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Abstract. Vertex-centric graph processing is a promising approach for
facilitating development of parallel distributed graph processing pro-
grams. Each vertex is regarded as a tiny thread and graph process-
ing is described as cooperation among vertices. This approach resolves
many issues in parallel distributed processing such as synchronization
and load balancing. However, it is still difficult to develop efficient pro-
grams requiring careful problem-specific tuning. We present a method
for automatically optimizing vertex-centric graph processing programs.
The key is the use of constraint solvers to analyze the subtle properties of
the programs. We focus on a functional vertex-centric graph processing
language, Fregel, and show that quantifier elimination and SMT (Sat-
isfiability Modulo Theories) are useful for optimizing Fregel programs.
A preliminary experiment indicated that a modern SMT solver can per-
form optimization within a realistic time frame and that our method
can significantly improve the performance of naively written declarative
vertex-centric graph processing programs.

1 Introduction

Nowadays big graphs are ubiquitous. Nearly every interesting data set, such as
those for customer purchase histories, social networks, and protein interaction
networks, consists of big graphs. Parallel distributed processing is necessary for
analyzing big graphs that cannot fit in the memory of a single machine. However,
parallel distributed processing is difficult due to such issues as communications,
synchronizations, and load balancing.

Vertex-centric graph processing (abbreviated to VcGP) [1] is a promising app-
roach for reducing the difficulties of parallel distributed graph processing. VcGP
is based on the “think like a vertex” programming style. It regards each vertex as
a tiny thread and describes graph processing as cooperation among vertices, each
of which updates its value using information supplied from other vertices.
© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. Vertex-centric SSSP: doubly-circled vertex denotes source, and framed numbers
denote messages.

As an example, consider the following algorithm illustrated in Fig. 1 for the
single-source shortest path problem (SSSP).

— First, the source vertex is assigned 0, and the other vertices are assigned oc.
The values are the estimated distances from the source vertex (Fig.1 (a)).

— Then, each vertex sends the estimated distances to its neighbors and updates
its value if it receives a shorter distance (Fig. 1(b—c)).

— The previous step is repeated until all the values are no longer changed

(Fig 1(d)).

A VcGP framework executes programs in a distributed environment. Vertices
(and accordingly edges) are distributed among computational nodes. At every
step, every computational node simultaneously updates the values of its vertices
in accordance with the specified computation. Computational nodes exchange
messages if information of other nodes is necessary. The VcGP approach releases
programmers from such typical difficulties as communication, synchronization,
and load balancing, and makes it easier to write runnable parallel distributed
graph processing programs.

Although the VcGP approach is beneficial, it is still difficult to achieve effi-
ciency. Natural VcGP programs tend to be slow. For instance, there is room for
improvement in the above SSSP algorithm.

— It is unnecessary to process all vertices at every step; it is sufficient to process
only those vertices for which values are updated. Similarly, it is unnecessary
for all vertices to communicate their neighbors at every step.

— We have adopted synchronous execution: each vertex is processed exactly once
at each step. One can instead adopt asynchronous execution, which processes
vertices without synchronization barriers. The relative efficiencies of these two
approaches depend on the situation. For SSSP, both executions lead to the
same solution, and combining the two approaches may improve performance.

— The algorithm is essentially the Bellman-Ford algorithm, whose work is
O(n?), where n is the size of the graph. Processing near-source vertices prior
to distant ones, like Dijkstra’s algorithm, may reduce the amount of work
because the work of Dijkstra’s algorithm is O(nlogn).

These inefficiencies have already been known, and several frameworks have been
proposed to remove them [1-7]. For instance, the Pregel framework [1] enables
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us to inactivate vertices so that they are ignored by the runtime system until
they receive a new message. However, it remains the programmer’s responsibil-
ity to be aware of these inefficiencies and to mitigate them by using available
functionalities. This is fairly difficult because these inefficiencies and potential
improvements may be hidden by nontrivial problem-specific properties.

We have developed a method for automatically removing such inefficiencies
from naive programs written in a functional VcGP language, Fregel [8]. The key
is the use of modern constraint solvers for identifying potential optimizations.
The declarative nature of Fregel enables optimizations to be directly reduced to
constraint solving problems. We focused on four optimizations.

— Eliminating redundant communications (Sect. 3.1).

— Inactivating vertices that do not need to be processed (Sect.3.2).

— Removing synchronization barriers and thereby enabling asynchronous exe-
cution (Sect. 3.3).

— Introducing priorities for processing vertices (Sect. 3.4).

Our approach is not specific to these optimizations for Fregel programs. Nontriv-
ial optimizations on declarative VcGP languages will be implemented similarly
if they are formalized as constraint solving problems.

We considered the use of two different constraint solving methods: quantifier
elimination (QE) [9] and satisfiability modulo theories (SMT) [10]. The former
enables the use of arbitrary quantifier nesting and can generate the program
fragments that are necessary for the optimizations; therefore, it is suitable for
formalizing optimizations. However, it is less practical because of its high com-
putational cost. We thus use SMT solvers as a practical implementation method
that captures typical cases. An experiment using a proof-of-concept implemen-
tation demonstrated that a modern SMT solver can perform the optimizations
within a realistic time frame and that the optimizations led to significant per-
formance improvement (Sect. 4).

2 Fregel: Functional VcGP Language

2.1 Pregel

Pregel [1] is a pioneering VeGP framework. We review it first because the fol-
lowing systems were strongly influenced.

A Pregel program essentially consists of a function that is invoked by each
vertex at each step. It usually updates the values stored in vertices using the
following functionalities.

— A vertex can send messages usually to adjacent vertices. The message is
available on the destination at the next step.

— A vertex can inactivate itself. The runtime system skips processing of inactive
vertices. An inactive vertex is reactivated if it receives a message.

— A vertex can read a summary showing the total sum, average, etc. of all active
vertices. This functionality is called an aggregator.
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sssp g = let init v = if v is the source vertex then 0 else oo
step v prev = let m = minimum [prev u + e | (e,u) <- is v]
in min (prev v) m
in fregel init step Fix g

Fig. 2. Fregel pseudo-program for single-source shortest path problem.

Pregel is based on the bulk synchronous parallel (BSP) model [11]. Compu-
tations on the BSP model consists of a series of supersteps. A superstep is a
local computation (i.e., invocation of the function by each vertex) followed by
a synchronization barrier that guarantees message arrival. Because of the adop-
tion of the BSP model, computation of a Pregel program is deterministic': every
vertex can be processed simultaneously without any race conditions. A Pregel
program terminates when all vertices become inactive.

2.2 Fregel

Fregel [8] is a functional VeGP language. It is a subset of Haskell and enables
VeGP programs to be easily written using graph-processing higher-order func-
tions that conceal side effects including communication and vertex inactivation.

Figure 2 shows a pseudo-program for SSSP. For readability, we focus on the
core functionality of Fregel and accordingly use a simplified syntax.

The core of Fregel is the graph processing higher-order function fregel. Its
first parameter, init :: Vertex -> Int in Fig.2, is applied to each vertex at
the initial step. The second one, step :: Vertex -> (Vertex -> Int) -> Int, is
used at the subsequent steps. The function step takes vertex v and a table,
prev :: Vertex —> Int, which stores the results of the previous step. A vertex
may access results of neighbor vertices using the table and a special function called
a generator. The program in Fig.2 uses is :: Vertex -> [(Edge,Vertex)],
which enumerates every neighbor with an edge that leads to the neighbor. Other
generators can express other communication patterns including aggregators. Since
information read from the neighbors essentially forms a multiset, the information
should be summarized not by using a conventional list operation but by using an
associative commutative binary operation such as sum and minimum. The opera-
tion should have the unit needed for dealing with an isolated vertex. The third
parameter of fregel, namely Fix, shows that the computation terminates when
the result of the current step is the same as that of the previous one. Note that
Fregel has no construct for inactivating vertices.

The Fregel compiler translates a Fregel program into a Java program
runnable on Giraph?. The functionalities of Giraph are nearly the same as those
of Pregel. An access to a neighbor’s previous value using the prev table and
a generator is compiled to message exchange if the target vertex is located in
a different computational node. Calculating new vertex values using neighbors’
previous values naturally corresponds to a superstep in the BSP model.

! Except for the order of arrival messages.
2 Apache Giraph: http://giraph.apache.org/.
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step v prev = let c1= @, [fi(e,prev u) | (e,u) <-is v, pi(prev w]

cn=@D, [fu(e,prev u) | (e,u) <~ is v, p,(prev u)]
in g(prev v,c1,...,Cm)

Fig. 3. Target program for optimization

3 Optimizing Fregel Programs

Here we describe optimizations for programs written using a fregel function.
We refer to the second parameter, i.e., the one invoked at the non-initial steps,
as step, and assume that it is written in the form shown in Fig. 3. In the pro-
gram, f;, p;, and @, (1 <i < n) respectively represent computation over each
neighbor’s information, the condition showing the necessity of sending the infor-
mation, and the operator used to summarize the information. g denotes the
calculation of the new value of the vertex. For simplicity, we assume the ter-
mination condition is Fix and only the is function is used as a generator. We
discuss these limitations in Sect. 3.5.

We use SSSP as a running example. For SSSP in Fig.2, n = 1, f; = (4),
g = (®1) = min, and p; () = True.

3.1 Reducing Communication

Since accesses of a neighbor’s information are compiled to message exchange,
modifying the condition p; and thereby avoiding unnecessary accesses reduces
the amount of communications. In the following discussion, we focus on reducing
communications caused by the k-th access expressed by fi, pr, and @,. Our
strategy is to formalize the situation in which optimization is possible and then
to use constraint solvers to implement the optimization.

Formulation. Let @ be the value of the message-sending vertex, and consider
formulating the necessity of sending u. The following property naturally formu-
lates that sending @ does not affect the computation on the destination vertex.

Y, ewr, ..., Wy.

g(v7wla s ,’an) = g(vawla ceey We—1, Wk Pk fk(eau)awk+1a s 7wn) (1)

Though correct, this property is not sufficient in practice, as the following exam-
ple shows.

Ezample: SSSP. For SSSP, Property (1) is instantiated as

Yo, e, w. min(v, w) = min(v, min(w, e + )).
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This is equivalent to @4 = oo, which means that a vertex can skip message sending
if its value is co. This result is not satisfactory because a vertex can skip message
sending if its value is unchanged from the previous step.

For capturing the case of SSSP, we need a more general formulation that takes
the previous value into account. A vertex may be able to skip message sending if
sufficient information had been sent at the previous step. The following formula
captures the idea. Here, © and t respectively denote the current and previous
values of the vertex.

VO, W1, .oy Wiy WYy« ey Wh.
g wh, .. w)) = gV wh, L wy, @k fele, @), Wiy ... w))
where o' = g(’U,’U_)l, <o Wi O fk(evﬂ)awk-i-l .. 'awn) (2)

This is a generalization of Property (1). The necessity of @ is checked on the
basis of the premise that the message-receiving vertex (which has value v’) took
into account the previous value i of the message-sending vertex.

Ezample: SSSP (Contd). Property (2) is instantiated as

Vo, e, w,w’. min(v’',w") = min(v’, min(w’, e + ))

where v = min(v, min(w, e + ii)).

This is equivalent to @ > : a vertex can skip communication when the current
value is not smaller than the previous one. Since the current value is always not
larger than the previous one, this is equivalent to @ = 1i.

Implementation Using Constraint Solvers. We could implement the opti-
mization by checking Property (2) dynamically for each vertex. However, since
Property (2) consists of quantifiers, its evaluation is likely impossible or very
slow. To obtain efficient codes, we need a method for synthesizing a simple,
especially quantifier-free, formula that is equivalent to (or expressing a sufficient
condition of) the property. For this purpose, we use constraint solvers.

QE translates a formula into a quantifier-free equivalent. For example, it may
translate Vz. 22 4+ax +b > 0 into 4b—a? > 0. While QE is theoretically ideal for
our purpose, there are three reasons that using QE solvers may be impractical.
First, there are only a few formal systems for which QE procedures are known.
Second, QE procedures are usually very slow. Third, current implementations
of QE tend to be experimental. Nevertheless, it is worthwhile to formulate the
optimizations as QE because these problems may one day be solved.

As a more practical implementation, we propose using SMT instead of QE.
Given a closed formula consisting of only one kind of quantifier, SMT checks
(i.e., does not translate) whether it is satisfiable. For example, it may answer
“yes” for Vz,a. x2 + ax + a® > 0. Recently efficient SMT solvers are intensively
developed and used in many applications.

There are two problems in using SMT for checking Property (2). The prop-
erty contains free variables, @ and i, and moreover, SMT solvers are unable to
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sssp g =
let init v = (if v is the source vertex then 0 else oo, False)
step v prev = let m = minimum [fst (prev u) + e |
(e,u) <- is v, not (snd (prev w))]
v’ = min (fst (prev v)) m
in (v’, v’ == fst (prev v))
in fregel init step Fix g

Fig. 4. Fregel SSSP program obtained by communication reduction, where fst and
snd respectively denote extraction of the first and second components from a pair.

synthesize a simple formula. To overcome these problems, we prepare templates
of simple formulae, such as @ = u. If the SMT solver guarantees that a template
is a sufficient condition of Property (2), we insert the negation of the template
into pi. The effectiveness of this approach relies on the generality of the tem-
plate. We believe 4 = i captures most practical cases. Other useful templates
include natural comparisons on @ and i, such as > and/or < on numbers and
lexicographic orders on tuples.

Ezxample: SSSP. We instruct an SMT solver to check the following formula.

Vi, i, v, e, w,w’. (1 =ii) = (min(v’, w") = min(v’, min(w’, e + 1))

where v’ = min(v, min(w, e + i)))

The solver verifies the condition. We thus modify the program as follows. We
instruct each vertex to check and remember the truth of the template; then, we
modify p; so that it checks the remembered truth. Figure 4 shows the optimized
program. Each node value is a pair, @ = (d, b), where d and b respectively denote
the estimated distance from the source and whether the value has been changed.

3.2 Inactivating Vertices

Next we discuss inactivating vertices. Inactive vertices do nothing (including any
message sending) unless they receive a new message. This optimization should
be applied after communication reduction optimization described in Sect. 3.1
because we cannot inactivate vertices that send a message.

A vertex is inactivated if the following condition holds: unless the vertex
receives a message, its value does not change and it does not need to send a
message. The optimization condition is thus formalized as

/\ —pi(a) | A(g(t, e, .. ) =), (3)

1<i<n

where each ¢; (1 < i < n) is the unit of @; and corresponds to the absence
of messages. Since Property 3 contains no quantifier, this optimization can be
implemented without the use of a constraint solver.
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Ezxample: SSSP. For the SSSP in Fig.4, Property (3) is instantiated to b A
(min(d, 00) = d) where @ = (d, b), which is equivalent to b where 4 = (d,b). In
short, a vertex can be inactivated if its value is the same as the previous one.

3.3 Removing Barriers

Recall that the execution of Fregel is based on the BSP model. Each local com-
putation is followed by a synchronization barrier. Though this makes program
behaviors deterministic and more understandable, barriers may make execution
slower especially when there are many computational nodes. For most graph
algorithms including SSSP, asynchronous barrier-less execution and synchronous
barrier-full execution yield the same result; thus, barriers are unnecessary.

The flexibility of asynchronous execution enables further optimizations such
as vertex splitting (also known as vertex mirroring) [12,13]. Practical graphs
often contain vertices that have too many edges, and such vertices form a bottle-
neck in VeGP. Vertex splitting resolves the bottleneck by splitting these vertices
and distributing their edges among the computational nodes. With synchronous
execution, vertex splitting requires an additional phase for every step to merge
the messages sent to the split vertices. With asynchronous execution, the addi-
tional phase is unnecessary because message delay does not matter. Another
possible optimization is to repeatedly process vertices in the same computa-
tional node before sending messages to other nodes. This optimization is related
to subgraph-centric (or neighborhood-centric) approaches [4,5] in which not ver-
tices but subgraphs are the target of parallel processing.

We have developed a method that automatically guarantees equivalence
between synchronous and asynchronous execution. We first present the following
lemma. Its proof is obvious and thus omitted.

Lemma 1. For functions h, h' and a binary relation =<, three conditions are
assumed:

Monotonicity of h: Vz,y. (z < y) = (h(z) < h(y)).
Ordering of h and h': Vz. (x X A/ (x)) A (W' (z) < h(x)).
Antisymmetry of <: Vz,y. (x KyAy=<z)= (z=1y).

Then, h*(z) = h*(h/(x)) holds for any x, where h* is defined by h*(z) = z <~
(h(z) = 2) A (z = h(h(--- (R(2)) - -)))- 0

We apply Lemma 1 as follows. We regard h as a complete one-step process-
ing of the graph. Similarly, we regard h’ as a partial processing in which some
vertices and messages are skipped. We regard asynchronous execution as a series
of partial processing. Lemma 1 guarantees that a partial processing does not
change the result; then, by induction, asynchronous execution does not as well.

Lemma 1 requires an appropriate binary relation, <. From the ordering
between h and h’, a natural candidate is the comparison of the progress in
computation: g1 < ¢o indicates that graph g can be obtained by processing
computation from g¢;. Another issue for using Lemma 1 is the gap between
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graph processing and vertex processing. While h, h’, and < deal with graphs, we
would like to consider vertex-processing functions. The following lemma bridges
the gap. For simplicity, we assume that the step function contains only one
access of neighbor’s information.

Lemma 2. For the step function, let < be a binary relation defined by x =<
y <= (Im. y =g(z,m)). Three conditions are assumed:

- Va,m,m’. g(x,m&m') = g(g(x, m),m).
- Vr,y (@ 2yAy2a) = (v =y).

Then, hgtep, h’step, and =g satisfy the premise of Lemma 1, where the first two
are respectively complete and partial one-step processing over the graph by step
and the last one compares graphs based on verter-wise comparison using <.

Proof (sketch). The first condition and the definition of < guarantee the ordering
between hgtep and h’step. The antisymmetry of <¢ easily follows from the second
condition. The third condition together with the first one and the commutativity
of @ guarantees the monotonicity of hgtep. O

The first condition of Lemma 2 can be taken to mean that message delay is not
harmful. This is a natural requirement for asynchronous execution.

Ezxample: SSSP. For SSSP, the definition of the relation < is instantiated as
z Xy <= Jw. min{zx,w} = y, which is equivalent to x > y. Therefore,
confirming the three conditions is easy.

Implementation. The first and second conditions can be checked using either
QE or SMT. Note that the second is equivalent to Va,m,w. (g(g(z,m),w) =
x) = (g(z,m) = x), where y is expressed as g(z,m). Since the definition of <
contains an existential quantifier, the third condition cannot be directly checked
using SMT. When using an SMT solver, we may instead check the following
sufficient condition.

Vr,y,z. (x 2y) = (9(9(2,2),y) = 9(2,9))

This can be read to mean that the old result, z, can be “overwritten” by the
newer result, y. This is also natural in asynchronous execution.

3.4 Prioritized Execution

Another interesting optimization asynchronous execution enables is prioritized
execution [3,6,7]. For example in SSSP, a prioritized execution may more inten-
sively process vertices nearer to the source, like Dijkstra’s algorithm.
Prioritized execution typically focuses on vertices whose values are nearer to
the final outcome and thus likely contribute to the final outcome of other vertices.
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Therefore, it is natural to use < defined in Lemma 1, which essentially compares
progress in computation, as a priority for processing vertices. For SSSP, < is
equivalent to > and thus is a perfect candidate.

However, there are two problems with using < for prioritized execution. First,
since its definition contains an existential quantifier, it is essentially not exe-
cutable unless QE is used. The other, more essential problem is that =< may
not be a linear order. Nomnlinear orders cannot be used for processing ver-
tices efficiently using priority queues. A practical solution to this problem is
to check whether a known linear order, > for example, is consistent with <; i.e.,
Vr,y. (x <y) = (x >y). If it is, the linear order can be used for prioritization.
Note that an SMT solver can check the condition.

3.5 Limitation and Generalization

We have assumed that information reading from neighbors is expressed using the
is generator. Use of other kinds of generators, including the one for expressing
an aggregator, generally does not introduce any difficulty. We did not assume
anything about communication except that the communication topology does
not change during computation.

A notable exception is the case of vertex inactivation. Aggregator’s result may
change regardless of message arrival. Therefore, if the k-th communication is an
aggregator, the following condition should be checked instead of Property (3).

/\ —pi(0) | A (Vwg. gty L1, ..y Why ooy ln) =)

1<i<n

Namely, the vertex value should not change regardless of the aggregator’s value if
the vertex receives no message. Since it contains a quantifier, unless QE is used,
an executable sufficient condition is needed. A natural candidate is to check the
following condition instead.

V. /\ —pi(4) | = Vwg. g(d, i1, ..., Wy ooy ly) = 1)

1<i<n

If it holds, a vertex having 7 can be inactivated if (A, .,.,, —pi()) holds. The
condition can be checked using SMT.

We have considered only a certain form of programs. For example, termi-
nation conditions other than Fix and the other graph processing higher-order
functions were neglected. The restriction is theoretically not essential. The Fregel
compiler normalizes other forms of programs into exactly the one in Fig. 3. Nev-
ertheless, from the practical perspective, since the normalization complicates
programs, it is questionable whether normalized programs can be effectively
optimized.
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4 Implementation and Evaluation

The feasibility of our method was evaluated by implementing it in the Fregel
compiler.

Table 1. Graphs for experiments

Name #Vertices | #Edges

WebBerkStan | 685,230 | 7,600,595
RoadNet-PA | 1,088,092 | 1,541,898
Rand-1M10M | 1,000,000 | 10,000,000

4.1 Implementation

The implementation uses the Z3 SMT solver® (version 4.3.2). Because the current
Fregel backend, Giraph, does not support asynchronous execution, we imple-
mented only communication reduction and vertex inactivation. There is no con-
ceptual difficulty in implementing the other optimizations.

The implementation was mostly straightforward. It may be worth noting that
the units for minimum and maximum, respectively —oo and oo, are necessary
for vertex inactivation. We prepared numerals with —co and oo and used them
instead of the one conventionally used, such as Int.

4.2 Setup of Experiments
We applied our optimizations to three Fregel programs:

— SSSP: the SSSP program shown in Fig. 2.

— PageRank: a program that calculates PageRank by repeatedly calculating a
weighted sum of the surrounding vertices’ values (30 iterations).

— SCC: a program that calculates strongly connected components by repeat-
edly finding a strongly connected component by a fregel function, which
propagates the maximum vertex id, and then removing that component from
the graph [14].

For each of them, we considered four programs: the original Fregel program, one
to which only the communication reduction was applied (CR), one to which the
communication reduction and vertex inactivation were applied (CR+VI), and a
handwritten Giraph program.

We prepared three graphs: WebBerkStan, RoadNet-PA, and Rand1M-10M
(Table 1). The first two were obtained from the Stanford Large Network Dataset
Collection 4. The former is a web graph; the latter is a road network. The last one

3 73 Solver: https://z3.codeplex.com/.
4 https:/ /snap.stanford.edu/data/.
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Table 2. Performances of programs (unit: seconds)

Original | CR CR+VI | Handwritten
SSSP/WebBerkStan 233.2 |54.2 46.0 26.8
SSSP /RoadNet-PA 146.4 | 70.8 47.2 32.1
SSSP/Rand-1M10M 16.9 |7.3 7.4 4.6
PageRank/WebBerkStan | 20.8 | — — 12.7
PageRank/RoadNet-PA 126 | — — 7.6
PageRank/Rand-1M10M | 26.1 | — - 17.1
SCC/WebBerkStan 1765.2 | 1413.1 | — 254.9
SCC/RoadNet-PA 326.7 1549 |— 55.5
SCC/Rand-1M10M 354 |28.1 — 12.6

is a graph generated by randomly connecting vertices. All graphs are directed.
RoadNet-PA is symmetric, i.e., each edge accompanies the reverse edge.

The environment for the experiment was a PC cluster consisting of 16 com-
putational nodes. Each node consisted of Intel Core i5 CPUs (nine of them were
Core i5-2500, and the other seven were i5-7600), 8-GB memory, and a 128-GB
SSD. As the backend of Fregel, we used Giraph 1.3.0, Hadoop 1.2.1, and Java
1.8.0_141 running on Debian 4.9.6-3. We used 16 workers for each experiment.

4.3 Results

For all programs, optimizations were performed immediately (within 0.1s). For
SSSP, both communication reduction and vertex inactivation were possible. For
PageRank, both optimizations were impossible. For SCC, although the optimizer
guaranteed that both optimizations were possible, the Fregel compiler could not
introduce vertex inactivation because Giraph does not support vertex reactiva-
tion after all the vertices become inactive. If vertices are inactivated based on
Property 3, after finding a strongly connected component, they should be reac-
tivated to find another strongly connected component. The handwritten Giraph
program instead inactivates vertices that are removed from the graph. This opti-
mization is impossible based on Property 3 because its justification requires an
analysis beyond a single fregel function.

As shown in Table 2, the original program for SSSP were significantly slower
than the handwritten program. Our optimization removed most of the ineffi-
ciencies, leading to a program that were roughly only 1.5 times as slow as the
handwritten one. Although our method was not able to optimize PageRank,
the difference between the original and the handwritten programs was relatively
small. For SCC, while the communication reduction was effective, absence of the
vertex inactivation make the optimized program less efficient than the case of
SSSP. The program is especially slow for WebBerkStan. We guess that the inef-
ficiency comes from the iterative nature of the SCC algorithm, which requires
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a lot of supersteps (thereby synchronization barriers) for analyzing graphs that
contain many strongly connected components.

Possibility of Other Optimizations. For SSSP and SCC, the other opti-
mizations, barrier removal and prioritized execution, are theoretically applicable.
They may be effective especially for SCC. The maximum vertex id is intensively
propagated without being interrupted by barriers. Lemma 2 cannot be applied
to PageRank. Existing asynchronous implementations of PageRank use the pre-
vious messages of neighbors if new ones have not yet arrived. Lemma 2 considers
processing computations using arrived messages only.

5 Related Work

As mentioned in the introduction, the optimizations discussed are not new. Ver-
tex inactivation is a part of the core functionality of Pregel [1]. The communica-
tion reduction technique for SSSP was also reported [1]. Many VeGP frameworks
use asynchronous execution [15-17]; moreover, some combine asynchronous and
synchronous execution to further improve efficiency [2,3]. Some frameworks
[3,6,7] support prioritized execution as well. The effectiveness of these optimiza-
tions has been intensively studied. Our contribution is their automation using
constraint solvers.

Modern constraint solving techniques including QE and SMT have been used
for program analysis and synthesis [18]. A typical application is optimization of
nested loops, especially stencil loops [19-21]. Our optimization can be under-
stood as a variant of such loop optimizations. For instance, introduction of asyn-
chronous execution is essentially an exchange of the inner and outer loops, which
is a typical application of constraint solving techniques. From this perspective,
the distinctive feature of our study is that it deals with graph manipulation
programs. Graph manipulation tends to form irregular complex loops and may
not be captured by formalisms supported by constraint solvers, e.g., a system
of linear inequalities. Our study focused on VcGP rather than general graph
processing and provided a supporting lemmas (Lemmas 1 and 2) that enable
constraint solvers to perform optimizations.

Most related systems are Elixir [6,22] and Distributed SociaLite [23]. Elixir
automatically derives efficient distributed graph processing from the logical spec-
ifications of the output graph. It uses an SMT solver to specify the vertices that
should be processed at each step. Distributed Socialiite is a graph processing
language similar to Datalog. It accelerates SSSP-like computation by using the
generalized A-stepping algorithm [24], in which vertices are processed according
to a special priority, if a certain kind of monotonicity property is detected. Both
start from declarative programs and apply nontrivial optimizations by analyz-
ing certain properties. Unfortunately, both require programmers to provide some
clues for optimizations. For instance, with Elixir, programmers should specify the
conditions for sending messages and the priorities for processing vertices. With
Distributed SociaLite, the generalized A-stepping is applied only if programmers
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use certain operators. In addition, both frameworks are based on asynchronous
execution. We have shown that intensive use of constraint solvers enables many
interesting optimizations to be applied to nearly annotation-free deterministic
programs.

6 Conclusion and Future Work

We have developed a method of automatically applying nontrivial optimizations
to declarative VcGP programs. The key is the use of constraint solvers to reveal
the program properties. In our experiments, optimizations were achieved within
a realistic time frame and led to significant performance improvement.

We are developing another backend of Fregel based on Pregel4+°. The new
backend will enable more rigorous evaluation of our method.

Our approach to optimize Fregel programs can be used for other declarative
graph processing frameworks [6,7,22,23,25]. These frameworks generally require
users to write specific programs (e.g., adding annotations and/or invoking certain
API functions) in order to apply nontrivial optimizations. It would be interesting
if constraint solvers enabled these optimizations to be applied to naively written
programs.
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