®

Check for
updates

Equivalence Checking
of Non-deterministic Operations

Sergio Antoy*® and Michael Hanus?(®)

1 Computer Science Department, Portland State University, Portland, OR, USA
antoy@cs.pdx.edu
2 Institut fiir Informatik, CAU Kiel, 24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Checking the semantic equivalence of operations is an impor-
tant task in software development. For instance, regression testing is a
routine task when software systems are developed and improved, and
software package managers require the equivalence of operations in dif-
ferent versions of a package within the same major version. In order to
support a good automation of this process, a solid foundation is required.
It has been shown that the notion of equivalence is not obvious when
non-deterministic features are present. In this paper, we discuss a general
notion of equivalence in functional logic programs and develop a practical
method to check it. Our method can be integrated in a property-based
testing tool which is used in a software package manager to check the
semantic versioning of software packages.

1 Motivation

Functional logic languages combine the most important features of functional
and logic programming in a single language (see [4,14] for recent surveys). In
this paper we consider Curry [18], a contemporary functional logic language
which conceptually extends Haskell with common features of logic program-
ming. Hence, Curry combines the demand-driven evaluation of functions with
non-deterministic evaluation of operations defined by overlapping rules. As dis-
cussed in [6], the combination of these features poses new issues for defining the
equivalence of expressions. Actually, three different notions of equivalence can
be distinguished:

1. Ground equivalence: Two expressions are equivalent if they have the same
results when their variables are replaced by ground terms.

2. Computed-result equivalence: Two expressions are equivalent if they have the
same outcomes, i.e., variables in expressions are considered as free variables
which might be instantiated during the evaluation process.

3. Contextual equivalence: Two expressions are equivalent if they produce the
same outcomes in all possible contexts.

© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 149-165, 2018.
https://doi.org/10.1007/978-3-319-90686-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_10&domain=pdf
http://orcid.org/0000-0003-4522-7658
http://orcid.org/0000-0002-4953-8202

150 S. Antoy and M. Hanus

Ground equivalence seems reasonable for functional programs since free variables
are not allowed in expressions to be evaluated in functional programming. For
instance, consider the Boolean negation defined by

not False = True
not True = False

The expressions not (not x) and x are ground equivalent, which can be checked
easily by instantiating x to True and False, respectively, and evaluating both
expressions. However, these expressions are not computed-result equivalent w.r.t.
the narrowing semantics of functional logic programming: the expression not
(not x) evaluates to the two outcomes {x = False} False and {x = True} True,!
whereas the expression x evaluates to the single result {} x without instantiating
the free variable x. Due to these differences, Bacci et al. [6] states that ground
equivalence is “the (only possible) equivalence notion used in the pure functional
paradigm.” As we will see later, this is not true since contextual equivalence is
also relevant in non-strict functional languages.

The previous example shows that the evaluation of ground equivalent expres-
sions might result in answers with different degrees of instantiation. However,
the presence of logic variables and non-determinism might also lead to differ-
ent results when ground equivalent expressions are put in a same context. For
instance, consider the following contrived example [6] (a more natural example
will be shown later):

f x=20C (h x) gA=2CA

h A=A
The expressions £ x and g x are computed-result equivalent since the only com-
puted result is {x = A} ¢ A. Now consider the following operation:

k (C x) B=B

Then the expression k (£ x) x evaluated lazily produces {x = B} B, whereas the
expression k (g x) x produces no values. In fact, the evaluation of g x instan-
tiates (narrows) x to A, and k (C A) A is irreducible. Hence, the ground and
computed-result equivalent expressions are not contextually equivalent.

The equivalence of operations is important when existing software packages
are further developed, e.g., refactored or implemented with more efficient data
structures. In this case, we want to ensure that operations available in the API
of both versions of a software package are equivalent, as long as we do not
introduce intended API changes. For this purpose, software package manage-
ment systems associate version numbers to software packages. In the semantic
versioning standard,? a version number consists of major, minor, and patch num-
ber, separated by dots, and an optional pre-release specifier. For instance, 2.0.1
and 3.2.1-alpha.2 are valid version numbers. An intended and incompatible
change of API operations is marked by a change in the major version number.
Thus, operations available in two versions of a package with identical major

! Note that functional logic languages compute a substitution as well as a value as a
result.
2 http://www.semver.org.

http://www.semver.org

Equivalence Checking of Non-deterministic Operations 151

version numbers should be equivalent. Unfortunately, most package managers
do not check this equivalence but leave it as a recommendation to the package
developer.

Improving this situation is the motivation for our work. We want to develop
a tool to check the equivalence of two operations. Since we aim to integrate this
kind of semantic versioning checking in a practical software package manager
[16], the tool should be fully automatic. Thus, we are going to test equivalence
properties rather than verify them. Although this might be unsatisfactory from
a theoretical point of view, it could be quite powerful from a practical point of
view and might prevent wasting time to prove incorrect properties. For instance,
property-based test tools like QuickCheck [8] provide great confidence in pro-
grams by checking program properties with many test inputs. For instance, we
could check the equivalence of two operations f and f’ by checking the equa-
tion f z = f’ x with many values for z. The previous discussion of equivalence
criteria shows that this property checks only the ground equivalence of f and
f'. However, in the context of semantic versioning checking, ground equivalence
is too restricted since equivalent operations should deliver the same results in
any context. Therefore, contextual equivalence is desired. Actually, this kind of
equivalence has been proposed in [5] as the only notion to state the correctness of
an implementation w.r.t. a specification in functional logic programming. Unfor-
tunately, the automatic checking of contextual equivalence with property-based
test tools does not seem feasible due to the unlimited number of possible con-
texts. Therefore, Bacci et al. [6] state: “In a test-based approach. .. the addition
of a further outer context would dramatically alter the performance.” Therefore,
the authors abandon the use of a standard property-based test tool in their work.

In this paper we show that we can use such tools for contextual equivalence
(and, thus, semantic versioning) checking if we use an appropriate encoding of
test data. For this purpose, we develop some theoretical results that allow us
to reduce the contexts to be considered for equivalence checking. From these
results, we show how property-based testing can be used for this purpose. Based
on these results, we extend an existing property-based test tool for functional
logic programs [15] to test the equivalence of operations. This is the basis of a
software package manager with semantic versioning checking [16].

In the next section, we review the main concepts of functional logic pro-
gramming and Curry. Section 3 defines our notion of equivalence which is used
in Sect.4 to develop practically useful characterizations of equivalent opera-
tions. Section 5 shows how to use these criteria in a property-based testing tool.
Section 6 discusses some related work before we conclude.

2 Functional Logic Programming and Curry

We briefly review those elements of functional logic languages and Curry that are
necessary to understand the contents of this paper. More details can be found in
surveys on functional logic programming [4,14] and in the language report [18].

Curry is a declarative multi-paradigm language combining in a seamless way
features from functional and logic programming. The syntax of Curry is close to

152 S. Antoy and M. Hanus

Haskell [23]. In addition to Haskell, Curry allows free (logic) variables in condi-
tions and right-hand sides of rules. Thus, expressions in Curry programs contain
operations (defined functions), constructors (introduced in data type declara-
tions), and wvariables (arguments of operations or free variables). Function calls
with free variables are evaluated by a possibly non-deterministic instantiation of
demanded arguments [2]. In contrast to Haskell, rules with overlapping left-hand
sides are non-deterministically (and not sequentially) applied.

Ezample 1. The following example shows the definition of a non-deterministic
list insertion operation in Curry:

insert :: a — [a]l] — [al
insert x ys =x : ys
insert x (y:ys) = y : insert x ys

For instance, the expression insert 0 [1,2] non-deterministically evaluates to
one of the values [0,1,2], [1,0,2], or [1,2,0]. Based on this operation, we can
easily define permutations:

perm [] =[]

perm (x:xs) = insert x (perm xs)
Thus, perm [1,2,3,4] non-deterministically evaluates to all 24 permutations of
the input list.

Non-deterministic operations, which are interpreted as mappings from values
into sets of values [13], are an important feature of contemporary functional
logic languages. Using non-deterministic operations as arguments could cause a
semantical ambiguity. Consider the operations

coin = 0 double x = x + x

coin =1
Standard term rewriting produces, among others, the derivation

double coin — coin + coin — O + coin — 0 + 1 — 1

whose result is (presumably) unintended. Therefore, Gonzélez-Moreno et al. [13]
proposed the rewriting logic CRWL as a logical foundation for declarative pro-
gramming with non-strict and non-deterministic operations. This logic specifies
the call-time choice semantics [19] where values of the arguments of an opera-
tion are set, though not computed, before the operation is evaluated. In a lazy
strategy, this is naturally obtained by sharing. For instance, the two occurrences
of coin in the derivation above are shared so that “double coin” has only two
results: 0 or 2. Since standard term rewriting does not conform to the intended
call-time choice semantics, other notions of rewriting have been proposed to for-
malize this idea, like graph rewriting [11,12] or let rewriting [21]. In this paper,
we use a simple reduction relation that we sketch without giving all details
(which can be found in [21]).

In the following, we ignore free (logic) variables since they can be con-
sidered as syntactic sugar for non-deterministic data generator operations [3].
Thus, a wvalue is an expression without operations or free variables. To cover

Equivalence Checking of Non-deterministic Operations 153

non-strict computations, expressions can also contain the special symbol L
to represent undefined or unevaluated values. A partial value is a value con-
taining occurrences of L. A partial constructor substitution is a substitution
that replaces variables by partial values. A context C[-] is an expression with
some “hole”. The reduction relation we use throughout this paper is defined
as follows (conditional rules are not considered for the sake of simplicity):

Fun C[f o(t1)...0(tn)] — Clo(r)] where f t1...t, = r is a program rule
and o a partial constructor substitution

Bot Cle] — C[1] where e # L
The first rule models call-time choice: if a rule is applied, the actual arguments of
the operation must have been evaluated to partial values. The second rule models
non-strictness by allowing the evaluation of any subexpression to an undefined
value (which is intended if the value of this subexpression is not demanded). As
usual, — denotes the reflexive and transitive closure of this reduction relation.
The equivalence of this rewrite relation and CRWL is shown in [21].

3 Equivalent Operations

As discussed above, equivalence of operations can be defined in different ways.
Ground equivalence and computed result equivalence only compare the values
of applications. This is too weak since some operations have no finite values.

Ezxample 2. Consider the following operations that generate infinite lists of num-
bers:

intsl n = n : intsl (n+1) ints2 n = n : ints2 (n+2)
Since these operations do not produce finite values, we cannot detect any dif-
ference when comparing only computed results. However, they behave different
when put into some context, e.g., an operation that selects the second element
of a list:

snd (x:y:zs) =y

Now, snd (ints1l 0) and snd (ints2 0) evaluate to 1 and 2, respectively.

Therefore, we do not consider these operations as equivalent. This motivates
the following notion of equivalence for possibly non-terminating and non-
deterministic operations.?

Definition 1 (Equivalence). Let fi, fo be operations of type T — 7'. f1 is
equivalent to fo iff, for any expression Ev, E1 — v iff By — v, where v is a
value and Fs is obtained from Ey by replacing each occurrence of f1 with fo.

This notion of equivalence conforms with the usual notion of contextual equiv-
alence in programming languages (e.g., see [25] for a tutorial). It was already

3 The extension to operations with several arguments is straightforward. For the sake
of simplicity, we formally define our notions only for unary operations.

154 S. Antoy and M. Hanus

proposed in [5] as the notion of equivalence for functional logic programs and
also defined in [6] as “contextual equivalence” for functional logic programs.

Thus, ints1 and ints2 are not equivalent. Moreover, even terminating opera-
tions that always compute same results might not be equivalent if put into some
context.

Example 3. Consider the definition of lists sorted in ascending order:

sorted [] = True

sorted [_] = True

sorted (x:y:zs) = x<=y && sorted (y:zs)
We can use this definition and the definition of permutations above to provide
a precise specification of sorting a list by computing some sorted permutation:

sort xs | sorted ys = ys where ys = perm xs

We might try to obtain an even more compact formulation by defining the
“sorted” property as an operation that is the (partial) identity on sorted lists:
idSorted [] =[]
idSorted [x] = [x]
idSorted (x:y:zs) | x<=y = x : idSorted (y:zs)
Then we can define another operation to sort a list by composing perm and
idSorted:

sort’ xs = idSorted (perm xs)

Although both sort and sort’ compute sorted lists, they might behave differently
in a same context. For instance, suppose we want to compute the minimum of a
list by returning the head element of the sorted list:

head (x:xs) = x

Then head (sort [3,2,1]) returns 1, as expected, but head (sort’ [3,2,1])
returns 1 as well as 2. The latter unintended value is obtained by computing
the permutation [2,3,1] so that head (idSorted [2,3,1]) returns 2, since the
list rest idSorted [3,1] is not evaluated due to non-strictness.

This example shows that our strong notion of equivalence is reasonable. How-
ever, testing this equivalence might require the generation of arbitrary contexts.
Therefore, we show in the next section how to avoid this context generation.

4 Refined Equivalence Criteria

The definition of equivalence as stated in Definition 1 covers the intuition that
equivalent operations can be interchanged at any place in an expression without
changing its value. Proving such a general form of equivalence could be difficult.
Therefore, we define another form of equivalence that is based on an operation
to observe the computed results of the corresponding operations.

Definition 2 (Observable equivalence). Let fi, fo be operations of type T —
7', f1 is observably equivalent to fs iff, for all operations g of type 7" — 7", all
expressions e and values v, g (f1 €) = v iff g (f2 €) = v.

Equivalence Checking of Non-deterministic Operations 155

We can expect that proving observable equivalence is easier than equivalence
since we trade a context made of an arbitrary expression with multiple occur-
rences of a function f with a single function call with a single occurrence of
f. Fortunately, the next theorem shows that proving observable equivalence is
sufficient in general.

Theorem 1. Let f1, fo be operations of type T — 7. f1 and fy are equivalent
iff they are observably equivalent.

Proof. Tt is trivial that equivalence implies observable equivalence. Hence, we
assume that f; and f; are observably equivalent, i.e., for all operations g of type
7' — 7", all expressions e and values v, g (f1 €) — v iff g (f2 €) = v. We show by
induction on the number n of occurrences of the symbol f; the following claim:

If Fy is an expression with n occurrences of fi, Fs is obtained from E; by
replacing each occurrence of f; with fo, and v is a value, then E; — v iff
E2 —*> V.

Base case (n = 0): Since F4 contains no occurrence of f1, Fo = E; and the claim
is trivially satisfied.

Inductive case (n > 0): Assume the claim holds for n — 1 and F; contains n
occurrences of f; and Fy % v for some value v. We have to show that Fy — v
(the opposite direction is symmetric) where Es is obtained from E; by replacing
each occurrence of fi with fo. Let p be a position in Fy with Fi|, = f1 e and e
does not contain any occurrence of fi. Since E; — v, by definition of =, there
is a partial value t; with f; e 5t and By [tl]p = v. We define a new operation
g by

g x = Enlz],
where 2 is a variable that does not occur in Ej. Hence g (fi) — g t; —
Eqt1]p Z v. Our assumption implies g (fa e) — v. By definition of -, there is a
partial value to with g (f2 e) L9ty — Ey [t2]p = v. Since E; [t2]p contains n—1
occurrences of fi, the induction hypothesis implies that Es[ts], — v. Therefore,
E2 = Eg[fz e}p i> Eg[tg]p i> . O

A proof that two operations are observably equivalent could still be difficult since
we have to take all possible observation operations into account. However, the
next result shows that it is sufficient to verify that two operations yield always
the same partial values on identical inputs.

Theorem 2. Let f1, fo be operations of type T — 7'. If, for all expressions e
and partial values t, fi e =t iff fo e — t, then f1 and fo are equivalent.

Proof. By Theorem 1 it is sufficient to show the observable equivalence of f; and
f2. Hence, let g be an operation of type 7 — 7"/, e an expression and v a value with
g (f1e) = v. We have to show that g (f2 €) — v (the other direction is symmetric).
By definition of —, there is some partial value ¢ with f; e = ¢t and g t — v. By the
assumption of the theorem, fo e - t. Hence, g (fa €) — gt — v. O

156 S. Antoy and M. Hanus

Note that the consideration of all partial result values is essential to estab-
lish equivalence. For instance, consider the operations sort and sort’ defined
in Sect.3. Although sort and sort’ compute the same walues, we have that
sort’ [2,3,1] = 2:1 but sort [2,3,1] cannot be derived to 2 : L. Actually,
we have seen that sort and sort’ are not equivalent.

The following result is the converse of Theorem 2. It shows that not only
having the same partial values is a sufficient condition for the equivalence of
function, but also a necessary condition. For partial values ¢t and u, we write
t < w iff ¢ is obtained by one or more applications of the Bot rule to u. It follows
that if u is a partial value of an expression e, then any ¢ < u is also a partial
value of e. If t is a partial value, we denote by f an expression obtained from ¢
by replacing any instance of | in ¢ with a fresh variable.

Theorem 3. Let f1, fo be operations of type T — 7'. If, for some expression
e, the partial values of f1 e differ from those of fo e, then f1 and fo are not
equivalent.

Proof. We construct a function g that, under the statement hypothesis, witnesses
the non-equivalence of fi and fs. Let T} be the set of partial values of f; e and
Ts the set of partial values of fy e. W.l.o.g., we assume that there exists some
partial value ¢t € Ty such that ¢ & Ts. Let g be defined by the single rule:

gt—0

Then, g (f1 €) = g t — 0, whereas we show that g (fo €) 7 0. Suppose the

contrary. Then, it must be that f, e — u with u is an instance of . This implies
t < u, which in turn implies t € T5. O

The next corollary is useful to avoid the consideration of all argument expressions
in equivalence proofs.

Corollary 1. Let f1, fo be operations of type T — 7'. If, for all partial values t
and t', fit St iff fo t = t', then fi and fo are equivalent.

Proof. Assume that f; t = ' iff fo t = ' holds for all partial values ¢ and t'.
Consider an expression e and a partial value t; such that f; e — t;. By definition
of 5, there is a partial value to with e — to and f; to — t;. Our assumption
implies fo tg % t;. Hence fo e = fo tg = t1. Since the other direction is
symmetric, Theorem 2 implies the equivalence of f; and fs. O

Hence, we have a sufficient criterion for equivalence checking which does not
require the enumeration of arbitrary contexts. Instead, it is sufficient to test the
equivalence on all partial values. Such a test can be performed by property-based
test tools, as shown in the next section.

One may wonder whether the consideration of values instead of partial values
is enough for equivalence checking. The next example shows that the answer is
negative.

Ezxample 4. Consider the following operations that take and return Booleans.

Equivalence Checking of Non-deterministic Operations 157

f1 True = True f2 _ = True
f1 False = True

Functions £1 and f£2 behave identically on every input value. However, £1 L
has no value, whereas £2 | has value True. Thus, values as arguments are not
as discriminating as partial values to expose a difference in behavior, whereas
partial values are as discriminating as expressions. Actually, £1 and £2 are not
equivalent: consider the operation failed which has no value.* Then £2 failed
has value True whereas £1 failed has no value.

Corollary 1 requires to compare all partial result values and not just computed
results. The former is more laborious since an expression might evaluate to many
partial values even if it has a single value. For instance, consider the list generator

fromTo m n = if m>n then [] else m : fromTo (m+1) n

The expression fromTo 1 5 evaluates to the single value [1,2,3,4,5]. According
to the reduction relation defined in Sect. 2, the same expression reduces to the
partial values L, L : 1, 1:1, L:L:1, 1:1:1, L:2:1,1:2:1, ... 1If
operations are non-terminating, it is necessary to consider partial result values
in general. For instance, ints1 0 and ints2 0 do not evaluate to a value but they
evaluate to the different partial values 0: 1 : L and 0: 2 : |, respectively, which
shows the non-equivalence of ints1 and ints2 by Corollary 1. Thus, one may
wonder whether for “well behaved” operations it suffices to consider only result
values. This good behavior is captured by the property that a function returns
a value for any argument value, see Definition 3. Unfortunately, the answer is
negative.

Definition 3 (Terminating, totally defined). Let f be an operation of type
7 — 7. f is terminating if, for all values t of type T, any rewrite sequence
ft—ty —to — -+ is finite. f is totally defined if, for all values t of type T,
rewrite rule Fun is applicable to f t.

Requiring termination as a condition of good behavior is necessary, as the oper-
ations intsl and ints2 show. Total definedness is also necessary, as can be seen
by this example:

gl x = 1 : head []
g2 x = 2 : head []
gl and g2 are terminating but head is not totally defined. Actually, both g1 0

and g2 0 have no value but they are not equivalent: head (g1 0) and head (g2
0) evaluate to 1 and 2, respectively.

Example 5. Functions h1l and h2, defined below, are totally defined and termi-
nating. For any Boolean value ¢, h1 ¢t and h2 ¢t produce the same value result,
namely ¢. However, hl1 and h2 are not observably equivalent when applied to
argument failed as witnessed by g.

hl True = Just True h2 x = Just x

hl False Just False g (Just _) =0

4 A possible definition is: failed = head [].

158 S. Antoy and M. Hanus

Note that we have to use partial input values for equivalence tests even if all
relevant operations are terminating and totally defined. This has been shown in
Example 4, since both operations of this example are terminating and totally
defined.

Now we have enough refined criteria to implement an equivalence checker
with a property-based checking tool.

5 Property-Based Checking

Property-based testing is a useful technique to obtain reliable software systems.
Testing cannot verify the correctness of programs, but it can be performed auto-
matically and it might prevent wasting time when attempting to prove incorrect
properties. If proof obligations are expressed as properties, i.e., Boolean expres-
sions parameterized over input data, and we test these properties with a lot of
input data, we have a higher confidence in the correctness of the properties. This
motivates the use of property testing tools which automate the checking of prop-
erties by random or systematic generation of test inputs. Property-based testing
has been introduced with the QuickCheck tool [8] for the functional language
Haskell and adapted to other languages, like PrologCheck [1] for Prolog, PropEr
[22] for the concurrent functional language Erlang, and EasyCheck [7] and Cur-
ryCheck [15] for the functional logic language Curry. If the test data is generated
in a systematic (and not random) manner, like in SmallCheck [26], GAST [20],
EasyCheck [7], or CurryCheck [15], these tools can actually verify properties for
finite input domains. In the following, we show how to extend the property-based
test tool CurryCheck to support equivalence checking of operations.

Properties can be defined in source programs as top-level entities with result
type Prop and an arbitrary number of parameters. CurryCheck offers a predefined
set of property combinators to define properties. In order to compare expressions
involving non-deterministic operations, CurryCheck offers the property “<~>”
which has the type a — a — Prop. It is satisfied if both arguments have identical
result sets. For instance, we can state the requirement that permutations do not
change the list length by the property

permLength xs = length (perm xs) <”> length xs

Since the left argument of “<~>” evaluates to many (expectedly identical) val-
ues, it is relevant that “<”>” compares result sets (rather than multi-sets). This
is reasonable from a declarative programming point of view, since it is irrelevant
how often some result is computed.

Corollary 1 provides a specific criterion for equivalence testing: Two opera-
tions £1 and £2 are equivalent if, for any partial argument value, they produce
the same partial result value. Since partial values cannot be directly compared,
we model partial values by extending total values with an explicit L construc-
tor. For instance, consider the data types used in Sect. 1. Assume that they are
defined by

data AB

Al B

data C C AB

Equivalence Checking of Non-deterministic Operations 159

We define their extension to partial values by renaming all constructors and
adding a L constructor to each type:

data P_AB = Bot_AB | P_A | P_B

data P_.C = Bot_C | P_C P_AB
In order to compare the partial results of two operations, we introduce operations
that return the partial value of an expression w.r.t. a given partial value, i.e., the
expression is partially evaluated up to the degree required by the partial value
(and it fails if the expression has not this value). These operations can easily be
implemented for each data type:

peval_AB :: AB — P_AB — P_AB

peval_AB _ Bot_AB = Bot_AB -- no evaluation
peval_AB A P_A = P_A

peval_AB B P_B = P_B

peval C :: C — P_C — P_C

peval_C _ Bot_C = Bot_C -- no evaluation

peval_C (C x) (P_C y) = P_C (peval_AB x y)

Now we can test the equivalence of £ and g by evaluating both operations to
the same partial value. Thus, a single test consists of the application of each
operation to an input x and a partial result value p together with checking
whether these applications produce p:
f_equiv_g x p = peval_C (f x) p <> peval_C (g x) p

To check this property, CurryCheck systematically enumerates partial values for
x (see below how this can be implemented) and values for p. During this process,
CurryCheck generates the inputs x = failed and p = (P_C Bot_AB) for which the
property does not hold. This shows that £ and g are not equivalent.

In a similar way, we can model partial list result values and test whether sort
and sort’, as defined in Sect. 3, are equivalent. If the domain of list elements
has three values (like the standard type Ordering with values LT, EQ, and GT),
CurryCheck reports a counter-example (a list with three different elements com-
puted up to the first element) with the 89th test. The high number of tests is
due to the fact that test inputs as well as partial output values are enumerated
to test each property.

The number of test cases can be significantly reduced by a different encoding.
Instead of enumerating operation inputs as well as partial result values, we can
enumerate operation inputs only and use a non-deterministic operation which
returns all partial result values of some given expression. For our example types,
these operations can be defined as follows:

pvalOf_AB :: AB -> P_AB

pvalOf_AB _ = Bot_AB
pvalOf_AB A = P_A
pvalOf_AB B = P_B
pvalOf_C :: C -> P_C
pvalOf_C _ = Bot_C

pval0f_C (C x) = P_C (pvalOf_AB x)

160 S. Antoy and M. Hanus

Now we can test the equivalence of £ and g by checking whether both operations
have the same set of partial values for a given input:

f_equiv_g x = pvalOf_C (f x) <> pvalOf_C (g x)
CurryCheck returns the same counter-example as before. This is also true for
the permutation sort example, but now the counter-example is found with the
11th test.

Due to the reduced search space of our second implementation of equivalence
checking, we might think that this method should always be preferred. However,
in case of non-terminating operations, it is less powerful. For instance, consider
the operations ints1 and ints2 of Example 2. Since ints1 0 has an infinite set
of partial result values, the equivalence test with pval0f operations would try to
compare sets with infinitely many values. Thus, it would not terminate and does
not yield a counter-example. However, the equivalence test with peval operations
returns a counter-example by fixing a partial term (e.g., a partial list with at
least two elements) and evaluating ints1 and ints2 up to this partial list.

Based on these considerations, equivalence checking is implemented in Cur-
ryCheck as follows. First, CurryCheck provides a specific “operation equivalence”
property denoted by <=>. Hence,

f_equiv_g = f <=> g
denotes the property that £ and g are equivalent operations. In contrast to
other properties like “<~>”, which are implemented by some Curry code [7], the
property “<=> is just a marker® which will be transformed by CurryCheck into
a standard property based on the results of Sect. 4. For this purpose, CurryCheck
transforms the property above as follows:

1. If both operations £ and g are terminating, then the sets of partial result
values are finite so that these sets can be compared in a finite amount of
time. Thus, if T is the result type of £ and g, the auxiliary operation pvalOf_T
(and similarly for all types on which T depends) is generated as shown above
and the following property is generated:

f_equiv_g x = pvalOf_T (f x) <™> pvalOf_T (g x)

2. Otherwise, for each partial value, CurryCheck tests whether both operations
compute this result. Thus, if T is the result type of £ and g, the auxiliary
operation peval_T (and similarly for all types on which T depends) is generated
as shown above and the following property is generated:

f_equiv_g x p = peval_T (f x) p <™> peval_T (g x) p

In order to decide between these transformation options, CurryCheck uses the
analysis framework CASS [17] to approximate the termination behavior of both
operations. If the termination property of both operations can be proved (for
this purpose, CASS uses an ordering on arguments in recursive calls), the first
transformation is used, otherwise the second. If the termination cannot be proved

5 CurryCheck also ensures that both arguments of “<=>” are defined operations,
otherwise an error is reported.

Equivalence Checking of Non-deterministic Operations 161

but the programmer is sure about the termination of both operations, he can
also mark the property with the suffix *TERMINATE to tell CurryCheck to use the
first transformation.

Example 6. Consider the recursive and non-recursive definition of the McCarthy
91 function:

mc9lr n = if n > 100 then n-10 else mc91lr (mc9ir (n+11))

mc9in n = if n > 100 then n-10 else 91

Since CASS is not able to check the termination of mc91ir, we annotate the
equivalence property so that CurryCheck uses the first transformation:

mc91r_equiv_mc91n’ TERMINATE = mc91r <=> mc9in

Due to the results of Sect. 4, the generated properties must be checked with all
partial input values. In the default mode, CurryCheck generates (total) values
for input parameters of properties. However, CurryCheck also supports the def-
inition of user-defined generators for input parameters (see [15] for details). For
instance, one can define a generator for partial Boolean values by

genBool = genConsO failed ||| genConsO False ||| genConsO True

CurryCheck automatically defines generators for partial values of all data types
occurring in equivalence properties.

According to the results of Sect. 4, checking the above properties allows us
to find counter-examples for non-equivalent operations if the domain of values
is finite (as in the example of Sect. 1) or we enumerate enough test inputs. An
exception are specific non-terminating operations. For instance, consider the
contrived operations

k1 = [loop,Truel

k2 = [loop,False]
where the evaluation of loop does not terminate. The non-equivalence of k1 and
k2 can be detected by evaluating them to [L, True] and [L,False], respectively.
Since a systematic enumeration of all partial values might generate the value
[True, L] before [L, True|, CurryCheck might not find the counter-example due
to the non-termination of loop (since CurryCheck performs all tests in a sequen-
tial manner). Fortunately, this is a problem which rarely occurs in practice. Not
all non-terminating operations are affected by this problem but only operations
that loop without producing any data. For instance, the non-equivalence of ints1
and ints2 of Example 2 can be shown with our approach. Such operations are
called productive in [16]. Intuitively, productive operations always generate some
data after a finite number of steps.

In order to avoid such non-termination problems when CurryCheck is used
in an automatic manner (e.g., by a software package manager), CurryCheck has
an option for a “safe” execution mode. In this mode, operations involved in an
equivalence property are analyzed for their productivity behavior. If it cannot
be proved that an operation is productive (by approximating their run-time
behavior with CASS), the equivalence check for this operation is ignored. This
ensures the termination of all equivalence tests. The restriction to productive

162 S. Antoy and M. Hanus

operations is not a serious limitation since, as evaluated in [16], most operations
occurring in practical programs are actually productive. If there are operations
where CurryCheck cannot prove productivity but the programmer is sure about
this property, the property can be annotated with the suffix PRODUCTIVE so that
it is also checked in the safe mode.

Example 7. Consider the definition of all prime numbers by the sieve of Eratos-
thenes:
primes = sieve [2..]
where sieve (x:xs) = x : sieve (filter (\y -> y ‘mod‘ x > 0) xs)
After looking at the first four values of this list, a naive programmer might think
that the following prime generator is much simpler:

dummy_primes = 2 : [3,5..]

Testing the equivalence of these two operations is not possible in the safe mode,
since the productivity of primes depends on the fact that there are infinitely
many prime numbers. Hence, a more experienced programmer would annotate
the equivalence test as

primes_equiv’PRODUCTIVE = primes <=> dummy_primes

so that it will be tested even in the safe mode and CurryCheck finds a counter-
example (evaluating the result list up to the first five elements) to this property.

6 Related Work

Equivalence of operations was defined for functional logic programs in [5]. There,
this notion is applied to relate specifications and implementations. Moreover, it
is shown how to use specifications as dynamic contracts to check the correct
behavior of implementations at run-time, but static methods to check equiva-
lence are not discussed.

Bacci et al. [6] formalized various notions of equivalence, as reviewed in
Sect. 1, and developed the tool AbsSpec which derives specifications, i.e., equa-
tions up to some fixed depth of the involved expressions, from a given Curry pro-
gram. Although the derived specifications are equivalent to the implementation,
their method cannot be used to check the equivalence of arbitrary operations
(and AbsSpec does no longer work at the time of this writing).

QuickSpec [9] has similar goals as AbsSpec but is based on a different set-
ting. QuickSpec infers specifications in form of equations from a given functional
program but it uses a black box approach, i.e., it uses testing to infer program
properties. Thus, it can be seen as an intermediate approach between AbsSpec
and our approach: similarly to our approach, QuickSpec uses property-based
testing to check the correctness of specifications, but it is restricted to func-
tional programs, which simplifies the notion of equivalence.

Our method to check equality of computed results for all partial values is
also related to test properties in non-strict functional languages [10]. Thanks to
the non-deterministic features of Curry, our approach does not require impure

Equivalence Checking of Non-deterministic Operations 163

features like isBottom or unsafePerformIO, which are used in [10] to compare
partial values.

Partial values as inputs for property-based testing are also used in Lazy
SmallCheck [26], a test tool for Haskell which generates data in a systematic
(not random) manner. Partial input values are used to reduce the number of
test cases: if a property is satisfied for a partial value, it is also satisfied for all
refinements of this partial value so that it is not necessary to test these refine-
ments. Thus, Lazy SmallCheck exploits partial values to reduce the number of
test cases for total values, where in our approach partial values are used to avoid
testing with all possible contexts and to find counter examples which might not
be detected with total values only. In contrast to our explicit encoding of partial
values, which is possible due to the logic features of Curry, Lazy SmallCheck
represents partial values as run-time errors which are observed using imprecise
exceptions [24].

The use of property-based testing to check the equivalence of operations in
a software package manager with support for semantic versioning is proposed
n [16]. This approach concentrates on ensuring the termination of equivalence
checking by introducing the notion of productive operations. However, for termi-
nating operations only ground equivalence is tested so that the proposed seman-
tic versioning checking method is more restricted than in our case. The results
presented in this paper can be used to generalize this semantic versioning tool.

7 Conclusions

We have presented a method to check the equivalence of operations defined by a
functional logic program. This method is useful for software package managers
to provide automatic semantic versioning checks, i.e., to compare two different
versions of a software package, or to check the correctness of an implementation
against a specification. Since we developed our results for a non-strict functional
logic language, the same techniques can be used to test equivalence in purely
functional languages, e.g., for Haskell programs.

We have shown that the general equivalence of operations, which requires
that the same values are computed in all possible contexts, can be reduced to
checking or proving equality of partial results terms. Our results support the
use of automatic property-based test tools for equivalence checking. Although
this method is incomplete, i.e., it does not formally ensure equivalence, it pro-
vides a high confidence and prevent wasting time in attempts to prove incorrect
equivalence properties. Moreover, the presented results could also be helpful for
manual proof construction or using proof assistants.

For future work, we will integrate our method in the software package man-
ager CPM [16]. Furthermore, it is interesting to explore how automatic theorem
provers can be used to verify specific equivalence properties.

Acknowledgments. The authors are grateful to Finn Teegen for constructive remarks
to an initial version of this paper, and to the anonymous reviewers for their helpful

164 S. Antoy and M. Hanus

comments to improve this paper. This material is based in part upon work supported
by the National Science Foundation under Grant No. 1317249.

References

1. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck — property-based testing
in Prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1-17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0_1

2. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776-822 (2000)

3. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczynski, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87-101. Springer, Heidelberg (2006). https://doi.org/10.1007/11799573_9

4. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74-85
(2010)

5. Antoy, S., Hanus, M.: Contracts and specifications for functional logic program-
ming. In: Russo, C., Zhou, N.-F. (eds.) PADL 2012. LNCS, vol. 7149, pp. 33-47.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27694-1_4

6. Bacci, G., Comini, M., Felii, M.A., Villanueva, A.: Automatic synthesis of speci-
fications for first order Curry. In: Principles and Practice of Declarative Program-
ming (PPDP 2012), pp. 25-34. ACM Press (2012)

7. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322-336. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7_23

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming (ICFP
2000), pp. 268-279. ACM Press (2000)

9. Claessen, K., Smallbone, N., Hughes, J.: QUICKSPEC: guessing formal specifications
using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp.
6-21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13977-2_3

10. Danielsson, N.A., Jansson, P.: Chasing bottoms: a case study in program veri-
fication in the presence of partial and infinite values. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 85-109. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27764-4_6

11. Echahed, R., Janodet, J.-C.: On constructor-based graph rewriting systems.
Research report IMAG 985-1, IMAG-LSR, CNRS, Grenoble (1997)

12. Echahed, R., Janodet, J.-C.: Admissible graph rewriting and narrowing. In: Pro-
ceedings of the Joint International Conference and Symposium on Logic Program-
ming (JICSLP 1998), pp. 325-340 (1998)

13. Gonzalez-Moreno, J.C., Hortald-Gonzélez, M.T., Lépez-Fraguas, F.J., Rodriguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. Logic Program. 40, 47-87 (1999)

14. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123-168.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1_6

15. Hanus, M.: CurryCheck: checking properties of curry programs. In: Hermenegildo,
M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 222-239.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_13

https://doi.org/10.1007/978-3-319-07151-0_1
https://doi.org/10.1007/11799573_9
https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1007/978-3-540-78969-7_23
https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1007/978-3-540-27764-4_6
https://doi.org/10.1007/978-3-540-27764-4_6
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-319-63139-4_13

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Equivalence Checking of Non-deterministic Operations 165

Hanus, M.: Semantic versioning checking in a declarative package manager. In:
Technical Communications of the 33rd International Conference on Logic Pro-
gramming (ICLP 2017). OpenAccess Series in Informatics (OASIcs), pp. 6:1-6:16
(2017)

Hanus, M., Skrlac, F.: A modular and generic analysis server system for functional
logic programs. In: Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation (PEPM 2014), pp. 181-188. ACM Press
(2014)

Hanus, M. (ed.): Curry: an integrated functional logic language (vers. 0.9.0) (2016).
http://www.curry-language.org

Hussmann, H.: Nondeterministic algebraic specifications and nonconfluent term
rewriting. J. Logic Program. 12, 237-255 (1992)

Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: GAST: generic auto-
mated software testing. In: Pena, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84-100. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44854-3_6
Loépez-Fraguas, F.J., Rodriguez-Hortald, J., Sanchez-Hernandez, J.: A simple
rewrite notion for call-time choice semantics. In: Proceedings of the 9th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2007), pp. 197-208. ACM Press (2007)

Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifi-
cations with property-based testing. In: Proceedings of the 10th ACM SIGPLAN
Workshop on Erlang, pp. 39-50 (2011)

Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, Cambridge (2003)

Peyton Jones, S., Reid, A., Henderson, F., Hoare, T., Marlow, S.: A semantics
for imprecise exceptions. In: Proceedings of the ACM SIGPLAN 1999 Conference
on Programming Language Design and Implementation (PLDI 1999), pp. 25-36.
ACM Press (1999)

Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378-412.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45699-6_8

Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: auto-
matic exhaustive testing for small values. In: Proceedings of the 1st ACM SIG-
PLAN Symposium on Haskell, pp. 37-48. ACM Press (2008)

http://www.curry-language.org
https://doi.org/10.1007/3-540-44854-3_6
https://doi.org/10.1007/3-540-45699-6_8

	Equivalence Checking of Non-deterministic Operations
	1 Motivation
	2 Functional Logic Programming and Curry
	3 Equivalent Operations
	4 Refined Equivalence Criteria
	5 Property-Based Checking
	6 Related Work
	7 Conclusions
	References

