The
complete symmetry break computed by Itzhakov and Codish consists of 135 lex
constraints (2724 clauses) and as reported in [11] takes 6 min to compute.

Frisch and Harvey illustrate in [13] the redundancies in a complete symmetry
break in a three-by-two matrix. They show how to simplify the 11 lex constraints
expressing all reorderings of rows and columns. The resulting symmetry break
has 8 simplified lex constraints.

In this paper we note the standard decomposition of a lex constraint of the
form x1 . . . xn ≤lex y1 . . . yn to a conjunction of Horn clauses of the form

(x1 = y1), . . . , (xk = yk) → xk+1 ≤ yk+1

where the literals on the left side are equalities between the variables in the
lex constraint and 1 ≤ k < n [14]. We call clauses of this form lex implica-
tions. We observe that many of the lex implications in the decomposition of
the complete symmetry breaks derived in [11] are redundant. This enables to
significantly reduce the size of the symmetry breaking constraints. For exam-
ple, for n = 10 vertices, a complete symmetry break is obtained in [11] with
7,853 lex constraints. These decompose to 248,604 lex implications which can be
reduced (removing implications implied by the others) to a complete symmetry
break expressed using only 21,844 lex implications. For 5 vertices, the complete
symmetry break computed in [11] involves 7 lex constraints which decompose
to 41 lex implications. These can be reduced to 14 non-redundant lex impli-
cations and 40 clauses, cf. Example 3. For 8 vertices, the complete symmetry
break computed in [11] involves 135 lex constraints which decompose to 2006
lex implications (2724 clauses). These can be reduced to 387 non-redundant lex
implications (1077 clauses), c.f. Table 2.

Given the observation that so many lex implications are redundant, we then
pose the direct question: how many lex implications are required to express a
complete symmetry break on a graph with n nodes. We generate such symmetry
breaks directly and not by reducing the complete symmetry breaks presented
in [11]. A compact and complete symmetry break for graphs with 8 vertices can
be computed in about 1 min. A compact and complete symmetry break for 10
vertices can now be computed in roughly 3 h (in contrast to 4 days as reported
in [11]. Moreover, we compute a compact and complete symmetry break for
graphs with 11 vertices. This symmetry break consists in 274,109 lex implications
(280,049 clauses) and is computed in 8 days.

The technique of representing conjunctions of lex constraints in terms of non-
redundant lex implications works also for matrix models where symmetry breaks
are also defined in terms of lex constraints (swapping rows and columns) and
also for partial symmetry breaks for graphs and matrix models.



Breaking Symmetries with Lex Implications 185

We analyze the standard doubleLex constraint and observe that it has no
redundancies when represented as lex implications. However when using exten-
sions which we call lex+ and lex∗ (also known as swapNext and swapAny respec-
tively [15]) there are many redundancies. We give compact versions of these
(without the redundancies).

The rest of the paper is organized as follows. In the next section we intro-
duce notation and basic concepts. In Sect. 3 we illustrate the effect of removing
redundancy in encoding symmetry breaking constraints. In Sect. 4 we define
our approach to efficiently generating compact and complete symmetry break-
ing constraints, and illustrate the effectiveness on graphs. Finally in Sect. 6 we
conclude.

The computations throughout the paper are performed using the finite-
domain constraint compiler BEE [16] which compiles constraints to CNF, and
solves it applying an underlying SAT solver. We use Glucose 4.0 [17] as the
underlying SAT solver except where specified that we used Clasp 3.1.3 [18]. All
computations were performed on an Intel E8400 core, clocked at 2 GHz, able to
run a total of 12 parallel threads. Each of the cores in the cluster has computa-
tional power comparable to a core on a standard desktop computer. Each SAT
instance is run on a single thread, and all running times reported in this paper
are CPU times.

2 Preliminaries

In this paper, we consider Boolean formulas ϕ which encode the set of solutions
of combinatorial problems. In many cases, there are variable symmetries in the
solution space of such problems. This is, given a solution xi = vi there often
exist permutations π such that xπ(i) = vi is an isomorphic solution [4].

When enumerating the solutions for a particular problem, it is often prefer-
able to consider only non-isomorphic solutions. Furthermore, if one wishes to
prove that no solutions for some problem exist, breaking symmetries often allows
for smaller proofs.

In order to decrease the size of the solution space, one approach is to use
constraints ψ which break symmetries in the solution space of ϕ. This is, for
every solution x which satisfies ϕ, there exists an isomorphic solution x′ which
satisfies ϕ∧ψ. Symmetry breaking constraints which rule out all but one solution
from each equivalence class are called complete. Symmetry breaking constraints
which rule out some but not all isomorphic solutions from an equivalence class
are called partial [2].

We consider finite and simple graphs (undirected with no self loops). The
set of simple graphs on n nodes is denoted Gn. We assume that the vertex
set of a graph, G = (V,E), is V = {1, . . . , n} and represent G by its n × n
Boolean adjacency matrix. We often let G denote both the graph itself and also
its adjacency matrix.

Graph search problems are about the search for a graph which satisfies a
given set of constraints, ϕ, or to determine that no such graph exists. In this



186 M. Codish et al.

A =

0 a b c d
a 0 e f g
b e 0 h i
c f h 0 j
d g i j 0

π(A) =

0 a e f g
a 0 b c d
e b 0 h i
f c h 0 j
g d i j 0

Fig. 1. The 5 × 5 Boolean adjacency matrix G and π(G) for π = (2, 1, 3, 4, 5).

setting the unknown graph is represented by an adjacency matrix consisting
of Boolean variables which are constrained by ϕ. Often graph search problems
are about the search for the set of all graphs, modulo graph isomorphism, that
satisfy the given constraints.

The set of permutations π : {1, . . . , n} → {1, . . . , n} is denoted Sn. Permuta-
tions act on adjacency matrices in the natural way: If A is the adjacency matrix
of a graph G and π is a permutation, then π(A) is the adjacency matrix obtained
by simultaneously permuting with π the rows and columns of A.

Two graphs G1, G2 ∈ Gn are isomorphic, denoted G1 ≈ G2, if there exists a
permutation π ∈ Sn such that G1 = π(G2). Sometimes we write G1 ≈π G2 to
emphasize that π is the permutation such that G1 = π(G2). For sets of graphs
H1,H2, we say that H1 ≈ H2 if for every G1 ∈ H1 (likewise in H2) there exists
G2 ∈ H2 (likewise in H1) such that G1 ≈ G2.

We consider an ordering on graphs, defined by representing their adjacency
matrices as strings. Because adjacency matrices are symmetric with zeroes on
the diagonal, it suffices to focus on the upper triangle parts of the matrices [19].

Definition 1 (ordering graphs). Let G1, G2 ∈ Gn and let s1, s2 be the strings
obtained by concatenating the rows of the upper triangular parts of their corre-
sponding adjacency matrices A1, A2 respectively. Then, G1 � G2 if and only if
s1 �lex s2. We also write A1 � A2.

A classic complete symmetry break for graphs is the LexLeader con-
straint [10] defined as follows:

Definition 2 (LexLeader). LexLeader(n) =
∧ {

G � π(G)
∣
∣π ∈ Sn

}

where G is an n × n matrix of Boolean variables with 0’s on the diagonal and
such that Gij = Gji for all 1 ≤ i < j ≤ n. Sometimes we write LexLeaderG(n)
to make G explicit.

Example 1. Consider graphs on 5 nodes. Figure 1 depicts the adjacency matrix
A of such graphs, where a . . . j denote Boolean variables (on the left side). For
the permutation π = (2, 1, 3, 4, 5), π(A), is detailed on the right side of Fig. 1.
A complete symmetry break can be created by using the LexLeader constraint,
which requires 5! = 120 lex constraints, one for each permutation in S5.

The constraint G � π(G) is expressed as the lex constraint abcdefghij �lex

aefgbcdhij, which can be simplified to bcd �lex efg.



Breaking Symmetries with Lex Implications 187

π1 = (5, 3, 4, 2, 1)

π2 = (2, 1, 5, 3, 4)

π3 = (1, 3, 2, 4, 5)

π4 = (1, 2, 4, 3, 5)

π5 = (2, 4, 1, 5, 3)

π6 = (2, 3, 1, 5, 4)

π7 = (1, 2, 5, 3, 4)

abcefgi �lex ijghebc

bcdefhi �lex gefdbij

afg �lex bhi

bei �lex cfj

abcdefgi �lex fagecjhb

abcdfgh �lex eagfihd

bcefhi lex dbgeij

Fig. 2. A complete symmetry break for graphs with 5 nodes expressed in terms of 7
lex constraints derived from corresponding permutations.

a ≤ b

b ≤ c

c ≤ d

b ≤ f

(Ta=h) ⇒ c ≤ i

(Tb=f ) ⇒ c ≤ e

(Tc=d) ⇒ f ≤ g

(Ta=b) ⇒ f ≤ h

(Tb=c) e f

(Tb=c ∧ Te=f ) ⇒ i ≤ j

(Ta=b ∧ Tf=h) ⇒ g ≤ i

(Tb=g ∧ Tc=e) ⇒ d ≤ f

(Tb=f ∧ Tc=e ∧ Td=g) ⇒ i ≤ j

(Tb=e Tc=g Td=f ) h i

Fig. 3. A complete symmetry break for graphs with 5 nodes expressed in terms of 14
lex implications. These clauses were computed directly, they are not derived from the
lex constraints presented in Fig. 2.

In fact, it is sufficient to consider only some of the LexLeader constraints.
In [11], a refinement procedure was used which adds non-redundant lex con-
straints until a complete symmetry break has been reached.

Example 2. A complete symmetry break for graph search problems on 5 nodes
can be expressed in terms of the 7 permutations detailed in Fig. 2 (on the left)
which give rise to the corresponding lex constraints (on the right). All of the
5! = 120 lex constraints used by the LexLeader(5) constraint are implied by
these 7 lex constraints.

It is well known that lex constraints can be decomposed into lex implications.
Using Tseytin variables Tx=y ↔ x = y and replacing a ≤ b by (¬a∨ b), these are
Horn clauses. The question we ask in this paper is: How many lex implications
are required to represent a complete symmetry break on graphs?

Example 3. In order to break all symmetries on graphs with 5 nodes, it is
sufficient to consider the 14 lex implications depicted in Fig. 3. As the Tseytin
variables only occur on the left-hand side of the implications, it is sufficient to
encode them using two clauses as in (x∧y) ⇒ Tx=y and (¬x∧¬y) ⇒ Tx=y [20].
Thus, this symmetry break can be encoded using 40 clauses.

In some cases, the redundancy of lex implications can be seen directly. The
lex constraint abcefgi �lex ijghebc from Example 2 implies a ≤ i, which is
redundant with respect to the lex implications from Fig. 3: If a = 1, this implies
b = c = d = f = 1 by the inequalities on the left-hand side. This again implies



188 M. Codish et al.

h = 1 by the lex implication (Ta=b) ⇒ f ≤ h, and i = 1 by (Ta=h) ⇒ c ≤ i.
Checking the redundancy of other lex implications often requires a case analysis.

In this paper we consider several partial symmetry breaks for graphs and for
matrix models which can be defined in terms of specific sets of permutations.
We denote by Sadj

n and by Spair
n the sets of permutations on {1, . . . , n} which

swap a single adjacent pair (i, i + 1) for 1 ≤ i < n and respectively a single pair
(i, j) for 1 ≤ i < j ≤ n.

The partial symmetry breaks sb� and sb∗
� presented in [6] for graphs are

defined as follows where A is an n × n adjacency matrix of Boolean variables:

sb�(A) =
∧

π∈Sadj
n

(A ≤ π(A)) and sb∗
� (A) =

∧

π∈Spair
n

(A ≤ π(A))

Thus, they can be encoded using O(n) and O(n2) lex constraints, respectively.

Definition 3 (ordering matrices). Let M1,M2 be a pair of m × n matrices
of Boolean variables and let s1, s2 be the strings obtained by concatenating their
rows respectively. Then, M1 � M2 if and only if s1 �lex s2.

For a m × n matrix M of Boolean variables and permutations π1 ∈ Sm,
π2 ∈ Sn, let πrows

1 (M) denote the matrix obtained by permuting the rows of M
by π1 and let πcols

2 (M) denote the matrix obtained by permuting the columns
of M by π2. The doubleLex symmetry break, also denoted lex2 [7] is defined by

lex2(M) =
∧ ({

(M ≤ πrows(M))
∣∣∣ π ∈ Sadj

m

} ⋃ {
(M ≤ πcols(M))

∣∣∣ π ∈ Sadj
n

})

It enforces rows and columns to be sorted lexicographically and it can be
encoded using O(n + m) lex constraints. We also consider extensions of lex2,
denoted lex+ and lex∗.

lex+(M) = lex2(M) ∧
∧{

(M ≤ πrows
1 πcols

2 (M))
∣
∣π1 ∈ Sadj

m , π2 ∈ Sadj
n

}

lex∗(M) = lex2(M) ∧
∧{

(M ≤ πrows
1 πcols

2 (M))
∣
∣π1 ∈ Spair

m , π2 ∈ Spair
n

}

Encoding these symmetry breaks requires O(nm) and O(n2m2) lex constraints,
respectively.

In [8], the authors suggest combining lex2 with additional constraints which
enforce that the first row is lexicographically smaller than every permutation of
every other row, and call this symmetry break allPerm. It can be implemented
to run in linear time, however, encoding it statically into a SAT formula requires
O(n!m) lex constraints. As we will show in Sect. 3, most of these constraints are
actually redundant.

Table 1 illustrates the relative power of several symmetry breaks for Boolean
matrix models. We consider matrices of size n × n and report the number of
solutions for each of the symmetry breaks. The smaller the solution, the more
precise the symmetry break. The symmetry breaks are detailed from weakest



Breaking Symmetries with Lex Implications 189

Table 1. The number of solutions for Boolean matrix models with various symmetry
breaks.

n None lex2 allPerm lex+ lex∗ Complete

3 29 45 41 37 36 36

4 216 650 520 366 330 317

5 225 24,520 17,128 8,659 6,779 5,624

6 236 2,625,117 1,616,074 602,813 391,532 251,610

7 249 836,488,618 458,375,316 139,268,908 73,720,859 33,642,660

(left) to strongest (right). The left column, titled “None” has the most solu-
tions and corresponds to imposing no symmetry break. The right column, titled
“Complete” has the least solutions and corresponds to imposing a complete
symmetry break. This column is obtained as OEIS sequence A002724 [21]. We
observe that allPerm is only slightly stronger than lex2 and weaker than lex+.
This is surprising, as lex+ is polynomial in size whilst allPerm is exponential.

3 Removing Redundant Constraints

In [11], the authors generated complete symmetry breaks for graph problems.
They aimed for a small set of permutations which is canonizing, i.e. lex con-
straints derived from them create a complete symmetry break. They found that
while generating such sets, some of the lex constraints became redundant and
could be removed. Thus, after generating a complete symmetry break, they
removed as many lex constraints as possible, and derived a set of non-redundant
lex constraints. They furthermore noted that the set of permutations required
for a complete symmetry break for graph problems on n nodes has significantly
less than n! elements.

Here, we consider the set of lex implications derived from a set of lex con-
straints rather than the lex constraints themselves. We show that even if the
set of lex constraints is non-reducible, many of the lex implications are redun-
dant and can be removed. The approach of removing redundant lex implications
applies both to complete and partial symmetry breaks.

Table 2 shows the size of different symmetry breaks for graphs, both in terms
of lex implications, and in terms of the number of clauses (in parentheses). This
includes clauses required for encoding the Tseytin variables. For each symmetry
break, the table details the impact of removing redundant lex implications. The
columns titled “orig” denote the size of the symmetry breaks before reduction
(obtained by decomposing the lex constraints), and the columns titled “red”
denote the size of the symmetry breaks after removing redundant lex implica-
tions.

The constraints sb� and sb∗
� are partial symmetry breaks introduced in [6].

Interestingly, sb� does not contain any redundant lex implications, whereas
roughly 65% of the lex implications of sb∗

� are redundant. For the right-most



190 M. Codish et al.

Table 2. Number of lex implications and clauses (in parentheses), before and after
the reduction, for partial symmetry breaks sb�, sb∗

� (on graphs) and for a complete
symmetry break (for graphs) based on canonizing sets.

n sb� sb∗
� Canonizing

orig & red orig red orig red

3 2(2) 3(3) 2(2) 3(2) 3(2)

4 6(12) 12(24) 6(12) 6(12) 6(12)

5 12(28) 30(70) 13(33) 41(83) 21(55)

6 20(50) 60(150) 24(72) 70(156) 38(118)

7 30(78) 105(273) 40(136) 302(580) 108(374)

8 42(112) 168(448) 62(232) 2006(2724) 387(1077)

9 56(152) 252(684) 91(367) 17059(18311) 2366(3600)

10 72(198) 360(990) 128(548) 248604(250582) 21844(23814)

Table 3. Number of lex implications for different symmetry breaks for matrix models
before and after reduction.

n lex2 lex+ lex∗ allPerm

orig reduced orig reduced orig reduced orig reduced

3 12 12 28 16 64 16 48 13

4 24 24 78 37 294 45 312 32

5 40 40 168 77 968 112 2440 71

6 60 60 310 141 2560 252 21660 148

7 84 84 516 235 5808 532 211764 310

8 112 112 798 365 11774 1048 — —

9 144 144 1168 536 21904 1944 — —

10 180 180 1638 755 38088 3413 — —

column, we took canonizing sets from [11], translated them into lex implica-
tions, and removed redundant clauses. Although the set of lex constraints does
not contain any redundant constraints, more than 90% of the lex implications
could be removed for n = 10 nodes. Furthermore, it is noteworthy that on small
graphs, there are more clauses for the Tseytin encoding than for the symmetry
break. For larger graphs, most of the clauses are lex implications.

Table 3 illustrates the reduction in size of symmetry breaks for Boolean
matrix models of size n × n. Here we focus on the number of lex implications
in the symmetry break (before and after reduce). In the table we consider the
symmetry breaks lex2, lex+, lex∗ and allPerm which are described in Sect. 2.

We observe that DoubleLex (lex2) does not contain any redundant impli-
cations. On the contrary, more than half of the lex implications from lex+ are
redundant and approximately 90% of the lex implications in lex∗ are redundant.



Breaking Symmetries with Lex Implications 191

With regards to the allPerm symmetry break proposed in [8], the constraint
itself is huge. We did not generate it for matrices larger than 7 × 7 for which
99.85% of the lex implications are redundant. This huge size makes it hard to
compute a reduced set of lex implications, we refrained from investing compu-
tational resources for the reduction of allPerm on matrices of size 8 × 8 and
larger.

How the Reduce Works

Basically, our algorithm iterates over the set of lex implications, and checks for
each of them if they are redundant. This is done by removing them from the for-
mula, and checking if there is a solution which would be forbidden by this clause,
as shown in Algorithm 2. If this is not the case, the clause is redundant and can
be removed. Contrary to other approaches like the one presented in [22], we
run a full SAT search to determine if a lex implication is actually redundant or
not. This allows for removing more clauses. Furthermore, the number of clauses
which can actually be removed depends on the order in which clauses are checked.
Some clauses are more helpful as they contribute to making other clauses redun-
dant. Thus, we run our reduction in two phases. The first phase is shown in
Algorithm 1. Here, we check if a clause c is redundant. If this is the case, we
compute a subset ψ ⊆ ϕ′ of clauses which makes c redundant, and increase the
ranking of all clauses within this set. The rationale is that removing these clauses
is more likely make other clauses no longer redundant, and so increase the size
of the final symmetry break.

In the second stage, we sort the clauses by ranking, so clauses which were
frequently the cause of redundancy appear as late as possible. We then reduce
the set of lex implications using Algorithm2.

Algorithm 1. Ranking Redundant Constraints
rank(c) = 0∀c ∈ ϕ
for all c ∈ ϕ do

ϕ′ = (ϕ \ {c}) ∪ ¬c
if UNSAT(ϕ′) then

Let ψ ⊆ ϕ′ such that ψ ∧ ¬c ≡ ⊥
for all c′ ∈ ψ do

rank(c′) ← rank(c′) + 1

Sort clauses by their ranks, small ranks first.

Algorithm 2. Removing Redundant Constraints
Rank clauses with Algorithm 1
for all c ∈ ϕ in ascending order do

ϕ′ = (ϕ \ {c}) ∪ ¬c
if UNSAT(ϕ′) then

ϕ = ϕ \ {c}



192 M. Codish et al.

4 Generating Compact and Complete Symmetry
Breaks for Graphs

The LexLeader constraint which is a complete symmetry break defined in terms
of all permutations of a graph can be expressed as a set of lex implications. Each
lex constraint G ≤lex π(G), for a permutation π is decomposed to lex implica-
tions, as described in Sect. 2. Each implication is classified by two parameters:
the length of the implication and the permutation from which the originating lex
constraint was generated. The length of an implication is the number of atoms
it contains which is between 1 and

(
n
2

)
(the size of the upper triangle of the

adjacency matrix). Formally, let A be an n × n matrix, π ∈ Sn a permutation,
and 1 ≤ k ≤ (

n
2

)
an implication length. Let x1, . . . , x(n

2) and y1, . . . , y(n
2) be the

upper triangle elements (row by row) of A and π(A), respectively. The length k
lex implication ImpA(k, π) is defined by

ImpA(k, π) = (x1 = y1) ∧ · · · ∧ (xk−1 = yk−1) ⇒ xk ≤ yk

Using this notation the classic LexLeader constraint for an n × n adjacency
matrix A is equivalent to the following lex implication representation:

LexLeaderA(n) =
∧

π∈Sn

(n
2)∧

k=1

ImpA(k, π)

In this work we generate a complete symmetry breaking constraint that is
equivalent to LexLeader by repeatedly selecting lex implications from the defini-
tion of LexLeaderA(n) which are not logically implied by those already selected.
When no further lex implications can be selected we have found a complete sym-
metry break. Although we repeatedly select non-redundant lex implications, it
is possible, because of the order of selection, that some of the implications in the
set become redundant. For this we reason we perform a second pass to repeat-
edly remove redundant implications. This process is formalized as Algorithm 3
where we select implications according to their length, first the short ones, and
then the longer ones. To derive a complete symmetry break for graphs with n
vertices, for each 1 ≤ k ≤ (

n
2

)
the algorithm repeatedly finds implications of the

form ImpA(k, π) until the set obtained so far implies every implication of length
k. To find a new implication of length k we check if there exists a permutation
π ∈ Sn and an n×n adjacency matrix A of Boolean variables such that C is sat-
isfied, but there exists a lex implication ImpA(k, π) which is not satisfied where
C denotes the conjunction of the implications selected so far. This process con-
tinues iterating for implications of all lengths, starting from short implications,
k = 1, and finishing with the longest implications, k =

(
n
2

)
. In the algorithm we

apply a reduce step to remove redundant implications after each increment of
the value k.

Table 4 details the computation of compact complete symmetry breaks fol-
lowing Algorithm 3 (lex implications) and provides a comparison with those com-
puted in [11] (canonizing), and the symmetry breaks from [12] (isolators). For



Breaking Symmetries with Lex Implications 193

Algorithm 3. Generating Complete Implication Set
init: C ← { }
for k = 1 to

(
n
2

)
do

while ∃π ∈ Sn, G ∈ Gn s.t (C ∧ ¬ImpG(k, π)) is satisfiable do
C ← C ∪ {ImpG(k, π)}

C ← reduce(C)

return C

each value of n (number of vertices) we detail the size of the symmetry break
derived and the time it took to compute it. For the symmetry breaks of [11], size
is reported in the number of lex constraints (“lex”) and also in the number of
clauses in their encoding to CNF. For the symmetry breaks derived in this paper,
size is reported in the number of lex implications (“imp”) and also in the number
of clauses in their encoding to CNF. Isolators are, by definition, sets of clauses.
The times in the right column (Isolator) of the table are reported from [12].
These were obtained, for different values of n, using different techniques. Thus,
the computation for 8 nodes is faster than the one for 7 nodes. For 7 nodes,
Heule reports in [12], a computation involving 80,000 probes per round with 4
rounds at 7 min (average) per probe. This totals 1555 days of computation. The
items denoted − indicate that the corresponding symmetry breaks cannot be
computed. The only technique able to compute a symmetry break for graphs
with 11 vertices is the technique presented in this paper. We note that this is
the first time that a compact and complete symmetry break for graphs of size
11 has been computed.

Table 4. Computing compact and complete symmetry breaking constraints for graphs
(time is in seconds except where indicated otherwise).

Canonizing Lex implications Isolator from [12]

lex clauses time imp clauses time clauses time

4 3 12 0.03 6 14 0.18 7 0.01

5 7 83 0.10 18 52 0.49 12 2.34

6 13 156 1.62 45 149 1.99 27 4.6 days

7 37 580 13.19 139 449 8.68 114 1555 days

8 135 2,724 345.37 447 1139 59.81 956 2 days

9 842 18,311 2.42 h 2,496 3736 626.20 – –

10 7,853 250,582 93.82 h 22,542 24,512 3.10 h – –

11 – – – 274,109 277,075 8.44 days – –

Table 5 demonstrates the impact of having more compact complete symmetry
breaks. We detail the time to compute all graphs that satisfy each form of the
complete symmetry break. Because the symmetry breaks are all complete, this



194 M. Codish et al.

number corresponds exactly to the number of non-isomorphic undirected graphs
with n vertices (OEIS sequence number A000088) [21] which is detailed in the
right column. We see from the table that enumerating graphs with more compact
symmetry breaks significantly reduces the computation time.

5 An Application: Computing Ramsey Colorings (4, 4;n)

In this section we describe the impact of using compact and complete symmetry
breaks. We consider a classic example of a graph search problem: the search for
Ramsey graphs [23]. The graph R(s, t;n) is a simple graph with n vertices, no
clique of size s, and no independent set of size t. The Ramsey number R(s, t)
is the smallest number n for which there is no R(s, t;n) graph. Table 6 reports
on the search for all solutions for R(4, 4, n). For n > 17 there are no solutions
and hence the Ramsey number R(4, 4) = 18. The table compares three con-
figurations: First, using the partial symmetry breaking predicate sb∗

� defined in
[6]. Second, using the complete canonizing symmetry breaks computed in [11].
Third, using the complete symmetry breaks computed in this paper. For each
configuration we detail the size of the SAT encoding (clauses and variables),
the time in seconds (except where indicated in hours) to find all solutions using
a SAT solver, and the number of solutions found. The symmetry breaks based
on canonizing permutations and on lex implications are both complete, so they
both compute the exact number of solutions. In the upper part of the table, we
use the corresponding complete symmetry breaks described in [11] (for n ≤ 10)
and in Sect. 4 of this paper (for n ≤ 11). These symmetry breaks are “instance
independent”. They apply to break symmetries for any graph search problem.
For 12 ≤ n ≤ 17 we compute “instance dependent” symmetry breaks. We refine
Algorithm 3 to compute lex implications that break symmetries for the spe-
cific application to R(4, 4, n). This is, we restrict Algorithm 3 to consider only
R(4, 4, n) graphs instead of all graphs in Gn.

Table 5. Enumerating graphs using complete symmetry breaking methods: canonizing,
lex-implications, and isolators (using Clasp where time in seconds unless indicated
otherwise).

n Canonizing lex-imp’s Isolator [12] Graphs

4 0.00 0.00 0.00 11

5 0.00 0.00 0.00 34

6 0.00 0.00 0.00 156

7 0.00 0.00 0.00 1,044

8 0.27 0.11 0.04 12,346

9 33.34 3.65 – 274,668

10 5.78 h 542.25 – 12,005,168

11 – 2.69 days – 1,018,997,864



Breaking Symmetries with Lex Implications 195

Table 6. Enumerating Ramsey graphs using sb∗
� , canonizing sets and lex implications.

(Clasp solver, computation time in seconds).

Instance sb∗
� Canonizing sets Lex implications

cls vars sat sols cls vars sat cls vars sat exact

R(4, 4, 4) 22 10 0.00 9 17 9 0.00 68 21 0.00 9

R(4, 4, 5) 80 24 0.00 33 235 55 0.00 208 55 0.00 24

R(4, 4, 6) 195 48 0.00 178 315 72 0.00 495 120 0.00 84

R(4, 4, 7) 390 85 0.00 1,478 1,395 286 0.00 1,049 231 0.00 362

R(4, 4, 8) 690 138 0.03 16,919 10,885 2,177 0.04 2,099 406 0.02 2,079

R(4, 4, 9) 1,122 210 0.51 227,648 89,877 17,961 1.56 5,268 666 0.23 14,701

R(4, 4, 10) 1,715 304 9.97 2,891,024 1,406,100 281,181 149.15 26,922 1,035 5.43 103,706

R(4, 4, 11) 2,500 423 428.79 25,616,963 – – – 280,709 1,540 726.62 546,356

R(4, 4, 12) 3,510 570 5561.06 107,509,048 – – – 48,363 2,715 129.71 1,449,390

R(4, 4, 13) 4,780 748 29426.23 131,638,650 – – – 57,747 3,751 133.64 1,184,323

R(4, 4, 14) 6,347 960 8325.25 21,181,746 – – – 36,505 5,055 31.18 130,818

R(4, 4, 15) 8,250 1,209 281.79 144,663 183,985 36,356 26.21 30,855 6,669 55.95 640

R(4, 4, 16) 10,530 1,498 14.38 94 30,890 5,570 12.34 39,131 8,638 19.43 2

R(4, 4, 17) 13,230 1,830 5.63 4 15,255 2,235 7.51 49,953 11,010 20.69 1

The lower part of Table 6 reports on the search for all solutions of R(4, 4, n)
for n ≥ 12 using these complete symmetry breaks. The items denoted − indicate
that the corresponding symmetry breaks cannot be computed within the timeout
period (72 h).

It can be seen that for 12 ≤ n ≤ 15, in which the number of non-
isomorphic solutions is large, these problem dependent symmetry breaks sig-
nificantly improve the solving time over the partial symmetry break sb∗

� . For
n = 16, the symmetry break computed here is significantly stronger than sb∗

� ,
allowing for only 2 instead of 94 solutions.

Using the lex-implications approach we were able to compute instance depen-
dent symmetry breaks for all R(4, 4, n) instances whereas the computation of
canonizing sets exceeded the timeout for three cases.

6 Conclusion

We provided an analysis of the redundancy in symmetry breaking constraints for
graphs and matrix models. Previous work had shown that many of the lex con-
straints in the LexLeader symmetry break are redundant. Here, we considered
the decomposition of lex constraints in lex implications, and showed that many
of them are redundant in complete symmetry breaks. This allowed us to reduce
the size of complete symmetry breaks for graphs by an order of magnitude, and
enabled us to compute a complete and compact symmetry break for graphs on
11 nodes.

Furthermore, we analyzed partial symmetry breaks and the redundancies in
them. While small symmetry breaks like sb� for graphs, and lex2 for matrices do



196 M. Codish et al.

not contain any redundant lex implications, there are significant redundancies
in their extensions sb∗

� and lex+, lex∗, respectively.

References

1. Puget, J.-F.: On the satisfiability of symmetrical constrained satisfaction problems.
In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 350–361.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56804-2 33

2. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predi-
cates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.): Proceed-
ings of the Fifth International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 1996), Cambridge, Massachusetts, USA, 5–8 November
1996, pp. 148–159. Morgan Kaufmann (1996)

3. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. Discrete Appl. Math. 155(12), 1539–1548 (2007)

4. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006). https://doi.org/
10.1007/11889205 46

5. Walsh, T.: Symmetry breaking constraints: recent results. In: Hoffmann, J.,
Selman, B. (eds.) Proceedings of the Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence, Toronto, Ontario, Canada, 22–26 July 2012. AAAI Press (2012)

6. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph
representation. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, IJCAI 2013, Beijing, China, 3–9 August 2013, pp.
510–516. IJCAI/AAAI (2013)

7. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 462–477. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-46135-3 31

8. Frisch, A.M., Jefferson, C., Miguel, I.: Constraints for breaking more row and
column symmetries. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 318–332.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8 22

9. Grayland, A., Miguel, I., Roney-Dougal, C.M.: Snake lex: an alternative to dou-
ble lex. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 391–399. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 32

10. Read, R.C.: Every one a winner or how to avoid isomorphism search when cata-
loguing combinatorial configurations. Ann. Discrete Math. 2, 107–120 (1978)

11. Itzhakov, A., Codish, M.: Breaking symmetries in graph search with canonizing
sets. Constraints 21(3), 357–374 (2016)

12. Heule, M.J.H.: The quest for perfect and compact symmetry breaking for graph
problems. In: Davenport, J.H., Negru, V., Ida, T., Jebelean, T., Petcu, D., Watt,
S.M., Zaharie, D. (eds.) 18th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2016, Timisoara, Romania, 24–27
September 2016, pp. 149–156. IEEE Computer Society (2016)

13. Frisch, A.M., Harvey, W.: Constraints for breaking all row and column symmetries
in a three-by-two matrix. In: Proceedings of SymCon 2003 (2003)

14. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artif. Intell. 170(10), 803–834 (2006)

https://doi.org/10.1007/3-540-56804-2_33
https://doi.org/10.1007/11889205_46
https://doi.org/10.1007/11889205_46
https://doi.org/10.1007/3-540-46135-3_31
https://doi.org/10.1007/3-540-46135-3_31
https://doi.org/10.1007/978-3-540-45193-8_22
https://doi.org/10.1007/978-3-642-04244-7_32


Breaking Symmetries with Lex Implications 197

15. Smith, B.: Symmetry breaking constraints in constraint programming (2010).
Slides published online. http://ta.twi.tudelft.nl/wst/users/achill/MFOSymOpt
2010/MFOSymOpt2010/Oberwolfach Mini-Workshop files/BarbaraMfoSlides.ppt

16. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46,
303–341 (2013)

17. Audemard, G., Simon, L.: Glucose 4.0 SAT solver. http://www.labri.fr/perso/
lsimon/glucose/

18. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

19. Cameron, R.D., Colbourn, C.J., Read, R.C., Wormald, N.C.: Cataloguing the
graphs on 10 vertices. J. Graph Theor. 9(4), 551–562 (1985)

20. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

21. The on-line encyclopedia of integer sequences. Published electronically (2010).
http://oeis.org

22. Fourdrinoy, O., Grégoire, É., Mazure, B., Säıs, L.: Eliminating redundant clauses
in SAT instances. In: Van Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS,
vol. 4510, pp. 71–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72397-4 6

23. Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Comb. (1994). Revision
14 January 2014

http://ta.twi.tudelft.nl/wst/users/achill/MFOSymOpt2010/MFOSymOpt2010/Oberwolfach_Mini-Workshop_files/BarbaraMfoSlides.ppt
http://ta.twi.tudelft.nl/wst/users/achill/MFOSymOpt2010/MFOSymOpt2010/Oberwolfach_Mini-Workshop_files/BarbaraMfoSlides.ppt
http://www.labri.fr/perso/lsimon/glucose/
http://www.labri.fr/perso/lsimon/glucose/
http://oeis.org
https://doi.org/10.1007/978-3-540-72397-4_6
https://doi.org/10.1007/978-3-540-72397-4_6

	Breaking Symmetries with Lex Implications
	1 Introduction
	2 Preliminaries
	3 Removing Redundant Constraints
	4 Generating Compact and Complete Symmetry Breaks for Graphs
	5 An Application: Computing Ramsey Colorings (4,4;n)
	6 Conclusion
	References




