
John P. Gallagher
Martin Sulzmann (Eds.)

 123

LN
CS

 1
08

18

14th International Symposium, FLOPS 2018
Nagoya, Japan, May 9–11, 2018
Proceedings

Functional and
Logic Programming

Lecture Notes in Computer Science 10818

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

John P. Gallagher • Martin Sulzmann (Eds.)

Functional and
Logic Programming
14th International Symposium, FLOPS 2018
Nagoya, Japan, May 9–11, 2018
Proceedings

123

Editors
John P. Gallagher
Roskilde University
Roskilde
Denmark

and

IMDEA Software Institute
Madrid
Spain

Martin Sulzmann
Karlsruhe University of Applied Sciences
Karlsruhe
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-90685-0 ISBN 978-3-319-90686-7 (eBook)
https://doi.org/10.1007/978-3-319-90686-7

Library of Congress Control Number: 2018941546

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 14th International Symposium on Func-
tional and Logic Programming – FLOPS 2018 – held in Nagoya, Japan, May 9–11,
2018.

FLOPS brings together practitioners, researchers, and implementers of declarative
programming, to discuss mutually interesting results and common problems: theoret-
ical advances, their implementations in language systems and tools, and applications
of these systems in practice. The scope includes all aspects of the design, semantics,
theory, applications, implementations, and teaching of declarative programming.
FLOPS specifically aims to promote cross-fertilization between theory and practice and
among different styles of declarative programming.

The call for papers attracted 41 submissions. Each submission was reviewed by at
least three reviewers, either members of the Program Committee (PC) or external
referees. After careful and thorough discussions, the PC accepted 17 papers. The
program also includes three invited talks by William Byrd, Cédric Fournet, and
Zhenjiang Hu.

The award for best paper was made by the PC to Makoto Hamana for the paper
“Polymorphic Computation Rules: Automated Confluence, Type Inference, and
Instance Validation.”

We would like to thank all invited speakers and authors for their contributions. We
are grateful to the PC and external reviewers for their hard work and the help of the
EasyChair conference management system for making our work of organizing FLOPS
2018 much easier. We thank the general chair, Makoto Tatsuta, for his support
throughout the process and taking on many administrative responsibilities. The local
chair, Koji Nakazawa, and the local Organizing Committee did an excellent job in
setting up the conference and making sure everything ran smoothly.

Finally, we would like to thank our sponsor, Japan Society for Software Science and
Technology (JSSST), Special Interest Group on Programming and Programming
Languages (SIG-PPL), for their continuing support. We acknowledge the cooperation
of ACM SIGPLAN.

March 2018 John P. Gallagher
Martin Sulzmann

Organization

Program Committee

María Alpuente Universitat Politècnica de València, Spain
Nikolaj Bjørner Microsoft, USA
Joachim Breitner University of Pennsylvania, USA
Michael Codish Ben-Gurion University of the Negev, Israel
Carsten Fuhs Birkbeck, University of London, UK
John P. Gallagher Roskilde University, Denmark and IMDEA Software

Institute, Spain
Maria Garcia

De La Banda
Monash University, Australia

Jacques Garrigue Nagoya University, Japan
Samir Genaim Universidad Complutense de Madrid, Spain
Robert Glück University of Copenhagen, Denmark
Siau Cheng Khoo National University of Singapore, Singapore
Naoki Kobayashi The University of Tokyo, Japan
Michael Leuschel University of Düsseldorf, Germany
Kenny Zhuo Ming Lu School of Information Technology, Nanyang Polytechnic,

Singapore
Jan Midtgaard University of Southern Denmark, Denmark
Jorge A. Navas SRI International, USA
Atsushi Ohori Tohoku University, Japan
Bruno C. D. S. Oliveira The University of Hong Kong, SAR China
Andreas Rossberg Google, Germany
Didier Rémy Inria, France
Chungchieh Shan Indiana University, Bloomington, USA
Martin Sulzmann Karlsruhe University of Applied Sciences, Germany
Harald Søndergaard The University of Melbourne, Australia
Kazunori Ueda Waseda University, Japan
Meng Wang University of Kent, UK

Additional Reviewers

Amadini, Roberto
Braüner, Torben
Chitil, Olaf
Escobar, Santiago
Felgenhauer, Bertram
Filinski, Andrzej
Frank, Michael

García-Pérez, Álvaro
Goldberg, Mayer
Iwami, Munehiro
Kaarsgaard, Robin
Kirkeby, Maja
Lo, Siaw Ling
Lucas, Salvador

Martin-Martin, Enrique
Muslimany, Morad
Rowe, Reuben
Saikawa, Takahumi
Sapiña, Julia
Schachte, Peter
Schneider-Kamp, Peter
Shani, Guy
Smallbone, Nick
Stadtmueller, Kai
Stuckey, Peter J.

Ta, Quang-Trung
Tsukada, Takeshi
Tsushima, Kanae
Vazou, Niki
Villanueva, Alicia
Wang, Yanlin
Xie, Ningning
Yang, Linus
Yang, Ye
Zhang, Haoyuan
Zhao, Jinxu

VIII Organization

Abstracts of Invited Talks

Can Programming Be Liberated
from Unidirectional Style?

Zhenjiang Hu

National Institute of Informatics, SOKENDAI, Japan
hu@nii.ac.jp

Abstract. Programs usually run unidirectional; computing output from input
and output is not changeable. It is, however, becoming more and more important
to develop programs whose output is subject to change. One typical example is
data synchronization, where we may want to have a consistent schedule infor-
mation by synchronizing calendars in different formats on various systems,
make a smart watch by synchronizing its configuration with the environment, or
achieve data interoperability by synchronization data among subsystems. This
situation imposes difficulty in using the current unidirectional programming
languages to construct such synchronization programs, because it would require
us to develop and maintain several unidirectional programs that are tightly
coupled and should be kept consistent with each other.

In this talk, I will start by briefly reviewing the current work on bidirectional
programming, a new programming paradigm for developing well-behaved
bidirectional programs in order to solve various synchronization problems. I will
then discuss the essence of bidirectional programming, talk about our recent
progress on putback-based bidirectional programming, and show a framework
for supporting systematical development of bidirectional programs. Finally,
I will highlight its potential application to lay the software foundations for
controlling, integrating, and coordinating decentralized data.

miniKanren: A Family of Languages
for Relational Programming

William E. Byrd

Department of Computer Science and Hugh Kaul Precision Medicine Institute,
University of Alabama at Birmingham, USA

webyrd@uab.edu

Abstract. miniKanren is a family of constraint logic programming languages
designed for exploring relational programming. That is, every program written
in miniKanren represents a mathematical relation, and every argument to that
program can be a fresh logic variable, a ground term, or a partially ground term
containing logic variables. The miniKanren language and implementation has
been carefully designed to support this relational style of programming—for
example, miniKanren uses a complete, biased, interleaving search by default,
and unification always uses the occurs check.

miniKanren provides constraints useful for writing interpreters, type infer-
encers, and parsers as relations. One interesting class of miniKanren programs
are interpreters written for a Turing-complete subset of Lisp, supporting lists,
symbols, mutual recursion, and higher-order functions. Since these interpreters
are written as relations, they can perform advanced tasks such as example-based
program synthesis “for free.” By taking advantage of the declarative properties
of miniKanren, and the semantics of Lisp, we have been able to speed up some
synthesis problems by 9 orders of magnitude with respect to the default
miniKanren search. We are actively exploring how to use machine learning and
neural networks to further improve synthesis search.

miniKanren has also been used to prototype language semantics, similarly to
semantics engineering tools like PLT Redex. One variant of miniKanren—a
Kanren, inspired by aProlog—supports nominal unification, and can be used to
implement capture-avoiding substitution as a relation. miniKanren’s relational
nature makes creating an executable semantics for a language easy in some
ways, frustrating in others.

The most recent use of miniKanren is as the foundation of mediKanren, a
language and system for reasoning over biomedical data sources, as part of the
National Institutes of Health’s National Center For Advancing Translational
Sciences (NCATS) Data Translator project. We have scaled miniKanren to
reason over SemMedDB, a database of 97 million biomedical facts, and are
integrating other data sources into the mediKanren system.

Finally, miniKanren is designed to be easy to understand, teach, implement,
and hack. Implementing the miniKanren core language, microKanren, has
become a standard part of learning miniKanren; as a result, there are hundreds of
implementations of miniKanren, embedded in dozens of host languages. We
have invested great effort in writing accessible books and papers on miniKanren,
giving talks at industry and academic conferences, and teaching summer schools

and tutorials. One interesting result of these efforts is that we have developed a
loose, distributed group of miniKanren researchers around the world.

In my talk I will explore these aspects of miniKanren, describe the lessons
we have learned over the past 15 years, and outline the directions for future
work.

miniKanren: A Family of Languages for Relational Programming XIII

Building Verified Cryptographic
Components Using F*

Cédric Fournet

Microsoft Research
fournet@microsoft.com

Abstract. The HTTPS ecosystem includes communications protocols such as
TLS and QUIC, the X.509 public key infrastructure, and various supporting
cryptographic algorithms and constructions. This ecosystem remains surprisingly
brittle, with practical attacks and emergency patches many times a year. To
improve their security, we are developing high-performance, standards-
compliant, formally verified implementation of these components. We aim for
our verified components to be drop-in replacements suitable for use in main-
stream web browsers, servers, and other popular tools.

In this talk, I will give an overview of our approach and our results so far.
I will present our verification toolchain, based on F*: a programming language
with dependent types, programmable monadic effects, support for both
SMT-based and interactive proofs, and extraction to C and assembly code. I will
also illustrate its application using security examples, ranging from the functional
correctness of optimized implementations of cryptographic algorithms to the
security of (fragments of) the new TLS 1.3 Internet Standard.

See https://fstar-lang.org/ for an online tutorial and research papers on F*, and
https://project-everest.github.io/ for its security applications to cryptographic
libraries, TLS, and QUIC.

Contents

Formal Verification of the Correspondence Between Call-by-Need
and Call-by-Name . 1

Masayuki Mizuno and Eijiro Sumii

Direct Encodings of NP-Complete Problems into Horn Sequents
of Multiplicative Linear Logic . 17

Satoshi Matsuoka

k to SKI, Semantically: Declarative Pearl . 33
Oleg Kiselyov

Program Extraction for Mutable Arrays . 51
Kazuhiko Sakaguchi

Functional Pearl: Folding Polynomials of Polynomials 68
Chen-Mou Cheng, Ruey-Lin Hsu, and Shin-Cheng Mu

A Functional Perspective on Machine Learning via Programmable
Induction and Abduction . 84

Steven Cheung, Victor Darvariu, Dan R. Ghica, Koko Muroya,
and Reuben N. S. Rowe

Polymorphic Rewrite Rules: Confluence, Type Inference,
and Instance Validation . 99

Makoto Hamana

Confluence Modulo Equivalence with Invariants in Constraint
Handling Rules . 116

Daniel Gall and Thom Frühwirth

On Probabilistic Term Rewriting. 132
Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada

Equivalence Checking of Non-deterministic Operations 149
Sergio Antoy and Michael Hanus

Optimizing Declarative Parallel Distributed Graph Processing by Using
Constraint Solvers . 166

Akimasa Morihata, Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu,
and Hideya Iwasaki

Breaking Symmetries with Lex Implications . 182
Michael Codish, Thorsten Ehlers, Graeme Gange, Avraham Itzhakov,
and Peter J. Stuckey

Model Checking Parameterized by the Semantics in Maude 198
Adrián Riesco

Automated Amortised Resource Analysis for Term Rewrite Systems 214
Georg Moser and Manuel Schneckenreither

A Common Framework Using Expected Types for Several Type
Debugging Approaches . 230

Kanae Tsushima and Olaf Chitil

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 247
Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal

Cheap Remarks About Concurrent Programs . 264
Michael Walker and Colin Runciman

Author Index . 281

XVI Contents

Formal Verification
of the Correspondence Between
Call-by-Need and Call-by-Name

Masayuki Mizuno(B) and Eijiro Sumii

Tohoku University, Sendai, Japan
mizuno@sf.ecei.tohoku.ac.jp

Abstract. We formalize the call-by-need evaluation of λ-calculus (with
no recursive bindings) and prove its correspondence with call-by-name,
using the Coq proof assistant.

It has been long argued that there is a gap between the high-level
abstraction of non-strict languages—namely, call-by-name evaluation—
and their actual call-by-need implementations. Although a number of
proofs have been given to bridge this gap, they are not necessarily suit-
able for stringent, mechanized verification because of the use of a global
heap, “graph-based” techniques, or “marked reduction”. Our technical
contributions are twofold: (1) we give a simpler proof based on two forms
of standardization, adopting de Bruijn indices for representation of (non-
recursive) variable bindings along with Ariola and Felleisen’s small-step
semantics, and (2) we devise a technique to significantly simplify the
formalization by eliminating the notion of evaluation contexts—which
have been considered essential for the call-by-need calculus—from the
definitions.

1 Introduction

Background. The call-by-name evaluation strategy has been considered the high-
level abstraction of non-strict functional languages since Abramsky [1] and Ong
[20] adopted call-by-name evaluation to weak head-normal forms as a formalism
of laziness. However, when it comes to implementations, call-by-name as it is
does not lead to efficient execution because function arguments are evaluated
every time they are needed. Therefore, most implementations adopt the call-by-
need strategy [27], that is: when a redex is found, it is saved in a freshly allocated
memory region called a thunk ; when the redex needs to be evaluated, the thunk
is updated with the value of the redex for later reuse.

There has been a large amount of research to bridge the gap between call-
by-name and call-by-need by proving their correspondence, that is,

if the call-by-need evaluation of a term results in a value, its call-by-name
evaluation results in a corresponding value, and vice versa.

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 1–16, 2018.
https://doi.org/10.1007/978-3-319-90686-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_1&domain=pdf

2 M. Mizuno and E. Sumii

For example, Launchbury [16] defined natural (or “big-step”) semantics for call-
by-need evaluation (with mutually recursive bindings) and proved its adequacy
through denotational semantics. Ariola and Felleisen [4] and Maraist et al. [17]
developed small-step call-by-need operational semantics, and proved their cor-
respondence to call-by-name. Kesner [15] gave an alternative proof, based on
normalization with non-idempotent intersection types, using Accattoli et al. [2]’s
call-by-need semantics.

Existing formalisms and our contribution. In this paper, we mechanize a formal-
ization of the call-by-need evaluation and its correspondence with call-by-name,
using the Coq proof assistant.1 To this goal, after careful design choices, we adapt
Ariola and Felleisen’s small-step semantics, and give a simpler proof based on
two forms of standardization.

In what follows, we review existing formalisms to explain our choices. Several
abstract machines (e.g. [11,14,21]) have been proposed for call-by-need evalu-
ation, but they are generally too low-level for formal verification of correspon-
dence to call-by-name. Launchbury [16] defined call-by-need natural semantics
Γ : e ⇓ Δ : z, meaning “term e under store Γ evaluates to value z together
with the modified store Δ”. Ariola and Felleisen [4] and Maraist et al. [17] inde-
pendently defined small-step reduction based on let-bindings: let x = M in N
represents term N with a thunk M pointed to by x. For example, in Ariola and
Felleisen’s semantics, the term (λx.xx)((λy.y)(λz.z)) is reduced as follows:

(λx.xx)((λy.y)(λz.z))
→ let x = (λy.y)(λz.z) in xx

— x is bound to (λy.y)(λz.z)
→ let x = (let y = λz.z in y) in xx

— x is evaluated and y is bound to λz.z
→ let x = (let y = λz.z in λz.z) in xx

— y is substituted with its value
→ let y = λz.z in let x = λz.z in xx

— let-bindings are flattened
→ . . .

Note, in particular, that the underlined let-binding (of y) is moved forward
outside the other let-binding (of x). Such “reassociation” of let-bindings is also
required for reductions like (let x = . . . in λy.x)z → let x = . . . in (λy.x)z.

Variable bindings have been a central topic in the theory of formal languages.
Choice of a representation of bindings—such as de Bruijn indices [10], locally
nameless representation [13,18,19], or (parametric) higher order abstract syntax
(PHOAS) [8,22]—is particularly crucial for formal definitions and proofs on proof
assistants. We adopt de Bruijn indices along with the reduction in Ariola and
Felleisen [4] and Maraist et al. [17] because of their relative simplicity when
manipulating the bindings of variables to thunks. (By contrast, Launchbury’s
natural semantics is based on a monotonically growing global heap and is still

1 We believe that our approach can be adopted in other proof assistants as well.

Formal Verification 3

low-level, requiring fresh name generation—a.k.a. “gensym”—for allocation of
thunks.) An obstacle in formalizing their definitions is the evaluation contexts,
which may insert multiple bindings at once and are harder to formalize with de
Bruijn indices. We eliminate them by devising a predicate that defines when a
term “needs” the value of a variable.

Although our modified definition of call-by-need reduction is suitable for for-
malization with de Bruijn indices, existing proofs are still hard to formalize. On
one hand, the proof by Ariola and Felleisen [4] is based on informally intro-
duced graph representation of terms for relating call-by-need and call-by-name
reductions; as they themselves write, “a graph model for a higher-order language
requires many auxiliary notions” [4, p. 3]. On the other hand, Maraist et al. [17]’s
proof uses rather intricate “marks” on redexes and their reductions to prove the
confluence of their non-deterministic reductions. We therefore devise a simpler
proof, outlined as follows. As for the correspondence between terms during call-
by-name and call-by-need reductions, we simply inline all let-bindings (denoted
by M�) which represent thunks in call-by-need. Then, roughly speaking, a call-
by-need reduction step such as let x = M in N → let x = M ′ in N corresponds
to multiple call-by-name steps like N [x �→ M] →∗ N [x �→ M ′]. We then appeal
to Curry and Feys’ standardization theorem [5] as follows:

– For the “forward direction”, suppose that a term M is evaluated to an answer
A by call-by-need. Then M� β−→∗ A� by full β-reduction

β−→. By a corollary
of standardization, there exists some call-by-name evaluation M� name−−−→∗ V

with V
β−→∗ A�.

– The main challenge is to prove the converse direction. Suppose M� name−−−→∗ V .
We aim to prove M is evaluated by call-by-need to some answer A corre-
sponding to V . By another corollary of standardization, M� is terminating
(regardless of non-determinism) by repetition of name−−−→ ◦ β−→∗. Since a call-by-

need reduction step corresponds to name−−−→ ◦ β−→∗, the call-by-need evaluation
must also terminate with some N . The correspondence between N and V is
then proved via the forward direction above.

Our Coq script is available at: https://github.com/fetburner/call-by-need

Structure of the paper. We review the call-by-name λ-calculus in Sect. 2. Section 3
presents the syntax and semantics of Ariola and Felleisen’s call-by-need λ-
calculus. Section 4 gives the outline of our new proof of the correspondence
between call-by-need and call-by-name, based on standardization. Section 5
details our techniques for formalization in a proof assistant (Coq, to be specific).
Section 6 discusses previous researches and their relationship to our approach.
Section 7 concludes with future work.

2 λ-Calculus and Call-by-Name Evaluation

We define the syntax and basic β-reduction of λ-calculus as in Fig. 1. The expres-
sion M [x �→ N] denotes capture-avoiding substitution of N for each free occur-

rence of x in M . The full β-reduction
β−→ is defined as the compatible closure of

https://github.com/fetburner/call-by-need

4 M. Mizuno and E. Sumii

Syntax

Terms L, M, N ::= x | V | M N
Values (weak head normal forms) V ::= λx.M
Evaluation contexts En ::= [] | En M

Reduction rule
(β) (λx.M)N → M [x N]

Fig. 1. Definitions for the call-by-name λ-calculus

the reduction rule (β). For any binary relation R−→, we write the reflexive tran-

sitive closure of R−→ as R−→∗. For example, the reflexive transitive closure of
β−→ is

written
β−→∗.

The call-by-name reduction name−−−→ is the closure of the base rule (β) by evalua-
tion contexts En. For example, in call-by-name, (λx.xx)((λy.y)(λz.z)) is reduced
as follows:

(λx.xx)((λy.y)(λz.z))
name−−−→ (λy.y)(λz.z)((λy.y)(λz.z))
name−−−→ (λz.z)((λy.y)(λz.z))
name−−−→ (λy.y)(λz.z)
name−−−→ λz.z

The relation name−−−→ is a partial function and included in
β−→. Note that, under

full β-reduction, there exists a shorter reduction sequence:

(λx.xx)((λy.y)(λz.z))
β−→ (λx.xx)(λz.z)

β−→ (λz.z)(λz.z)
β−→ λz.z

In order to establish the correspondence with call-by-need evaluation, we will
also focus on stuck states En[x]. The basic properties of call-by-name can then
be summarized as follows:

Lemma 1 (basic properties of call-by-name evaluation).

1. name−−−→ is a partial function.
2. If En[x] = E′

n[y] then x = y.
3. For any term M , exactly one of the following holds:

(a) M is a value
(b) M = En[x] for some En and x

(c) M is reducible by name−−−→
Proof. Clause 1 and 2 follow from straightforward structural inductions on eval-
uation contexts (note that name−−−→ is the closure of the base rule β by call-by-
name evaluation contexts En), and clause 3 is proved by structural induction on
term M . ��

Formal Verification 5

Syntax

Values V ::= λx.M
Answers A ::= V | let x = M in A
Terms L, M, N ::= x | V | M N | let x = M in N
Evaluation contexts E ::= [] | E M | let x = M in E | let x = E in E [x]

Reduction rules

(I) (λx.M)N → let x = N in M
(V) let x = V in E[x] → let x = V in E[V]
(C) (let x = M in A) N → let x = M in A N
(A) let y = let x = M in A in E[y] → let x = M in let y = A in E[y]

Fig. 2. Ariola and Felleisen’s call-by-need λ-calculus

The following Lemma 2 (a call-by-name variant of the leftmost reduction
theorem, which is a folklore) and Lemma 3 (a call-by-name variant of quasi-
leftmost reduction theorem, which seems to be original) are corollaries of Curry
and Feys’ standardization theorem [5]. As outlined in the Introduction, they play
a crucial role in proving the correspondence between call-by-name and call-by-
need.

Lemma 2. If M
β−→∗ V , there exists V ′ such that M

name−−−→∗ V ′ β−→∗ V .

Lemma 3. If M
β−→∗ V for some V , then M is terminating by name−−−→ ◦ β−→∗

(despite the non-determinism).

As we shall see in Sect. 4, the auxiliary relation name−−−→◦ β−→∗ plays a key role when
proving the correspondence between call-by-need and call-by-name reductions.

3 Ariola and Felleisen’s Call-by-Need λ-Calculus

We show the syntax, reduction rules, and evaluation contexts of Ariola and
Felleisen’s calculus in Fig. 2.2 By convention, we assume that, whenever we write
E[x] on paper, the variable x is not bound by E. Note that our formalization in
Coq will use de Bruijn indices and does not need such a convention. The call-
by-need reduction need−−−→ is the closure of the base rules (I), (V), (C), and (A) by
the evaluation contexts E. For example, as mentioned in the introduction, the
term (λx.xx)((λy.y)(λz.z)) is reduced as follows (the redexes are underlined):

2 Strictly speaking, the reduction rules shown here are called standard reduction rules
in their paper, as opposed to non-deterministic reduction. Note that the let-binding
let x = M in N is non-recursive.

6 M. Mizuno and E. Sumii

(λx.xx)((λy.y)(λz.z))
— by rule (I) under evaluation context []

need−−−→ let x = (λy.y)(λz.z) in xx

— by (I) under let x = [] in xx
need−−−→ let x = (let y = λz.z in y) in xx

— by (V) under let x = [] in xx
need−−−→ let x = (let y = λz.z in λz.z) in xx

— by (A) under []
need−−−→ let y = λz.z in let x = λz.z in xx
need−−−→ . . .

Note that the value λz.z of x is shared between the two occurrences of x and is
never computed twice. Note also that, although the above call-by-need reduction
sequence may seem longer than necessary, the “administrative” reductions by
(V), (C), and (A) do not contribute to “real” reductions. In order to distinguish
administrative reductions when proving the correspondence between call-by-need
and call-by-name evaluations, we also consider reductions limited to specific base
rules as follows. The reduction VCA−−−→ is the closure of the three base rules (V),
(C), and (A) by evaluation contexts E. Similarly, the reduction I−→ is defined by
the closure of the base rule (I). Obviously, need−−−→ = I−→ ∪ VCA−−−→.

The points of Ariola and Felleisen’s semantics are twofold: the representation
of sharing by the syntactic form let, and redex positions by evaluation contexts.
Thanks to these techniques, their semantics is entirely syntactic (that is, with
no need for heaps or denotational semantics), which is desirable for mechanized
verification.

The above call-by-need reductions are defined so that they become determin-
istic:

Lemma 4 (determinacy of call-by-need reductions).

1. I−→ is a partial function.
2. VCA−−−→ is a partial function.
3. If E[x] = E′[y], then x = y.
4. For any term M , exactly one of the following holds:

(a) M is an answer
(b) M = E[x] for some E and x

(c) M is reducible by I−→
(d) M is reducible by VCA−−−→

Proof. Again by straightforward structural inductions (cf. Lemma 1). ��

4 Outline of Our Standardization-Based Proof

Before presenting the Coq formalization, we outline our new proof of the cor-
respondence between call-by-name and call-by-need evaluations, based on stan-
dardization.

The correspondence M� of terms is defined by let expansion as follows:

Formal Verification 7

Definition 1.
x� = x

(λx.M)� = λx.M�

(M N)� = M� N�

(let x = M in N)� = N�[x �→ M�]

Although the above definition is similar to Maraist et al. [17], they annotated
terms and reductions with what they call “marks”, which they use to keep track
of the inlined let-bindings, while we somehow “recover” their reduction by con-
sidering the auxiliary reduction relation name−−−→ ◦ β−→∗.

Lemma 5 (single-step correspondence).

1. (M [x �→ N])� = M�[x �→ N�].
2. A� is a value for any answer A.
3. For any E and x, E[x]� = En[x] for some En.
4. If M

VCA−−−→ N then M� = N�.
5. If M

I−→ N then M� name−−−→ ◦ β−→∗N�.

Note that call-by-name reduction of M� itself does not straightforwardly cor-
respond to call-by-need reduction of M since the latter may reduce more redexes
due to the sharing by let-bindings. For instance, the call-by-need evaluation

let x = (λy.y)(λz.z) in x(λw.x)
need−−−→∗ . . . let x = λz.z in x(λw.x)
need−−−→ . . . let x = λz.z in (λz.z)(λw.x)
need−−−→∗ . . . let x = λz.z in . . . (λw.x)

(omitting irrelevant let-bindings) becomes

(λy.y)(λz.z)(λw.(λy.y)(λz.z))
name−−−→ (λz.z)(λw.(λy.y)(λz.z))
name−−−→ λw.(λy.y)(λz.z)

in call-by-name, leaving the β-redex (λy.y)(λz.z) inside a λ-abstraction, which
needs to be reduced by full β-reduction.

Proof (Lemma 5). The first two clauses are proved by obvious structural induc-
tions, and the next three clauses follow from the structural inductions on evalua-
tion contexts (note that I−→ and VCA−−−→ are the closure of base rules by evaluation
contexts E). ��

We first consider the “soundness” direction of the correspondence, that is,
any call-by-need evaluation has a corresponding call-by-name evaluation:

Theorem 1 (soundness). If M
need−−−→∗ A, then M� name−−−→∗ V

β−→∗ A� for
some V .

8 M. Mizuno and E. Sumii

Proof. Suppose M
need−−−→∗ A. Then M� β−→∗ A� by clause 4 and 5 of Lemma 5,

where A� is a value by clause 2 of Lemma 5. Then, by Lemma 2, we obtain the
value V such that M� name−−−→∗ V

β−→∗ A�. ��
The harder, converse direction (called “completeness”) is as follows:

Theorem 2 (completeness). If M� name−−−→∗ V , then M
need−−−→∗ A and V

β−→∗
A� for some A.

In addition to the fact that call-by-name reduction by itself is not “sufficient”
for call-by-need as explained above, another problem is that termination under
call-by-name does not immediately imply termination under call-by-need since
administrative reductions in call-by-need become 0 step in call-by-name, as in
clause 4 of Lemma 5. To address the latter issue, we show the termination of
administrative reductions as follows:

Lemma 6. Administrative reduction VCA−−−→ is terminating.

Proof. By the decrease of the following measure function ‖ M ‖s, indexed by
environments s mapping let-bound variables to the measure of their right-hand
sides (and defaulting to 1 for other variables).

‖ x ‖s = s(x)
‖ λx.M ‖s = ‖ M ‖s◦[x�→1]

‖ M N ‖s = 2 ‖ M ‖s +2 ‖ N ‖s

‖ let x = M in N ‖s = 2 ‖ M ‖s + ‖ N ‖s◦[x�→1+‖M‖s]

��
This proof is similar to Maraist et al. [17, p. 287] except for our treatment of
variables based on environments.

We then prove the completeness theorem:

Proof. (Theorem 2). First, we show that the call-by-need reduction of M is
normalizing. If there is an infinite call-by-need reduction sequence from M , then
by Lemma 6 it must contain an infinite number of I−→, and therefore by clause 5 of
Lemma 5 there is an infinite reduction sequence consisting of name−−−→ ◦ β−→∗ from
M�. However, this contradicts with Lemma 3 (since M� name−−−→∗ V obviously

implies M� β−→∗ V)3.
Given that M terminates in call-by-need, we next show its normal form N

is an answer A. The reasoning is summarized in Fig. 3. By clause 4 of Lemma 4,
if N is not an answer, it is stuck in call-by-need, that is, N = E[x] for some E
and x. Then, by clause 3 of Lemma 5, E[x]� = En[x] for some En, that is N� is

3 Although this argument seems to be a proof by contradiction, our actual Coq proof

is constructive, using an induction on the finite reduction sequence of
name−−−→ ◦ β−→∗

from M� as we shall see in Sect. 5.

Formal Verification 9

M

name β

M

need

V

β

En[x]

β

E[x] ?= N

L = V = En[x]

Fig. 3. Reasoning for non-stuckness of the normal form N

De Bruijn indexed syntax

Terms L, M, N ::= x | V | M N
Values V ::= λ.M

Reduction rules

(λ.M)N name−−−→ M [0 N] (λ.M)N
β−→ M [0 N]

Context rules

needsn(x, x)
needsn(M, x)

needsn(M N, x)
M

name−−−→ M

M N
name−−−→ M N

M
β−→ M

M N
β−→ M N

N
β−→ N

M N
β−→ M N

M
β−→ M

λ.M
β−→ λ.M

Fig. 4. Our modified definitions for the call-by-name λ-calculus and β-reduction

stuck in call-by-name. Also, by clause 4 and 5 of Lemma 5, M� β−→∗ N�. Then,
by confluence of

β−→, there exists term L such that N� β−→∗ L and V
β−→∗ L, that

is, L is a value and N� reduces to it by
β−→. Since stuck states in call-by-name are

preserved by
β−→, this contradicts with the fact that N� is stuck in call-by-name.

Finally, we show V
β−→∗ A�. By Theorem 1, we have some V ′ such that

M� name−−−→∗ V ′ β−→∗ A�. We then obtain V = V ′ by Lemma 1. ��

5 Formalization in Coq

The main points of our formalization in Coq are twofold: representation of bind-
ing by de Bruijn indices, and implicit treatment of evaluation contexts. We show
the syntax and reduction rules of our modified call-by-name and call-by-need
λ-calculi in Figs. 4 and 5.

10 M. Mizuno and E. Sumii

De Bruijn indexed syntax

Values V ::= λ.M
Answers A ::= V | let = M in A
Terms M, N ::= x | V | M N | let = M in N

Reduction rules

(λ.M) N
I−→ let = N in M

needs(M, 0)

let = V in M
VCA−−−→ M [0 V]

(let = M in A) N
VCA−−−→ let = M in A ↑N

needs(N, 0)

let = (let = M in A) in N
VCA−−−→ let = M in let = A in ↑1N

Context rules

needs(x, x)
needs(M, x)

needs(M N, x)
needs(N, x + 1)

needs(let = M in N, x)

needs(M, x) needs(N, 0)
needs(let = M in N, x)

N
I−→ N

let = M in N
I−→ let = M in N

M
I−→ M

M N
I−→ M N

M
I−→ M needs(N, 0)

let = M in N
I−→ let = M in N

N
VCA−−−→ N

let = M in N
VCA−−−→ let = M in N

M
VCA−−−→ M

M N
VCA−−−→ M N

M
VCA−−−→ M needs(N, 0)

let = M in N
VCA−−−→ let = M in N

Fig. 5. Our modified call-by-need λ-calculus

We use de Bruijn indices for simple manipulation of binding. Fortunately,
Ariola and Felleisen’s semantics is straightforwardly adaptable for de Bruijn
indices since only a constant number of bindings are inserted or hoisted by a
reduction. We use the auxiliary operation ↑cM called “shifting”, which incre-
ments the indices of the free variables in M above the “cutoff” c as follows:

Formal Verification 11

↑cx =

{
x if x < c

x + 1 if x ≥ c

↑cλ.M = λ.↑c+1M
↑c(M N) = (↑cM) (↑cN)

↑c(let = M in N) = (let = ↑cM in ↑c+1N)

We write ↑M for ↑0M . In Coq, we use Autosubst [23] to automatically derive
operations such as shifting on terms using de Bruijn indices, and their metathe-
ories including basic properties of substitutions.

Although evaluation contexts reduce the number of reduction rules, explicit
treatment of contexts often hinders automated reasoning.4 For example, consider
the clause 4 of Lemma 4. To prove case (b) we need to find a concrete E such
that M = E[x], which requires second-order unification [12] in general. More
concretely, in Coq, the lemma could be written like

Lemma answer_or_stuck_or_reducible M :
answer M \/
(exists E x, evalctx E /\ M = E.[tvar x] /\ bv E <= x) \/
(exists E L N, evalctx E /\ M = E.[L] /\ reduceI L N) \/
(exists E L N, evalctx E /\ M = E.[L] /\ reduceVCA L N).

where bv E <= x means that x is not captured in E. This statement can be
proved by induction on M , where we first encounter the case M is a variable x:

4 subgoals

x : var
============================
answer M \/
(exists E y, evalctx E /\ tvar x = E.[tvar y] /\ bv E <= y) \/
(exists E L N, evalctx E /\ tvar x = E.[L] /\ reduceI L N) \/
(exists E L N, evalctx E /\ tvar x = E.[L] /\ reduceVCA L N)

However, automation fails even though the above disjunction is obviously true
by the second clause with E = []:

Coq < eauto.

4 subgoals

x : var
============================

4 Another drawback is that evaluation contexts may introduce an arbitrary number of
bindings and therefore need to be indexed by that number to coexist with de Bruijn
indices, requiring heavy natural number calculations—like the Omega [9] library for
Presburger arithmetic—in the mechanized proofs. Our approach will also obviate
the need for such calculations.

12 M. Mizuno and E. Sumii

answer M \/
(exists E y, evalctx E /\ tvar x = E.[tvar y] /\ bv E <= y) \/
(exists E L N, evalctx E /\ tvar x = E.[L] /\ reduceI L N) \/
(exists E L N, evalctx E /\ tvar x = E.[L] /\ reduceVCA L N)

We avoid the above problem by eliminating evaluation contexts by expanding
their definition in reductions

β−→, name−−−→, I−→, and VCA−−−→, and devising stuckness
predicates needsn(M,x) and needs(M,x), corresponding to “M = En[x] for
some En” and “M = E[x] for some E”, respectively, as in Fig. 5. (Note that,
unlike evaluation contexts, each derivation rule of needs(M,x) inserts only at
most one let-binding at once; cf. footnote 4.) The only deviation is thunk deref-
erence let x = V in E[x] VCA−−−→ let x = V in E[V], where we approximate the
operation E[V] by substitution (E[x])[x �→ V]. Although the latter may substi-
tute extra occurrences of x in E itself, it is semantically equivalent to the former
since V is already a value. Here our formalization favors simplicity over faith-
fulness and slightly differs from the original definition. It is also straightforward
(though cumbersome) to adhere to the original by defining a partial function
that substitutes a given value V with a given variable x in a redex position of a
given term M .5

After the elimination of evaluation contexts, we can now prove clause 4 of
Lemma 4 almost automatically as follows:

Lemma answer_or_stuck_or_reducible M :
answer M \/
(exists x, needs M x) \/
(exists N, reduceI M N) \/
(exists N, reduceVCA M N).

Proof.
induction M as

[|? [Hanswer|[[]|[[]|[]]]]
||? [Hanswer|[[]|[[]|[]]]] ? [|[[[]]|[[]|[]]]]]; eauto 6;
inversion Hanswer; subst; eauto 6.

Qed.

Let us overview the other changes by our elimination of evaluation contexts:
clause 2 of Lemma 1 becomes “if needsn(M,x) and needsn(M,y), then x =
y”; case (b) of clause 3 of Lemma 1 changes to “needsn(M,x) for some x”;
clause 3 of Lemma 4 to “If needs(M,x) and needs(M,y), then x = y”; case
(b) of clause 4 of Lemma 4 to “needs(M,x) for some x”; and clause 3 of
Lemma 5 to “If needs(M,x) then needsn(M�, x)”. The proofs of these lemmas
proceed by induction on the derivation of needsn(M,x) or needs(M,x) instead
of structural induction on evaluation contexts.

Another devisal in our Coq formalization is replacing the reductio ad impos-
sibilem for the normalization proof of Theorem 2 (completeness) in Sect. 4, with
an intuitionistic, constructive proof as follows:
5 Indeed, we also formalized the original semantics and proved its correspondence to

call-by-name. See: https://github.com/fetburner/call-by-need.

https://github.com/fetburner/call-by-need

Formal Verification 13

Proof. (Theorem 2, constructive version). By Lemma 3, M� is terminating by
name−−−→ ◦ β−→∗. Let us define L ⇓, meaning that L is terminating by name−−−→ ◦ β−→∗,
inductively as: (∀L′.L name−−−→ ◦ β−→∗L′ ⇒ L′ ⇓) ⇒ L ⇓.6 We then prove a stronger
property that, for any M ′, M ′ ⇓ implies

for any M , if M ′ = M�, then M terminates by need−−−→
by induction on the definition of M ′ ⇓. The above statement is trivially true
if M is already a call-by-need normal form. If M

I−→ N , then by clause 5 of
Lemma 5 we have M� name−−−→ ◦ β−→∗N�, and by the induction hypothesis we have
that N terminates by need−−−→. If M

VCA−−−→ N , then by clause 4 of Lemma 5 we
have M� = N� and the conclusion follows from a double, inner induction on
reductions by VCA−−−→, which is finite by Lemma 6.

The rest of the proof is similar to that in Sect. 4.

6 Related Work

Call-by-name and, to a lesser degree, call-by-need evaluations have been inves-
tigated for more than decades. We here focus on notable previous researches on
the correspondence between call-by-need and call-by-name (other than Ariola
and Felleisen [4], which we have already reviewed in Sect. 3), and discuss their
differences from our approach.

– Launchbury [16] gave a natural semantics for call-by-need evaluation with
mutually recursive bindings and proved its adequacy with respect to call-by-
name evaluation. He defined judgements of the form Γ : e ⇓ Δ : z, meaning
“term e under store Γ evaluates to value z, yielding a modified store Δ”.
The key of his semantics is a “dual use” of variables as pointers to thunks.
This technique makes their semantics simpler than conventional operational
semantics based on abstract machines.

However, Launchbury’s natural semantics is still challenging from the
viewpoint of mechanical verification, not only because of mutual recursion,
but also because of subtle variable convention: for example, let us evaluate
term let u = 3, f = (λx.let v = u+1 in v +x) in f 2+ f 3. We must replace
the bound variable v in the body of the function f with some fresh variable
v′ every time f is called, because the pointers to the thunks are identified
with variable names.

Recently, Breitner [6] formalized Launchbury’s natural semantics adopting
nominal logic [25] except for mutually recursive heaps, which were represented
by explicit names.

Vassena et al. [26] formalized Sestoft [24]’s small-step variant of Launch-
bury’s semantics, adopting de Bruijn indices. However, mutually recursive
bindings are omitted from their language.

6 This definition is adopted from the accessibility predicate Acc in Coq.

14 M. Mizuno and E. Sumii

– Maraist et al. [17] gave a small-step semantics for call-by-need evaluation and
proved its correspondence (full abstraction) with call-by-name. Their seman-
tics is almost the same as Ariola and Felleisen’s, making the former’s proof
method also useful for the latter. (The difference between the two semantics
is that, in Maraist et al., variables are values, and an additional reduction rule
let x = M in N → N (x /∈ FV(N)) is introduced for garbage collection.)

A point of Maraist et al.’s proof is the introduction of marks on redexes
for call-by-need reductions (I, V, C, or A). Their approach seems natural
for proving the confluence of their non-deterministic reductions but signifi-
cantly complicates the definitions of terms and reductions in a mechanized
metatheory.

Although we did not directly adopt Maraist et al.’s formalism, it influ-
enced our correspondence M� of call-by-need terms with call-by-name, and
our measure function in the proof of Lemma 6.

– Chang and Felleisen [7] proposed a variant of Ariola and Felleisen’s semantics
and proved its correspondence with Launchbury’s semantics. They gave a
simpler reduction rule with arguably more complicated evaluation contexts
instead of administrative reductions. As argued in Sect. 5, we avoided any
use of evaluation contexts for the sake of easier automation and formalization
with de Bruijn indices.

7 Conclusion

We formalized a variant of Ariola and Felleisen’s small-step operational semantics
of call-by-need λ-calculus and proved its correspondence with call-by-name, using
the Coq proof assistant. For the formal verification, we developed a simpler proof
based on two forms of standardization (Lemmas 2 and 3), adopting de Bruijn
indices for representation of variable binding. Along the way, we simplified the
formalization and enabled more automation by replacing evaluation contexts
with more specific definitions (Sect. 5).

Future Work. We plan to extend our target language to more practical lan-
guages. Data types such as tuples and sums should be straightforward since they
are already in weak head normal form. The most interesting challenge would be
recursive definitions, because they cannot be completely inlined when establish-
ing the correspondence with call-by-name (cf. Definition 1). A natural starting
point here may be Ariola and Blom’s well-known theory of cyclic λ-calculus [3].
Another (though smaller) issue is binary operations (such as arithmetic addition
+), for which non-deterministic (but strict) evaluation of the operands may be
desirable.

Acknowledgments. We thank the anonymous reviewers for valuable comments and
suggestions. This work was partially supported by JSPS KAKENHI Grant Number
15H02681 and 16K12409.

Formal Verification 15

References

1. Abramsky, S.: The lazy lambda calculus. In: Turner, D.A. (ed.) Research Topics
in Functional Programming, pp. 65–116. Addison-Wesley Publishing Co., Boston
(1990)

2. Accattoli, B., Barenbaum,P.,Mazza,D.:Distilling abstractmachines. In: Jeuring, J.,
Chakravarty, M.M.T. (eds.) Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, Gothenburg, Sweden, 1–3 September 2014,
pp. 363–376. ACM (2014)

3. Ariola, Z.M., Blom, S.: Cyclic lambda calculi. In: Abadi, M., Ito, T. (eds.) TACS
1997. LNCS, vol. 1281, pp. 77–106. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0014548

4. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1997)

5. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics, vol. 103, Revised edn. North-Holland,
New York (1984)

6. Breitner, J.: The adequacy of Launchbury’s natural semantics for lazy evaluation.
J. Funct. Program. 28, e1 (2018)

7. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl,
H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 128–147. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28869-2 7

8. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: Hook, J., Thiemann, P. (eds.) Proceeding of the 13th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2008, Victoria, BC, Canada,
20–28 September 2008, pp. 143–156. ACM (2008)

9. Crégut, P.: Omega: a solver of quantifier-free problems in Presburger arithmetic.
In: The Coq Proof Assistant Reference Manual, Version 8.7.0 (2017)

10. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagation. Math. (Proc.) 75(5), 381–392 (1972)

11. Fairbairn, J., Wray, S.: Tim: a simple, lazy abstract machine to execute super-
combinators. In: Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 34–45. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-18317-5 3

12. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor.
Comput. Sci. 13, 225–230 (1981)

13. Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-conversion.
In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 413–425.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57826-9 152

14. Johnsson, T.: Efficient compilation of lazy evaluation. In: Deusen, M.S.V., Graham,
S.L. (eds.) Proceedings of the 1984 SIGPLAN Symposium on Compiler Construc-
tion, Montreal, Canada, 17–22 June 1984, pp. 58–69. ACM (1984)

15. Kesner, D.: Reasoning about call-by-need by means of types. In: Jacobs, B.,
Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 424–441. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5 25

16. Launchbury, J.: A natural semantics for lazy evaluation. In: Deusen, M.S.V., Lang,
B. (eds.) Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Charleston, South Carolina,
USA, January 1993, pp. 144–154. ACM Press (1993)

https://doi.org/10.1007/BFb0014548
https://doi.org/10.1007/BFb0014548
https://doi.org/10.1007/978-3-642-28869-2_7
https://doi.org/10.1007/3-540-18317-5_3
https://doi.org/10.1007/3-540-57826-9_152
https://doi.org/10.1007/978-3-662-49630-5_25

16 M. Mizuno and E. Sumii

17. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

18. McBride, C., McKinna, J.: Functional pearl: I am not a number-I am a free variable.
In: Nilsson, H. (ed.) Proceedings of the ACM SIGPLAN Workshop on Haskell,
Haskell 2004, Snowbird, UT, USA, 22–22 September 2004, pp. 1–9. ACM (2004)

19. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. J.
Autom. Reason. 23(3–4), 373–409 (1999)

20. Ong, C.L.: Fully abstract models of the lazy lambda calculus. In: 29th Annual
Symposium on Foundations of Computer Science, White Plains, New York, USA,
24–26 October 1988, pp. 368–376. IEEE Computer Society (1988)

21. Peyton Jones, S.L.: Implementing lazy functional languages on stock hardware:
the spineless tagless G-machine. J. Funct. Program. 2(2), 127–202 (1992)

22. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Wexelblat, R.L. (ed.)
Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation (PLDI), Atlanta, Georgia, USA, 22–24 June 1988, pp.
199–208. ACM (1988)

23. Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: reasoning with de Bruijn terms and
parallel substitutions. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236,
pp. 359–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-
1 24

24. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264
(1997)

25. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356
(2008)

26. Vassena, M., Breitner, J., Russo, A.: Securing concurrent lazy programs against
information leakage. In: 30th IEEE Computer Security Foundations Symposium,
CSF 2017, Santa Barbara, CA, USA, 21–25 August 2017, pp. 37–52 (2017)

27. Wadsworth, C.P.: Semantics and pragmatics of the lambda calculus. Ph.D. thesis,
Oxford University (1971)

https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-319-22102-1_24

Direct Encodings of NP-Complete
Problems into Horn Sequents
of Multiplicative Linear Logic

Satoshi Matsuoka(B)

National Institute of Advanced Industrial Science and Technology (AIST),
1-1-1 Umezono, Tsukuba, Ibaraki 305-8565, Japan

matsuoka@ni.aist.go.jp

Abstract. In this paper, we provide direct encodings into Horn sequents
of Multiplicative Linear Logic for two NP-complete problems, 3D

MATCHING and PARTITION. Their correctness proofs are given by using
a characterization of multiplicative proof nets.

1 Introduction

Around early 1990s, Max Kanovich introduced several Horn fragments of Lin-
ear Logic (see [1,2]). In particular, the multiplicative Horn fragment (for short
HMLL) is a rather restricted subsystem of Intuitionistic Multiplicative Linear
Logic. In [2], HMLL is shown to be NP-complete with regard to provability
through the encoding of the 3-PARTITION problem [3]. Moreover Krantz and
Mogbil [4] gave another NP-completeness proof of HMLL through the encoding
of the DIRECTED HAMILTONIAN CIRCUIT problem [3].

In this paper, we go forward further along this promising direction. We give
the direct encoding of the 3D MATCHING problem as well as that of the PARTITION
problem [3] into Horn sequents, which are those of HMLL, where a direct encod-
ing means that it is obtained not through other encodings. It is well-known
that an NP-complete problem can also solve any other NP-complete problem
through polynomial time transformations. But direct encodings are important
because they provide more efficient solvers for NP-complete problems than indi-
rect encodings through polynomial time transformations. In fact problem sizes
encoded directly tend to be significantly smaller than those encoded by polyno-
mial time transformations from the viewpoint of a practical level, although both
are related by polynomials.

NP-complete problems often appear in practical applications. To solve NP-
complete problems is important: to obtain more optimized solutions of practical
optimization problems means to reduce tangible resources more drastically for
systems constructed based on these solutions. Recent progress of SAT solvers has
enabled this at a practical level (for example, see [5]). We would like to address
this topic from another logical point of view, i.e., from Multiplicative Linear
Logic (for short MLL). In this approach we exploit provability of MLL instead of
c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 17–32, 2018.
https://doi.org/10.1007/978-3-319-90686-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_2&domain=pdf

18 S. Matsuoka

satisfiability of classical logic. That is, in order to find a solution of an instance of
an NP-complete problem, we must search for a proof for the MLL formula that is
obtained from the instance by using an encoding for the NP-complete problem.
Proof search over HMLL sequents can be regarded as multiset rewriting. In other
words, a process solving NP-complete problems can be viewed as a sequence of
actions over a commutative monoid. The approach is quite different from that
of SAT solvers, since to solve problems encoded in SAT is to find solutions
satisfying given static constraints. In author’s opinion, it seems more natural to
model an NP-complete problem as such a rewriting process, because a designer
seems easier to specify a problem in such a modeling framework than to specify
it in static constraints. In fact, the four direct encodings into Horn sequents
mentioned above are surprisingly simple and easy to understand.

Moreover the software called Proof Net Calculator [6], which we have devel-
oped, includes an implementation of the 3D MATCHING problem as well as that
of the DIRECTED HAMILTONIAN CIRCUIT problem, using the encodings mentioned
above. Although we have not exploited problem-specific optimizations yet, Proof
Net Calculator can solve instances of these problems which average persons (like
the author) find difficult to solve, where we utilize encoding-specific optimiza-
tions using ID-links dependency relations. The technical details will be given
elsewhere.

Proof Net Calculator is a versatile software for manipulating MLL proof
nets. The way that MLL proof nets are represented in Proof Net Calculator is
based on an idea used in [7,8]. It also includes a normalization procedure based
on Geometry of Interaction [9], a compiler for the linear lambda calculus [10]
into MLL proof nets, and a translator of linear lambda terms into intuitionistic
proof nets. In addition it also has a simple GUI tool, which displays an MLL
proof net on a PC screen and outputs an encapsulated postscript file for it. Its
implementation has been done using the programming language Scala [11], which
is an object-oriented functional programming language over the Java Virtual
Machine.

2 Intuitionistic Multiplicative Linear Logic, Horn
Sequents, and MLL

2.1 Intuitionistic Multiplicative Linear Logic and Horn Sequents

In this section we introduce the system of Intuitionistic Multiplicative Linear
Logic (for short IMLL) and then Horn sequents in IMLL. Two NP-complete
problems, 3D MATCHING and PARTITION are encoded as Horn sequents as well as
3PARTITION in [2] and DIRECTED HAMILTONIAN CIRCUITS in [4]. Our terminology
and notation with regard to sequent calculi are standard, although we exclude
the cut rule, since we only deal with cut-free systems in this paper. For more
technical details, for example, see [12]. We do not use the formulation of the
multiplicative Horn fragment of Linear Logic (for short HMLL) described in
[2]. That system includes the cut rule in an essential way: the cut elimination
theorem does not hold in it. All we need in this paper are cut-free systems.

Direct Encodings of NP-Complete Problems into Horn Sequents 19

We denote atomic formulas by p, q, r, Then we define IMLL formulas,
which are denoted by A,B,C, . . . by the following grammar:

A ::= p | A−◦ B | A ⊗ B

We denote multisets of IMLL formulas by Σ,Σ1, Σ2, An IMLL sequent is a
pair (Σ,A). We write an IMLL sequent (Σ,A) as Σ � A. The inference rules of
IMLL are as follows:

I
A � A

L −◦ Σ1 � A B,Σ2 � C
Σ1, A−◦ B,Σ2 � C

R −◦ Σ,A � B
Σ � A−◦ B

L⊗ Σ,A,B � C
Σ,A ⊗ B � C

R⊗ Σ1 � A Σ2 � B
Σ1, Σ2 � A ⊗ B

By a simple formula we mean a formula that consists of only atomic formulas and
⊗ connective. We denote simple formulas by X,Y,Z, By a Horn implication
we mean a formula that has the form X −◦Y . A Horn sequent is an IMLL sequent
that has the form X,Σ � Y , where each formula in Σ is a Horn implication. We
note that the Horn sequents are a rather restricted class of the IMLL sequents.

2.2 Multiplicative Linear Logic

Next we introduce the system of Multiplicative Linear Logic (for short MLL).
We define MLL formulas, which are denoted by F,G,H, . . ., by the following
grammar:

F ::= p | p⊥ | F ⊗ G | F�G

The negation of F , which is denoted by F⊥ is defined as follows:

(p)⊥ = p⊥

(F ⊗ G)⊥ = G⊥
�F⊥

(F�G)⊥ = G⊥ ⊗ F⊥

We denote multisets of MLL formulas by Λ,Λ1, Λ2, An MLL sequent is a
multiset of MLL formulas Λ. We write an MLL sequent Λ as � Λ. The inference
rules of MLL are as follows:

ID � F⊥, F

⊗ � Λ1, F � Λ2, G
� Λ1, Λ2, F ⊗ G

�
� Λ,F,G
� Λ,F�G

We define a translation from IMLL sequents to MLL sequents by

A1, . . . , An � B �→ � (A1)
−

, . . . , (An)−
, B+

20 S. Matsuoka

where (−)− and (−)+ are defined inductively as follows:

(p)− = p⊥ (p)+ = p

(A−◦ B)− = (B)− ⊗ (A)+ (A−◦ B)+ = (A)−
�(B)+

(A ⊗ B)− = (B)−
�(A)− (A ⊗ B)+ = (A)+ ⊗ (B)+

Proposition 1. A sequent A1, . . . , An � B is provable in IMLL if and only if
� (A1)

−
, . . . , (An)−

, B+ is provable in MLL.

Proof. For example, see [13]. ��

By Proposition 1 we can discuss Horn sequent encodings of NP-complete prob-
lems in the framework of MLL.

2.3 MLL Proof Nets

Next we introduce MLL proof nets. We use MLL proof nets in order to prove
the correctness of our encodings into Horn sequents.

Figure 1 shows the MLL links we use. Each MLL link has a few MLL formulas.
Such an MLL formula is a conclusion or a premise of the MLL link, which is
specified as follows:

1. In an ID-link, each of F and F⊥ is called a conclusion of the link;
2. In an ⊗-link, each of F and G is called a premise of the link and F ⊗ G is

called a conclusion of the link;
3. In an �-link, each of F and G is called a premise of the link and F�G is

called a conclusion of the link.

An MLL proof structure Θ is a set of MLL links that satisfies the following
conditions:

1. For each link L in Θ, each conclusion of L can be a premise of at most one
link other than L in Θ;

2. For each link L in Θ, each premise of L must be a conclusion of exactly one
link other than L in Θ.

An MLL proof net is an MLL proof structure that is constructed by the rules
in Fig. 2. Note that each rule in Fig. 2 has the corresponding inference rule in
the MLL sequent calculus. Any MLL proof structure is not necessarily an MLL
proof net.

Next we introduce a characterization of MLL proof nets using the notion of
DR-switchings. A DR-switching S for an MLL proof structure Θ is a function
from the set of �-links in Θ to {0, 1}. The DR-graph S(Θ) for Θ and S is defined
by the rules of Fig. 3. Then the following characterization holds.

Theorem 1 ([14]). An MLL proof structure Θ is an MLL proof net if and only
if for any DR-switching S for Θ, the DR-graph S(Θ) is acyclic and connected.

Direct Encodings of NP-Complete Problems into Horn Sequents 21

Fig. 1. MLL links

Fig. 2. Definition of MLL proof nets

Next we introduce a few notions for MLL proof search based on MLL proof
nets. An MLL proof forest Θ0 is a set of MLL links obtained from an MLL proof
structure Θ by deleting all ID-links in Θ. An ID-links set π for an MLL proof
forest Θ0 is a set of ID-links such that Θ0 ∪ π is an MLL proof structure. Then
we write Θ0 ∪ π as Θπ

0 . We say that an MLL proof forest Θ0 has an MLL proof
net if there is an ID-links set π for Θ0 such that Θπ

0 has an MLL proof net. An
MLL formula A is a conclusion of an MLL proof forest Θ0 if there is a link L in
Θ0 such that A is a conclusion of L and there is no link L′ in Θ0 such that A is
a premise of L′.

Proposition 2. Let A1, . . ., An � B be an IMLL sequent and (A1)
−, . . .,

(An)−, B+ be the conclusions of an MLL proof forest Θ0. Then A1, . . . , An � B
is provable in IMLL if and only if Θ0 has an MLL proof net.

Proof. By Proposition 1, A1, . . . , An � B is provable in IMLL if and only if
� (A1)

−
, . . . , (An)−

, B+ is provable in MLL. Moreover, if � (A1)
−

, . . . , (An)−,
B+ is provable in MLL then the MLL proof forest with the conclusions (A1)

−,
. . ., (An)−, B+ has an MLL proof net by the definition of MLL proof nets. The
other direction is proved by Girard’s sequentialization theorem [15]. ��

22 S. Matsuoka

Fig. 3. Definition of DR graphs

3 The Encoding of 3D MATCHING

3.1 Preliminaries

Notation 1 Let S be a set. Let L(k) be the set of all lists over S such that
each list in L(k) has the same length k. Then we define an equivalence relation
Perm over L(k) as follows: (�1, �2) is in Perm if for each s ∈ S, the number of
occurrences of s in �1 is the same as that of �2. Each equivalence class over Perm
is a multiset. When � is a list over S, let �/Perm be the multiset that includes �.

Definition 1 (3D MATCHING [16]). Let A,B,C be finite sets such that |A| =
|B| = |C| = n. 3D MATCHING is the problem that when a given set T ⊆ A×B×C,
decides whether or not there is a subset T0 of T such that |T0| = n and

A = {a ∈ A | ∃b ∈ B.∃c ∈ C.〈a, b, c〉 ∈ T0}
B = {b ∈ B | ∃a ∈ A.∃c ∈ C.〈a, b, c〉 ∈ T0}
C = {c ∈ C | ∃a ∈ A.∃b ∈ b.〈a, b, c〉 ∈ T0}.

We suppose |T | = n + m, where m ≥ 0. We assume that the elements of T are
ordered and the list is

〈ai1 , bj1 , ck1〉, . . . , 〈ain
, bjn

, ckn
〉, 〈ain+1 , bjn+1 , ckn+1〉, . . . , 〈ain+m

, bjn+m
, ckn+m

〉.

Direct Encodings of NP-Complete Problems into Horn Sequents 23

Then we define three multisets AT , BT , CT by

AT = 〈ai1 , . . . , ain
, ain+1 , . . . , ain+m

〉/Perm
BT = 〈bj1 , . . . , bjn

, bjn+1 , . . . , bjn+m
〉/Perm

CT = 〈ck1 , . . . , ckn
, ckn+1 , . . . , ckn+m

〉/Perm

Without loss of generality, we suppose the following conditions:

1. For each a ∈ A, there is � (1 ≤ � ≤ n + m) such that a = ai�
;

2. For each b ∈ B, there is � (1 ≤ � ≤ n + m) such that b = bj�
;

3. For each c ∈ C, there is � (1 ≤ � ≤ n + m) such that c = ck�
.

Otherwise, we can determine that this instance has no solution. Moreover we
define three multisets Aco, Bco, Cco by

Aco = AT − Amul

Bco = BT − Bmul

Cco = CT − Cmul

where Amul, Bmul, Cmul are the multisets that have the same elements as A,B,C
respectively such that each element occurs exactly once in Amul, Bmul, Cmul

respectively. So, |Amul| = |Bmul| = |Cmul| = n. Then without loss of generality,
we can describe as

Amul = 〈a1, . . . , an〉/Perm Aco = 〈ai′
1
, . . . , ai′

m
〉/Perm

Bmul = 〈b1, . . . , bn〉/Perm Bco = 〈bj′
1
, . . . , bj′

m
〉/Perm

Cmul = 〈c1, . . . , cn〉/Perm Cco = 〈ck′
1
, . . . , ck′

m
〉/Perm

3.2 The Encoding into a Horn Sequent

In this section we give our encoding of 3D MATCHING problem into a Horn sequent.
We need a few auxiliary formulas. For each � (1 ≤ � ≤ n+m), we define FT � by

FT � = (bj�
⊗ ck�

)−◦ ai�

Moreover we define FAco, FBco, FCco by

FAco = ai′
1
⊗ · · · ⊗ ai′

m

FBco = bj′
1
⊗ · · · ⊗ bj′

m

FCco = ck′
1
⊗ · · · ⊗ bk′

m

Finally we define FI by

FI = FAco −◦((b1 ⊗ · · · ⊗ bn) ⊗ (c1 ⊗ · · · ⊗ cn))

Then we define a sequent as

Γ3DMATCHING =
FBco ⊗ FCco, FI, FT 1, . . . , FTn, FTn+1, . . . , FTn+m � a1 ⊗ · · · ⊗ an

It is obvious that Γ3DMATCHING is a Horn sequent and the encoding is a polynomial
reduction.

24 S. Matsuoka

Example 1. The following is an instance of 3D MATCHING:

A = {a1, a2, a3}
B = {b1, b2, b3}
C = {c1, c2, c3}
T = {〈a1, b1, c2〉, 〈a1, b2, c3〉, 〈a2, b2, c1〉, 〈a2, b3, c1〉, 〈a3, b1, c2〉}

The encoding described above gives the following Horn sequent from the
instance:

Γ3D MATCHING =
(b1 ⊗ b2) ⊗ (c1 ⊗ c2),
a1 ⊗ a2 −◦((b1 ⊗ b2 ⊗ b3) ⊗ (c1 ⊗ c2 ⊗ c3)),
b1 ⊗ c2 −◦ a1, b2 ⊗ c3 −◦ a1, b2 ⊗ c1 −◦ a2,
b3 ⊗ c1 −◦ a2, b1 ⊗ c2 −◦ a3

� a1 ⊗ a2 ⊗ a3

3.3 The Correctness Proof

In order to prove the correctness of the encoding, we exploit the characteriza-
tion of MLL proof nets (Theorem 1). We construct an MLL proof forest, which
corresponds to the Horn sequent Γ3DMATCHING.

For each � (1 ≤ � ≤ n + m), the forest Θ� corresponding to FT � is shown
in Fig. 4. The forest ΘI corresponding to FI is shown in Fig. 5. Then the forest
ΘF corresponding to the rest in Γ3DMATCHING is shown in Fig. 6. Then we define an
MLL proof forest Θ0 as

Θ0 = ΘI ∪
⋃

1≤�≤n+m

Θ� ∪ ΘF

Fig. 4. Triple device Θ�

Fig. 5. I-device ΘI

Direct Encodings of NP-Complete Problems into Horn Sequents 25

Fig. 6. F-device ΘF

Then if we note that � Δ, A�B is provable in MLL if and only if � Δ, A,B is
provable in MLL, then we can easily see that Γ3DMATCHING is provable in IMLL if
and only if Θ0 has an MLL proof net by Proposition 2.

Theorem 2. An instance of 3D MATCHING has a solution if and only if there is
an ID-links set π for the corresponding MLL proof forest Θ0 such that Θπ

0 is an
MLL proof net.

Proof. We assume that we have a solution T0 ⊆ A × B × C. Then without loss
of generality we can write as

T0 = {〈ai1 , bj1 , ck1〉, . . . , 〈ain
, bjn

, ckn
〉}.

Moreover we have

A = {ai1 , . . . , ain
}

B = {bj1 , . . . , bjn
}

C = {ck1 , . . . , ckn
}.

Then for each � (1 ≤ � ≤ n), there is exactly one triple device Θq�
corresponding

to 〈ai�
, bj�

, ck�
〉 in T0 where 1 ≤ q� ≤ n + m. Let

T0 = {Θq1 , . . . , Θqn
}

Moreover we can write the set of the triple devices that do not appear in T0 as

T1 = {Θqn+1 , . . . , Θqn+m
}

We construct an ID-links set π for Θ0 as follows:

(1) For each � (1 ≤ � ≤ n) π includes the ID-link that connects the literal a⊥
i�

in
the triple device Θq�

to ai�
in the I-device ΘI.

(2) For each � (1 ≤ � ≤ n) π includes the ID-link that connects the literal bj�
in

the triple device Θq�
to b⊥

j�
in the F-device ΘF.

26 S. Matsuoka

(3) For each � (1 ≤ � ≤ n) π includes the ID-link in π that connects the literal
ck�

in the triple device Θq�
to c⊥

k�
in the F-device ΘF.

(4) For each � (n+1 ≤ � ≤ n+m) π includes an ID-link that connects the literal
a⊥

i�
in the triple device Θq�

to a literal ai�
in the F-device ΘF.

(5) For each � (n+1 ≤ � ≤ n+m) π includes an ID-link that connects the literal
bj�

in the triple device Θq�
to a literal b⊥

j�
in the I-device ΘI.

(6) For each � (n+1 ≤ � ≤ n+m) π includes an ID-link that connects the literal
ck�

in the triple device Θq�
to a literal c⊥

k�
in the I-device ΘI.

Then we can easily see that Θπ
0 is an MLL proof net.

Conversely we assume that we do not have any solution T0 ⊆ A × B × C.
In this case we can not find the ID-links set π for Θ0 described above. So any

ID-links set π for Θ0 must have the following property: There is some � (1 ≤ � ≤
n + m) such that

(1) the literal a⊥
i�

in Θ� connects to ai�
of the F-device ΘF in π, and

(2) the literal bj�
in Θ� connects to b⊥

j�
of the F-device ΘF in π or

(2’) the literal ck�
in Θ� connects to c⊥

k�
of the F-device ΘF in π.

Then we can find a DR-switching S for Θπ
0 such that the DR-graph S(Θπ

0) has
a cycle that passes through a⊥

i�
, ai�

and b⊥
j�

, bj�
, or a⊥

i�
, ai�

and c⊥
k�

, ck�
. ��

Remark 1. In fact our proof of Theorem 2 gives a stronger statement: if we find
an MLL proof net Θπ

0 for Θ0 then we can separate a matching T0 from T using
the ID-link set π.

Corollary 1. An instance of 3D MATCHING has a solution if and only if the
sequent Γ3DMATCHING for the instance is provable in MLL.

We note that this result can be easily extended to the n-D MATCHING problem for
any n (n ≥ 2).

4 The Encoding of PARTITION

4.1 Preliminaries

Definition 2 (PARTITION [16]). Let A be a finite set and s be a function from
A to Z

+. PARTITION is the problem that decide whether or not there is a subset
A′ ⊆ A such that ∑

s∈A′
s(a) =

∑

a∈A−A′
s(a).

The problem is different from 3-PARTITION used in [2] and an NP-complete
problem [3]. In particular our encoding below cannot be derived from the 3-
PARTITION encoding in [2] directly.

We assume that the elements of A are ordered and the list is

a1, a2, . . . , ak

Direct Encodings of NP-Complete Problems into Horn Sequents 27

Let
t =

∑

1≤i≤k

s(ai).

Note that for any subset A′ ⊆ A,

t =
∑

s∈A′
s(a) +

∑

a∈A−A′
s(a).

If A′ is a solution, then the following equation must hold:

t = 2
∑

s∈A′
s(a).

Then t must be even. So without loss of generality, we can assume t is even.

4.2 The Encoding into a Horn Sequent

In this section we give our encoding of the PARTITION problem into a Horn
sequent. We need a few auxiliary formulas.

For each i (1 ≤ i ≤ k), we define Fonei and Fanoi as

Fonei = ai −◦
s(ai)︷ ︸︸ ︷

b ⊗ b ⊗ · · · b

Fanoi = ai −◦
s(ai)︷ ︸︸ ︷

c ⊗ c ⊗ · · · c

Let Fweight be

Fweight = (

t/2
︷ ︸︸ ︷
b ⊗ b ⊗ · · · ⊗ b) ⊗ (

t/2
︷ ︸︸ ︷
c ⊗ c ⊗ · · · ⊗ c)

We define F1st and F2nd as

F1st = Fweight −◦ a1 ⊗ a2 ⊗ · · · ⊗ ak

F2nd = Fweight −◦ e

Then we define a sequent as

ΓPARTITION =
a1 ⊗ a2 ⊗ · · · ⊗ ak, Fone1, . . . , Fonek, Fano1, . . . , Fanok, F1st, F2nd � e

It is obvious that ΓPARTITION is a Horn sequent and the encoding is a polynomial
reduction.

We give an informal meaning for these formulas as follows:

– The formula a1 ⊗ a2 ⊗ · · · ⊗ ak gives the multiset of all items.
– The formula Fonei gives the weight for the item ai.

28 S. Matsuoka

– The formula Fanoi also gives the weight for the item ai.
– The role of F1st is a balance. If we are able to partition the set A of the items

into two disjoint sets A′ and A−A′ such that the sum of weights of A′ is equal
to that A − A′, then again we get the multiset of all items a1 ⊗ a2 ⊗ · · · ⊗ ak.

– The role of F2nd is also a balance. If we succeed in the partition mentioned
above, then we get the final formula e.

Example 2. The following is an instance of PARTITION:

A = {a1, a2, a3, a4}, s = {a1 �→ 2, a2 �→ 3, a3 �→ 2, a4 �→ 1}

The encoding described above gives the following Horn sequent from the
instance:

ΓPARTITION =
a1 ⊗ a2 ⊗ a3 ⊗ a4,
a1 −◦ b ⊗ b, a2 −◦ b ⊗ b ⊗ b, a3 −◦ b ⊗ b, a4 −◦ b,
a1 −◦ c ⊗ c, a2 −◦ c ⊗ c ⊗ c, a3 −◦ c ⊗ c, a4 −◦ c,
(b ⊗ b ⊗ b ⊗ b) ⊗ (c ⊗ c ⊗ c ⊗ c)−◦ a1 ⊗ a2 ⊗ a3 ⊗ a4,
(b ⊗ b ⊗ b ⊗ b) ⊗ (c ⊗ c ⊗ c ⊗ c)−◦ e � e

4.3 The Correctness Proof

In order to prove the correctness of the encoding, we exploit the characterization
of MLL proof nets (Theorem 1). We construct an MLL proof forest, which cor-
responds to the Horn sequent ΓPARTITION. Let the MLL forest shown in Fig. 7 be
ΘI. For each i (1 ≤ i ≤ k), let the MLL forest shown in Fig. 8 be Θonei. For each
i (1 ≤ i ≤ k), let the MLL forest shown in Fig. 9 be Θanoi. Let the MLL forest
shown in Fig. 10 be Θ1st. Let the MLL forest shown in Fig. 11 be Θ2nd. Finally
let the MLL forest shown in Fig. 12 be ΘF. Then we define an MLL proof forest
Θ0 as

Θ0 = ΘI ∪
⋃

1≤i≤k

Θonei ∪
⋃

1≤i≤k

Θanoi ∪ Θ1st ∪ Θ2nd ∪ ΘF

Then by Proposition 2, ΓPARTITION is provable in IMLL if and only if Θ0 has an
MLL proof net.

Theorem 3. An instance of PARTITION has a solution if and only if there is
an ID-links set π for the corresponding MLL proof forest Θ0 such that Θπ

0 is an
MLL proof net.

Proof. We assume that we have a solution A′ ⊆ A. Then without loss of gener-
ality we can write as

A′ = {a1, . . . , ak0}
A − A′ = {ak0+1, . . . , ak}

Direct Encodings of NP-Complete Problems into Horn Sequents 29

Fig. 7. I-device ΘI Fig. 8. One side device Θonei

Fig. 9. Another side device Θanoi Fig. 10. The first matching device Θ1st

Fig. 11. The second matching device
Θ2nd

Fig. 12. F-device ΘF

30 S. Matsuoka

Since A′ is a solution, as mentioned above, we can write as

t/2 =
∑

s∈A′
s(a) =

∑

s∈A−A′
s(a).

Then we construct an ID-links set π for Θ0 as follows:

(1) For each i (1 ≤ i ≤ k0), a⊥
i in ΘI is connected to ai in Θonei and each of b⊥

in Θonei is connected to b in Θ1st.
(2) For each i (1 ≤ i ≤ k0), a⊥

i in Θ1sti is connected to ai in Θanoi and each of
c⊥ in Θanoi is connected to c in Θ2nd.

(3) For each i (k0 + 1 ≤ i ≤ k), a⊥
i in ΘI is connected to ai in Θanoi and each of

c⊥ in Θanoi is connected to c in Θ1st.
(4) For each i (k0 + 1 ≤ i ≤ k), a⊥

i in Θ1st is connected to ai in Θonei and each
of b⊥ in Θonei is connected to b in Θ2nd.

(5) The literal e⊥ in Θ2nd is connected to e in ΘF.

It is obvious that Θπ
0 is an MLL proof net.

Conversely, we assume that we do not have any solution A′ ⊆ A. This means
that for any subset A′ ⊆ A,

t/2 �=
∑

s∈A′
s(a) �=

∑

s∈A−A′
s(a) �= t/2.

Then any ID-links set π for Θ0 must have the following property:

There is some i (1 ≤ i ≤ k) such that
(1) the literal a⊥

i in Θ1st is connected to the literal ai in Θonei;
(2) a literal b in Θ1st is connected to a literal b⊥ in Θonei,
or

(1’) the literal a⊥
i in Θ1st is connected to the literal ai in Θanoi;

(2’) a literal c in Θ1st is connected to a literal c⊥ in Θanoi.

Then there is a DR-switching S for Θπ
0 such that S(Θπ

0) has a cycle including
all literals mentioned in (1) and (2), or (1’) and (2’). ��

Remark 2. In fact our proof of Theorem 3 gives a stronger statement: if we find
an MLL proof net Θπ

0 for Θ0 then we can separate a partition A′ from A using
the ID-link set π.

Corollary 2. An instance of PARTITION has a solution if and only if the sequent
ΓPARTITION for the instance is provable in MLL.

Corollary 2 can be easily generalized to that for the following problem.

Definition 3 (GENERAL PARTITION). Let A be a finite set and s be a function
from A to Z

+. Let
t =

∑

s∈A

s(a)

Direct Encodings of NP-Complete Problems into Horn Sequents 31

and n1, n2, . . . n� be a list of positive integers such that

t = n1 + n2, · · · + n�.

GENERAL PARTITION is the problem that decide whether or not there is a list of
pairwise disjoint subsets A1, A2, . . . , A� of A such that

A =
⋃

1≤�′≤�

A�′

and
n1 =

∑

s∈A1

s(a), n2 =
∑

s∈A2

s(a), . . . , n� =
∑

s∈A�

s(a).

The idea of the encoding is that we prepare � side devices instead of one side
and another side devices, increase the number of the matching devices from 2 to
�, and use a cycle permutation of �-cycle on � letters.

The GENERAL PARTITION problem can be regarded as a special version of
the BIN PACKING problem [3]. It has several practical applications: for example,
imagine that you want to make a backup copy of a huge number of data files
on your PC into several different relatively small storage devices like USB flash
memory devices. Then we have got an instance of the problem, where s : A → Z

+

is a function from file identifiers to file sizes.

5 Concluding Remarks

In this paper we showed that Horn sequents of Linear Logic are extremely
useful for formalizing combinatorial NP-completeness problems. This suggests
that more complicated practical combinatorial NP-complete problems can be
directly encoded into these sequents. In fact, we have already discovered direct
encodings of several other NP-complete problems into MLL, including CIRCUIT
SATISFACTION (with constant fan-in), 3SAT, UNDIRECTED HAMILTONIAN CIRCUIT,
and GRAPH 3-COLORABILITY.

Although Kanovich’s Horn sequents of Linear Logic has not received much
attention so far, we believe that the research direction is promising.

References

1. Kanovich, M.I.: Horn programming in linear logic is NP-complete. In: Proceedings
of the Seventh Annual IEEE Symposium on Logic in Computer Science, pp. 200–
210 (1992)

2. Kanovich, M.I.: The complexity of Horn fragments of linear logic. Ann. Pure Appl.
Logic 69, 195–241 (1994)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

4. Krantz, T., Mogbil, V.: Encoding Hamiltonian circuits into multiplicative linear
logic. Theoret. Comput. Sci. 266, 987–996 (2001)

32 S. Matsuoka

5. Malik, S., Zhang, L.: Boolean satisfiability: from theoretical hardness to practical
success. Commun. ACM 52, 76–82 (2009)

6. Matsuoka, S.: Proof Net Calculator (2017). https://staff.aist.go.jp/s-matsuoka/
PNCalculator/index.html

7. Matsuoka, S.: Weak typed Böhm theorem on IMLL. Ann. Pure Appl. Logic 145(1),
37–90 (2007)

8. Matsuoka, S.: A coding theoretic study of MLL proof nets. Math. Struct. Comput.
Sci. 22(3), 409–449 (2012)

9. Girard, J.Y.: Multiplicatives. In: Logic and Computer Science: New Trends and
Applications, pp. 11–34 (1988)

10. Matsuoka, S.: Strong typed Böhm theorem and functional completeness on the
linear lambda calculus. In: Proceedings of 6th Workshop on Mathematically Struc-
tured Functional Programming, MSFP 2016, pp. 1–22 (2016)

11. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 3rd edn. Artima Inc.,
Walnut Creek (2016)

12. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press,
Cambridge (1989)

13. Murawski, A.M., Ong, C.H.L.: Fast verification of MLL proof nets via IMLL. ACM
Trans. Comput. Logic 7, 473–498 (2006)

14. Danos, V., Regnier, R.: The structure of multiplicatives. Arch. Math. Logic 28,
181–203 (1989)

15. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,

Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations:
Proceedings of a Symposium on the Complexity of Computer Computations, pp.
85–103. Springer, Boston (1972)

https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html
https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html

λ to SKI, Semantically

Declarative Pearl

Oleg Kiselyov(B)

Tohoku University, Sendai, Japan
oleg@okmij.org

Abstract. We present a technique for compiling lambda-calculus
expressions into SKI combinators. Unlike the well-known bracket
abstraction based on (syntactic) term re-writing, our algorithm relies
on a specially chosen, compositional semantic model of generally open
lambda terms. The meaning of a closed lambda term is the correspond-
ing SKI combination. For simply-typed as well as unityped terms, the
meaning derivation mirrors the typing derivation. One may also view the
algorithm as an algebra, or a non-standard evaluator for lambda-terms
(i.e., denotational semantics).

The algorithm is implemented as a tagless-final compiler for
(uni)typed lambda-calculus embedded as a DSL into OCaml. Its type
preservation is clear even to OCaml. The correctness of both the algo-
rithm and of its implementation becomes clear.

Our algorithm is easily amenable to optimizations. In particular, its
output and the running time can both be made linear in the size (i.e., the
number of all constructors) of the input De Bruijn-indexed term.

1 Introduction

Since Curry [2] definitely and constructively demonstrated that any lambda-
expression can be transformed into SKI-combinators, there seems to have been
no need to revisit this issue. And yet it has continued to attract attention: of
mathematicians, investigating connections of lambda-terms and graphs, and of
theoretical computer scientists, studying the complexity of this process [4].

In a surprising turn, the translation from lambda-terms to SKI combinators,
previously regarded as purely academic, proved very practical. David Turner
used the translation as the compilation technique for his functional language
SASL [12,13], and later Miranda. The familiar presentation of the transla-
tion, or compilation – called “the bracket abstraction” and originally due to
Schoenfinkel [8] – was made popular by Turner, who polished and optimized it,
and made it practical. The entire chapter of Peyton Jones’ book on implement-
ing functional languages [7, Chap. 16] is devoted to the SKI translation, which is
“appealing because it gives rise to an extremely simple reduction machine”.
The book mentions two physical machines designed around SKI reductions:
Cambridge SKIM machine [11] and Burroughs NORMA.

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 33–50, 2018.
https://doi.org/10.1007/978-3-319-90686-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_3&domain=pdf

34 O. Kiselyov

Above all, the bracket abstraction is a pearl. We can’t help to peek at its
shine right away, ahead of the formal presentation in the background Sect. 2.
The translation turns a lambda-term to applications of the S, K, I combinators,
whose reductions are shown in the left column of Fig. 1.

Reductions Compilation Rules
I Ix � x λx. x �→ I
K K y x � y λx. e �→ Ke †
S Sfg x � fx(gx) λx. e1 e2 S (λx. e1) (λx. e2)

Fig. 1. SKI reductions and compilation rules. †In the K compilation rule, e is a com-
binator or variable other than x.

The translation is re-writing with three simple rules of the right column of
Fig. 1. The I and K rules are the re-statements of the corresponding reductions;
the S rule becomes obvious if we notice that a term e with a possibly free variable
x is equal to (λx. e)x. Taking as the running example λx. λy. y x, we can only
use the S-rule, on the inner lambda-abstraction, obtaining λx. S (λy. y) (λy. x),
to which K and I rules apply, giving λx. (SI) (Kx). Using the S rule three more
times leads eventually to S(S(KS)(KI))(S(KK)I). The result is bigger than
the original term: we tackle the size explosion in Sect. 6.

We present another pearl of the translation from lambda-terms to SKI com-
binators and show off its facets. It comes from a very different oyster. Our trans-
lation is not based on (syntactic, in its essence) re-writing. Rather, we define
a semantic model of (generally open) lambda-terms in terms of combinators,
along with the way to compositionally compute the meaning of a term in that
semantics from the meanings of its immediate children. The meaning of a closed
lambda-term is designed to be the corresponding SKI term. Our translation
stands out in avoiding operations like checking variable equality or free occur-
rences. Whereas the bracket abstraction cannot do anything meaningful with
the mere x or x y subterms, ours can. As a source we use lambda-terms with
De Bruijn indices; it turns out the indices supply just enough information about
the environment to figure out the meaning of a single variable or a combination
of variables.

All in all, the semantic presentation of the SKI compilation avoids the ‘nomi-
nal trench’ of lambda-calculus; it is easier to see correct, easier to generalize and
optimize. The semantic pearl shines brighter.

The Highlights

– Section 3 develops the semantic-based translation intuitively and formally.
We start with the simply-typed calculus to see the correspondence of type
and meaning derivations. Already the simplest polish naturally reveals
optimizations.

λ to SKI, Semantically 35

– The semantic translation is straightforward to realize in tagless-final style:
Sect. 4. The OCaml implementation highlights the algebra of the translation,
naturally prompting further optimizations.

– Section 5 extends the calculus with integers, conditional and general recursion.
The translation becomes practical.

– Section 6 presents the linear space and time translation, for the general
untyped calculus (which applies to the typed calculus as well). It goes beyond
the Schoenfinkel, Curry and Turner bracket abstraction and their further opti-
mizations such as director strings; Sect. 7 discusses how much beyond and in
which direction. Our translation is hence the viable alternative to supercom-
binators.

We start with the background, in the next section. The complete OCaml
code is available at http://okmij.org/ftp/tagless-final/skconv.ml.

2 Lambda- and SKI-calculi and the Bracket Abstraction

This background section recapitulates lambda- and combinator calculi and the
classical bracket abstraction. Mainly, it introduces the notation for the rest of
the paper.

Figure 2 presents the syntax of the calculi and the notational conventions,
heavily used throughout. We write e for expressions in lambda-calculus with
names and e0 for expressions in the calculus with De Bruijn indices – although
we often write just e if the context disambiguates. Lower-case f, g, x, y, u, v (pos-
sibly adorned with subscripts or superscripts) are always variables. We consider
both untyped calculi and simply-typed calculi. In the latter case, types (denoted
by α, β, γ, σ, τ metavariables) are base and arrow types; there are no type vari-
ables. Γ denotes a possibly empty sequence of types, whereas Γ+ stands for a
nonempty sequence. We write τ, Γ and Γ, τ for prepending, resp. appending τ
to the sequence Γ , and Γ1, Γ2 for sequence concatenation. The S, K, I and other
combinators are, by convention, upper-case letters; the metavariable d stands
for an arbitrary combinator expression.

The meaning of combinators is defined by their reduction rules, collected in
Fig. 3. It presents not only S, K, and I but also B and C combinators, which we

Variables f, g, x, y, u, v
Base Types ι
Types α, β, γ, σ, τ ::= ι | τ → τ
Type Environment Γ ::= τ, . . .

Expressions e ::= x | λx. e | e e
De Bruijn Expressions e0 ::= z | s e0 | λ e0 | e0 e0

Combinator Expressions d ::= d d S K I B C

Fig. 2. Syntax of languages

http://okmij.org/ftp/tagless-final/skconv.ml

36 O. Kiselyov

I x � x
K y x � y
S f g x � fx (gx)

B f g x � f (gx)
C f g x � f x g

Fig. 3. Combinators and their reduction rules

shall use later. They are particular cases of S; B is the functional composition.
All combinators can be expressed in terms of just S and K.

Figure 4, borrowed from [7, Fig. 16.2] with the adjusted notation, presents
the basic bracket abstraction algorithm: the formalization of the procedure
intuitively described in Sect. 1. The main translation C [e] uses the auxiliary
Ax [e′] to “abstract” x from a lambda-free expression e′ and produce the cor-
responding combinator expression. As shown in Sect. 1, C [λx. λy. y x] gives
S(S(KS)(KI))(S(KK)I).

C [e]: compile e to combinators

C [e1 e2] C→� [e1] C [e2]
C [λx. e] A→� x [C [e]]
[c] c

Ax [e]: abstract x from e

Ax [e1 e2] �→ S (Ax [e1]) (Ax [e2])
Ax [x] �→ I

x [c] K c where c is not x

Fig. 4. Basic Bracket Abstraction. We write c for a variable, constant or a combinator
expression. Ax [e] applies to e with no inner lambdas.

As another example, λy. (λx. x x)(λx. x x) is translated (in a less naive way)
to K((SII)(SII)). The lambda-term is not strongly normalizing (i.e., has a
divergent reduction sequence) and the same holds for the translated SKI term.
With no reductions under lambda (as in call-by-name or call-by-value), the
lambda-term is in normal form. In SKI this corresponds to the head reduc-
tion strategy: d d1 . . . dn, where d is a combinator, is irreducible if no reduction
rule applies to d. In the following, only head reductions are considered.

3 Semantic Translation

This section formally presents our translation, first intuitively and then formally.
We argue about its correctness in Sect. 4 and improving memory and run-time
performance in Sect. 6. The translation is formulated as a non-standard denota-
tion of lambda-terms and amounts to a constructive proof of the combinatorial
completeness of lambda-calculus.

Although our translation applies both to typed and untyped calculi, the
intuitions are easier to see with types, such as those in Fig. 5. (We explicitly
consider the untyped case in Sect. 6.)

This is the very standard type system for simply-typed lambda-calculus,
conventionally presented as the inference rules for the judgment Γ � e : τ that

λ to SKI, Semantically 37

V ar
τ � z : τ

Γ � e : τ
WL

σ, Γ � e : τ

Γ+ � e : τ
WR

Γ+, σ � s e : τ

Γ, σ � e : τ
Abs

Γ λ e : σ τ

Γ � e1 : σ → τ Γ � e2 : σ
App

Γ e1 e2 : τ

Fig. 5. The simple type system of the De Bruijn lambda-calculus

a term e has the type τ in the environment Γ . The latter is a sequence of
types. Figure 5 is more explicit than usual about structural rules, distinguishing
the right weakening1 (WR), which is syntactically marked as s e, from the left
weakening (WL), which is unmarked. The ‘unhinged’ nature of (WL) prompts
us to move to a different type system, in which every rule is connected to some
syntactic feature and derivations are syntax-directed. The left-hand-side of Fig. 6
describes such a system – to be called ‘leftless’, in contrast with the ‘lefty’ system
of Fig. 5, from which it was derived by working the (WL) rule into the others.
The new type system is equivalent to the old, as the following proposition shows.

Definition 1. A type judgment Γ � e : τ (and its derivation) are called left-
strong if (i) Γ is empty, or (ii) Γ is σ, Γ ′ and Γ ′ � e : τ is not derivable.

Proposition 1. Any left-strong judgment (derivation) in the lefty system can
be derived (converted to) the leftless system, and vice versa.

In the forward direction, the proof is by the straightforward induction on the
type derivation. The reverse direction is trivial.

The reason to split hairs about the weakening and to introduce the messier
leftless system is to make clearer the correspondence between type and semantic
derivations.

We now introduce our denotational semantics. Generally, denotational
semantics assigns each syntactic object an element of some semantic domain,
which serves as the ‘meaning’ for the object. The assignment must be compo-
sitional: the meaning of an object should depend only on the meanings of its
immediate subcomponents. In Church-style calculi, only well-typed terms ‘make
sense’. Therefore, the meaning is assigned to type derivations, represented by
the judgement in their conclusion: in symbols, E [� e : τ] ∈ V [τ] where V [−]
stands for the semantic domain, also type-indexed. To give the meaning to
an open term, however, we need to know what its free variables mean. The
common approach is to take the term denotation to be a function of an ‘envi-
ronment’, which maps each free variable to its meaning. When variables are
represented by De Bruijn indices, the environment may be realized as a tuple:
E [τn, . . . , τ1 � e : τ] ∈ V [τn × . . . × τ1 → τ].

1 By ‘weakening’ we mean a (structural) inference rule stating that adding more
premises to hypotheses of a valid logical deduction preserves the validity.

38 O. Kiselyov

Γ � e : τ E [Γ � e : τ]

V ar
τ � z : τ

EV ar
τ |= I

Γ+ � e : τ
W

Γ+, σ � s e : τ

Γ+ |= d
EW

Γ+, σ |= (|= K) � (Γ+ |= d)
� e : τ

Abs0� λ e : σ → τ

|= d
EAbs0|= K d

Γ, σ � e : τ
Abs

Γ � λ e : σ → τ

Γ, σ |= d
EAbs

Γ |= d

Γ1 � e1 : σ → τ Γ2 � e2 : σ
App

Γ1 � Γ2 � e1 e2 : τ

Γ1 |= d1 Γ2 |= d2

EApp
Γ1 � Γ2 |= (Γ1 |= d1) � (Γ2 |= d2)

where
Γ1 � Γ2 = Γ1 if Γ1 = Γ3, Γ2 for some Γ3

= Γ2 if Γ2 = Γ3, Γ1

Fig. 6. The ‘leftless’ type system and the corresponding denotational semantics: the
rules for deriving Γ � e : τ (left column) and E [Γ � e : τ] (right column). The function
Γ1 � Γ2 checks that one sequence is a suffix of the other and returns the longer one.
The semantic function � is described in text.

Now come two key ideas. Without special introduction they are easy to miss
due to their simplicity. First, we curry the denotation: E [τn, . . . , τ1 � e : τ] ∈
V [τn → . . . → τ1 → τ]. Second, as the semantic domain V [τ] we take the set of
combinator expressions of type τ . (We shall soon see it is non-empty.) Alas, we
have conflated closed and open terms: the combinator I : τ → τ may denote
the closed term � λz : τ → τ as well as the open term τ � z : τ . To distinguish
the denotations of terms with the different number of free variables, we pair the
combinator expression with Γ 2.

Definition 2. The denotation of a typed lambda-term E [Γ � e : τ] where Γ is
τn, . . . , τ1 is a tuple of an SKI term d of the type τn → . . . → τ1 → τ , and the
type sequence Γ . We write such tuple as Γ |= d.

It follows that for a closed e, E [� e : τ] is a combinator expression of the
type τ , which we take to be the result of our SKI translation3. The denotation
E [τ � z : τ] of the open term z is clearly τ |= I: indeed, I, when applied to
some d0, the one-component ‘environment’, reduces to that d0 – the behavior
2 As we will see in Sect. 6, it is enough to keep the length of Γ , that is, the number of

free variables in a term.
3 It is natural to wish a denotation of an open term be non-divergent: if τn, . . . , τ1 |= d

then d, until applied to n other terms, should have only a finite number of reductions,
if any at all. The wish is already granted: in the present simply-typed calculus, all
terms are (strongly) normalizing. We have to wait until Sect. 6 to say something
non-trivial about termination.

λ to SKI, Semantically 39

expected of z. Likewise, we find that E [τ, σ � s z : τ] is τ, σ |= K: the combinator
K, applied to d1 and d0, the two-component environment, reduces to d1.

The right-hand side column of Fig. 6 describes the compositional computation
of E [Γ � e : τ] in the form of inference rules. (EVar) was explained already.
The (EAbs0) rule says that if the function’s body is closed it is the constant
function. (EAbs) amounts to η-conversion: if d is such that (τn, . . . , τ1, σ |= d),
then (d dn . . . d1) acts as a function: when applied to an argument d0 : σ, that
is, d dn . . . d1 d0, it looks like d in the environment extended with d0. The (EW)
rule states that weakening is the application of the K combinator.

The semantic function (Γ ′ |= d′)�(Γ |= d) computes the application: that is,
converts (τn, . . . , τ1 |= d′)(τm, . . . , τ1 |= d) to the form τmax n m, . . . , τ1 |= d̄ for
some combinator expression d̄. It is an exercise in combinatory logic. Its simplest
(albeit not optimal) solution is to define � by induction4: Let’s consider the case
of the application of a closed term: (|= d′) � (τn, . . . , τ1 |= d). Our goal is to
represent d′ (d dn . . . d1) as a combinator expression d̄ applied to dn through d1.
In the base case of n = 0, clearly d̄ is d′ d. In the inductive case, the B reduction
rule from Fig. 3 gives us d′ (d dn . . . d1) = (Bd′) (d dn . . . d2) d1. Therefore, d̄ is the
solution to the smaller instance of the problem: representing (Bd′) (d dn . . . d2)
as d̄ dn . . . d2. In the general case of (d′ dn . . . d1)(d dm . . . d1) with n ≥ 1,m ≥ 1,
the S reduction rule gives us (S (d′ dn . . . d2)) (d dm . . . d2) d1. Then we look
for d̄′ such that S (d′ dn . . . d2) = d̄′ dn . . . d2 (the earlier case of the closed-term
application) and, finally, solve (d̄′ dn . . . d2)(d dm . . . d2), which is the shorter
version of the original problem. All in all, we obtain the following structurally
recursive definition:

(|= d′) � (|= d) = d′ d

(|= d′) � (τn, . . . , τ1 |= d) = (|= Bd′) � (τn, . . . , τ2 |= d)

(τn, . . . , τ1 |= d′) � (|= d) = (|= CCd) � (τn, . . . , τ2 |= d′)
(τn, . . . , τ1 |= d′) � (τm, . . . , τ1 |= d) = (τn, . . . , τ2 |= (|= S) � (τn, . . . , τ2 |= d′))�(τm, . . . , τ2 |= d)

Figure 7 shows the typing and semantic derivations for the running example:
the flipped application λx. λy. y x. The typing derivation can be read as a proof,
from the (Var) axioms down to the conclusion that the sample term has the type
α → (α → β) → β. Likewise, the semantic derivation produces the meaning of
the term just as compositionally, from the (EVar) axioms down the chain of
inference rules. The less-obvious step is the � computation in the (EApp) rule:

(α → β |= I) � (α, α → β |= BKI)
= (|= (|= S) � (|= I)) � (α |= BKI)
= (|= SI) � (α |= BKI) = B(SI)(BKI)

The overall result B(SI)(BKI) is shorter than S(S(KS)(KI))(S(KK)I) we
obtained in Sect. 2 with the original Curry bracket abstraction – although far
from being optimal. We describe the improvements in Sect. 3.1.

Figure 6, when read across, actually defines the translation process formally:
each row of the figure gives the translation for the lambda-term of a particular

4 The optimal solution is described in Sect. 6.

40 O. Kiselyov

α → β � z : α → β

α � z : α
W

α, α → β � s z : α

α, (α → β) � z (s z) : β

α � λ z (s z) : (α → β) → β

λ λ z (s z) : α (α β) β

α → β |= I

α |= I
EW

α, α → β |= BKI

α, (α → β) |= B(SI)(BKI)

α |= B(SI)(BKI)

= B(SI)(BKI)

Fig. 7. The type and meaning derivations for the running example

form. For example, consider a term Γ+, σ � s e : τ . (Since this section deals with
the Church-style calculus, each (sub)term comes annotated with its type and
typing environment.) According to the second row of Fig. 6, we have to find the
translation for Γ+ � e : τ , which is Γ+ |= d for some combinator expression d.
Next, we apply the (EW) rule. Lambda-abstraction is the only subtlety: whether
to use (Abs/EAbs) or (Abs0/EAbs0) depends on the type environment. This
formal process is implemented in OCaml, see Sect. 4.

To show correctness, we define the reverse translation (d)Λ from a combinator
term d to a lambda-term, by substituting S,K, I,B, S combinators with the
corresponding lambda-terms and treating combinator application as lambda-
application.

Theorem 1 (Translation soundness/Semantics adequacy). Let E [τn, . . . ,
τ1 � e : τ] be τn, . . . , τ1 |= d. Then (d)Λ sn−1z . . . sz z =βη e

This is the generalization of [10, Theorem 5.1.14] to open terms. The proof is
the easy structural induction on the meaning derivation. The totality of the
translation gives

Corollary 1 (Combinatorial Completeness). Every, even open, lambda-
term can be represented by a combinator term

Or: every open term can be put in the form where all of its free variables are
“on the right margin” – moreover, that form can be computed compositionally.
So far, we have been dealing with the simply-typed calculus. Section 6 shows the
general untyped case.

3.1 Lazy Weakening

The denotation τn, . . . , τ1 |= d says that a combinator d should be considered in
an environment, of being applied to n other terms. For example, to understand
the meaning of E [τ, σ � s z : τ], which is τ, σ |= K, we have to apply K to two
other terms, d2 and d1. This example also shows that some of these environ-
ment terms are ignored. Knowing what is ignored is useful: it leads to a better
translation, as we are about to see.

To keep track of ignored context terms we mark them with the special “any
type” - (analogous to the type placeholder in, say, OCaml). Figure 8 shows the

λ to SKI, Semantically 41

Γ � e : τ E [Γ � e : τ]

Γ+ � e : τ
W

Γ+, - � s e : τ

Γ+ |= d
EW

Γ+, - |= d

Γ+, - � e : τ
Abs1

Γ+ � λ e : σ → τ

Γ+, - |= d
EAbs1

Γ+ |= (|= K) � (Γ+ |= d)

Γ ′, - � Γ, - = (Γ ′ � Γ), - (Γ ′, - |= d′) � (Γ, - |= d) = (Γ ′ |= d′) � (Γ |= d)
Γ ′, - � Γ, τ = (Γ ′ � Γ), τ (Γ ′, - |= d′) � (Γ, τ |= d) = ((|= B) � (Γ ′ |= d′)) � (Γ |= d)
Γ ′, τ Γ, - = (Γ ′ Γ), τ (Γ ′, τ = d′) (Γ, - = d) = ((= C) (Γ ′ = d′)) (Γ = d)

Fig. 8. The ‘weak lazy leftless’ type system and the denotational semantics. Shown
are the differences from Fig. 6: the changed rule (W) and the new rule (Abs1). The
functions � and � are also extended as shown. This system is presented in full in
Sect. 4.

new type system and denotational semantics. The type system is clearly equiv-
alent to that of Fig. 6. Now, the rule (EW) does nothing: ignored context terms
are merely marked but ignored when computing the denotation. The real weak-
ening is delayed until (EAbs1): abstracting over an ignored variable gives the
constant function. This rule corresponds to the so-called K-optimization, which
ensures full laziness [7]. Within the bracket abstraction (Fig. 4) the optimiza-
tions is written [7, Sect. 16.2.1] as Ax [e] �→ K e iff x is not free in e. We have
accomplished it without needing to compute and search the set of free variables.
(The sequence Γ , a part of the term denotation, is all we need to know about
free variables.)

α → β � z : α → β

α � z : α
W

α, - � s z : α

α, (α → β) � z (s z) : β

λ λ z (s z) : α (α β) β

α → β |= I

α |= I
EW

α, - |= I

α, (α → β) |= B(CI)I

= B(CI)I

Fig. 9. The type and meaning derivations for the running example, in the weak lazy
leftless system (the last two (Abs) steps are compressed)

The extended � rules in Fig. 8 deal with applications of open terms, one of
which (or both) ignore the first contextual term. For example, (τ2, τ1 |= d′) �
(τ2, - |= d) must be such d̄ that d̄ d2 d1 = (d′ d2 d1)(d d2). The latter is equal
to C(d′ d2)(d d2)d1 and hence the desired d̄ is the answer of ((|= C) � (τ2 |=
d′)�(τ2 |= d). It is the so-called C optimization, which the new (EW) rule forces
upon us. Figure 9 shows the typing and meaning derivations for the running
example. Compared to Fig. 7, the translation result is both shorter and simpler

42 O. Kiselyov

(avoiding the duplicating combinator S). Table 1 compares the two systems on
more examples: tracking of ignored terms is truly a good optimization.

4 OCaml Implementation

The translation rules that previously have been written in mathematical notation
are straightforward to turn into code, using the so-called tagless-final style [1,5].
This section does so, taking OCaml as the implementation language. The reason
to show the code in detail is actually theoretical: to present the translation as
an algebra and to argue for its correctness.

Our OCaml code embeds both the lambda and SKI simply-typed calculi
as DSLs, which are specified as OCaml module signatures Lam and SKI. The
abstract type (γ,α) repr represents lambda-terms; it is parameterized by the
term type α and the type environment γ. It might take time to realize that the
Lam signature is the precise re-statement of the left column of Figs. 6 and 8,
but in the OCaml-readable notation: Lam tells the syntax (with $$ denoting an
application) and the typing rules of the weak leftless system. (The operation
Γ ′ � Γ is done by unification during the type checking.)

module type Lam = sig
type (γ,α) repr
val z: (α∗γ,α) repr
val s : (β∗γ,α) repr →

(∗(β∗γ),α) repr
val lam: (α∗γ,β) repr → (γ,α→β) repr
val ($$): (γ,α→β) repr →

(γ,α) repr → (γ,β) repr
end

module type SKI = sig
type α repr
val kI : (α→α) repr
val kK: (α→β→α) repr
val kS: ((α→β→δ)→(α→β)→α→δ) repr
val kB: ((α→β) → (δ→α) → δ→β) repr
val kC: ((α→β→δ) → (β→α→δ)) repr
val ($!): (α→β) repr → α repr → β repr

end

In this notation, the running example is written as lam (lam (z $$ (s z))).
The typed SKI calculus is likewise defined by the signature SKI (where $! is a
SKI application). The Lam and SKI signatures clearly reveal the lambda and the
combinator calculi to be algebras.

The accompanying code shows two implementations of the SKI signature,
that is, two concrete SKI algebras. The carrier α repr of one algebra, PSKI, is
set to be a string: it interprets every SKI expression as its printout. The other
algebra is a SKI evaluator; its carrier is the set of OCaml values.

The lambda-to-SKI translation is also an algebra. It is an implementation of
the Lam signature in terms of SKI:

module Conv(S:SKI) : Lam = struct
type (γ,α) repr = | C: α S.repr → (γ,α) repr

| N: (γ,α→β) repr → (α∗γ,β) repr
| W: (γ,α) repr → (∗γ,α) repr

let z: (α∗γ,α) repr = N (C S.kI) (∗Var∗)
let s : (β∗γ,α) repr → (∗(β∗γ),α) repr = fun e → W e (∗EW ∗)

λ to SKI, Semantically 43

let rec ($$): type g a b. (g,a→b) repr → (g,a) repr → (g,b) repr =
fun e1 e2 → match (e1,e2) with
| (W e1, W e2) → W (e1 $$ e2) (∗(se1)(se2) = s(e1 e2)∗)
| (W e, C d) → W (e $$ C d) (∗(se)d = s(ed)∗)
| (C d, W e) → W (C d $$ e)
| (W e1, N e2) → N ((C S.kB) $$ e1 $$ e2)
| (N e1, W e2) → N ((C S.kC) $$ e1 $$ e2)
| (N e1, N e2) → N ((C S.kS) $$ e1 $$ e2)
| (C d, N e) → N (C S.(kB $! d) $$ e)
| (N e, C d) → N (C S.(kC $! kC $! d) $$ e)
| (C d1, C d2) → C (S.(d1 $! d2)) (∗closed term application∗)

let lam: (α∗γ,β) repr → (γ,α→β) repr = function
| C d → C S.(kK $! d) (∗Abs0 ∗)
| N e → e (∗Abs∗)
| W e → (C S.kK) $$ e (∗Abs1 ∗)

let observe : (unit ,α) repr → α S.repr = function (C d) → d
end

This implementation re-tells the right-column of Fig. 8, the bottom-up meaning
computation, spelling out � in full detail. The carrier is the GADT disjoint union
of three sets: closed-term denotations (e.g., |= I is written in OCaml as C S.kI),
open-term denotations that ignore the context term (tagged with W) and general
open-term denotations. If d of the OCaml type (γ, α→β) repr represents Γ |= d
then N d: (α ∗ γ, β) repr represents Γ, α |= d. Interpreting the running example
lam (lam (z $$ (s z))) in this Conv(PSKI) algebra (with the PSKI implementation
of SKI) gives the string “B(CI)I”.

Perhaps surprisingly, the implementation Conv makes a theoretical point.
The type of observe reads as a proposition that a closed lambda-term translates
to a SKI term of the same type. The type preservation is hence checked by the
OCaml type checker. Furthermore, the OCaml compiler reports no inexhaustive
pattern-match warnings: observe is hence total. The type-preservation of the
translation gives, by free theorems, a certain degree of functional correctness.
For example, the OCaml type checker assures that a lambda-term of the type
α→β→α is converted to a SKI term of the same type. Any term of that type
(in a strongly normalizing calculus) have the same meaning. We see that not
only the translation algorithm (Fig. 8) preserves the meaning but so does its
implementation (the Conv functor).

4.1 The Eta-Optimization

The translation result for our running example, B(CI)I, shows the room for
improvement. After all, B is the functional composition, of which I is the unit.
Alternatively, BdI �→ d is an η-reduction. We can implement this simplification
as the second phase of the translation, in the standard tagless-final optimization
framework5. It is more instructive to work it out into the translation itself.
5 http://okmij.org/ftp/tagless-final/course/optimizations.html.

http://okmij.org/ftp/tagless-final/course/optimizations.html

44 O. Kiselyov

Just as in Sect. 3.1, procrastination is the key: delay the introduction of the
I combinator. Instead of using I for the denotation of z, we add a dedicated
element V to our semantic domain:

type (γ,α) repr = | C: α S.repr → (γ,α) repr
| V: (α∗γ,α) repr
| N: (γ,α→β) repr → (α∗γ,β) repr
| W: (γ,α) repr → (∗γ,α) repr

with the corresponding changes to the semantic functions

let z: (α∗γ,α) repr = V
let lam: type a b g. (a∗g,b) repr → (g,a→b) repr = function

| V → C S.kI
. . .

let rec ($$): type g a b. (g,a→b) repr → (g,a) repr → (g,b) repr =
fun e1 e2 → match (e1,e2) with
| (W e,V) → N e
| (V, W e) → N (C (S.(kC $! kI)) $$ e)
| (N e, V) → N (C S.kS $$ e $$ C S.kI)
| (V, N e) → N (C S.(kS $! kI) $$ e)
| (C d, V) → N (C d)
| (V, C d) → N (C S.(kC $! kI $! d))
. . .

Just like K in Sect. 3.1, I is introduced upon abstraction and in some cases upon
applications. On the other hand, when applying a closed term d to V, the free
variable is already at the right margin so the denotation becomes τ |= d with no
extra combinators. With this optimization, the running example translates to
mere CI, which is indeed the shortest combinator for the flipped application –
quite an improvement over the naive translation S(S(KS)(KI))(S(KK)I) in
Sect. 1. The comparison Table 1 shows the current algorithm is by far the best:
e.g., it translates the K combinator lambda-term to just K and the S combinator
term to S. Yet the recursion in the $$ semantic function betrays non-linear
complexity. We fix the problem in Sect. 6.

5 Compiling Real Programs

The simply-typed lambda-calculus considered so far is not even Turing-complete,
let alone convenient. We want numbers, booleans, convenient conditionals, and
general recursion. Fortunately, all these features are easy to add, as constants
(assuming a non-strict evaluation strategy) of appropriate types. Below is an
example, borrowed from [7, Sect. 16.2.6]. It is the lambda-term for finding the
greatest common divisor of two integers a and b (with b ≤ a) using Euclid’s
algorithm, written in the extended calculus embedded in OCaml:

let gcd = fix $$ lam (lam (lam
(let self = s (s z) and a = s z and b = z in
if $$ (eq $$ int 0 $$ b) $$ a $$ (self $$ b $$ (rem $$ a $$ b)))))

λ to SKI, Semantically 45

(The let-expression of the host language (OCaml) is the free syntax sugar that
makes the term more readable.) Its translation to SKI (also extended with com-
binators such as Y , IF , Rem and 0) is

Y (B(S(BS(C(B IF (= 0)))))(CC Rem (BBS)))

The algorithm from Sect. 4.1 was used as it is, treating fix, if , etc. constants as
primitive combinators. The result is compact and can be shown with no ‘cheat-
ing’ ([7, Sect. 16.2.6] translated only the function’s body, without the recursive
knot).

6 Linear algorithm

This section describes the time- and space-linear translation algorithm, in the
general case of the untyped lambda-calculus (which can be backported to the
typed case). We stress that for clarity the algorithm is based on the simpler
Fig. 6 rather than the optimized Fig. 8 (and hence has room for improvement).

However odd, we continue to use ‘type derivations’, whose judgments omit
types, and represent the ‘type’ environment Γ by its length, the natural number:
e.g., 1 � z (with the denotation 1 |= I). The zero length is omitted. The unitype
system and the corresponding denotation rules are presented in Fig. 10, which is
the trivial simplification of Fig. 6.

The only interesting part is the new definition of the semantic function �,
which computes the denotation of application. Its defining requirement is

(n |= d′) � (m |= d) = d̄ iff (d′ dn . . . d1)(d dm . . . d1) = d̄ dmaxn m . . . d1

for some terms dmaxn m, . . . , d1. Previously, in Sect. 3, such d̄ was computed by
induction on maxnm. (The two applied terms share the min nm suffix of their
environment, which is easy to see from Fig. 6.) In contrast, Fig. 10 defines �
in terms of so-called bulk combinators Bn, Cn and Sn, without any recursion.
The bulk combinators (whose reductions and definitions in terms of S and K are
collected in Fig. 11) are specifically designed to satisfy the defining requirement
of �. For example:

(d′ dn . . . d1)(d dn . . . d1) = Sn d′ d dn . . . d1

≡ ((n |= d′) � (n |= d)) dn . . . d1

(d′ dn+k . . . d1)(d dn . . . d1) = Sn (d′ dn+k . . . dn+1) d dn . . . d1

= (Bk Sn d′ dn+k . . . dn+1) d dn . . . d1

= Ck(Bk Sn d′) d dn+k . . . dn+1 dn . . . d1

≡ ((n + k |= d′) � (n |= d)) dn+k . . . d1 k > 1

The bulk Bn, Cn and Sn combinators, like the ordinary B, C and S, take two
terms d′ and d and then n ≥ 1 more terms and distribute the latter across the
first two. The bulk combinators are thus the generalization of ordinary ones, to

46 O. Kiselyov

n � e E [n � e]

V ar
1 � z

EV ar
1 |= I

n + 1 � e
W

n + 2 � s e

n + 1 |= d
EW

n + 2 |= (|= K) � (n + 1 |= d)
� e

Abs0� λ e

|= d
EAbs0|= K d

n + 1 � e
Abs

n � λ e

n + 1 |= d
EAbs

n |= d

n � e1 m � e2
App

maxn m � e1 e2

n |= d1 m |= d2

EApp
maxn m |= (n |= d1) � (m |= d2)

(|= d1) � (|= d2) = d1 d2

(|= d1) � (n |= d2) = Bn d1 d2

(n |= d1) � (|= d2) = Cn d1 d2

(n |= d1) � (n |= d2) = Sn d1 d2

(n |= d1) � (m |= d2) = Bm−n(Sn d1) d2 if n < m
(n = d1) (m = d2) = Cn m(Bn m Sm d1) d2 if n > m

Fig. 10. The unityped system and the denotational semantics

distribute several terms ‘in bulk’. (The bulk combinators are typeable and hence
usable also in the typed case.)

The untyped combinator calculus permits divergent terms. The denotation of
the closed (λz z)(λz z) comes out as (SII)(SII); the divergent combinator term
as denotation is natural and expected. One may wish, however, denotations of
open terms be convergent. To this end, one may read n |= d as if it were n |= Ind.
The (assumed) In combinator ensures no reductions taking place until the full
environment is supplied.

B′ d f g x � d f (gx)
C′ d f g x � d (fx) g
S′ d f g x � d (fx) (gx)

B′ = BB
C′ = B(BC)B
S′ = B(BS)B

Bn f g xn . . . x1 � f (g xn . . . x1)
Cn f g xn . . . x1 � (f xn . . . x1) g
Sn f g xn . . . x1 � (f xn . . . x1) (g xn . . . x1)
In f xn . . . x1 � f xn . . . x1

Bn = timesn−1 B′ B
Cn = timesn−1 C′ C
Sn = timesn−1 S′ S
In = BnI (we set I0 to be I)

Fig. 11. Primed (director) and bulk combinators: reductions and SK definitions. The
n-times application of d to d’ is denoted as timesn d d′.

λ to SKI, Semantically 47

In the earlier approaches, the size of the translation result has to be, in the
worst case, at least quadratic in the size of the input term. This is easy to see
on the worst term λx1λxn.xn . . . x1 from [7]. Its body has n variables each
requiring a different component from the environment, and n − 1 applications.
Distributing one environment variable across an application requires one combi-
nator. The bulk combinators distribute several variables in bulk, hence we expect
improvement.

Let us analyze the time and space complexity of the translation. The com-
plexity measure is the size of the input lambda term, or the number of its con-
structors: z, s, λ and the application. Alternatively, this is the size of the term’s
typing derivation, as each constructor corresponds to a rule in the derivation. If
we regard Bn, Cn and Sn as pre-computed (see below) and take as the cost met-
ric the number of combinator applications, we see from Fig. 10 that each (typing
or semantic) rule contributes at most 4 combinator applications (the worst case
is the application of n � e1 to m � e2 where n > m). We stress that � is no
longer recursive. With the reasonable representation of combinator terms (e.g.,
as trees) an application takes fixed amount of time. Thus, the time complexity is
linear. The size of the created term is also proportional to the number of appli-
cations (i.e., the internal nodes of the binary tree of the term). Therefore, the
space complexity – the size of the result – is also linear in the size of the input
term. The last three rows of Table 1 lists the worst-case terms of increasing size.
The last column clearly shows the linear size increase for the present translation.
Overall, the experience so far (including the worst-case examples of [6,7]) shows
the number of combinators in the translation result stays within 1.5× the size
of the input term.

The linear time- and space complexity may seem surprising. To intuitively
understand it, let’s apply a grossly simplified translation to λx1λxn.e1 e2.
First we distribute the n-component environment to both e1 and e2 with the
bulk Sn. That costs us only one combinator. If, say, e1 is a variable xi, it has to
project one component from the environment. Realizing the projection may take
Θ(n − i) combinators. However, in De Bruijn notation, xi is encoded as sn−iz,
whose size n − i + 1 pays for the projection combinators. If e1 happens to be an
application, we again use Sn to distribute the environment to both applicands.
It costs us one combinator, which is paid by the application (which adds one
to the size of the input term). The real translation uses Bn and Cn to avoid
distributing unused prefixes of the environment.

We have assumed that Bn, Cn and Sn have been precomputed (as they would
be in practice). If not, we have to compute them: scan the input term to deter-
mine its size n and compute and store the three sequences of bulk combinators,
of n elements each. Each sequence, say, Bi, 1 ≤ i ≤ n, is built by iteration, apply-
ing the primed combinator such as B′ to the previous element of the sequence.
All in all, the required time and space is linear in n.

We regard arithmetic operations (such as integer comparison, subtraction,
etc) and array dereference (to fetch a pre-computed bulk combinator) taking
constant time – common in analyses of data structures. (All numbers in our

48 O. Kiselyov

algorithm are bound by the size of the input term. Therefore, if the size of a
term does not fit within a machine register, the term does not fit into mem-
ory. Processing such terms has a very different cost model, so the traditional
complexity analysis becomes pointless.)

7 Related Work

The bracket abstraction is a classical, textbook algorithm, with many descrip-
tions and explanations and blogs6; we have already mentioned [7]. The algorithm
and its many variations are syntactic, with typical optimization side-conditions
of the form x �∈ FV (e). In our semantic approach, the type environment, being
part of the denotation, is all we need to know about free variables. We never
search through it.

The most recent work on combinator translation [9] involves so-called director
strings [7, Sect. 16.3], which tell for each application node which parameters
should go left or right or both ways. The bulk combinators in Fig. 11 do a similar
job, but in bulk: directing whole environments rather than single variables.

Table 1. Translation of the examples using different methods and optimizations.

Lambda-term Size Figure 6 Figure 8 Section 4.1 Section 6

λλ z 3 KI KI KI KI

λλ sz 4 BKI BKI K BKI

λλ sz z 6 CCI (BS(BKI)) CCI(BBI) I C(BS(BK))I

λλ z sz 6 B(SI)(BKI) B(CI)I CI B(SI)(BKI)

λλλ z s2z 8 B(B(SI)) (B(BK)(BKI)) BK(B(CI)I) BK(CI) B2(SI) (B2K(BKI))

λλλ(λ z) s2z 9 B(B(BI)) (B(BK)(BKI)) BK(BK(BII)) BK(BKI)‡ B3I(B2K(BKI))

λλλ(s2z z) (s z z) 13 CC(CCI(BS(BKI)))

(BS(B(BS)(B(CCI)(B(BS)

(B(BK)(BKI))))))

CC(CCI(BBI))

(BB(BS

(CCI(BBI))))

S C(BS2(C2 (B2S(B2K

(BKI)))I))

(C(BS(BKI))I)

The worst-case family for the combinator translation

λλ z sz 6 B(SI)(BKI) B(CI)I CI B(SI)(BKI)

λλλ z sz s2z 11 B(S(BS (B(SI)(BKI))))

(B(BK)(BKI))

B(C(BC

(B(CI)I)))I

C(BC(CI)) B(S2 (B(SI)(BKI)))

(B2K(BKI))

λλλλ z sz s2z s3z 17 B(S(BS(B(BS)

(B(S(BS(B(SI)(BKI))))

(B(BK)(BKI))))))

(B(B(BK))

(B(BK)(BKI)))

B(C(BC(B(BC)

(B(C(BC

(B(CI)I)))I))))I

C(BC(B(BC)

(C(BC(CI)))))

B(S3(B(S2

(B(SI)(BKI)))

(B2K(BKI))))

(B3K(B2K (BKI)))

‡The unoptimized (BKI) comes from a redex: the input term is not normal.

Hughes’ supercombinators [3] is the alternative combinator-based implemen-
tation strategy for functional languages, tightly connected to lambda-lifting.
Unlike supercombinators, which are program-specific, our bulk combinators are
6 It is worth pointing out one, comprehensive web page: http://www.cantab.net/

users/antoni.diller/brackets/intro.html.

http://www.cantab.net/users/antoni.diller/brackets/intro.html
http://www.cantab.net/users/antoni.diller/brackets/intro.html

λ to SKI, Semantically 49

general-purpose and can be pre-computed once and for all (or even wired into
hardware). The supercombinators and the SKI translation are extensively com-
pared in [7, Sect. 16.4], including the performance: the SKI translation time and
the size of the resulting combinator term are worst-case quadratic in the size n of
the (not De Bruijn-indexed) input lambda-term (although the typical complexity
is O(n log n)). In contrast, Hughes supercombinator process has the worst-case
size complexity of O(n log n), but is often linear.

Our bulk combinators Bn, Cn, Sn are the same as Noshita’s [6] B̄n, C̄n, S̄n

(but not his Bn, Cn, Sn), although introduced and used differently. (Like [6], we
take each bulk combinator reference – a pointer to the pre-computed combina-
tor sequence – to take constant space.) Noshita’s combinator translation algo-
rithm is the extension of Turner’s and is syntactic. Noshita proves the O(n log n)
upper-bound on the translation size; there is no claims about time complexity.
Comparing ours and Noshita’s approaches are difficult: not only the translation
algorithms differ and give different (but equivalent) results; our calculi and input
size measures also differ. Ours is lambda-calculus with De Bruijn indexes (since
we also work with the typed calculus, s has to be a constructor and is counted
as such). Noshita’s input are binary trees with constants and named variables
at the leaves – but no lambdas: Noshita only deals with supercombinators.

8 Conclusions

We have presented a semantic approach to translating lambda-terms to SKI
combinators: the translation is a compositional computation of the meaning
of a term. The key ideas are the choice of the semantic domain (the set of
combinators) and the representation of open terms. Our presentation has stressed
the parallel between type- and meaning derivations. We have demonstrated how
easy, ‘natural’ it is to introduce various optimizations – leading all the way to
the time- and space- linear translation algorithm.

The semantic approach easily extends to untyped calculus and to real pro-
grams with integers, conditionals, fixpoint, etc.

The linear translation algorithm has all the attractiveness of the supercom-
binator approach, but using general-purpose combinators, which can be pre-
computed or even wired-in. Perhaps combinators as the compilation target of
real functional languages deserve a second look.

Acknowledgments. I thank Yukiyoshi Kameyama for his challenge to write the SK
conversion in the tagless-final style, and helpful discussions. I am very grateful to
Doaitse Swierstra, Fritz Henglein and Noam Zeilberger for many helpful comments
and discussions. Numerous suggestions by anonymous reviewers have greatly helped
improve the presentation.

50 O. Kiselyov

References

1. Carette, J., Kiselyov, O., Shan, C.C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–543
(2009)

2. Curry, H.B., Feys, R.: Combinatory Logic. North-Holland, Amsterdam (1958)
3. Hughes, R.J.M.: Super combinators: a new implementation method for applicative

languages. In: Symposium on LISP and Functional Programming, pp. 1–10. ACM,
August 1982

4. Joy, M.S., Rayward-Smith, V.J., Burton, F.W.: Efficient combinator code. Comput.
Lang. 10(3/4), 211–224 (1985)

5. Kiselyov, O.: Typed Tagless Final Interpreters. In: Gibbons, J. (ed.) Generic and
Indexed Programming. LNCS, vol. 7470, pp. 130–174. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32202-0 3

6. Noshita, K.: Translation of Turner combinators in O(n log n) space. Inf. Process.
Lett. 20(2), 71–74 (1985)

7. Peyton Jones, S.: The Implementation of Functional Programming Languages.
Prentice Hall, Upper Saddle River, January 1987. https://www.microsoft.com/
en-us/research/publication/the-implementation-of-functional-programming-
languages/

8. Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. 92(3),
305–316 (1924)

9. Sinot, F.R.: Director strings revisited: a generic approach to the efficient represen-
tation of free variables in higher-order rewriting. J. Log. Comput. 15(2), 201–218
(2005)

10. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism. Tech-
nical report 98/14 (TOPPS note D-368), DIKU, Copenhagen (1998)

11. Stoye, W.R.: The implementation of functional languages using custom hardware.
Ph.D. thesis, Computer Laboratory, University of Cambridge, December 1985.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-81.pdf

12. Turner, D.A.: Another algorithm for bracket abstraction. J. Symb. Log. 44(2),
267–270 (1979)

13. Turner, D.A.: A new implementation technique for applicative languages. Softw.-
Pract. Exp. 9, 31–49 (1979)

https://doi.org/10.1007/978-3-642-32202-0_3
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-81.pdf

Program Extraction for Mutable Arrays

Kazuhiko Sakaguchi(B)

University of Tsukuba, Tsukuba, Japan
sakaguchi@coins.tsukuba.ac.jp

Abstract. We present a mutable array programming library for the Coq
proof assistant which enables simple reasoning method based on Ssre-
flect/Mathematical Components, and extractions of the efficient OCaml
programs using in-place updates. To refine the performance of extracted
programs, we improved the extraction plugin of Coq. The improvements
are based on trivial transformations for purely functional programs and
reduce the construction and destruction costs of (co)inductive objects,
and function call costs effectively. As a concrete application for our
library and the improved extraction plugin, we provide efficient imple-
mentations, proofs, and benchmarks of two algorithms: the union–find
data structure and the quicksort algorithm.

1 Introduction

The program extraction mechanism [7–9,15] of the Coq proof assistant [20]
is a code generation method for obtaining certified functional programs from
constructive formal proofs and definitions by eliminating the non-informative
part and widely used for developments of high-reliability software. For example,
the CompCert project [6] uses Coq and its program extraction mechanism for
obtaining a formally verified and executable C compiler which guarantees the
correctness of the translation.

Verification and code generation (including extraction) of programs with
side effects are important issues to apply proof assistants to realistic software
developments. Particularly, in-place updates of mutable objects are important
to increase the efficiency of programs. There are many recent studies to support
writing, reasoning about, and generating programs with side effects in proof
assistants, e.g., Coq (Ynot) [13], Isabelle/HOL [2], Idris [1], and F� [17]. Ynot is
such a representative Coq library which can handle various kind of side-effects,
e.g., accessing reference cells, non-termination, throwing/catching exceptions,
and I/O. Ynot is based on an axiomatic extension for Coq called Hoare Type
Theory (HTT) [12] and supports reasoning with separation logic [14] which are
good at its expressiveness, but not good at reducing proof burden in Coq.

This study establishes a novel, lightweight, and axiom-free method for veri-
fication and extraction of efficient programs using mutable arrays. Our library
supports a simple monadic DSL for mutable array programming and powerful
and simple reasoning method, and which is achieved by focusing only on mutable

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 51–67, 2018.
https://doi.org/10.1007/978-3-319-90686-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_4&domain=pdf

52 K. Sakaguchi

arrays and doing away with more side-effects such as reference cells and local
states. Our contribution consists of three parts:

– In Sect. 3, we define a state monad specialized for mutable array
programming—the array state monad—and give two interpretations of it for
reasoning and program extraction. The former interpretation is defined in a
purely functional way with building blocks taken from the Ssreflect/Math-
ematical Components (MathComp) library [11,21] and makes it possible to
reduce the reasoning tasks on effectful programs to those on purely functional
programs. The latter interpretation enables extraction of efficient effectful
programs and provides encapsulation function like runST of state threads [5]
which corresponds to the interpretation function in the former interpreta-
tion. The encapsulation mechanism converts effectful functions written by
the array state monad to referential transparent functions and it also enables
encapsulation of proofs.

– In Sect. 4, we present two new optimization techniques for the program extrac-
tion plugin. The optimizations are based on well-known transformations of
purely functional programs, but effectively reduce the execution time of pro-
grams extracted with our library. More generally, the optimizations are espe-
cially effective for two cases: 1. proofs using mathematical structures and its
theories provided by the MathComp library and 2. programs using monads
that have functional types, e.g., State, Reader, and Continuation monads.

– In Sect. 5, we demonstrate elegant formalization techniques for programs
using mutable arrays, and efficiency of the extracted programs using our
library and the improved extraction, through the two applications—the
union–find data structure and the quicksort algorithm.
Our formalization of the quicksort algorithm uses the theory of permuta-
tions provided by the perm library of MathComp, and we show that some
properties of permutations are also helpful for the reasoning of the quick-
sort algorithm. We also show benchmark results of the applications, and it
indicates that performances of extracted programs using our library and the
improved extraction are comparable to handwritten OCaml implementations
of same algorithms and much better than purely functional implementations
of the same kind of algorithms.

The source code of our library, the improved extraction plugin, case studies,
benchmark scripts and patches for existing libraries are available at:

https://github.com/pi8027/efficient-finfun.

2 Finite Types and Finite Functions in Coq

This section briefly introduces the fintype and finfun libraries from the Math-
Comp library with some modifications. The former provides an interface for
types with finitely many elements—finite types. The latter provides a type of
functions with finite domains—finite functions or finfuns—which is used as a

https://github.com/pi8027/efficient-finfun

Program Extraction for Mutable Arrays 53

representation of arrays in this paper and relies on the former part. Key defini-
tions and lemmas of the both libraries are listed in Table 1 and described below.
In our previous work [16], we modified these libraries to improve the efficiency
of code extracted from proofs.

2.1 A Finite Type Library—fintype

A finite type is a type with finitely many elements. The fintype library provides
definitions of a class of finite types (finType) and its basic operations. The class
of finite types is defined as a canonical structure [10] which contains a type
and a witness of its finiteness. In the original fintype library, such finiteness of a
type T is characterized by a duplicate-free enumeration of elements of T. In the
modified one, it is recharacterized by a pair of the natural cardinal number c
and a bijection between T and a finite ordinal type ’I_c = {0, ..., c - 1}.
The bijection is given by a pair of an encoding function of type T → ’I_c and
a decoding function of type ’I_c → T.

The two most basic operations on finite types are the enumeration (enum)
and the cardinality (#|_|) of a subset of a finite type. We also provide accessors
for the cardinal number and the bijection used by the new characterization
of finiteness. The former is notation, and the latter is fin_encode and
fin_decode functions. For any is equal to #|T| and more
efficiently computable than #|T|.

Many canonical finType instances are given by the MathComp library:
unit, bool, finite ordinals ’I_n, option, sum, prod, finite functions with a finite
codomain, finite subsets {set T}, symmetric groups {perm T}, and more.

2.2 A Finite Function Library—finfun

The finfun library provides definitions of a type of finfuns ({ffun T → U}) and
its basic operations. Finfuns from T to U is defined as #|T| tuples of U. Tuples
are size-fixed lists defined in the tuple library, and easily translated to arrays in
extracted programs by the Extract Inductive command.
Inductive finfun_type (T : finType) (U : Type) := Finfun of #|T|.-tuple U.

The two most basic operations of finfuns are the application (fun_of_fin)
and the construction from CiC functions (finfun). The application
fun_of_fin f i is the (fin_encode i)-th element of the underlying tuple of
f. The construction finfun f is the finfun extensionally equal to f, and the
underlying tuple of it associates f (fin_encode i) for each i-th element. Both
of them can be efficiently computable by using Array.get and Array.init func-
tions respectively in extracted OCaml programs.

The application fun_of_fin f i can be expressed as f i because
fun_of_fin is the coercion from finfuns to CiC functions. The finfun library
also provides constructor notations [ffun i ⇒ e] and [ffun ⇒ e] that are
equivalent to finfun (fun i ⇒ e) and finfun (fun _ ⇒ e) respectively.

54 K. Sakaguchi

T
ab

le
1.

K
ey

de
fin

it
io

ns
an

d
le

m
m

as
in

th
e

m
od

ifi
ed

fin
ty
pe

an
d
fin

fu
n

lib
ra

ri
es

Program Extraction for Mutable Arrays 55

3 Representing Mutable Arrays in Coq

The state monad [22] is useful to represent computations with states in purely
functional languages such as Haskell and Coq. Actions of the state monad have
types of the form S → S × A where S is a state type and A is a return type.
They take the initial state as its arguments, and returns the result of the type
A paired with the final state. To represent various computations with mutable
arrays, we need an array state monad that hold two conditions: (C1) it can
handle multi-dimensional and multiple mutable arrays, and (C2) it never needs
copy operations on arrays.

The former part of (C1)—handling multi-dimensional arrays—is achieved
naturally by representing arrays by finfuns, because the finfuns of type {ffun I1×
· · · × In → A} correspond to the multi-dimensional arrays of A indexed by
I1, . . . , In.

Monad transformers are well-known methods to compose monadic effects,
and the state monad transformer seem to be suitable for solving the latter part
of (C1)—handling multiple arrays. However, if we allow one to compose the array
state monad and other monads, the condition (C2) does not hold. For example,
the actions of the monad that is a composition of the state monad transformer
and the list monad have a type S → list(S×A), and it needs to copy the state on
each branch of computation. Therefore, the array state monad should be defined
in a more refined way.

We solve the above problem by defining the array state monad as an inductive
data type that has a restricted set of primitive operations shown below:
Definition Sign : Type := seq (finType * Type).

Implicit Types (I J K : finType) (sig : Sign).

Inductive AState : Sign → Type → Type :=
| astate_ret_ : ∀{sig} {A : Type}, A → AState sig A
| astate_bind_ :

∀{sig} {A B : Type}, AState sig A → (A → AState sig B) → AState sig B
| astate_lift_ :

∀{I} {T : Type} {sig} {A : Type}, AState sig A → AState ((I, T) :: sig) A
| astate_GET_ : ∀{I} {T : Type} {sig}, ’I_#|I| → AState ((I, T) :: sig) T
| astate_SET_ :

∀{I} {T : Type} {sig}, ’I_#|I| → T → AState ((I, T) :: sig) unit.

AState [:: (I1, T1); ...; (In, Tn)] A is a type of array state monad
actions with I1, ..., In indexed mutable arrays of T1, ..., Tn respectively
and the return type A. The first argument of AState is called a signature and
indicates types of mutable arrays. Let Σ be a metavariable of signatures, and
Σi means i-th element of the signature Σ. We refer to the array corresponds to
the Σi as the i-th array (of the signature Σ).

Each constructor of AState corresponds to return, bind, lift, get and set
operators. The lift operator can lift array state monad actions of a signature Σ
to that with a signature (I, T) ::Σ, and lifted actions does not affect the first
array. Get and set operators can only access the first array. The lift operator

56 K. Sakaguchi

is necessary to get and set element of an array after the second, and it is also
useful for modular programming.

We also define aliases for all constructors of AState to avoid the construction
and destruction costs of tuples in extracted OCaml programs1, e.g.:
Definition astate_ret {sig A} a := @astate_ret_ sig A a.

Primitive get and set operators take an index of type ’I_#|I|. Indices of
type I are also applicable by using the encoding function.
Notation astate_get i := (astate_GET (fin_encode i)).
Notation astate_set i x := (astate_SET (fin_encode i) x).

Programs represented by AState values cannot run directly. We give an inter-
pretation for the array state monad by a translation to the functions of type
S → S × A, where S is a type of mutable arrays defined as follows:
Fixpoint states_AState sig : Type :=
if sig is (Ix, T) :: sig’ then states_AState sig’ * {ffun Ix → T} else unit.

states_AState takes a signature [(I1, T1); . . . ; (In, Tn)], and returns a Carte-
sian product of all types of arrays in the signature: unit×{ffun In → Tn}×· · ·×
{ffun I1 → T1}. We choose this order of types to omit parenthesis, because the
× and (·, ·) operators have left associativity in Coq.

The translation is defined as follows:
Definition ffun_set

(I : finType) (T : Type) (i : I) (x : T) (f : {ffun I → T}) :=
[ffun j ⇒ if j == i then x else f j].

Definition runt_AState sig (A : Type) : Type :=
states_AState sig → states_AState sig * A.

Definition run_AState : ∀sig A, AState sig A → runt_AState sig A :=
@AState_rect (fun sig A _ ⇒ runt_AState sig A)
(* return *) (fun _ _ a s ⇒ (s, a))
(* bind *) (fun _ _ _ _ f _ g s ⇒ let (s’, a) := f s in g a s’)
(* lift *) (fun _ _ _ _ _ f ’(s, a) ⇒ let (s’, x) := f s in (s’, a, x))
(* get *) (fun _ _ _ i s ⇒ (s, s.2 (fin_decode i)))
(* set *) (fun _ _ _ i x ’(s, a) ⇒ (s, ffun_set (fin_decode i) x a, tt)).

ffun_set is a pure set function for finfuns. It takes an index i : T , a value
x : A and a finfun f : {ffun T → A}, and returns a new finfun f ′ which is equal
to f except that the i-th element is changed to x. run_AState is a interpretation
function for the array state monad which is inductively defined on AState values.

3.1 Program Extraction for the Array State Monad

This section provides a method to extract efficient stateful OCaml programs
from Coq proofs which use the array state monad. In another point of view, we

1 In OCaml programs, arguments of constructors are parenthesized and comma sepa-
rated. If a constructor is replaced with some function by the Extraction Inductive
command, arguments of the constructor are interpreted as tuples.

Program Extraction for Mutable Arrays 57

give an another interpretation for array state monad by the OCaml program
extraction.

In stateful settings, state propagation can be achieved by in-place updates
instead of state monad style propagation, and moreover it is not needed to
return a new state in each action. We defined the array state monad as an
inductive data type only because to restrict primitive operations and its case
analysis is never used except for run_AState. Thus we interpret array state
monad actions as OCaml functions which take states and return its result by
the Extract Inductive command:
Definition runt_AState_ sig (A : Type) : Type := states_AState sig → A.

Extract Inductive AState ⇒ "runt_AState_"
[(* return *) " (fun a s -> a)"
(* bind *) " (fun (f, g) s -> let r = f s in g r s)"
(* lift *) " (fun f s -> let (ss, _) = Obj.magic s in f ss)"
(* get *) " (fun i s -> let (_, s1) = Obj.magic s in s1.(i))"
(* set *) " (fun (i, x) s -> let (_, s1) = Obj.magic s in s1.(i) <- x)"]
"(* It is not permitted to use AState_rect in extracted code. *)".

We also give same realizations of aliases for the constructors of AState:
Extract Inlined Constant astate_ret ⇒ "(fun a s -> a)".
Extract Inlined Constant astate_bind ⇒ "(fun f g s -> let r = f s in g r s)".
...

Finally, we provide an encapsulation function for the array state monad as a
realization of the run_AState function:
Extract Constant run_AState ⇒
"(fun sign f s ->
let rec copy sign s =
match sign with
| [] -> Obj.magic ()
| _ :: sign’ -> let (s’, a) = Obj.magic s in

Obj.magic (copy sign’ s’, Array.copy a) in
let s’ = copy sign s in
let r = Obj.magic f s’ in (s’, r))".

The encapsulation is achieved by duplicating all the input (initial) arrays by
Array.copy and using the copied arrays in the execution of effectful actions. As
a result, the range of in-place updates is limited to the copied arrays and it never
affects outside of the run_AState.

3.2 Small Example: Swap Two Elements

Let us show a small example — swap — of programming and verification with
the array state monad. The action swap(i, j) takes i-th and j-th values of the
first array by astate_get, and then set them reversely by astate_set.
Definition swap (I : finType) {A : Type} {sig : Sign} (i j : I) :
AState ((I, A) :: sig) unit :=
x ← astate_get i; y ← astate_get j; astate_set i y;; astate_set j x.

x ← t1; t2 and t1;; t2 are “do”-like notations which are equivalent to
astate_bind t1 (fun x ⇒ t2) and astate_bind t1 (fun _ ⇒ t2) respec-
tively. Correctness of the swap action is described by the following lemma.

58 K. Sakaguchi

Lemma run_swap
(I : finType) (A : Type) (sig : Sign) (i j : I)
(f : {ffun I → A}) (fs : states_AState sig) :

run_AState (swap i j) (fs, f) = (fs, [ffun k ⇒ f (tperm i j k)], tt).

tperm i j : {perm I} is a permutation (bijection) on I which transposes i
and j. tperm i j k : I is j if k = i, i if k = i and otherwise k. This formula-
tion is useful for reasoning on a sequence of swap actions, e.g., sorting algorithms.

Operations of the array state monad can be erased from the goal by the
simplification tactic rewrite /=. More generally, the case analysis and the sim-
plification work as the erasure.
...
============================
(fs,
ffun_set (fin_decode (fin_encode j)) (f (fin_decode (fin_encode i)))
(ffun_set (fin_decode (fin_encode i)) (f (fin_decode (fin_encode j))) f),

tt) = (fs, [ffun k ⇒ f ((tperm i j) k)], tt)

The encoding/decoding functions can be erased by the fin_encodeK lemma.
Both sides of equation have the form of (fs, _, tt), thus we use the congruence
rule.
congr (_, _, _); rewrite !fin_encodeK.

...
============================
ffun_set j (f i) (ffun_set i (f j) f) = [ffun k ⇒ f ((tperm i j) k)]

To prove a equation of finfuns, we use the lemma of functional extensionality
ffunP. Applications of finfuns can be unfolded by the ffunE lemma.
apply/ffunP ⇒ k; rewrite !ffunE /=.

...
k : I
============================
(if k == j then f i else if k == i then f j else f k) = f ((tperm i j) k)

The remaining goal can be proved by case analysis on comparison and tperm.
case: tpermP; do!case: eqP; congruence. Qed.

The lift operator is also erased by similar method. Here is a correctness proof
of the lifted swap action.
Global Opaque swap.
Lemma run_lift_swap

(I I’ : finType) (A B : Type) (sig : Sign) (i j : I)
(f : {ffun I → A}) (g : {ffun I’ → B}) (fs : states_AState sig) :

run_AState (sig := [:: (I’, B), (I, A) & sig])
(astate_lift (swap i j)) (fs, f, g) =

(fs, [ffun k ⇒ f (tperm i j k)], g, tt).
Proof. by rewrite /= run_swap. Qed.

Program Extraction for Mutable Arrays 59

4 Optimizations by an Improved Extraction Plugin

We provide two modifications for the extraction plugin to improve the efficiency
of extracted programs, particularly which use the array state monad. The Coq
program extraction translates Gallina2 programs to target languages (OCaml,
Haskell, Scheme, and JSON) and consists of three translations: 1. extraction
from Gallina to MiniML, an intermediate abstract language for program extrac-
tion, 2. simplification (optimization) of MiniML terms, and 3. translation from
MiniML to target languages.

The modifications are of the part 2 and 1 of the translation. The former
reduces the construction and destruction costs of (co)inductive objects by inlin-
ing. The latter reduces the function call costs by applying η-expansion to match
expressions and distributing the added arguments to each branch. Each opti-
mization is particularly effective for programs using the MathComp library and
monadic programs respectively.

4.1 Destructing Large Records

The MathComp library provides many mathematical structures [4] as canon-
ical structures, e.g., eqType, choiceType, countType, finType, etc. which are
represented as nested records in extracted programs. For example, the modi-
fied finType definition is translated to a nested record with 5 constructors and
11 fields by the program extraction. We implemented additional simplification
mechanisms for MiniML terms to prevent performance degradation caused by
handling such large records.

This section describes simplification rules for MiniML terms provided by
the original and improved extraction plugin. The rules act on type coercion
(Obj.magic in OCaml, and unsafeCoerce in Haskell) are omitted here because
of simplicity. The key simplification rule for unfolding pattern matchings pro-
vided by the original extraction plugin is generalized ι-reduction relation.

Definition 1 (Generalized ι-reduction). We inductively define an auxiliary
relation �cl

ι for a sequence of pattern-matching clauses cl = C1(x1) → u1 | · · · |
Cn(xn) → un by the following three rules:

Ci(t1, . . . , tm) �cl
ι

let xi,1 := t1 in . . .
let xi,m := tm in ui

(1)

t �cl
ι t′ ⇒ let x := u in t �cl

ι let x := u in t′ (2)

t1 �cl
ι t′1 ∧ · · · ∧ tm �cl

ι t′m ⇒
match t with
| D1(x1) → t1
| . . .
| Dm(xm) → tm

�cl
ι

match t with
| D1(x1) → t′1
| . . .
| Dm(xm) → t′m

(3)

The generalized ι-reduction relation �ι is defined as follows:

t �cl
ι t′ ⇒ (match t with cl) �ι t′ (4)

2 The specification language of Coq.

60 K. Sakaguchi

The combination of the rules (1) and (4) provides simple ι-reduction. The
rules (2) and (3) allows to traverse nested match and let expressions in the head
of term t in the rule (4).

Other simplification rules are listed below.

(λx. t)u � let x := u in t (5)
let x := u in t � t[x := u] (t or u is atomic ,

or x occurs at most once)
(6)

(let x := t1 in t2) u1 . . . un � let x := t1 in t2 u1 . . . un (7)

(match t with
| C1(x1) → t1
| . . .
| Cn(xn) → tn

)u1 . . . um

�

match t with
| C1(x1) → t1 u1 . . . um

| . . .
| Cn(xn) → tn u1 . . . um

(8)

match t with
| C1(x1) → λy1 . . . ym. t1
| . . .
| Cn(xn) → λy1 . . . ym. tn

�
λy1 . . . ym. match t with

| C1(x1) → t1
| . . .
| Cn(xn) → tn

(9)

let x := (let y := t1 in t2) in t3 � let y := t1 in (let x := t2 in t3) (10)

let x := C(t1, . . . , tn) in u � let y1 := t1 in . . . let yn := tn in
let x := C(y1, . . . , yn) in u′ (11)

where u′ in the rule (11) is obtained by replacing all the subterms of the form
(match x with · · · | C(z1, . . . , zn) → t | . . .) in the u with the term t[z1 :=
y1, . . . , zn := yn] which is a ι-reduced term of (match C(y1, . . . , yn) with · · · |
C(z1, . . . , zn) → t | . . .).

All simplification rules are safe for purely functional programs, but not safe
for OCaml programs generally. The rules (6), (8) and (9) may change the exe-
cution order of code and skip executing some code, and other rules also help to
apply these rules. Therefore it is difficult to implement these rules as optimiza-
tions for OCaml programs, and it is appropriate to implement it as a MiniML
optimizer.

The generalized ι-reduction without the rule (2) and the rules (5) through (9)
are provided by the original extraction plugin. We additionally implemented the
rules (2), (10), and (11) to it. The rule (11) recursively destructs nested records,
and the rule (10) assist it in the case of a term of the form (let x := (let y :=
t in C(t1, . . . , tn)) in . . .) occurred.

Let us exemplify a simplification process of the following definition3:
Definition example : nat → nat → nat → bool :=
let T := nat_eqType in fun x y z : T ⇒ (x == y) || (x == z) || (y == z).

3 nat_eqType is the canonical eqType instance of nat.

Program Extraction for Mutable Arrays 61

The simplification process is as follows. Constants inlined by extraction are
underlined here. Identifiers nat_eqType, Equality.Pack, and Equality.Mixin
are abbreviated here as nateq, Packeq, and Mixineq.

let T := nateq in

λx y z. eq_op T x y ∨ eq_op T x z ∨ eq_op T y z

= let T := Packeq (Mixineq eqn . . .) in λx y z.
(λT. match T with Packeq (Mixineq f _) → f) T x y

∨ (λT. match T with Packeq (Mixineq f _) → f) T x z
∨ (λT. match T with Packeq (Mixineq f _) → f) T y z

(unfold)

�∗ let T := Packeq (Mixineq eqn . . .) in
λx y z. (match T with Packeq (Mixineq f _) → f) x y

∨ (match T with Packeq (Mixineq f _) → f) x z
∨ (match T with Packeq (Mixineq f _) → f) y z

(rules (5)
and (6))

� let a := Mixineq eqn . . . in let T := Packeq a in
λx y z. (match a with Mixineq f _ → f) x y

∨ (match a with Mixineq f _ → f) x z
∨ (match a with Mixineq f _ → f) y z

(rule (11))

� let c := eqn in let b := . . . in let a := Mixineq c b in
let T := Packeq a in λx y z. c x y ∨ c x z ∨ c y z

(rule (11))

�∗ λx y z. eqn x y ∨ eqn x z ∨ eqn y z (rule (6))

T can be unfolded by rules (6) and (4) if T has occurred only once. However,
we need the rule (11) to apply the ι-reduction over the let expressions which
cannot be simplified by the rule (6).

4.2 η-expansion on Case Analysis

Match expressions returning a function are commonly used in monadic program-
ming and dependently typed programming. However, they increase the number
of function calls and closure allocations and decrease the performance of pro-
grams. Let us consider the following monadic program that branches depending
on whether the integer state is even or odd:

get >>= λn : Z. if n mod 2 = 0 then f else g.

By unfolding the get and >>= in the above program, a match expression
returning a function4 can be found:

λn : Z. (if n mod 2 = 0 then f else g)n.

Another example from dependently typed programming is a map function
for size-fixed vectors:
4 if expressions are syntax sugar for match expressions in Coq.

62 K. Sakaguchi

Fixpoint vec (n : nat) (A : Type) : Type :=
if n is S n’ then (A * vec n’ A) else unit.

Fixpoint vmap (A B : Type) (f : A → B) (n : nat) : vec n A → vec n B :=
if n is S n’ then fun ’(h, t) ⇒ (f h, vmap f t) else fun _ ⇒ tt.

The match expressions in the above examples can be optimized by the rules
(8) and (9) respectively, and those rules can be applied for many other cases.
However, these rules are not complete because of its syntactic restriction: match
expressions to which that rules are applied should have following arguments or
have λ-abstractions for each branch. Therefore, we apply the full η-expansion
on all match expressions in the process of extraction from Gallina to MiniML.5
The rule (8) can be applied for η-expanded match expressions.

We additionally provide new Vernacular command Extract Type Arity
to declare the arity of an inductive type which is realized by the
Extract Inductive command, because the Coq system cannot recognize that
the arity of AState is 1. Declared arities are used for full η-expansion described
above. This command can be used as follows: Extract Type Arity AState 1.

5 Case Studies

This section demonstrates our library and improved extraction plugin using two
applications: the union–find data structure and the quicksort algorithm. Here we
provide an overview of formalizations and the performance comparison between
the extracted code and other implementations for each application.

All the benchmark programs were compiled by OCaml 4.05.0+flambda
with optimization flags -O3 -remove-unused-arguments -unbox-closures
and performed on a Intel Core i5-7260U CPU @ 2.20GHz equipped with 32 GB
of RAM. Full major garbage collection and heap compaction are invoked before
each measurement. All benchmark results represent the median of 5 different
measurements with same parameters.

5.1 The Union–find Data Structure

We implemented and verified the union–find data structure with the path com-
pression and the weighted union rule [18,19]. The formalization takes 586 lines,
and most key properties and reasoning on the union–find can be easily written
out by using the path and fingraph library.

The benchmark results are shown in the Fig. 1. Here we compare the exe-
cution times of the OCaml code extracted from above formalization (optimized
and unoptimized6 version) and handwritten OCaml implementation of same
algorithm. The procedure to be measured here is the sequence of union n times

5 Implementing it as a part of the simplification of MiniML terms is difficult, because
MiniML is a type-free language.

6 It is extracted by disabling new optimization mechanisms described in Sect. 4, but
compiled with same OCaml compiler and optimization flags.

Program Extraction for Mutable Arrays 63

Fig. 1. Benchmark results of the union–find data structure

and find n times on n vertices union–find data structure, where all parameters
of unions and finds are randomly selected. The time complexity of this proce-
dure is Θ(nα(n, n)) where α is a functional inverse of Ackermann’s function. The
results indicate that the OCaml implementation is about 1.1 times faster than
the optimized Coq implementation, the optimized Coq implementation is about
1.1 times faster than the unoptimized Coq implementation, and the execution
times of all implementations increase slightly more than linear.

5.2 The Quicksort Algorithm

We implemented and verified the quicksort algorithm by using the array state
monad. The formalization including partitioning and the upward/downward
search takes 365 lines, and the key properties are elegantly written out by using
the theory of permutations. Here we explain the formalization techniques used
for the quicksort algorithm by taking the partitioning function as an example.
The partitioning function for I indexed arrays of A and comparison function
cmp : A → A → bool7 has the following type:
partition : A → ∀i j : ’I_#|I|.+1, i ≤ j → AState [:: (I, A)] ’I_#|I|.+1

The partition takes a pivot of type and range of partition represented by
indices i j : ’I_#|I|.+1, reorders the elements of the arrays from index i to
j - 1 so that elements less than the pivot come before all the other elements,
and returns the partition position. We proved the correctness of partition as
the following lemma:

7 Here we assume that cmp is a total order and means “less than or equal to” in some
sense.

64 K. Sakaguchi

CoInductive partition_spec
(pivot : A) (i j : ’I_#|I|.+1) (arr : {ffun I → A}) :

unit * {ffun I → A} * ’I_#|I|.+1 → Prop :=
PartitionSpec (p : {perm I}) (k : ’I_#|I|.+1) :
let arr’ := [ffun ix ⇒ arr (p ix)] in
(* 1 *) i ≤ k ≤ j →
(* 2 *) perm_on [set ix | i ≤ fin_encode ix < j] p →
(* 3 *) (∀ix : ’I_#|I|, i ≤ ix < k → ¬ cmp pivot (arr’ (fin_decode ix))) →
(* 4 *) (∀ix : ’I_#|I|, k ≤ ix < j → cmp pivot (arr’ (fin_decode ix))) →

partition_spec pivot i j arr (tt, arr’, k).

Lemma run_partition
(pivot : A) (i j : ’I_#|I|.+1) (Hij : i ≤ j) (arr : {ffun I → A}) :

partition_spec pivot i j arr (run_AState (partition pivot Hij) (tt, arr)).

The run_partition can be applied for goals including some executions
of partition without giving concrete parameters by using the simple idiom
case: run_partition, and it obtains the properties of partition described
below. It is achieved by a Ssreflect convention [11, Sect. 4.2.1], which means
separating the specification from the lemma as the coinductive type family
partition_spec.

In the specification partition_spec, the finfun arr, permutation p, and
index k indicates the initial state, permutation performed by the partition,
and partition position respectively, and the final state arr’ is represented by

Fig. 2. Benchmark results of the quicksort and mergesort

Program Extraction for Mutable Arrays 65

[ffun ix ⇒ arr (p ix)] which means the finfun arr permuted by p. Prop-
erties of the partition are given as arguments of PartitionSpec and numbered
from 1 to 4 in above code. Each property has the following meaning:

1. the partition position k is between i and j,
2. the partition only replaces value in the range from i to j - 1,
3. values in the range from i to k - 1 are less than the pivot, and
4. values in the range from k to j - 1 are greater than or equal to the pivot.

Of particular interest is that the property 2 can be written in the form of
perm_on A p which means that the permutation p only displaces elements of A.
perm_on is used for constructing algebraic theory in the MathComp library, but
is also helpful for reasoning on sorting algorithms.

The benchmark results are shown in the Fig. 2. Here we compare the execution
times of following implementations of sorting algorithms for randomly generated
arrays or lists of integers: 1. Array.stable_sort and 2. Array.sort taken from
OCaml standard library, 3. handwritten OCaml implementation of the quicksort,
4. optimized and 5. unoptimized OCaml code extracted from above formalization,
and 6. OCaml code extracted from a Coq implementation of the bottom-up merge-
sort algorithm for lists. The results indicate that the implementation 5 (quicksort
in Coq, unoptimized) is slowest of those, the implementation 4 (quicksort in Coq,
optimized) is 1.7–1.8 times faster than implementations 5 and 6, and OCaml imple-
mentations 1, 2 and 3 are 1.07–1.8 times faster than the implementation 3.

6 Related Work

Ynot [13] is a representative Coq library for verification and extraction of
higher-order imperative programs. Ynot supports various kind of side-effects,
separation-logic-based reasoning method, and automation facility [3] for it, and
provides many example implementations of and formal proofs for data structures
and algorithms including the union–find data structure. The formal development
of the union–find provided by Ynot takes 1,067 lines of code, and our formal
development of it (see Sect. 5.1) takes 586 lines. Both implementations use almost
the same optimization strategies: the union by rank and the weighted union rule
respectively, and the path compression. This comparison indicates that Ynot is
good at its expressiveness, but our method has smaller proof burden.

7 Conclusion

We have established a novel, lightweight, and axiom-free method for verification
and extraction of efficient effectful programs using mutable arrays in Coq. This
method consists of the following two parts: a state monad specialized for mutable
array programming (the array state monad) and an improved extraction plugin
for Coq. The former enables a simple reasoning method for and safe extraction
of efficient effectful programs. The latter optimizes programs extracted from
formal developments using our library, and it is also effective for mathematical
structures provided by the MathComp library and monadic programs.

66 K. Sakaguchi

We would like to improve this study with more expressive array state monad,
large and realistic examples, and correctness proof of our extraction method for
effectful programs.

Acknowledgments. We thank Yukiyoshi Kameyama and anonymous referees for
valuable comments on an earlier version of this paper. This work was supported by
JSPS KAKENHI Grant Number 17J01683.

References

1. Brady, E.: Programming and reasoning with algebraic effects and dependent types.
In: ICFP 2013, pp. 133–144. ACM (2013)

2. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7_14

3. Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective inter-
active proofs for higher-order imperative programs. In: ICFP 2009, pp. 79–90. ACM
(2009)

4. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03359-9_23

5. Launchbury, J., Peyton Jones, S.L.: Lazy functional state threads. In: PLDI 1994,
pp. 24–35. ACM (1994)

6. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

7. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39185-1_12

8. Letouzey, P.: Programmation fonctionnelle certifiée - L’extraction de programmes
dans l’assistant Coq. Ph.D. thesis, Université Paris-Sud (2004)

9. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6_39

10. Mahboubi, A., Tassi, E.: Canonical structures for the working Coq user. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 19–34.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_5

11. Mahboubi, A., Tassi, E.: Mathematical components (2016). https://math-comp.
github.io/mcb/book.pdf

12. Nanevski, A., Morrisett, G., Birkedal, L.: Hoare type theory, polymorphism and
separation. J. Funct. Prog 18(5–6), 865–911 (2008)

13. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-
dent types for imperative programs. In: ICFP 2008, pp. 229–240. ACM (2008)

14. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0_1

15. Paulin-Mohring, C.: Extracting Fω’s programs from proofs in the Calculus of Con-
structions. In: POPL 1989, pp. 89–104. ACM (1989)

https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-642-39634-2_5
https://math-comp.github.io/mcb/book.pdf
https://math-comp.github.io/mcb/book.pdf
https://doi.org/10.1007/3-540-44802-0_1

Program Extraction for Mutable Arrays 67

16. Sakaguchi, K., Kameyama, Y.: Efficient finite-domain function library for the Coq
proof assistant. IPSJ Trans. Prog. 10(1), 14–28 (2017)

17. Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoue, J.K.,
Zanella-Béguelin, S.: Dependent types and multi-monadic effects in F�. In: POPL
2016, pp. 256–270. ACM (2016)

18. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

19. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM
31(2), 245–281 (1984)

20. The Coq Development Team: The Coq Proof Assistant Reference Manual (2017).
https://coq.inria.fr/distrib/V8.7.0/refman/

21. The Mathematical Components Project: The mathematical components repository.
https://github.com/math-comp/math-comp

22. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5_2

https://coq.inria.fr/distrib/V8.7.0/refman/
https://github.com/math-comp/math-comp
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2

Functional Pearl: Folding Polynomials
of Polynomials

Chen-Mou Cheng1(B), Ruey-Lin Hsu2, and Shin-Cheng Mu3

1 National Taiwan University, Taipei, Taiwan
ccheng@cc.ee.ntu.edu.tw

2 National Central University, Taoyuan, Taiwan
petercommand@gmail.com

3 Academia Sinica, Taipei, Taiwan
scm@iis.sinica.edu.tw

Abstract. Polynomials are a central concept to many branches in math-
ematics and computer science. In particular, manipulation of polynomial
expressions can be used to model a wide variety of computation. In this
paper, we consider a simple recursive construction of multivariate polyno-
mials over a base ring such as the integers or a (finite) field. We show that
this construction allows inductive implementation of polynomial opera-
tions such as arithmetic, evaluation, substitution, etc. Furthermore, we
can transform a polynomial expression into in a sequence of arithmetic
expressions in the base ring and prove the correctness of this transfor-
mation in Agda. Combined with our recursive construction, this allows
for compiling polynomial expressions over a tower of extension fields into
scalar expressions over the ground field, for example. Such a technique is
not only interesting in its own right but also finds plentiful application
in research areas such as cryptography.

1 Introduction

A univariate polynomial over a base ring R is a finite sum of the form

anXn + an−1X
n−1 + · · · + a0,

where ai ∈ R are the coefficients, and X is called an indeterminate. The set
of univariate polynomials over R forms a ring, denoted as R[X]. We can allow
two or more indeterminates X1,X2, . . . , Xm and thus arrive at a multivariate
polynomial, a finite sum of the form

∑

i

aiX
e
(i)
1

1 X
e
(i)
2

2 · · · Xe(i)
m

m ,

where ai ∈ R are the coefficients, and the nonnegative integers e
(i)
j are the expo-

nents. The set of m-variate polynomials over R, denoted as R[X1,X2, . . . , Xm],
also forms a ring, referred to as a ring of polynomials.
c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 68–83, 2018.
https://doi.org/10.1007/978-3-319-90686-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_5&domain=pdf

Functional Pearl: Folding Polynomials of Polynomials 69

Polynomials are a central concept to many branches in mathematics and com-
puter science. In particular, manipulation of polynomial expressions can be used
to model a wide variety of computation. For example, every element of an alge-
braic extension field F over a base field K can be identified as a polynomial over
K, e.g., cf. Theorem 1.6, Chap. 5 of the (standard) textbook by Hungerford [6].
Addition in F is simply polynomial addition over K, whereas multiplication in
F is polynomial multiplication modulo the defining polynomial of F over K.
Let us use the familiar case of the complex numbers over the real numbers as
a concrete example. The complex numbers can be obtained by adjoining to the
real numbers a root i of the polynomial X2 + 1. In this case, every complex
number can be identified as a polynomial a + bi for a, b real. The addition of
a1 + b1i and a2 + b2i is simply (a1 + a2)+ (b1 + b2)i, whereas the multiplication,
(a1 + b1i)(a2 + b2i) mod i2 + 1 = (a1a2 − b1b2) + (a1b2 + a2b1)i.

In addition to arithmetic in an algebraic extension field, manipulation of
polynomial expressions also finds rich application in cryptography in particular.
A wide variety of cryptosystems can be implemented using polynomial expres-
sions over a finite field or Z/nZ, the ring of integers modulo n. In elliptic curve
cryptography [8], for example, we use the group structure of certain elliptic
curves over finite fields to do cryptography, and the group laws are often given
in polynomial expressions over finite fields. Another example is certain classes
of post-quantum cryptosystems, i.e., those expected to survive large quantum
computers’ attack. Among the most promising candidates, we have multivari-
ate cryptosystems [3] and several particularly efficient lattice-based cryptosys-
tems [4,7], for which encryption and decryption operations can be carried out
using polynomial expressions over finite fields or Z/nZ.

This pearl is initially motivated by our research in cryptography, where we
often have to deal with multivariate polynomials over various base rings, as
exemplified above. We also need to transform a polynomial expression into a
sequence of arithmetic expressions over its base ring. This is useful for, e.g.,
software implementation of cryptosystems on microprocessors with no native
hardware support for arithmetic operations with polynomials or integers of
cryptographic sizes, which typically range from a few hundreds to a few thou-
sands of bits. Again using multiplication of two complex numbers as an exam-
ple, we would need a sequence of real arithmetic expressions for implementing
z = zr + izi = (xr + ixi) × (yr + iyi) = xy:

t1 ← xr × yr;
t2 ← xi × yi;
t3 ← xr × yi;
t4 ← xi × yr;
zr ← t1 − t2;
zi ← t3 + t4.

Furthermore, we would like to have a precision that exceeds what our hardware
can natively support. For example, let us assume that we have a machine with

70 C.-M. Cheng et al.

native support for an integer type −R < x < R. In this case, we split each
variable ζ into a low part plus a high part: ζ = ζ(0)+Rζ(1), −R < ζ(0), ζ(1) < R.
Now let us assume that our machine has a multiplication instruction (c(0), c(1)) ←
a × b such that −R < a, b, c(0), c(1) < R and ab = c(0) + Rc(1). For simplicity,
let us further assume that our machine has n-ary addition instructions for n =
2, 3, 4: (c(0), c(1)) ← a1 + · · · + an such that −R < a1, . . . , an, c(0), c(1) < R and
a1 + · · ·+ an = c(0) +Rc(1). We can then have a suboptimal yet straightforward
implementation of, say, t1 = t

(0)
1 + Rt

(1)
1 + R2t

(2)
1 + R3t

(3)
1 = (x(0)

r + Rx
(1)
r) ×

(y(0)
r + Ry

(1)
r) = xr × yr as follows.

(t(0)1 , s
(1)
1) ← x

(0)
r × y

(0)
r ; //t

(0)
1 + Rs

(1)
1

(s(0)2 , s
(1)
2) ← x

(0)
r × y

(1)
r ; //Rs

(0)
2 + R2s

(1)
2

(s(0)3 , s
(1)
3) ← x

(1)
r × y

(0)
r ; //Rs

(0)
3 + R2s

(1)
3

(s(0)4 , s
(1)
4) ← x

(1)
r × y

(1)
r ; //R2s

(0)
4 + R3s

(1)
4

(t(1)1 , s
(1)
5) ← s

(1)
1 + s

(0)
2 + s

(0)
3 ; //Rt

(1)
1 + R2s

(1)
5

(t(2)1 , s
(1)
6) ← s

(1)
2 + s

(1)
3 + s

(0)
4 + s

(1)
5 ; //R2t

(2)
1 + R3s

(1)
6

(t(3)1 ,_) ← s
(1)
4 + s

(1)
6 . //R3t

(3)
1

It might be surprising that, with the advance of compiler technology today,
such programs are still mostly coded and optimized manually, sometimes in
assembly language, for maximal efficiency. Naturally, we would like to automate
this process as much as possible. Furthermore, with such security-critical appli-
cations, we would like to have machine-verified proofs that the transformation
and optimizations are correct.

In attempting toward this goal, we have come up with this pearl. It is
not yet practical but, we think, is neat and worth documenting. A key obser-
vation is that there is an isomorphism between multivariate polynomial ring
R[X1,X2 . . . , Xm] and univariate polynomial ring S[Xm] over the base ring
S = R[X1,X2, . . . , Xm−1], cf. Corollary 5.7, Chap. 3 of Hungerford [6]. This
allows us to define a datatype Poly for univariate polynomials, and reuse it
inductively to define multivariate polynomials — an n-variate polynomial can
be represented by Polyn (Poly applied n times). Most operations on the polyno-
mials can be defined either in terms of the fold induced by Poly, or by induction
on n, hence the title.

We explore the use of Polyn and its various implications in depth in Sect. 2.
Then in Sect. 3, we present implementations of common polynomial operations
such as evaluation, substitution, etc. We pay special attention to an operation
expand and prove its correctness, since it is essential in transforming polynomial
into scalar expressions. In Sect. 4, we show how to compile a polynomial function
into an assembly program that computes it. We present a simple compilation,
also defined in terms of fold, and prove its correctness, while leaving further opti-
mization to future work. The formulation in this pearl have been implemented
in both Haskell and Agda [9], the latter also used to verify our proofs. The code
is available on line at https://github.com/petercommand/ExtFieldComp.

https://github.com/petercommand/ExtFieldComp

Functional Pearl: Folding Polynomials of Polynomials 71

2 Univariate and Multivariate Polynomials

In this section, we present our representation for univariate and multivariate
polynomials, as well as their semantics. The following Agda datatype denotes a
univariate polynomial whose coefficients are of type A:1

data Poly (A : Set) : Set where
Ind : Poly A
Lit : A → Poly A
(:+) : Poly A → Poly A → Poly A
(:×) : Poly A → Poly A → Poly A ,

where Ind denotes the indeterminate, Lit denotes a constant (of type A), while
(:+) and (:×) respectively denote addition and multiplication. A polynomial
2x2 + 3x + 1 can be represented by the following expression of type Poly Z:

(Lit 2 :× Ind :× Ind) :+ (Lit 3 :× Ind) :+ Lit 1 .

Notice that the type parameter A is abstracted over the type of coefficients. This
allows us to represent polynomials whose coefficients have non-simple types —
in particular, polynomials whose coefficients are themselves polynomials. Do not
confuse this with the more conventional representation of arithmetic expressions:

data Expr A = Var A | Lit Int | Expr A :+ Expr A | Expr A :× Expr A ,

where the literals are usually assigned a fixed type (in this example, Int), and
the type parameter is abstracted over variables Var.

2.1 Univariate Polynomial and Its Semantics

In the categorical style outlined by Bird and de Moor [1], every regular datatype
gives rise to a fold, also called a catamorphism. The type Poly induces a fold that,
conventionally, takes four arguments, each replacing one of its four constructors.
To facilitate our discussion later, we group the last two arguments together. The
fold for Poly is thus given by:

foldP : {A B : Set} → B → (A → B) →
((B → B → B) × (B → B → B)) → Poly A → B

foldP x f ((⊕) , (⊗)) Ind = x
foldP x f ((⊕) , (⊗)) (Lit y) = f y
foldP x f ((⊕) , (⊗)) (e1 :+ e2) = foldP x f ((⊕) , (⊗)) e1 ⊕

foldP x f ((⊕) , (⊗)) e2
foldP x f ((⊕) , (⊗)) (e1 :× e2) = foldP x f ((⊕) , (⊗)) e1 ⊗

foldP x f ((⊕) , (⊗)) e2 ,

where arguments x, f, (⊕), and (⊗) respectively replace constructors Ind, Lit,
(:+), and (:×).
1 We use Haskell convention that infix data constructors start with a colon and, for
concise typesetting, write (:+) instead of the Agda notation _:+_. In the rest of the
paper we also occasionally use Haskell syntax for brevity.

72 C.-M. Cheng et al.

Evaluation. To evaluate a polynomial of type Poly A, we have to know how to
perform arithmetic operations for type A. Define

Ring : Set → Set
Ring A = ((A → A → A) × (A → A → A)) × A × A × (A → A) ,

the intention is that the tuple Ring A defines addition, multiplication, zero, one,
and negation for A (addition and multiplication are grouped together, for our
convenience later). In our Haskell implementation, Ring is a type class for types
whose addition and multiplication are defined. It can usually be inferred what
instance of Ring to use. When proving properties about foldP, however, it is
clearer to make the construction of Ring instances explicit.

With the presence of Ind, the semantics of Poly A should be A → A —
a function that takes the value of the indeterminate and returns a value. We
define the following operation that lifts pointwise the addition and multiplication
of some type B to A → B:

ring→ : ∀ {A B} → Ring B → Ring (A → B)
ring→ (((+) , (×)) ,0,1, neg) =
((λ f g x → f x + g x, λ f g x → f x × g x) , const 0, const 1, (neg ·)) ,

where const x y = x. The semantics of a univariate polynomial is thus given by:

sem1 : ∀ {A} → Ring A → Poly A → A → A
sem1 rng = foldP id const (fst (ring→ rng)) ,

where id x = x and fst retrieves the left component of a pair.

2.2 Bivariate Polynomials

To represent polynomials with two indeterminates, one might extend Poly with a
constructor Ind′ in addition to Ind. It turns out to be unnecessary — it is known
that the bivariate polynomial ring R[X,Y] is isomorphic to R[X][Y] (modulo
the operation litDist, to be defined later). That is, a polynomial over base ring
A with two indeterminates can be represented by Poly (Poly A).

To understand the isomorphism, consider the following expression:

e : Poly (Poly Z)
e = (Lit (Lit 3) :× Ind :× Lit (Ind :+ Lit 4)) :+ Lit Ind :+ Ind .

Note that to represent a literal 3, we have to write Lit (Lit 3), since the first
Lit takes a Poly Z as its argument. To evaluate e using sem1, we have to define
Ring (Poly Z). A natural choice is to connect two expressions using corresponding
constructors:

ringP : ∀ {A} → Ring A → Ring (Poly A)
ringP (, 0 , 1 , neg) = (((:+) , (:×)) , Lit 0 , Lit 1 , (Lit (neg 1) : x)) .

Functional Pearl: Folding Polynomials of Polynomials 73

With ringP defined, sem1 (ringP r) e has type Poly A → Poly A. Evaluating, for
example sem1 (ringP r) e (Ind :+ Lit 1), yields

e′ : Poly Z

e′ = (Lit 3 :× (Ind :+ Lit 1) :× (Ind :+ Lit 4)) :+ Ind :+ (Ind :+ Lit 1) .

Note that Lit Ind in e is replaced by the argument Ind :+ Lit 1. Furthermore,
one layer of Lit is removed, thus both Lit 3 and Ind :+ Lit 4 are exposed to the
outermost level. The expression e′ may then be evaluated by sem1 rngZ, where
rngZ : Ring Z. The result is a natural number. In general, the function sem2 that
evaluates Poly (Poly A) can be defined by:

sem2 : ∀ {A} → Ring A → Poly (Poly A) → Poly A → A → A
sem2 r e2 e1 x = sem1 r (sem1 (ringP r) e2 e1) x .

This is how Poly (Poly Z) simulates bivariate polynomials: the two indeter-
minates are respectively represented by Ind and Lit Ind. During evaluation, Ind
can be instantiated to an expression arg of type Poly Z, while Lit Ind can be
instantiated to a Z. If arg contains Ind, it refers to the next indeterminate.

What about expressions like Lit (Ind :+ Lit 4)? One can see that its semantics
is the same as Lit Ind :+ Lit (Lit 4), the expression we get by pushing Lit to the
leaves. In general, define the following function:

litDist : ∀ {A} → Poly (Poly A) → Poly (Poly A)
litDist = foldP Ind (foldP (Lit Ind) (Lit · Lit) ((:+) , (:×))) ((:+) , (:×)) .

The function traverses through the given expression and, upon encountering a
subtree Lit e, lifts e to Poly (Poly A) while distributing Lit inwards e. We can
prove the following theorem:

Theorem 1. For all e : Poly (Poly A) and r : Ring A, we have sem2 r
(litDist e) = sem2 r e.

2.3 Multivariate Polynomials

In general, as we have mentioned in Sect. 1, the multivariate polynomial
R[X1,X2 . . . , Xm] is isomorphic to univariate polynomial ring S[Xm] over the
base ring S = R[X1,X2, . . . , Xm−1] (modulo the distribution law of Lit). That
is, a polynomial over A with n indeterminates can be represented by Polyn A,
defined by

Polyzero A = A
Polysuc n A = Poly (Polyn A) .

To define the semantics of Polyn A, recall that, among its n indetermi-
nates, the outermost indeterminate shall be instantiated to an expression of

74 C.-M. Cheng et al.

type Polyn−1 A, the next indeterminate to Polyn−2 A..., and the inner most inde-
terminate to A, before yielding a value of type A. Define

DChain : Set → N → Set
DChain A zero = �
DChain A (suc n) = Polyn A × DChain A n ,

that is, DChain A n (the name standing for a “descending chain”) is a list of n
elements, with the first having type Polyn−1 A, the second Polyn−2 A, and so on.
The type � denotes the “unit” type, inhabited by exactly one term tt.

Given an implementation of Ring A, the semantics of Polyn A is a function
DChain A n → A, defined inductively as below:

sem : ∀ {A} → Ring A → (n : N) → Polyn A → DChain A n → A
sem r zero x tt = x
sem r (suc n) e (t , es) = sem r n (sem1 (ringP� r n) e t) es ,

where ringP� delivers the Ring (Polyn A) instance for all n:

ringP� : ∀ {A} → Ring A → ∀ n → Ring (Polyn A)
ringP� r zero = r
ringP� r (suc n) = ringP (ringP� r n) .

For n := 2 and 3, for example, sem r n expands to:

sem r 2 e (t1, t0, tt) = sem1 r (sem1 (ringP r) e t1) t0
= (sem1 r · sem1 (ringP r) e) t1 t0 ,

sem r 3 e (t2, t1, t0, tt) = sem1 r (sem1 (ringP r) (sem1 (ringP2 r) e t2) t1) t0
= (sem1 r · sem1 (ringP r) · sem1 (ringP2 r) e) t2 t1 t0 .

Essentially, sem r n is n-fold composition of sem1 (ringPi r), each interpreting
one level of the given expression.

3 Operations on Polynomials

Having defined a representation for multivariate polynomials, we ought to
demonstrate that this representation is feasible — that we can define most of
the operations we want. In fact, it turns that most of them can be defined either
in terms of foldP or by induction over the number of iterations Poly is applied.

3.1 Rotation

The first operation swaps the two outermost indeterminates of a Poly2 A, using
foldP. This function witnesses the isomorphism between R[X1, . . . , Xm−1][Xm]
and R[Xm,X1, . . . , Xm−2][Xm−1]. It is instructive comparing it with litDist.

rotaPoly2 : ∀ {A} → Poly2 A → Poly2 A
rotaPoly2 = foldP (Lit Ind) (foldP Ind (Lit · Lit) ((:+) , (:×))) ((:+) , (:×)) .

Functional Pearl: Folding Polynomials of Polynomials 75

In rotaPoly2, the outermost Ind is replaced by Lit Ind. When encountering Lit e,
the inner e is lifted to Poly2 A. The Ind inside e remains Ind, which becomes the
outermost indeterminate after lifting. Note that both litDist and rotaPoly2 apply
to Polyn A for all n � 2, since A can be instantiated to a polynomial as well.

Consider Poly3 A, a polynomial with (at least) three indeterminates. To
“rotate” the three indeterminates, that is, turn Lit2 Ind to Lit Ind, Lit Ind to
Ind, and Ind to Lit2 Ind, we can define:

rotaPoly3 = fmap rotaPoly2 · rotaPoly2 ,

where fmap is the usual “functorial map” function for Poly:

fmap : ∀ {A B} → (A → B) → Poly A → Poly B .

The first rotaPoly2 swaps the two outer indeterminates, while fmap rotaPoly2
swaps the inner two. To rotate the outermost four indeterminates of a Poly4 A,
we may define:

rotaPoly4 = fmap (fmap rotaPoly2) · rotaPoly3 .

In general, the following function rotates the first n indeterminates of the given
polynomial:

rotaPoly : ∀ {A} (n : N) → Polyn A → Polyn A
rotaPoly zero = id
rotaPoly (suc zero) = id
rotaPoly (suc (suc zero)) = rotaPoly2
rotaPoly (suc (suc (suc n))) = fmapsuc n rotaPoly2 · rotaPoly (suc (suc n)) .

Note that in the actual code we need to convince Agda that Polyn (Poly A) is
the same type as Poly (Polyn A) and use subst to coerce between the two types.
We omit those details for clarity.

Given m and n, rotaOuter n m compose rotaPoly n with itself m times. There-
fore, the outermost n indeterminates are rotated m times. It will be handy in
Sect. 3.2.

rotaOuter : ∀ {A} (n m : N) → Polyn A → Polyn A
rotaOuter n zero = id
rotaOuter n (suc m) = rotaOuter n m · rotaPoly n e .

3.2 Substitution

Substitution is another operation that one would expect. Given an expression
e, how do we substitute, for each occurrence of Ind, another expression e′, using
operations we have defined? Noticing that the type of sem1 can be instantiated
to Poly2 A → Poly A → Poly A, we may lift e to Poly2 A by wrapping it with Lit,
do a rotaPoly2 to swap the Ind in e to the outermost position, and use sem1 to
perform the substitution:

76 C.-M. Cheng et al.

substitute1 : ∀ {A} → Ring A → Poly A → Poly A → Poly A
substitute1 r e e′ = sem1 (ringP r) (rotaPoly2 (Lit e)) e′ .

What about e : Poly2 A? We may lift it to Poly4 A, perform two rotaPoly4 to
expose its two indeterminates, before using sem2:

substitute2 :: ∀ {A} → Ring A → Poly2 A → Poly2 A → Poly2 A → Poly2 A
substitute2 r e e′ e′′ =
sem2 (ringP (ringP r)) (rotaPoly4 (rotaPoly4 Lit (Lit e))) (Lit e′) e′′ .

Consider the general case with substituting the n indeterminates in e : Polyn A
for n expressions, each of type Polyn A. Let Vec B n be the type of vectors (lists
of fixed lengths) of length n. A general substitute can be defined by:

substitute : ∀ {A} n → Ring A → Polyn A → Vec (Polyn A) n → Polyn A
substitute {A} n r e es =
sem (ringP� r n) n (rotaOuter (n + n) n (liftPoly n (n + n) e))

(toDChain es) ,

where liftPoly n m (with n � m) lifts a Polyn A to Polym A by applying Lit;
rotaOuter (n + n) n, as defined in Sect. 3.1, composes rotaPoly (n+ n) with itself
n times, thereby moving the n original indeterminates of e to outermost positions;
the function toDChain : ∀ {A} n → Vec A n → DChain A n converts a vector to
a descending chain, informally,

toDChain [t2, t1, t0] = (Lit (Lit t2) , Lit t1, t0, tt) ;

finally, sem performs the substitution. Again, the actual code needs additional
proof terms (to convince Agda that n � n+ n) and type coercion (between
Polyn (Polym A) and Polym+n A), which are omitted here.

3.3 Expansion

Expansion is an operation we put specific emphasis on, since it is useful when
implementing cryptosystems on microprocessors with no native hardware sup-
port for arithmetic operations with polynomials or integers of cryptographic
sizes. Let us use a simple yet specific example for further exposition: the polyno-
mial expression over complex numbers (3+2i)x2+(2+i)x+1 can be represented
by Poly (R × R), whose semantics is a function (R × R) → (R × R). Let x be
x1 + x2i, the polynomial can be expanded as below:

(3 + 2i)(x1 + x2i)2 + (2 + i)(x1 + x2i) + 1

= (3x2
1 − 4x1x2 − 3x2

2) + (2x2
1 + 6x1x2 − 2x2

2)i + (2x1 − x2) + (x1 + 2x2)i + 1

= (3x2
1 + 2x1 − 4x1x2 − x2 − 3x2

2 + 1) + (2x2
1 + x1 + 6x1x2 + 2x2 − 2x2

2)i.

That is, a univariate polynomial over pairs, Poly (R × R), can be expanded to
(Poly2 R × Poly2 R), a pair of bivariate expressions. The expansion depends on
the definitions of addition and multiplication of complex numbers.

Functional Pearl: Folding Polynomials of Polynomials 77

It might turn out that R is represented by a fixed number of machine words:
R = Wordn. As mentioned before, in cryptosystems n could be hundreds. To
compute the value of the polynomial, Poly Wordn can be further expanded to
(Polyn Word)n, this time using arithmetic operations defined for Word. Now that
each polynomial is defined over Word, whose arithmetic operations are natively
supported, we may compile the expressions, in ways discussed in Sect. 4, into a
sequence of operations in assembly language. We also note that the roles played
by the indeterminates x and i are of fundamental difference: x might just repre-
sent the input of the computation modelled by the polynomial expression, which
will be substituted by some values at runtime, whereas i intends to model some
internal (algebraic) structures and is never substituted throughout the whole
computation.

Currently, such conversion and compilation are typically done by hand. We
define expansion in this section and compilation in the next, as well as proving
their correctness.

In general, a univariate polynomial over n-vectors, Poly (Vec A n), can be
expanded to a n-vector of n-variate polynomial, Vec (Polyn A) n. To formally
define expansion we need some helper functions. Firstly, genInd n generates a
vector Ind :: Lit Ind :: ... Litn−1 Ind :: []. It corresponds to expanding x to (x1, x2)
in the previous example.

genInd : ∀ {A} n → Vec (Polyn A) n
genInd zero = []
genInd (suc zero) = Ind :: []
genInd (suc (suc n)) = Ind :: map Lit (genInd (suc n)) .

Secondly, liftVal : ∀ {A} n → A → Polyn A lifts A to Polyn A by n applications of
Lit. The definition is routine.

Expansion can now be defined by:

expand : ∀ {A} n → Ring (Vec (Polyn A) n) → Poly (Vec A n) → Vec (Polyn A) n
expand n rv = foldP (genInd n) (map (liftVal n)) (fst rv)

For the Ind case, one indeterminant is expanded to n using genInd. For the Lit xs
case, xs : Vec A n can be lifted to Vec (Polyn A) n by map (liftVal n). For addition
and multiplication, we let rv decide how to combine vectors of expressions.

The function expand alone does not say much — all the complex work is done
in rv : Ring (Vec (Polyn A) n). To generate rv, we define the type of operations
that, given arithmetic operators for A, define ring instance for vectors of A:

RingVec : N → Set1
RingVec n = ∀ {A} → Ring A → Ring (Vec A n) .

For example, rComplex lifts arithmetic operations on A to that of complex num-
bers over A:

rComplex : RingVec 2
rComplex ((+) , (×) , 0 , 1 , neg) = ((+c) , (×c) , [0, 0], [1 , 0], negC)

78 C.-M. Cheng et al.

where [x1, y1] +c [x2, y2] = [x1 + x2, y1 + y2]
[x1, y1] ×c [x2, y2] = [x1 × x2 − y1 × y2 , x1 × y2 + x2 × y1]
x − y = x + neg 1 × y
negC [x, y] = [neg 1 × x1, neg 1 × y] .

To expand a polynomial of complex numbers Poly (Vec A 2), expand
demands an instance of Ring (Vec (Poly2 A) 2). One may thus call
expand 2 (rComplex (ringP2 r), where r : Ring A. That is, we use rComplex
to combine a pair of polynomials, designating ((:+) , (:×)) as addition and
multiplication.

Correctness. Intuitively, expand is correct if the expanded polynomial evaluates
to the same value as that of the original. To formally state the property, we have
to properly supply all the needed ingredients. Consider e : Poly (Vec A n) —
a polynomial whose coefficients are vectors of length n. Let r : Ring A define
arithmetic operators for A, and let ringVec : RingVec n define how arithmetic
operators for elements are lifted to vectors. We say that expand is correct if, for
all xs : Vec A n:

sem1 (ringVec r) e xs = map (λ e → sem r n e (toDChain xs))
(expand n (ringVec (ringP� r n)) e). (1)

On the lefthand side, e is evaluated by sem1, using operators supplied by
ringVec r. The value of the single indeterminant is xs : Vec A n, and the result
also has type Vec A n. On the righthand side, e is expanded to Vec (Polyn A) n,
for which we need an instance of Ring (Vec (Polyn A) n), generated by
ringVec (ringP� r n). Each polynomial in the vector is then evaluated individually
by sem r n. The function toDChain converts a vector to a descending chain. The n
elements in xs thus substitutes the n indeterminants of the expanded polynomial.

Interestingly, it turns out that expand is correct if ringVec is polymorphic —
that is, the way it computes vectors out of vectors depends only on the shape of
its inputs, regardless of the type and values of their elements.

Theorem 2. For all n, e : Poly (Vec A n), xs : Vec A n, r : Ring A, and
ringVec : RingVec, property (1) holds if ringVec is polymorphic.

Proof. Induction on e. For the base cases we need two lemmas:

– for all n, x, es : DChain A n, and r, we have sem r n (liftVal n x) es = x;
– for all n, xs : Vec A n, and r : Ring A, we have

map (λ e → sem r n e (toDChain xs)) (genInd n) = xs.

The inductive case where e := e1 :+ e2 eventually comes down to proving that
(abbreviating λ e → sem r n e (toDChain xs) to sem′):

map sem′ (expand ringVec n e1) +VA map sem′ (expand ringVec n e2) =
map sem′ (expand ringVec n e1 +VP expand ringVec n e2)

Functional Pearl: Folding Polynomials of Polynomials 79

where (+VA) = fst (fst (ringVec r)) defines addition on vectors of A’s, and
(+VP) = fst (fst (ringVec (ringP� r n))) on vectors of polynomials. But this is
implied by the free theorem of ringVec. Specifically, fst · fst · ringVec has type

{A : Set} → Ring A → (Vec A n → Vec A n → Vec A n) .

The free theorem it induces is

∀ (X Y : Set) n →
∀ (f : X → Y) (ring1 : Ring X) (ring2 : Ring Y) → P f ring1 ring2 →
∀ (xs ys : Vec X n) →
let (+V1) = fst (fst (ringVec ring1))

(+V2) = fst (fst (ringVec ring2))
in map f (xs +V1 ys) = map f xs +V2 map f ys ,

where P is given by:

P f ((+1) , (×1) , 01 , 11 , neg1) ((+2) , (×2) , 02 , 12 , neg2) =
∀ x1 x2 y1 y2 → f (x1 +1 x2) = f x1 +2 f x2 ∧

f (x1 ×1 x2) = f x1 ×2 f x2 ∧
f 01 = 02 ∧ f 11 = 12 ∧ f (neg1 x1) = neg2 (f x2) .

The conclusion of the free theorem is exactly what we need, while proving the
premise is routine. The case for e := e1 : × e2 is similar.

4 Compiling Polynomials

A potentially complex polynomial can be expanded, in several passes, to a vector
of polynomial over Word, which can be compiled separately. As we have men-
tioned, such compilation is useful for software implementation of cryptosystems.
Furthermore, even for hardware implementation, such compilation can be use-
ful, as we can break down a complicated polynomial expression into a sequence
of simpler arithmetic operations in a smaller algebraic structure, reducing the
design complexity.

We consider a simple imaginary machine with a heap, denoted by Heap,
that may abstractly be seen as mapping between memory addresses Addr and
machine words Word. Albeit its simplicity, we believe that such a model captures
the essential aspects of a wide variety of hardware and software implementations.
The operator (!!) : Heap → Addr → Word fetches the value stored in the given
address, while ringWord : Ring Word defines how words are added and multiplied.
The simple assembly language we consider consists of three instructions:

data TAC : Set where
Const : Addr → Word → TAC
Add : Addr → Addr → Addr → TAC
Mul : Addr → Addr → Addr → TAC ,

80 C.-M. Cheng et al.

Ins : Set
Ins = List TAC .

The command Const i v stores value v in address i, Add i j k fetches values stored
in addresses i and j and stores their sum in address k, and similarly with Mul.
Given a heap, executing an assembly program computes a new heap:

runIns : Heap → Ins → Heap .

To compile a program we employ a monad SSA, which support an operation alloc :
SSA Addr that returns the address of an unused cell in the heap. A naive approach
is to implement SSA by a state monad that keeps a counter of the highest address
that is allocated, while alloc returns the current value of the counter before
incrementing it — register allocation can be performed in a separate pass. To run
a SSA monad we use a function runSSA : ∀ {A St} → St → SSA St A → (A × St)
that takes a state St and yields a pair containing the result and the new state.

Compilation of a polynomial yields SSA (Addr × Ins), where the second com-
ponent of the pair is an assembly program, and the first component is the address
where the program, once run, stores the value of the polynomial. We define com-
pilation of Polyn Word by induction on n. For the base case Poly0 Word = Word,
we simply allocate a new cell and store the given value there using Const:

compile0 :Word → SSA (Addr × Ins)
compile0 v = alloc >>= λ addr →

return (addr , Const addr v :: []) .

To compile a polynomial of type Polyn Word, we assume that the value of the
n indeterminants are already computed and stored in the heap, the locations of
which are stored in a vector of n addresses.

compile : ∀ n → Vec Addr n → Polyn Word → SSA (Addr × Ins)
compile zero addr = compile0
compile (suc n) (x :: addr) =
foldP (return (x, [])) (compile n addr) (biOp Add, biOp Mul) .

In the clause for suc n, x is the address storing the value for the outermost inde-
terminant. To compile Ind, we simply return this address without generating any
code. To compile Lit e where e : Polyn Word, we inductively call compile n addr.
The generated code is combined by biOp op p1 p2, which runs p1 and p2 to
obtain the compiled code, allocate a new address dest, before generating a new
instruction op dest addr1 addr2:

biOp : (Addr → Addr → Addr → TAC)
→ SSA (Addr × Ins) → SSA (Addr × Ins) → SSA (Addr × Ins)

biOp op m1 m2 = m1 >>= λ (addr1 , ins1) →
m2 >>= λ (addr2 , ins2) → alloc >>= λ dest →
return (dest , ins1 ++ ins2 ++ (op dest addr1 addr2 :: [])) .

Functional Pearl: Folding Polynomials of Polynomials 81

The following function compiles a polynomial, runs the program, and
retrieves the resulting value from the heap:

compileRun : ∀ {n} → Vec Addr n → Addr → Polyn Word → Heap → Word
compileRun rs r0 e h =
let ((r , ins) ,) = runSSA r0 (compile rs e)
in runIns h ins !! r .

Correctness. Given a polynomial e, by correctness we intuitively mean that the
compiled program computes the value which e would be evaluated to. A formal
statement of correctness is complicated by the fact that e : Polyn A expects, as
arguments, n polynomials arranged as a descending chain, each of them expects
arguments as well, and ins expects their values to be stored in the heap.

Given a heap h, a chain es : DChain Word n, and a vector of addresses rs, the
predicate Consistent h es rs holds if the values of each polynomial in es is stored
in h at the corresponding address in rs. The predicate can be expressed by the
following Agda datatype:

data Consistent (h : Heap) :
∀ {n} → DChain Word n → Vec Addr n → Set where

[] : Consistent h tt []
(::) : ∀ {n : N} {es rs e r}

→ (h !! r ≡ sem n ringWord e es)
→ Consistent h es rs
→ Consistent h (e , es) (r :: rs) .

Observe that in the definition of (::) the descending chain es is supplied to each
invocation of sem to compute value of e, before e itself is accumulated to es.

The correctness of compile can be stated as:

compSem : ∀ (n : N) {h : Heap}
→ (e : Polyn Word)
→ (es : DChain Word n)
→ (rs : Vec Addr n) → (r0 : Addr)
→ Consistent h es rs
→ NoOverlap r0 rs
→ compileRun rs r0 e h ≡ sem n e es .

The predicate Consistent h es rs states that the values of the descending chain es
are stored in the corresponding addresses rs. The predicate NoOverlap r0 rs states
that, if an SSA monad is run with starting address r0, all subsequent allocated
addresses will not overlap with those in rs. With the naive counter-based imple-
mentation of SSA, NoOverlap r0 rs holds if r0 is larger than every element in rs.
The last line states that the polynomial e is compiled with argument addresses
es and starting address r0, and the value the program computes should be the
same as the semantics of e, given the descending chain es as arguments.

With all the setting up, the property compSem n e can be proved by induction
on n and e.

82 C.-M. Cheng et al.

5 Conclusions and Related Work

In dependently typed programming, a typical choice in implementing multivari-
ate polynomials is to represent de Bruin indices using Fin n, the type having
exactly n members. This is done in, for example, the RingSolver in the Agda
standard library [5], among many. The tagless-final representation [2] is another
alternative. In this paper, we have explored yet another alternative, chosen to
see how far we can go in exploiting the isomorphism between R[X1,X2 . . . , Xm]
and univariate polynomial ring R[X1,X2, . . . , Xm−1][Xm]. It turns out that we
can go quite far — we managed to represent multivariate polynomials using
univariate polynomials. Various operations on them can be defined inductively.
In particular, we defined how a polynomial of vectors can be expanded to a
vector of polynomials, and how a polynomial can be compiled to sequences of
scalar-manipulating instructions like assembly-language programs. The correct-
ness proofs of those operations also turn out to be straightforward inductions,
once we figure out how to precisely express the correctness property.

We note that the current expansion formula is provided by the programmer.
For example, in order to expand a complex polynomial expression into two real
ones, the programmer needs to provide (in a RingVec) the formula (a1+b1i)(a2+
b2i) mod i2 + 1 = (a1a2 − b1b2) + (a1b2 + a2b1)i. We can see that the divisor
polynomial of the modular relationship can actually give rise to an equational
type in which i2 + 1 = 0, or any pair of polynomials are considered “equal” if
their difference is a multiple of the polynomial i2+1. In the future, we would like
to further automate the derivation of this formula, so the programmer will only
need to give us the definition of the equational types under consideration. The
RingSolver [5] manipulates equations into normal forms to solve them, and the
solution can be used in Agda programs by reflection. It is interesting to explore
whether a similar approach may work for our purpose.

Acknowledgements. The authors would like to thank the members of IFIP Working
Group 2.1 for their valuable comments on the first presentation of this work.

References

1. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice Hall International Series
in Computer Science. Prentice Hall, Upper Saddle River (1997)

2. Carette, J., Kiselyov, O., Shan, C.-C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–543
(2009)

3. Chen,A.I.-T., Chen,C.-H.O.,Chen,M.-S., Cheng,C.-M.,Yang,B.-Y.: Practical-sized
instances of multivariate PKCs: rainbow, TTS, and �IC-derivatives. In: Buchmann,
J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88403-3_7

4. Crockett, E., Peikert, C.: Λoλ: functional lattice cryptography. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24–28, pp. 993–1005. ACM (2016)

https://doi.org/10.1007/978-3-540-88403-3_7

Functional Pearl: Folding Polynomials of Polynomials 83

5. Danielsson, N.A.: Ring Solver, the Agda standard library. https://github.com/agda/
agda-stdlib/blob/master/src/Algebra/RingSolver.agda

6. Hungerford, T.: Algebra. Graduate Texts in Mathematics. Springer, New York
(2003). https://doi.org/10.1007/978-1-4612-6101-8

7. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. IACR Cryptology ePrint Archive 2012:230 (2012)

8. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X_31

9. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

https://github.com/agda/agda-stdlib/blob/master/src/Algebra/RingSolver.agda
https://github.com/agda/agda-stdlib/blob/master/src/Algebra/RingSolver.agda
https://doi.org/10.1007/978-1-4612-6101-8
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31

A Functional Perspective on Machine
Learning via Programmable Induction

and Abduction

Steven Cheung1, Victor Darvariu1, Dan R. Ghica1(B), Koko Muroya1,3,
and Reuben N. S. Rowe2

1 University of Birmingham, Birmingham, UK
D.R.Ghica@cs.bham.ac.uk

2 University of Kent, Canterbury, UK
3 RIMS, Kyoto University, Kyoto, Japan

Abstract. We present a programming language for machine learning
based on the concepts of ‘induction’ and ‘abduction’ as encountered in
Peirce’s logic of science. We consider the desirable features such a lan-
guage must have, and we identify the ‘abductive decoupling’ of parame-
ters as a key general enabler of these features. Both an idealised abduc-
tive calculus and its implementation as a PPX extension of OCaml are
presented, along with several simple examples.

1 A Principled Functional Language for Machine
Learning

What is the right programming language for machine learning? This question
can be answered in two ways. A first possible answer could take an algorithmic
point of view and try to identify those constructs which are most used in machine
learning programs, delivering an implementation in which the balance of various
optimisation trade-offs favours such constructs. This way of answering the ques-
tion has been studied quite extensively (e.g. [1,2]). A different methodological
approach to this question is to first put machine learning in a logical perspective,
to provide a guideline in the development of a programming language. Connect-
ing deductive systems to computation is a preferred methodology of functional
programming language design [3]. This is the methodology we follow in this
paper, except we will consider inference systems beyond deduction.

The first step is, therefore, to place machine learning in a logical framework.
This is a delicate, somewhat philosophical, undertaking which may be imperfect
or incomplete in its representation of the extremely broad spectrum of machine-
learning algorithms. However, this step must be made in order to enable the
methodological machinery to crank on. We will situate our logical understanding
of machine learning within C.S. Peirce’s view of deduction, induction, and abduc-
tion as the key reasoning processes in the logic of science. This view, espoused in
his celebrated paper Illustrations of the Logic of Science is perhaps not the only

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 84–98, 2018.
https://doi.org/10.1007/978-3-319-90686-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_6&domain=pdf
http://orcid.org/0000-0002-4271-9078

A Functional Perspective on Machine Learning 85

way in which the logic of machine learning, seen as a computational subsidiary
to the logic of science, can be understood. In fact Peirce himself revised both his
position on the role of induction and abduction, and even the terminology itself.
But the clarity and elegance of his Illustrations, formal and conceptual, makes
it a compelling organising principle.

The second step is to suggest an informal realisability-style correspondence
between the logical and the computational, resulting in a programming language
for machine learning in which typical algorithms can be expressed concisely and
elegantly1. This is indeed a common situation when developing functional pro-
gramming paradigms. The methodological principles invoked above are incorpo-
rated into a calculus, which is then implemented as an extension of the OCaml
programming language.

Contributions: We give a methodological justification for abductive inference
as a logical framework for machine learning. Following an informal realisabil-
ity argument for abduction we define a functional programming language for
machine learning, which we implement as a PPX extension of OCaml. The
language relies on a formal calculus of abduction which is studied elsewhere [4].

2 Deduction, Induction, Abduction

The division of all inference into Abduction, Deduction, and Induction
may almost be said to be the Key of Logic. C.S. Peirce

We faithfully follow Peirce’s logical analysis of scientific methodology as given
in his Illustrations of the Logic of Science. Several clarifications of terminology
first. The first one is that the term ‘logic’ must not be confused with ‘deductive
logic’. We are employing it in its broader sense, that of any system of formal
rules employed in carrying out scientific enquiry. Similarly, the term ‘induction’
must not be confused with ‘mathematical’ or other kinds of deductive induction,
but with the Humean principle of ‘generalising from examples’ [5]. Finally, the
term ‘abduction’ is not used in loc. cit., but the original term ‘hypothesis’ was
subsequently replaced by the former, which became more popular.

Logical inference rules fall into two broad categories. Some rules, when cor-
rectly applied, result in conclusions which are at least as believable as the
assumptions. They are ‘apodeictic’, i.e. beyond debate. These are the ‘deductive’
rules, the application of general principles to specific cases. Systems of deductive
rules relate elegantly to functional programming via correspondences such as
Kleene’s proofs-as-programs (realisability) [6] or the propositions-as-types cor-
respondence introduced by Curry and Howard [7]. Computation carried out in
such deductive functional programming languages produces definitive results.
However, these ‘analytic’ rules, and the computation inspired by them, play no
role in the creation of new knowledge.

1 The Curry-Howard correspondence emphasises types, whereas realisability empha-
sises proofs. Because we discuss new proof rules, rather than new types, we will
prefer the realisability approach.

86 S. Cheung et al.

In contrast, machine learning is a style of computation characterised by the
opposite features. It is tentative, in that it produces possibly imprecise or inac-
curate results. Yet it is ‘ampliative’ (or ‘synthetic’) in that it generates new
knowledge. The tentative nature of the results is a necessary consequence of
knowledge generation, which involves heuristics such as generalisation or guess-
ing. The fallibility of machine learning may be unsettling, but it is an allowance
we must make for the sake of creativity. The same uncertainty also characterise
the synthetic logical rules of scientific discovery, induction and abduction. By for-
malising them we simply endow existing scientific practice with a computational
dimension.

Peirce’s presentation of logical concepts is syllogistic. Deduction is the appli-
cation of a Rule (‘All men are mortal.’) to a Case (‘Socrates is a man.’) in order
to produce a Result (‘Socrates is mortal.’). In contrast, (scientific) induction is
the synthesis of a Rule (‘If the ball is struck, it moves.’) out of a Case (‘The ball
was struck.’) and a Result (‘The ball moved.’). Formalised, this rule is deduc-

tively uninteresting, A ∧ B
A ⊃ B

. In scientific practice the rule is slightly different.

Induction either generalises from a number of samples A ∧ B · · · A ∧ B
A ⊃ B

or reinforces an existing rule in light of new evidence A ∧ B A ⊃ B
A ⊃ B

. The
strength of the evidence can be modelled more precisely either by augmenting
the logic with modalities, or quantitatively, by (frequentist) statistical inference
or Bayesian belief revision. These lines of inquiry are investigated by a significant
literature [8].

Abduction is the third and final arrangement of Rule, Case and Result in a
distinct inference rule: given a Rule and a Result we infer the Case. The for-
malisation is the (deductively unsound) B A ⊃ B

A
. Peirce acknowledged

abduction as the rule leading to the most uncertain, the most speculative, knowl-
edge, but also as the rule with the potential to lead to the creation of the most
interesting new knowledge. In the practice of scientific discovery, abduction is
the process by which we try to answer the question ‘Why?’. This rule may seem
extravagantly unsound yet it plays a crucial role in Peirce’s philosophical under-
standing of the logic of scientific discovery.2

More succinctly, the roles of induction and abduction can be explained as
follows. Induction is a way to mechanically create models of the world from data
about the world, whereas abduction is an examination of given models in order
to understand why they work.

2 Abduction is essential in making statements about reality when we only have access
to sense-data such as measurements. For example, the Result might be ‘The ther-
mometer reads 10◦’ with the Rule ‘If the temperature is 10◦ then the thermometer
reads 10◦’. From these we can abduce the Case, that ‘The temperature is 10◦’. Note
that this can never be apodeictic because, for example, the thermometer may be bro-
ken. Denying abductive reasoning and demanding the certainty of deduction leads to
universal scepticism, e.g. Descartes’s ‘evil demon’ which may subvert our experience
of the world.

A Functional Perspective on Machine Learning 87

2.1 Proofs-as-Programs for Induction

The induction rule A ∧ B · · · A ∧ B
A ⊃ B

has a natural computational inter-
pretation as the coercion of a list of pairs of type A × B into a function A → B,
realisable by a collection of constants interpA,B : (A × B) list → A → B. It is
reasonable to expect the function to be both conservative, agreeing with the
arguments when specified, and ampliative, supplying new and sensible values of
type B when an unknown argument of type A is provided. This is interpolation.

Interpolation can only be computed for certain data types. In the most
general case, if the type A is an order, i.e. it is equipped with a comparison
function, then the simplest and most general interpolation method is piecewise
constant interpolation. The resulting function f is constant on each interval
an ≤ a < an+1 with an, an+1 ∈ A consecutive known points, i.e. f(a) = bn for
an ≤ a < an+1. If A is an ordered field then the piecewise-constant interpolation
can be more sensible, with the segments centred in the known values, so that
for (an−1 + an)/2 ≤ a < (an + an+1)/2, f(a) = bn. If A is a multi-dimensional
vector field then the partition of space into regions based on distance to the given
points in which the function value is constant is the Voronoi tessellation [9].

If both A and B are fields then a variety of interpolation methods are available
(trading off computational simplicity for precision) from linear interpolation,
which approximates the function as a set of line segments, to polynomial or
spline interpolations, which produce smooth functions. These methods also apply
when A is a vector field (‘multivariate interpolation’) and even if the premises
are countably many, i.e. the list of points is infinite (streams), via Whittaker-
Shannon interpolation [10].

The alternative presentation of the induction rule, A ∧ B A ⊃ B
A ⊃ B

is more subtle because its computational interpretation suggests the need to
‘update’ a function A → B to take into account a new pair of points A × B.
If we situate ourselves in the realm of approximation, we note that a function
f : A → B can be always converted into a list of points (A×B) list via sampling,
thus reducing this rule to the previous. Concretely this would involve a family
of constants sampA,B : (A → B) → (A × B) list. A realisability-style interpreta-
tion of this rule would be more subtle because when relating lists of points and
functions, interpolating then sampling at the same inputs produces the original
data points, but interpolating from a set of samples in general does not produce
the original function.

Finally, if we are in an approximate setting, then the computational inter-
pretation of induction can go beyond interpolation. Interpolation is always accu-
rate at the interpolation points, but functions can be synthesised in ways which
reduce rather than avoid error at the sampling points, such as regression [11].
Regression is a more robust way of synthesising functions because it recognises
the possibility that the sample points may incorporate noise or errors. Interpola-
tion will over-fit the function to the points, a problem avoided by regression. In
the next section we will see that regression plays a key role in the interpretation
of abduction.

88 S. Cheung et al.

A basic ‘inductive’ core functional programming language for induction could,
in principle, be designed on the basis of an applied lambda calculus with lists
and special sampA,B and interpA,B constants.

2.2 Proofs-as-Programs for Abduction

Induction, computationally, may be interpreted as the synthesis of functions out
of data using techniques such as interpolation or regression. This is potentially
useful in the context of data science, but it is not quite machine learning. We will
see how abduction fills this role. The interpretation is rather different than in the
case of the induction, because in the abduction rule B A ⊃ B

A
we will not

think of A and B as data, but rather we will think of A as parameters (P) and
B as a rule (M ⊃ N). This ‘higher-order’ version of abduction is particularly

interesting for us:
M ⊃ N P ⊃ (M ⊃ N)

P
.

The computational interpretation is as follows. Given a parametrised function
f : P → (M → N) and a non-parametric function g : M → N we want to
find the values of parameter p : P which makes functions f p : M → N and
g : M → N be ‘as similar as possible’. One can think of g as an external
phenomenon, an experiment, or an oracle, and f as a model. By abduction we
need to find the best parameter values for the model so that the model instance
f p best explains g. The process of ‘abducing the best parameters’ of a generic
model is a general instance of a machine learning situation.

Concretely, a programming language would require a family of constants
abdP,A : A → (P → A) → P , where A is (usually) a function type. The infor-
mal semantics of abdmf is the calculation of a parameter p : P so that a
defined measure of distance between f p and the reference external function m
is minimised. This is a generic optimisation problem which can be approached
in different ways depending on the types involved.

If P , the type of the parameters, is a discrete data type then combinatorial
optimisation algorithms can be used to compute p. The literature on the topic
is substantial [12]. If P is a vector space then numerical approximations such as
gradient descent can be used. There is an even broader literature in this area [13]
going back to Cauchy’s pioneering work on numeric solutions to systems of equa-
tions. Note that if the model P → A is a smooth (differentiable) function and if
the programming language has reflection [14] then gradient descent can be made
very efficient by computing the differential of the function automatically [15],
otherwise it can be computed numerically [16].

An abductive programming language, i.e. a simply-typed lambda calculus
extended with a family of abduction primitives (abdP,A), would offer the advan-
tage of highly simplifying machine-learning programming by hiding the search
or optimisation mechanisms from the programmer. For example, considering an
oracle with signature r : float → float, a linear-regression model lc of r would be
constructed as follows (in a generic functional syntax):

A Functional Perspective on Machine Learning 89

l (p1, p2)x = p1 × x + p2

(p′
1, p

′
2) = abdfloat×float,float→float r l

lc = l(p′
1, p

′
2)

The resulting function lc is the concrete model, obtained from the abstract model
l instantiated with abduced parameters (p′

1, p
′
2).

From the point of view of this computational interpretation we can see
how induction and abduction are subtly different. Both involve the synthesis
of new functions, but the mechanisms are distinct. Whereas induction synthe-
sises a function out of data using a fixed, built-in, transparent mechanism,
abduction provides the means of adjusting the parameters of a programmer-
supplied function to best-fit an oracle. Induction and abduction can interact
to create a reference model out of sampled data rather than using the exter-
nal process directly, which would be inconvenient. The combined induction-
abduction function, using a collection of data points d : (A × B) list is defined as
indabd d f = abdP,A→B (interpA,B d) f.

There is a similarity between this style of programming and Tensor-
Flow [17], a successful machine-learning library, with some differences. Our
‘abduction’ corresponds to ‘training’, but we impose no syntactic distinctions
between a function used as an argument to abduction or as applied to an argu-
ment. In TensorFlow the programmer needs to explicitly create ‘sessions’ in
which a model (‘computation graph’) can be either trained or evaluated, sepa-
rately. Such distinctions are generally unpleasantly low-level.

3 Programming with Induction-Abduction

The considerations above highlight a programming idiom which from a realis-
ability perspective relates induction and abduction with certain useful program-
ming constructs. We are reassured by the resemblance of the inductive-abductive
style of programming with established frameworks such as TensorFlow. We
are proposing in fact an idealised version of such frameworks. The question we
ask is how can a conventional functional programming language be improved or
extended with inductive-abductive constructs.

Induction does not present a challenge. The interp family of constants are
simply extrinsic functions of the requisite signature. Abduction is also intro-
duced in the same way, but programming with it turns out to be inconvenient.
The real programming language design challenge is wrestling with the bureau-
cratic burden of parameter management. In this section we will describe at some
length our rationale for language design, with the actual language to follow. We
iterate through key problems and informally present partial solutions, in order to
highlight the challenge faced. The definitive solution, which addresses all these
problems will be presented in the next section.

The key requirement, which will drive most of the language design, is the
fact that abduction must rely on a fixed and generic optimisation algorithm. A
model P → A → B must accommodate a generic optimisation algorithm over

90 S. Cheung et al.

the space P of parameters and a norm for type B. For numeric optimisations
such as gradient descent, the space P of parameters is commonly a vector space.
The linear regression example becomes:

l : vec → float → float

l v x = v[0] × x + v[1]
v′ = indabd r l

lc = l v′

Implicit Parameters. Parametrising models by vectors makes for ugly syntax.
Moreover, composite models must be constructed using operations which are
manually lifted to manage parameters. Consider a model for confidence bounds
which involves two linear functions (a simple weighted regression [18]):

bound v x = (l v [0 : 1] x , l v [2 : 3] x)
v′ = indabd r bound
boundc = bound v′

where v[m : n] means taking a slice of the vector v from m to n and r some suit-
able reference data. The model has four parameters, which must be distributed to
the two linear bounds. However, there is a problem with this approach. Explicit
decomposition of the parameter vector worsens the syntactic overhead. More
seriously, mistakes in the slicing of the vector can lead to runtime errors which,
since they involve sizes, cannot be prevented by a simple type system. Instead,
we would prefer this:

bound x = (l x , l x)
v′ = indabd r bound
boundc = bound {v′}

The vector-parameter is an implicit parameter. When a concrete model is pro-
duced from the instantiation of the abstract model with the abducted parame-
ters, they are explicitly provided. However, managing the implicit parameter in
the lifted term formers is more complex than in languages which support such
feature syntactically [19].

In terms of implementation, it may seem possible to handle parameters in a
monadic style, but we shall see soon why this solution would not be satisfactory
when other, more subtle, requirements are taken into account.

Linear Parameters. Let us now turn to an issue that drives the ultimate
design of the language, illustrated by our running examples:

bound1 x = (λh.(h x , h x + 1)) l
bound2 x = (l x , l x + 1)

A Functional Perspective on Machine Learning 91

What is the dimension of the parameter vector for bound1 and bound2? In the
case of the former, it is quite obvious that the vector has two components. In
the latter, it depends on whether the programmer intended the two occurrences
of the function l to be abducted separately or together. We think there is a
case for the parameters to be abducted together, so that both functions have
two parameters, not only in an attempt to conform to a beta law which is often
expected by functional programmers, but also to allow the programmer to keep
control of how many parameters are independently adjustable during abduction.
In this example, abduction will always lead to boundaries delimited by two lines
1 unit apart, i.e. fixed confidence bounds of a linear regression. In contrast, the
weighted regression model can be defined with two separate parameter vectors
(each of size two), v0 = [1; 0] and v1 = [1; 0]:

bound x = (l {v0}x, l {v1}x)

In a final streamlining of the syntax, we omit parameter vectors altogether
and we only indicate by {−} that a constant is to be interpreted as a parameter,
leaving the vector of parameters everywhere implicit:

l x = {1} × x + {0}
l′ x = {1} × x + {0}
bound x = (l x, l′ x).

The linearity of parameter occurrences will be always observed, so that for exam-
ple terms (λx.x + x){0} and {0} + {0} are distinct, because they have one,
respectively two, parameters.

In general, the parameters of a model may be contributed by both arguments
and free variables, which means that parameters must be discovered not only in
the body of the function and its arguments, but also in closures. Linearity and
the need for ‘deep’ search of parameters indicates a simple syntactic solution to
be unlikely.

In conclusion, we want our running examples to be, ideally, written as:

l a b x = a × x + b

g x = (l {1} {0})x

f x = (l {1} {0})x

f ′ x = (l {1} {0})x

bound w x = (f x, f ′ x)
bound l x = (g x, g x + 1)

where bound w is the four-parameter weighted regression model, and bound l
the two-parameter unit confidence interval of a linear regression.

4 The Abductive Calculus

We have argued that the construction of a parametrised model, which is the
second input of the abduction abdP,A : A → (P → A) → P , can be tedious

92 S. Cheung et al.

or erroneous in the absence of implicit parameter management. We would like
parameters to be implicit in construction of a parametrised model, and to be
collected as a unique and opaque type for abduction.

The previous section illustrated the construction of models with implicit
parameters that are represented by specially annotated constants {k}. To enable
abductive programming we propose decoupling as a key feature. This consists of
a family of constants decVa,A : A → (

(Va → A) × Va

)
where Va is an abstract

type indexed by a unique name a (or ‘atom’), as a mechanism to collect implicit
parameters and prepare an explicitly parametrised model.

Informally, decm computes a pair (l : Va → A, p : Va) by collecting all
implicit parameters in m : A as the vector p and turning the model m (with
implicit parameters) into a parametrised model l : Va → A, a function on
parameter-vectors. The name a is shared by the parameter-vector p and the
parametrised model l, making type Va unique for the model. For our leading
example, where π1 is the first projection,

l x = {1} × x + {0}
bound x = (l x, l x + 1)
boundp = π1(dec bound)
p′ = indabd r boundp
boundc = boundp p′

In this section we give an overview presentation of the abductive calculus, an
extension of the simply-typed lambda-calculus for abductive decoupling [4]. Let
A be a set of names (or atoms). Let (F,+,−,×, /) be a (fixed) field and Va an
A-indexed family of opaque vector types. The types T of the calculus are defined
by the grammar T ::=F | Va | T → T where a ∈ A.

Terms t are defined by the grammar t ::= x | λxT ′
.t | t t | k | t $ t | {k} |

Aa,T ′(f, x).t, where T and T ′ are types, f and x are variables, $ ∈ Σ binary
primitive operations, k ∈ F field elements, and a ∈ A names. The novel syn-
tactic elements of the calculus are provisional constants {k}, which serve as
implicit parameters in the above discussion, and a family of type- and name-
indexed abductive decoupling functions Aa,T ′(f, x).t. Decoupling functions are
the implicational form of the decoupling operation dec; they can be syntactically
related by (Aa,T ′(f, x).t)u ≡ (λ(f, x).t) (decVa,T ′ u) in the presence of tuples. We
opt for the implicational form to make the scope of names explicit, as we see in
the type system below.

Let A ⊂fin A be a finite set of names, Γ a sequence of typed variables xi:Ti,
and p a sequence of elements of the field F (i.e. a vector over F). We write A 	 Γ
if A is the support of Γ . The typing judgements are of shape: A | Γ | p 	 t : T ,
and typing derivation rules are given below.

A � Γ, T

A | Γ, x : T | − � x : T

A | Γ, x : T ′ | p � t : T

A | Γ | p � λxT ′
.t : T ′ → T

A | Γ | p � t : T ′ → T A | Γ | q � u : T ′

A | Γ | p, q � t u : T

A Functional Perspective on Machine Learning 93

A � Γ k ∈ F

A | Γ | − � k : F

A | Γ | p � t1 : T1 A | Γ | q � t2 : T2 $: T1 → T2 → T ∈ Σ

A | Γ | p, q � t1 $ t2 : T

A � Γ
A | Γ | p � {p} : F

A, a | Γ, f : Va → T ′, x : Va | p � t : T A � Γ, T ′, T

A | Γ | p � Aa,T ′(f, x).t : T ′ → T

Note that the rules are linear with respect to the parameters p. In a derivable
judgement A | Γ | p 	 t : T , the vector p gives the collection of all provi-
sional constants from t. The decoupling function Aa,T ′(f, x).t binds name a, so
it requires in its typing a unique vector type Va collecting all the provisional
constants. The typing rule for the function limits the scope of the name a, so
that this vector type Va cannot be used outside of the scope of the function. As
a consequence the vector type Va is unique to the decoupling function. Variables
f and x bound by the function share the type Va but this type cannot be mixed
with parameters produced by other decouplings, as they may result in vectors
with different numbers of elements. This is discussed in Sect. 6.

Employing the straightforward extension by tuples (and lists) and the syn-
tactic sugar let x = u in t ≡ (λx.t)u, our leading example can be written in the
abductive calculus as below.

let l = λa.λb.λx.a × x + b in

let f = l {1} {0} in

let bound = λx.(f x, f x + 1) in

let update = A(boundp ,).boundp (indabd r boundp) in

update bound

Its operational semantics is specified using a variation on the Geometry of Inter-
action [20] which relies on graph rewriting [21]. Using this semantics the calculus
is proved as sound (well-typed programs terminate with a value).

The abstract machine represents a term as a graph along the edges of which
a token travels. The routing of the token is defined by language-specific rules, as
are the rewrite rules. The presence of the token indicates unambiguously what
rule must apply, defining in effect a particular reduction strategy.

The ‘dynamic rewriting’ style of the operational semantics has several advan-
tages which we discuss below.

Sharing of provisional constants in the graph model is naturally represented
by making provisional-constant nodes with several incoming edges. In a term
model the same can only be achieved by introducing auxiliary names, a more
complicated formalism. Moreover, provisional constants cannot be copied or dis-
carded, but only shared at run-time, restrictions which are naturally reflected in
a graph model, unlike in a term model.

Decoupling is a complex, dynamic runtime operation which in the graph
model is surprisingly easy to formulate. Representing code and environment
jointly as a single graph removes the need for complex lookups in the formulation
of this rule. This is not as convenient in conventional abstract machines, because
code and environment are separate, hindering the formulation of rules involving
both, especially the collecting and sharing of provisional constants.

94 S. Cheung et al.

In the presence of provisional constants, a program can be interpreted in both
extensional and intensional ways. For example, an extensional interpretation of
{1} + {2} is a value 3, while its intensional interpretation is ‘a computation of
summation, given two provisional constants that are currently 2 and 3.’ The
graph-rewriting abstract machine has an ability to handle both interpretations
at the same time, by separating the flow of computation (the graph) and the
input-output behaviour (the token).

The same ‘two-in-one’ graph representation also enables a direct proof of
program equivalence by means of bisimulation, notably by dealing with the con-
gruence property in terms of sub-graphs.

5 DecML, A Functional Language for Machine Learning

Terms in the abductive calculus can be evaluated on-line in an experimental
graph-rewriting engine implementing the semantics directly.3 Additionally, we
want to implement a fragment of the abductive calculus as an extension of an
existing real-world functional programming language rather than as a totally
new language. The major challenge of implementing the abductive calculus is to
extract parameters, especially from closures. The semantic definition, which is
a global reference-chasing operation similar to garbage collection, is not easily
implementable. It seems to require a deep and undesirable intervention on the
runtime of the language. We will therefore pursue an alternative strategy, by
building a runtime structure for parameter management which is maintained
by instrumentation of the native code. This will make it possible to actually
maintain the model in a form in which decoupling is a trivial operation.

We implement the abductive calculus as a language extension to OCaml
along with the translation from it to standard OCaml under the PPX frame-
work [22, Sect. 7.23].4 In addition to OCaml terms tOCaml the abductive cal-
culus is extended with new terms t ::= tOCaml | [%pc k] | [%lift t] where, k are
(floating-point) constants. If t : A then [%model t] : (dict → A)∗dict. The bound-
ary between ‘pure’ OCaml and the abductive terms is indicated by [%model t],
with abductive code inside the marker.

The tag [%model t] ensures the code t is evaluated as a term of the abduc-
tive calculus, and presents the result to the ambient OCaml code as a model
with decoupled parameters. This will require a combination of syntactic trans-
formations and runtime instrumentations. [%pc k] defines a provisional constant,
while lifting [%lift k] allows identifiers from outside of the abductive fragment,
including most OCaml operators, to be used as (trivial) models.

We define a translation �−� for terms t : A of the extended abductive cal-
culus, into terms t′OCaml of ‘lifted’ types (dict → A) ∗ dict of OCaml. The first
projection is the model, a function parameterised by a dictionary of parame-
ters, which is also given, as the second projection. The translation accumulates

3 http://bit.ly/abd-vis.
4 https://github.com/DecML/decml-ppx.

http://bit.ly/abd-vis
https://github.com/DecML/decml-ppx

A Functional Perspective on Machine Learning 95

the parameters from its sub-terms by merging their dictionaries, and it ‘lifts’
the syntactic constructs (abstraction, application, etc.) so that they match the
lifted types.

The dictionary is a simple data structure that associates each provisional
constant to a unique key. By using dictionaries instead of vectors, merging two
sets of parameters is easy since we no longer need to consider their order inside
the parametrised function. Below are the required dictionary operations in the
target language: empty denotes an empty dictionary, new key is an operation
that returns a new global key, create dict creates a single element dictionary
from a key and a float, lookup returns the value that is associated with a key in
a dictionary and merge combines two compatible dictionaries by joining them.

empty : dict new key : unit → key
new dict : key → float → dict lookup : key → dict → float
merge : dict → dict → dict

Variable x stands for any OCaml identifier, including constants, and k for a
float. The translation is indexed by a set V of variables bound in the model:

�x�V = (fst x, snd x) (if x ∈ V)
�x�V = (λ .x, empty) (if x ∈ V)

�%lift t�V = (λ .t, empty) (where t is a pure OCaml term)
�%pc k�V = (λq.lookup L q,new dict Lk) (where L = new key ())
�(t1, t2)�V = (λq.((F1 q), (F2 q)),merge P1 P2) (where (Fi, Pi) = �ti�V)

�t1 t2�V = (λq.((F1 q) (F2 q)),merge P1 P2) (where (Fi, Pi) = �ti�V)
�λx.t�V = (λq.λx.F q, P) (where (F, P) = �t�V ∪{x})

In the definition of %lift, by a ‘pure’ OCaml term we mean a term with no
abductive syntax or types. In concrete DecML syntax, the leading example is:

let (∗), (+), j, z, i = [%lift (∗.)], [%lift (+.)], [%pc 1.0], [%pc 0.0], [%lift 1.0] in
let l = [%model funx → j ∗ x + z] in
let (bp, p) = [%model funx → (l x), (l x + i)] in
let p′ = indabd r bp in

let bc = bp p′ in . . .

Induction-abduction indabd is not implemented as a constant, but it can be any
function of the right type, implementing a generic optimisation algorithm such as
gradient descent. Parameter p can be supplied to this function as an argument,
if necessary, to seed the optimisation algorithm with an initial point.

This final observation also explains our decision to use the %model annota-
tion to lift only parts of an OCaml program rather than the whole program.
Inside the abductive fragment all operations are lifted to manage parameters,

96 S. Cheung et al.

which makes them less efficient and interferes with compiler optimisation. But
once a model is created in the decoupled form then it can be processed in the
more efficient ambient language. It is particularly important that abduction,
which dominates computationally any machine learning program, can be exe-
cuted natively and efficiently. The mixing of pure and instrumented code, on
the other hand, can lead to subtle typing problems which could be difficult for
the programmer to understand and fix. The limited access PPX has to typing
information makes it a challenge to give further assistance on this matter, so a
future version of this language may require substantial re-engineering.

6 Related and Further Work

Our work has been heavily influenced by TensorFlow [17]. We are aiming to
provide an idealised, functional version of this framework. DecML, by using the
decoupling mechanism, avoids the need to represent parameters using imperative
state, while recognising their importance (‘variables’ in TensorFlow terminol-
ogy) as a distinct language entity. We also recognise the dual-use of models, in
direct and training mode, but we prefer to not make this semantic distinction
syntactic. As a shallow embedding of a DSL into Python, TensorFlow must
sometimes use rather heavy-going constructs such as that of a ‘session’, which
we can afford to completely elide. Moreover, by presenting a language exten-
sion rather than an embedded DSL we avoid a host of well-known problems and
pitfalls [23–25].

For reasons of space and presentational focus we have also glossed over
another significant distinction between inductive-abductive programming and
TensorFlow. In the former, abduction is given as a fixed, language-specific,
construct whereas in the latter the abduction (search and optimisation) algo-
rithm is programmable. Of course, fixing the abduction algorithm and assuming
that certain types come with fixed norms is impractical. Prolog is an example
of an abductive programming language in which abduction is implemented as
a fixed resolution algorithm, which significantly narrows the applicability of the
language to practical problems.

However, if the programming language we are extending is rich enough (such
as OCaml), then the induction-abduction extrinsics can be simply programmed
as normal library functions. The same applies to programming the norm func-
tions explicitly. In fact a fixed abduction construct is not actually defined in the
abductive calculus [4], nor is it in DecML! We will briefly discuss some further
language design considerations for programmable abduction, which are already
included in the abductive calculus but not yet implemented in DecML.

The key requirement is that parameters are collected as an opaque vector
type, the key data type required by the formalisation of generic numeric optimi-
sation problems. Since parameter collection and slicing mechanisms are complex,
the dimension of abducted parameter vectors and even the order of coordinates
are impossible to anticipate at compile-time. Abstracting away these details is
therefore required, and any vector needs to be uniquely associated with the model

A Functional Perspective on Machine Learning 97

which it parametrises. Making abduction programmable also explains why we
prefer to extract, rather than discard, the current values of the parameters. They
are often used by programmers to seed the search and optimisation algorithms,
using domain-specific knowledge.

In order to prevent erroneous uses, unique and opaque vector types must be
generated for each model so that vectors produced by abduction can only be
used with the original model. The opaqueness prevents access to the represen-
tation, i.e. to the bases or the individual coordinates. Only operators which are
symmetric under permutations of bases will be allowed. Mathematically, they
correspond to symmetric tensors, but formulated in a programmer-friendly way.
This is a real, but not onerous, restriction on the way the generic optimisation
algorithms are used. Indeed, if generic optimisation algorithms are to be used
at all it is difficult to imagine how (or why) we may want to program them so
that different axes are treated differently in the search space. As an extra bonus,
linear vector operations are efficiently programmable and easily parallelisable on
specialised architectures such as GPUs.

Our proposal focuses on the correspondence between inductive-abductive
inference rules and programming constructs in order to extract methodological
principles for the design of a machine-learning-oriented programming language.
However, these correspondences are only pursued informally. A rigorous realiz-
ability definition for induction and abduction is likely to be an interesting and
instructive mathematical exercise. We plan to pursue it in the future.

Besides realisability, Curry-Howard-style correspondences can also be pur-
sued by refining the type system to distinguish between the various modalities
arising out of inductive and abductive reasoning. The distinction between def-
inite and tentative (or approximate) values can be handled by epistemic logics
which distinguish between ‘known’ and ‘believed’ statements. This can lead to
types for inductive-abductive programming which can track the epistemic status
of results of computations. More subtly, the analytic vs. synthetic distinction can
also be modelled by type systems [26] which can prove useful in the context of
machine learning. This remains a longer-term project.

References

1. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Olukotun, K., Ng, A.Y.:
Map-reduce for machine learning on multicore. In: Advances in Neural Information
Processing Systems, pp. 281–288 (2007)

2. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–
1758 (2009)

3. Huet, G.: Deduction and computation. In: Bibel, W., Jorrand, P. (eds.) Funda-
mentals of Artificial Intelligence: An Advanced Course. LNCS, vol. 232, pp. 38–74.
Springer, Heidelberg (1986). https://doi.org/10.1007/BFb0022680

4. Muroya, K., Cheung, S., Ghica, D.R.: Abductive functional programming, a seman-
tic approach. CoRR abs/1710.03984 (2017). Submitted for publication

5. Howson, C.: Hume’s Problem: Induction and the Justification of Belief. Clarendon
Press, Oxford (2000)

https://doi.org/10.1007/BFb0022680

98 S. Cheung et al.

6. Kleene, S.C.: On the interpretation of intuitionistic number theory. J. Symb. Log.
10(4), 109–124 (1945)

7. Howard, W.A.: The formulae-as-types notion of construction. In: To HB Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, vol. 44, pp. 479–
490 (1980)

8. Sheridan, F.: A survey of techniques for inference under uncertainty. Artif. Intell.
Rev. 5(1–2), 89–119 (1991)

9. Aurenhammer, F.: Voronoi diagramsa survey of a fundamental geometric data
structure. ACM Comput. Surv. (CSUR) 23(3), 345–405 (1991)

10. Marks, R.: Introduction to Shannon Sampling and Interpolation Theory. Springer,
New York (2012). https://doi.org/10.1007/978-1-4613-9708-3

11. Vaughn, B.K.: Data analysis using regression and multilevel/hierarchical models.
J. Educ. Meas. 45(1), 94–97 (2008)

12. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

13. Snyman, J.: Practical Mathematical Optimization: An Introduction to Basic Opti-
mization Theory and Classical and New Gradient-Based Algorithms, vol. 97.
Springer, Boston (2005). https://doi.org/10.1007/b105200

14. Smith, B.C.: Reflection and semantics in Lisp. In: POPL, pp. 23–35. ACM (1984)
15. Rall, L.B.: Automatic Differentiation: Techniques and Applications. Springer,

Heidelberg (1981). https://doi.org/10.1007/3-540-10861-0
16. Lyness, J.N., Moler, C.B.: Numerical differentiation of analytic functions. SIAM

J. Numer. Anal. 4(2), 202–210 (1967)
17. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,

Davis, A., Dean, J., Devin, M., et al.: TensorFlow: large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

18. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots.
J. Am. Stat. Assoc. 74(368), 829–836 (1979)

19. Lewis, J.R., Launchbury, J., Meijer, E., Shields, M.B.: Implicit parameters:
dynamic scoping with static types. In: POPL, pp. 108–118 (2000)

20. Girard, J.Y.: Geometry of interaction 1: interpretation of system F. Stud. Log.
Found. Math. 127, 221–260 (1989)

21. Muroya, K., Ghica, D.R.: The dynamic geometry of interaction machine: a call-
by-need graph rewriter. In: Computer Science Logic, pp. 32:1–32:15 (2017)

22. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.02 (2013)

23. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding for EDSL.
In: Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 21–36. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40447-4 2

24. Scherr, M., Chiba, S.: Implicit staging of EDSL expressions: a bridge between shal-
low and deep embedding. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp.
385–410. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-
9 16

25. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embed-
dings (functional pearl). In: ICFP, Gothenburg, Sweden, pp. 339–347 (2014)

26. Martin-Löf, P.: Analytic and synthetic judgements in type theory. In: Parrini,
P. (ed.) Kant and Contemporary Epistemology, pp. 87–99. Springer, Dordrecht
(1994). https://doi.org/10.1007/978-94-011-0834-8 5

https://doi.org/10.1007/978-1-4613-9708-3
https://doi.org/10.1007/b105200
https://doi.org/10.1007/3-540-10861-0
http://arxiv.org/abs/1603.04467
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/978-3-662-44202-9_16
https://doi.org/10.1007/978-3-662-44202-9_16
https://doi.org/10.1007/978-94-011-0834-8_5

Polymorphic Rewrite Rules: Confluence,
Type Inference, and Instance Validation

Makoto Hamana(B)

Department of Computer Science, Gunma University, Kiryu, Japan
hamana@cs.gunma-u.ac.jp

Abstract. We present a new framework of polymorphic rewrite rules
having predicates to restrict their instances. It is suitable for formulat-
ing and analysing fundamental calculi of programming languages. A type
inference algorithm and a criterion to check local confluence property of
polymorphic rules are also given, with demonstration of the effective-
ness of our methodology by examinination of sample program calculi. It
includes the call-by-need λ-calculus and Moggi’s computational lambda-
calculus.

1 Introduction

Fundamental calculi of programming languages are often formulated as simply-
typed computation rules. Describing such a simply-typed system requires a
schematic type notation that is best formulated in a polymorphic typed frame-
work. To illustrate this situation, consider the simply-typed λ-calculus as a sam-
ple calculus:

(β) Γ � (λxσ .M)N ⇒ M [x := N] : τ

An important point is that σ and τ are not fixed types, but schemata of types.
Therefore, (β) actually describes a family of actual computation rules. Namely, it
represents various instances of rules by varying σ and τ , such as the following.

(βbool,int) Γ � (λxbool.M)N ⇒ M [x := N] : int
(βint→int,bool) Γ � (λxint→int.M)N ⇒ M [x := N] : bool

From the viewpoint of meta-theory, as in a mechanised formalisation of math-
ematics, the (β)-rule should be formulated in a polymorphic typed framework,
where types τ and σ vary over simple types. This viewpoint has not been well
explored in the general theory of rewriting. For instance, no method has been
established for checking the confluence property of a general kind of polymor-
phically typed computation rules automatically

We have already recognized this problem. In a previous paper [12], we investi-
gated the decidability of various program calculi by confluence and termination
checking. The type system used there was called molecular types, which was

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 99–115, 2018.
https://doi.org/10.1007/978-3-319-90686-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_7&domain=pdf

100 M. Hamana

Fig. 1. Critical pairs of the λC-calculus

intended to mimic polymorphic types in a simple type setting. However, this
mimic setting provided no satisfactory framework to address polymorphic typed
rules. For example, molecular types did not have a way to vary types. There-
fore, instantiation of (β) to (βbool,int)(βint→int,bool) described above could not be
obtained. For that reason, no confluence of instances of polymorphic computa-
tion rules is obtained automatically. Further manual meta-theoretic analysis is
necessary.

In the present paper, we give an extended framework for polymorphic com-
putation rules that solve these issues. The framework is polymorphic and a
computational refinement of second-order algebraic theories by Fiore et al. [5,6].
Second-order algebraic theories have been shown to be a useful framework that
models various important notions of programming languages, such as logic pro-
gramming [28] and algebraic effects [29], quantum computation [30]. The present
polymorphic framework has also applications in these fields.

1.1 Example: Confluence of the Computational λ-Calculus

We begin with examining a sample confluence problem to illustrate our frame-
work and methodology. We consider Moggi’s computational λ-calculus, the λC-
calculus [21], which is a fundamental λ-calculus for effectful computation. It
is an extension of the call-by-value λ-calculus enriched with let-construct to
represent sequential computation. The λC has two classes of terms: values and
non-values.

Polymorphic Rewrite Rules 101

Values V :: = x | λx.M Non-values P :: = M@N | let x = M in N
(1)

We now express the expression λx.M as lam(x.M) and let x = M in N as
let(M,x.N). Then the computation rules of λC are described as follows.

lamC = [rule|

(β-v) lam(x.M[x]) @ V => M[V] ; (η-v) lam(x.V @ x) => V

(β-let-v) let(V, x.M[x]) => M[V] ; (η-let) let(L, x.x) => L

(let1-p) P @ M => let(P,x.x@M)

(let2-v) V @ P => let(P,y.V@y)

(assoc) let(let(L,x.M[x]), y.N[y]) => let(L,x.let(M[x],y.N[y])) |]

The descriptions “lamC = [rule|” and “|]” indicate the beginning and end
of the rule specification in our confluence checker PolySOL. Here the metavari-
ables V and P represent values and non-values, respectively. To the author’s best
knowledge, confluence of the λC-calculus has not been formally proved in the
literature including the original [21] and subsequent works [17,24,26]. We now
prove confluence of the simply typed λC-calculus.

M
∗
����
��
� ∗

���
��

��

M1

∗ ���
��

��
CR M2

∗����
��
�

N

Confluence (CR) is a property of the reduction relation,
stating that any two divergent computation paths finally
commute (see the right figure). Hence, the proof requires to
analyse all possible situations that admit two ways of reduc-
tions, and also to check convergence of them. In the case of
λC, careful inspection of the rules reveals that it has, in all,
6 patterns of such situations as depicted in Fig. 1. Now we
see that all of these patterns are convergent. Importantly, this finite number of
checks is sufficient to conclude that all other infinite numbers of instances of
the divergent situations are convergent. This property is called local confluence,
meaning that every possible one-step divergence is joinable. By applying New-
man’s lemma [1,13], stating “termination and local confluence imply confluence”,
we can conclude that λC is confluent since termination of λC has been proved
[17]. This proof method is known as Knuth and Bendix’s critical pair checking
[16]. The divergent terms in Fig. 1 are called critical pairs because these show
critical situations that may break confluence. The critical pair is obtained by an
overlap between two rules, which is computed by second-order unification [20].
For example, there is an overlap between the rules (β-let-v), (η-let) because
the left-hand sides of them

let(V, x.M[x])
?= let(L, x.x)

are unifiable by second-order unification with a unifier θ = {L �→ V, M �→ x.x}.
The instantiated term let(V, x.x) by θ is the source of the divergence (3:) in
Fig. 1, which admits reductions by the two rules (β-let-v), (η-let).

But there are problems. In computing the critical pairs of λC in Fig. 1, the
classical critical pair method was not applicable. Actually we need a suitable
extension of the method. In the following, we list the problems, related questions
and the answers we will give in this paper.

102 M. Hamana

Problem 1. The notion of unifier for an overlap is non-standard in the call-
by-value case. For example, the left-hand sides of (let1-p) and (let2-v) look
overlapped, but actually are not. A candidate unifier P �→ V is not correct because
P is a non-value while V is a value.

Q1. What is a general definition of overlaps when there is a restriction on the
term structures?

Problem 2. Different occurrences of the same function symbol may have dif-
ferent types.

For example, in (assoc), each let has actually a different type (highlighted
one) as:

M : c → a, N : a → b, L : c �

Γ � let
a, (a → b) → b(letc, (c → a) → a(L, xc.M [x]), ya.N [y])

⇒ let
c, (c → b) → b(L, xc.let

a, (a → b) → b(M [x], ya.N [y])) : b

To compute an overlap between let-terms, we need also to adjust the types of
let to equate them.

Q2. What should be the notion of unification between polymorphic second-order
terms?

Moreover, specifying all the type annotations as above manually is tedious
in practice. Ideally, we write a “plain” rule as (assoc), and hope that some
system automatically infers the type annotations.

Q3. What is the type inference algorithm for polymorphic second-order compu-
tation rules?

In this paper, we solve these questions.

A1� We introduce predicates called instance validation on substitutions
(Definition 3). It is used for formulating computation steps having some
restriction of term structures. Hence they affect to the notion of critical
pairs.

A2� We formulate the notion of unifier for polymorphic terms (Definition 7).
A3� We give a type inference algorithm for polymorphic computation rules in

Fig. 4.

1.2 Critical Pair Checking Using the Tool PolySOL

Based on the above answers, we have implemented these features in our tool
PolySOL. PolySOL is a tool to check confluence and termination of polymorphic
second-order computation systems. The system PolySOL consists of about 3000
line Haskell codes, and works on the interpreter of Glasgow Haskell Compiler
(tested on GHCi, version 7.6.2). PolySOL uses the feature of quasi-quotation (i.e.
[signature|..] and [rule|..] are quasi-quotations) of Template Haskell [27]

Polymorphic Rewrite Rules 103

with a custom parser generated by Alex (for lexer) and Happy (for paper), which
realises readable notation for signature, terms and rules. It makes the language
of our formal computation rules available within a Haskell script.

PolySOL first infers and checks the types of variables and terms in the com-
putation rules using a given signature. To check confluence of the simply-typed
λC-calculus, we declare the following signature in PolySOL:

siglamC = [signature|

app : Arr(a,b),a -> b ; lam : (a -> b) -> Arr(a,b)

let : a,(a -> b) -> b |]

where a,b are type variables, and Arr(a,b) encodes the arrow type of the target
λ-calculus in PolySOL. The rule set lamC given in the beginning of this subsection
is actually a part of rule specification written using PolySOL’s language. Using
these, we can command PolySOL to perform critical pair checking.

*SOL> cri lamC siglamC
1: Overlap (β-v)-(η-v)--- M|-> z1.(V’@z1)--------------------------------------

L: lam(x.M[x]) @V => M[V]

R: lam(x’.(V’@x’)) => V’
(lam(x.(V’@x))@V)

(V’@V) <-(β-v)-∧-(η-v)-> (V’@V)
---> (V’@V) =OK= (V’@V) <---

2: Overlap (eta-v)-(β-v-x)--- V|-> lam(x’.H3[x’]), M’|-> z1.z2.H3[z2], V’|-> z1.z1----

L: lam(x. V@x) => V
R: (lam(x’.M’[x,x’])@V’[x]) => M’[x,V’[x]]

lam(x.(lam(x’.H3[x’])@x))
lam(x’.H3[x’]) <-(eta-v)-∧-(beta-v-x)-> lam(x.H3[x])

---> lam(x’.H3[x’]) =E= lam(x.H3[x]) <---
3: Overlap (beta-let-v)-(eta-let)--- M’|-> V, M|-> z1.z1----------------------------------

L: let(V,x.M[x]) => M[V]

R: let(M’,x’.x’) => M’
let(V,x.x)

V <-(beta-let-v)-∧-(eta-let)-> V
---> V =OK= V <---

4: Overlap (eta-let)-(assoc)--- M|-> let(L’,x’.M’[x’]), N’|-> z1.z1-----------------------

L: let(M,x.x) => M

R: let(let(L’,x’.M’[x’]),y’.N’[y’]) => let(L’,x’.let(M’[x’],y’.N’[y’]))
let(let(L’,x’.M’[x’]),x.x)

let(L’,x’.M’[x’]) <-(eta-let)-∧-(assoc)-> let(L’,xd13.let(M’[xd13],yd13.yd13))
---> let(L’,x’.M’[x’]) =E= let(L’,xd13.M’[xd13]) <---

5: Overlap (assoc)-(eta-let)--- M’|-> L, M|-> z1.z1---------------------------------------

L: let(let(L,x.M[x]) ,y.N[y]) => let(L,x.let(M[x],y.N[y]))

R: let(M’,x’.x’) => M’
let(let(L,x.x),y.N[y])

let(L,x19.let(x19,y19.N[y19])) <-(assoc)-∧-(eta-let)->
let(L,y.N[y])

---> let(L,x19.N[x19]) =E= let(L,y.N[y]) <---
6: Overlap (assoc)-(assoc)--- L|-> let(L’,x’.M’[x’]), N’|-> z1.M[z1]----------------------

L: let(let(L,x.M[x]) ,y.N[y]) => let(L,x.let(M[x],y.N[y]))

R: let(let(L’,x’.M’[x’]),y’.N’[y’]) => let(L’,x’.let(M’[x’],y’.N’[y’]))
let(let(let(L’,x’.M’[x’]),x.M[x]),y.N[y])

let(let(L’,x’.M’[x’]),x.let(M[x],y.N[y])) <-(assoc)-∧
-(assoc)-> let(let(L’,x.let(M’[x],y’.M[y’])),y.N[y])

-> let(L’,x.let(M’[x],y’.let(M[y’],y.N[y])))
=E= let(L’,x.let(M’[x],x’.let(M[x’],y.N[y]))) <-

#Joinable! (Total 6 CPs)

104 M. Hamana

Fig. 2. Typing rules of meta-terms

The above PolySOL’s output corresponds to the diagrams shown in Fig. 1. The
labels L: and R: indicate the rules used in the left and right paths of a divergence,
and the highlight in L-rule shows that the subterm is unifiable with the root of
left-hand side of R-rule. For example, in the overlap 1, the subterm lam(x.M[x])
in the L-rule is unifiable with the term lam(x’.(V’@x’)) in the R-rule using
the unifier M|-> z1.(V’@z1) described at the immediate above. Then using
this information, PolySOL generates the underline term lam(x.(V’@x))@V which
exactly corresponds to the source in the first divergent diagram (1:) in Fig. 1.
The lines involving ∧ (indicating “divergence”) mimics the divergence diagram
and the joinablity test in text. The sign =OK= denotes syntactic equal, and =E=
denotes the α-equivalence.

Organisation. The paper is organised as follows. We first introduce the frame-
work of second-order algebraic theories and computation rules in Sect. 2. We next
give a type inference algorithm for polymorphic computation rules in Sect. 3. We
then establish a confluence criteria based on critical pair checking in Sect. 4. In
Sect. 5, we prove confluece of Maraist, Odersky, and Wadler’s call-by-need λ-
calculus λneed [18] using our framework. In Sect. 6, we summarise the paper and
discuss related work.

2 Polymorphic Computation Rules

In this section, we introduce the framework of polymorphic second-order com-
putation rules. It gives a formal unified framework to provide syntax, types, and
computation for various simply-typed computational structure. It is a simpified
framework of general polymorphic framework [4,11] of second-order abstract
syntax with metavariables [7] and its rewriting system [8–10] with molecular
types [12]. The present framework introduces type variables into types and the
feature of instance validation for instantiation of axioms. The polymorphism in
this framework is essentially ML polymorphism, i.e., predicative and only uni-
versally quantified at the outermost and has type constructors on types.

Polymorphic Rewrite Rules 105

Notation 1. We use the notation A for a sequence A1, · · · , An, and |A| for its
length. The notation s[u]p means replacing the position p of s at with u, and s|p
means selecting a subterm of the position p. We use the abbreviations “lhs” and
“rhs” to mean left-hand side and right-hand side, respectively.

Types. We assume that A is a set of atomic types (e.g. Bool, Nat, etc.), and
a set V of type variables (written as s,t, · · ·). We also assume a set of type
constructors together with arities n ∈ N. A 0-ary one is regarded as a type
constant. The sets of “0-order types” T0 and (at most first-order) types T are
generated by the following rules:

b ∈ A
b ∈ T0

s ∈ V
s ∈ T0

τ1, . . . , τn ∈ T0 T n-ary type constructor

T (τ1, . . . , τn) ∈ T0

σ1, . . . , σn, τ ∈ T0

σ1, . . . , σn → τ ∈ T

We call σ → τ with |σ| > 0 a function type. We usually write types as σ, τ,
A sequence of types may be empty in the above definition. The empty sequence
is denoted by (), which may be omitted, e.g., () → τ , or simply τ . For example,
Bool is an atomic type, List(1) is a type constructor, and Bool → List(Bool) is a
type.

Terms. A signature Σ is a set of function symbols of the form

t1, . . . ,tn � f : (σ1 → τ1), . . . , (σm → τm) → τ

where (σ1 → τ1), . . . , (σm → τm), τ ∈ T and type variables t1, . . . ,tn may
occur in these types. Any function symbol is of up to second-order type. A
metavariable is a variable of (at most) first-order function type, declared as
M : σ → τ (written as capital letters M,N,K, . . .). A variable (of a 0-order
type) is written usually x, y, . . ., and sometimes written xτ when it is of type τ .
The raw syntax is given as follows.

−Terms have the form t ::=x | x.t | f(t1, . . . , tn).
−Meta-terms extend terms to t ::=x | x.t | f(t1, . . . , tn) | M [t1, . . . , tn].

The last form M [t1, . . . , tn], called meta-application, means that when we instan-
tiate M : a → b with a meta-term s, free variables of s (which are of types a) are
replaced with meta-terms t1, . . . , tn (cf. Definition 2). We may write x1, . . . , xn. t
for x1. · · · .xn. t, and we assume ordinary α-equivalence for bound variables. An
equational theory is a set of proved equations deduced from a set of axioms. A
metavariable context Θ is a sequence of (metavariable:type)-pairs, and a con-
text Γ is a sequence of (variable:type in T0)-pairs. A judgment is of the form
Θ � Γ � t : b. A type substitution ρ : S → T is a mapping that assigns a
type σ ∈ T to each type variable s in S. We write τ ρ (resp. t ρ) to be the one
obtained from a type τ (resp. a meta-term t) by replacing each type variable in
τ (resp. t) with a type using the type substitution ρ : S → T . A meta-term t is
well-typed by the typing rules Fig. 2. Note that in a well-typed function term, a
function symbol is annotated by its type as

fσ(xσ1
1 .t1, . . . , x

σi
i .ti, . . . , x

σm
m .tm)

106 M. Hamana

where f has the polymorphic type σ � ((σ1 → τ1), . . . , (σm → τm) → τ)ξ.
The type annotation is important in confluence checking of polymorphic rules.
The notation t {x1 �→ s1, . . . , xn �→ sn} denotes ordinary capture avoiding
substitution that replaces the variables with terms s1, . . . , sn.

Definition 2 (Substitution of meta-terms for metavariables [5–7]).
Let ni = |τi| and τi = τ1

i , . . . , τni
i . Suppose

Θ � Γ′, x1
i : τ1

i , . . . , xni
i : τni

i � si : σi (1 ≤ i ≤ k),
Θ,M1 : τ1 → σ1, . . . ,Mk : τk → σk � Γ � e : τ

Then the substituted meta-term Θ � Γ,Γ′ � e [M �→ x.s] : τ is defined by

x [M �→ x.s] � x

Mi[t1, . . . , tni] [M �→ x.s] � si {x1
i �→ t1 [M �→ x.s], . . . , x

ni
i �→ tni [M �→ x.s]}

fξ(y1.t1, . . . , ym.tm) [M �→ x.s] � fξ(y1.t1 [M �→ x.s], . . . , ym.tm [M �→ x.s])

where [M �→ x.s] denotes a substitution for metavariables [M1 �→
x1.s1, . . .],Mk �→ xk.sk].

For meta-terms Θ � Γ � � : τ and Θ � Γ � r : τ, a polymorphic second-
order computation rule (or simply rule) is of the form Θ � Γ � � ⇒ r : τ
satisfying

(i) � is a higher-order pattern [20], i.e., a meta-term in which every occurrence
of meta-application in � is of the form M [x1, . . . , xn], where x1, . . . , xn are
distinct bound variables.

(ii) All metavariables in r appear in �.

Definition 3. An instance validation is an arbitrary predicate valid that
takes a substitution [M �→ x.s] for metavariables and returns true or false. In
this paper, we use the following various instance validations (but not limited to
these).

• Any: valid θ
def⇔ always true, i.e. any substitution is valid.

• Injectivity: valid θ
def⇔ θ is an injective substitution (i.e. different metavari-

ables must map to different meta-terms).
• Values/non-values: valid [M1 �→ x1.s1, . . . ,Mn �→ xn.sn]

def⇔ ((Mi ≡ V ⇒ si is a value) & (Mi ≡ P ⇒ si is a non-value)) for all
i = 1, . . . , n.
Here, the notation “Mi ≡V ” means that the metavariable Mi’s letter is “V ”.
The definitions of values and non-values should be given separately. For the
case of λC-calculus, we take the definition (1) for values and non-values in
Sect. 1.1.

A (polymorphic second-order) computation system is a triple (Σ,C,
valid) consisting of a signature σ, a set C of rules, and an instance validation
valid. We write s ⇒C t to be one-step computation using (Σ,C, valid) obtained

Polymorphic Rewrite Rules 107

Fig. 3. Polymorphic second-order computation (one-step)

by the inference system given in Fig. 3. The (RuleSub) instantiates a polymor-
phic computation rule � ⇒ r in C by substitution [M �→ x.s] of meta-terms
for metavariables and substitution ξ on types, where the predicate valid checks
whether [M �→ x.s] is applicable. The (Fun) means that the computation step
is closed under polymorphic function symbol contexts.

Example 4 (Decidable equality). The injectivity validation in Definition 3
is useful in formulating a system involving the notion of “names”, such as π-
calculus. We define the signature Σ by

� eq : Name,Name → Bool � a,b,c : Name � false, true : Bool

and the rules by

(eq1) X : Name � � eq(X,X) ⇒ true : Bool
(eq0) X,Y : Name � � eq(X,Y) ⇒ false : Bool

We set the predicate valid to be Injectivity. Then we have expected computa-
tion, such as eq(a,b) ⇒C false, eq(b,b) ⇒C true. Without the instance validation,
the rules become meaningless because they admit an non-injective substitution
{X �→ a, Y �→ a}, which entails eq(a,a) ⇒C false. �

3 Type Inference for Polymorphic Computation Rules

We have formulated that polymorphic computation rules were explicitly typed
as Example 4. But when we give an implementation of confluence/termination
checker, to insist that the user writes fully-annotated type and context informa-
tion for computation rules is not a good system design. Hence we give a type
inference algorithm. In the case of λC-calculus, the user only provides the signa-
ture siglamC and “plain” rules lamC in Sect. 1.1. The type inference algorithm
infers the missing context and type annotations (highlights) as:

M : s → t, N s � � app
Arr(s, t), s → t

(lam
(s → t) → Arr(s, t)

(x s . M [x]), N) ⇒ M [N] : t

108 M. Hamana

Fig. 4. Type inference algorithm

These annotations are important for checking confluence of polymorphic rules
in computing overlapping between rules.

Algorithm. Our algorithm is given in Fig. 4, which is a modification of Damas-
Milner type inference algorithm W [3]. It has several modifications to cope with
the language of meta-terms and to return enough type information for confluence
checking. The algorithm takes a signature Σ and an un-annotated meta-term t. A
sub-function W returns (θ, Θ � u : τ), which is a pair of type substitution θ and
an inferred judgment. The types in it are still need to be unified. The context

Polymorphic Rewrite Rules 109

Θ may contain unifiable declarations, such as M : σ and M : τ with σ �= τ ,
and these σ and τ should be unified. The main function infer(Σ, t) does it, and
returns the form

Θ � t′ : τ.

The meta-term t′ is a renamed t, where every function symbol f in the original
t now has a unique index as fn, and Θ is the set of inferred type declarations
for fn’s and all the metavariables occurring in t′. Similarly, for a given plain
rule s ⇒ t, the function infer(Σ, s ⇒ t) returns Θ � s′ ⇒ t′ : τ , where Θ is an
inferred context and corresponding renamed terms s′, t′ as the sole term case.
This is realised as inferring types for a meta-term to implement a rule using the
new binary function symbol rule (see the definition of infer(Σ, s ⇒ t)).

We denote by | t | a meta-term obtained from t by erasing all type annota-
tions in the variables and the function symbols of t. We use the usual notion
of “more general” relation on substitutions, denoted by τ ′ ≥ τ , if there exists a
substitution σ such that σ ◦ τ ′ = τ .

Theorem 5 (Soundness). If infer(Σ, t) = (Θ � t′ : τ), then there exists Γ such
that Θ � Γ � t′ : τ .

Theorem 6 (Completeness). If Θ � Γ � t : τ holds and infer(Σ, | t |) =
(Θ′ � t′ : τ ′), then τ ′ ≥ τ and

• If M : σ ∈ Θ then, there exists M : σ′ ∈ Θ′ such that σ′ ≥ σ
• If fσ→τ occurs in t, then there exists fn : σ′ → τ ′ ∈ Θ′ such that fn occurs

in t′ at the same position as t, and σ′ → τ ′ ≥ σ → τ .

The reason why our algorithm attaches an index n to each occurence of a
function symbol f as “fn” is to distinguish different occurrences of the same
f in a term, and to correctly infer the type of each of them (see Problem 2 in
Sect. 1.1). If we have infer(Σ, t) = (Θ � t′ : τ), then we can fully annotate types
for the plain term t. We can pick the type of each function symbol in t by finding
fn : σ′ → τ ′ ∈ Θ, which means that this f has the inferred type σ′ → τ ′.

4 Confluence of Polymorphic Computation Systems

In this section, we establish a confluence criterion of polymorphic computation
systems based on critical pair checking. For a computation system C, we regard
“⇒C ” defined by Fig. 3 as a binary relation on well-typed terms. Moreover, we
write ⇒∗

C for the reflexive transitive closure, ⇒+
C for the transitive closure, and

⇐C for the converse of ⇒C, respectively. We say:

1. a, b ∈ A are joinable, written a ↓ b, if ∃c ∈ A. a ⇒∗
C c & b ⇒∗

C c.
2. ⇒C is confluent if ∀a, b ∈ A. a ⇒∗

C b & a ⇒∗
C c implies b ↓ c.

3. ⇒C is locally confluent if ∀a, b ∈ A. a ⇒C b & a ⇒C c implies b ↓ c.
4. ⇒C is strongly normalising (SN) if ∀a ∈ A, there is no infinite sequence

a ⇒C a1 ⇒C a2 ⇒C · · · .
We call a meta-term linear if no metavariable occurs more than once, and C is
left-linear if for every � ⇒ r in C, � is linear.

110 M. Hamana

Notion of Unifier Between Two Polymorphic Meta-Terms. To compute
critical pairs, we need to compute overlapping between rules using second-order
unification. Ordinary unifier between terms s and t is a substitution θ of terms
for variables that makes sθ = tθ. In case of polymorphic second-order algebraic
theory, we should also take into account of types. For example, what should be
a unifier between the following terms?

λ(bool→t)→Arr(bool,t)(xbool.M [x]) ?= λ(v→int)→Arr(v,int)(xv.gv→int(x))

Here t,v are type variables. These terms are unifiable by a substitution of meta-
terms θ : M �→ xbool.gbool→int(x) together with a type substitution ξ : v �→
bool,t �→ int. Therefore, we define:

Definition 7. A unifier between meta-terms s, t is a pair (θ, ξ) such that s ξ θ =
t ξ θ, where ξ is a substition of types for type variables, and θ is a substition of
metaterms for metavariables.

Critical Pairs of Polymorphic Computation Systems. We now formulate
the notion of critical pairs for our polymorphic case. We first recall basic notions.
A position p is a finite sequence of natural numbers. The empty sequence ε is
the root position. Given a meta-term t, t|p denotes a subterm of t at a position
p. Suppose a computation system C is given. We say two rules l1 ⇒ r1, l2 ⇒ r2
in C are variant if l1 ⇒ r1 is obtained by injectively renaming variables and
metavariables of l2 ⇒ r2. We say that a position p in a term t is a metavariable
position if t|p is a metavariable or meta-application.

Definition 8. An overlap between two rules l1 ⇒ r1 and l2 ⇒ r2 of a com-
putation system (Σ,C, valid) is a tuple 〈l1 ⇒ r1, p, l2 ⇒ r2, θ, ξ〉 satisfying the
following properties:

• l1 ⇒ r1, l2 ⇒ r2 are variants of rules in C without common (meta) variables.
• p is a non-metavariable position of l1.
• If p is the root position, l1 ⇒ r1 and l2 ⇒ r2 are not variants.
• (θ, ξ) is a unifier between l1|p and l2 such that valid(θ) holds.

The component θ in an overlap is intended to be the output of the pattern
unification algorithm [20]. An overlap represents an overlapping situation of
computation, meaning that the term t is rewritten to the two different ways.
We define overlap(l1 ⇒ r1, l2 ⇒ r2) � {all possible overlaps between l1 ⇒
r1 and l2 ⇒ r2}. We collect all the overlaps in C by O �

⋃{overlap(l1 ⇒
r1, l2 ⇒ r2) | l1 ⇒ r1, l2 ⇒ r2 ∈ C}.

Definition 9. The critical pair (CP) generated from an overlap 〈�1 ⇒
r1, p, �2 ⇒ r2, θ, ξ〉 is a triple 〈r′

1, t, r′
2〉 where t = �1ξθ and t ⇒C r′

1 which
rewrites the root position of t using �1 ⇒ r1, and t ⇒C r′

2 which rewrites the
position p of t using �2 ⇒ r2.

Polymorphic Rewrite Rules 111

Then, we obtain the critical pairs of C by collecting all the critical pairs
generated from overlaps in O.

Proposition 10. Let (Σ,C, valid) be a polymorphic second-order computation
system. Suppose C is left-linear. If for every critical pair 〈t, u, t′〉 of (Σ,C, valid),
we have t ↓ t′, then ⇒C is locally confluent.

Theorem 11. Let (Σ,C, valid) be a polymorphic second-order algebraic theory.
Assume that C is left-linear and strongly normalising. If for every critical pair
〈t, u, t′〉 of (Σ,C, valid), we have t ↓ t′, then ⇒C is confluent.

Proof. By Proposition 10 and Newman’s lemma.

5 Example: Confluence of the Call-by-Need λ-Calculus

We examine confluece of Maraist, Odersky, and Wadler’s call-by-need λ-calculus
λneed [18]. We consider the simply-typed version of it. The signature is:

sigNeed = [signature|

lam : (a->b) -> Arr(a,b); app : Arr(a,b),a -> b; let : a,(a->b) -> b |]

which consists of the function symbol lam for λ-abstraction, app (also written as
an infix operator @ below) for application, and let-construct. We represent the
arrow types of the “object-level” λneed-calculus by the binary type constructor
Arr, and use the function types a->b of the “meta-level” polymorphic second-
order computation system to represent binders, where a,b are type variables.
The λneed has five rules, which are straightforwardly defined in PolySOL as:

lmdNeed = [rule|

(rG) let(M, x.N) => N

(rI) lam(x.M[x]) @ N => let(N,x.M[x])

(rV-v) let(V, x.C[x]) => C[V]

(rC-v) let(V, x.M[x])@N => let(V, x.M[x]@N)

(rA) let(let(L,x.M[x]), y.N[y]) => let(L,x.let(M[x],y.N[y])) |]

We also impose the distinction of values and non-values as in the λC-calculus.
Here V is a metavariable for values, and M,N,C,L are metavariables for all
terms. We choose the instance validation validto be Values/non-values in
Definition 3. We can tell it to PolySOL by writing the suffix “-v” in the labels
(rV-v),(rC-v). We command PolySOL to perform critical pair checking.

*PolySOL> cri lmdNeed sigNeed
1: Overlap (rG)-(rA)--- M|-> let(L’,x’.M’[x’]), N’|-> z1.N-------------------------------

L: let(M,x.N) => N

R: let(let(L’,x’.M’[x’]),y’.N’[y’]) => let(L’,x’.let(M’[x’],y’.N’[y’]))
let(let(L’,x’.M’[x’]),x.N)

N <-(rG)-∧-(rA)-> let(L’,xd2.let(M’[xd2],yd2.N))
---> N =OK= N <---

2: Overlap (rC-v)-(rG)--- M’|-> V, M|-> z1.N’--

L: let(V,x.M[x]) @N => let(V,x.(M[x]@N))

R: let(M’,x’.N’) => N’

112 M. Hamana

(let(V,x.N’)@N)
let(V,x5.(N’@N)) <-(rC-v)-∧-(rG)-> (N’@N)

---> (N’@N) =OK= (N’@N) <---
3: Overlap (rC-v)-(rV-v)--- V’|-> V, C’|-> z1.M[z1]--------------------------------------

L: let(V,x.M[x]) @N => let(V,x.(M[x]@N))

R: let(V’,x’.C’[x’]) => C’[V’]
(let(V,x.M[x])@N)

let(V,x7.(M[x7]@N)) <-(rC-v)-∧-(rV-v)-> (M[V]@N)
---> (M[V]@N) =OK= (M[V]@N) <---

4: Overlap (rA)-(rG)--- M’|-> L, M|-> z1.N’--

L: let(let(L,x.M[x]) ,y.N[y]) => let(L,x.let(M[x],y.N[y]))

R: let(M’,x’.N’) => N’
let(let(L,x.N’),y.N[y])

let(L,x10.let(N’,y10.N[y10])) <-(rA)-∧-(rG)-> let(N’,y.N[y])
---> let(N’,y10.N[y10]) =E= let(N’,y.N[y]) <---

5: Overlap (rA)-(rA)--- L|-> let(L’,x’.M’[x’]), N’|-> z1.M[z1]---------------------------

L: let(let(L,x.M[x]) ,y.N[y]) => let(L,x.let(M[x],y.N[y]))

R: let(let(L’,x’.M’[x’]),y’.N’[y’]) => let(L’,x’.let(M’[x’],y’.N’[y’]))
let(let(let(L’,x’.M’[x’]),x.M[x]),y.N[y])

let(let(L’,x’.M’[x’]),x.let(M[x],y.N[y])) <-(rA)-∧
-(rA)-> let(let(L’,x’.let(M’[x’],y’.M[y’])),y.N[y])

---> let(L’,x.let(M’[x],y.let(M[y],y.N[y])))
=E= let(L’,x’.let(M’[x’],x.let(M[x],y.N[y]))) <---

#Joinable! (Total 5 CPs)

PolySOL reports that there are 5 critical pairs, and all are successfully join-
able. This shows local confluence. Strong normalisation of λneed can be shown
by a translation as the treatment of λC in [24]. Hence we conclude that λneed

is confluent. In [18], confluence of untyped λneed has been established by a dif-
ferent proof method, i.e., analysis of developments steps in the λ-calculus [2].
This method is somewhat specific to the case of λ-calculus. In contrast to it, our
approach is general rewriting theoretic, and not specific to variants of λ-calculus,
i.e., based on critical pair checking of computation rules.

6 Summary and Related Work

6.1 Summary

We have presented a new framework of polymorphic computation rules having
predicates to restrict their instances. It was shown to be suitable for formulating
and analysing fundamental calculi of programming languages. We have given a
type inference algorithm and a criteria to check confluence property of polymor-
phic rules. These have given a handy method to prove confluence of second-order
computation rules. We have demonstrated effectiveness of our methodology by
examining sample program calculi using our framework.

6.2 Related Work

Nipkow has studied critical pairs for confluence of higher-order rewrite systems
[19,23]. The rewrite rule format there was rules on simply-typed λ-terms modulo
βη-equivalence, and there are no polymorphic types nor instance validation.
Therefore, none of our examples (λC, λneed, and decidable equality) and the

Polymorphic Rewrite Rules 113

confluence shown in the present paper can be directly formulated and checked
in Nipkow’s framework.

There are systems of automatic checking of confluence of Nipkow’s higher-
order rule format, such as ACPH [25] and CSIˆho [22]. Because these are based
on Nipkow’s format, these tool do not have the features of polymorphic types
nor instance validation. Hence, all of our examples are beyond the scope of the
existing confluence checking systems. In this respect, to the best of the author’s
knowledge, our system is the first automatic tool that can check confluence of
the call-by-value variants of the λ-calculus directly, as shown in the paper.

A framework of polymorphic higher-order rewrite rules was given [14,15], and
our framework is similar but there are several differences in the foundations, e.g.,
our framework is based on (polymorphic) second-order algebraic theories [4,6],
while their is based on a polymorphic λ-calculus. The main purpose of [14,15]
was to establish termination criterion of higher-order rewrite rules. The issue
of confluence of polymorphic rules has remain untouched. To the best of the
author’s knowledge, the present paper is probably the first study of confluence
of general kind of polymorphic second-order rewrite rules (N.B. this is not about
the polymorphic λ-calculus).

We gave a type inference algorithm of polymorphic computation rules, which
has not been given in the context of rewriting theory (while it may be standard
in the context of the theory of programming languages). Lack of a suitable type
inference algorithm in the theory of rewriting has affected to the existing higher-
order confluence tools such as CSIˆho and ACPH. These tools force the user to
write more detailed type information in rewrite rule specifications than PolySOL.
The user need to declear all free and bound variables with their types used in
the rules. PolySOL’s rule specification is simpler due to the type inference. Our
algorithm may also be beneficial to other tools to improve this situation.

In [12], the present author developed a simply-typed framework of second-
order equational logic and computation rules, and gave a tool SOL for checking
methods of termination confluence. It lacked proper polymorphism and instance
validation, hence the examples considered in the present paper could not be
handled. Note that Plotkin’s call-by-value λ-calculus could be formulated in [12]
by explicitly modifying the rules by meta-programming like method to reflect
value variables. But this approach works only for small calculi, such as the call-
by-value λ-calculus, and for larger calculi, such as λC and λneed, the number of
overlaps explodes and we cannot hope to manage it.

In [4], we gave a general framework of multiversal polymorphic algebraic
theories and their algebraic models. It admits multiple type universes and higher-
kinded polymorphic types, hence it is richer than the present setting. The model
theory encompasses the present simpler framework. But in [4], we did not develop
neither polymorphic computation rules, confluence, nor instance validation.

Acknowledgments. I am grateful to Masahito Hasegawa for his question on how
to check confluence of Moggi’s computational λ-calculus by my previous tool SOL. It
opened my eyes to the necessity of proper treatment of call-by-value calculi and led me
to the notion of instance validation developped in this paper.

114 M. Hamana

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North Holland,
Amsterdam (1984)

3. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of POPL 1982, pp. 207–212 (1982)

4. Fiore, M., Hamana, M.: Multiversal polymorphic algebraic theories: syntax, seman-
tics, translations, and equational logic. In: 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2013, pp. 520–529 (2013)

5. Fiore, M., Hur, C.-K.: Second-order equational logic (Extended Abstract). In:
Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 320–335. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4 26

6. Fiore, M., Mahmoud, O.: Second-order algebraic theories. In: Hliněný, P., Kučera,
A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 368–380. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15155-2 33

7. Hamana, M.: Free Σ-monoids: a higher-order syntax with metavariables. In: Chin,
W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 348–363. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30477-7 23

8. Hamana, M.: Universal algebra for termination of higher-order rewriting. In: Giesl,
J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 135–149. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32033-3 11

9. Hamana, M.: Higher-order semantic labelling for inductive datatype systems. In:
Proceedings of PPDP 2007, pp. 97–108. ACM Press (2007)

10. Hamana, M.: Semantic labelling for proving termination of combinatory reduction
systems. In: Escobar, S. (ed.) WFLP 2009. LNCS, vol. 5979, pp. 62–78. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11999-6 5

11. Hamana, M.: Polymorphic abstract syntax via grothendieck construction. In:
Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 381–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19805-2 26

12. Hamana, M.: How to prove your calculus is decidable: practical applications of
second-order algebraic theories and computation. Proc. ACM Program. Lang.
1(22), 1–28 (2017)

13. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27(4), 797–821 (1980)

14. Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings.
J. ACM 54(1), 2:1–2:48 (2007)

15. Jouannaud, J.-P., Rubio, A.: Normal higher-order termination. ACM Trans. Com-
put. Log. 16(2), 13:1–13:38 (2015)

16. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Computa-
tional Problem in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)

17. Lindley, S., Stark, I.: Reducibility and �� for computation types. In: Proceedings
of TLCA 2005, pp. 262–277 (2005)

18. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

19. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theor.
Comput. Sci. 192(1), 3–29 (1998)

20. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)

https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1007/978-3-540-30477-7_23
https://doi.org/10.1007/978-3-540-32033-3_11
https://doi.org/10.1007/978-3-642-11999-6_5
https://doi.org/10.1007/978-3-642-19805-2_26

Polymorphic Rewrite Rules 115

21. Moggi, E.: Computational lambda-calculus and monads. LFCS ECS-LFCS-88-66,
University of Edinburgh (1988)

22. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence – a progress report.
In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 385–397.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 24

23. Nipkow, T.: Higher-order critical pairs. In: Proceedings of 6th IEEE Symposium
Logic in Computer Science, pp. 342–349 (1991)

24. Ohta, Y., Hasegawa, M.: A terminating and confluent linear lambda calculus. In:
Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 166–180. Springer, Heidelberg
(2006). https://doi.org/10.1007/11805618 13

25. Onozawa, K., Kikuchi, K., Aoto, T., Toyama, Y.: ACPH: System description. In:
6th Confluence Competition (CoCo 2017)(2017)

26. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang.
Syst. 19(6), 916–941 (1997)

27. Sheard, T., Jones, S.P.: Template metaprogramming for Haskell. In: Proceedings
of Haskell Workshop 2002 (2002)

28. Staton, S.: An algebraic presentation of predicate logic. In: Pfenning, F. (ed.)
FoSSaCS 2013. LNCS, vol. 7794, pp. 401–417. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37075-5 26

29. Staton, S.: Instances of computational effects: an algebraic perspective. In: Pro-
ceedings of LICS 2013, p. 519 (2013)

30. Staton, S.: Algebraic effects, linearity, and quantum programming languages. In:
Proceedings of POPL 2015, pp. 395–406 (2015)

https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/11805618_13
https://doi.org/10.1007/978-3-642-37075-5_26
https://doi.org/10.1007/978-3-642-37075-5_26

Confluence Modulo Equivalence
with Invariants in Constraint

Handling Rules

Daniel Gall(B) and Thom Frühwirth

Institute of Software Engineering and Programming Languages,
Ulm University, 89069 Ulm, Germany

{daniel.gall,thom.fruehwirth}@uni-ulm.de

Abstract. Confluence denotes the property of a state transition system
that states can be rewritten in more than one way yielding the same
result. Although it is a desirable property, confluence is often too strict
in practical applications because it also considers states that can never
be reached in practice. Additionally, sometimes states that have the same
semantics in the practical context are considered as different states due
to different syntactic representations. By introducing suitable invariants
and equivalence relations on the states, programs may have the prop-
erty to be confluent modulo the equivalence relation w.r.t. the invariant
which often is desirable in practice.

In this paper, a sufficient and necessary criterion for confluence mod-
ulo equivalence w.r.t. an invariant for Constraint Handling Rules (CHR)
is presented. It is the first approach that covers invariant-based conflu-
ence modulo equivalence for the de facto standard semantics of CHR.
There is a trade-off between practical applicability and the simplicity
of proving a confluence property. Therefore, a better manageable subset
of equivalence relations has been identified that allows for the proposed
confluence criterion and simplifies the confluence proofs by using well
established CHR analysis methods.

1 Introduction

In program analysis, the confluence property of a program plays an important
role. It ensures that any computation for a given start state results in the same
final state. Hence, if more than one rule is applicable in a state it does not matter
which rule is chosen.

Constraint Handling Rules (CHR) is a declarative programming language
that has its origins in constraint logic programming [1]. Confluence analysis has
been studied for CHR for a long time [2–4].

While it is a desirable property, in practical applications confluence is often
too strict. For instance, it requires even states that can never be reached in a
practical context to satisfy the confluence property. Therefore, invariant-based
confluence [5–7] has been established. It only considers states that satisfy a user-
defined invariant, whereas standard confluence analysis considers even states
c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 116–131, 2018.
https://doi.org/10.1007/978-3-319-90686-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_8&domain=pdf

Confluence Modulo Equivalence with Invariants in CHR 117

that are invalid and cannot appear at runtime. With invariant-based confluence
analysis it is possible to exclude those states from the confluence analysis as long
as the rules of the program maintain the invariant.

Another method of making the confluence property available for more practi-
cal programs is to define an equivalence relation on states. A program is confluent
modulo a (user-defined) equivalence relation if all states in the same equivalence
class lead to final states of the same equivalence class [8,9]. In many programs,
some states can be considered as equivalent with respect to a user-defined equiv-
alence relation, although their actual representation in the program differs. For
example, if sets of numbers are represented as lists, all states with permutations
of the same list represent the same set and it might be reasonable to consider
them equivalent. Hereby, confluence modulo equivalence can be used to show
that for the same start state a program yields the same set as a result, although
the actual representation as a list might differ.

There is a trade-off between the applicability in practical contexts and the
simplicity of proving a confluence property: There is a decidable, sufficient and
necessary criterion for strict confluence of terminating CHR programs [1]. When
adding invariants, decidability of the criterion is lost depending on the invariant.
For confluence modulo equivalence, the proofs become even harder as all states
in the same equivalence class have to be considered.

In this paper, a sufficient and necessary criterion for invariant-based conflu-
ence modulo a user-defined equivalence is presented. For this purpose, a class of
well-behaving equivalence relations is identified for which the proposed criterion
can be applied. The confluence criterion is directly available for the equivalence-
based operational semantics of CHR [7,10] that is the de facto standard of CHR
semantics. By a running example it is shown that the defined class of equivalence
relations is meaningful in a sense that it contains a non-trivial equivalence rela-
tion that satisfies its restrictions. Further examples have been tried indicating
that the approach is promising to be more widely applicable.

In our approach, we use CHR in the pure form. We then restrict the equiv-
alence relations to a meaningful class and present a formal proof method for
invariant-based confluence modulo equivalence.

The contributions of the paper are

– the identification of a class of equivalence relations (called compatible equiva-
lence relations) that maintains the monotonicity property of CHR and there-
fore allows for a confluence analysis based on rule states and overlaps of rules
(c.f. Sect. 3),

– a sufficient and necessary criterion for an invariant-based confluence modulo
equivalence for terminating CHR programs with a decidable invariant and a
compatible equivalence relation (c.f. Sect. 4), and

– the application of this approach in a non-trivial running example.

Our approach is the first that covers invariant-based confluence modulo
equivalence for the standard semantics of CHR. Other approaches either only
consider invariants without user-defined equivalence relations [5–7] or use a
special-purpose operational semantics of CHR that is claimed to extend the

118 D. Gall and T. Frühwirth

standard semantics [8,9]. The latter approach introduces a meta-level to prove
confluence modulo equivalence. In contrast to the meta-level proof method, the
confluence criterion in this paper uses well-established standard notions of CHR
states and analysis methods.

The paper is structured as follows: In Sect. 2 the preliminaries necessary
for understanding the paper are given. For this purpose, definitions of conflu-
ence modulo equivalence, Constraint Handling Rules and some program analy-
sis methods for CHR are recapitulated. Then, the class of equivalence relations
regarded in this paper is defined in Sect. 3. The proof method for invariant-based
confluence modulo equivalence is given in Sect. 4. The results and their relation
to existing work are discussed in Sect. 5.

2 Preliminaries

We recapitulate the basic notions of confluence modulo equivalence, give a brief
introduction to CHR and some program analysis techniques and summarize the
established results for (invariant-based) confluence in CHR.

2.1 Confluence Modulo Equivalence

The notion of confluence modulo equivalence is defined for general state transi-
tion systems in this section.

Definition 1 (state transition system). A state transition system is a tuple
(Σ, �→) where Σ is an arbitrary (possibly infinitely large) set of states and �→⊆
Σ × Σ is a transition relation over the states. By �→∗ we denote the reflexive
transitive closure of �→.

Informally, confluence modulo equivalence means that all possible computa-
tions in a transition system starting in equivalent states finally lead to equivalent
states again. We then call two states from those different computations joinable.
This is illustrated in Fig. 1.

σ1

≈
σ′
1

σ2

σ′
2

τ

τ ′
≈

∗ ∗

Fig. 1. Confluence modulo equivalence

Definition 2 (joinability modulo equivalence). In a state transition system
(Σ, �→) two states σ, σ′ ∈ Σ are joinable modulo an equivalence relation ≈ if
and only if ∃τ, τ ′ ∈ Σ . σ �→∗ τ ∧ σ′ �→∗ τ ′ ∧ τ ≈ τ ′. We then write σ ↓≈ σ′. If
≈ is the identity equivalence relation =, we write σ ↓ σ′ and say that σ and σ′

are joinable.

Confluence Modulo Equivalence with Invariants in CHR 119

Definition 3 (confluence modulo equivalence [11]). A state transition sys-
tem (Σ, �→) is confluent modulo an equivalence relation ≈, if and only if for all
σ1, σ

′
1, σ2, σ

′
2 : (σ1 ≈ σ′

1) ∧ (σ1 �→∗ σ2) ∧ (σ′
1 �→∗ σ′

2) → (σ′
1 ↓≈ σ′

2).

If ≈ is the state equivalence relation =, confluence modulo = coincides with
basic confluence. For terminating transition systems, it suffices to show local
confluence, as we will see in the following definition and theorem.

Definition 4 (local confluence [11]). A state transition system (Σ, �→) has
the α and β property w.r.t. an equivalence relation ≈ if and only if it satisfies
the α and β conditions, respectively:

α: ∀σ, τ, τ ′ ∈ Σ : σ �→ τ ∧ σ �→ τ ′ → τ ↓≈ τ ′.
β: ∀σ, τ, τ ′ ∈ Σ : σ �→ τ ∧ σ ≈ τ ′ → τ ↓≈ τ ′.

A state transition system is locally confluent modulo an equivalence relation ≈
if and only if it has the α and the β property.

Note that in the rewriting literature, the α property is also known as local con-
fluence modulo equivalence and the β property as local coherence modulo equiv-
alence [12]. In this paper, local confluence modulo equivalence requires both the
α and the β property.

In the theorem of Huet [11] it is shown that local confluence modulo an
equivalence relation ≈ implies confluence modulo ≈ for terminating transition
systems.

Theorem 1 (Huet [11]). Let (Σ, �→) be a terminating transition system. For
any equivalence ≈, (Σ, �→) is confluent modulo ≈ if and only if (Σ, �→) is locally
confluent modulo ≈.

2.2 Constraint Handling Rules

We now define the state transition system of CHR. We begin with CHR states.

Definition 5 (CHR state). A CHR state is a tuple 〈G;C;V〉 where the goal
G is a multi-set of constraints, the built-in constraint store C is a conjunction of
built-in constraints and V is a set of global variables. All variables occurring in
a state that are not global are called local variables [7, p. 33 et seq., Definition
8.1]. If the contents of C and V are empty, irrelevant or clear from the context,
we use a short-hand notation where only the constraints in G are enumerated.

CHR states can be modified by rules that together form a CHR program.

Definition 6 (CHR program). A CHR program is a finite set of so-called
simpagation rules of the form r : Hk \ Hr ⇔ G | Bc, Bb where r is an optional
rule name, the heads Hk and Hr are multi-sets of CHR constraints, the guard
G is a conjunction of built-in constraints and the body is a multi-set of CHR
constraints Bc and a conjunction of built-in constraints Bb. If G is empty, it is
interpreted as the built-in constraint �.

We introduce short forms for the following special cases:

120 D. Gall and T. Frühwirth

Simplification Rules. If Hk = ∅, we also write Hr ⇔ G | Bc, Bb.
Propagation Rules. If Hr = ∅, we also write Hk ⇒ G | Bc, Bb.

Informally, a rule is applicable, if the heads match constraints from the goal
store G and the guard holds, i.e. is a consequence of the built-in constraints C.
In that case, the state is rewritten: The constraints matching the part Hr of the
head are removed and the constraints matching Hk are kept. The user-defined
body constraints Bc are added to the goal store G, the built-in body constraints
Bb and the constraints from the guard G are added to the built-in store C.

Example 1 (Multi-Set Items [9]). Consider the following small CHR program,
that collects items represented in individual item/1 constraints to a multi-set
represented by a constraint of the form mset(L) where L is a list of items. The
program has the following rule:

mset(L), item(A) ⇔ mset([A|L]).

For the initial constraint store item(a), item(b),mset([]) the program can
apply the rule on mset([]) and item(b) which results in the constraint store
mset([b]), item(a). The rule can be applied again to this state, resulting in the
constraint store mset([a, b]). However, the same program can also yield the con-
straint store mset([b, a]). Hence, the program is not confluent. In the following,
we will return to this running example and provide an invariant and equivalence
relation together with a proof method to show that the program is actually
confluent modulo the equivalence relation w.r.t. the invariant.

In the context of the operational semantics, we assume a constraint theory
CT for the interpretation of the built-in constraints. We define an equivalence
relation over CHR states.

Definition 7 (state equivalence [7,10]). Let ρi := 〈Gi;Ci;Vi〉 for i = 1, 2 be
two CHR states with local variables ȳ1, ȳ2 that have been renamed apart. ρ1 ≡ ρ2 if
and only if CT |= ∀(C1 → ∃ȳ2.((G1 = G2)∧C2))∧∀(C2 → ∃ȳ1.((G1 = G2)∧C1))
where ∀F is the universal closure of formula F and = is syntactical equivalence. The
equivalence class of a CHR state is defined as [ρ] := {ρ′ | ρ′ ≡ ρ}.

Example 2 (state equivalence). By the above definition of state equivalence, the
following states are equivalent [7, p. 34]:

– 〈c(X);�; ∅〉 ≡ 〈c(Y);�; ∅〉, i.e. local variables can be renamed.
– 〈c(X);X = 0; {X}〉 ≡ 〈c(0);X = 0; {X}〉, i.e. variable bindings from the

built-in store can be applied to the goal store.
– 〈∅;X = Y ∧ Y = 0; ∅〉 ≡ 〈∅;X = 0 ∧ Y = 0; ∅〉, i.e. equivalent built-in stores

can be interchanged.
– 〈c(0);�; {X}〉 ≡ 〈c(0);�; ∅〉, i.e. unused global variables can be omitted.
– However, 〈c(X);�; {X}〉 �≡ 〈c(Y);�; {Y }〉, i.e. X and Y are free variables

and therefore the logical readings of the states are different. Global variables
can be used to bridge information between two states.

Confluence Modulo Equivalence with Invariants in CHR 121

The operational semantics is now defined by the following transition scheme
over equivalence classes of CHR states.

Definition 8 (operational semantics of CHR [7,10]). For a rule r, the
variables appearing in the rule are called local variables. A variant of a rule is a
copy of a rule where a subset of its local variables has been renamed.

For a CHR program, the state transition system over CHR states and the
rule transition relation �→ is defined as the following transition scheme:

r : Hk \ Hr ⇔ G | Bc, Bb

[〈Hk � Hr � G;G ∧ C;V〉] �→r [〈Hk � Bc � G;G ∧ Bb ∧ C;V〉]

Thereby, r is a variant of a rule in the program such that its local variables are
disjoint from the variables occurring in the representative of the pre-transition
state. We may just write �→ instead of �→r if the rule r is clear from the context.

From now on, we only consider equivalence classes of CHR states, since the state
transition system is defined over equivalence classes.

Example 3. In this example, the program from Example 1 is executed using the
operational semantics of Definition 8.

〈mset([a]), item(b);�; ∅〉
= 〈mset(L), item(A);L = [a] ∧ A = b; ∅〉
�→ 〈mset([A|L]);L = [a] ∧ A = b; ∅〉
= 〈mset([a, b]);�; ∅〉

In the first step, an equivalent state with fresh local variables L and A is con-
structed. The constraints in the goal store of this state are syntactically equiva-
lent to the head of the variant of the rule with variables L and A. The guard of
the rule is � and therefore, the rule is applicable. After applying the rule, the
state can be transformed into a more readable form without local variables.

An important analysis technique is the merging of states.

Definition 9 (merge operator �). Let σi = 〈Gi;Bi;Vi〉 for i = 1, 2 be two
CHR states such that local variables of one state are disjoint from all variables
in the other state. Then for a set V of variables

σ1 �V σ2 := 〈G1 � G2;B1 ∧ B2; (V1 ∪ V2) \ V〉.

For equivalence classes of CHR states, the merging is defined as [σ1] �V [σ2] :=
[σ1 �V σ2] for two representatives of the equivalence class that have disjoint vari-
ables. For V = ∅ we write [σ1] � [σ2] [7, p. 50, Definition 10.1].

Since local variables have to be disjoint when merging two states, it is not pos-
sible to extract information about them directly. For instance, [〈c(X);X = 1; ∅〉]
is the version of [〈c(X);�; ∅〉] with the local variable X, where X is bound to the
number 1. In the state [〈c(X),X = 1, ∅〉], we would consider X = 1 as contextual

122 D. Gall and T. Frühwirth

information about the local variable X. It is not possible to extract this infor-
mation by [〈c(X);�; ∅〉] � [〈∅;X = 1; ∅〉], since [〈∅;X = 1; ∅〉] = [〈∅;�; ∅〉] = [σ∅],
i.e. the empty state. Hence, the result of merging the two states is [〈c(X);�; ∅〉]
although we would like to see the result [〈c(X);X = 1; ∅〉].

It is necessary to rather make X a global variable first that is reduced by the
merge operator �{X}:

[〈c(X);�; {X}〉] �{X} [〈∅;X = 1; {X}〉] = [〈c(X);X = 1; ∅〉] = [〈c(1);�; ∅〉].

Global variables can thus be used to share information between two states that
are merged. [7, p. 50, Example 10.2] In the confluence criterion in Sect. 4, we
only generate states from the program source code where all variables are global.

In general, �V is not associative. However, the following lemma shows a
restricted form of associativity that is used in the proof of the confluence modulo
equivalence criterion in Sect. 4.

Lemma 1. Let σ1, σ2, σ3 be CHR states such that no local variable of a state
occurs in another state. Then [σ1] �V ([σ2] � [σ3]) = ([σ1] � [σ2]) �V [σ3] holds for
all V [7, p. 52, Lemma 10.7].

2.3 Confluence of CHR Programs

The idea of the confluence criterion is to exploit the monotonicity property of
CHR, i.e. that all rules applicable in one state are applicable in any larger state.

Lemma 2 (monotonicity). If [σ] �→ [τ], then [σ] �V [σ′] �→ [τ] �V [σ′] for all
V and [σ] [7, p. 51, Lemma 10.4].

Basic Confluence Test. Monotonicity allows us to reason from states about
larger states. The idea of the basic confluence test is to construct a finite set
of rule states that consist of the head and guard constraints of a rule and then
overlap them with all other rule states. Intuitively, overlapping two rules means
that a state is constructed where parts of the rule heads are equated (if possible)
and the rest is just included. In such a state, both rules are applicable.

By applying the overlapping rules to the overlap state, we get a critical pair.
Thereby, one state is the result after applying the first overlapping rule to the
overlap state and the other state is the result after applying the second rule to the
overlap state. If all critical pairs are joinable, the program is locally confluent. In
the following, we formalize this idea. The definitions are taken from [7]. Similar
definitions can be found in [1].

Definition 10 (rule state). For a rule r : Hk \ Hr ⇔ G | Bc, Bb let V be the
variables occurring in Hk,Hr and G. Then the state 〈Hk �Hr;G;V〉 is called the
rule state of r. In the literature, the rule states are sometimes called minimal
states. [7, p. 78, Definition 13.8].

Confluence Modulo Equivalence with Invariants in CHR 123

Definition 11 (overlap). For any two (not necessarily different) rules of a
CHR program of the form r1 : Hk \ Hr ⇔ G | Bc, Bb, r2 : H ′

k \ H ′
r ⇔ G′ | B′

c, B
′
b

and with variables that are renamed apart, let Ok ⊆ Hk, Or ⊆ Hr, O′
k ⊆ H ′

k, O
′
r ⊆

H ′
r be subsets of the heads of the rules such that for B := ((Ok�Or) = (O′

k�O′
r))∧

G ∧ G′ it holds that CT |= ∃.B and (Or � O′
r) �= ∅, where ∃.B is the existential

closure over B. Then the state σ := 〈K � K ′ � R � R′ � Ok � Or;B;V〉 is called
an overlap of r1 and r2 where V is the set of all variables occurring in heads and
guards of both rules and K := Hk\Ok, K ′ := H ′

k\O′
k, R := Hr\Or, R′ := H ′

r\O′
r.

The pair of states (σ1, σ2) with σ1 := 〈K � K ′ � R′ � Ok � Bc;B ∧ Bb;V〉 and
σ2 := 〈K � K ′ � R � O′

k � B′
c;B ∧ B′

b;V〉 is called critical pair of the overlap σ.
The critical pair can be obtained by applying the rules to the overlap state. [7, p.
82, Definition 14.5].

Invariant-Based Confluence Test. The idea of exploiting monotonicity fails,
when invariants on the states are introduced. A property I is an invariant if and
only if for all states [σ] where I([σ]) holds and for all [τ] with [σ] �→∗ [τ] the
invariant I([τ]) holds as well.

If in the confluence test a constructed overlap does not satisfy the invariant,
then this overlap state is not part of the transition system and therefore no
information can be gained from analyzing it. It is not possible to just ignore such
states as there are invariants that are not satisfied in an overlap state, but might
be satisfied in a larger state. There are also invariants that are invalidated in an
overlap state and that cannot be satisfied by state extension (c.f. Example 4).
For instance, if only a constraint is only allowed to appear at most once in a
state, this invariant cannot be satisfied by extending the state invalidating it.

Nevertheless, the idea of using overlap states for confluence analysis can be
generalized, such that it can be used for invariant-based confluence. For this
purpose, for an invariant I and an overlap state [σ] the set of all extensions of
[σ] such that I holds – denoted by ΣI([σ]) – is considered. As this set usually is
infinitely large, we want to extract a set of minimal elements of ΣI([σ]), called
MI([σ]), that have to be considered to show local confluence w.r.t. I. However,
for this purpose a partial order on states has to be defined. The set MI([σ])
is finite for many invariants, but there are examples of invariants that lead to
infinite sets of minimal elements.

In [5–7] the following has been proven: If we can show that for all overlap
states [σ] of a terminating program the critical pairs derived from all states in
MI([σ]) are joinable, the program is confluent w.r.t. to I.

We now give formal definitions of the notions used in the above description.
Since it is a commutative monoid, a partial order can be derived from the merge
operator [7]:

Lemma 3 (partial order �). For the set of CHR states Σ, the relation �:
Σ × Σ defined as [σ] � [σ′] if and only if ∃[σ̂] . [σ] � [σ̂] = [σ′] where σ, σ′ ∈ Σ
is a partial order. [7, p. 53, Lemma 10.8]

124 D. Gall and T. Frühwirth

In [5,6], another partial order has been defined. However, it has been shown
that the relation defined there is not a partial order by mistake [7]. Therefore,
we use the partial order that has first been introduced in [7, p. 53, Lemma 10.8]
to avoid these problems.

For an invariant, we can now define the set of minimal elements that extend
a state such that the invariant does hold.

Definition 12 (minimal elements). For an invariant I, let the set
ΣI([σ]) := {[σ′] | I([σ � σ′]) ∧ σ′ has no local variables }. The set MI([σ]) is
the set of �-minimal elements of ΣI([σ]) such that ∀[σ′] ∈ ΣI([σ]) . ∃[σm] ∈
MI([σ]) . [σm] � [σ′] [7, p. 80, Definition 13.11]. By well-definedness of MI([σ])
we denote that it has the latter property.

The set ΣI may become infinitely large for states with local variables. Hence
in program analysis, w.l.o.g. the states are restricted to only global variables.
Monotonicity of CHR (Lemma 2) ensures that all results remain applicable if
any of these variables are made local [7, p. 80].

Note that for an invariant I and a state [σ] where I([σ]) holds, the set of
minimal extensions is MI([σ]) = {[σ∅]}, where σ∅ := 〈∅;�; ∅〉 is the empty state
[7, p. 80, Lemma 13.13]. The invariant-based confluence test then coincides with
the basic confluence criterion. In Sect. 4 we generalize the idea of the invariant-
based confluence test for invariant-based confluence modulo equivalence.

Example 4 (Multi-Set Items (cont.)). For the multi-set program from Example 1,
the following problemarises: If there ismore than onemset constraint, the program
can choose non-deterministically where to add an item. Therefore, it cannot be
confluent. For instance, the following transitions in shorthand notation is possible:
mset([a]),mset([b]), item([c]) can either end in the final statemset([a, c]),mset([b])
or mset([a]),mset([b, c]).

The problem can be solved by introducing the multi-set invariant S: In every
CHR state there is at most one mset() constraint. Note that the set of minimal
extensions MS([σ]) = ∅ for all states [σ], as there are no extensions for states that
do not satisfy the invariant (i.e. where there is more than one mset constraint)
such that the invariant is satisfied (i.e. there is at most one mset constraint).

3 Compatibility of Equivalence Relations

In this section, we motivate a restriction of equivalence relations that make con-
fluence modulo equivalence analysis manageable. Note that in the context of
confluence modulo equivalence, typically user-defined equivalence relations dif-
ferent from state equivalence (c.f. Definition 7) are regarded. State equivalence is
referred to by ≡ or by the corresponding equivalence class brackets [·]. The sym-
bol ≈ denotes some general user-defined equivalence relation that is potentially
different from ≡ (but is not required to be).

In the confluence criterion, we want to use the idea of exploiting monotonicity
of CHR to reason from small states that come from the rules in the program

Confluence Modulo Equivalence with Invariants in CHR 125

over all states. However, monotonicity can be broken by user-defined equivalence
relations. This means that in general for two states with [σ] ≈ [σ′], it is possible
that an extension with [τ] ≈ [τ ′] leads to states that are not equivalent, i.e.
[σ] �V [τ] �≈ [σ′] �V [τ ′] as shown in the following example.

Example 5. We construct an equivalence relation that breaks monotonicity. Let
#c : Σ → N0 be a function that returns the number of constraints c in the goal
store of a state. We separate the CHR state space Σ into two disjoint subsets:

Σ1 :={[σ] | #c([σ]) < 3}, Σ2 :={[σ] | #c([σ]) ≥ 3}.

The partition of the state space clearly defines an equivalence relation ≈ with
equivalence classes Σ1 and Σ2.

Let [σ1] = [〈c;�; ∅〉] and [σ2] = [〈c, c;�; ∅〉]. Since [σ1], [σ2] ∈ Σ1, it holds
that [σ1] ≈ [σ2]. Let [τ] = [〈c;�; ∅〉]. If we extend the two states by [τ], the
extended states are not equivalent any more:

[σ1] � [τ] = [〈c, c;�; ∅〉] ∈ Σ1, but [σ2] � [τ] = [〈c, c, c;�; ∅〉] ∈ Σ2.

Hence, although [σ1] ≈ [σ2], [σ1] � [τ] �≈ [σ2] � [τ].
This case does not harm testing for the β property, since the extended

states do not have to be tested for joinability modulo equivalence according
to the β property. However, we can construct the converse case: Let [σ3] =
[〈c, c, c;�; ∅〉] ∈ Σ2. Then [σ2] �≈ [σ3]. However, if the two states are extended by
[τ], we get

[σ2] � [τ] = [〈c, c, c;�; ∅〉] ∈ Σ2, and [σ3] � [τ] = [〈c, c, c, c;�; ∅〉] ∈ Σ2.

Hence, [σ2]�[τ] ≈ [σ3]�[τ], although [σ2] �≈ [σ3]. This is critical to the β property:
Now it is not possible any more to use a rule state and its equivalent states to
reason about all states as we miss some larger state by this attempt.

To ensure monotonicity in the context of equivalence relations, we need equiv-
alence to be maintained by the merge operator. The equivalence relation is then
called a congruence relation with respect to the merge operator.

Definition 13 (congruence relation). An equivalence relation ≈ ⊆ A × A
is called a congruence relation with respect to an operator ◦ : A × A → A if for
all x, x′, y, y′: If x ≈ x′ and y ≈ y′ then x ◦ y ≈ x′ ◦ y′.

Unfortunately, this does not suffice to reason from rule states about any other
state. It must be ensured that if two states [σ] and [σ′] are equivalent and [σ] can
be decomposed into two parts, then [σ′] must be decomposable into two parts
that are equivalent to the decomposition of [σ]. This ensures that when showing
joinability of two small states, the larger states can still be joined, as they are
syntactically decomposable into smaller joinable states.

Definition 14 (split property). An equivalence relation ≈⊆ A × A has the
split property with respect to an operator ◦ : A × A → A if for all x, x1, x2, y: If
x = x1 ◦ x2 and x ≈ y then ∃y1, y2 such that x1 ≈ y1, x2 ≈ y2 and y = y1 ◦ y2.

126 D. Gall and T. Frühwirth

The split property assumes a syntactic relation between two states that are
equivalent under an equivalence relation. If a state can be split into two parts
and is equivalent to another state, this state can be split into equivalent parts.

Example 6. This example defines an equivalence relation =̂ that does not satisfy
the split property. It is the smallest equivalence relation where the following
two conditions hold: If σ ≡ σ′ then also σ =̂ σ′. Additionally, if 〈G;B;V〉 =̂
〈G′;B′;V′〉, then 〈{c, c} � G;B;V〉 =̂ 〈{d} � G

′;B′;V′〉. Hence, all pairs of c
constraints can be replaced by a d constraint.

The equivalence relation obviously is a congruence relation w.r.t. �. However,
it does not have the split property: Let σ ≡ c, c be a CHR state in shorthand
notation. Then σ ≡ c� c. By definition of =̂, we have that σ =̂ d. However, there
are no σ1, σ2 such that σ1 =̂ c, σ2 =̂ c and d ≡ σ1 � σ2.

In the confluence test, for all states σ it has to be shown that if σ ≡ σ′ and
σ �→r τ then σ′ ↓≈ τ to satisfy the β property. By the application of r to σ, we
know that for the rule state σr, σ can be split into [σ] = [σr]� [δ]. To reason from
joinability of σr and all its equivalent states, we also have to be able to split σ′

into two parts [σ′
r] and [δ′]. However, for the congruence relation =̂ this is not

possible as we have shown before. Hence, the idea of reasoning from rule states
about all larger states cannot be applied.

Note that the split property is only required to hold for states where the
invariant holds. Hence, by an appropriate invariant, the split property can be
recovered to show confluence w.r.t. this invariant.

Definition 15 (compatibility). An equivalence relation ≈ is ◦-compatible
w.r.t. an operator ◦ if it is a congruence relation with the split property w.r.t. ◦.
At first glance, compatibility is a strict property that does not seem to be satis-
fied by many equivalence relations. However, there are interesting �-compatible
equivalence relations different from the trivial state equivalence:

Example 7 (Multi-Set Items (cont.)). Example 1 is continued by introducing
the following equivalence relation ≈S that is the smallest equivalence relation on
CHR states such that [〈{mset(S1)}�G1;B1;V1〉] ≈S [〈{mset(S2)}�G2;B2;V2〉]
if and only if S1 is a permutation of S2 and [〈G1;B1;V1〉] ≈S [〈G2;B2;V2〉].

For instance, the following states in shorthand notation are equivalent accord-
ing to ≈S: mset([a, b]),mset([c, d]), item(e) ≈S mset([b, a]),mset([d, c]), item(e)
and item(a) ≈S item(a). However, mset([a, b]), item(c) �≈S mset([a, b]), item(d)
and mset([a, b]), item(c) �≈S mset([a, b]), item(c), item(c) because the sec-
ond item c does not have a partner in the first state. Similarly,
mset([a, b]),mset([b, a]) �≈S mset([a, b]) because there is only one mset constraint
on the right hand side.

Note that by this definition the following holds for states with unbound
variables: [〈mset(X); perm(X,Y); {X,Y }〉] ≈S [〈mset(Y); perm(X,Y); {X,Y }〉]
where perm(X,Y) is a built-in constraint that is true, if X is a permutation of
Y , but [〈mset(X);�; {X}〉] �≈S [〈mset(Y);�; {Y }〉]. The two variables X and Y
are free variables and therefore it is not clear that they are permutations of each
other. By adding that X is a permutation of Y , the two states are equivalent.

Confluence Modulo Equivalence with Invariants in CHR 127

This equivalence relation is �-compatible. For reasons of space, the proof is
provided in the extended online version.1

4 Confluence Modulo Equivalence w.r.t. an Invariant

First of all, the notion of invariant-based confluence modulo equivalence is
defined.

Definition 16 (I-confluence modulo ≈). A state transition system is I-
confluent modulo an equivalence relation ≈ for an invariant I if and only if

∀σ1, σ2, σ
′
1, σ

′
2 . I(σ1) ∧ I(σ′

1) ∧ σ1 ≈ σ′
1 ∧ σ1 �→∗ σ2 ∧ σ′

1 �→∗ σ′
2

→ ∃σ3, σ
′
3 . σ2 �→∗ σ3 ∧ σ′

2 �→∗ σ′
3 ∧ σ3 ≈ σ′

3.

In practice, the following restriction is made on invariants:

Definition 17 (≈ maintains I). An invariant I is maintained by an equiv-
alence relation ≈, if and only if for all states [σ] ≈ [σ′] it holds that I([σ]) ↔
I([σ′]).

This restriction ensures the practicability of Definition 16, since it may be inele-
gant and misleading if in a program that is I-confluent modulo ≈ there exist two
equivalent states where one is part of the program (i.e. the invariant holds) and
the other is not. This may have undesired effects in further analysis. Hence, the
invariant and equivalence relation should be chosen such that they are compliant
anyway, although it is not required by Definition 16.

The following lemma is an important generalization of the joinability corol-
lary in [7, p. 85, Corollary 14.9] that is a direct consequence of monotonicity.
The idea was that if two states are joinable, they are still joinable if they are
extended by the identical state. In the context of confluence modulo equiva-
lence, we have to generalize this approach of exploiting monotonicity such that
the state extensions are not required to be syntactically identical, but equivalent
for some user-defined compatible equivalence relation.

Lemma 4 (joinability). Let ≈ be a congruence relation with respect to � and
[σ1], [σ2], [σ′

1], [σ
′
2] be CHR states with [σ′

1] ≈ [σ′
2]. If [σ1] ↓≈ [σ2] then ([σ1] �V

[σ′
1]) ↓≈ ([σ2] �V [σ′

2]) for all V.

Proof. Let [σ1], [σ2], [σ′
1], [σ

′
2] be CHR states with [σ′

1] ≈ [σ′
2] and [σ1] ↓≈ [σ2].

Hence, there are CHR states [τ], [τ ′] with [τ] ≈ [τ ′] and [σ1] �→∗ [τ] and [σ2] �→∗

[τ ′]. Due to monotonicity (c.f. Lemma 2), we have that ([σ1] �V [σ′
1]) �→∗ ([τ] �V

[σ′
1]) and ([σ2] �V [σ′

2]) �→∗ ([τ ′] �V [σ′
2]). Since [σ′

1] ≈ [σ′
2], [τ] ≈ [τ ′] and ≈ is a

congruence relation with respect to �, we have that ([τ] �V [σ′
1]) ≈ ([τ ′] �V [σ′

2]).

1 https://arxiv.org/abs/1802.03381.

https://arxiv.org/abs/1802.03381

128 D. Gall and T. Frühwirth

In the next step, we provide a test for the α property in the context of an
invariant. The basic idea is that we gather all overlap states and extend them
with a minimal extension such that the invariant does hold. For all those minimal
extensions of all overlap states we have to show joinability modulo equivalence.
Formally, this leads to the following lemma.

Lemma 5 (α property test). Let P be a CHR program, I an invariant,
≈ a congruence relation and let MI([σ]) be well-defined for all overlaps σ of
rules in P, then: P has the α property with respect to I and ≈ if and only
if for all overlaps σ with critical pairs (σ1, σ2) and all [σm] ∈ MI([σ]) holds
([σ1] � [σm] ↓≈ [σ2] � [σm]).

Proof. For reasons of space, the proof is provided in the extended online version.2

It is similar to the proof for the β property.

To prove local confluence modulo equivalence, we also have to prove the β
property, i.e. we have to consider that if in a state a CHR transition is possible
and the state is equivalent to another state, then the successor state and the
equivalent state have to be joinable modulo equivalence. In the following lemma,
we adapt the test for the α property to cover the β property.

The main idea is to reason from rule states, i.e. the head and guard con-
straints of rules, over all states. For this purpose, all rule states have to be
extended by a minimal extension such that the invariant holds. Then all states
that are equivalent to these extended rule states have to be shown to be join-
able to the extended rule state after the rule has been applied. Unfortunately
– depending on the invariant – in general there can be infinitely many such
equivalent states. However, the idea still simplifies the proof procedure for the
β property, as only rule states have to be considered in contrast to all states of
the transition system.

This is not possible for general equivalence relations, but only for those that
are compatible to the merge operator and that maintain the invariant.

Lemma 6 (β property test). Let P be a CHR program, I an invariant, ≈
a �-compatible equivalence relation that maintains I and let MI([σ]) be well-
defined for all rule states [σ] in P, then: P has the β property with respect to I
and ≈ if and only if for all rule states [σ] with successor state [σ1], all [σ2] with
[σ] ≈ [σ2] and all [σ1

m] ∈ MI([σ]) and all [σ2
m] ≈ [σ1

m] where I([σ2] � [σ2
m]) is

satisfied, it holds that ([σ1] � [σ1
m]) ↓≈ ([σ2] � [σ2

m]).

Proof. “⇒”: This follows from Definition 4 and Lemma 4.
“⇐”: Let [σ], [σ1] and [σ2] be CHR states where I([σ]) and I([σ2]) hold and

[σ] �→r [σ1] for some rule r and [σ] ≈ [σ2]. Since a rule is applicable in [σ], there
is a rule state σr = 〈 ; ;V〉 of rule r such that for some [δ1] := [〈G;B;V′〉] it
holds that [σ] = [σr] �V [δ1]. The variables V from the rule r are not part of [σ]
and are therefore removed by the merging �V.

2 https://arxiv.org/abs/1802.03381.

https://arxiv.org/abs/1802.03381

Confluence Modulo Equivalence with Invariants in CHR 129

By definition of the rule state (c.f. Definition 10) and definition of the state
transition system (c.f. Definition 8), we also have that there is a state [σ′

1] such
that [σr] �→r [σ′

1]. Due to monotonicity (c.f. Lemma 2) it holds that [σ1] =
[σ′

1] �V [δ1].
Let [σ2] = [σ′

2]�V[δ2] be a partition of [σ2] such that [σ′
2] ≈ [σr] and [δ2] ≈ [δ1].

Such a partition exists since ≈ is �-compatible and [σ] ≈ [σ2] by precondition.
As I([σ]) holds and w.l.o.g. [σ] has no local variables (see the comment after

Definition 12): [δ1] ∈ ΣI([σr]) and therefore ∃[σ1
m] ∈ MI([σr]).[σ1

m] � [δ1]. This
means that there is a minimal element [σ1

m] in the set of extensions of the rule
state [σr] that extend [σr] such that the invariant holds.

It follows by definition of � that ∃[δ′
1].[δ1] = [σ1

m] � [δ′
1] and hence [σ] =

[σr] �V ([σm] � [δ′
1]). By Lemma 1, we get [σ] = ([σr] � [σm]) �V [δ′

1]. Analogously,
by substitution of [δ1] in [σ1] and due to the split property of ≈, we find that
[σi] = ([σ′

i] � [σi
m]) �V [δ′

i] for i = 1, 2 where [σ1
m] ≈ [σ2

m].
Since I is maintained by ≈, we have by precondition that ([σ′

1] � [σ1
m]) ↓≈

([σ′
2] � [σ2

m]). Since [σ1] = ([σ′
1] � [σ1

m]) �V [δ′
1] and [σ2] = ([σ′

2] � [σ2
m]) �V [δ′

2] and
[δ′

1] ≈ [δ′
2], we have by Lemma 4 also that ([σ1] ↓≈ [σ2]).

Theorem 2 (confluence modulo ≈ w.r.t. invariant). Let I be an invariant
and P an I-terminating CHR program. P has the α and β property with respect
to I and an equivalence relation ≈ if and only if P is I-confluent modulo ≈.

Proof. Theorem 1 is used on the reduced state transition system that only con-
tains states where the invariant holds.

Note that for testing the α property, the criterion only assumes a congruence
relation, whereas for proving the β property the split property must hold as well
and the invariant must maintain equivalence.

Example 8 (Item Sets (cont.)). It is shown that the program from Example 1
is S-confluent modulo ≈S.

α property. The only overlap that satisfies the invariant S has the shorthand
notation item(A), item(B),mset(L) with critical pair item(B),mset([A|L])
and item(A),mset([B|L]). It can be reduced to mset([B,A|L]) ≈S

mset([A,B|L]).
β property. All equivalences to the rule state have the form [〈item(A),mset(L);

�; {A,L}〉] ≈S [〈item(A),mset(L′);�; {A,L′}〉] where L′ is a permutation of
L. The preconditions of Lemma 6 are satisfied, since both states satisfy the
invariant. Both states reduce to the goal stores mset([A|L]) and mset([A|L′]).
It is clear that those two final states are equivalent and therefore joinable
modulo ≈S. ��

5 Discussion and Related Work

The α property test is decidable for terminating programs as long as the invariant
and the equivalence relation (a congruence relation w.r.t. �) are decidable and

130 D. Gall and T. Frühwirth

the set of minimal extensions is finite. In the β property test, the class of states
that are equivalent to the rule state may be infinitely large in general.

In the multi-set example (c.f. Example 8), it can be seen that only one other
state has to be considered to show joinability of all states equivalent to the rule
state, since the CHR semantics allows for logical variables. In general, there
might be more complicated equivalence relations that are more difficult to test.

Confluence modulo equivalence with invariants has been studied for a vari-
ant of CHR that includes non-logical built-in constraints [8,9]. This approach
introduces a meta language for CHR to prove confluence modulo equivalence. It
is claimed that the traditional proof methods for confluence in CHR expressed
in first-order logic are not sufficient in the context of confluence modulo equiva-
lence, especially with non-logical built-in constraints. The meta-level is claimed
to allow proving confluence modulo equivalence for all equivalence relations. It
is shown to be useful for programs with non-logical built-in constraints.

In many cases the analysis of programs with purely logical CHR is desired and
invariants and equivalence relations behave in a way that allow for a more direct
treatment. In our approach, no meta-level is necessary. It is directly available
for the de facto standard of CHR semantics. It seems to us that the example in
[9] indicates that for proving confluence modulo equivalence with the meta-level
approach, monotonicity and therefore �-compatibility are used implicitly.

Invariant-based confluence (or observable confluence) for CHR without user-
defined equivalence relations has been studied in [5,6]. In [7], it has been shown
that the proposed partial order is not well-defined. Our approach integrates the
corrected version of invariant-based confluence as found in [7]. Additionally, it
extends the idea by confluence modulo user-defined equivalence relations.

6 Conclusion and Future Work

A sufficient and necessary criterion for confluence modulo equivalence w.r.t.
an invariant has been presented and formally proven (c.f. Lemmas 4 to 6 and
Theorem 2). For this purpose, the set of compatible equivalence relations (c.f.
Definitions 13 to 15) has been identified to behave well with this confluence cri-
terion for CHR. When an equivalence relation has been shown to be compatible
and maintains the invariant, it can be used directly for any program. In practice,
it seems to be desirable that the equivalence relation maintains the invariant.

The approach is directly applicable for a non-trivial example (c.f. Example
8). It has been tested for other examples which indicates that the defined class
of equivalence relations is actually meaningful. Decidability of the α property is
maintained. For some invariants, the set of minimal extensions can be infinitely
large and decidability is lost. Although the β property leads to an infinite num-
ber of states that have to be considered in general, the proofs are simplified
tremendously, as only states equivalent to the finite number of rule states have
to be considered.

Confluence Modulo Equivalence with Invariants in CHR 131

In many cases it may suffice to only use an equivalence relation without
an invariant. The problems originating from invariants are inexistent for those
cases and our approach yields a sufficient and necessary criterion for confluence
modulo equivalence without invariants.

For the future, we want to investigate how our approach can be unified with
the meta-level approach [9] or other proof methods in the context of confluence
such as case splitting. Furthermore, it could be interesting how non-confluent
programs can be completed such that they become confluent modulo equivalence.

Acknowledgements. The authors would like to thank Henning Christiansen and
Maja H. Kirkeby for the valuable discussions and ideas for future work. Additionally,
the authors would like to thank the anonymous reviewers for their valuable comments.

References

1. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, New York
(2009)

2. Abdennadher, S., Frühwirth, T., Meuss, H.: On confluence of Constraint Handling
Rules. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2 62

3. Abdennadher, S.: Operational semantics and confluence of constraint propagation
rules. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 252–266. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0017444

4. Abdennadher, S., Frühwirth, T., Meuss, H.: Confluence and semantics of constraint
simplification rules. Constraints 4(2), 133–165 (1999)

5. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for Constraint
Handling Rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp.
224–239. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74610-
2 16

6. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for Constraint
Handling Rules. In: Schrijvers, T., Frühwirth, T. (eds.) CHR 2006. K.U. Leuven,
Department of Computer Science, Technical report CW 452, pp. 61–76, July 2006

7. Raiser, F.: Graph transformation systems in constraint handling rules: improved
methods for program analysis. Ph.D. thesis, Ulm University, Germany (2010)

8. Christiansen, H., Kirkeby, M.H.: Confluence modulo equivalence in Constraint
Handling Rules. In: Proietti, M., Seki, H. (eds.) LOPSTR 2014. LNCS, vol. 8981,
pp. 41–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17822-6 3

9. Christiansen, H., Kirkeby, M.H.: On proving confluence modulo equivalence for
Constraint Handling Rules. Formal Aspects Comput. 29(1), 57–95 (2017)

10. Raiser, F., Betz, H., Frühwirth, T.: Equivalence of CHR states revisited. In: Raiser,
F., Sneyers, J. (eds.) 6th International Workshop on Constraint Handling Rules
(CHR), KULCW, Technical report CW 555, pp. 33–48, July 2009

11. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM (JACM) 27(4), 797–821 (1980)

12. Ohlebusch, E.: Church-Rosser theorems for abstract reduction modulo an equiva-
lence relation. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 17–31. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0052358

https://doi.org/10.1007/3-540-61551-2_62
https://doi.org/10.1007/BFb0017444
https://doi.org/10.1007/978-3-540-74610-2_16
https://doi.org/10.1007/978-3-540-74610-2_16
https://doi.org/10.1007/978-3-319-17822-6_3
https://doi.org/10.1007/BFb0052358

On Probabilistic Term Rewriting

Martin Avanzini1(B), Ugo Dal Lago1,2, and Akihisa Yamada3

1 Inria Sophia Antipolis, Valbonne, France
martin.avanzini@inria.fr

2 Department of Computer Science, University of Bologna, Bologna, Italy
3 National Institute of Informatics, Tokyo, Japan

Abstract. We study the termination problem for probabilistic term
rewrite systems. We prove that the interpretation method is sound and
complete for a strengthening of positive almost sure termination, when
abstract reduction systems and term rewrite systems are considered.
Two instances of the interpretation method—polynomial and matrix
interpretations—are analyzed and shown to capture interesting and non-
trivial examples when automated. We capture probabilistic computation
in a novel way by means of multidistribution reduction sequences, thus
accounting for both the nondeterminism in the choice of the redex and
the probabilism intrinsic in firing each rule.

1 Introduction

Interactions between computer science and probability theory are pervasive and
extremely useful to the first discipline. Probability theory indeed offers models
that enable abstraction, but it also suggests a new model of computation, like in
randomized computation or cryptography [17]. All this has stimulated the study
of probabilistic computational models and programming languages: probabilistic
variations on well-known models like automata [24], Turing machines [26], and
the λ-calculus [25] are known from the early days of theoretical computer science.

The simplest way probabilistic choice can be made available in programming
is endowing the language of programs with an operator modeling sampling from
(one or many) distributions. Fair, binary, probabilistic choice is for example
perfectly sufficient to get universality if the underlying programming language
is itself universal (e.g., see [10]).

Term rewriting [27] is a well-studied model of computation when no proba-
bilistic behavior is involved. It provides a faithful model of pure functional pro-
gramming which is, up to a certain extent, also adequate for modeling higher-
order parameter passing [12]. What is peculiar in term rewriting is that, in
principle, rule selection turns reduction into a potentially nondeterministic pro-
cess. The following question is then a natural one: is there a way to generalize
term rewriting to a fully-fledged probabilistic model of computation? Actually,
not much is known about probabilistic term rewriting: we are only aware of the
definitions due to Agha et al. [1] and due to Bournez and Garnier [5]. We base
our work on the latter, where probabilistic rewriting is captured as a Markov
c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 132–148, 2018.
https://doi.org/10.1007/978-3-319-90686-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_9&domain=pdf

On Probabilistic Term Rewriting 133

decision process; rule selection remains nondeterministic, but each rule can have
one of many possible outcomes, each with its own probability. Rewriting thus
becomes a process in which both nondeterministic and probabilistic aspects are
present and intermingled. When firing a rule, the reduction process implicitly
samples from a distribution, much in the same way as when performing binary
probabilistic choice in one of the models mentioned above.

In this paper, we first define a new, simple framework for discrete proba-
bilistic reduction systems, which properly generalizes standard abstract reduc-
tion systems [27]. In particular, what plays the role of a reduction sequence,
usually a (possibly infinite) sequence a1 → a2 → . . . of states, is a sequence
μ1 � μ2 � . . . of (multi)distributions over the set of states. A multidistribution
is not merely a distribution, and this is crucial to appropriately account for both
the probabilistic behaviour of each rule and the nondeterminism in rule selec-
tion. Such correspondence does not exist in Bournez and Garnier’s framework,
as nondeterminism has to be resolved by a strategy, in order to define reduction
sequences. However, the two frameworks turn out to be equiexpressive, at least
as far as every rule has finitely many possible outcomes. We then prove that
the probabilistic ranking functions [5] are sound and complete for proving strong
almost sure termination, a strengthening of positive almost sure termination [5].
We moreover show that ranking functions provide bounds on expected runtimes.

This paper’s main contribution, then, is the definition of a simple framework
for probabilistic term rewrite systems as an example of this abstract framework.
Our main aim is studying whether any of the well-known techniques for termina-
tion of term rewrite systems can be generalized to the probabilistic setting, and
whether they can be automated. We give positive answers to these two questions,
by describing how polynomial and matrix interpretations can indeed be turned
into instances of probabilistic ranking functions, thus generalizing them to the
more general context of probabilistic term rewriting. We moreover implement
these new techniques into the termination tool NaTT [28]. The implementation
and an extended version of this paper [3] are available at http://www.trs.cm.is.
nagoya-u.ac.jp/NaTT/probabilistic.

2 Related Work

Termination is a crucial property of programs, and has been widely studied
in term rewriting. Tools checking and certifying termination of term rewrite
systems are nowadays capable of implementing tens of different techniques, and
can prove termination of a wide class of term rewrite systems, although the
underlying verification problem is well known to be undecidable [27].

Termination remains an interesting and desirable property in a probabilis-
tic setting, e.g., in probabilistic programming [18] where inference algorithms
often rely on the underlying program to terminate. But what does termination
mean when systems become probabilistic? If one wants to stick to a qualitative
definition, almost-sure termination is a well-known answer: a probabilistic com-
putation is said to almost surely terminate iff non-termination occurs with null

http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/probabilistic
http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/probabilistic

134 M. Avanzini et al.

probability. One could even require positive almost-sure termination, which asks
the expected time to termination to be finite. Recursion-theoretically, check-
ing (positive) almost-sure termination is harder than checking termination of
non-probabilistic programs, where termination is at least recursively enumer-
able, although undecidable: in a universal probabilistic imperative programming
language, almost sure termination is Π0

2 complete, while positive almost-sure
termination is Σ0

2 complete [20].
Many sound verification methodologies for probabilistic termination have

recently been introduced (see, e.g., [5,6,9,14,16]). In particular, the use of rank-
ing martingales has turned out to be quite successful when the analyzed program
is imperative, and thus does not have an intricate recursive structure. When the
latter holds, techniques akin to sized types have been shown to be applicable [11].
Finally, as already mentioned, the current work can be seen as stemming from
the work by Bournez et al. [5–7]. The added value compared to their work are
first of all the notion of multidistribution as a way to give an instantaneous
description of the state of the underlying system which exhibits both nondeter-
ministic and probabilistic features. Moreover, an interpretation method inspired
by ranking functions is made more general here, this way accommodating not
only interpretations over the real numbers, but also interpretations over vec-
tors, in the sense of matrix interpretations. Finally, we provide an automation
of polynomial and matrix interpretation inference here, whereas nothing about
implementation was presented in Bournez and Garnier’s work.

3 Probabilistic Abstract Reduction Systems

An abstract reduction system (ARS) on a set A is a binary relation → ⊆ A ×
A. Having a → b means that a reduces to b in one step, or b is a one-step
reduct of a. Bournez and Garnier [5] extended the ARS formalism to probabilistic
computations, which we will present here using slightly different notations.

We write R≥0 for the set of non-negative reals. A (probability) distribution
on a countable set A is a function d : A → R≥0 such that

∑
a∈A d(a) = 1. We

say a distribution d is finite if its support Supp(d) := {a ∈ A | d(a) > 0} is
finite, and write {d(a1) :a1, . . . , d(an) :an} for d if Supp(d) = {a1, . . . , an} (with
pairwise distinct ais). We write FDist(A) for the set of finite distributions on A.

Definition 1 (PARS, [5]). A probabilistic reduction over a set A is a pair
of a ∈ A and d ∈ FDist(A), written a → d. A probabilistic ARS (PARS) A
over A is a (typically infinite) set of probabilistic reductions. An object a ∈ A is
called terminal (or a normal form) in A, if there is no d with a → d ∈ A. With
TRM(A) we denote the set of terminals in A.

The intended meaning of a → d ∈ A is that “there is a reduction step a →A b
with probability d(b)”.

Example 2 (Random walk). A random walk over N with bias probability p is
modeled by the PARS Wp consisting of the probabilistic reduction

n + 1 → {p : n, 1 − p : n + 2} for all n ∈ N.

On Probabilistic Term Rewriting 135

A PARS describes both nondeterministic and probabilistic choice; we say a
PARS A is nondeterministic if a → d1, a → d2 ∈ A with d1 �= d2. In this case,
the distribution of one-step reducts of a is nondeterministically chosen from
d1 and d2. Bournez and Garnier [5] describe reduction sequences via stochas-
tic sequences, which demand nondeterminism to be resolved by fixing a strat-
egy (also called policies). In contrast, we capture nondeterminism by defining a
reduction relation �A on distributions, and emulate ARSs by {1 : a} �A {1 : b}
when a → {1 : b} ∈ A. For the probabilistic case, taking Example 2 we would
like to have

{1 : 1} �W 1
2

{ 1
2 : 0, 1

2 : 2} ,

meaning that the distribution of one-step reducts of 1 is { 1
2 :0, 1

2 :2}. Continuing
the reduction, what should the distribution of two-step reducts of 1 be? Actually,
it cannot be a distribution (on A): by probability 1

2 we have no two-step reduct
of 1. One solution, taken by [5], is to introduce ⊥ /∈ A representing the case
where no reduct exists. We take another solution: we consider subdistributions,
i.e. generalizations of distributions where probabilities may sum up to less than
one, allowing

{1 : 1} �W 1
2

{ 1
2 : 0, 1

2 : 2} �W 1
2

{ 1
4 : 1, 1

4 : 3} .

Further continuing the reduction, one would expect {1
8 : 0, 1

4 : 2, 1
8 : 4} as the

next step, but note that a half of the probability 1
4 of 2 is the probability of

reduction sequence 2 →W 1
2

1 →W 1
2

2, and the other half is of 2 →W 1
2

3 →W 1
2

2.

Example 3. Consider the PARS N consisting of the following rules:

a → { 1
2 : b1, 1

2 : b2} b1 → {1 : c} c → {1 : d1}
b2 → {1 : c} c → {1 : d2} .

Reducing a twice always yields c, so the distribution of the two-step reduct of
a is {1 : c}. More precisely, there are two paths to reach c: a →N b1 →N c
and a →N b2 →N c. Each of them can be nondeterministically continued to
d1 and d2, so the distribution of three-step reducts of a is the nondeterministic
choice among {1 : d1}, { 1

2 : d1, 1
2 : d2}, {1 : d2}. On the other hand, whereas it

is obvious that the two-step reduct {1 : c} of a should further reduce to {1 : d1}
or {1 : d2}, respectively, obtaining the third choice { 1

2 : d1, 1
2 : d2} would require

that the reduction relation �N is defined in a non-local manner.

To overcome this problem, we refine distributions to multidistributions.

Definition 4 (Multidistributions). A multidistribution on A is a finite mul-
tiset μ of pairs of a ∈ A and 0 ≤ p ≤ 1, written p : a, such that

|μ| :=
∑

p:a∈μ

p ≤ 1 .

We denote the set of multidistributions on A by FMDist(A).

136 M. Avanzini et al.

Abusing notation, we identify {p1 :a1, . . . , pn :an} ∈ FDist(A) with multidistribu-
tion {{p1 : a1, . . . , pn : an}} as no confusion can arise. For a function f : A → B,
we often generalize the domain and range to multidistributions as follows:

f
(
{{p1 : a1, . . . , pn : an}}

)
:= {{p1 : f(a1), . . . , pn : f(an)}} .

The scalar multiplication of a multidistribution is p · {{q1 : a1, . . . , qn : an}} :=
{{p · q1 : a1, . . . , p · qn : an}}, which is also a multidistribution if 0 ≤ p ≤ 1. More
generally, multidistributions are closed under convex multiset unions, defined as⊎n

i=1 pi · μi with p1, . . . , pn ≥ 0 and p1 + · · · + pn ≤ 1.
Now we introduce the reduction relation �A over multidistributions.

Definition 5 (Probabilistic Reduction). Given a PARS A, we define the
probabilistic reduction relation �A ⊆ FMDist(A) × FMDist(A) as follows:

a ∈ TRM(A)
{{1 : a}} �A ∅

a → d ∈ A
{{1 : a}} �A d

μ1 �A ρ1 . . . μn �A ρn
⊎n

i=1 pi · μi �A
⊎n

i=1 pi · ρi

In the last rule, we assume p1, . . . , pn ≥ 0 and p1 + · · · + pn ≤ 1. We denote by
A(μ) the set of all possible reduction sequences from μ, i.e., {μi}i∈N ∈ A(μ) iff
μ0 = μ and μi �A μi+1 for any i ∈ N.

Thus μ �A ν if ν is obtained from μ by replacing every nonterminal a in μ
with all possible reducts with respect to some a → d ∈ A, suitably weighted
by probabilities, and by removing terminals. The latter implies that |μ| is not
preserved during reduction: it decreases by the probabilities of terminals.

To continue Example 2, we have the following reduction sequence:

{{1 : 1}} �W 1
2

{{ 1
2 : 0, 1

2 : 2}} �W 1
2

∅ 	 {{ 1
4 : 1, 1

4 : 3}}

�W 1
2

{{ 1
8 : 0, 1

8 : 2}} 	 {{ 1
8 : 2, 1

8 : 4}} �W 1
2

. . .

The use of multidistributions resolves the issues indicated in Example 3 when
dealing with nondeterministic systems. We have, besides others, the reduction

{{1 : a}} �N {{ 1
2 : b1, 1

2 : b2}} �N {{ 1
2 : c, 1

2 : c}} �N {{ 1
2 : d1, 1

2 : d2}} .

The final step is possible because {{1
2 : c, 1

2 : c}} is not collapsed to {{1 : c}}.
When every probabilistic reduction in A is of form a → {1:b} for some b, then

�A simulates the non-probabilistic ARS via the relation {{1 : ·}} �A {{1 : ·}}.
Only a little care is needed as normal forms are followed by ∅.

Proposition 6. Let ↪→ be an ARS and define A by a → {1 : b} ∈ A iff a ↪→ b.
Then {{1 : a}} �A μ iff either a ↪→ b and μ = {{1 : b}} for some b, or μ = ∅ and
a is a normal form in ↪→.

On Probabilistic Term Rewriting 137

3.1 Notions of Probabilistic Termination

A binary relation → is called terminating if it does not give rise to an infi-
nite sequence a1 → a2 → In a probabilistic setting, infinite sequences are
problematic only if they occur with non-null probability.

Definition 7 (AST). A PARS A is almost surely terminating (AST) if for
any reduction sequence {μi}i∈N ∈ A(μ), it holds that limn→∞ |μn| = 0.

Intuitively, |μn| is the probability of having n-step reducts, so its tendency
towards zero indicates that infinite reductions occur with zero probability.

Example 8 (Example 2 Revisited). The system Wp is AST for p ≤ 1
2 , whereas

it is not for p > 1
2 . Note that although W 1

2
is AST, the expected number of

reductions needed to reach a terminal is infinite.

The notion of positive almost sure termination (PAST), due to Bournez and
Garnier [5], constitutes a refinement of AST demanding that in addition, the
expected length of reduction is finite for every initial state a, independent of
the employed strategy. In particular, W 1

2
is not PAST. The expected length of

a derivation can be concisely expressed in our setting as follows.

Definition 9 (Expected Derivation Length). Let A be a PARS and µ =
{μi}i∈N ∈ A(μ). We define the expected derivation length edl(µ) ∈ R ∪ {∞} of
µ by

edl(µ) :=
∑

i≥1

|μi| .

A PARS A is called PAST if for every reduction µ starting from a, edl(µ) is
bounded. Without fixing a strategy, however, this condition does not ensure
bounds on the derivation length.

Example 10. Consider the (non-probabilistic) ARS on N ∪ {ω} with reductions
ω → n and n + 1 → n for every n ∈ N. It is easy to see that every reduction
sequence is of finite length, and thus, this ARS is PAST. There is, however, no
global bound on the length of reduction sequences starting from ω.

Hence we introduce a stronger notion, which actually plays a more essential
role than PAST. It is based on a natural extension of derivation height from
complexity analysis of term rewriting.

Definition 11 (Strong AST). A PARS A is strongly almost surely terminat-
ing (SAST) if the expected derivation height edhA(a) of every a ∈ A is finite,
where edhA(a) ∈ R ∪ {∞} of a is defined by

edhA(a) := sup
µ∈A({{1:a}})

edl(µ) .

138 M. Avanzini et al.

3.2 Probabilistic Ranking Functions

Bournez and Garnier [5] generalized ranking functions, a popular and classical
method for proving termination of non-probabilistic systems, to PARS. We give
here a simpler but equivalent definition of probabilistic ranking function, taking
advantage of the notion of multidistribution.

For a (multi)distribution μ over real numbers, the expected value of μ is
denoted by E(μ) :=

∑
p:x∈μ p · x. A function f : A → R is naturally generalized

to f : FMDist(A) → FMDist(R), so for μ ∈ FMDist(A), E(f(μ)) =
∑

p:x∈μ p·f(x).
For ε > 0 we define the order >ε on R by x >ε y iff x ≥ ε + y.

Definition 12. Given a PARS A on A, we say that a function f : A → R≥0 is
a (probabilistic) ranking function (sometimes referred to as Lyapunov ranking
function), if there exists ε > 0 such that a → d ∈ A implies f(a) >ε E(f(d)).

The above definition slightly differs from the formulation in [5]: the latter
demands the drift E(f(d)) − f(a) to be at least −ε, which is equivalent to
f(a) >ε E(f(d)); and allows any lower bound infa∈A f(a) > −∞, which can be
easily turned into 0 by adding the lower bound to the ranking function.

We prove that a ranking function ensures SAST and gives a bound on
expected derivation length. Essentially the same result can be found in [9], but
we use only elementary mathematics not requiring notions from probability the-
ory. We moreover show that this method is complete for proving SAST.

Lemma 13. Let f be a ranking function for a PARS A. Then there exists ε > 0
such that E(f(μ)) ≥ E(f(ν)) + ε · |ν| whenever μ �A ν.

Proof. As f is a ranking function for A, we have ε > 0 such that a → d ∈ A
implies f(a) >ε E(f(d)). Consider μ �A ν. We prove the claim by induction on
the derivation of μ �A ν.

– Suppose μ = {{1 : a}} and a ∈ TRM(A). Then ν = ∅ and E(f(μ)) ≥ 0 =
E(f(ν)) + ε · |ν| since E(f(∅)) = |∅| = 0.

– Suppose μ = {{1 : a}} and a → ν ∈ A. From the assumption E(f(μ)) =
f(a) >ε E(f(ν)), and as |ν| = 1 we conclude E(f(μ)) ≥ E(f(ν)) + ε · |ν|.

– Suppose μ =
⊎n

i=1 pi · μi, ν =
⊎n

i=1 pi · νi, and μi �A νi for all 1 ≤ i ≤ n.
Induction hypothesis gives E(f(μi)) ≥ E(f(νi)) + ε · |νi|. Thus,

E(f(μ)) =
n∑

i=1

pi · E(f(μi)) ≥
n∑

i=1

pi · (E(f(νi)) + ε · |νi|)

=
n∑

i=1

pi · E(f(νi)) + ε ·
n∑

i=1

pi · |νi| = E(f(ν)) + ε · |ν| . �

Lemma 14. Let f be a ranking function for PARS A. Then there is ε > 0 such
that E(f(μ0)) ≥ ε · edl(µ) for every µ = {μi}i∈N ∈ A(μ0).

On Probabilistic Term Rewriting 139

Proof. We first show E(f(μm)) ≥
∑n

i=m+1 |μi| for every n ≥ m, by induction on
m − n. Let ε be given by Lemma 13. The base case is trivial, so let us consider
the inductive step. By Lemma 13 and induction hypothesis we get

E(f(μm)) ≥ E(f(μm+1)) + ε · |μm+1|

≥ ε ·
n∑

i=m+2

|μi| + ε · |μm+1| = ε ·
n∑

i=m+1

|μi| .

By fixing m = 0, we conclude that the sequence
{
ε ·

∑n
i=1 |μi|

}
n≥1

is bounded
by E(f(μ0)), and so is its limit ε ·

∑
i≥1 |μi| = ε · edl(µ). �

Theorem 15. Ranking functions are sound and complete for proving SAST.

Proof. For soundness, let f be a ranking function for a PARS A. For every
derivation µ starting from {{1 : a}}, we have edl(µ) ≤ f(a)

ε by Lemma 14. Hence,
edhA(a) ≤ f(a)

ε , concluding that A is SAST.
For completeness, suppose that A is SAST, and let a → d ∈ A. Then we

have edhA(a) ∈ R, and

edhA(a) = sup
µ∈A({{1:a}})

edl(µ) ≥ sup
µ∈A(d)

(1 + edl(µ))

= 1 + sup
µ∈A(d)

edl(µ) = 1 + E(edhA(d)) ,

concluding edhA(a) >1 E(edhA(d)). Thus, taking ε = 1, edhA is a ranking func-
tion according to Definition 12. �

Bournez and Garnier claimed that ranking functions are complete for proving
PAST, if the system is finitely branching [5, Theorem 3]. The claim does not
hold,1 as the following example illustrates that PAST and SAST do not coincide
even for finitely branching systems.2

Example 16. Consider PARS A over N ∪ {an | n ∈ N}, consisting of

an → { 1
2 : an+1,

1
2 : 0} an → {1 : 2n · n} n + 1 → {1 : n} .

Then P is finitely branching and PAST, because every reduction sequence from
{{1 : an}} with n ∈ N is one of the following forms:

– µn,0 = {{1 : an}} � {{1 : 2n · n}} �2n·n {{1 : 0}};
– µn,m = {{1 : an}} �m {{ 1

2m : an+m, 1
2m : 0}} � {{ 1

2m : 2n+m · (n + m)}}
�2n+m·(n+m) {{ 1

2m : 0}} with m = 1, 2, . . . ;
– µn,∞ = {{1 : an}} � {{ 1

2 : an+1,
1
2 : 0}} � {{ 1

4 : an+2,
1
4 : 0}} � · · · ,

and edl(µn,α) is finite for each n ∈ N and α ∈ N ∪ {∞}. However, e.g., edhA(a0)
is not bounded, since edl(µ0,m) = 1

20 + · · · + 1
2m−1 + 1

2m + 1
2m · (2m · m) ≥ m for

every m ∈ N.
1 The completeness claim of [5] has already been refuted in [14], but [14] also contra-

dicts our completeness result. The counterexample there is invalid since a part of
reduction steps are not counted. We thank Luis Maŕıa Ferrer Fioriti for this analysis.

2 We are grateful to the anonymous reviewer who pointed us to this example.

140 M. Avanzini et al.

3.3 Relation to Formulation by Bournez and Garnier

As done by Bournez and Garnier [5], the dynamics of probabilistic systems are
commonly defined as stochastic sequences, i.e., infinite sequences of random
variables whose n-th variable represents the n-th reduct. A disadvantage of this
approach is that nondeterministic choices have to be a priori resolved by means
of strategies. In this section, we establish a precise correspondence between our
formulation and the one of Bournez and Garnier. In particular, we show that
the corresponding notions of AST and PAST coincide.

We shortly recap central definitions from [5]. We assume basic familiarity
with stochastic processes, see e.g. [23]. Here we fix a PARS A on A. A history
(of length n + 1) is a finite sequence a = a0, a1, . . . , an of objects from A, and
such a sequence is called terminal if an is. A strategy φ is a function from
nonterminal histories to distributions such that an → φ(a0, a1, . . . , an) ∈ A. A
history a0, a1, . . . , an is called realizable under φ iff for every 0 ≤ i < n, it holds
that φ(a0, a1, . . . , ai)(ai+1) > 0.

Definition 17 (Stochastic Reduction, [5]). Let A be a PARS on A and ⊥ /∈
A a special symbol. A sequence of random variables X = {Xn}n∈N over A∪{⊥}
is a (stochastic) reduction in A (under strategy φ) if

P(Xn+1 = ⊥ | Xn = ⊥) = 1;
P(Xn+1 = ⊥ | Xn = a) = 1 if a is terminal;
P(Xn+1 = ⊥ | Xn = a) = 0 if a is nonterminal;

P(Xn+1 = a | Xn = an, . . . , X0 = a0) = d(a) if φ(a0, . . . , an) = d,

where a0, . . . , an is a realizable nonterminal history under φ.

Thus, X is set up so that trajectories correspond to reductions a0 →A a1 →A
· · · , and ⊥ signals termination. In correspondence, the derivation length is given
by the first hitting time to ⊥:

Definition 18 ((P)AST of [5]). For X = {Xn}n∈N define the random variable
TX := min{n ∈ N |Xn = ⊥}, where min ∅ = ∞ by convention. A PARS A
is stochastically AST (resp. PAST) if for every stochastic reduction X in A,
P(TX = ∞) = 0 (resp. E(TX) < ∞).

A proof of the following correspondence is available in the extened version [3].

Lemma 19. For each stochastic reduction {Xn}n∈N in a PARS A there exists
a corresponding reduction sequence μ0 �A μ1 �A · · · where μ0 is a distribution
and P(Xn = a) =

∑
p:a∈μn

p for all n ∈ N and a ∈ A, and vice versa.

As the above lemma relates TX with the n-th reduction μn of the corre-
sponding reduction so that P(TX ≥ n) = P(Xn �= ⊥) = |μn|, using that
E(TX) =

∑
n∈N∪{∞} P(TX ≥ n) [8], it is not difficult to derive the central result

of this section:

Theorem 20. A PARS A is (P)AST if and only if it is stochastically (P)AST.

On Probabilistic Term Rewriting 141

4 Probabilistic Term Rewrite Systems

Now we formulate probabilistic term rewriting following [5], and then lift the
interpretation method for term rewriting to the probabilistic case.

We briefly recap notions from rewriting; see [4] for an introduction to rewrit-
ing. A signature F is a set of function symbols f associated with their arity
ar(f) ∈ N. The set T (F, V) of terms over a signature F and a set V of vari-
ables (disjoint with F) is the least set such that x ∈ T (F, V) if x ∈ V and
f(t1, . . . , tar(f)) ∈ T (F, V) whenever f ∈ F and ti ∈ T (F, V) for all 1 ≤ i ≤ ar(f).
A substitution is a mapping σ : V → T (F, V), which is extended homo-
morphically to terms. We write tσ instead of σ(t). A context is a term C ∈
T (F, V ∪ {�}) containing exactly one occurrence of a special variable �. With
C[t] we denote the term obtained by replacing � in C with t. We extend sub-
stitutions and contexts to multidistributions: μσ := {{p1 : t1σ, . . . , pn : tnσ}} and
C[μ] := {{p1 : C[t1], . . . , pn : C[tn]}} for μ = {{p1 : t1, . . . , pn : tn}}. Given a mul-
tidistribution μ over A, we define a mapping μ : A → R≥0 by μ(a) :=

∑
p:a∈μ p,

which forms a distribution if |μ| = 1.

Definition 21 (Probabilistic Term Rewriting). A probabilistic rewrite rule
is a pair of l ∈ T (F, V) and d ∈ FDist(T (F, V)), written l → d. A probabilistic
term rewrite system (PTRS) is a (typically finite) set of probabilistic rewrite
rules. We write R̂ for the PARS consisting of a probabilistic reduction C[lσ] →
C[dσ] for every probabilistic rewrite rule l → d ∈ R, context C, and substitution
σ. We say a PTRS R is AST/SAST if R̂ is.

Note that, for a distribution d over terms, dσ is in general a multidistribution;
e.g., consider { 1

2 :x, 1
2 :y}σ with xσ = yσ. This explains why we use C[dσ], which

is a distribution, to obtain a probabilistic reduction above.

Example 22. The random walk of Example 2 can be modeled by a PTRS con-
sisting of a single rule s(x) → {p : x, 1 − p : s(s(x))}. To rewrite a term, there
are typically multiple choices of a subterm to reduce (i.e., redexes). For instance,
s(f(s(0))) has two redexes and consequently two possible reducts:

{{p : f(s(0)), 1 − p : s(s(f(s(0))))}} and {{p : s(f(0)), 1 − p : s(f(s(s(0))))}} .

4.1 Interpretation Methods for Proving SAST

We now generalise the interpretation method for term rewrite systems to the
probabilistic setting. The following notion is standard.

Definition 23 (F -Algebra). An F -algebra X on a non-empty carrier set X
specifies the interpretation fX : Xar(f) → X of each function symbol f ∈ F .
We say X is monotone with respect to a binary relation � ⊆ X × X if x � y
implies fX (. . . , x, . . .) � fX (. . . , y, . . .) for every f ∈ F . Given an assignment
α : V → X, the interpretation of a term is defined as follows:

�t�
α
X :=

{
α(t) if t ∈ V ,
fX (�t1�

α
X , . . . , �tn�

α
X) if t = f(t1, . . . , tn).

We write s �X t iff �s�
α
X � �t�

α
X for every assignment α.

142 M. Avanzini et al.

Theorem 24 (cf. [27]). A TRS R is terminating iff there exists an F -algebra X
which is monotone with respect to a well-founded order � and satisfies R ⊆ �X .

In a proof of the completeness of the above theorem, the term algebra T , an
F -algebra on T (F, V) such that fT (t1, . . . , tn) := f(t1, . . . , tn), plays a crucial
role. In this term algebra, assignments are substitutions, and �t�σ

T = tσ. We will
also use the term algebra when proving the completeness of the probabilistic
version of interpertation method for proving SAST.

The following definition gives our probabilistic version of the interpretation
method. It is sound and complete for proving SAST. To achieve completeness,
we first keep the technique as general as possible. For an F -algebra X , we lift
the interpretation of terms to multidistributions as before, i.e.,

�{{p1 : t1, . . . , pn : tn}}�
α
X := {{p1 : �t1�

α
X , . . . , p : �tn�

α
X }} .

Definition 25 (Probabilistic F -Algebra). A probabilistic monotone F -
algebra (X ,�) is an F -algebra X equipped with a relation � ⊆ X × FDist(X),
such that for every f ∈ F , fX is monotone with respect to �, i.e., x � d implies
fX (. . . , x, . . .) � fX (. . . , d, . . .) where fX (. . . , ·, . . .) is extended to (multi-) dis-
tributions. We say it is collapsible (cf. [19]) if there exist a function G : X → R≥0

and ε > 0 such that x � d implies G(x) >ε E(G(d)).

For a relation � ⊆ X × FDist(X), we define the relation �X ⊆ T (F, V) ×
FDist(T (F, V)) by t �X d iff �t�

α
X � �d�

α
X for every assignment α : V → X. The

following property is easily proven by induction.

Lemma 26. Let (X ,�) be a probabilistic monotone F -algebra. If s �X d then
�sσ�

α
X � �dσ�

α
X and �C[s]�α

X � �C[d]�α
X for arbitrary α, σ, and C.

Theorem 27 (Soundness and Completeness). A PTRS R is SAST iff there
exists a collapsible monotone F -algebra (X ,�) such that R ⊆ �X .

Proof. For the “if” direction, we show that the PARS R̂ is SAST using Theo-
rem 15. Let α : V → X be an arbitrary assignment, which exists as X is non-
empty. Consider s → d ∈ R̂. Then we have s = C[lσ] and d = C[d′σ] for some
σ, C, and l → d′ ∈ R. By assumption we have l �X d′, and thus �s�

α
X � �d�

α
X

by Lemma 26. The collapsibility of � gives a function G : X → R≥0 and ε > 0
such that G(�s�α

X) >ε E(G(�d�
α
X)), and by extending definitions we easily see

E(G(�d�
α
X)) = E(G(�d�

α
X)). Thus G(�·�α

X) is a ranking function.
For the “only if” direction, suppose that R is SAST. We show (T , R̂) forms

a collapsible probabilistic monotone F -algebra orienting R.

– Since R is SAST, Theorem 15 gives a ranking function f : T (F, V) → R≥0

and ε > 0 for the underlying PARS R̂. Taking G = f , R̂ is collapsible.
– Suppose s R̂ d. Then we have s = C[lσ] and d = C[d′σ] for some C, σ, and

l → d′ ∈ R. As f(. . . , C, . . .) is also a context, f(. . . , s, . . .) R̂ f(. . . , d, . . .),
concluding monotonicity.

On Probabilistic Term Rewriting 143

– For every probabilistic rewrite rule l → d ∈ R and every assignment (i.e.,
substitution) σ : V → T (F, V), we have �l�σ

T = lσ R̂ dσ = �d�σ
T , and hence

l R̂T d. This concludes R ⊆ R̂T . �

4.2 Barycentric Algebras

As probabilistic F -algebras are defined so generally, it is not yet clear how to
search them for ones that prove the termination of a given PTRS. Now we make
one step towards finding probabilistic algebras, by imposing some conditions
to (non-probabilistic) F -algebras, so that the relation � can be defined from
orderings which we are more familiar with.

Definition 28 (Barycentric Domain). A barycentric domain is a set X
equipped with the barycentric operation EX : FDist(X) → X.

Of particular interest in this work will be the barycentric domains R≥0 and
R

m
≥0 with barycentric operations E({p1 : a1, . . . , pn : an}) =

∑n
i=1 pi · ai.

We naturally generalize the following notions from standard mathematics.

Definition 29 (Concavity, Affinity). Let f : X → Y be a function from and
to barycentric domains. We say f is concave with respect to an order � on Y if
f(EX(d)) � EY (f(d)) where � is the reflexive closure of �. We say f is affine
if it satisfies f(EX(d)) = EY (f(d)).

Clearly, every affine function is concave.
Now we arrive at the main definition and theorem of this section.

Definition 30 (Barycentric F -Algebra). A barycentric F -algebra is a pair
(X ,�) of an F -algebra X on a barycentric domain X and an order � on X,
such that for every f ∈ F , fX is monotone and concave with respect to �. We
say it is collapsible if there exist a concave function G : X → R≥0 (with respect
to >) and ε > 0 such that G(x) >ε G(y) whenever x � y.

We define the relation �E ⊆ X × FDist(X) by x �E d iff x � EX(d).

Note that the following theorem claims soundness but not completeness, in
contrast to Theorem 27.

Theorem 31. A PTRS R is SAST if R ⊆ �E

X for a collapsible barycentric
F -algebra (X ,�).

Proof. Due to Theorem 27, it suffices to show that (X ,�E) is a collapsible prob-
abilistic monotone F -algebra. Concerning monotonicity, suppose x �E d, i.e.,
x � EX(d), and let f ∈ F . Since fX is monotone and concave with respect to �
in every argument, we have

fX (. . . , x, . . .) � fX (. . . , EX(d), . . .) � EX(fX (. . . , d, . . .)) .

144 M. Avanzini et al.

Concerning collapsibility, whenever x � EX(d) we have

G(x) >ε G(EX(d)) by assumption on G,

≥ E(G(d)) as G : X → R is concave with respect to >,
= E(G(d)) by the definition of E on multidistributions. �

The rest of the section recasts two popular interpretation methods, polyno-
mial and matrix interpretations (over the reals), as barycentric F -algebras.

Polynomial interpretations were introduced (on natural numbers [21] and real
numbers [22]) for the termination analysis of non-probabilistic rewrite systems.
Various techniques for synthesizing polynomial interpretations (e.g., [15]) exist,
and these techniques are easily applicable in our setting.

Definition 32 (Polynomial Interpretation). A polynomial interpretation is
an F -algebra X on R≥0 such that fX is a polynomial for every f ∈ F . We say
X is multilinear if every fX is of the following form with cV ∈ R≥0:

fX (x1, . . . , xn) =
∑

V ⊆{x1,...,xn}
cV ·

∏

xi∈V

xi .

In order to use polynomial interpretations for probabilistic termination, mul-
tilinearity is necessary for satisfying the concavity condition.

Proposition 33. Let X be a monotone multilinear polynomial interpretation
and ε > 0. If �l�

α
X >ε E(�d�

α
X) for every l → d ∈ R and α, then the PTRS R is

SAST.

Proof. The order >ε is trivially collapsible with G(x) = x. Further, every multi-
linear polynomial is affine and thus concave in all variables. Hence (X , >ε) forms
a barycentric F -algebra, and thus Theorem 31 shows that R is SAST. �

An observation by Lucas [22] also holds in probabilistic case: To prove a finite
PTRS R SAST with polynomial interpretations, we do not have to find ε, but it
is sufficient to check l >E

X d for all rules l → d ∈ R. Define εl→d := E(�d�
α
X)−�l�

α
X

for such α that α(x) = 0. Then for any other α, we can show E(�d�
α
X) − �l�

α
X ≥

εl→d > 0. As R is finite, we can take ε := min{εl→d | l → d ∈ R} > 0.

Example 34 (Example 22 Continued). Consider again the PTRS consisting of the
single rule s(x) → {p : x, 1 − p : s(s(x))}. Define the polynomial interpretation
X by 0X := 0 and sX (x) := x + 1. Then whenever p > 1

2 we have

�s(x)�α
X = x + 1 > p · x + (1 − p) · (x + 2) = E(�{p : x, 1 − p : s(s(x))}�

α
X) .

Thus, when p > 1
2 the PTRS is SAST by Proposition 33.

We remark that polynomial interpretations are not covered by [5, Theorem 5],
since context decrease [5, Definition 8] demands �f(t)�α

X −�f(t′)�α
X ≤ �t�

α
X −�t′�α

X ,
which excludes interpretations such as fX (x) = 2x.

On Probabilistic Term Rewriting 145

Matrix interpretations are introduced for the termination analysis of term rewrit-
ing [13]. Now we extend them for probabilistic term rewriting.

Definition 35 (Matrix Interpretation). A (real) matrix interpretation is an
F -algebra X on R

m
≥0 such that for every f ∈ F , fX is of the form

fX (x1, . . . ,xn) =
n∑

i=1

Ci · xi + c , (1)

where c ∈ R
m
≥0, and Ci ∈ R

m×m
≥0 . The order �ε ⊆ R

m
≥0 × R

m
≥0 is defined by

(x1, . . . , xm)T �ε (y1, . . . , ym)T :⇐⇒ x1 >ε y1 and xi ≥ yi for all i = 2, . . . , m.

It is easy to derive the following from Theorem 31:

Proposition 36. Let X be a monotone matrix interpretation and ε > 0. If
�l�

α
X �ε E(�d�

α
X) for every l → d ∈ R and α, then the PTRS R is SAST.

As in polynomial interpretations, for finite systems we do not have to find ε.
Monotonicity can be ensured if (1) satisfies (Ci)1,1 ≥ 1 for all i, cf. [13].

Example 37. Consider the PTRS consisting of the single probabilistic rule

a(a(x)) → {p : a(a(a(x))), 1 − p : a(b(a(x)))} .

Consider the two-dimensional matrix interpretation

Then we have

where α(x) = (x1, x2)T . Hence this PARS is SAST if p < 1
2 , by

Proposition 36.

It is worthy of note that the above example cannot be handled with poly-
nomial interpretations, intuitively because monotonicity enforces the interpreta-
tion of the probable reducts a(a(a(x))) and a(b(a(x))) to be greater than that
of the left-hand side a(a(x)). Generally, polynomial and matrix interpretations
are incomparable in strength.

146 M. Avanzini et al.

5 Conclusion

This is a study on how much of the classic interpretation-based techniques well
known in term rewriting can be extended to probabilistic term rewriting, and to
what extent they remain automatable. The obtained results are quite encour-
aging, although finding ways to combine techniques is crucial if one wants to
capture a reasonably large class of systems, similarly to what happens in ordi-
nary term rewriting [2]. Another hopeful future work includes extending our
result for proving AST, not only SAST.

We extended the termination prover NaTT [28] with a syntax for probabilis-
tic rules, and implemented the probabilistic versions of polynomial and matrix
interpretations. For usage and implementation details, we refer to the extended
version of this paper. Here we only report that we tested the implementation on
the examples presented in the paper and successfully found termination proofs.

The following example would deserve some attention.

Example 38. Consider the following encoding of [14, Fig. 1]:

?(x) → { 1
2 : ?(s(x)), 1

2 : $(g(x))} $(0) → {1 : 0}
?(x) → {1 : $(f(x))} $(s(x)) → {1 : $(x)}

describing a game where the player (strategy) can choose either to quit the game
and ensure prize $(f(x)), or to try a coin-toss which on success increments the
score and on failure ends the game with consolation prize $(g(x)).

When f and g can be bounded by linear polynomials, it is possible to auto-
matically prove that the system is SAST. For instance, with rules for f(x) = 2x
and g(x) = �x

2 �, NaTT (combined with the SMT solver z3 version 4.4.1) found
the following polynomial interpretation proving SAST:

?X (x) = 7x + 11 sX (x) = x + 1 0X = 1
fX (x) = 3x + 1 gX (x) = 2x + 1 $X (x) = 2x + 1 .

Acknowledgments. We thank the anonymous reviewers for their constructive
remarks that improved the paper. Example 12 is due to one of them. We thank Luis
Maŕıa Ferrer Fioriti for the analysis of a counterexample in [14]. This work is partially
supported by the ANR projects 14CE250005 ELICA and 16CE250011 REPAS, the
FWF project Y757, and JST ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603).

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for
probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

2. Avanzini, M.: Verifying polytime computability automatically. Ph.D. thesis, Uni-
versity of Innsbruck (2013)

On Probabilistic Term Rewriting 147

3. Avanzini, M., Dal Lago, U., Yamada, A.: On probabilistic term rewriting (Technical
report). CoRR cs/CC/1802.09774 (2018). http://www.arxiv.org/abs/1802.09774

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

5. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl,
J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32033-3 24

6. Bournez, O., Garnier, F.: Proving positive almost sure termination under strate-
gies. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 357–371. Springer,
Heidelberg (2006). https://doi.org/10.1007/11805618 27

7. Bournez, O., Kirchner, C.: Probabilistic rewrite strategies. Applications to ELAN.
In: Proceedings of 13th RTA, pp. 252–266 (2002)

8. Brémaud, P.: Marcov Chains. Springer, New York (1999). https://doi.org/10.1007/
978-1-4757-3124-8

9. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 1

10. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calcu-
lus. RAIRO - TIA 46(3), 413–450 (2012)

11. Dal Lago, U., Grellois, C.: Probabilistic termination by monadic affine sized typing.
In: Proceedings of 26th ESOP, pp. 393–419 (2017)

12. Dal Lago, U., Martini, S.: On constructor rewrite systems and the lambda calculus.
LMCS 8(3), 1–27 (2012)

13. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(3), 195–220 (2008)

14. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, complete-
ness, and compositionality. In: Proceedings of 42nd POPL, pp. 489–501. ACM
(2015)

15. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72788-0 33

16. Gnaedig, I.: Induction for positive almost sure termination. In: PPDP 2017, pp.
167–178. ACM (2007)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299 (1984)
18. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:

Church: a language for generative models. In: Proceedings of 24th UAI, pp. 220–
229. AUAI Press (2008)

19. Hirokawa, N., Moser, G.: Automated complexity analysis based on context-
sensitive rewriting. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 257–271.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08918-8 18

20. Kaminski, B.L., Katoen, J.: On the hardness of almost-sure termination. In: MFCS
2015, Proceedings, Part I, Milan, Italy, 24–28 August 2015, pp. 307–318 (2015)

21. Lankford, D.: Canonical algebraic simplification in computational logic. Technical
report ATP-25, University of Texas (1975)

22. Lucas, S.: Polynomials over the reals in proofs of termination: from theory to
practice. ITA 39(3), 547–586 (2005)

23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

http://www.arxiv.org/abs/1802.09774
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/11805618_27
https://doi.org/10.1007/978-1-4757-3124-8
https://doi.org/10.1007/978-1-4757-3124-8
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-540-72788-0_33
https://doi.org/10.1007/978-3-319-08918-8_18

148 M. Avanzini et al.

24. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)
25. Saheb-Djahromi, N.: Probabilistic LCF. In: MFCS, pp. 442–451 (1978)
26. Santos, E.S.: Probabilistic turing machines and computability. Proc. Am. Math.

Soc. 22(3), 704–710 (1969)
27. Terese (ed.): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer

Science, vol. 55. Cambridge University Press, Cambridge (2003)
28. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.

(ed.) RTA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08918-8 32

https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-319-08918-8_32

Equivalence Checking
of Non-deterministic Operations

Sergio Antoy1 and Michael Hanus2(B)

1 Computer Science Department, Portland State University, Portland, OR, USA
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, 24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Checking the semantic equivalence of operations is an impor-
tant task in software development. For instance, regression testing is a
routine task when software systems are developed and improved, and
software package managers require the equivalence of operations in dif-
ferent versions of a package within the same major version. In order to
support a good automation of this process, a solid foundation is required.
It has been shown that the notion of equivalence is not obvious when
non-deterministic features are present. In this paper, we discuss a general
notion of equivalence in functional logic programs and develop a practical
method to check it. Our method can be integrated in a property-based
testing tool which is used in a software package manager to check the
semantic versioning of software packages.

1 Motivation

Functional logic languages combine the most important features of functional
and logic programming in a single language (see [4,14] for recent surveys). In
this paper we consider Curry [18], a contemporary functional logic language
which conceptually extends Haskell with common features of logic program-
ming. Hence, Curry combines the demand-driven evaluation of functions with
non-deterministic evaluation of operations defined by overlapping rules. As dis-
cussed in [6], the combination of these features poses new issues for defining the
equivalence of expressions. Actually, three different notions of equivalence can
be distinguished:

1. Ground equivalence: Two expressions are equivalent if they have the same
results when their variables are replaced by ground terms.

2. Computed-result equivalence: Two expressions are equivalent if they have the
same outcomes, i.e., variables in expressions are considered as free variables
which might be instantiated during the evaluation process.

3. Contextual equivalence: Two expressions are equivalent if they produce the
same outcomes in all possible contexts.

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 149–165, 2018.
https://doi.org/10.1007/978-3-319-90686-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_10&domain=pdf
http://orcid.org/0000-0003-4522-7658
http://orcid.org/0000-0002-4953-8202

150 S. Antoy and M. Hanus

Ground equivalence seems reasonable for functional programs since free variables
are not allowed in expressions to be evaluated in functional programming. For
instance, consider the Boolean negation defined by
not False = True

not True = False

The expressions not (not x) and x are ground equivalent, which can be checked
easily by instantiating x to True and False, respectively, and evaluating both
expressions. However, these expressions are not computed-result equivalent w.r.t.
the narrowing semantics of functional logic programming: the expression not

(not x) evaluates to the two outcomes {x = False} False and {x = True} True,1

whereas the expression x evaluates to the single result {} x without instantiating
the free variable x. Due to these differences, Bacci et al. [6] states that ground
equivalence is “the (only possible) equivalence notion used in the pure functional
paradigm.” As we will see later, this is not true since contextual equivalence is
also relevant in non-strict functional languages.

The previous example shows that the evaluation of ground equivalent expres-
sions might result in answers with different degrees of instantiation. However,
the presence of logic variables and non-determinism might also lead to differ-
ent results when ground equivalent expressions are put in a same context. For
instance, consider the following contrived example [6] (a more natural example
will be shown later):
f x = C (h x) g A = C A

h A = A

The expressions f x and g x are computed-result equivalent since the only com-
puted result is {x = A} C A. Now consider the following operation:
k (C x) B = B

Then the expression k (f x) x evaluated lazily produces {x = B} B, whereas the
expression k (g x) x produces no values. In fact, the evaluation of g x instan-
tiates (narrows) x to A, and k (C A) A is irreducible. Hence, the ground and
computed-result equivalent expressions are not contextually equivalent.

The equivalence of operations is important when existing software packages
are further developed, e.g., refactored or implemented with more efficient data
structures. In this case, we want to ensure that operations available in the API
of both versions of a software package are equivalent, as long as we do not
introduce intended API changes. For this purpose, software package manage-
ment systems associate version numbers to software packages. In the semantic
versioning standard,2 a version number consists of major, minor, and patch num-
ber, separated by dots, and an optional pre-release specifier. For instance, 2.0.1
and 3.2.1-alpha.2 are valid version numbers. An intended and incompatible
change of API operations is marked by a change in the major version number.
Thus, operations available in two versions of a package with identical major

1 Note that functional logic languages compute a substitution as well as a value as a
result.

2 http://www.semver.org.

http://www.semver.org

Equivalence Checking of Non-deterministic Operations 151

version numbers should be equivalent. Unfortunately, most package managers
do not check this equivalence but leave it as a recommendation to the package
developer.

Improving this situation is the motivation for our work. We want to develop
a tool to check the equivalence of two operations. Since we aim to integrate this
kind of semantic versioning checking in a practical software package manager
[16], the tool should be fully automatic. Thus, we are going to test equivalence
properties rather than verify them. Although this might be unsatisfactory from
a theoretical point of view, it could be quite powerful from a practical point of
view and might prevent wasting time to prove incorrect properties. For instance,
property-based test tools like QuickCheck [8] provide great confidence in pro-
grams by checking program properties with many test inputs. For instance, we
could check the equivalence of two operations f and f ′ by checking the equa-
tion f x = f ′ x with many values for x. The previous discussion of equivalence
criteria shows that this property checks only the ground equivalence of f and
f ′. However, in the context of semantic versioning checking, ground equivalence
is too restricted since equivalent operations should deliver the same results in
any context. Therefore, contextual equivalence is desired. Actually, this kind of
equivalence has been proposed in [5] as the only notion to state the correctness of
an implementation w.r.t. a specification in functional logic programming. Unfor-
tunately, the automatic checking of contextual equivalence with property-based
test tools does not seem feasible due to the unlimited number of possible con-
texts. Therefore, Bacci et al. [6] state: “In a test-based approach. . . the addition
of a further outer context would dramatically alter the performance.” Therefore,
the authors abandon the use of a standard property-based test tool in their work.

In this paper we show that we can use such tools for contextual equivalence
(and, thus, semantic versioning) checking if we use an appropriate encoding of
test data. For this purpose, we develop some theoretical results that allow us
to reduce the contexts to be considered for equivalence checking. From these
results, we show how property-based testing can be used for this purpose. Based
on these results, we extend an existing property-based test tool for functional
logic programs [15] to test the equivalence of operations. This is the basis of a
software package manager with semantic versioning checking [16].

In the next section, we review the main concepts of functional logic pro-
gramming and Curry. Section 3 defines our notion of equivalence which is used
in Sect. 4 to develop practically useful characterizations of equivalent opera-
tions. Section 5 shows how to use these criteria in a property-based testing tool.
Section 6 discusses some related work before we conclude.

2 Functional Logic Programming and Curry

We briefly review those elements of functional logic languages and Curry that are
necessary to understand the contents of this paper. More details can be found in
surveys on functional logic programming [4,14] and in the language report [18].

Curry is a declarative multi-paradigm language combining in a seamless way
features from functional and logic programming. The syntax of Curry is close to

152 S. Antoy and M. Hanus

Haskell [23]. In addition to Haskell, Curry allows free (logic) variables in condi-
tions and right-hand sides of rules. Thus, expressions in Curry programs contain
operations (defined functions), constructors (introduced in data type declara-
tions), and variables (arguments of operations or free variables). Function calls
with free variables are evaluated by a possibly non-deterministic instantiation of
demanded arguments [2]. In contrast to Haskell, rules with overlapping left-hand
sides are non-deterministically (and not sequentially) applied.

Example 1. The following example shows the definition of a non-deterministic
list insertion operation in Curry:
insert :: a → [a] → [a]

insert x ys = x : ys

insert x (y:ys) = y : insert x ys

For instance, the expression insert 0 [1,2] non-deterministically evaluates to
one of the values [0,1,2], [1,0,2], or [1,2,0]. Based on this operation, we can
easily define permutations:
perm [] = []

perm (x:xs) = insert x (perm xs)

Thus, perm [1,2,3,4] non-deterministically evaluates to all 24 permutations of
the input list.

Non-deterministic operations, which are interpreted as mappings from values
into sets of values [13], are an important feature of contemporary functional
logic languages. Using non-deterministic operations as arguments could cause a
semantical ambiguity. Consider the operations
coin = 0 double x = x + x

coin = 1

Standard term rewriting produces, among others, the derivation
double coin → coin + coin → 0 + coin → 0 + 1 → 1

whose result is (presumably) unintended. Therefore, González-Moreno et al. [13]
proposed the rewriting logic CRWL as a logical foundation for declarative pro-
gramming with non-strict and non-deterministic operations. This logic specifies
the call-time choice semantics [19] where values of the arguments of an opera-
tion are set, though not computed, before the operation is evaluated. In a lazy
strategy, this is naturally obtained by sharing. For instance, the two occurrences
of coin in the derivation above are shared so that “double coin” has only two
results: 0 or 2. Since standard term rewriting does not conform to the intended
call-time choice semantics, other notions of rewriting have been proposed to for-
malize this idea, like graph rewriting [11,12] or let rewriting [21]. In this paper,
we use a simple reduction relation that we sketch without giving all details
(which can be found in [21]).

In the following, we ignore free (logic) variables since they can be con-
sidered as syntactic sugar for non-deterministic data generator operations [3].
Thus, a value is an expression without operations or free variables. To cover

Equivalence Checking of Non-deterministic Operations 153

non-strict computations, expressions can also contain the special symbol ⊥
to represent undefined or unevaluated values. A partial value is a value con-
taining occurrences of ⊥. A partial constructor substitution is a substitution
that replaces variables by partial values. A context C[·] is an expression with
some “hole”. The reduction relation we use throughout this paper is defined
as follows (conditional rules are not considered for the sake of simplicity):

Fun C[f σ(t1) . . . σ(tn)] → C[σ(r)] where f t1 . . . tn = r is a program rule
and σ a partial constructor substitution

Bot C[e] → C[⊥] where e �= ⊥
The first rule models call-time choice: if a rule is applied, the actual arguments of
the operation must have been evaluated to partial values. The second rule models
non-strictness by allowing the evaluation of any subexpression to an undefined
value (which is intended if the value of this subexpression is not demanded). As
usual, ∗→ denotes the reflexive and transitive closure of this reduction relation.
The equivalence of this rewrite relation and CRWL is shown in [21].

3 Equivalent Operations

As discussed above, equivalence of operations can be defined in different ways.
Ground equivalence and computed result equivalence only compare the values
of applications. This is too weak since some operations have no finite values.

Example 2. Consider the following operations that generate infinite lists of num-
bers:
ints1 n = n : ints1 (n+1) ints2 n = n : ints2 (n+2)

Since these operations do not produce finite values, we cannot detect any dif-
ference when comparing only computed results. However, they behave different
when put into some context, e.g., an operation that selects the second element
of a list:
snd (x:y:zs) = y

Now, snd (ints1 0) and snd (ints2 0) evaluate to 1 and 2, respectively.

Therefore, we do not consider these operations as equivalent. This motivates
the following notion of equivalence for possibly non-terminating and non-
deterministic operations.3

Definition 1 (Equivalence). Let f1, f2 be operations of type τ → τ ′. f1 is
equivalent to f2 iff, for any expression E1, E1

∗→ v iff E2
∗→ v, where v is a

value and E2 is obtained from E1 by replacing each occurrence of f1 with f2.

This notion of equivalence conforms with the usual notion of contextual equiv-
alence in programming languages (e.g., see [25] for a tutorial). It was already

3 The extension to operations with several arguments is straightforward. For the sake
of simplicity, we formally define our notions only for unary operations.

154 S. Antoy and M. Hanus

proposed in [5] as the notion of equivalence for functional logic programs and
also defined in [6] as “contextual equivalence” for functional logic programs.

Thus, ints1 and ints2 are not equivalent. Moreover, even terminating opera-
tions that always compute same results might not be equivalent if put into some
context.

Example 3. Consider the definition of lists sorted in ascending order:
sorted [] = True

sorted [_] = True

sorted (x:y:zs) = x<=y && sorted (y:zs)

We can use this definition and the definition of permutations above to provide
a precise specification of sorting a list by computing some sorted permutation:
sort xs | sorted ys = ys where ys = perm xs

We might try to obtain an even more compact formulation by defining the
“sorted” property as an operation that is the (partial) identity on sorted lists:
idSorted [] = []

idSorted [x] = [x]

idSorted (x:y:zs) | x<=y = x : idSorted (y:zs)

Then we can define another operation to sort a list by composing perm and
idSorted:
sort’ xs = idSorted (perm xs)

Although both sort and sort’ compute sorted lists, they might behave differently
in a same context. For instance, suppose we want to compute the minimum of a
list by returning the head element of the sorted list:
head (x:xs) = x

Then head (sort [3,2,1]) returns 1, as expected, but head (sort’ [3,2,1])

returns 1 as well as 2. The latter unintended value is obtained by computing
the permutation [2,3,1] so that head (idSorted [2,3,1]) returns 2, since the
list rest idSorted [3,1] is not evaluated due to non-strictness.

This example shows that our strong notion of equivalence is reasonable. How-
ever, testing this equivalence might require the generation of arbitrary contexts.
Therefore, we show in the next section how to avoid this context generation.

4 Refined Equivalence Criteria

The definition of equivalence as stated in Definition 1 covers the intuition that
equivalent operations can be interchanged at any place in an expression without
changing its value. Proving such a general form of equivalence could be difficult.
Therefore, we define another form of equivalence that is based on an operation
to observe the computed results of the corresponding operations.

Definition 2 (Observable equivalence). Let f1, f2 be operations of type τ →
τ ′. f1 is observably equivalent to f2 iff, for all operations g of type τ ′ → τ ′′, all
expressions e and values v, g (f1 e) ∗→ v iff g (f2 e) ∗→ v.

Equivalence Checking of Non-deterministic Operations 155

We can expect that proving observable equivalence is easier than equivalence
since we trade a context made of an arbitrary expression with multiple occur-
rences of a function f with a single function call with a single occurrence of
f . Fortunately, the next theorem shows that proving observable equivalence is
sufficient in general.

Theorem 1. Let f1, f2 be operations of type τ → τ ′. f1 and f2 are equivalent
iff they are observably equivalent.

Proof. It is trivial that equivalence implies observable equivalence. Hence, we
assume that f1 and f2 are observably equivalent, i.e., for all operations g of type
τ ′ → τ ′′, all expressions e and values v, g (f1 e) ∗→ v iff g (f2 e) ∗→ v. We show by
induction on the number n of occurrences of the symbol f1 the following claim:

If E1 is an expression with n occurrences of f1, E2 is obtained from E1 by
replacing each occurrence of f1 with f2, and v is a value, then E1

∗→ v iff
E2

∗→ v.

Base case (n = 0): Since E1 contains no occurrence of f1, E2 = E1 and the claim
is trivially satisfied.

Inductive case (n > 0): Assume the claim holds for n − 1 and E1 contains n

occurrences of f1 and E1
∗→ v for some value v. We have to show that E2

∗→ v
(the opposite direction is symmetric) where E2 is obtained from E1 by replacing
each occurrence of f1 with f2. Let p be a position in E1 with E1|p = f1 e and e

does not contain any occurrence of f1. Since E1
∗→ v, by definition of ∗→, there

is a partial value t1 with f1 e
∗→ t1 and E1[t1]p

∗→ v. We define a new operation
g by

g x = E1[x]p

where x is a variable that does not occur in E1. Hence g (f1 e) ∗→ g t1 →
E1[t1]p

∗→ v. Our assumption implies g (f2 e) ∗→ v. By definition of ∗→, there is a
partial value t2 with g (f2 e) ∗→ g t2 → E1[t2]p

∗→ v. Since E1[t2]p contains n−1
occurrences of f1, the induction hypothesis implies that E2[t2]p

∗→ v. Therefore,
E2 = E2[f2 e]p

∗→ E2[t2]p
∗→ v. ��

A proof that two operations are observably equivalent could still be difficult since
we have to take all possible observation operations into account. However, the
next result shows that it is sufficient to verify that two operations yield always
the same partial values on identical inputs.

Theorem 2. Let f1, f2 be operations of type τ → τ ′. If, for all expressions e
and partial values t, f1 e

∗→ t iff f2 e
∗→ t, then f1 and f2 are equivalent.

Proof. By Theorem 1 it is sufficient to show the observable equivalence of f1 and
f2. Hence, let g be an operation of type τ ′ → τ ′′, e an expression and v a value with
g (f1 e) ∗→ v. We have to show that g (f2 e) ∗→ v (the other direction is symmetric).
By definition of ∗→, there is some partial value t with f1 e

∗→ t and g t
∗→ v. By the

assumption of the theorem, f2 e
∗→ t. Hence, g (f2 e) ∗→ g t

∗→ v. ��

156 S. Antoy and M. Hanus

Note that the consideration of all partial result values is essential to estab-
lish equivalence. For instance, consider the operations sort and sort’ defined
in Sect. 3. Although sort and sort’ compute the same values, we have that
sort’ [2,3,1]

∗→ 2 :⊥ but sort [2,3,1] cannot be derived to 2 : ⊥. Actually,
we have seen that sort and sort’ are not equivalent.

The following result is the converse of Theorem 2. It shows that not only
having the same partial values is a sufficient condition for the equivalence of
function, but also a necessary condition. For partial values t and u, we write
t < u iff t is obtained by one or more applications of the Bot rule to u. It follows
that if u is a partial value of an expression e, then any t < u is also a partial
value of e. If t is a partial value, we denote by t̄ an expression obtained from t
by replacing any instance of ⊥ in t with a fresh variable.

Theorem 3. Let f1, f2 be operations of type τ → τ ′. If, for some expression
e, the partial values of f1 e differ from those of f2 e, then f1 and f2 are not
equivalent.

Proof. We construct a function g that, under the statement hypothesis, witnesses
the non-equivalence of f1 and f2. Let T1 be the set of partial values of f1 e and
T2 the set of partial values of f2 e. W.l.o.g., we assume that there exists some
partial value t ∈ T1 such that t �∈ T2. Let g be defined by the single rule:

g t̄ → 0

Then, g (f1 e) ∗→ g t → 0, whereas we show that g (f2 e) � ∗→ 0. Suppose the
contrary. Then, it must be that f2 e

∗→ u with u is an instance of t̄. This implies
t < u, which in turn implies t ∈ T2. ��
The next corollary is useful to avoid the consideration of all argument expressions
in equivalence proofs.

Corollary 1. Let f1, f2 be operations of type τ → τ ′. If, for all partial values t
and t′, f1 t

∗→ t′ iff f2 t
∗→ t′, then f1 and f2 are equivalent.

Proof. Assume that f1 t
∗→ t′ iff f2 t

∗→ t′ holds for all partial values t and t′.
Consider an expression e and a partial value t1 such that f1 e

∗→ t1. By definition
of ∗→, there is a partial value t0 with e

∗→ t0 and f1 t0
∗→ t1. Our assumption

implies f2 t0
∗→ t1. Hence f2 e

∗→ f2 t0
∗→ t1. Since the other direction is

symmetric, Theorem 2 implies the equivalence of f1 and f2. ��
Hence, we have a sufficient criterion for equivalence checking which does not
require the enumeration of arbitrary contexts. Instead, it is sufficient to test the
equivalence on all partial values. Such a test can be performed by property-based
test tools, as shown in the next section.

One may wonder whether the consideration of values instead of partial values
is enough for equivalence checking. The next example shows that the answer is
negative.

Example 4. Consider the following operations that take and return Booleans.

Equivalence Checking of Non-deterministic Operations 157

f1 True = True f2 _ = True

f1 False = True

Functions f1 and f2 behave identically on every input value. However, f1 ⊥
has no value, whereas f2 ⊥ has value True. Thus, values as arguments are not
as discriminating as partial values to expose a difference in behavior, whereas
partial values are as discriminating as expressions. Actually, f1 and f2 are not
equivalent: consider the operation failed which has no value.4 Then f2 failed

has value True whereas f1 failed has no value.

Corollary 1 requires to compare all partial result values and not just computed
results. The former is more laborious since an expression might evaluate to many
partial values even if it has a single value. For instance, consider the list generator
fromTo m n = if m>n then [] else m : fromTo (m+1) n

The expression fromTo 1 5 evaluates to the single value [1,2,3,4,5]. According
to the reduction relation defined in Sect. 2, the same expression reduces to the
partial values ⊥, ⊥ : ⊥, 1 : ⊥, ⊥ : ⊥ : ⊥, 1 : ⊥ : ⊥, ⊥ : 2 : ⊥, 1 : 2 : ⊥, . . . If
operations are non-terminating, it is necessary to consider partial result values
in general. For instance, ints1 0 and ints2 0 do not evaluate to a value but they
evaluate to the different partial values 0 : 1 : ⊥ and 0 : 2 : ⊥, respectively, which
shows the non-equivalence of ints1 and ints2 by Corollary 1. Thus, one may
wonder whether for “well behaved” operations it suffices to consider only result
values. This good behavior is captured by the property that a function returns
a value for any argument value, see Definition 3. Unfortunately, the answer is
negative.

Definition 3 (Terminating, totally defined). Let f be an operation of type
τ → τ ′. f is terminating if, for all values t of type τ , any rewrite sequence
f t → t1 → t2 → · · · is finite. f is totally defined if, for all values t of type τ ,
rewrite rule Fun is applicable to f t.

Requiring termination as a condition of good behavior is necessary, as the oper-
ations ints1 and ints2 show. Total definedness is also necessary, as can be seen
by this example:
g1 x = 1 : head []

g2 x = 2 : head []

g1 and g2 are terminating but head is not totally defined. Actually, both g1 0

and g2 0 have no value but they are not equivalent: head (g1 0) and head (g2

0) evaluate to 1 and 2, respectively.

Example 5. Functions h1 and h2, defined below, are totally defined and termi-
nating. For any Boolean value t, h1 t and h2 t produce the same value result,
namely t. However, h1 and h2 are not observably equivalent when applied to
argument failed as witnessed by g.
h1 True = Just True h2 x = Just x

h1 False = Just False g (Just _) = 0

4 A possible definition is: failed = head [].

158 S. Antoy and M. Hanus

Note that we have to use partial input values for equivalence tests even if all
relevant operations are terminating and totally defined. This has been shown in
Example 4, since both operations of this example are terminating and totally
defined.

Now we have enough refined criteria to implement an equivalence checker
with a property-based checking tool.

5 Property-Based Checking

Property-based testing is a useful technique to obtain reliable software systems.
Testing cannot verify the correctness of programs, but it can be performed auto-
matically and it might prevent wasting time when attempting to prove incorrect
properties. If proof obligations are expressed as properties, i.e., Boolean expres-
sions parameterized over input data, and we test these properties with a lot of
input data, we have a higher confidence in the correctness of the properties. This
motivates the use of property testing tools which automate the checking of prop-
erties by random or systematic generation of test inputs. Property-based testing
has been introduced with the QuickCheck tool [8] for the functional language
Haskell and adapted to other languages, like PrologCheck [1] for Prolog, PropEr
[22] for the concurrent functional language Erlang, and EasyCheck [7] and Cur-
ryCheck [15] for the functional logic language Curry. If the test data is generated
in a systematic (and not random) manner, like in SmallCheck [26], GAST [20],
EasyCheck [7], or CurryCheck [15], these tools can actually verify properties for
finite input domains. In the following, we show how to extend the property-based
test tool CurryCheck to support equivalence checking of operations.

Properties can be defined in source programs as top-level entities with result
type Prop and an arbitrary number of parameters. CurryCheck offers a predefined
set of property combinators to define properties. In order to compare expressions
involving non-deterministic operations, CurryCheck offers the property “<˜>”
which has the type a → a → Prop. It is satisfied if both arguments have identical
result sets. For instance, we can state the requirement that permutations do not
change the list length by the property
permLength xs = length (perm xs) <~> length xs

Since the left argument of “<˜>” evaluates to many (expectedly identical) val-
ues, it is relevant that “<˜>” compares result sets (rather than multi-sets). This
is reasonable from a declarative programming point of view, since it is irrelevant
how often some result is computed.

Corollary 1 provides a specific criterion for equivalence testing: Two opera-
tions f1 and f2 are equivalent if, for any partial argument value, they produce
the same partial result value. Since partial values cannot be directly compared,
we model partial values by extending total values with an explicit ⊥ construc-
tor. For instance, consider the data types used in Sect. 1. Assume that they are
defined by
data AB = A | B

data C = C AB

Equivalence Checking of Non-deterministic Operations 159

We define their extension to partial values by renaming all constructors and
adding a ⊥ constructor to each type:
data P_AB = Bot_AB | P_A | P_B

data P_C = Bot_C | P_C P_AB

In order to compare the partial results of two operations, we introduce operations
that return the partial value of an expression w.r.t. a given partial value, i.e., the
expression is partially evaluated up to the degree required by the partial value
(and it fails if the expression has not this value). These operations can easily be
implemented for each data type:
peval_AB :: AB → P_AB → P_AB

peval_AB _ Bot_AB = Bot_AB -- no evaluation

peval_AB A P_A = P_A

peval_AB B P_B = P_B

peval_C :: C → P_C → P_C

peval_C _ Bot_C = Bot_C -- no evaluation

peval_C (C x) (P_C y) = P_C (peval_AB x y)

Now we can test the equivalence of f and g by evaluating both operations to
the same partial value. Thus, a single test consists of the application of each
operation to an input x and a partial result value p together with checking
whether these applications produce p:
f_equiv_g x p = peval_C (f x) p <~> peval_C (g x) p

To check this property, CurryCheck systematically enumerates partial values for
x (see below how this can be implemented) and values for p. During this process,
CurryCheck generates the inputs x = failed and p = (P-C Bot-AB) for which the
property does not hold. This shows that f and g are not equivalent.

In a similar way, we can model partial list result values and test whether sort

and sort’, as defined in Sect. 3, are equivalent. If the domain of list elements
has three values (like the standard type Ordering with values LT, EQ, and GT),
CurryCheck reports a counter-example (a list with three different elements com-
puted up to the first element) with the 89th test. The high number of tests is
due to the fact that test inputs as well as partial output values are enumerated
to test each property.

The number of test cases can be significantly reduced by a different encoding.
Instead of enumerating operation inputs as well as partial result values, we can
enumerate operation inputs only and use a non-deterministic operation which
returns all partial result values of some given expression. For our example types,
these operations can be defined as follows:
pvalOf_AB :: AB -> P_AB

pvalOf_AB _ = Bot_AB

pvalOf_AB A = P_A

pvalOf_AB B = P_B

pvalOf_C :: C -> P_C

pvalOf_C _ = Bot_C

pvalOf_C (C x) = P_C (pvalOf_AB x)

160 S. Antoy and M. Hanus

Now we can test the equivalence of f and g by checking whether both operations
have the same set of partial values for a given input:
f_equiv_g x = pvalOf_C (f x) <~> pvalOf_C (g x)

CurryCheck returns the same counter-example as before. This is also true for
the permutation sort example, but now the counter-example is found with the
11th test.

Due to the reduced search space of our second implementation of equivalence
checking, we might think that this method should always be preferred. However,
in case of non-terminating operations, it is less powerful. For instance, consider
the operations ints1 and ints2 of Example 2. Since ints1 0 has an infinite set
of partial result values, the equivalence test with pvalOf operations would try to
compare sets with infinitely many values. Thus, it would not terminate and does
not yield a counter-example. However, the equivalence test with peval operations
returns a counter-example by fixing a partial term (e.g., a partial list with at
least two elements) and evaluating ints1 and ints2 up to this partial list.

Based on these considerations, equivalence checking is implemented in Cur-
ryCheck as follows. First, CurryCheck provides a specific “operation equivalence”
property denoted by <=>. Hence,
f_equiv_g = f <=> g

denotes the property that f and g are equivalent operations. In contrast to
other properties like “<~>”, which are implemented by some Curry code [7], the
property “<=>” is just a marker5 which will be transformed by CurryCheck into
a standard property based on the results of Sect. 4. For this purpose, CurryCheck
transforms the property above as follows:

1. If both operations f and g are terminating, then the sets of partial result
values are finite so that these sets can be compared in a finite amount of
time. Thus, if T is the result type of f and g, the auxiliary operation pvalOf-T

(and similarly for all types on which T depends) is generated as shown above
and the following property is generated:
f_equiv_g x = pvalOf_T (f x) <~> pvalOf_T (g x)

2. Otherwise, for each partial value, CurryCheck tests whether both operations
compute this result. Thus, if T is the result type of f and g, the auxiliary
operation peval-T (and similarly for all types on which T depends) is generated
as shown above and the following property is generated:
f_equiv_g x p = peval_T (f x) p <~> peval_T (g x) p

In order to decide between these transformation options, CurryCheck uses the
analysis framework CASS [17] to approximate the termination behavior of both
operations. If the termination property of both operations can be proved (for
this purpose, CASS uses an ordering on arguments in recursive calls), the first
transformation is used, otherwise the second. If the termination cannot be proved

5 CurryCheck also ensures that both arguments of “<=>” are defined operations,
otherwise an error is reported.

Equivalence Checking of Non-deterministic Operations 161

but the programmer is sure about the termination of both operations, he can
also mark the property with the suffix ’TERMINATE to tell CurryCheck to use the
first transformation.

Example 6. Consider the recursive and non-recursive definition of the McCarthy
91 function:
mc91r n = if n > 100 then n-10 else mc91r (mc91r (n+11))

mc91n n = if n > 100 then n-10 else 91

Since CASS is not able to check the termination of mc91r, we annotate the
equivalence property so that CurryCheck uses the first transformation:
mc91r_equiv_mc91n’TERMINATE = mc91r <=> mc91n

Due to the results of Sect. 4, the generated properties must be checked with all
partial input values. In the default mode, CurryCheck generates (total) values
for input parameters of properties. However, CurryCheck also supports the def-
inition of user-defined generators for input parameters (see [15] for details). For
instance, one can define a generator for partial Boolean values by
genBool = genCons0 failed ||| genCons0 False ||| genCons0 True

CurryCheck automatically defines generators for partial values of all data types
occurring in equivalence properties.

According to the results of Sect. 4, checking the above properties allows us
to find counter-examples for non-equivalent operations if the domain of values
is finite (as in the example of Sect. 1) or we enumerate enough test inputs. An
exception are specific non-terminating operations. For instance, consider the
contrived operations
k1 = [loop,True]

k2 = [loop,False]

where the evaluation of loop does not terminate. The non-equivalence of k1 and
k2 can be detected by evaluating them to [⊥, True] and [⊥, False], respectively.
Since a systematic enumeration of all partial values might generate the value
[True,⊥] before [⊥, True], CurryCheck might not find the counter-example due
to the non-termination of loop (since CurryCheck performs all tests in a sequen-
tial manner). Fortunately, this is a problem which rarely occurs in practice. Not
all non-terminating operations are affected by this problem but only operations
that loop without producing any data. For instance, the non-equivalence of ints1
and ints2 of Example 2 can be shown with our approach. Such operations are
called productive in [16]. Intuitively, productive operations always generate some
data after a finite number of steps.

In order to avoid such non-termination problems when CurryCheck is used
in an automatic manner (e.g., by a software package manager), CurryCheck has
an option for a “safe” execution mode. In this mode, operations involved in an
equivalence property are analyzed for their productivity behavior. If it cannot
be proved that an operation is productive (by approximating their run-time
behavior with CASS), the equivalence check for this operation is ignored. This
ensures the termination of all equivalence tests. The restriction to productive

162 S. Antoy and M. Hanus

operations is not a serious limitation since, as evaluated in [16], most operations
occurring in practical programs are actually productive. If there are operations
where CurryCheck cannot prove productivity but the programmer is sure about
this property, the property can be annotated with the suffix ’PRODUCTIVE so that
it is also checked in the safe mode.

Example 7. Consider the definition of all prime numbers by the sieve of Eratos-
thenes:
primes = sieve [2..]

where sieve (x:xs) = x : sieve (filter (\y -> y ‘mod‘ x > 0) xs)

After looking at the first four values of this list, a naive programmer might think
that the following prime generator is much simpler:
dummy_primes = 2 : [3,5..]

Testing the equivalence of these two operations is not possible in the safe mode,
since the productivity of primes depends on the fact that there are infinitely
many prime numbers. Hence, a more experienced programmer would annotate
the equivalence test as
primes_equiv’PRODUCTIVE = primes <=> dummy_primes

so that it will be tested even in the safe mode and CurryCheck finds a counter-
example (evaluating the result list up to the first five elements) to this property.

6 Related Work

Equivalence of operations was defined for functional logic programs in [5]. There,
this notion is applied to relate specifications and implementations. Moreover, it
is shown how to use specifications as dynamic contracts to check the correct
behavior of implementations at run-time, but static methods to check equiva-
lence are not discussed.

Bacci et al. [6] formalized various notions of equivalence, as reviewed in
Sect. 1, and developed the tool AbsSpec which derives specifications, i.e., equa-
tions up to some fixed depth of the involved expressions, from a given Curry pro-
gram. Although the derived specifications are equivalent to the implementation,
their method cannot be used to check the equivalence of arbitrary operations
(and AbsSpec does no longer work at the time of this writing).

QuickSpec [9] has similar goals as AbsSpec but is based on a different set-
ting. QuickSpec infers specifications in form of equations from a given functional
program but it uses a black box approach, i.e., it uses testing to infer program
properties. Thus, it can be seen as an intermediate approach between AbsSpec
and our approach: similarly to our approach, QuickSpec uses property-based
testing to check the correctness of specifications, but it is restricted to func-
tional programs, which simplifies the notion of equivalence.

Our method to check equality of computed results for all partial values is
also related to test properties in non-strict functional languages [10]. Thanks to
the non-deterministic features of Curry, our approach does not require impure

Equivalence Checking of Non-deterministic Operations 163

features like isBottom or unsafePerformIO, which are used in [10] to compare
partial values.

Partial values as inputs for property-based testing are also used in Lazy
SmallCheck [26], a test tool for Haskell which generates data in a systematic
(not random) manner. Partial input values are used to reduce the number of
test cases: if a property is satisfied for a partial value, it is also satisfied for all
refinements of this partial value so that it is not necessary to test these refine-
ments. Thus, Lazy SmallCheck exploits partial values to reduce the number of
test cases for total values, where in our approach partial values are used to avoid
testing with all possible contexts and to find counter examples which might not
be detected with total values only. In contrast to our explicit encoding of partial
values, which is possible due to the logic features of Curry, Lazy SmallCheck
represents partial values as run-time errors which are observed using imprecise
exceptions [24].

The use of property-based testing to check the equivalence of operations in
a software package manager with support for semantic versioning is proposed
in [16]. This approach concentrates on ensuring the termination of equivalence
checking by introducing the notion of productive operations. However, for termi-
nating operations only ground equivalence is tested so that the proposed seman-
tic versioning checking method is more restricted than in our case. The results
presented in this paper can be used to generalize this semantic versioning tool.

7 Conclusions

We have presented a method to check the equivalence of operations defined by a
functional logic program. This method is useful for software package managers
to provide automatic semantic versioning checks, i.e., to compare two different
versions of a software package, or to check the correctness of an implementation
against a specification. Since we developed our results for a non-strict functional
logic language, the same techniques can be used to test equivalence in purely
functional languages, e.g., for Haskell programs.

We have shown that the general equivalence of operations, which requires
that the same values are computed in all possible contexts, can be reduced to
checking or proving equality of partial results terms. Our results support the
use of automatic property-based test tools for equivalence checking. Although
this method is incomplete, i.e., it does not formally ensure equivalence, it pro-
vides a high confidence and prevent wasting time in attempts to prove incorrect
equivalence properties. Moreover, the presented results could also be helpful for
manual proof construction or using proof assistants.

For future work, we will integrate our method in the software package man-
ager CPM [16]. Furthermore, it is interesting to explore how automatic theorem
provers can be used to verify specific equivalence properties.

Acknowledgments. The authors are grateful to Finn Teegen for constructive remarks
to an initial version of this paper, and to the anonymous reviewers for their helpful

164 S. Antoy and M. Hanus

comments to improve this paper. This material is based in part upon work supported
by the National Science Foundation under Grant No. 1317249.

References

1. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing
in Prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 1

2. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

3. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87–101. Springer, Heidelberg (2006). https://doi.org/10.1007/11799573 9

4. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010)

5. Antoy, S., Hanus, M.: Contracts and specifications for functional logic program-
ming. In: Russo, C., Zhou, N.-F. (eds.) PADL 2012. LNCS, vol. 7149, pp. 33–47.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27694-1 4

6. Bacci, G., Comini, M., Feliú, M.A., Villanueva, A.: Automatic synthesis of speci-
fications for first order Curry. In: Principles and Practice of Declarative Program-
ming (PPDP 2012), pp. 25–34. ACM Press (2012)

7. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7 23

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming (ICFP
2000), pp. 268–279. ACM Press (2000)

9. Claessen, K., Smallbone, N., Hughes, J.:QuickSpec: guessing formal specifications
using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp.
6–21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13977-2 3

10. Danielsson, N.A., Jansson, P.: Chasing bottoms: a case study in program veri-
fication in the presence of partial and infinite values. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 85–109. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27764-4 6

11. Echahed, R., Janodet, J.-C.: On constructor-based graph rewriting systems.
Research report IMAG 985-I, IMAG-LSR, CNRS, Grenoble (1997)

12. Echahed, R., Janodet, J.-C.: Admissible graph rewriting and narrowing. In: Pro-
ceedings of the Joint International Conference and Symposium on Logic Program-
ming (JICSLP 1998), pp. 325–340 (1998)

13. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. Logic Program. 40, 47–87 (1999)

14. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1 6

15. Hanus, M.: CurryCheck: checking properties of curry programs. In: Hermenegildo,
M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 222–239.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 13

https://doi.org/10.1007/978-3-319-07151-0_1
https://doi.org/10.1007/11799573_9
https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1007/978-3-540-78969-7_23
https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1007/978-3-540-27764-4_6
https://doi.org/10.1007/978-3-540-27764-4_6
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-319-63139-4_13

Equivalence Checking of Non-deterministic Operations 165

16. Hanus, M.: Semantic versioning checking in a declarative package manager. In:
Technical Communications of the 33rd International Conference on Logic Pro-
gramming (ICLP 2017). OpenAccess Series in Informatics (OASIcs), pp. 6:1–6:16
(2017)

17. Hanus, M., Skrlac, F.: A modular and generic analysis server system for functional
logic programs. In: Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation (PEPM 2014), pp. 181–188. ACM Press
(2014)

18. Hanus, M. (ed.): Curry: an integrated functional logic language (vers. 0.9.0) (2016).
http://www.curry-language.org

19. Hussmann, H.: Nondeterministic algebraic specifications and nonconfluent term
rewriting. J. Logic Program. 12, 237–255 (1992)

20. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44854-3 6

21. López-Fraguas, F.J., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: A simple
rewrite notion for call-time choice semantics. In: Proceedings of the 9th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2007), pp. 197–208. ACM Press (2007)

22. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifi-
cations with property-based testing. In: Proceedings of the 10th ACM SIGPLAN
Workshop on Erlang, pp. 39–50 (2011)

23. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, Cambridge (2003)

24. Peyton Jones, S., Reid, A., Henderson, F., Hoare, T., Marlow, S.: A semantics
for imprecise exceptions. In: Proceedings of the ACM SIGPLAN 1999 Conference
on Programming Language Design and Implementation (PLDI 1999), pp. 25–36.
ACM Press (1999)

25. Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45699-6 8

26. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: auto-
matic exhaustive testing for small values. In: Proceedings of the 1st ACM SIG-
PLAN Symposium on Haskell, pp. 37–48. ACM Press (2008)

http://www.curry-language.org
https://doi.org/10.1007/3-540-44854-3_6
https://doi.org/10.1007/3-540-45699-6_8

Optimizing Declarative Parallel
Distributed Graph Processing by Using

Constraint Solvers

Akimasa Morihata1(B), Kento Emoto2, Kiminori Matsuzaki3, Zhenjiang Hu4,
and Hideya Iwasaki5

1 University of Tokyo, Tokyo, Japan
morihata@graco.c.u-tokyo.ac.jp

2 Kyushu Institute of Technology, Kitakyushu, Japan
3 Kochi University of Technology, Kami, Japan

4 National Institute of Informatics, Tokyo, Japan
5 The University of Electro-Communications, Chofu, Japan

Abstract. Vertex-centric graph processing is a promising approach for
facilitating development of parallel distributed graph processing pro-
grams. Each vertex is regarded as a tiny thread and graph process-
ing is described as cooperation among vertices. This approach resolves
many issues in parallel distributed processing such as synchronization
and load balancing. However, it is still difficult to develop efficient pro-
grams requiring careful problem-specific tuning. We present a method
for automatically optimizing vertex-centric graph processing programs.
The key is the use of constraint solvers to analyze the subtle properties of
the programs. We focus on a functional vertex-centric graph processing
language, Fregel, and show that quantifier elimination and SMT (Sat-
isfiability Modulo Theories) are useful for optimizing Fregel programs.
A preliminary experiment indicated that a modern SMT solver can per-
form optimization within a realistic time frame and that our method
can significantly improve the performance of naively written declarative
vertex-centric graph processing programs.

1 Introduction

Nowadays big graphs are ubiquitous. Nearly every interesting data set, such as
those for customer purchase histories, social networks, and protein interaction
networks, consists of big graphs. Parallel distributed processing is necessary for
analyzing big graphs that cannot fit in the memory of a single machine. However,
parallel distributed processing is difficult due to such issues as communications,
synchronizations, and load balancing.

Vertex-centric graph processing (abbreviated to VcGP) [1] is a promising app-
roach for reducing the difficulties of parallel distributed graph processing. VcGP
is based on the “think like a vertex” programming style. It regards each vertex as
a tiny thread and describes graph processing as cooperation among vertices, each
of which updates its value using information supplied from other vertices.

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 166–181, 2018.
https://doi.org/10.1007/978-3-319-90686-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_11&domain=pdf

Optimizing Declarative Parallel Distributed Graph Processing 167

0
6

2

∞

2

∞
3

1

∞

3 ⇒
0

6 6

2
2

6

∞
2

2
3 ∞

1

∞

∞

∞
3 ⇒

0
6 6

2
2

5

8
2

2
3 5

1

∞

5

5
3 ⇒

0
6 6

2
2

5

7
2

2
3 5

1

6

5

5
3

(a) (b) (c) (d)

Fig. 1. Vertex-centric SSSP: doubly-circled vertex denotes source, and framed numbers
denote messages.

As an example, consider the following algorithm illustrated in Fig. 1 for the
single-source shortest path problem (SSSP).

– First, the source vertex is assigned 0, and the other vertices are assigned ∞.
The values are the estimated distances from the source vertex (Fig. 1 (a)).

– Then, each vertex sends the estimated distances to its neighbors and updates
its value if it receives a shorter distance (Fig. 1(b–c)).

– The previous step is repeated until all the values are no longer changed
(Fig 1(d)).

A VcGP framework executes programs in a distributed environment. Vertices
(and accordingly edges) are distributed among computational nodes. At every
step, every computational node simultaneously updates the values of its vertices
in accordance with the specified computation. Computational nodes exchange
messages if information of other nodes is necessary. The VcGP approach releases
programmers from such typical difficulties as communication, synchronization,
and load balancing, and makes it easier to write runnable parallel distributed
graph processing programs.

Although the VcGP approach is beneficial, it is still difficult to achieve effi-
ciency. Natural VcGP programs tend to be slow. For instance, there is room for
improvement in the above SSSP algorithm.

– It is unnecessary to process all vertices at every step; it is sufficient to process
only those vertices for which values are updated. Similarly, it is unnecessary
for all vertices to communicate their neighbors at every step.

– We have adopted synchronous execution: each vertex is processed exactly once
at each step. One can instead adopt asynchronous execution, which processes
vertices without synchronization barriers. The relative efficiencies of these two
approaches depend on the situation. For SSSP, both executions lead to the
same solution, and combining the two approaches may improve performance.

– The algorithm is essentially the Bellman-Ford algorithm, whose work is
O(n2), where n is the size of the graph. Processing near-source vertices prior
to distant ones, like Dijkstra’s algorithm, may reduce the amount of work
because the work of Dijkstra’s algorithm is O(n log n).

These inefficiencies have already been known, and several frameworks have been
proposed to remove them [1–7]. For instance, the Pregel framework [1] enables

168 A. Morihata et al.

us to inactivate vertices so that they are ignored by the runtime system until
they receive a new message. However, it remains the programmer’s responsibil-
ity to be aware of these inefficiencies and to mitigate them by using available
functionalities. This is fairly difficult because these inefficiencies and potential
improvements may be hidden by nontrivial problem-specific properties.

We have developed a method for automatically removing such inefficiencies
from naive programs written in a functional VcGP language, Fregel [8]. The key
is the use of modern constraint solvers for identifying potential optimizations.
The declarative nature of Fregel enables optimizations to be directly reduced to
constraint solving problems. We focused on four optimizations.

– Eliminating redundant communications (Sect. 3.1).
– Inactivating vertices that do not need to be processed (Sect. 3.2).
– Removing synchronization barriers and thereby enabling asynchronous exe-

cution (Sect. 3.3).
– Introducing priorities for processing vertices (Sect. 3.4).

Our approach is not specific to these optimizations for Fregel programs. Nontriv-
ial optimizations on declarative VcGP languages will be implemented similarly
if they are formalized as constraint solving problems.

We considered the use of two different constraint solving methods: quantifier
elimination (QE) [9] and satisfiability modulo theories (SMT) [10]. The former
enables the use of arbitrary quantifier nesting and can generate the program
fragments that are necessary for the optimizations; therefore, it is suitable for
formalizing optimizations. However, it is less practical because of its high com-
putational cost. We thus use SMT solvers as a practical implementation method
that captures typical cases. An experiment using a proof-of-concept implemen-
tation demonstrated that a modern SMT solver can perform the optimizations
within a realistic time frame and that the optimizations led to significant per-
formance improvement (Sect. 4).

2 Fregel: Functional VcGP Language

2.1 Pregel

Pregel [1] is a pioneering VcGP framework. We review it first because the fol-
lowing systems were strongly influenced.

A Pregel program essentially consists of a function that is invoked by each
vertex at each step. It usually updates the values stored in vertices using the
following functionalities.

– A vertex can send messages usually to adjacent vertices. The message is
available on the destination at the next step.

– A vertex can inactivate itself. The runtime system skips processing of inactive
vertices. An inactive vertex is reactivated if it receives a message.

– A vertex can read a summary showing the total sum, average, etc. of all active
vertices. This functionality is called an aggregator.

Optimizing Declarative Parallel Distributed Graph Processing 169

sssp g = let init v = if v is the source vertex then 0 else ∞
step v prev = let m = minimum [prev u + e | (e,u) <- is v]

in min (prev v) m

in fregel init step Fix g

Fig. 2. Fregel pseudo-program for single-source shortest path problem.

Pregel is based on the bulk synchronous parallel (BSP) model [11]. Compu-
tations on the BSP model consists of a series of supersteps. A superstep is a
local computation (i.e., invocation of the function by each vertex) followed by
a synchronization barrier that guarantees message arrival. Because of the adop-
tion of the BSP model, computation of a Pregel program is deterministic1: every
vertex can be processed simultaneously without any race conditions. A Pregel
program terminates when all vertices become inactive.

2.2 Fregel

Fregel [8] is a functional VcGP language. It is a subset of Haskell and enables
VcGP programs to be easily written using graph-processing higher-order func-
tions that conceal side effects including communication and vertex inactivation.

Figure 2 shows a pseudo-program for SSSP. For readability, we focus on the
core functionality of Fregel and accordingly use a simplified syntax.

The core of Fregel is the graph processing higher-order function fregel. Its
first parameter, init :: Vertex -> Int in Fig. 2, is applied to each vertex at
the initial step. The second one, step :: Vertex -> (Vertex -> Int) -> Int, is
used at the subsequent steps. The function step takes vertex v and a table,
prev :: Vertex -> Int, which stores the results of the previous step. A vertex
may access results of neighbor vertices using the table and a special function called
a generator. The program in Fig. 2 uses is :: Vertex -> [(Edge,Vertex)],
which enumerates every neighbor with an edge that leads to the neighbor. Other
generators can express other communication patterns including aggregators. Since
information read from the neighbors essentially forms a multiset, the information
should be summarized not by using a conventional list operation but by using an
associative commutative binary operation such as sum and minimum. The opera-
tion should have the unit needed for dealing with an isolated vertex. The third
parameter of fregel, namely Fix, shows that the computation terminates when
the result of the current step is the same as that of the previous one. Note that
Fregel has no construct for inactivating vertices.

The Fregel compiler translates a Fregel program into a Java program
runnable on Giraph2. The functionalities of Giraph are nearly the same as those
of Pregel. An access to a neighbor’s previous value using the prev table and
a generator is compiled to message exchange if the target vertex is located in
a different computational node. Calculating new vertex values using neighbors’
previous values naturally corresponds to a superstep in the BSP model.
1 Except for the order of arrival messages.
2 Apache Giraph: http://giraph.apache.org/.

http://giraph.apache.org/

170 A. Morihata et al.

step v prev = let c1 = 1 [f1(e, prev u) | (e,u) <- is v, p1(prev u)]
...

cn = n [fn(e, prev u) | (e,u) <- is v, pn(prev u)]

in g(prev v, c1, . . . , cm)

Fig. 3. Target program for optimization

3 Optimizing Fregel Programs

Here we describe optimizations for programs written using a fregel function.
We refer to the second parameter, i.e., the one invoked at the non-initial steps,
as step, and assume that it is written in the form shown in Fig. 3. In the pro-
gram, fi, pi, and

⊕
i (1 ≤ i ≤ n) respectively represent computation over each

neighbor’s information, the condition showing the necessity of sending the infor-
mation, and the operator used to summarize the information. g denotes the
calculation of the new value of the vertex. For simplicity, we assume the ter-
mination condition is Fix and only the is function is used as a generator. We
discuss these limitations in Sect. 3.5.

We use SSSP as a running example. For SSSP in Fig. 2, n = 1, f1 = (+),
g = (⊕1) = min, and p1(x) = True.

3.1 Reducing Communication

Since accesses of a neighbor’s information are compiled to message exchange,
modifying the condition pi and thereby avoiding unnecessary accesses reduces
the amount of communications. In the following discussion, we focus on reducing
communications caused by the k-th access expressed by fk, pk, and

⊕
k. Our

strategy is to formalize the situation in which optimization is possible and then
to use constraint solvers to implement the optimization.

Formulation. Let u̇ be the value of the message-sending vertex, and consider
formulating the necessity of sending u̇. The following property naturally formu-
lates that sending u̇ does not affect the computation on the destination vertex.

∀v, e,w1, . . . , wn.

g(v, w1, . . . , wn) = g(v, w1, . . . , wk−1, wk ⊕k fk(e, u̇), wk+1, . . . , wn) (1)

Though correct, this property is not sufficient in practice, as the following exam-
ple shows.

Example: SSSP. For SSSP, Property (1) is instantiated as

∀v, e, w. min(v, w) = min(v,min(w, e + u̇)).

Optimizing Declarative Parallel Distributed Graph Processing 171

This is equivalent to u̇ = ∞, which means that a vertex can skip message sending
if its value is ∞. This result is not satisfactory because a vertex can skip message
sending if its value is unchanged from the previous step.

For capturing the case of SSSP, we need a more general formulation that takes
the previous value into account. A vertex may be able to skip message sending if
sufficient information had been sent at the previous step. The following formula
captures the idea. Here, u̇ and ü respectively denote the current and previous
values of the vertex.

∀v, e,w1, . . . , wn, w′
1, . . . , w

′
n.

g(v′, w′
1, . . . , w

′
n) = g(v′, w′

1, . . . , w
′
k ⊕k fk(e, u̇), w′

k+1 . . . , w′
n)

where v′ = g(v, w1, . . . , wk ⊕k fk(e, ü), wk+1 . . . , wn) (2)

This is a generalization of Property (1). The necessity of u̇ is checked on the
basis of the premise that the message-receiving vertex (which has value v′) took
into account the previous value ü of the message-sending vertex.

Example: SSSP (Contd). Property (2) is instantiated as

∀v, e, w,w′. min(v′, w′) = min(v′,min(w′, e + u̇))
where v′ = min(v,min(w, e + ü)).

This is equivalent to u̇ ≥ ü: a vertex can skip communication when the current
value is not smaller than the previous one. Since the current value is always not
larger than the previous one, this is equivalent to u̇ = ü.

Implementation Using Constraint Solvers. We could implement the opti-
mization by checking Property (2) dynamically for each vertex. However, since
Property (2) consists of quantifiers, its evaluation is likely impossible or very
slow. To obtain efficient codes, we need a method for synthesizing a simple,
especially quantifier-free, formula that is equivalent to (or expressing a sufficient
condition of) the property. For this purpose, we use constraint solvers.

QE translates a formula into a quantifier-free equivalent. For example, it may
translate ∀x. x2 +ax+ b ≥ 0 into 4b−a2 ≥ 0. While QE is theoretically ideal for
our purpose, there are three reasons that using QE solvers may be impractical.
First, there are only a few formal systems for which QE procedures are known.
Second, QE procedures are usually very slow. Third, current implementations
of QE tend to be experimental. Nevertheless, it is worthwhile to formulate the
optimizations as QE because these problems may one day be solved.

As a more practical implementation, we propose using SMT instead of QE.
Given a closed formula consisting of only one kind of quantifier, SMT checks
(i.e., does not translate) whether it is satisfiable. For example, it may answer
“yes” for ∀x, a. x2 + ax + a2 ≥ 0. Recently efficient SMT solvers are intensively
developed and used in many applications.

There are two problems in using SMT for checking Property (2). The prop-
erty contains free variables, u̇ and ü, and moreover, SMT solvers are unable to

172 A. Morihata et al.

sssp g =

let init v = (if v is the source vertex then 0 else ∞, False)

step v prev = let m = minimum [fst (prev u) + e |

(e,u) <- is v, not (snd (prev u))]

v’ = min (fst (prev v)) m

in (v’, v’ == fst (prev v))

in fregel init step Fix g

Fig. 4. Fregel SSSP program obtained by communication reduction, where fst and
snd respectively denote extraction of the first and second components from a pair.

synthesize a simple formula. To overcome these problems, we prepare templates
of simple formulae, such as u̇ = ü. If the SMT solver guarantees that a template
is a sufficient condition of Property (2), we insert the negation of the template
into pk. The effectiveness of this approach relies on the generality of the tem-
plate. We believe u̇ = ü captures most practical cases. Other useful templates
include natural comparisons on u̇ and ü, such as ≥ and/or ≤ on numbers and
lexicographic orders on tuples.

Example: SSSP. We instruct an SMT solver to check the following formula.

∀u̇, ü, v, e, w,w′. (u̇ =ü) ⇒ (min(v′, w′) = min(v′,min(w′, e + u̇))
where v′ = min(v,min(w, e + ü)))

The solver verifies the condition. We thus modify the program as follows. We
instruct each vertex to check and remember the truth of the template; then, we
modify p1 so that it checks the remembered truth. Figure 4 shows the optimized
program. Each node value is a pair, u̇ = (d, b), where d and b respectively denote
the estimated distance from the source and whether the value has been changed.

3.2 Inactivating Vertices

Next we discuss inactivating vertices. Inactive vertices do nothing (including any
message sending) unless they receive a new message. This optimization should
be applied after communication reduction optimization described in Sect. 3.1
because we cannot inactivate vertices that send a message.

A vertex is inactivated if the following condition holds: unless the vertex
receives a message, its value does not change and it does not need to send a
message. The optimization condition is thus formalized as

⎛

⎝
∧

1≤i≤n

¬pi(u̇)

⎞

⎠ ∧ (g(u̇, ι1, . . . , ιn) = u̇), (3)

where each ιi (1 ≤ i ≤ n) is the unit of ⊕i and corresponds to the absence
of messages. Since Property 3 contains no quantifier, this optimization can be
implemented without the use of a constraint solver.

Optimizing Declarative Parallel Distributed Graph Processing 173

Example: SSSP. For the SSSP in Fig. 4, Property (3) is instantiated to b ∧
(min(d,∞) = d) where u̇ = (d, b), which is equivalent to b where u̇ = (d, b). In
short, a vertex can be inactivated if its value is the same as the previous one.

3.3 Removing Barriers

Recall that the execution of Fregel is based on the BSP model. Each local com-
putation is followed by a synchronization barrier. Though this makes program
behaviors deterministic and more understandable, barriers may make execution
slower especially when there are many computational nodes. For most graph
algorithms including SSSP, asynchronous barrier-less execution and synchronous
barrier-full execution yield the same result; thus, barriers are unnecessary.

The flexibility of asynchronous execution enables further optimizations such
as vertex splitting (also known as vertex mirroring) [12,13]. Practical graphs
often contain vertices that have too many edges, and such vertices form a bottle-
neck in VcGP. Vertex splitting resolves the bottleneck by splitting these vertices
and distributing their edges among the computational nodes. With synchronous
execution, vertex splitting requires an additional phase for every step to merge
the messages sent to the split vertices. With asynchronous execution, the addi-
tional phase is unnecessary because message delay does not matter. Another
possible optimization is to repeatedly process vertices in the same computa-
tional node before sending messages to other nodes. This optimization is related
to subgraph-centric (or neighborhood-centric) approaches [4,5] in which not ver-
tices but subgraphs are the target of parallel processing.

We have developed a method that automatically guarantees equivalence
between synchronous and asynchronous execution. We first present the following
lemma. Its proof is obvious and thus omitted.

Lemma 1. For functions h, h′ and a binary relation 	, three conditions are
assumed:

Monotonicity of h: ∀x, y. (x 	 y) ⇒ (h(x) 	 h(y)).
Ordering of h and h′: ∀x. (x 	 h′(x)) ∧ (h′(x) 	 h(x)).
Antisymmetry of 	: ∀x, y. (x 	 y ∧ y 	 x) ⇒ (x = y).

Then, h∗(x) = h∗(h′(x)) holds for any x, where h∗ is defined by h∗(x) = z ⇐⇒
(h(z) = z) ∧ (z = h(h(· · · (h(x)) · · ·))). ��

We apply Lemma 1 as follows. We regard h as a complete one-step process-
ing of the graph. Similarly, we regard h′ as a partial processing in which some
vertices and messages are skipped. We regard asynchronous execution as a series
of partial processing. Lemma 1 guarantees that a partial processing does not
change the result; then, by induction, asynchronous execution does not as well.

Lemma 1 requires an appropriate binary relation, 	. From the ordering
between h and h′, a natural candidate is the comparison of the progress in
computation: g1 	 g2 indicates that graph g2 can be obtained by processing
computation from g1. Another issue for using Lemma 1 is the gap between

174 A. Morihata et al.

graph processing and vertex processing. While h, h′, and 	 deal with graphs, we
would like to consider vertex-processing functions. The following lemma bridges
the gap. For simplicity, we assume that the step function contains only one
access of neighbor’s information.

Lemma 2. For the step function, let 	 be a binary relation defined by x 	
y ⇐⇒ (∃m. y = g(x,m)). Three conditions are assumed:

– ∀x,m,m′. g(x,m ⊕ m′) = g(g(x,m),m′).
– ∀x, y. (x 	 y ∧ y 	 x) ⇒ (x = y).
– ∀x, y, z. (x 	 y) ⇒ (g(z, x) 	 g(z, y)).

Then, hstep, h′
step, and 	G satisfy the premise of Lemma 1, where the first two

are respectively complete and partial one-step processing over the graph by step
and the last one compares graphs based on vertex-wise comparison using 	.

Proof (sketch). The first condition and the definition of 	 guarantee the ordering
between hstep and h′

step. The antisymmetry of 	G easily follows from the second
condition. The third condition together with the first one and the commutativity
of ⊕ guarantees the monotonicity of hstep. ��
The first condition of Lemma 2 can be taken to mean that message delay is not
harmful. This is a natural requirement for asynchronous execution.

Example: SSSP. For SSSP, the definition of the relation 	 is instantiated as
x 	 y ⇐⇒ ∃w. min{x,w} = y, which is equivalent to x ≥ y. Therefore,
confirming the three conditions is easy.

Implementation. The first and second conditions can be checked using either
QE or SMT. Note that the second is equivalent to ∀x,m,w. (g(g(x,m), w) =
x) ⇒ (g(x,m) = x), where y is expressed as g(x,m). Since the definition of 	
contains an existential quantifier, the third condition cannot be directly checked
using SMT. When using an SMT solver, we may instead check the following
sufficient condition.

∀x, y, z. (x 	 y) ⇒ (g(g(z, x), y) = g(z, y))

This can be read to mean that the old result, x, can be “overwritten” by the
newer result, y. This is also natural in asynchronous execution.

3.4 Prioritized Execution

Another interesting optimization asynchronous execution enables is prioritized
execution [3,6,7]. For example in SSSP, a prioritized execution may more inten-
sively process vertices nearer to the source, like Dijkstra’s algorithm.

Prioritized execution typically focuses on vertices whose values are nearer to
the final outcome and thus likely contribute to the final outcome of other vertices.

Optimizing Declarative Parallel Distributed Graph Processing 175

Therefore, it is natural to use 	 defined in Lemma 1, which essentially compares
progress in computation, as a priority for processing vertices. For SSSP, 	 is
equivalent to ≥ and thus is a perfect candidate.

However, there are two problems with using 	 for prioritized execution. First,
since its definition contains an existential quantifier, it is essentially not exe-
cutable unless QE is used. The other, more essential problem is that 	 may
not be a linear order. Nonlinear orders cannot be used for processing ver-
tices efficiently using priority queues. A practical solution to this problem is
to check whether a known linear order, ≥ for example, is consistent with 	; i.e.,
∀x, y. (x 	 y) ⇒ (x ≥ y). If it is, the linear order can be used for prioritization.
Note that an SMT solver can check the condition.

3.5 Limitation and Generalization

We have assumed that information reading from neighbors is expressed using the
is generator. Use of other kinds of generators, including the one for expressing
an aggregator, generally does not introduce any difficulty. We did not assume
anything about communication except that the communication topology does
not change during computation.

A notable exception is the case of vertex inactivation. Aggregator’s result may
change regardless of message arrival. Therefore, if the k-th communication is an
aggregator, the following condition should be checked instead of Property (3).

⎛

⎝
∧

1≤i≤n

¬pi(u̇)

⎞

⎠ ∧ (∀wk. g(u̇, ι1, . . . , wk, . . . , ιn) = u̇)

Namely, the vertex value should not change regardless of the aggregator’s value if
the vertex receives no message. Since it contains a quantifier, unless QE is used,
an executable sufficient condition is needed. A natural candidate is to check the
following condition instead.

∀u̇.

⎛

⎝
∧

1≤i≤n

¬pi(u̇)

⎞

⎠ ⇒ (∀wk. g(u̇, ι1, . . . , wk, . . . , ιn) = u̇)

If it holds, a vertex having u̇ can be inactivated if (
∧

1≤i≤n ¬pi(u̇)) holds. The
condition can be checked using SMT.

We have considered only a certain form of programs. For example, termi-
nation conditions other than Fix and the other graph processing higher-order
functions were neglected. The restriction is theoretically not essential. The Fregel
compiler normalizes other forms of programs into exactly the one in Fig. 3. Nev-
ertheless, from the practical perspective, since the normalization complicates
programs, it is questionable whether normalized programs can be effectively
optimized.

176 A. Morihata et al.

4 Implementation and Evaluation

The feasibility of our method was evaluated by implementing it in the Fregel
compiler.

Table 1. Graphs for experiments

Name #Vertices #Edges

WebBerkStan 685,230 7,600,595

RoadNet-PA 1,088,092 1,541,898

Rand-1M10M 1,000,000 10,000,000

4.1 Implementation

The implementation uses the Z3 SMT solver3 (version 4.3.2). Because the current
Fregel backend, Giraph, does not support asynchronous execution, we imple-
mented only communication reduction and vertex inactivation. There is no con-
ceptual difficulty in implementing the other optimizations.

The implementation was mostly straightforward. It may be worth noting that
the units for minimum and maximum, respectively −∞ and ∞, are necessary
for vertex inactivation. We prepared numerals with −∞ and ∞ and used them
instead of the one conventionally used, such as Int.

4.2 Setup of Experiments

We applied our optimizations to three Fregel programs:

– SSSP: the SSSP program shown in Fig. 2.
– PageRank: a program that calculates PageRank by repeatedly calculating a

weighted sum of the surrounding vertices’ values (30 iterations).
– SCC: a program that calculates strongly connected components by repeat-

edly finding a strongly connected component by a fregel function, which
propagates the maximum vertex id, and then removing that component from
the graph [14].

For each of them, we considered four programs: the original Fregel program, one
to which only the communication reduction was applied (CR), one to which the
communication reduction and vertex inactivation were applied (CR+VI), and a
handwritten Giraph program.

We prepared three graphs: WebBerkStan, RoadNet-PA, and Rand1M-10M
(Table 1). The first two were obtained from the Stanford Large Network Dataset
Collection 4. The former is a web graph; the latter is a road network. The last one

3 Z3 Solver: https://z3.codeplex.com/.
4 https://snap.stanford.edu/data/.

https://z3.codeplex.com/
https://snap.stanford.edu/data/

Optimizing Declarative Parallel Distributed Graph Processing 177

Table 2. Performances of programs (unit: seconds)

Original CR CR+VI Handwritten

SSSP/WebBerkStan 233.2 54.2 46.0 26.8

SSSP/RoadNet-PA 146.4 70.8 47.2 32.1

SSSP/Rand-1M10M 16.9 7.3 7.4 4.6

PageRank/WebBerkStan 20.8 − − 12.7

PageRank/RoadNet-PA 12.6 − − 7.6

PageRank/Rand-1M10M 26.1 − − 17.1

SCC/WebBerkStan 1765.2 1413.1 − 254.9

SCC/RoadNet-PA 326.7 154.9 − 55.5

SCC/Rand-1M10M 35.4 28.1 − 12.6

is a graph generated by randomly connecting vertices. All graphs are directed.
RoadNet-PA is symmetric, i.e., each edge accompanies the reverse edge.

The environment for the experiment was a PC cluster consisting of 16 com-
putational nodes. Each node consisted of Intel Core i5 CPUs (nine of them were
Core i5-2500, and the other seven were i5-7600), 8-GB memory, and a 128-GB
SSD. As the backend of Fregel, we used Giraph 1.3.0, Hadoop 1.2.1, and Java
1.8.0 141 running on Debian 4.9.6-3. We used 16 workers for each experiment.

4.3 Results

For all programs, optimizations were performed immediately (within 0.1 s). For
SSSP, both communication reduction and vertex inactivation were possible. For
PageRank, both optimizations were impossible. For SCC, although the optimizer
guaranteed that both optimizations were possible, the Fregel compiler could not
introduce vertex inactivation because Giraph does not support vertex reactiva-
tion after all the vertices become inactive. If vertices are inactivated based on
Property 3, after finding a strongly connected component, they should be reac-
tivated to find another strongly connected component. The handwritten Giraph
program instead inactivates vertices that are removed from the graph. This opti-
mization is impossible based on Property 3 because its justification requires an
analysis beyond a single fregel function.

As shown in Table 2, the original program for SSSP were significantly slower
than the handwritten program. Our optimization removed most of the ineffi-
ciencies, leading to a program that were roughly only 1.5 times as slow as the
handwritten one. Although our method was not able to optimize PageRank,
the difference between the original and the handwritten programs was relatively
small. For SCC, while the communication reduction was effective, absence of the
vertex inactivation make the optimized program less efficient than the case of
SSSP. The program is especially slow for WebBerkStan. We guess that the inef-
ficiency comes from the iterative nature of the SCC algorithm, which requires

178 A. Morihata et al.

a lot of supersteps (thereby synchronization barriers) for analyzing graphs that
contain many strongly connected components.

Possibility of Other Optimizations. For SSSP and SCC, the other opti-
mizations, barrier removal and prioritized execution, are theoretically applicable.
They may be effective especially for SCC. The maximum vertex id is intensively
propagated without being interrupted by barriers. Lemma 2 cannot be applied
to PageRank. Existing asynchronous implementations of PageRank use the pre-
vious messages of neighbors if new ones have not yet arrived. Lemma 2 considers
processing computations using arrived messages only.

5 Related Work

As mentioned in the introduction, the optimizations discussed are not new. Ver-
tex inactivation is a part of the core functionality of Pregel [1]. The communica-
tion reduction technique for SSSP was also reported [1]. Many VcGP frameworks
use asynchronous execution [15–17]; moreover, some combine asynchronous and
synchronous execution to further improve efficiency [2,3]. Some frameworks
[3,6,7] support prioritized execution as well. The effectiveness of these optimiza-
tions has been intensively studied. Our contribution is their automation using
constraint solvers.

Modern constraint solving techniques including QE and SMT have been used
for program analysis and synthesis [18]. A typical application is optimization of
nested loops, especially stencil loops [19–21]. Our optimization can be under-
stood as a variant of such loop optimizations. For instance, introduction of asyn-
chronous execution is essentially an exchange of the inner and outer loops, which
is a typical application of constraint solving techniques. From this perspective,
the distinctive feature of our study is that it deals with graph manipulation
programs. Graph manipulation tends to form irregular complex loops and may
not be captured by formalisms supported by constraint solvers, e.g., a system
of linear inequalities. Our study focused on VcGP rather than general graph
processing and provided a supporting lemmas (Lemmas 1 and 2) that enable
constraint solvers to perform optimizations.

Most related systems are Elixir [6,22] and Distributed SociaLite [23]. Elixir
automatically derives efficient distributed graph processing from the logical spec-
ifications of the output graph. It uses an SMT solver to specify the vertices that
should be processed at each step. Distributed SociaLite is a graph processing
language similar to Datalog. It accelerates SSSP-like computation by using the
generalized Δ-stepping algorithm [24], in which vertices are processed according
to a special priority, if a certain kind of monotonicity property is detected. Both
start from declarative programs and apply nontrivial optimizations by analyz-
ing certain properties. Unfortunately, both require programmers to provide some
clues for optimizations. For instance, with Elixir, programmers should specify the
conditions for sending messages and the priorities for processing vertices. With
Distributed SociaLite, the generalized Δ-stepping is applied only if programmers

Optimizing Declarative Parallel Distributed Graph Processing 179

use certain operators. In addition, both frameworks are based on asynchronous
execution. We have shown that intensive use of constraint solvers enables many
interesting optimizations to be applied to nearly annotation-free deterministic
programs.

6 Conclusion and Future Work

We have developed a method of automatically applying nontrivial optimizations
to declarative VcGP programs. The key is the use of constraint solvers to reveal
the program properties. In our experiments, optimizations were achieved within
a realistic time frame and led to significant performance improvement.

We are developing another backend of Fregel based on Pregel+5. The new
backend will enable more rigorous evaluation of our method.

Our approach to optimize Fregel programs can be used for other declarative
graph processing frameworks [6,7,22,23,25]. These frameworks generally require
users to write specific programs (e.g., adding annotations and/or invoking certain
API functions) in order to apply nontrivial optimizations. It would be interesting
if constraint solvers enabled these optimizations to be applied to naively written
programs.

Acknowledgements. The authors are grateful to Shigeyuki Sato for discussion with
him about related work. This study is partly supported by JSPS Kakenhi JP26280020
and JP15K15965.

References

1. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Elmagarmid,
A.K., Agrawal, D. (eds.) Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2010, pp. 135–146. ACM (2010)

2. Xie, C., Chen, R., Guan, H., Zang, B., Chen, H.: SYNC or ASYNC: time to
fuse for distributed graph-parallel computation. In: Cohen, A., Grove, D. (eds.)
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2015, pp. 194–204. ACM (2015)

3. Liu, Y., Zhou, C., Gao, J., Fan, Z.: Giraphasync: supporting online and
offline graph processing via adaptive asynchronous message processing. In:
Mukhopadhyay, S., Zhai, C., Bertino, E., Crestani, F., Mostafa, J., Tang, J., Si, L.,
Zhou, X., Chang, Y., Li, Y., Sondhi, P. (eds.) Proceedings of the 25th ACM Inter-
national Conference on Information and Knowledge Management, CIKM 2016, pp.
479–488. ACM (2016)

4. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From “think
like a vertex” to “think like a graph”. PVLDB 7(3), 193–204 (2013)

5. Quamar, A., Deshpande, A., Lin, J.J.: NScale: neighborhood-centric large-scale
graph analytics in the cloud. VLDB J. 25(2), 125–150 (2016)

5 Pregel+: www.cse.cuhk.edu.hk/pregelplus/.

www.cse.cuhk.edu.hk/pregelplus/

180 A. Morihata et al.

6. Prountzos, D., Manevich, R., Pingali, K.: Elixir: a system for synthesizing concur-
rent graph programs. In: Leavens, G.T., Dwyer, M.B. (eds.) Proceedings of the
27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, pp.
375–394. ACM (2012)

7. Cruz, F., Rocha, R., Goldstein, S.C.: Declarative coordination of graph-based par-
allel programs. In: Asenjo, R., Harris, T. (eds.) Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2016, pp. 4:1–4:12. ACM (2016)

8. Emoto, K., Matsuzaki, K., Hu, Z., Morihata, A., Iwasaki, H.: Think like a vertex,
behave like a function! A functional DSL for vertex-centric big graph processing. In:
Garrigue, J., Keller, G., Sumii, E. (eds.) Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, pp. 200–213.
ACM (2016)

9. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Springer, Vienna (1998). https://doi.org/10.1007/978-3-
7091-9459-1

10. de Moura, L.M., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

11. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

12. Yan, D., Cheng, J., Lu, Y., Ng, W.: Effective techniques for message reduction and
load balancing in distributed graph computation. In: Gangemi, A., Leonardi, S.,
Panconesi, A. (eds.) Proceedings of the 24th International Conference on World
Wide Web, WWW 2015, pp. 1307–1317. ACM (2015)

13. Verma, S., Leslie, L.M., Shin, Y., Gupta, I.: An experimental comparison of parti-
tioning strategies in distributed graph processing. PVLDB 10(5), 493–504 (2017)

14. Salihoglu, S., Widom, J.: Optimizing graph algorithms on pregel-like systems.
PVLDB 7(7), 577–588 (2014)

15. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph:
distributed graph-parallel computation on natural graphs. In: Thekkath, C.,
Vahdat, A. (eds.) Proceedings of the 10th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2012, USENIX Association, pp. 17–30
(2012)

16. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning in the cloud. PVLDB
5(8), 716–727 (2012)

17. Han, M., Daudjee, K.: Giraph unchained: barrierless asynchronous parallel execu-
tion in pregel-like graph processing systems. PVLDB 8(9), 950–961 (2015)

18. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017)

19. Größlinger, A., Griebl, M., Lengauer, C.: Quantifier elimination in automatic loop
parallelization. J. Symb. Comput. 41(11), 1206–1221 (2006)

20. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Automatic transformations for communication-minimized paral-
lelization and locality optimization in the polyhedral model. In: Hendren, L. (ed.)
CC 2008. LNCS, vol. 4959, pp. 132–146. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78791-4 9

https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1007/978-3-540-78791-4_9

Optimizing Declarative Parallel Distributed Graph Processing 181

21. Pouchet, L., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayap-
pan, P., Vasilache, N.: Loop transformations: convexity, pruning and optimization.
In: Ball, T., Sagiv, M. (eds.): Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, pp. 549–562.
ACM (2011)

22. Prountzos, D., Manevich, R., Pingali, K.: Synthesizing parallel graph programs via
automated planning. In: Grove, D., Blackburn, S. (eds.) Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2015, pp. 533–544. ACM (2015)

23. Seo, J., Park, J., Shin, J., Lam, M.S.: Distributed socialite: a datalog-based lan-
guage for large-scale graph analysis. PVLDB 6(14), 1906–1917 (2013)

24. Meyer, U., Sanders, P.: [Delta]-stepping: a parallelizable shortest path algorithm.
J. Algorithms 49(1), 114–152 (2003)

25. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
GraphX: graph processing in a distributed dataflow framework. In: Flinn, J., Levy,
H. (eds.) Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2014, pp. 599–613. USENIX Association (2014)

Breaking Symmetries with Lex
Implications

Michael Codish1, Thorsten Ehlers2(B), Graeme Gange3, Avraham Itzhakov1,
and Peter J. Stuckey3,4

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

2 Department of Computer Science, Kiel University, Kiel, Germany
the@informatik.uni-kiel.de

3 Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia

4 Data61 CSIRO, Melbourne, Australia

Abstract. Breaking symmetries is crucial when solving hard combina-
torial problems. A common way to eliminate symmetries in CP/SAT is
to add symmetry breaking constraints. Ideally, symmetry breaking con-
straints should be complete and compact. The aim of this paper is to find
compact and complete symmetry breaks applicable when solving hard
combinatorial problems using CP/SAT approach. In particular: graph
search problems and matrix model problems where symmetry breaks are
often specified in terms of lex constraints. We show that sets of lex con-
straints can be expressed with only a small portion of their inner lex
implications which are a particular form of Horn clauses. We exploit this
fact and compute a compact encoding of the row-wise LexLeader and
state of the art partial symmetry breaking constraints. We illustrate the
approach for graph search problems and matrix model problems.

1 Introduction

When solving hard combinatorial problems, symmetry breaks play a crucial role.
When seeking solutions, the size of the search space is significantly reduced if
symmetries are eliminated. The search space can be explored more efficiently
when avoiding paths that lead to symmetric solutions and avoiding also those
that lead to symmetric non-solutions.

This paper deals with variable symmetry in constraint staisfaction problems
(CSP) where symmetry is a permutation defined over a set of variables that
preserves solutions. Given a CSP with variables x1, ..., xn, we say that σ is a
symmetry if for every assignment μ = {x1 = i1, ..., xn = in}, μ is a solution if
and only if {x1 = iσ(1), ..., xn = iσ(n)} is also a solution.

Supported by the Israel Science Foundation, grant 625/17 and the German Federal
Ministry of Education and Research, combined project 01IH15006A.

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 182–197, 2018.
https://doi.org/10.1007/978-3-319-90686-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_12&domain=pdf
http://orcid.org/0000-0003-2186-0459

Breaking Symmetries with Lex Implications 183

One common approach to eliminate symmetries is to introduce symmetry
breaking constraints [1–4] which rule out isomorphic solutions thus reducing the
size of the search space while preserving the set of solutions. Ideally, a symmetry
breaking constraint is satisfied by a single member of each equivalence class of
solutions, in which case it is said to be complete. However, computing such sym-
metry breaking constraints is, most often, intractable [2]. In practice, symmetry
breaking constraints are often partial, and typically rule out some, but not all of
the symmetries in the search. As noted in the survey by Walsh [5], often a few
simple constraints rule out most of the symmetries.

In many cases, symmetry breaking constraints, complete or partial, are
expressed in terms of lex constraints on the variables of the problem. Each lex
constraint, corresponds to one symmetry σ, and restricts the search space to
consider assignments which are lexicographically smaller than their permuted
form obtained according to σ. Typical examples are: graph search problems [6]
where rows and columns of the Boolean adjacency matrix can be reordered by
some permutation, and matrix models where rows and columns can be reordered
by a pair of permutations. For matrix models common partial symmetry breaks
described in terms of lex constraints include doubleLex [7] (denoted also lex 2 in
[8]) and snake-lex [9]. For graph search problems, Codish et al. [6] introduce par-
tial symmetry breaks (denoted sb� and sb∗

�) which are refinements of doubleLex
for adjacency matrices.

Complete symmetry breaks can be obtained, for both types of problems,
by introducing a lex constraint for each reordering of the combinatorial object
(graph or matrix) [10]. For matrices, the reordering takes place by permuting
rows and columns [7]. For graphs, symmetric solutions can be obtained by per-
mutations of the vertices, which corresponds to simultaneously permuting both
rows and columns of the adjacency matrix. However, the number of lex con-
straints is overwhelming.

The aim of this research is to find compact and complete symmetry breaks
applicable when solving hard combinatorial problems. In particular: graph search
problems and matrix model problems.

In previous work, Itzhakov and Codish [11] present complete and compact
symmetry breaks for graphs based on so-called canonizing sets of permutations
where each permutation represents a lex constraint. Their approach is based
on the observation that many of the lex constraints expressed in terms of all
permutations (of rows and columns of the adjacency matrix) are redundant.
Itzhakov and Codish [11] compute compact symmetry breaking constraints for
graphs with 10 or less vertices. They observe, for example, that for 10 ver-
tices 7,853 lex constraints suffice to provide a complete symmetry break instead
of the 10! = 3,628,800 constraints introduced by the definition. Itzhakov and
Codish [11] report that this symmetry break takes 4 days to compute.

Heule [12] poses the question: How expensive is it to break all graph sym-
metries? Heule seeks an answer in terms of the number of clauses in a CNF
representation of the corresponding symmetry breaking constraint. For up to
n = 5 vertices, Heule computes size-optimal compact and complete symmetry

184 M. Codish et al.

breaks. A size-optimal complete symmetry break for graphs with 5 vertices con-
sists of only 12 clauses. In contrast, the symmetry break computed by Itzhakov
and Codish consists of 7 lex constraints, which can be encoded in 83 clauses.
For 5 < n ≤ 8 vertices, Heule computes complete symmetry breaks which are
significantly smaller than those computed by Itzhakov and Codish but which
are not determined to be optimal. For 8 vertices, the complete symmetry break
computed by Heule consists of 956 clauses (and takes two days to compute). The
complete symmetry break computed by Itzhakov and Codish consists of 135 lex
constraints (2724 clauses) and as reported in [11] takes 6 min to compute.

Frisch and Harvey illustrate in [13] the redundancies in a complete symmetry
break in a three-by-two matrix. They show how to simplify the 11 lex constraints
expressing all reorderings of rows and columns. The resulting symmetry break
has 8 simplified lex constraints.

In this paper we note the standard decomposition of a lex constraint of the
form x1 . . . xn ≤lex y1 . . . yn to a conjunction of Horn clauses of the form

(x1 = y1), . . . , (xk = yk) → xk+1 ≤ yk+1

where the literals on the left side are equalities between the variables in the
lex constraint and 1 ≤ k < n [14]. We call clauses of this form lex implica-
tions. We observe that many of the lex implications in the decomposition of
the complete symmetry breaks derived in [11] are redundant. This enables to
significantly reduce the size of the symmetry breaking constraints. For exam-
ple, for n = 10 vertices, a complete symmetry break is obtained in [11] with
7,853 lex constraints. These decompose to 248,604 lex implications which can be
reduced (removing implications implied by the others) to a complete symmetry
break expressed using only 21,844 lex implications. For 5 vertices, the complete
symmetry break computed in [11] involves 7 lex constraints which decompose
to 41 lex implications. These can be reduced to 14 non-redundant lex impli-
cations and 40 clauses, cf. Example 3. For 8 vertices, the complete symmetry
break computed in [11] involves 135 lex constraints which decompose to 2006
lex implications (2724 clauses). These can be reduced to 387 non-redundant lex
implications (1077 clauses), c.f. Table 2.

Given the observation that so many lex implications are redundant, we then
pose the direct question: how many lex implications are required to express a
complete symmetry break on a graph with n nodes. We generate such symmetry
breaks directly and not by reducing the complete symmetry breaks presented
in [11]. A compact and complete symmetry break for graphs with 8 vertices can
be computed in about 1 min. A compact and complete symmetry break for 10
vertices can now be computed in roughly 3 h (in contrast to 4 days as reported
in [11]. Moreover, we compute a compact and complete symmetry break for
graphs with 11 vertices. This symmetry break consists in 274,109 lex implications
(280,049 clauses) and is computed in 8 days.

The technique of representing conjunctions of lex constraints in terms of non-
redundant lex implications works also for matrix models where symmetry breaks
are also defined in terms of lex constraints (swapping rows and columns) and
also for partial symmetry breaks for graphs and matrix models.

Breaking Symmetries with Lex Implications 185

We analyze the standard doubleLex constraint and observe that it has no
redundancies when represented as lex implications. However when using exten-
sions which we call lex+ and lex∗ (also known as swapNext and swapAny respec-
tively [15]) there are many redundancies. We give compact versions of these
(without the redundancies).

The rest of the paper is organized as follows. In the next section we intro-
duce notation and basic concepts. In Sect. 3 we illustrate the effect of removing
redundancy in encoding symmetry breaking constraints. In Sect. 4 we define
our approach to efficiently generating compact and complete symmetry break-
ing constraints, and illustrate the effectiveness on graphs. Finally in Sect. 6 we
conclude.

The computations throughout the paper are performed using the finite-
domain constraint compiler BEE [16] which compiles constraints to CNF, and
solves it applying an underlying SAT solver. We use Glucose 4.0 [17] as the
underlying SAT solver except where specified that we used Clasp 3.1.3 [18]. All
computations were performed on an Intel E8400 core, clocked at 2 GHz, able to
run a total of 12 parallel threads. Each of the cores in the cluster has computa-
tional power comparable to a core on a standard desktop computer. Each SAT
instance is run on a single thread, and all running times reported in this paper
are CPU times.

2 Preliminaries

In this paper, we consider Boolean formulas ϕ which encode the set of solutions
of combinatorial problems. In many cases, there are variable symmetries in the
solution space of such problems. This is, given a solution xi = vi there often
exist permutations π such that xπ(i) = vi is an isomorphic solution [4].

When enumerating the solutions for a particular problem, it is often prefer-
able to consider only non-isomorphic solutions. Furthermore, if one wishes to
prove that no solutions for some problem exist, breaking symmetries often allows
for smaller proofs.

In order to decrease the size of the solution space, one approach is to use
constraints ψ which break symmetries in the solution space of ϕ. This is, for
every solution x which satisfies ϕ, there exists an isomorphic solution x′ which
satisfies ϕ∧ψ. Symmetry breaking constraints which rule out all but one solution
from each equivalence class are called complete. Symmetry breaking constraints
which rule out some but not all isomorphic solutions from an equivalence class
are called partial [2].

We consider finite and simple graphs (undirected with no self loops). The
set of simple graphs on n nodes is denoted Gn. We assume that the vertex
set of a graph, G = (V,E), is V = {1, . . . , n} and represent G by its n × n
Boolean adjacency matrix. We often let G denote both the graph itself and also
its adjacency matrix.

Graph search problems are about the search for a graph which satisfies a
given set of constraints, ϕ, or to determine that no such graph exists. In this

186 M. Codish et al.

A =

0 a b c d
a 0 e f g
b e 0 h i
c f h 0 j
d g i j 0

π(A) =

0 a e f g
a 0 b c d
e b 0 h i
f c h 0 j
g d i j 0

Fig. 1. The 5 × 5 Boolean adjacency matrix G and π(G) for π = (2, 1, 3, 4, 5).

setting the unknown graph is represented by an adjacency matrix consisting
of Boolean variables which are constrained by ϕ. Often graph search problems
are about the search for the set of all graphs, modulo graph isomorphism, that
satisfy the given constraints.

The set of permutations π : {1, . . . , n} → {1, . . . , n} is denoted Sn. Permuta-
tions act on adjacency matrices in the natural way: If A is the adjacency matrix
of a graph G and π is a permutation, then π(A) is the adjacency matrix obtained
by simultaneously permuting with π the rows and columns of A.

Two graphs G1, G2 ∈ Gn are isomorphic, denoted G1 ≈ G2, if there exists a
permutation π ∈ Sn such that G1 = π(G2). Sometimes we write G1 ≈π G2 to
emphasize that π is the permutation such that G1 = π(G2). For sets of graphs
H1,H2, we say that H1 ≈ H2 if for every G1 ∈ H1 (likewise in H2) there exists
G2 ∈ H2 (likewise in H1) such that G1 ≈ G2.

We consider an ordering on graphs, defined by representing their adjacency
matrices as strings. Because adjacency matrices are symmetric with zeroes on
the diagonal, it suffices to focus on the upper triangle parts of the matrices [19].

Definition 1 (ordering graphs). Let G1, G2 ∈ Gn and let s1, s2 be the strings
obtained by concatenating the rows of the upper triangular parts of their corre-
sponding adjacency matrices A1, A2 respectively. Then, G1 � G2 if and only if
s1 �lex s2. We also write A1 � A2.

A classic complete symmetry break for graphs is the LexLeader con-
straint [10] defined as follows:

Definition 2 (LexLeader). LexLeader(n) =
∧ {

G � π(G)
∣
∣π ∈ Sn

}

where G is an n × n matrix of Boolean variables with 0’s on the diagonal and
such that Gij = Gji for all 1 ≤ i < j ≤ n. Sometimes we write LexLeaderG(n)
to make G explicit.

Example 1. Consider graphs on 5 nodes. Figure 1 depicts the adjacency matrix
A of such graphs, where a . . . j denote Boolean variables (on the left side). For
the permutation π = (2, 1, 3, 4, 5), π(A), is detailed on the right side of Fig. 1.
A complete symmetry break can be created by using the LexLeader constraint,
which requires 5! = 120 lex constraints, one for each permutation in S5.

The constraint G � π(G) is expressed as the lex constraint abcdefghij �lex

aefgbcdhij, which can be simplified to bcd �lex efg.

Breaking Symmetries with Lex Implications 187

π1 = (5, 3, 4, 2, 1)

π2 = (2, 1, 5, 3, 4)

π3 = (1, 3, 2, 4, 5)

π4 = (1, 2, 4, 3, 5)

π5 = (2, 4, 1, 5, 3)

π6 = (2, 3, 1, 5, 4)

π7 = (1, 2, 5, 3, 4)

abcefgi �lex ijghebc

bcdefhi �lex gefdbij

afg �lex bhi

bei �lex cfj

abcdefgi �lex fagecjhb

abcdfgh �lex eagfihd

bcefhi lex dbgeij

Fig. 2. A complete symmetry break for graphs with 5 nodes expressed in terms of 7
lex constraints derived from corresponding permutations.

a ≤ b

b ≤ c

c ≤ d

b ≤ f

(Ta=h) ⇒ c ≤ i

(Tb=f) ⇒ c ≤ e

(Tc=d) ⇒ f ≤ g

(Ta=b) ⇒ f ≤ h

(Tb=c) e f

(Tb=c ∧ Te=f) ⇒ i ≤ j

(Ta=b ∧ Tf=h) ⇒ g ≤ i

(Tb=g ∧ Tc=e) ⇒ d ≤ f

(Tb=f ∧ Tc=e ∧ Td=g) ⇒ i ≤ j

(Tb=e Tc=g Td=f) h i

Fig. 3. A complete symmetry break for graphs with 5 nodes expressed in terms of 14
lex implications. These clauses were computed directly, they are not derived from the
lex constraints presented in Fig. 2.

In fact, it is sufficient to consider only some of the LexLeader constraints.
In [11], a refinement procedure was used which adds non-redundant lex con-
straints until a complete symmetry break has been reached.

Example 2. A complete symmetry break for graph search problems on 5 nodes
can be expressed in terms of the 7 permutations detailed in Fig. 2 (on the left)
which give rise to the corresponding lex constraints (on the right). All of the
5! = 120 lex constraints used by the LexLeader(5) constraint are implied by
these 7 lex constraints.

It is well known that lex constraints can be decomposed into lex implications.
Using Tseytin variables Tx=y ↔ x = y and replacing a ≤ b by (¬a∨ b), these are
Horn clauses. The question we ask in this paper is: How many lex implications
are required to represent a complete symmetry break on graphs?

Example 3. In order to break all symmetries on graphs with 5 nodes, it is
sufficient to consider the 14 lex implications depicted in Fig. 3. As the Tseytin
variables only occur on the left-hand side of the implications, it is sufficient to
encode them using two clauses as in (x∧y) ⇒ Tx=y and (¬x∧¬y) ⇒ Tx=y [20].
Thus, this symmetry break can be encoded using 40 clauses.

In some cases, the redundancy of lex implications can be seen directly. The
lex constraint abcefgi �lex ijghebc from Example 2 implies a ≤ i, which is
redundant with respect to the lex implications from Fig. 3: If a = 1, this implies
b = c = d = f = 1 by the inequalities on the left-hand side. This again implies

188 M. Codish et al.

h = 1 by the lex implication (Ta=b) ⇒ f ≤ h, and i = 1 by (Ta=h) ⇒ c ≤ i.
Checking the redundancy of other lex implications often requires a case analysis.

In this paper we consider several partial symmetry breaks for graphs and for
matrix models which can be defined in terms of specific sets of permutations.
We denote by Sadj

n and by Spair
n the sets of permutations on {1, . . . , n} which

swap a single adjacent pair (i, i + 1) for 1 ≤ i < n and respectively a single pair
(i, j) for 1 ≤ i < j ≤ n.

The partial symmetry breaks sb� and sb∗
� presented in [6] for graphs are

defined as follows where A is an n × n adjacency matrix of Boolean variables:

sb�(A) =
∧

π∈Sadj
n

(A ≤ π(A)) and sb∗
� (A) =

∧

π∈Spair
n

(A ≤ π(A))

Thus, they can be encoded using O(n) and O(n2) lex constraints, respectively.

Definition 3 (ordering matrices). Let M1,M2 be a pair of m × n matrices
of Boolean variables and let s1, s2 be the strings obtained by concatenating their
rows respectively. Then, M1 � M2 if and only if s1 �lex s2.

For a m × n matrix M of Boolean variables and permutations π1 ∈ Sm,
π2 ∈ Sn, let πrows

1 (M) denote the matrix obtained by permuting the rows of M
by π1 and let πcols

2 (M) denote the matrix obtained by permuting the columns
of M by π2. The doubleLex symmetry break, also denoted lex2 [7] is defined by

lex2(M) =
∧ ({

(M ≤ πrows(M))
∣∣∣ π ∈ Sadj

m

} ⋃ {
(M ≤ πcols(M))

∣∣∣ π ∈ Sadj
n

})

It enforces rows and columns to be sorted lexicographically and it can be
encoded using O(n + m) lex constraints. We also consider extensions of lex2,
denoted lex+ and lex∗.

lex+(M) = lex2(M) ∧
∧{

(M ≤ πrows
1 πcols

2 (M))
∣
∣π1 ∈ Sadj

m , π2 ∈ Sadj
n

}

lex∗(M) = lex2(M) ∧
∧{

(M ≤ πrows
1 πcols

2 (M))
∣
∣π1 ∈ Spair

m , π2 ∈ Spair
n

}

Encoding these symmetry breaks requires O(nm) and O(n2m2) lex constraints,
respectively.

In [8], the authors suggest combining lex2 with additional constraints which
enforce that the first row is lexicographically smaller than every permutation of
every other row, and call this symmetry break allPerm. It can be implemented
to run in linear time, however, encoding it statically into a SAT formula requires
O(n!m) lex constraints. As we will show in Sect. 3, most of these constraints are
actually redundant.

Table 1 illustrates the relative power of several symmetry breaks for Boolean
matrix models. We consider matrices of size n × n and report the number of
solutions for each of the symmetry breaks. The smaller the solution, the more
precise the symmetry break. The symmetry breaks are detailed from weakest

Breaking Symmetries with Lex Implications 189

Table 1. The number of solutions for Boolean matrix models with various symmetry
breaks.

n None lex2 allPerm lex+ lex∗ Complete

3 29 45 41 37 36 36

4 216 650 520 366 330 317

5 225 24,520 17,128 8,659 6,779 5,624

6 236 2,625,117 1,616,074 602,813 391,532 251,610

7 249 836,488,618 458,375,316 139,268,908 73,720,859 33,642,660

(left) to strongest (right). The left column, titled “None” has the most solu-
tions and corresponds to imposing no symmetry break. The right column, titled
“Complete” has the least solutions and corresponds to imposing a complete
symmetry break. This column is obtained as OEIS sequence A002724 [21]. We
observe that allPerm is only slightly stronger than lex2 and weaker than lex+.
This is surprising, as lex+ is polynomial in size whilst allPerm is exponential.

3 Removing Redundant Constraints

In [11], the authors generated complete symmetry breaks for graph problems.
They aimed for a small set of permutations which is canonizing, i.e. lex con-
straints derived from them create a complete symmetry break. They found that
while generating such sets, some of the lex constraints became redundant and
could be removed. Thus, after generating a complete symmetry break, they
removed as many lex constraints as possible, and derived a set of non-redundant
lex constraints. They furthermore noted that the set of permutations required
for a complete symmetry break for graph problems on n nodes has significantly
less than n! elements.

Here, we consider the set of lex implications derived from a set of lex con-
straints rather than the lex constraints themselves. We show that even if the
set of lex constraints is non-reducible, many of the lex implications are redun-
dant and can be removed. The approach of removing redundant lex implications
applies both to complete and partial symmetry breaks.

Table 2 shows the size of different symmetry breaks for graphs, both in terms
of lex implications, and in terms of the number of clauses (in parentheses). This
includes clauses required for encoding the Tseytin variables. For each symmetry
break, the table details the impact of removing redundant lex implications. The
columns titled “orig” denote the size of the symmetry breaks before reduction
(obtained by decomposing the lex constraints), and the columns titled “red”
denote the size of the symmetry breaks after removing redundant lex implica-
tions.

The constraints sb� and sb∗
� are partial symmetry breaks introduced in [6].

Interestingly, sb� does not contain any redundant lex implications, whereas
roughly 65% of the lex implications of sb∗

� are redundant. For the right-most

190 M. Codish et al.

Table 2. Number of lex implications and clauses (in parentheses), before and after
the reduction, for partial symmetry breaks sb�, sb∗

� (on graphs) and for a complete
symmetry break (for graphs) based on canonizing sets.

n sb� sb∗
� Canonizing

orig & red orig red orig red

3 2(2) 3(3) 2(2) 3(2) 3(2)

4 6(12) 12(24) 6(12) 6(12) 6(12)

5 12(28) 30(70) 13(33) 41(83) 21(55)

6 20(50) 60(150) 24(72) 70(156) 38(118)

7 30(78) 105(273) 40(136) 302(580) 108(374)

8 42(112) 168(448) 62(232) 2006(2724) 387(1077)

9 56(152) 252(684) 91(367) 17059(18311) 2366(3600)

10 72(198) 360(990) 128(548) 248604(250582) 21844(23814)

Table 3. Number of lex implications for different symmetry breaks for matrix models
before and after reduction.

n lex2 lex+ lex∗ allPerm

orig reduced orig reduced orig reduced orig reduced

3 12 12 28 16 64 16 48 13

4 24 24 78 37 294 45 312 32

5 40 40 168 77 968 112 2440 71

6 60 60 310 141 2560 252 21660 148

7 84 84 516 235 5808 532 211764 310

8 112 112 798 365 11774 1048 — —

9 144 144 1168 536 21904 1944 — —

10 180 180 1638 755 38088 3413 — —

column, we took canonizing sets from [11], translated them into lex implica-
tions, and removed redundant clauses. Although the set of lex constraints does
not contain any redundant constraints, more than 90% of the lex implications
could be removed for n = 10 nodes. Furthermore, it is noteworthy that on small
graphs, there are more clauses for the Tseytin encoding than for the symmetry
break. For larger graphs, most of the clauses are lex implications.

Table 3 illustrates the reduction in size of symmetry breaks for Boolean
matrix models of size n × n. Here we focus on the number of lex implications
in the symmetry break (before and after reduce). In the table we consider the
symmetry breaks lex2, lex+, lex∗ and allPerm which are described in Sect. 2.

We observe that DoubleLex (lex2) does not contain any redundant impli-
cations. On the contrary, more than half of the lex implications from lex+ are
redundant and approximately 90% of the lex implications in lex∗ are redundant.

Breaking Symmetries with Lex Implications 191

With regards to the allPerm symmetry break proposed in [8], the constraint
itself is huge. We did not generate it for matrices larger than 7 × 7 for which
99.85% of the lex implications are redundant. This huge size makes it hard to
compute a reduced set of lex implications, we refrained from investing compu-
tational resources for the reduction of allPerm on matrices of size 8 × 8 and
larger.

How the Reduce Works

Basically, our algorithm iterates over the set of lex implications, and checks for
each of them if they are redundant. This is done by removing them from the for-
mula, and checking if there is a solution which would be forbidden by this clause,
as shown in Algorithm 2. If this is not the case, the clause is redundant and can
be removed. Contrary to other approaches like the one presented in [22], we
run a full SAT search to determine if a lex implication is actually redundant or
not. This allows for removing more clauses. Furthermore, the number of clauses
which can actually be removed depends on the order in which clauses are checked.
Some clauses are more helpful as they contribute to making other clauses redun-
dant. Thus, we run our reduction in two phases. The first phase is shown in
Algorithm 1. Here, we check if a clause c is redundant. If this is the case, we
compute a subset ψ ⊆ ϕ′ of clauses which makes c redundant, and increase the
ranking of all clauses within this set. The rationale is that removing these clauses
is more likely make other clauses no longer redundant, and so increase the size
of the final symmetry break.

In the second stage, we sort the clauses by ranking, so clauses which were
frequently the cause of redundancy appear as late as possible. We then reduce
the set of lex implications using Algorithm2.

Algorithm 1. Ranking Redundant Constraints
rank(c) = 0∀c ∈ ϕ
for all c ∈ ϕ do

ϕ′ = (ϕ \ {c}) ∪ ¬c
if UNSAT(ϕ′) then

Let ψ ⊆ ϕ′ such that ψ ∧ ¬c ≡ ⊥
for all c′ ∈ ψ do

rank(c′) ← rank(c′) + 1

Sort clauses by their ranks, small ranks first.

Algorithm 2. Removing Redundant Constraints
Rank clauses with Algorithm 1
for all c ∈ ϕ in ascending order do

ϕ′ = (ϕ \ {c}) ∪ ¬c
if UNSAT(ϕ′) then

ϕ = ϕ \ {c}

192 M. Codish et al.

4 Generating Compact and Complete Symmetry
Breaks for Graphs

The LexLeader constraint which is a complete symmetry break defined in terms
of all permutations of a graph can be expressed as a set of lex implications. Each
lex constraint G ≤lex π(G), for a permutation π is decomposed to lex implica-
tions, as described in Sect. 2. Each implication is classified by two parameters:
the length of the implication and the permutation from which the originating lex
constraint was generated. The length of an implication is the number of atoms
it contains which is between 1 and

(
n
2

)
(the size of the upper triangle of the

adjacency matrix). Formally, let A be an n × n matrix, π ∈ Sn a permutation,
and 1 ≤ k ≤ (

n
2

)
an implication length. Let x1, . . . , x(n

2) and y1, . . . , y(n
2) be the

upper triangle elements (row by row) of A and π(A), respectively. The length k
lex implication ImpA(k, π) is defined by

ImpA(k, π) = (x1 = y1) ∧ · · · ∧ (xk−1 = yk−1) ⇒ xk ≤ yk

Using this notation the classic LexLeader constraint for an n × n adjacency
matrix A is equivalent to the following lex implication representation:

LexLeaderA(n) =
∧

π∈Sn

(n
2)∧

k=1

ImpA(k, π)

In this work we generate a complete symmetry breaking constraint that is
equivalent to LexLeader by repeatedly selecting lex implications from the defini-
tion of LexLeaderA(n) which are not logically implied by those already selected.
When no further lex implications can be selected we have found a complete sym-
metry break. Although we repeatedly select non-redundant lex implications, it
is possible, because of the order of selection, that some of the implications in the
set become redundant. For this we reason we perform a second pass to repeat-
edly remove redundant implications. This process is formalized as Algorithm 3
where we select implications according to their length, first the short ones, and
then the longer ones. To derive a complete symmetry break for graphs with n
vertices, for each 1 ≤ k ≤ (

n
2

)
the algorithm repeatedly finds implications of the

form ImpA(k, π) until the set obtained so far implies every implication of length
k. To find a new implication of length k we check if there exists a permutation
π ∈ Sn and an n×n adjacency matrix A of Boolean variables such that C is sat-
isfied, but there exists a lex implication ImpA(k, π) which is not satisfied where
C denotes the conjunction of the implications selected so far. This process con-
tinues iterating for implications of all lengths, starting from short implications,
k = 1, and finishing with the longest implications, k =

(
n
2

)
. In the algorithm we

apply a reduce step to remove redundant implications after each increment of
the value k.

Table 4 details the computation of compact complete symmetry breaks fol-
lowing Algorithm 3 (lex implications) and provides a comparison with those com-
puted in [11] (canonizing), and the symmetry breaks from [12] (isolators). For

Breaking Symmetries with Lex Implications 193

Algorithm 3. Generating Complete Implication Set
init: C ← { }
for k = 1 to

(
n
2

)
do

while ∃π ∈ Sn, G ∈ Gn s.t (C ∧ ¬ImpG(k, π)) is satisfiable do
C ← C ∪ {ImpG(k, π)}

C ← reduce(C)

return C

each value of n (number of vertices) we detail the size of the symmetry break
derived and the time it took to compute it. For the symmetry breaks of [11], size
is reported in the number of lex constraints (“lex”) and also in the number of
clauses in their encoding to CNF. For the symmetry breaks derived in this paper,
size is reported in the number of lex implications (“imp”) and also in the number
of clauses in their encoding to CNF. Isolators are, by definition, sets of clauses.
The times in the right column (Isolator) of the table are reported from [12].
These were obtained, for different values of n, using different techniques. Thus,
the computation for 8 nodes is faster than the one for 7 nodes. For 7 nodes,
Heule reports in [12], a computation involving 80,000 probes per round with 4
rounds at 7 min (average) per probe. This totals 1555 days of computation. The
items denoted − indicate that the corresponding symmetry breaks cannot be
computed. The only technique able to compute a symmetry break for graphs
with 11 vertices is the technique presented in this paper. We note that this is
the first time that a compact and complete symmetry break for graphs of size
11 has been computed.

Table 4. Computing compact and complete symmetry breaking constraints for graphs
(time is in seconds except where indicated otherwise).

Canonizing Lex implications Isolator from [12]

lex clauses time imp clauses time clauses time

4 3 12 0.03 6 14 0.18 7 0.01

5 7 83 0.10 18 52 0.49 12 2.34

6 13 156 1.62 45 149 1.99 27 4.6 days

7 37 580 13.19 139 449 8.68 114 1555 days

8 135 2,724 345.37 447 1139 59.81 956 2 days

9 842 18,311 2.42 h 2,496 3736 626.20 – –

10 7,853 250,582 93.82 h 22,542 24,512 3.10 h – –

11 – – – 274,109 277,075 8.44 days – –

Table 5 demonstrates the impact of having more compact complete symmetry
breaks. We detail the time to compute all graphs that satisfy each form of the
complete symmetry break. Because the symmetry breaks are all complete, this

194 M. Codish et al.

number corresponds exactly to the number of non-isomorphic undirected graphs
with n vertices (OEIS sequence number A000088) [21] which is detailed in the
right column. We see from the table that enumerating graphs with more compact
symmetry breaks significantly reduces the computation time.

5 An Application: Computing Ramsey Colorings (4, 4;n)

In this section we describe the impact of using compact and complete symmetry
breaks. We consider a classic example of a graph search problem: the search for
Ramsey graphs [23]. The graph R(s, t;n) is a simple graph with n vertices, no
clique of size s, and no independent set of size t. The Ramsey number R(s, t)
is the smallest number n for which there is no R(s, t;n) graph. Table 6 reports
on the search for all solutions for R(4, 4, n). For n > 17 there are no solutions
and hence the Ramsey number R(4, 4) = 18. The table compares three con-
figurations: First, using the partial symmetry breaking predicate sb∗

� defined in
[6]. Second, using the complete canonizing symmetry breaks computed in [11].
Third, using the complete symmetry breaks computed in this paper. For each
configuration we detail the size of the SAT encoding (clauses and variables),
the time in seconds (except where indicated in hours) to find all solutions using
a SAT solver, and the number of solutions found. The symmetry breaks based
on canonizing permutations and on lex implications are both complete, so they
both compute the exact number of solutions. In the upper part of the table, we
use the corresponding complete symmetry breaks described in [11] (for n ≤ 10)
and in Sect. 4 of this paper (for n ≤ 11). These symmetry breaks are “instance
independent”. They apply to break symmetries for any graph search problem.
For 12 ≤ n ≤ 17 we compute “instance dependent” symmetry breaks. We refine
Algorithm 3 to compute lex implications that break symmetries for the spe-
cific application to R(4, 4, n). This is, we restrict Algorithm 3 to consider only
R(4, 4, n) graphs instead of all graphs in Gn.

Table 5. Enumerating graphs using complete symmetry breaking methods: canonizing,
lex-implications, and isolators (using Clasp where time in seconds unless indicated
otherwise).

n Canonizing lex-imp’s Isolator [12] Graphs

4 0.00 0.00 0.00 11

5 0.00 0.00 0.00 34

6 0.00 0.00 0.00 156

7 0.00 0.00 0.00 1,044

8 0.27 0.11 0.04 12,346

9 33.34 3.65 – 274,668

10 5.78 h 542.25 – 12,005,168

11 – 2.69 days – 1,018,997,864

Breaking Symmetries with Lex Implications 195

Table 6. Enumerating Ramsey graphs using sb∗
� , canonizing sets and lex implications.

(Clasp solver, computation time in seconds).

Instance sb∗
� Canonizing sets Lex implications

cls vars sat sols cls vars sat cls vars sat exact

R(4, 4, 4) 22 10 0.00 9 17 9 0.00 68 21 0.00 9

R(4, 4, 5) 80 24 0.00 33 235 55 0.00 208 55 0.00 24

R(4, 4, 6) 195 48 0.00 178 315 72 0.00 495 120 0.00 84

R(4, 4, 7) 390 85 0.00 1,478 1,395 286 0.00 1,049 231 0.00 362

R(4, 4, 8) 690 138 0.03 16,919 10,885 2,177 0.04 2,099 406 0.02 2,079

R(4, 4, 9) 1,122 210 0.51 227,648 89,877 17,961 1.56 5,268 666 0.23 14,701

R(4, 4, 10) 1,715 304 9.97 2,891,024 1,406,100 281,181 149.15 26,922 1,035 5.43 103,706

R(4, 4, 11) 2,500 423 428.79 25,616,963 – – – 280,709 1,540 726.62 546,356

R(4, 4, 12) 3,510 570 5561.06 107,509,048 – – – 48,363 2,715 129.71 1,449,390

R(4, 4, 13) 4,780 748 29426.23 131,638,650 – – – 57,747 3,751 133.64 1,184,323

R(4, 4, 14) 6,347 960 8325.25 21,181,746 – – – 36,505 5,055 31.18 130,818

R(4, 4, 15) 8,250 1,209 281.79 144,663 183,985 36,356 26.21 30,855 6,669 55.95 640

R(4, 4, 16) 10,530 1,498 14.38 94 30,890 5,570 12.34 39,131 8,638 19.43 2

R(4, 4, 17) 13,230 1,830 5.63 4 15,255 2,235 7.51 49,953 11,010 20.69 1

The lower part of Table 6 reports on the search for all solutions of R(4, 4, n)
for n ≥ 12 using these complete symmetry breaks. The items denoted − indicate
that the corresponding symmetry breaks cannot be computed within the timeout
period (72 h).

It can be seen that for 12 ≤ n ≤ 15, in which the number of non-
isomorphic solutions is large, these problem dependent symmetry breaks sig-
nificantly improve the solving time over the partial symmetry break sb∗

� . For
n = 16, the symmetry break computed here is significantly stronger than sb∗

� ,
allowing for only 2 instead of 94 solutions.

Using the lex-implications approach we were able to compute instance depen-
dent symmetry breaks for all R(4, 4, n) instances whereas the computation of
canonizing sets exceeded the timeout for three cases.

6 Conclusion

We provided an analysis of the redundancy in symmetry breaking constraints for
graphs and matrix models. Previous work had shown that many of the lex con-
straints in the LexLeader symmetry break are redundant. Here, we considered
the decomposition of lex constraints in lex implications, and showed that many
of them are redundant in complete symmetry breaks. This allowed us to reduce
the size of complete symmetry breaks for graphs by an order of magnitude, and
enabled us to compute a complete and compact symmetry break for graphs on
11 nodes.

Furthermore, we analyzed partial symmetry breaks and the redundancies in
them. While small symmetry breaks like sb� for graphs, and lex2 for matrices do

196 M. Codish et al.

not contain any redundant lex implications, there are significant redundancies
in their extensions sb∗

� and lex+, lex∗, respectively.

References

1. Puget, J.-F.: On the satisfiability of symmetrical constrained satisfaction problems.
In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 350–361.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56804-2 33

2. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predi-
cates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.): Proceed-
ings of the Fifth International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 1996), Cambridge, Massachusetts, USA, 5–8 November
1996, pp. 148–159. Morgan Kaufmann (1996)

3. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. Discrete Appl. Math. 155(12), 1539–1548 (2007)

4. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006). https://doi.org/
10.1007/11889205 46

5. Walsh, T.: Symmetry breaking constraints: recent results. In: Hoffmann, J.,
Selman, B. (eds.) Proceedings of the Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence, Toronto, Ontario, Canada, 22–26 July 2012. AAAI Press (2012)

6. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph
representation. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, IJCAI 2013, Beijing, China, 3–9 August 2013, pp.
510–516. IJCAI/AAAI (2013)

7. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 462–477. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-46135-3 31

8. Frisch, A.M., Jefferson, C., Miguel, I.: Constraints for breaking more row and
column symmetries. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 318–332.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8 22

9. Grayland, A., Miguel, I., Roney-Dougal, C.M.: Snake lex: an alternative to dou-
ble lex. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 391–399. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 32

10. Read, R.C.: Every one a winner or how to avoid isomorphism search when cata-
loguing combinatorial configurations. Ann. Discrete Math. 2, 107–120 (1978)

11. Itzhakov, A., Codish, M.: Breaking symmetries in graph search with canonizing
sets. Constraints 21(3), 357–374 (2016)

12. Heule, M.J.H.: The quest for perfect and compact symmetry breaking for graph
problems. In: Davenport, J.H., Negru, V., Ida, T., Jebelean, T., Petcu, D., Watt,
S.M., Zaharie, D. (eds.) 18th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2016, Timisoara, Romania, 24–27
September 2016, pp. 149–156. IEEE Computer Society (2016)

13. Frisch, A.M., Harvey, W.: Constraints for breaking all row and column symmetries
in a three-by-two matrix. In: Proceedings of SymCon 2003 (2003)

14. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artif. Intell. 170(10), 803–834 (2006)

https://doi.org/10.1007/3-540-56804-2_33
https://doi.org/10.1007/11889205_46
https://doi.org/10.1007/11889205_46
https://doi.org/10.1007/3-540-46135-3_31
https://doi.org/10.1007/3-540-46135-3_31
https://doi.org/10.1007/978-3-540-45193-8_22
https://doi.org/10.1007/978-3-642-04244-7_32

Breaking Symmetries with Lex Implications 197

15. Smith, B.: Symmetry breaking constraints in constraint programming (2010).
Slides published online. http://ta.twi.tudelft.nl/wst/users/achill/MFOSymOpt
2010/MFOSymOpt2010/Oberwolfach Mini-Workshop files/BarbaraMfoSlides.ppt

16. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46,
303–341 (2013)

17. Audemard, G., Simon, L.: Glucose 4.0 SAT solver. http://www.labri.fr/perso/
lsimon/glucose/

18. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

19. Cameron, R.D., Colbourn, C.J., Read, R.C., Wormald, N.C.: Cataloguing the
graphs on 10 vertices. J. Graph Theor. 9(4), 551–562 (1985)

20. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

21. The on-line encyclopedia of integer sequences. Published electronically (2010).
http://oeis.org

22. Fourdrinoy, O., Grégoire, É., Mazure, B., Säıs, L.: Eliminating redundant clauses
in SAT instances. In: Van Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS,
vol. 4510, pp. 71–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72397-4 6

23. Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Comb. (1994). Revision
14 January 2014

http://ta.twi.tudelft.nl/wst/users/achill/MFOSymOpt2010/MFOSymOpt2010/Oberwolfach_Mini-Workshop_files/BarbaraMfoSlides.ppt
http://ta.twi.tudelft.nl/wst/users/achill/MFOSymOpt2010/MFOSymOpt2010/Oberwolfach_Mini-Workshop_files/BarbaraMfoSlides.ppt
http://www.labri.fr/perso/lsimon/glucose/
http://www.labri.fr/perso/lsimon/glucose/
http://oeis.org
https://doi.org/10.1007/978-3-540-72397-4_6
https://doi.org/10.1007/978-3-540-72397-4_6

Model Checking Parameterized
by the Semantics in Maude

Adrián Riesco(B)

Departamento de Sistemas Informáticos y Computación,
Universidad Complutense de Madrid, Madrid, Spain

ariesco@fdi.ucm.es

Abstract. Model checking is an automatic verification technique for
analyzing whether some properties hold in a model. Maude is a high-
performance logical framework and model checking tool where many dif-
ferent concurrent programming languages have been specified and ana-
lyzed. However, the counterexample generated by Maude when a prop-
erty fails does not correspond to the language being specified but to
the Maude rules, which makes it difficult to understand. In this paper
we present two metalevel transformations for relating counterexamples
and semantics when dealing with the semantics of concurrent languages,
hence allowing users to model check real code while easing the interpre-
tation of the counterexamples. These transformations can be applied to
any semantics following a message-passing or a shared memory approach.
These transformations have been implemented in a Maude prototype; we
illustrate the tool with examples.

Keywords: Model checking · Semantics · Message passing
Shared memory · Maude

1 Introduction

Model checking [5] is an automatic technique for checking whether a property,
usually stated in modal logic, holds in a system. It starts from an initial state
and exhaustively traverses all the reachable states, which makes it a useful ver-
ification tool for concurrent systems, where complex interleaving failures might
be overlooked during the implementation and testing phases. State-of-the-art
model checkers, such as Spin [2] and NuSMV [4], allow users to analyze models
of their algorithms, but they do not check the actual application code directly.
For this reason, the relation between programs, models, and their corresponding
translations are subjects of growing concern in the model-checking community,
as shown for example by the Java PathFinder [13] community.

This research has been partially supported by the MINECO Spanish project
TRACES (TIN2015-67522-C3-3-R) and by the Comunidad de Madrid project N-
Greens Software-CM (S2013/ICE-2731).

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 198–213, 2018.
https://doi.org/10.1007/978-3-319-90686-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_13&domain=pdf
http://orcid.org/0000-0002-9716-4612

Model Checking Parameterized by the Semantics in Maude 199

Maude [6] is a high-performance logical framework where the semantics of
other programming languages can be specified and analyzed. Maude modules
correspond to specifications in rewriting logic [14], a logic that allows specifiers
to represent many models of concurrent and distributed systems. This logic
is an extension of membership equational logic [3], an equational logic that, in
addition to equations, allows the statement of membership axioms characterizing
the elements of a sort. Rewriting logic extends membership equational logic by
adding rewrite rules that represent transitions in a concurrent system and can be
nondeterministic. Moreover, an important feature of rewriting logic is that it is
reflective, that is, it can be faithfully interpreted in terms of itself. This feature
is efficiently implemented in Maude by means of the META-LEVEL module [6,
Chap. 14], which allows us to use Maude modules and terms as usual data.

Defining the semantics of a programming language in Maude presents many
advantages over other languages: first, Maude specifications are executable, so
the specification gives the specifier an interpreter of the semantics for free. More-
over, Maude provides several analysis tools, including an LTL model checker.
Hence, since the seminal proposal of using rewriting logic as a semantic frame-
work in [15], Maude has been used to specify the semantics of many languages,
such as LOTOS [19], CCS [19], and Java [10]. Moreover, the K-Maude com-
piler [18], which is able to translate K [17] specifications into Maude, has eased
the methodology to describe programming language semantics in Maude, as
shown e.g. by the C semantics in [9]. However, when using the model checker for
checking properties on programs whose semantics have been defined in Maude,
we obtain a counterexample that refers to the semantics of the language but
not directly to the actual program under analysis. Given the complex nature
of concurrent systems, this extra layer of complexity makes the counterexample
even more difficult to understand in real applications, preventing specifiers from
understanding the error and being able to fix it.

We present in this paper two generic transformations, implemented using
Maude metalevel, for relating the counterexample generated by the Maude model
checker with the semantics of the language being executed. These transforma-
tions can be applied to concurrent programs following either a message-passing
approach or a shared-memory approach. They reduce the counterexample, focus
on the main events depending on the semantics, and return a JSON-like1 result
that is easy to follow and manipulate later, in the sense that it can be parsed in
an automatic way by other applications and programming languages like Python
in order to perform other analyses. In this way Maude specifiers get, in addition
to an interpreter for their language, a model checker for the object language for
free. Moreover, we also get a model checker for real code for all those program-
ming languages included that are already specified in Maude. To the best of
our knowledge, this kind of generic, metalevel transformation is novel in model
checking.

The rest of the paper is organized as follows: Sect. 2 introduces the different
types of semantics discussed throughout the rest of the paper. Section 3 presents

1 See http://www.json.org/ for details.

http://www.json.org/

200 A. Riesco

the transformation for languages based on shared memory, while Sect. 4 presents
the transformation for message-passing style. Finally, Sect. 5 concludes and out-
lines some lines of future work. The code of the tool, examples, and more infor-
mation is available at https://github.com/ariesco/MCPS.

2 Preliminaries

We present in this section how the semantics for message-passing and shared-
memory programming languages can be specified in Maude. We present one
example for each semantics and show how it is model-checked; we will show in
the next sections how the results obtained from these analyses are transformed.
Note that the semantics here are just simple examples illustrating the power of
the tool; it can be applied to any other semantics following the same principles.

2.1 Implementing Semantics in Maude

Semantics are represented in Maude by means of conditional rewrite rules, that
stand for transitions between states. In this way, each inference rule of the form:

P1 . . . Pn

state1 ⇒ state2
id

in the semantics, which indicates that state2 is reached from state1 if the
premises P1 . . . Pn hold, is written in Maude as:

crl [id] : state1 => state2 if P1 /\ ... /\ Pn .

where the conditions Pi can be either equalities (possibly involving some auxil-
iary functions), that will be solved by applying equations, or rewrite conditions,
that indicate that some extra transitions must hold.

In the following we will give the intuitive ideas underlying the syntax of our
languages and limit Maude code to some rewrite rules defining the language
semantics, so the ideas can be followed by non-experts. Type definitions, auxil-
iary functions, and much more information is available in the repository above.

2.2 Shared-Memory Semantics

We use a modification of the imperative language in [6, Chap. 13] as run-
ning example. This language includes assignments (X := E), sequential com-
position (INS ; INS’), conditional statements (if COND then INS fi), and
loops (while COND do INS od and repeat INS forever), for X a variable, E
an expression, INS and INS’ sequences of instructions, and COND a condition.
Processes executing programs written with this syntax are wrapped into pro-
cesses of the form [ID, P], with ID a natural number standing for the process
identifier and P the program being executed. Finally, the whole system is a pair
of the form [PS, M], with PS a set of processes (put together by using |) and M

https://github.com/ariesco/MCPS

Model Checking Parameterized by the Semantics in Maude 201

repeat

c1 := 1 ; *** It should be c2 := 1 ;

while c1 = 1 do

if turn = 1 then

c2 := 0 ;

while turn = 1 do skip od ;

c2 := 1

fi

od ;

cs2 := 1 ; *** start critical section for process 2

cs2 := 0 ; *** end critical section for process 2

turn := 1 ;

c2 := 0

forever

Fig. 1. Simplified Dekker algorithm

the memory, which consists of a set of pairs [V, N], with V a variable and N a
natural number. We assume all variables in the system are initialized beforehand.

The semantics of this system are defined by using rewrite rules for each
instruction. For example, the rule asg indicates that, given a process I where
the first instruction to be executed is the assignment Q := N (the variable S
stands for the rest of processes) and the memory contains the pair [Q, X] (M
stands for the rest of the pairs in the memory), the instruction is executed by
updating the value of the variable from X to N:2

rl [asg] : {[I, Q := N ; R] | S, [Q, X] M}

=> {[I, R] | S, [Q, N] M} .

Similarly, a repeat puts the body of the loop before repeating the instruction:

rl [repeat] : {[I, repeat P forever ; R] | S, M}

=> {[I, P ; repeat P forever ; R] | S, M} .

Using this syntax, [6, Chap. 13] describes the verification of the Dekker algo-
rithm, a well-known protocol for ensuring mutual exclusion where each process
actively waits for its turn; this turn is indicated by a variable that is only changed
by the process exiting the critical section. We present in Fig. 1 a simplification of
the algorithm for the second process (the first is defined analogously by chang-
ing the variables c1/c2, cs1/cs2, and the value in turn) where a bug has been
introduced, hence violating the mutual exclusion property. Note that the value
of csi is used to determine if process i is in the critical section.

Hence, given (1) the initial state {[1,p1] | [2,p2], [c1,0][c2,0]
[cs1,0] [cs2,0] [turn,1]}, with p1 and p2 the corresponding version of

2 Note that this is a small-step semantics and hence N is completely evaluated. In
general we may need to compute the expression on the righthand side in a rewrite
condition.

202 A. Riesco

Fig. 2. Counterexample fragment for mutual exclusion in the (buggy) Dekker algorithm

the Dekker algorithm for the first and the second process, respectively, and
(2) an atomic formula enterCrit that holds when the variable given as argu-
ment (either cs1 or cs2) has value 1 (i.e., the corresponding process is in the
critical section), we check whether mutual exclusion holds in Fig. 2, where we
have highlighted the command (first rectangle) and the result (second and third
rectangles). As shown in the figure, the property does not hold and hence a
counterexample is returned; it consists of a list of pairs containing a state and
the identifier of the rule used to reach the next state. In our case we just depict
the first two pairs; the first one consists of the initial state and the rule label
repeat (first inner rectangle), indicating that this rule is applied to reach the
state in the second pair, where in turn asg will be used (second inner rectangle).
This counterexample is difficult to follow not only because of the presentation, it
also gives the user information that it is useful from the Maude point of view but
not from the programming language point of view. For example, the user might
not be interested in the steps involving the repeat rule, since it does not modify
the memory. We will show in Sect. 3 how this counterexample is transformed.

2.3 Message-Passing Semantics

We consider for our message-passing semantics the simple functional language
in [19],3 which supports let and conditional expressions, as well as basic arith-
metic and Boolean operations. First, we expand it with expressions of the form
to ID : M for sending messages, with both ID and M natural numbers standing
for the identifier of the addressee and the message, respectively, and receive
expressions for receiving them. Then, we define processes as terms of the form
[ID | E | ML], with ID a natural number identifying the process, E the expres-
sion being evaluated in the process, and ML a list of natural numbers standing for
3 For the sake of conciseness we use syntactic sugar for numbers and variables.

Model Checking Parameterized by the Semantics in Maude 203

the messages received thus far (we consider the head of the list is the leftmost
element). Finally, the whole system is represented as a term of the form || PS,
D ||, for PS a set of processes and D a set of function declarations.

In this language we have rules of the form D, ro |- e => e’ for simplifying
expressions, given a set of declarations D, an environment ro, and expressions
e and e’. For example, rule Let1 below shows how the expression e in a let
expression is simplified by applying a rewrite condition that computes e’’. On
the other hand, rule Let2 just applies the appropriate substitution when a value
has been obtained for the variable:

crl [Let1] : D,ro |- let x = e in e’ => let x = e’’ in e’

if D,ro |- e => e’’ .

rl [Let2] : D,ro |- let x = v in e’ => e’[v / x] .

Similarly, we need rules at the process level to model how messages are sent
and received. Rule send below shows how a message being processed by id and
addressed to id’ is introduced into the list of received messages of id’, while
value 1 is used in id to indicate that the message was delivered correctly. Rule
receive is in charge of consuming messages: it substitutes a receive expression
by the first message in the list:

rl [send] :

|| [id | let x = (to id’ : n) in e | nl] [id’ | e’ | nl’] ps , D ||

=> || [id | let x = 1 in e | nl] [id’ | e’ | nl’ . n] ps , D || .

rl [receive] :

[id | let x = receive in e | n . nl] => [id | let x = n in e | nl] .

We will use a simple synchronization protocol between a server and two
clients to illustrate how the model checker behaves in this case. Hence, we have
the following initial state, with the server identified by 0 and the clients by 1
and 2. Note that the server receives the client identifiers as arguments, while the
clients receive the server identifier:

|| [0 | server(1, 2) | nilML] [1 | client(0) | nilML]

[2 | client(0) | nilML], decs ||

The declarations decs, shown below, indicate that the server sends a message
(0) to the process identified by the first argument (client 1 in this case), another
message (1) to the process identified by the second argument (2), then waits for
two messages and returns 1 if it receives 0 and 1 (in this order) and 0 otherwise.
In turn, the client receives a message and just returns the same message to the
server, whose identifier received as parameter:

204 A. Riesco

Fig. 3. Counterexample for message-passing semantics

server(x, y) <= let a = to x : 0
in let b = to y : 1

in let c = receive
in let d = receive

in If Equal(c, 0) And Equal(d, 1)
Then 1 Else 0 &

client(x) <= let y = receive
in let z = to x : y in z

A näıve user might expect messages from clients to be received in the same
order as they were sent from the server, and hence the final state to be always
1. Figure 3 shows the command (first rectangle) and the first two states of the
counterexample for this property (second and third rectangles, respectively),
where finalValue is an atomic proposition that holds if the process identified
by the first argument contains the expression given as second argument. The
first step just substitutes the function call by the body of the function, while the
second one is in charge of sending the first message in the server, as highlighted
by the inner rectangle. We will see in Sect. 4 how to improve this trace.

2.4 Maude Metalevel and Loop Mode

The transformations presented in this paper have been implemented in an inter-
active Maude tool extending Full Maude [6, Part II] and using Maude metalevel
capabilities [6, Chap. 14].

Full Maude is an extension of Maude written in Maude itself. It provides an
input/output loop, an explicit state, and facilities to define, parse, and execute
new commands, making it the most appropriate option to develop interactive
Maude applications. It is worth noting that commands in Full Maude must be
enclosed in parentheses, as required by the Loop Maude [6, Chap. 17], the built-
in Maude module in charge of dealing with input/output information. For this
reason, all commands in Sects. 3 and 4 will follow this convention.

Model Checking Parameterized by the Semantics in Maude 205

On the other hand, Maude metalevel allows users to use Maude modules and
terms as usual data. This feature allows us to:

– Traverse modules and identify those rules modifying terms of a given sort (e.g.
the memory) or creating/consuming terms built with particular operators
(e.g. messages).

– Identify the subterms involved in each step. This analysis is twofold: (i) given
the whole state, we are interested in identifying the particular subterm being
rewritten (e.g. identify the process executing the code among the set of pro-
cesses), and (ii) recognize particular parts of the subterm found in the previous
step to isolate elements of interest (e.g. messages).

– Manipulate the counterexample obtained when model checking a system. In
particular, we can use the information obtained when traversing the module
to prune the counterexample and the information about subterms to distin-
guish among the different parts of each state (e.g. memory, processes, and
messages).

3 Model Checking Shared-Memory Languages

In this section we present the transformation used for programming languages
following a shared-memory approach. In this transformation we rely in the fol-
lowing assumption: properties refer to memory states. Hence, we only need to
keep those transitions in the original counterexample performed by rules that
modify the memory. For example, for the program in Sect. 2.1 we will only keep
those steps involving the asg rule. We consider this is a safe assumption, since
in these systems the access to the shared resources is critical.

Once we have decided the transitions that we want to keep, we must decide
how to display each step. We decided to follow a JSON-like format and display
the following information:

– The process executed (field unit) when the rule is applied. If the process has
an identifier it will be displayed in the id field.

– The whole system (field system) before the rewrite rule is applied.
– The state of the memory. Since the memory will be modified by the appli-

cation of the rule, we present the state before applying the rule (field
memory-before) and after applying it (field memory-after). In this way the
user can inspect the effects of the rule. Note that this field is a list, since in
general different types of memory can be used.

– Since we can work at the metalevel, we decided to display the value of all
atomic formulas before and after applying the rule, so the user can under-
stand the values taken by the LTL formula (filed props). For each atomic
proposition in the formula we display its name, arguments, and how its value
changed when the current rule is applied.

Algorithm 1 presents the transformation for shared memory, where all func-
tions but head and tail are implemented at the metalevel, since they manipulate

206 A. Riesco

Data: Counterexample c, semantics S, sorts ms for memory terms, sort p for
processes, atomic propositions aps, and (optionally) id argument.

Result: Transformed counterexample.
rule labels = memoryRules(S);
c = close(S, c, rule labels);
while not empty(c) do

(term, label) = head(c);
c = tail(c);
if label ∈ rule labels then

(term’, label’) = head(c);
sub = match(S, term, label, term’);
lhs = apply(sub, getLefthandSide(S, label));
m info = getMemoryInfo(term, term’, ms);
s info = getStateInfo(term, ms);
p info = getProcessInfo(lhs, p, [id]);
props info = getPropsInfo(term, term’, aps);
display(m info, s info, p info, props info);

end

end
Algorithm 1. Transformation for shared-memory semantics

modules, rules, and terms. We first extract from the semantics those rules that
modify the memory by using memoryRules. Then, we make sure the last tran-
sition in the counterexample does not use a rule in this set; if this is the case,
the function close explicitly adds the next state4 and uses a special label not
in rule labels to make sure the condition in the while loop skips it. Then the
loop traverses all the states in the counterexample; when we find a step whose
label is in rule labels then we take the next state to find the matching (function
match) that was used in the rule. This is required because, given a term and a
rule, many different matchings are possible, so we need to ensure that we use the
correct one. Then, we apply this matching to instantiate the lefthand side of the
rule being used, hence obtaining lhs (function apply). This subterm is the one
containing the information about the process being executed, while the term
in the counterexample (term) contains the information about the whole sys-
tem. We use appropriate pretty-printing functions to display the corresponding
information.

The current version of the system cannot infer the sort for the memory or the
sort for the processes (that we call units). Hence, we require the user to introduce
these sorts. In our example, we would start by introducing Memory as the sort
used for the memory and Process as the sort used for processes. Moreover, we
indicate that the first argument for Process stands for the identifier:5

4 Since a cycle is required to evaluate an LTL formula, this new state has appeared
before in the counterexample and there is no need to explore it again.

5 If the constructor does not include an identifier we would use (unit Process .).

Model Checking Parameterized by the Semantics in Maude 207

Maude> (memory sorts Memory .)

Memory sorts introduced: Memory

Maude> (unit Process id 1 .)

Unit sort introduced: Process

It is identified by the 1 argument.

Fig. 4. Transformed counterexample for shared-memory semantics

Note that the first command allows the user to introduce several sorts for the
memory, since different representations can be used for registers, main memory,
etc. Once this information has been introduced into the system, it infers that
the single rule modifying the memory is asg, so only the steps using this rule in
the counterexample will be displayed. Now, we can execute the shared memory
analysis command with the same model-checking command that we used in
Sect. 2.2. We present a fragment of the transformed trace in Fig. 4, where unit
and system are not shown for the sake of readability. The step shown in the
figure corresponds to the rewrite step that violates mutual exclusion: the process
identified by 1 is executed and it goes into the critical section (variable cs1
changes its value from 0 to 1, as we have highlighted in the figure), satisfying
the corresponding property (enterCrit(cs1)); since the second process was into
the critical section as well (as we can see by checking cs2 or the corresponding
property), the formula fails. However, we also notice that the process 1 behaved
appropriately, since it was its turn (see variable turn), so we would inspect the
trace for the second process to find the error.

Hence, the trace now can be read more easily, it contains less states (while
the original counterexample had 89 states, the transformed one has 58), and it
is displayed in a format that can be parsed and analyzed later if required.

208 A. Riesco

4 Model Checking Message-Passing Languages

We present in this section two different ways to transform counterexamples like
the one shown in Sect. 2.3, so the Maude semantics become transparent to the
user. While the first one summarizes the actions performed by the processes
during the computation, the second one presents trace-like information with the
main actions that took place.

We denote as summary mode our first approach, which presents the expression
reached in each process, as well as the sent and consumed messages. In order
to do so, we need the user to introduce the sort for the processes (and the
argument standing for its identifier, if it exists) and the constructors for sending
and consuming messages. The tool will use this information to identify those
rules in charge of dealing with messages and to locate the processes and their
identifiers, as well as the messages sent and consumed, so they can be displayed.
Hence, this transformation presents the following information for each process:

– Its identifier (id field).
– Its final value (value field). Note that in some cases this value will not be a

normal form, since some functions (e.g. servers) might be non-terminating.
– The list of messages it has sent (sent field).
– The list of messages it has consumed (consumed field).

However, in some cases it is also useful to understand the interleaving between
different messages and processes. For this reason, we decided to present a trace-
like counterexample, that we call trace mode. However, in this semantics is
not clear the notion of “step,” so we first decided to focus on messages and
display information when a message is sent or consumed. Then, we noticed that
some properties might change some steps after a message was sent or received,
and hence we decided to include in the trace those steps where at least one
atomic property changes its truth value. As explained in the previous section,
this information is used by executing at the metalevel all the atomic properties in
the state reached in the corresponding state. In this approach each step contains
the following information:

– The identifier of the process that performed the action (id field).
– The action that took place (action field), which can be either msg-consumed,

msg-sent, and prop-changed, which stand for messages consumed, messages
sent, and truth value of atomic propositions changed, respectively.

– The messages involved in the action (messages field). This field is omitted
when the action is not referred to message creation or consumption.

– The state of all processes before and after applying the rule
(processes-before and processes-after fields, respectively).

– How the properties changed with the rewrite rule (props field), which are
displayed as explained in the previous section for shared memory.

Algorithm 2 presents this transformation, where again all functions but head
and tail must be implemented at the metalevel. It first analyzes the semantics to

Model Checking Parameterized by the Semantics in Maude 209

extract those rules in charge of sending and consuming messages, respectively.
This step requires the function to traverse all rules and choose those whose
righthand side either creates terms built with operators in os or removes terms
built with oc (both actions with respect to the lefthand side). As explained in
the previous section, we use the function close to add an extra final state if
needed (i.e., if a message is involved or the properties change), since we need
pairs of states to infer the matching. Then, we initialize the list of processes
and start the loop: if the current label involves messages then we compute the
substitution and the lefthand side of the rule as we did in the previous section and
distinguish whether the event consisted of sending or consuming messages. We
use the appropriate operators (either os or oc) to obtain the current process, the
messages, and the event that took place. Note that this inference is more complex
than the one for shared memory, since in the case of synchronous communication
many processes might appear in the rule and we must select the one being
executed, that is, containing terms built with the operators os or oc. Finally,
we update the appropriate process in the list (if it did not exist a new process
with that identifier is created) with the update function and the information is
displayed depending on the selected mode.

In our example, we would indicate that processes are terms of sort Process
and their identifier is its first argument. Similarly, we would state to : as the
instruction for sending messages and receive for the one consuming them:

Maude> (unit Process id 1 .)

Unit sort introduced: Process

It is identified by the 1 argument.

Maude> (msg creation to_:_ .)

Message creation operators introduced: to_:_

Maude> (msg consumption receive .)

Message consumption operators introduced: receive

Similarly, if we want a summary of the execution we would set the mode to
summary (which is the default one) as follows:

Maude> (set mode summary .)

Mode summary selected.

Figure 5 shows the result when using this transformation to the example in
Sect. 2.3. We see that the server, identified by 0, finished with value 0 after
consuming the messages in the order 1, 0, while the clients finished as expected.
With this information the user realizes that a different interleaving is possible
and can fix its program. On the other hand, to use the trace mode in our
example we would use the following command:

Maude> (set mode trace .)

Mode trace selected.

Figure 6 shows the instant when process 0 (the server) consumes the mes-
sage from client 1. We have omitted processes 1 and 2 for the sake of readability,

210 A. Riesco

Data: Counterexample c, semantics S, operators os for sending messages,
operators oc for consuming messages, sort p for processes, atomic
propositions aps, and (optionally) id argument.

Result: Transformed counterexample.
send labels = sendRules(S, os);
cons labels = consumeRules(S, oc);
c = close(S, c, rule labels);
proc list = [];
while (|c| > 1) do

(term, label) = head(c);
c = tail(c);
(term’, label’) = head(c);
p info = getPropsInfo(term, term’, aps);
if label ∈ (send labels ∪ cons labels) then

sub = match(S, term, label, term’);
lhs = apply(sub, getLefthandSide(S, label));
if label ∈ send labels then

p info = getProcessInfo(lhs, p, [id], os);
msgs = getMsgProcessed(lhs, os);
event = send;

else
p info = getProcessInfo(lhs, p, [id], cs);
msgs = getMsgProcessed(lhs, cs);
event = consume;

end
proc list [p info] = update(proc list, p info, event, msgs);
display(proc list, p info, event, msgs, p info) ; // only in trace mode

end
else if changed(p info) then

display(term, term’, p info) ; // only in trace mode

end

end
display(proc list) ; // only in summary mode

Algorithm 2. Transformation for message-passing semantics

while changes have been highlighted. Note that this message is the first one con-
sumed by the server (in the state before the rule the list of consumed messages)
because they have arrived in this order (the third argument of the value field,
the ordered list of messages, has value 1 . 0); after applying the rule the mes-
sage has disappeared from the list, message 1 appears in the list of consumed
messages, and the first receive in the state has been replaced by 1. Once the
user realizes this behavior was expected, he/she should change the program to
take this interleaving into account.

Finally, it is worth noting that, in addition to improving the readability
and providing a friendly representation, the number of steps in trace mode is
reduced from 24 in the original counterexample to 8.

Model Checking Parameterized by the Semantics in Maude 211

Maude> (msg passing analysis modelCheck(init, <> [] finalValue(0, 1)) .)

{processes =[

{ id = 0,

value = [0 | 0 | nilML],

sent = [to 1 : 0, to 2 : 1],

consumed = [1, 0]},

{ id = 1,

value = [1 | 1 | nilML],

sent = [to 0 : 0],

consumed = [0]},

{ id = 2,

value = [2 | 1 | nilML],

sent = [to 0 : 0],

consumed = [1]}

Fig. 5. Final state for message-passing semantics

Fig. 6. Trace-like representation: message consumption

5 Concluding Remarks and Ongoing Work

In this paper we have presented two transformations that allow specifiers to
model check real code and interpret the counterexamples obtained. These trans-
formations are restricted to languages following either a shared-memory or a
message passing approach. They have been implemented using Maude metalevel
and are available online. To the best of our knowledge this is the first generic
transformation that allows users to model check real code based on its semantics.
Hence, this tool sets the basis for further development in this direction.

212 A. Riesco

On the theoretical side, it is interesting to study how this approach relates
to similar approaches, like the partial evaluation transformations in [7,12].

On the tool side, it would be interesting to define transformations for other
approaches, in particular for hybrid ones implementing both shared memory
and message passing. We are also interested in performing a pre-analysis of the
semantics to infer information about the language and hence save time and work
to the user. Notably, following the analyses proposed in [16] it would be possible
to identify the sorts for the memory.

Then, it would be interesting to see whether the current transformations
can be improved. In [1] the authors use slicing, a technique to keep only those
instructions related to the values reached by a set of variable of interest, to
reduce the size of Maude traces. When applying this technique we face again the
problems outlined in the introduction, since it works on Maude variables but we
need it to work on program variables, which depend on the semantics. We would
need to follow the ideas in [16] to obtain the desired result.

Regarding efficiency, following the ideas in [11] it is possible to reduce the
number of states when model checking Maude specifications, hence avoiding the
state-space explosion problem, by transforming rules (that generate transitions
when model checking a system) into equations (that do not generate transitions)
if some properties hold. These properties are the executability requirements (ter-
mination, confluence, and coherence), which can be proved in some cases using
the Maude Formal Environment [8], and invisibility, which requires that the
transformed rules do not change the truth value of the predicates. Hence, in our
shared-memory model we would transform all those rules that do not modify
the memory; further assumptions on the message-passing approach would be
required to ensure soundness.

Overall, our long-term goal is to obtain a parameterized transformation for
real languages, in the same way as Java PathFinder [13] works for Java. In this
sense we will probably need to generalize other aspects of the tool, so it deals
with structures such as objects.

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward trace slicing for rewrit-
ing logic theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 34–48. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22438-6 5

2. Ben-Ari, M.: Principles of the Spin Model Checker. Springer, London (2008).
https://doi.org/10.1007/978-1-84628-770-1

3. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theor. Comput. Sci. 236, 35–132 (2000)

4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

https://doi.org/10.1007/978-3-642-22438-6_5
https://doi.org/10.1007/978-3-642-22438-6_5
https://doi.org/10.1007/978-1-84628-770-1
https://doi.org/10.1007/3-540-45657-0_29

Model Checking Parameterized by the Semantics in Maude 213

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

7. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Semantics-based gener-
ation of verification conditions via program specialization. Sci. Comput. Program.
147, 78–108 (2017)

8. Durán, F., Rocha, C., Álvarez, J.M.: Towards a Maude formal environment. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4 17

9. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th Symposium on Principles of Programming Languages,
POPL 2012, pp. 533–544. ACM (2012)

10. Farzan, A., Chen, F., Meseguer, J., Roşu, G.: Formal analysis of Java programs in
JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 46

11. Farzan, A., Meseguer, J.: State space reduction of rewrite theories using invisible
transitions. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp.
142–157. Springer, Heidelberg (2006). https://doi.org/10.1007/11784180 13

12. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test case generation for object-
oriented imperative languages in CLP. Theor. Pract. Log. Program. 10(4–6), 659–
674 (2010)

13. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000)

14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

15. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theor. Comput. Sci.
373(3), 213–237 (2007)

16. Riesco, A., Asăvoae, I.M., Asăvoae, M.: Slicing from formal semantics: Chisel.
In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 374–378.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 21

17. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Log.
Algebr. Program. 79(6), 397–434 (2010)

18. Rusu, V., Lucanu, D., Serbanuta, T., Arusoaie, A., Stefanescu, A., Roşu, G.: Lan-
guage definitions as rewrite theories. J. Log. Algebraic Methods Program. 85(1),
98–120 (2016)

19. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in
Maude. J. Log. Algebr. Program. 67, 226–293 (2006)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-24933-4_17
https://doi.org/10.1007/978-3-540-27813-9_46
https://doi.org/10.1007/11784180_13
https://doi.org/10.1007/978-3-662-54494-5_21

Automated Amortised Resource Analysis
for Term Rewrite Systems

Georg Moser1(B) and Manuel Schneckenreither2(B)

1 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
georg.moser@uibk.ac.at

2 Department of Information Systems, Production and Logistics Management,
University of Innsbruck, Innsbruck, Austria
manuel.schneckenreither@uibk.ac.at

Abstract. Based on earlier work on amortised resource analysis, we
establish a novel automated amortised resource analysis for term rewrite
systems. The method is presented in an inference system akin to a type
system and gives rise to polynomial bounds on the innermost runtime
complexity of the analysed term rewrite system. Our analysis does not
restrict the input rewrite system in any way. This facilitates integration
in a general framework for resource analysis of programs. In particular,
we have implemented the method and integrated it into our tool TCT.

Keywords: Analysis of algorithms · Amortised complexity
Term rewriting · Types · Automation

1 Introduction

Amortised resource analysis [1,2] is a powerful method to assess the overall com-
plexity of a sequence of operations precisely. It has been established by Sleator
and Tarjan in the context of self-balancing data structures, which sometimes
require costly operations that however balance out in the long run.

For automated resource analysis, amortised cost analysis has been in particu-
lar pioneered by Hoffmann et al., whose RaML prototype has grown into a highly
sophisticated analysis tool for (higher-order) functional programs, cf. [3]. In a
similar spirit, resource analysis tools for imperative programs like COSTA [4],
CoFloCo [5] and LOOPUS [6] have integrated amortised reasoning. In this paper,
we establish a novel automated amortised resource analysis for term rewrite
systems (TRSs for short).

Consider the rewrite system R1 in Fig. 1 encoding a variant of an example
by Okasaki [7, Sect. 5.2] (see also [8, Example 1]); R1 encodes an efficient imple-
mentation of a queue in functional programming. A queue is represented as a
pair of two lists que(f, r), encoding the initial part f and the reversal of the

This research is partly supported by DARPA/AFRL contract number FA8750-17-
C-088.

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 214–229, 2018.
https://doi.org/10.1007/978-3-319-90686-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_14&domain=pdf
http://orcid.org/0000-0001-9240-6128
http://orcid.org/0000-0002-4812-4665

Automated Amortised Resource Analysis for Term Rewrite Systems 215

1: chk(que(nil, r)) → que(rev(r), nil) 7 : enq(0) → que(nil, nil)

2 : chk(que(x � xs, r)) → que(x � xs, r) 8 : rev′(nil, ys) → ys

3: tl(que(x � f, r)) → chk(que(f, r)) 9 : rev(xs) → rev′(xs, nil)

4 : snoc(que(f, r), x) → chk(que(f, x � r)) 10: hd(que(x � f, r)) → x

5: rev′(x � xs, ys) → rev′(xs, x � ys) 11: hd(que(nil, r)) → err head

6: enq(s(n)) snoc(enq(n), n) 12: tl(que(nil, r)) err tail

Fig. 1. Queues in rewriting

remainder r. The invariant of the algorithm is that the first list never becomes
empty, which is achieved by reversing r if necessary. Should the invariant ever be
violated, an exception (err head or err tail) is raised. To exemplify the physicist’s
method of amortised analysis [2] we assign to every queue que(f, r) the length
of r as potential. Then the amortised cost for each operation is constant, as the
costly reversal operation is only executed if the potential can pay for the opera-
tion, cf. [7]. Thus, based on an amortised analysis, we may deduce the optimal
linear runtime complexity for R.

Taking inspirations from [8,9], the amortised analysis is based on the poten-
tial method, as exemplified above. It employs the standard (small-step) semantics
of innermost rewriting and exploits a footprint relation in order to facilitate the
extension to TRSs. For the latter, we suit a corresponding notion of Avanzini
and Lago [10] to our context. Due to the small-step semantics we immediately
obtain an analysis which does not presuppose termination. The incorporation of
the footprint relations allows the immediate adaption of the proposed method
to general rule-based languages. The most significant extension, however, is the
extension to standard TRSs. TRSs form a universal model of computation that
underlies much of declarative programming. In the context of functional pro-
gramming, TRSs form a natural abstraction of strictly typed programming lan-
guages like RaML, but natively form foundations of non-strict languages and
non-typed languages as well.

Our interest in an amortised analysis for TRSs is motivated by the use of
TRSs as abstract program representation within our uniform resource analyse
tool TCT [11]. Incorporating a transformational approach the latter provides a
state-of-the-art tool for the resource analysis of pure OCaml programs, but more
generally allows the analysis of general programs. In this spirit we aim at an
amortised resource for TRSs in its standard form: untyped, not necessarily left-
linear, confluent, or constructor-based. Technically, the main contributions of
the paper are as follows.

– Employing the standard rewriting semantics in the context of amortised
resource analysis. This standardises the results and simplifies the presenta-
tions contrasted to related results on amortised analysis of TRSs cf. [8,12].
We emphasise that our analysis does not presuppose termination.

– We overcome earlier restrictions to sorted, completely defined, orthogonal and
constructor TRSs, that is, we establish an amortised analysis for standard

216 G. Moser and M. Schneckenreither

first-order rewrite system, that is, the only restrictions required are the stan-
dard restrictions that (i) the left-hand side of a rule must not be a variable
and (ii) no extra variables are introduced in rules.

– The analysis is lifted to relative rewriting, that is, the runtime complexity of
a relative TRS R/S is measured by the number of rule applications from R,
only. This extension is mainly of practical relevance, as required to obtain an
automation of significant strength.

– Finally, the analysis has been implemented and integrated into TCT. We have
assessed the viability of the method in context of the TPDB as well as on an
independent benchmark.

This paper is structured as follows. In the next section we cover basics. In
Sect. 3 we introduce the inference system and prove soundness of the method.
In Sect. 4 we detail the implementation of the method and remark on chal-
lenges posed by automation. Section 5 provides the experimental assessment of
the method. Finally we conclude in Sect. 6, where we also sketch future work.
The formal proofs and the full definitions of additional examples have been omit-
ted due to space restrictions. Full details can be found in the second author’s
master thesis, cf. [13].

2 Preliminaries

We assume familiarity with term rewriting [14,15] but briefly review basic con-
cepts and notations.

Let V denote a countably infinite set of variables and F a signature, such
that F contains at least one constant. The set of terms over F and V is denoted
by T (F ,V). We write Var(t) to denote the set of variables occurring in term t.
The size |t| of a term is defined as the number of symbols in t.

We suppose F = C � D, where C denotes a finite, non-empty set of construc-
tor symbols, D is a finite set of defined function symbols, and � denotes disjoint
union. Defined function symbols are sometimes referred to as operators. A term
t is linear if every variable in t occurs only once. A term t′ is the linearisation of
a non-linear term t if the variables in t are renamed apart such that t′ becomes
linear. The notion generalises to sequences of terms. A term t = f(t1, . . . , tk)
is called basic, if f is defined, and all ti ∈ T (C,V). We write dom(σ) (rg(σ)) to
denote the domain (range) of σ.

Let → ⊆ S × S be a binary relation. We denote by →+ the transitive and
by →∗ the transitive and reflexive closure of →. By →n we denote the n-fold
application of →. If t is in normal form with respect to →, we write s →! t.
We say that → is well-founded or terminating if there is no infinite sequence
s0 → s1 → It is finitely branching if the set {t | s → t} is finite for each
s ∈ S. For two binary relations →A and →B , the relation of →A relative to →B

is defined by →A/→B := →∗
B · →A · →∗

B .
A rewrite rule is a pair l → r of terms, such that (i) the root symbol of l is

defined, and (ii) Var(l) ⊇ Var(r). A term rewrite system (TRS) over F is a finite
set of rewrite rules. Observe that TRSs need not be constructor systems, that is,

Automated Amortised Resource Analysis for Term Rewrite Systems 217

arguments of left-hand sides of rules may contain defined symbols. Such function
symbols are called constructor-like, as below they will be sometimes subject to
similar restrictions as constructor symbols.

The set of normal forms of a TRS R is denoted as NF(R), or NF for short. We
call a substitution σ normalised with respect to R if all terms in the range of σ are
ground normal forms of R. Typically R is clear from context, so we simply speak
of a normalised substitution. In the sequel we are concerned with innermost
rewriting, that is, an eager evaluation strategy. Furthermore, we consider relative
rewriting.

A TRS is left-linear if all rules are left-linear, it is non-overlapping if there
a no critical pairs, that is, no ambiguity exists in applying rules. A TRS is
orthogonal if it is left-linear and non-overlapping. A TRS is completely defined if
all ground normal-forms are values. Note that an orthogonal TRS is confluent.
A TRS is constructor if all arguments of left-hand sides are basic.

The innermost rewrite relation i−→R of a TRS R is defined on terms as follows:
s i−→R t if there exists a rewrite rule l → r ∈ R, a context C, and a substitution σ
such that s = C[lσ], t = C[rσ], and all proper subterms of lσ are normal forms of
R. In order to generalise the innermost rewriting relation to relative rewriting, we
introduce the slightly technical construction of the restricted rewrite relation [16].
The restricted rewrite relation Q−→R is the restriction of →R where all arguments
of the redex are in normal form with respect to the TRS Q. We define the
innermost rewrite relation, dubbed i−→R/S , of a relative TRS R/S as follows.

i−→R/S := R∪S−−−→∗
S · R∪S−−−→R · R∪S−−−→∗

S .

Observe that i−→R = i−→R/∅ holds.
Let s and t be terms, such that t is in normal-form. Then a derivation

D : s →∗
R t with respect to a TRS R is a finite sequence of rewrite steps. The

derivation height of a term s with respect to a well-founded, finitely branching
relation → is defined as dh(s,→) = max{n | ∃t s →n t}.

Definition 1. We define the innermost runtime complexity (with respect to
R/S): rcR(n) := max{dh(t, i−→R/S) | t is basic and |t| � n}.

Intuitively the innermost runtime complexity wrt. R/S counts the maximal num-
ber of eager evaluation steps in R in a derivation over R ∪ S. In the definition,
we tacitly assume that i−→R/S is terminating and finitely branching.

For the rest of the paper the relative TRS R/S and its signature F are fixed.
In the sequel of the paper, substitutions are assumed to be normalised with
respect to R ∪ S.

3 Resource Annotations

In this section, we establish a novel amortised resource analysis for TRSs. This
analysis is based on the potential method and coached in an inference system.
Firstly, we annotate the (untyped) signature by the prospective resource usage

218 G. Moser and M. Schneckenreither

(Definition 2). Secondly, we define a suitable inference system, akin to a type
system. Based on this inference system we delineate a class of resource bounded
TRSs (Definition 10) for which we deduce polynomial bounds on the innermost
runtime complexity for a suitably chosen class of annotations, cf. Theorem16.

A resource annotation p is a vector p = (p1, . . . , pk) over non-negative ratio-
nal numbers. The vector p is also simply called annotation. Resource annotations
are denoted by p, q, u, v, . . . , possibly extended by subscripts and we write A for
the set of such annotations. For resource annotations (p) of length 1 we write p.
We will see that a resource annotation does not change its meaning if zeroes are
appended at the end, so, conceptually, we can identify () with (0) and also with
0. If p = (p1, . . . , pk) we set k := |p| and maxp := max{pi | i = 1, . . . , k}. We
define the notations p � q and p+q and λp for λ � 0 component-wise, filling up
with 0s if needed. So, for example (1, 2) � (1, 2, 3) and (1, 2)+(3, 4, 5) = (4, 6, 5).

Definition 2. Let f be a function symbol of arity n. We annotate the arguments
and results of f by resource annotations. A (resource) annotation for f , deco-
rated with k ∈ Q

+, is denoted as [p1 × · · · × pn] k−→ q. The set of annotations is
denoted Fpol.

We lift signatures F to annotated signatures F : C ∪ D → (P(Fpol) \ ∅) by
mapping a function symbol to a non-empty set of resource annotations. Hence for
any function symbol we allow multiple types. In the context of operators this is
also referred to as resource polymorphism. The inference system, presented below,
mimics a type system, where the provided annotations play the role of types. If
the annotation of a constructor or constructor-like symbol f results in q, there
must only be exactly one declaration of the form [p1 × · · · × pn] k−→ q in F(f),
that is, the annotation has to be unique. Moreover, annotations for constructor
and constructor-like symbols f must satisfy the superposition principle: If f

admits the annotations [p1 × · · · × pn] k−→ q and [p′
1 × · · · × p′

n] k′
−→ q′ then

it also has the annotations [λp1 × · · · × λpn] λk−→ λq (λ ∈ Q
+, λ � 0) and

[p1 + p′
1 × · · · × pn + p′

n] k+k′
−−−→ q + q′.

Example 3. Consider the sets D = {enq, rev, rev′, snoc, chk, hd, tl} and C = {nil, �,
que, 0, s}, which together make up the signature F of the motivating example
R1 in Fig. 1. Annotations of the constructors nil and � would for example be as
follows. F(nil) = {[] 0−→ k | k � 0} and F(�) = {[0 × k] k−→ k | k � 0}. These
annotations are unique and fulfill the superposition principle. 	

Note that, in view of superposition and uniqueness, the annotations of a
given constructor or constructor-like symbol are uniquely determined once we
fix the resource annotations for result annotations of the form (0, . . . , 0, 1)
(remember the implicit filling up with 0s). An annotated signature F is sim-
ply called signature, where we sometimes write f : [p1 × · · · × pn] k−→ q instead of
[p1 × · · · × pn] k−→ q ∈ F(f).

Automated Amortised Resource Analysis for Term Rewrite Systems 219

f ∈ C ∪ D [p1 × · · · × pn]
k−→ q ∈ F(f)

x1:p1, . . . , xn:pn
k

f(x1, . . . , xn): q
(app)

Γ
k

t: q k′ � k

Γ
k′

t: q
(w1)

all xi are fresh

x1:p1, . . . , xn:pn
k0

f(x1, . . . , xn): q

k =
∑n

i=0 ki

Γ1
k1

t1:p1 · · · Γn
kn

tn:pn

Γ1, . . . , Γn
k

f(t1, . . . , tn): q
(comp)

Γ
k

t: q

Γ, x:p k
t: q

(w4)
Γ, x: r, y: s k

t[x, y]: q �(p |r, s) x, y are fresh

Γ, z:p k
t[z, z]: q

(share)

Γ, x: r k
t: q p � r

Γ, x:p k
t: q

(w2)
x: q 0

x: q
(var)

Γ
k

t: s s � q

Γ
k

t: q
(w3)

Fig. 2. Inference system for term rewrite systems.

The next definition introduces the notion of the potential of a normal
form. For rules f(l1, . . . , ln) → r in non-constructor TRSs the left-hand side
f(l1, . . . , ln) need not necessarily be basic terms. However, the arguments li are
deconstructed in the rule (app) that we will see in Fig. 2. This deconstruction
may free potential, which needs to be well-defined. This makes it necessary to
treat defined function symbols in li similar to constructors in the inference sys-
tem (see Definition 7).

Definition 4. Let v = f(v1, . . . , vn) be a normal form and let q be a resource
annotation. We define the potential of v with respect to q, written Φ(v: q) by
cases. First suppose v contains only constructors or constructor-like symbols.
Then the potential is defined recursively.

Φ(v: q) := k + Φ(v1: p1) + · · · + Φ(vn: pn) ,

where [p1 × · · · × pn] k−→ q ∈ F(f). Otherwise, we set Φ(v: q) := 0.

The sharing relation �(p |p1,p2) holds if p1 + p2 = p.

Lemma 5. Let v be a normal form. If �(p | p1,p2) then Φ(v:p) = Φ(v: p1) +
Φ(v:p2). Furthermore, if p � q then Φ(v: p) � Φ(v: q).

A (variable) context is a partial mapping from variables V to annotations.
Contexts are denoted by upper-case Greek letters and depicted as sequences of
pairs x: q of variables and annotations, where x: q in a variable context means
that the resource q can be distributed over all occurrences of the variable x in
the term.

Definition 6. Our potential based amortised analysis is coached in an inference
system whose rules are given in Fig. 2. Let t be a term and q a resource anno-
tation. The inference system derives judgements of the form Γ

k
t: q, where Γ

220 G. Moser and M. Schneckenreither

is a variable context and k ∈ Q
+ denotes the amortised costs at least required to

evaluate t.
Furthermore, we define a subset of the inference rules, free of weakening rules,

dubbed the footprint of the judgement, denoted as Γ fp
k

t: q. For the footprint we
only consider the inference rules (app), (comp), (share), and (var).

Occasionally we omit the amortised costs from both judgements using the
notations Γ t: q and Γ fp t: q.

To ease the presentation we have omitted certain conditions, like the pair-
wise disjointedness of Γ1, . . . , Γn in the rule (comp), that make the inference
rules deterministic. However, the implementation (see Sect. 4) is determinis-
tic, which removes redundancy in constraint building and thus improves per-
formance. A substitution is called consistent with Γ if for all x ∈ dom(σ) if
Γ x: q, then Γ xσ: q. Recall that substitutions are assumed to be nor-
malised. Let Γ be a context and let σ be a substitution consistent with Γ . Then
Φ(σ: Γ) :=

∑
x∈dom(Γ) Φ(xσ: Γ (x)).

Definition 7. Let f(l1, . . . , ln) → r, n � 1, be a rule in the TRS R/S.
Further suppose f : [p1 × · · · × pn] k−→ q is a resource annotation for f and let
V := {y1, . . . , ym} denote the set of variables in the left-hand side of the
rule. The potential freed by the rule is a pair consisting of a variable context
y1: r1, . . . , ym: rm and an amortised cost �, defined as follows:

– The sequence l′1, . . . , l
′
n is a linearisation of l1, . . . , ln. Set Z :=

⋃n
i=1 Var(l′i)

and let Z = {z1, . . . , zm′}, where m′ � m.
– There exist annotations s1, . . . , sm′ such that for all i there exist costs �i such

that z1: s1, . . . , zm′ : sm′
fp

�i
l′i: pi.

– Let yj ∈ V and let {zj1 , . . . , zjo} ⊆ Z be all renamings of yj. Define annota-
tions rj := sj1 + · · · + sjo .

– Finally, � :=
∑n

i=1 �i.

Example 8. Consider the rule enq(s(n)) → snoc(enq(n), n) in the running exam-
ple, together with the annotated signature enq: [15] 12−→ 7. The left-hand side
contains the subterm s(n). Using the generic annotation s: [k] k−→ k, the footprint
n: k fp

k
s(n): k is derivable for any k � 0. Thus, in particular the rule frees the

context n: 15 and cost 15. 	

Lemma 9. Let f(l1, . . . , ln) → r ∈ R/S and let c: [p1 × · · · × pn] 0−→ q denote a
fresh, cost-free constructor. Let y1: r1, . . . , ym: rm and � be freed by the rule. We
obtain: y1: r1, . . . , ym: rm fp

�
c(l1, . . . , ln): q.

Based on Definition 7 we can now succinctly define resource boundedness of
a TRS. The definition constitutes a non-trivial generalisation of Definition 11
in [8]. First the input TRS need no longer be sorted. Second the restriction on
constructor TRSs has been dropped and finally, the definition has been extended
to handle relative rewriting.

Automated Amortised Resource Analysis for Term Rewrite Systems 221

Definition 10. Let R/S be a relative TRS, let F be a signature and let f ∈ F .
An annotation [p1 × · · · × pn] k−→ q ∈ F(f) is called resource bounded if for any
rule f(l1, . . . , ln) → r ∈ R ∪ S, we have

y1: r1, . . . , yl: rl
k+�−Krule

r: q ,

where y1: r1, . . . , yl: rl and � are freed by the rule if n � 1 and � = 0 otherwise.
Here, the cost Krule for the application of the rule is defined as follows: (i)
Krule := 1 iff f(l1, . . . , ln) → r ∈ R and (ii) Krule := 0 iff f(l1, . . . , ln) → r ∈ S.
We call an annotation cost-free resource bounded if the cost Krule is always set
to zero.

A function symbol f is called (cost-free) resource bounded if any resource
annotation in F(f) is (cost-free) resource bounded. Finally, R/S is called
resource bounded, or simply bounded if any f ∈ F is resource bounded. Observe
that boundedness of R/S entails that the application of rules in the strict part
R is counted, while the weak part S is not counted.

In a nutshell, the method works as follows: Suppose the judgement Γ
k′

t: q
is derivable and suppose σ is consistent with Γ . The constant k′ is an upper-
bound to the amortised cost required for reducing t to normal form. Below we
will prove that the derivation height of tσ (with respect to innermost rewriting)
is bounded by the difference in the potential before and after the evaluation plus
k′. Thus if the sum of the potentials of the arguments of tσ is in O(nk), where n
is the size of the arguments and k the maximal length of the resource annotations
needed, then the innermost runtime complexity of R/S lies in O(nk).

More precisely consider the comp rule. First note that this rule is only appli-
cable if f(t1, . . . , tn) is linear, which can always be obtained by the use of the
sharing rule. Now the rule embodies that the amortised costs k′ required to eval-
uate tσ can be split into those costs k′

i (i � 1) required for the normalisation
of the arguments and the cost k′

0 of the evaluation of the operator f . Further-
more the potential provided in the context Γ1, . . . , Γn is suitably distributed.
Finally the potential which remains after the evaluation of the arguments is
made available for the evaluation of the operator f .

Before we proceed with the formal proof of this intuition, we exemplify the
method on the running example.

Example 11 (continued from Example 3). TCT derives the following annotations
for the operators in the running example.

enq : [15] 12−→ 7 rev : [1] 4−→ 0 rev′ : [1 × 0] 2−→ 0

snoc : [7 × 0] 14−→ 7 hd : [11] 9−→ 0 tl : [11] 3−→ 1 	

We consider resource boundedness of R1 with respect to the given (monomor-
phic) annotated signatures of Example 11. For simplicity we restrict to bound-
edness of enq. We leave it to the reader to check the other cases. In addition to

222 G. Moser and M. Schneckenreither

the annotations for constructor symbols (cf. Example 3) we can always assume
the presence of zero-cost annotations, e.g. � : [0 × 0] 0−→ 0. Observe that Rule 6
frees the context n: 15 and cost 15. Thus, we obtain the following derivation.

snoc: [7 × 0]
14−→ 7

q: 7,m: 0
14

snoc(q,m): 7
(app)

n2: 0
0
n2: 0

(var)
enq: [15]

12−→ 7

n1: 15
12

enq(n1): 7
(app)

n1: 15, n2: 0
26

snoc(enq(n1), n2): 7
(comp)

n: 15
26

snoc(enq(n), n): 7
(share)

In comparison to [8, Example 13], where the annotations were found manually,
we note that the use of the interleaving operation [8] has been avoided. This
is due to the more general class of annotations considered in our prototype
implementation (see Sect. 4).

The footprint relation forms a restriction of the judgement without the
use of weakening. Hence the footprint allows a precise control of the resources
stored in the substitutions, as indicated by the next lemma.

Lemma 12. Let t be a normal form w.r.t. R, where t consists of constructor
or constructor-like symbols only. If Γ fp

k
t: q, then Φ(tσ: q) = Φ(σ:Γ) + k.

We state the following substitution lemma. The lemma follows by simple
induction on t.

Lemma 13. Let Γ be a context and let σ be a substitution consistent with Γ .
Then Γ t: q implies tσ: q.

We establish soundness with respect to relative innermost rewriting.

Theorem 14. Let R/S be a resource bounded TRS and let σ be a normalised
such that σ is consistent with the context Γ . Suppose Γ

k
t: p and tσ i−→K

R uτ ,
K ∈ {0, 1} for a normalising substitution τ . Then there exists a context Δ such
that Δ

�
t: q is derivable and Φ(σ: Γ) + k − Φ(τ : Δ) − � � K.

Proof. Let Π denote the derivation of the judgement Γ
k

t: q. The proof pro-
ceeds by case distinction on derivation D : tσ i−→K

R uτ and side-induction on Π.
The proof proceeds by case distinction on D and induction on the length of Π. 	

The next corollary is an immediate consequence of the theorem, highlighting
the connection to similar soundness results in the literature.

Corollary 15. Let R/S be a bounded TRS and let σ be a normalising substitu-
tion consistent with the context Γ . Suppose Γ

k
t: q and D : tσ i−→!

R/S v ∈ NF.

Then (i) v: q and (ii) Φ(σ: Γ) − Φ(v: q) + k � |D| hold. 	

The next theorem defines suitable constraints on the resource annotations
to deduce polynomial innermost runtime from Theorem14. Its proof follows the
pattern of the proof of Theorem 14 in [8].

Automated Amortised Resource Analysis for Term Rewrite Systems 223

Theorem 16. Suppose that for each constructor c with [p1 × · · · × pn] k′
−→ q ∈

F(c), there exists ri ∈ A such that pi � q + ri where max ri � max q =: r and
p � r with |ri| < |q| =: k. Then Φ(v: q) � r|v|k, and thus the innermost runtime
complexity of the TRS under investigation is in O(nk).

Proof. The theorem follows the pattern of the proof of Theorem 14 in [8]. 	

We note that our running example satisfies the premise of Theorem16. Thus
the linear bound on the innermost runtime complexity of the running example R1

follows. The next example clarifies that without further assumptions potentials
are not restricted to polynomials.

Example 17. Consider that we annotate the constructors for natural numbers as
0: [] 0−→ p and s: [2p]

p1−→ p, where p = (p1, . . . , pk). We then have, for example,
Φ(t: 1) = 2v − 1, where v is the value represented by t. 	

4 Implementation

In this section we describe the details of important implementation issues. The
realisations of the presented method can be seen twofold. On one hand we have
a standalone program which tries to directly annotate the given TRS. While on
the other hand the integration into TCT [11] uses relative rewriting. Clearly, as
an integration into TCT was planned from the beginning, the language used for
the implementation of the amortised resource analysis module is Haskell1. The
modular design of TCT eased the integration tremendously.

The central idea of the implementation is the collection of all signatures
and arising constraints occurring in the inference tree derivations. To guarantee
resource boundedness further constraints are added such that uniqueness and
superposition of constructors (cf. Sect. 3) is demanded and polynomial bounds
on the runtime complexity are guaranteed (cf. Theorem16).

Inference Tree Derivation and Resource Boundedness. To be able to apply the
inference rules the expected root judgement of each rule is generated (as in
Example 11) by the program and the inference rules of Fig. 2 are applied. To
gain determinism the inference rules are ordered in the following way. The share-
rule has highest priority, followed by app, var, comp and w4. In each step the
first applicable rule is used while the remaining weakening rules w1, w2 and w3

are integrated in the aforementioned ones. For each application of an inference
rule the emerging constraints are collected.

To ensure monomorphic typing of function signatures we keep track of a
list of signatures. It uses variables in lieu of actual vectors. For each signature
occurrence of defined function symbols the system refers to the corresponding
entry in the list of signatures. Therefore, for each defined function symbol only
one signature is added to the list of signatures. If the function occurs multiple

1 See http://haskell.org/.

http://haskell.org/

224 G. Moser and M. Schneckenreither

times, the same references are used. Unlike defined function symbols multiple
signature declarations of constructors are allowed, and thus each occurrence adds
one signature to the list.

For the integration into TCT we utilise the relative rewriting formulation.
Instead of requiring all strict rules to be resource bounded, we weaken this
requirement to have at least one strict rule being actually resource bounded,
while the other rules may be annotated cost-free resource bounded. The SMT
solver chooses which rule will be resource bounded. Clearly, this eases the con-
straint problem which is given to the SMT solver.

Superposition of Constructors. Recall that constructor and constructor-like sym-
bols f must satisfy the superposition principle. Therefore, for each annota-
tion [p1 × · · · × pn] k−→ q of f it must be ensured that there is no annotation
[λ · p1 × · · · × λ · pn] λ·k−−→ q′ with λ ∈ Q

+ and q �= λ ·q′ in the corresponding set
of annotated signatures. Therefore, for every pair (q, q′) with q′ � q and q > 0
either for every λ > 0 : q′ �= λ · q or if q′ = λ · q then the annotation must be of
the form [λ · p1 × · · · × λ · pn] λ·k−−→ λ · q.

A naive approach is adding corresponding constraints for every pair of return
annotations of a constructor symbol. This leads to universal quantifiers due to
the scalar multiplication, which however, are available as binders in modern SMT
solvers [17]. Early experiments revealed their bad performance. Overcoming this
issue using Farkas’ Lemma [18] is not possible here. Thus, we developed the
heuristic of spanning up a vector space using unit vectors for the annotation of
the return types for each constructor. Each annotated signature of such a symbol
must be a linear combination of the base signatures.

Both methods, universal quantifiers and base signatures lead to non-linear
constraint problems. However, these can be handled by some SMT solvers2.
Thus, in contrast to the techniques presented in [3,19,20], which restrict the
potential function to pre-determined data structures, like lists or binary trees,
our method allows any kind of data structure to be annotated.

Example 18. Consider the base constructors �1 : [(0, 0) × (1, 0)] 1−→ (1, 0) and
�2 : [(0, 0) × (2, 1)] 1−→ (0, 1) for a constructor �. An actual instance of an anno-
tated signature is n1· �1 + n2· �2 with n1, n2 ∈ N. As the return types can be
seen as unit vectors of a Cartesian coordinate system, the superposition and
uniqueness properties hold. 	

Cost-Free Function Symbols. Inspired by Hoffmann [19, p. 93ff] we additionally
implemented a cost-free inference tree derivation when searching for non-linear
bounds. The idea is that for many non-tail recursive functions the freed poten-
tial must be the one of the original function call plus the potential that gets
passed on.

2 We use the SMT Solvers z3 (https://github.com/Z3Prover/z3/wiki) and MiniSmt
(http://cl-informatik.uibk.ac.at/software/minismt/).

https://github.com/Z3Prover/z3/wiki
http://cl-informatik.uibk.ac.at/software/minismt/

Automated Amortised Resource Analysis for Term Rewrite Systems 225

[p cf
1 × · · · × p cf

n] kcf−−→ q cf ∈ F cf (f)
[p1 × · · · × pn]

k−→ q ∈ F(f) y1: r1, . . . , yl: rl
k+�

r: q

x1:p1, . . . , xn:pn
k

f(x1, . . . , xn): q

Fig. 3. Additional app rule for cost-free derivation, where f ∈ C ∪ D.

The inference rules are extended by an additional app-rule, which sepa-
rates the function signature into two parts, cf. Fig. 3. On the left there are
the monomorphic and cost-free signatures while on the right a cost-free part
is added. For every application of the rule the newly generated cost-free signa-
ture annotation must be cost-free resource bounded, for this the cost-free type
judgement indicated has to be derived for any rule f(l1, . . . , ln) → r and freed
context y1: r1, . . . , yl: rl and cost �. Thus, the new set of annotations for a defined
function symbols f is given by the following set, cf. [19, p. 93].

{[p1 + λ · p cf
1 × · · · × pn + λ · p cf

n] k+λ·kcf

−−−−−→ q + λ · q cf | λ ∈ Q
+, λ � 0} .

The decision of which app rule is applied utilises the strongly connected compo-
nent (SCC) of the call graph analysis as done in [19, p. 93ff].

Alternative Implementation of the Superposition Principle. Similar to [8,19] we
integrated the additive shift �(p) and interleaving p � q for constructors when
type information is given. Here �(p1, . . . , pk) := (p1 + p2, p2 + p3, . . . , pk−1 +
pk, pk) and p�q := (p1, q1, p2, q2, . . . , pk, qk), where the shorter of the two vectors
is padded with 0s. These heuristics are designed such that the superposition
principle holds, without the need of base annotations. Therefore, the constraint
problem automatically becomes linear whenever these heuristics are used which
tremendously reduces the execution times.

However, according to the experiments (see the detail results online) these
heuristics are only rarely applicable and often require comprehensive type infor-
mation. This additional information allows to separate constructors named alike
but with different types. For instance, a list of lists can then have different base
annotations compared to a simple list, even though the constructors have the
same name. The rather poor performance of these heuristics in the presence of
only generic type information came as a surprise to us. However, in hindsight
it clearly showcases the importance of comprehensive type information (as e.g.
demanded by RaML) for the efficiency of automation of resource analysis in
functional programming.

5 Experimental Evaluation

In this section we will have a look at how the amortised analysis deals with some
selected examples including the paper’s running example queue. All experiments3

3 Detailed data is available at http://cl-informatik.uibk.ac.at/software/tct/
experiments/ara flops/.

http://cl-informatik.uibk.ac.at/software/tct/experiments/ara_flops/
http://cl-informatik.uibk.ac.at/software/tct/experiments/ara_flops/

226 G. Moser and M. Schneckenreither

Example O(1) O(n1) O(n2) O(n3) O(n�4) Fail
#Systems 2 59 17 21 8 33
Time (in s) 0.05 0.54 2.86 5.06 10.14 58.30

Fig. 4. Experimental evaluation of TCT with ARA.

were conducted on a machine with an Intel Xeon CPU E5-2630 v3 @ 2.40 GHz
(32 threads) and 64 GB RAM. The timeout was set to 60 s. For benchmark-
ing we use the runtime complexity innermost rewriting folder of the TPDB4 as
well as a collection consisting of 140 TRSs representing first-order functional
programs [21,22], transformations from higher-order programs [23], or RaML
programs [20] and interesting examples from the TPDB. We compared the com-
petition version of TCT 2016 to the current version of TCT with and without (w/o)
the amortised resource analysis (ARA), as well as the output of AProVE as pre-
sented in [24]5. Figure 4 shows the results of the experiments conducted for the
TCT with ARA. In a companion paper, we have studied best case complexity and
suitable adapted amortised resource analysis to obtain lower bounds on the best
case complexity. Therefore, the standalone tool is also able to infer best case
complexity bounds for TRSs [12].

#3.42 – Binary Representation. Given a number n in unary encoding as input,
the TRS computes the binary representation (n)2 by repeatedly halving n and
computing the last bit, see the Appendix for the TRS. The optimal runtime
complexity of R1 is linear in n. For this, first observe that the evaluation of
half(sm(0)) and lastbit(sm(0)) requires about m steps in total. Secondly, n is
halved in each iteration and thus the number of steps can be estimated by∑k

i=0 2i, where k := |(n)2|. As the geometric sum computes to 2 · 2k − 1, the
claim follows. Such a precise analysis is enabled by an amortised analysis, which
takes the sequence of subsequent function calls and their respective arguments
into account. Compared to former versions of TCT which reported O(n2) we
find this optimal linear bound of O(n) when ARA is enabled. Furthermore, the
best case analysis of ARA shows that this bound is tight by returning Ω(n).
Similarly AProVE [25] yields the tight bound employing a size abstraction to
integer transition systems (ITSs for short), cf. [24]. The resulting ITSs are then
solved with CoFloCo [26], which also embodies an amortisation analysis.

bfs.raml – Depth/Breadth-First Search. This TRS is a translation of depth-first
search (DFS) and breadth-first search (BFS) from RaML syntax, see Appendix,
and can be found in the TPDB. Note that the TRS uses strict rules for the
equality check which recurses on the given data structure. In DFS a binary tree
is searched one branch after the other for a matching entry while BFS uses two
4 We refer to Version 10.4 of the Termination Problem Database, available from http://

cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB.
5 See https://aprove-developers.github.io/trs complexity via its/ for detailed results

of AProVE. Timeout: 300 s, Intel Xeon with 4 cores at 2.33 GHz and 16 GB of RAM.

http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB
http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB
https://aprove-developers.github.io/trs_complexity_via_its/

Automated Amortised Resource Analysis for Term Rewrite Systems 227

lists to keep track of nodes of a binary tree to be visited. The first one is used to
traverse on the nodes of the current depth, whereas the second list collects all
nodes of the next depth to visit. After each iteration the futurelist is reversed.
Further, note that BFS is called twice in the function bfs2. TCT with ARA is the
only tool which is able to infer a complexity bound of O(n3).

insertionsort.raml/splitandsort.raml – Sorting. Insertionsort has quadratic run-
time complexity, although TCT with ARA using the default setup can only find a
cubic upper bound, as it handles the trade off between execution time and tight-
ness of the bound. If TCT is triggered to find the best bound within the timeout,
it will infer O(n2) as AProVE does. This bound is tight [19, p. 158ff]. The best
case analysis finds a linear lower bound for this implementation of insertionsort.
splitandsort.raml first groups the input by a specified key and then sorts each
grouped list using quicksort. The optimal runtime complexity for this program
is O(n2) [19, 158ff]. Although far from being optimal, TCT with ARA is able to
find the worst case upper bound O(n5), whereas AProVE infers a cubic bound.

tpa2 – Multiple Subtraction. This TRS from the TPDB iterates subtraction
until no more rules can be applied. The latest version of TCT with ARA is in
comparison to an older version able to solve the problem. The inferred quadratic
worst case bound coincides with the bounds provided by AProVE.

matrix.raml – Matrix Operations. This TRS implements transposing of matrices
and matrix multiplications for a list of matrices, three matrices and two matrices,
see the Appendix for an excerpt in RaML syntax of the implemented matrix
multiplication for two matrices, of which the second one is already transposed.
The program maps over the matrix m1 line by line, for each line mapping over
matrix m2 calling mult on the corresponding entries. Clearly, if the ∗-function is
seen as one operation, as in the TRS, this program has cubic worst case runtime
complexity. Due to ARA, the latest version of TCT can now handle this TRS
and returns a complexity bound of O(n7) in the default setup, but when the
best bound is looked for, TCT returns the asymptotically optimal upper bound
defined by the list matrix multiplication of O(n4). Neither the older version of
TCT nor AProVE is able to find any upper bound for this TRS.

Experimental Evaluation. We have conducted several further experiments on
the TPDB, as well as on the smaller testbed composed of interesting examples
with the focus on program translations. Over the last year the strategy of TCT
was adapted to focus on TRSs which were translated from functional programs.
Thus, the examples which can be solved are distinct from the TCT competition
strategy of 2016 to a great extent. Due to ARA the latest competition strategy
of TCT can solve 5 more examples of the TPDB than without ARA and for
14 examples a better bound can be inferred. On the small testbed TCT with
ARA can find better bounds for 22 examples in contrast to TCT without ARA
and additionally bfs.raml can be solved. For further experiments see the detailed
results.

228 G. Moser and M. Schneckenreither

6 Conclusion

In this paper we have established a novel automated amortised cost analysis for
term rewriting. In doing so we have not only implemented the methods detailed
in earlier work [8], but also generalised the theoretical basis considerably. We
have provided a prototype implementation and integrated into TCT.

More precisely, we have extended the method of amortised resource analy-
sis to unrestricted term rewrite systems, thus overcoming typical restrictions of
functional programs like left-linearity, pattern based, non-ambiguity, etc. This
extension is non-trivial and generalises earlier results in the literature. Further-
more, we have lifted the method to relative rewriting. The latter is the pre-
requisite to a modular resource analysis, which we have provided through the
integration into TCT. The provided integration of amortised resource analysis into
TCT has led to an increase in overall strength of the tool (in comparison to the
latest version without ARA and the current version of AProVE). Furthermore
in a significant amount of cases we could find better bounds than before.

In future work we want to focus on lifting the provided amortised analy-
sis in two ways. First we want to extend the provided univariate analysis to a
multivariate analysis akin the analysis provided in RaML. The theoretical foun-
dation for this has already been provided by Hofmann and Moser [9]. However
efficient automation of the method proposed in [9] requires some sophistication.
Secondly, we aim to overcome the restriction to constant amortised analysis and
provide an automated (or at least automatable) method establishing logarithmic
amortised analysis. This aims at closing the significant gap of existing methods
in contrast to the origin of amortised analysis [1,2], compare also [27].

References

1. Sleator, D., Tarjan, R.: Self-adjusting binary trees. In: Proceedings of the 15th
STOC, pp. 235–245. ACM (1983)

2. Tarjan, R.: Amortized computational complexity. SIAM J. Alg. Disc. Methods
6(2), 306–318 (1985)

3. Hoffmann, J., Das, A., Weng, S.: Towards automatic resource bound analysis for
OCaml. In: Proceedings of the 44th POPL, pp. 359–373. ACM (2017)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. JAR 46(2), 161–203 (2011)

5. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 16

6. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Proceedings of the Software Engi-
neering. LNI, vol. 252, pp. 101–102 (2016)

7. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press,
Cambridge (1999)

8. Hofmann, M., Moser, G.: Amortised resource analysis and typed polynomial inter-
pretations. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 272–286. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08918-8 19

https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-08918-8_19

Automated Amortised Resource Analysis for Term Rewrite Systems 229

9. Hofmann, M., Moser, G.: Multivariate amortised resource analysis for term rewrite
systems. In: Proceedings of the 13th TLCA. LIPIcs, vol. 38, pp. 241–256 (2015)

10. Avanzini, M., Lago, U.D.: Automating sized-type inference for complexity analysis.
In: PACMPL, vol. 1, pp. 43:1–43:29 (2017)

11. Avanzini, M., Moser, G., Schaper, M.: TcT: tyrolean complexity tool. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 407–423. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 24

12. Moser, G., Schneckenreither, M.: Amortised analysis for bestcase lowerbounds
(2018, submitted)

13. Schneckenreither, M.: Amortized resource analysis for term rewrite systems. Mas-
ter’s thesis, University of Innsbruck (2018). https://www.uibk.ac.at/wipl/team/
team/docs/masterthesis schneckenreither.pdf

14. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

15. TeReSe: Term Rewriting Systems. Cambridge Tracks in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

16. Thiemann, R.: The DP framework for proving termination of term rewriting. Ph.D.
thesis, University of Aachen, Department of Computer Science (2007)

17. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa (2017).
www.SMT-LIB.org

18. Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und ange-
wandte Mathematik 124, 1–27 (1902)

19. Hoffmann, J.: Types with potential: polynomial resource bounds via automatic
amortized analysis. Ph.D. thesis, Ludwig-Maximilians-Universiät München (2011)

20. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
TOPLAS 34(3), 14 (2012)

21. Glenstrup, A.: Terminator II: stopping partial evaluation of fully recursive pro-
grams. Master’s thesis, Technical report DIKU-TR-99/8, DIKU (1999)

22. Frederiksen, C.: Automatic runtime analysis for first order functional programs.
Master’s thesis, DIKU TOPPS D-470, DIKU (2002)

23. Avanzini, M., Lago, U.D., Moser, G.: Analysing the complexity of functional pro-
grams: higher-order meets first-order. In: Proceedings of the 20th ICFP, pp. 152–
164. ACM (2015)

24. Naaf, M., Frohn, F., Brockschmidt, M., Fuhs, C., Giesl, J.: Complexity analysis
for term rewriting by integer transition systems. In: Dixon, C., Finger, M. (eds.)
FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 132–150. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66167-4 8

25. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,
Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S.,
Thiemann, R.: Analyzing program termination and complexity automatically with
aprove. JAR 58(1), 3–31 (2017)

26. Flores-Montoya, A.: CoFloCo: system description. In: 15th International Workshop
on Termination, vol. 20 (2016)

27. Nipkow, T.: Amortized complexity verified. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 310–324. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 21

https://doi.org/10.1007/978-3-662-49674-9_24
https://www.uibk.ac.at/wipl/team/team/docs/masterthesis_schneckenreither.pdf
https://www.uibk.ac.at/wipl/team/team/docs/masterthesis_schneckenreither.pdf
http://www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-66167-4_8
https://doi.org/10.1007/978-3-319-22102-1_21
https://doi.org/10.1007/978-3-319-22102-1_21

A Common Framework Using Expected
Types for Several Type Debugging

Approaches

Kanae Tsushima1(B) and Olaf Chitil2

1 National Institute of Informatics, Tokyo, Japan
k tsushima@nii.ac.jp

2 University of Kent, Canterbury, UK
O.Chitil@kent.ac.uk

Abstract. Many different approaches to type error debugging were
developed independently. In this paper, we describe a new common
framework for several type error debugging approaches. For this pur-
pose, we introduce expected types from the outer context and propose a
method for obtaining them. Using expected types, we develop three type
error debugging approaches: enumeration of type error messages, type
error slicing and (improved) interactive type error debugging. Based on
our idea we implemented prototypes and confirm that the framework
works well for type debugging.

1 Introduction

The Hindley-Milner type system is the core of the type systems of many statically
typed functional programming languages such as ML, OCaml and Haskell. The
programmer does not have to write any type annotations in the program; instead
most general types are inferred automatically. Functions defined in the program
can be used with many different types.

However, type error debugging is a well-known problem: When a program
cannot be typed, the type error messages produced by the compiler often do not
help much with locating and fixing the cause(s). Consider the following OCaml
program:

let rec f lst n = match lst with
| [] -> []
| fst :: rest -> (fst ^ n) :: (f rest n) in

f [2]

We assume that the programmer intended to define the function that maps
a list of numbers to a list of squared numbers (e.g., f [3] 2 = [9]). Hence the
programmer’s intended type of f is int list → int → int list. However, in OCaml
^ is the string concatenation function. Therefore, the type of the function f is

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 230–246, 2018.
https://doi.org/10.1007/978-3-319-90686-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_15&domain=pdf

A Common Framework Using Expected Types 231

inferred as string list → string → string list. The OCaml compiler returns the
following type error message:

f [2] ;;
Error: This expression has type int but

an expression was expected of type string

The message states that the underlined expression 2 has type int, but it
is expected to have type string because of other parts of this program. The
message does not substantially help the programmer: they will wonder why 2
should have type string.

The starting point for our work is the principal typing tree that was intro-
duced by Chitil [2] for interactive type error debugging.

A principal typing Γ � τ of some expression e consists of a type τ and
an environment Γ which gives types to all free variables of e. All typings for an
expression are instances of its principal typing. For example, the principal typing
for a variable x is {x : α} � α, where α is a type variable. In contrast, the better
known principal type τ is just the most general type for a given expression e
and given environment Γ .

The principal typing tree is the syntax tree of a program where each node
describes a subexpression of the program and includes the principal typing for
this subexpression. Chitil applied algorithmic debugging [9] to the tree to locate
the source of a type error. Tsushima and Asai proposed an approach to construct
the principal typing tree using the compiler’s type inferencer and implemented
a type error debugger for OCaml [12]. The implemented type debugger has been
used in classes at Ochanomizu University for the past 5 years by approximately
200 novice programmers [5].

In this paper we claim that expected typings are also useful for type debug-
ging. Expected typings are duals to principal typings. Let us consider a program
C[e] that consists of an expression e and its context C. The expression e on its
own has a principal typing. The expected typing of e is the type of the hole of
the context C, disregarding e. In the previous example the principal type of 2
is int, but its expected type, according to the context, is string. The type error
message of the OCaml compiler actually stated both types.

In this paper we introduce the type debugging information tree. The
tree for our example program is shown in Fig. 1. The tree includes for each
subexpression both its principal and expected typing (Sect. 3).

We show how the tree can be used to realise the following type error debug-
ging approaches:

1. Enumeration of type error messages.
Type error messages show two conflicting types. We can obtain both types
from the type debugging information tree (Sect. 4.1).

2. Type error slicing.
Only well-typed contexts yield expected typings. Hence program parts that
do not yield expected typings do not contribute to a conflict between principal
and expected typing (Sect. 4.2).

232 K. Tsushima and O. Chitil

F
ig
.
1
.
T

y
p
e

d
eb

u
g
g
in

g
in

fo
rm

a
ti

o
n

tr
ee

fo
r

th
e

p
ro

g
ra

m
fr

o
m

th
e

In
tr

o
d
u
ct

io
n

A Common Framework Using Expected Types 233

3. Interactive type error debugging.
We can use the programmer’s intended types to derive expected types. With
expected types, we can efficiently narrow the area to debug (Sect. 4.3).

2 Language and Principal Typing Tree (PTT)

We describe our framework for a core functional language, a small subset of
OCaml, as defined in Fig. 2. Every expression construct is annotated with some
unique location information l. To save space, we use Haskell’s notation for list
types (e.g., instead of int list we write [int]). A program S consists of a sequence
of function definitions defined by a recursive let construct. However, this let-rec
construct does not appear in any of the trees that we define in the following
sections. Instead, we unfold the definition of a let-rec defined variable at every
use occurrence in the tree. Note that this ‘unfolding’ is only conceptual to obtain
a simple tree structure; the actual implementation handles each let-rec construct
only once and actually constructs a directed graph, which, unfolded, yields a tree.

Figure 1 demonstrates this unfolding for the program in the Introduction. It
shows part of the type debugging information tree where the tree node for f has
the definition of f as child node.

p ::= c (constant)
| v (variable)
| p :: p (cons pattern)
| (p, p) (tuple pattern)

M ::= cl (constant)
| vl (variable)
| funl x → M (function)
| (M M)l (application)
| (M, M)l (tuple)
| ifl M then M else M (if expression)
| matchl M with | p → M (match expression)

l ::= location number

S ::= let rec x = M in S (let expression)
| M

τ ::= int | bool | ... (constant type)
| α (type variable)
| τ → τ (function type)
| τ ∗ τ (tuple type)
| [τ] (list type)

Fig. 2. OCaml-like functional language

234 K. Tsushima and O. Chitil

y:{x : int, y : int} int +:{x : int, y : int} int → int → int x:{x : int, y : int} int

y + x:{x : int, y : int int

(fun y → y + x):{x : int int → int

(fun x → (fun y → y + x)): int → int → int true:{} bool

(fun x (fun y y + x)) true:

Fig. 3. Standard type inference tree of (fun x -> (fun y -> y + x)) true

y:{y : β} β +:{} int → int → int x:{x : α} α

y + x:{x : int, y : int int

(fun y → y + x):{x : int int → int

(fun x → (fun y → y + x)): int → int → int true:{} bool

(fun x (fun y y + x)) true:

Fig. 4. Principal typing tree of (fun x -> (fun y -> y + x)) true

A typing consists of a type environment Γ , a finite mapping from free vari-
ables to types, and a type τ . Instead of the more common Γ � M : τ we write
M : Γ � τ to state that expression M has typing Γ � τ . The special typing ×
indicates that no typing of the form Γ � τ exists; so × indicates a type error.

We obtain expected typings from principal typings. For a program a syntax
tree where each node is annotated with a principal typing can be constructed1;
details are given by Chitil, Tsushima and Asai [2,12].

Most type inference algorithms try to construct a tree based on the Hindley-
Milner rules. To see how the PTT differs, consider the following ill-typed OCaml
program: (fun x -> (fun y -> y + x)) true

The function + adds two integers; its type is int → int → int. The constant
true has type bool. Hence the program is ill-typed.

Figure 3 shows a Hindley-Milner type inference tree and Fig. 4 shows the
PTT for this program. In the PTT each subexpression appears with its principal
typing. For example, in the left upper part of Fig. 4, y has type β not int because
there is no constraint to have type int in y itself; also the variable x does not
appear in this type environment at all. In contrast in Fig. 3, the subexpression y
has the type environment {x : int, y : int}, because of constraints in other parts
of the tree.

3 Expected Typings and Type Debugging Information
Tree

We obtain the type debugging information tree from the PTT by adding an
expected typing to every node of the tree. So in every tree node an expression
is annotated with both its principal and its expected typing.

1 It is actually a tree of principal monomorphic typings; let-bound potentially poly-
morphic variables do not appear in the type environment [2].

A Common Framework Using Expected Types 235

At first we focus on programs that have only a single type error. Afterwards
we show why we have to obtain expected typings from principal typings, not the
typings of a standard Hindley-Milner type inference tree. Finally we show how
we can obtain expected typings from programs that have multiple type errors,
the normal case in practice.

3.1 How to Obtain Expected Types

For simplicity we assume that we have an ill-typed program with a PTT that
has only one type error node. Let us reconsider the example from the preced-
ing section: (fun x -> (fun y -> y + x)) true. The PTT of this program is
shown in Fig. 4.

Inference of expected typings starts from the root of the tree. We assume
that the expected type of the whole program is some type variable α, which
means that there is no type constraint. Because the whole program has no free
variables, its type environment is empty. Our next goal is to infer the expected
typings shown as black boxes below. The first box is the expected typing of the
function (fun x -> (fun y -> y + x)) and the second box is the expected
typing of true.

(fun x -> (fun y -> y + x)):

{
{} � int → (int → int)

aaaaaa
true:

{
{} � bool

aaaaaa

(fun x -> (fun y -> y + x)) true:

{
×
{} � α

The idea for obtaining the expected typing of an expression M is that we do
not use the typing of M itself but use the typing of its sibling nodes and parent
node.

Here the type environments are empty and we are solely concerned with
types. We obtain the expected type of (fun x -> (fun y -> y + x)) from
the principal type of the argument true and the expected type of the whole
program. We can visualize the constraint of the function application as follows:

(fun x -> (fun y -> y + x)): aaa) (true:bool) : α

Thus we see that the black box must be bool → α. Similarly we can obtain the
expected type of true, namely int.

3.2 Inferring Expected Typings

Figure 5 shows our inference rules for expected typings. We assume that all
principal typings and the expected typing of an expression at the bottom of a
rule are known. The rules define the expected typings for the subexpressions on
top of the rules. In the figure these inferred expected typings are boxed.

236 K. Tsushima and O. Chitil

nl :
(Γi τi, {l})
(Γe τe, Le)

vl :
(Γi τi, {l})
(Γe τe, Le)

M :
(Γi τi , L0)

(mgu({Γe}, {τe = α → β}, β), Le ∪ {l})

funl x → M :
(Γi τi, L0 ∪ {l})
(Γe τe, Le)

M0 :
(Γ0 τ0, L0)

(mgu({Γe, Γ1}, {}, τ1 → τe), Le ∪ L1 ∪ {l})

M1 :
(Γ1 τ1, L1)

(mgu({Γe, Γ0}, {τ0 = α → τe}, α), Le ∪ L0 ∪ {l})

(M0 M1)l:
(Γi τi, L0 ∪ L1 ∪ {l})
(Γe τe, Le)

M0 :
(Γ0 τ0, L0)

(mgu({Γe, Γ1}, {τe = α ∗ β}, α), Le ∪ L1 ∪ {l})

M1 :
(Γ1 τ1, L1)

mgu({Γe, Γ0}, {τe = α ∗ β}, β), Le ∪ L0 ∪ {l})

(M0, M1)
l:

(Γi τi, L0 ∪ L1 ∪ {l})
(Γe τe, Le)

M0 :
(Γ0 τ0, L0)

(mgu({Γ1, Γ2, Γe}, {τ1 = τe, τ2 = τe}, bool), Le ∪ L1 ∪ L2 ∪ {l})

M1 :
(Γ1 τ1, L1)

(mgu({Γ0, Γ2, Γe}, {τ0 = bool, τ2 = τe}, τe), Le ∪ L0 ∪ L2 ∪ {l})

M2 :
(Γ2 τ2, L2)

(mgu({Γ0, Γ2, Γe}, {τ0 = bool, τ1 = τe}, τe), Le ∪ L0 ∪ L1 ∪ {l})

ifl M0 then M1 else M2:
(Γi τi, L0 ∪ L1 ∪ L2 ∪ {l})
(Γe τe, Le)

M0 :
((Γ0, τ0), L0)

(mgu({Γe, Γ1, Γp}, {τe = τ1}, τp) \ (fv(p)), Le ∪ L1 ∪ {l})

M1 :
((Γ1, τ1), L1)

(mgu({Γe, Γ0, Γp}, {τ0 = τp}, τe), Le ∪ L0 ∪ {l})
where Γp τp is the principal typing of p

matchl M0 with | p → M1 :
(Γi τi, L0 ∪ L1 ∪ {l})
(Γe τe, Le)

Fig. 5. Inference rules for expected typings

A Common Framework Using Expected Types 237

Fig. 6. Type debugging information tree of (fun x -> (fun y -> y + x)) true

For many language constructs we need to compose several type environments
and solve a set of equational type constraints. Hence we define and use a most
general unifier function called mgu. The function call

mgu({Γ1, . . . , Γn}, {τ1 = τ ′
1, . . . , τn = τ ′

n}, τ)

computes a most general type substitution σ with

Γ1σ = . . . = Γnσ

τ1σ = τ ′
1σ, . . . , τnσ = τ ′

nσ

and returns the typing
Γ1σ � τσ

If no such substitution exists, it returns ×.
To understand the function mgu and the inference rule for application, let

us consider the top of Fig. 6:

y:

{
{x : α, y : β} � β

aaaaaa
+:

⎧⎨
⎩

{x : γ, y : δ} � int → int → int
���������������������

aaaaaa
x:

⎧⎨
⎩

{x : ε, y : η} � ε
����������

aaaaaa

y + x

⎧⎨
⎩

{x : int, y : int} � int

{x : bool, y : β} � γ
�������������

First, let us determine the expected typing of +. We use the
underlined typings: the expected typing of +’s parent node y + x and the princi-
pal typings of y and x. Because these type constraints must be satisfied simulta-
neously, their environments must be composed. Because + is a function applied
to the two arguments, we have the additional constraint that its expected type
is β → ε → γ. In summary, + has the expected typing

mgu({{x : α, y : β}, {x : ε, y : η}, {x : bool, y : β}}, {}, β → ε → γ)
= {x : bool, y : β} � β → bool → γ

238 K. Tsushima and O. Chitil

Second, let us determine the expected typing of y in the top of Fig. 6. We use
the

���������������
curve-underlined

�������
typings: the expected typing of y + x and the principal

typings of + and x. We need to combine the type environments of the three
typings and express the constraint that + is a function with y and x as arguments.
In summary, y has the expected typing

mgu({{x : γ, y : δ}, {x : ε, y : η},

{x : bool, y : β}}, {int → int → int = κ → ε → γ}, κ)
= ×

We obtain ×, because there does not exist any unifying substitution.
Nearly all our inference rules in Fig. 5 use the mgu function. The only excep-

tion are the rules for constants and variables, because they have no smaller
components; their own expected typings are determined by their contexts. The
pattern match construct binds new variables in the pattern p. Hence these vari-
ables have to be removed from the typing for the term M0.

3.3 Type Annotations/Signatures

Unlike all real functional programming languages, our core language does not
have type annotations, which allows the user to specify that a function should
have a certain type. However, if we do consider type annotations, then these
naturally contribute to our expected typings. Expected typings propagate the
user’s annotations towards the leaves of the type debugging information tree.
Thus expected typings become more informative and we also have more expected
typings ×.

3.4 Why Obtain Expected Typings from Principal Typings?

We cannot obtain expected typings by means of the standard type inference
tree. Consider again the expression (fun x -> (fun y -> y + x)) true. We
obtain the following tree from the Hindley-Milner type rules:

y:

{
{x : int, y : int} � int

aaaaaa
+:

{
{x : int, y : int} � int→ int→ int

aaaaaa
x:

{
{x : int, y : int} � int

aaaaaa

y + x :

{
{x : int, y : int} � int

{x : bool, y : β} � γ

We want to determine the expected typing of +. However, if we now compose
the type environments for y, x and y + x, we get

mgu({{x : int, y : int}, {x : int, y : int}, {x : bool, y : β}}, {}, int → int → γ)
= ×

because the types of x in the type environments are already in conflict. We
cannot use the standard type inference tree, because type information in type
environments includes type constraints of many parts of the program.

A Common Framework Using Expected Types 239

3.5 Expected Typings in the Presence of Multiple Type Errors

If a program has only a single type error, then the expected typing of an expres-
sion is derived from all other parts of the program except the expression. In
the presence of multiple type errors, we should not derive the expected typing
of an expression from all other parts, because these other parts contain type
errors and hence many typings are ×. Note that even in the presence of a single
type error several principal and expected typings are already ×, but we simply
exclude these when inferring expected typings. However, if we applied the same
method in the presence of multiple type errors, then we would lose too much
type information and our expected typings would become useless.

To control which type constraints to include and which not, we need to record
the program parts that contribute to the expected typings, which we represent
with the notation (Γ � τ, {l1, . . . , ln}). This means that typing Γ � τ is derived
from type information of the subexpressions with the locations l1, .., ln.

Let us consider the following multiple type error example: ((x 1, y 2), (x
false, y true)). This program includes multiple type errors, because there are
two type conflicts about x and y. Let us focus on (x 1, y 2) in this program.
In the first step we obtain the following PTT.

x 1 : ({x : int → α} � α, L0) y 2 : ({y : int → β} � β, L1)

(x 1, y 2)l: ({x : int → α; y : int → β} � α ∗ β, L0 ∪ L1 ∪ {l})

In the second step we obtain the following tree by the rules in Fig. 5.

x 1 :

{
({x : int → α} � α, L0)

× y 2 :

{
({y : int → β} � β, L1)

×

(x 1, y 2)l:

⎧⎨
⎩

({x : int → α; y : int → β} � α ∗ β, L0 ∪ L1 ∪ {l})
({x : bool → γ; y : bool → δ} � ε, Le)

The expected typing of (x 1, y 2) is obtained from its sibling (x false, y
true)’s principal typing. We successfully obtain the expected typing for (x 1, y
2) (the boxed part). Because the principal typings of x 1 and y 2 have conflicts
with the expected typing of their parent node, each child has expected typing
×. We need more expected typings that we could not obtain in this step. In the
third step, we reconstruct the following abstracted PTT using the upper tree
information.

x 1 : ({} � α′, {}) y 2 : ({} � β′, {})
(x 1, y 2)l: ({} � α′ ∗ β′, {l})

The reconstruction rules of PTT is the following. If an expression has an
expected typing × in the past steps, we put the abstracted typing ({} � γ, {})
(γ is a new type variable that does not appear anywhere. The second {} means
that this typing does not include any constraints) for it. Otherwise we use stan-
dard method in [2,12] for obtaining their principal typings. So in this case, the
principal typings of x 1 and y 2 are abstracted typings. On the other hand, the
principal typing of (x 1, y 2) is not abstracted and inferred by its children.
This is because (x 1, y 2) has expected typing in the second step. In the fourth
step we apply our rules in Fig. 5 to this tree and obtain the following tree.

240 K. Tsushima and O. Chitil

x 1 :

⎧⎨
⎩

({} � α′, {})
({x : bool → γ; y : bool → δ}, ζ, Le ∪ {l})

y 2 :

⎧⎨
⎩

({} � β′, {})
({x : bool → γ; y : bool → δ}, η, Le ∪ {l})

(x 1, y 2)l:

{
({} � α′ ∗ β′, {l})
({x : bool → γ; y : bool → δ} � ε, Le)

In the fourth step we could obtain the expected typings of x 1 and y 2 (the
boxed parts). Thanks to these expected typings, we can obtain their children’s
expected typings subsequently. Finally we can obtain the following type debug-
ging information tree.

x 1 :

{
({x : int → α} � α, L0)

({x : bool → γ; y : bool → δ}, ζ, Le ∪ {l})

y 2 :

{
({y : int → β} � β, L1)

({x : bool → γ; y : bool → δ}, η, Le ∪ {l})

(x 1, y 2)l:

{
({x : int → α; y : int → β} � α ∗ β, L0 ∪ L1 ∪ {l})
({x : bool → γ; y : bool → δ} � ε, Le)

The algorithm in presence of multiple type errors is the following.

1. (Re)construct PTT. If the expected typing of an expression in the past steps
is ×, we use abstracted typing ({} � γ, {}) (γ is a new type variable that
does not appear anywhere). Otherwise we use standard method to infer its
principal typing in [2,12].

2. By the rules in Fig. 5. Infer expected typings that we could not obtain yet.
3. If we obtain new expected typings in step 2, we repeat step 1. Otherwise

construction of type debugging information tree is finished.

For doing this, we need a restriction: each tree node has at most two children.
Thanks to this restriction we can determine if the sibling node information is
needed or not. So before inferring principal and expected typings we transform
the tree such that every node has at most two children.

4 Using the Type Debugging Information Tree

In this section we show how the type debugging information tree and its typings
can be used to develop different type debugging tools.

4.1 Enumeration of Type Error Messages

The type error messages of a compiler are most familiar to programmers. For
an ill-typed program the OCaml compiler stops after producing one type error
message. From our type error debugging tree we can easily produce many type
error messages: Every tree node where the principal typing and expected typing
are in conflict, that is, cannot be unified, is a type error node and thus yields a
type error message.

A Common Framework Using Expected Types 241

For example, the tree in Fig. 1 yields four error messages about leaves (^,
fst, 2, :: (in [2])) and six error messages about inner nodes.

For each type error node we can produce a type error message as follows:

(fst ^ n)
This expression has type string -> string -> string
but an expression was expected of type int -> ’b -> ’c

In practice the order in which the type error messages are shown is important.
The most likely causes, based on some heuristics, should be shown first [1].

4.2 Type Error Slicing

A type error slice is a slice of a program that on its own is ill-typed. A type error
slicer receives an ill-typed program and returns one or many type error slices.
For our example

(fun x -> (fun y -> y + x)) true

the type debugging information tree enables us to produce the type error slice

(fun x -> (fun y -> .. + x)) true

In a slice .. denotes any subexpression that does not belong to the slice.
We obtained the type error slice by simply removing any subexpression that

has an expected typing ×, here just the subexpression y. An expected typing ×
indicates that the types of the surrounding program, from which the expected
typing is determined, are already in conflict. This simple method works well
when there is just a single type error slice. When there are several type errors,
we can potentially obtain many slices using the following algorithm:

1. Each node of the type debugging information tree has
– a location l of the programming construct of the node,
– a set of locations Li from which the principal typing was, determined
– a set of locations Le from which the expected typing was determined.

2. We remove elements in Li and Le that are not needed in opposite directions,
obtaining smaller sets L′

i ⊆ Li and L′
e ⊆ Le.

3. If {l} ∪ L′
i ∪ L′

e is not subset of a type error slice that we already have, it is
a new type error slice.

4.3 Improved Interactive Type Error Debugging

An interactive type debugger asks the user for information to determine the
source of a type error. The PTT was originally defined to support algorithmic
debugging of type errors. Here is a short example session, with the user’s input
underlined, demonstrating algorithmic debugging using the PTT of Fig. 1:

242 K. Tsushima and O. Chitil

1. Is your intended type of f [string] -> string -> [string]?
> No
...
6. Is your intended type of ^ string -> string -> string?
> No
Type error debugger locates the source of a type error: ^
Against intentions, its type is string -> string -> string

The source of the type error is located after six questions.
The questions of algorithmic debugging are based on a walk through the

PTT. The sesssion starts at a node that has a principal typing ×, but all its
child nodes have a principal typing unequal ×. Here the session starts at the
root of the PTT.

Using the type error informatin tree, we start at a type error node instead.
Because leaves of the tree are often sources of type errors and their typings are
easier to understand, we start at a leaf type error node. So in our example we
might start with the node for ^ and thus successful finish algorithmic debugging
after one question.

Adding type annotations (signatures) to a program adds information to the
expected typings. More of them become ×, which excludes the nodes from being
asked about in an algorithm debugging session. If in our example we add that
f should have type [int] → int → [int], then ^ is the only leaf type error node
of the type debugging information tree and hence the algorithmic debugging
session has to start with it.

5 Evaluation

We evaluate our prototype using fifteen programs, each of which has one type
error. Most of them are from the functional programming courses in Ochano-
mizu University. Some examples are from the online demonstration of Skalpel
[13]. Three of them include multiple type conflicts. The OCaml compiler’s error
message locates the cause of a type error correctly for Test 5, 7, 9 and 11.

We rank error messages by giving higher priority to leaves than inner nodes,
and higher priorty to large location sets.

How Do Expected Typings Reduce the Search Space of Type Debug-
ging? Figure 7 shows the number of lines of each program and its number of
expected typings. The sum of the expected typings are one third of the sum of
the program sizes. Basically large programs have more locations that do not con-
tribute to type errors; therefore expected typing will be more effective in large
programs.

Are User’s Type Annotation Useful? The Fig. 8 shows the number of
expected typings of leaves and inner nodes, respectively. The blue line and green
line show the expected typings without user’s annotations. The other two lines
are with user’s annotations. From this figure we see that user’s annotations

A Common Framework Using Expected Types 243

Fig. 7. The program sizes and the
number of expected typings

Fig. 8. The number of expected typ-
ings (leaves and inner nodes) (Color
figure online)

Fig. 9. The numbers of question to
anwer (without and with user’s anno-
tation)

Fig. 10. Comparison with the existing
debugger

reduce the search space of type debugging. This reduction could not be achieved
without expected type inference.

How Many Questions Does Algorithmic Debugging Ask? Figure 9 shows
the numbers of questions until we locate the type error source. Because the
numbers are small, our strategy looks effective for type debugging. There are
few expected typings; therefore there is no significant difference.

How Much Does Our System Improve Interactive Debugging? In
Fig. 10 we compare our debugger (adding a type annotation for the whole pro-
gram) with an existing implementation [12] (for convenience we call this the
IFLdebugger). In most cases our debugger can locate the source of a type error
faster than the IFLdebugger. In some cases the IFLdebugger locates faster; how-
ever, this depends on the bias, from the bottom of the tree. Especially in the
cases that the source of a type error is far from the type conflicted part (starting
point of debugging) our method is effective (Test 4 and Test 10).

244 K. Tsushima and O. Chitil

6 Related Work

New Type Inference Algorithms. Many researchers designed new type infer-
ence algorithms which are better than Milner’s algorithm W for type error debug-
ging. For example, Lee and Yi [6] presented algorithm M which finds type con-
flicts earlier than algorithms W. Like W, algorithm M is biased: when there
is a type conflict between two subexpressions in a program, it always blames
the subexpression on the right. Both algorithms stop at the first type conflict
that they find. In contrast, Neubauer and Thiemann [7], and Chen and Erwig
[1] define type inference algorithms that succeed for any program. They extend
the type system in different ways to allow an expression to have multiple types.
Otherwise ill-typed expressions are typed with the new ‘multi-types’. As part of
presenting type debugging information to the user, Chen and Erwig formalise
the notion of expected type.

Interactive Type Error Debugging. Chitil [2] emphasises that the cause of
a type error depends on the intentions of the programmer. Hence type error
debugging should be an interactive process involving the programmer. He shows
how to apply algorithmic debugging [9] to type error debugging: the programmer
has to answer a series of questions by the debugger. Chitil defines the PTT as
foundation for algorithmic debugging. Tsushima and Asai [11] implement a type
debugger for OCaml based on Chitil’s idea.

Type Inference as Constraint Solving Problem. Every programming lan-
guage construct puts a constraint on the type of itself and its direct subexpres-
sions. So a program can first be translated into a set of constraints which are
solved in a separate phase. A minimal unsatisfiable subset of constraints explains
a type error. If each constraint is associated with the program locations that gave
rise to it, then a minimal unsatisfiable subset of constraints defines a slice of the
program that explains the type error to the user. Heeren et al. [4] annotate a
syntax tree of the program with type constraints such that different algorithms
can solve these constraints in different orders. The Chameleon system [10] fully
implemented the type-inference-as-constraint-solving approach for an expressive
constraint language that supports many extensions of the Hindley-Milner type
system, especially Haskell’s classes. Besides presenting slices, Chameleon also
provides interactive type error debugging. Concurrently Haack and Wells [3]
applied the same idea to the Hindley-Milner type system. They later developed
their method into the tool Skalpel for type error slicing of ML programs [13].

Reusing the Compiler’s Type Inference as Black Box. Instead of invent-
ing a new type inference algorithm, several researchers developed methods for
reusing the existing type inference implementation of a compiler for type error
debugging. The central motivation is that implementing type inference for a
real programming language is a major investment already made; besides, the
type systems of some languages such as Haskell continuously evolve. Schilling
[8] developed a type error slicer for a subset of Haskell that produces program
slices similar to Skalpel. Tsushima and Asai [12] built an interactive debugger
for OCaml that provides the user experience of Chitil’s approach (cf. Sect. 4.3).

A Common Framework Using Expected Types 245

Comparison. To produce the PTT of a program, our implementation uses the
method of Tsushima and Asai, reusing the existing compiler’s type inference.
Hence, even though we have to add expected typings, unlike many other methods
we do not require a reimplementation of type inference. Our framework supports
several type debugging approaches with different user experiences, including the
program slices of constraint solving methods and interactive type error debug-
ging. Although constraints support formalising type systems and type debugging,
they are not directly suitable for being shown to the user.

7 Conclusion

In this paper we argue that expected typings, which provide type informa-
tion from the context of an expression, are useful for type error debugging.
We describe a common framework for several type error debugging approaches.
Our prototype supports the following claims

– Expected typings reduce the search space of type debugging.
– Propagating user’s type annotations additionally reduces the search space of

type debugging.

Our framework allows for a synergy of previously independent methods than
with existing type debuggers.

When a program contains many type errors, our expected typings are often
not informative enough. We believe that this is because we use a coarse typing
× to express any kind of type conflict. In the future we want to explore how we
can extend our framework with a more fine-grained language of typings, where
the language of types is extended by a construct × and instead of a typing ×
we have a typing like {x : ×, y : β} � κ.

References

1. Chen, S., Erwig, M.: Counter-factual typing for debugging type errors. In: POPL
2014, pp. 583–594 (2014)

2. Chitil, O.: Compositional explanation of types and algorithmic debugging of type
errors. In: ICFP 2001, pp. 193–204 (2001)

3. Haack, C., Wells, J.B.: Type error slicing in implicitly typed higher-order lan-
guages. Sci. Comput. Program. 50(1–3), 189–224 (2004). Special issue ESOP 2003

4. Heeren, B., Hage, J., Swierstra, S.: Constraint based type inferencing in Helium.
In: Immediate Applications of Constraint Programming (ACP), pp. 57–78 (2003)

5. Ishii, Y., Asai, K.: Report on a user test and extension of a type debugger for
novice programmers. In: Post Conference Proceedings of International Workshop
on Trends in Functional Programming in Education, pp. 1–18 (2014)

6. Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algorithm.
ACM Trans. Program. Lang. Syst. 20, 707–723 (1998)

7. Neubauer, M., Thiemann, P.: Discriminative sum types locate the source of type
errors. In: ICFP 2003, pp. 15–26 (2003)

246 K. Tsushima and O. Chitil

8. Schilling, T.: Constraint-free type error slicing. In: Peña, R., Page, R. (eds.) TFP
2011. LNCS, vol. 7193, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32037-8 1

9. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
10. Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive type debugging in Haskell. In:

Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell (Haskell 2003), pp.
72–83 (2003)

11. Tsushima, K., Asai, K.: Report on an OCaml type debugger. In: ML Workshop, 3
pages (2011)

12. Tsushima, K., Asai, K.: An embedded type debugger. In: Hinze, R. (ed.) IFL
2012. LNCS, vol. 8241, pp. 190–206. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41582-1 12

13. Rahli, V., Wells, J., Pirie, J., Kamareddine, F.: Skalpel. J. Symb. Comput. 80(P1),
164–208 (2017)

https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1007/978-3-642-41582-1_12
https://doi.org/10.1007/978-3-642-41582-1_12

CauDEr: A Causal-Consistent Reversible
Debugger for Erlang

Ivan Lanese1 , Naoki Nishida2 , Adrián Palacios3 ,
and Germán Vidal3(B)

1 Focus Team, University of Bologna/Inria, Bologna, Italy
ivan.lanese@gmail.com

2 Graduate School of Informatics, Nagoya University, Nagoya, Japan
nishida@i.nagoya-u.ac.jp

3 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain
{apalacios,gvidal}@dsic.upv.es

Abstract. Programming languages based on the actor model, such as
Erlang, avoid some concurrency bugs by design. However, other concur-
rency bugs, such as message order violations and livelocks, can still show
up in programs. These hard-to-find bugs can be more easily detected
by using causal-consistent reversible debugging, a debugging technique
that allows one to traverse a computation both forward and backward.
Most notably, causal consistency implies that, when going backward, an
action can only be undone provided that its consequences, if any, have
been undone beforehand. To the best of our knowledge, we present the
first causal-consistent reversible debugger for Erlang, which may help
programmers to detect and fix various kinds of bugs, including message
order violations and livelocks.

1 Introduction

Over the last years, concurrent programming has become a common practice.
However, it is also a difficult and error-prone activity, since concurrency enables
faulty behaviours, such as deadlocks and livelocks, which are hard to avoid, detect
and fix. One of the reasons for these difficulties is that these behaviours may show
up only in some extremely rare circumstances (e.g., for some unusual scheduling).

A recent analysis [16] reveals that most of the approaches to software vali-
dation and debugging in message-passing concurrent languages like Erlang are

This work has been partially supported by MINECO/AEI/FEDER (EU) under grant
TIN2016-76843-C4-1-R, by the Generalitat Valenciana under grant PROMETEO-
II/2015/013 (SmartLogic), by COST Action IC1405 on Reversible Computa-
tion - extending horizons of computing, and by JSPS KAKENHI Grant Number
JP17H01722.
A. Palacios—Partially supported by the EU (FEDER) and the Spanish Ayudas para
contratos predoctorales para la formación de doctores and Ayudas a la movilidad
predoctoral para la realización de estancias breves en centros de I+D, MINECO
(SEIDI), under FPI grants BES-2014-069749 and EEBB-I-16-11469.

c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 247–263, 2018.
https://doi.org/10.1007/978-3-319-90686-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_16&domain=pdf
http://orcid.org/0000-0003-2527-9995
http://orcid.org/0000-0001-8697-4970
http://orcid.org/0000-0002-8747-1790
http://orcid.org/0000-0002-1857-6951

248 I. Lanese et al.

based on some form of static analysis (e.g., Dialyzer [15], McErlang [6], Soter [5])
or testing (e.g., QuickCheck [3], PropEr [18], Concuerror [10], CutEr [9]). How-
ever, these techniques are helpful only to find some specific categories of prob-
lems. On the other hand, traditional debuggers (like the one included in the
OTP Erlang distribution) are sometimes not particularly useful when an unusual
interleaving brings up an error, since recompiling the program for debugging may
give rise to a completely different execution behaviour. In this setting, causal-
consistent reversible debugging [7] may be useful to complement the previous
approaches. Here, one can run a program in the debugger in a controlled man-
ner. If something (potentially) incorrect shows up, the user can stop the forward
computation and go backwards—in a causal-consistent way—to look for the
origin of the problem. In this context, we say that a backward step is causal con-
sistent [4,12] if an action cannot be undone until all the actions that depend on
it have already been undone. Causal-consistent reversibility is particularly rele-
vant for debugging because it allows us to undo the actions of a given process in
a stepwise manner while ignoring the actions of the remaining processes, unless
they are causally related. In a traditional reversible debugger, one can only go
backwards in exactly the reverse order of the forward execution, which makes
focusing on undoing the actions of a given process much more difficult, since
they can be interleaved with completely unrelated actions from other processes.

The main contributions of this paper are the following. We have designed
and implemented CauDEr, a publicly available software tool for causal-consistent
reversible debugging of (a subset of) Erlang programs. The tool builds upon
some recent developments on the causal-consistent reversible semantics of
Erlang [13,17], though we also introduce (in Sect. 3) a new rollback semantics
which is especially tailored for reversible debugging. In this semantics, one can
for instance run a program backwards up to the sending of a particular mes-
sage, the creation of a given process, or the introduction of a binding for some
variable. We present our tool and illustrate its use for finding bugs that would
be difficult to deal with using the previously available tools (Sect. 4). We use
a concurrent implementation of the dining philosophers problem as a running
example. CauDEr is publicly available from https://github.com/mistupv/cauder.

2 The Language

Erlang is a message passing concurrent and distributed functional programming
language. We define our technique for (a subset of) Core Erlang [2], which is used
as an intermediate representation during the compilation of Erlang programs. In
this section, we describe the syntax and semantics of the subset of Core Erlang
we are interested in.

The syntax of the language can be found in Fig. 1. A module is a sequence
of function definitions, where each function name f/n (atom/arity) has an asso-
ciated definition of the form fun (X1, . . . , Xn) → e. We consider that a program
consists of a single module for simplicity. The body of a function is an expression,
which can include variables, literals, function names, lists, tuples, calls to built-in

https://github.com/mistupv/cauder

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 249

module ::= module Atom = fun1, . . . , funn

fun ::= fname = fun (X1, . . . , Xn) → expr
fname ::= Atom/Integer

lit ::= Atom | Integer | Float | []
expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}

| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2
pat ::= Var lit [pat1 pat2] pat1, . . . , patn

Fig. 1. Language syntax rules

functions—mainly arithmetic and relational operators—, function applications,
case expressions, let bindings, and receive expressions; furthermore, we also con-
sider the functions spawn, “!” (for sending a message), and self() that are usually
considered built-ins in the Erlang language. As is common practice, we assume
that X is a fresh variable in a let binding of the form let X = expr1 in expr2.

In this language, we distinguish expressions, patterns, and values. In con-
trast to expressions, patterns are built from variables, literals, lists, and tuples.
Finally, values are built from literals, lists, and tuples, i.e., they are ground (with-
out variables) patterns. Expressions are denoted by e, e′, e1, e2, . . ., patterns by
pat, pat′, pat1, pat2, . . . and values by v, v′, v1, v2, . . . Atoms are written in roman
letters, while variables start with an uppercase letter. A substitution θ is a map-
ping from variables to expressions, and Dom(θ) = {X ∈ Var | X �= θ(X)}
is its domain. Substitutions are usually denoted by sets of bindings like, e.g.,
{X1 �→ v1, . . . , Xn �→ vn}. Substitutions are extended to morphisms from expres-
sions to expressions in the natural way. The identity substitution is denoted by
id. Composition of substitutions is denoted by juxtaposition, i.e., θθ′ denotes a
substitution θ′′ such that θ′′(X) = θ′(θ(X)) for all X ∈ Var .

In a case expression “case e of pat1 when e1 → e′
1; . . . ; patn when en →

e′
n end”, we first evaluate e to a value, say v; then, we find (if it exists) the first

clause pati when ei → e′
i such that v matches pati (i.e., there exists a substitution

σ for the variables of pati such that v = patiσ) and eiσ—the guard—reduces to
true; then, the case expression reduces to e′

iσ. Note that guards can only contain
calls to built-in functions (typically, arithmetic and relational operators).

Concurrent Features. In this work, we consider that a system is a pool of pro-
cesses that can only interact through message sending and receiving (i.e., there
is no shared memory). Each process has an associated pid (process identifier),
which is unique in a system. Here, pids are ordinary values. Formally, a process
is denoted by a tuple 〈p, (θ, e), q〉 where p is the pid of the process, (θ, e) is the
control—which consists of an environment (a substitution) and an expression to

250 I. Lanese et al.

be evaluated—and q is the process’ mailbox, a FIFO queue with the sequence
of messages that have been sent to the process.

A running system, which we denote by Γ ;Π, is composed by Γ , the global
mailbox, which is a multiset of pairs of the form (target process pid,message),
and Π, which is a pool of processes. Π is denoted by an expression of the form

〈p1, (θ1, e1), q1〉 | · · · | 〈pn, (θn, en), qn〉

Here, “ |” denotes an associative and commutative operator. We typically denote
a system by an expression of the form Γ ; 〈p, (θ, e), q〉 | Π to point out that
〈p, (θ, e), q〉 is an arbitrary process of the pool. Intuitively, Γ stores messages
after they are sent, and before they are inserted in the target mailbox. Here, Γ
(which is similar to the “ether” in [21]) is an artificial device used in our seman-
tics to guarantee that all admissible message interleavings can be modelled.

In the following, we denote by on a sequence of syntactic objects o1, . . . , on

for some n.
The functions with side effects are self(), “!”, spawn, and receive. The expres-

sion self() returns the pid of a process, while p!v sends a message v to the process
with pid p. New processes are spawned with a call of the form spawn(a/n, [vn]),
so that the new process begins with the evaluation of apply a/n (vn). Finally,
an expression “receive patn when en → e′

n end” traverses the messages in the
process’ queue until one of them matches a branch in the receive statement;
i.e., it should find the first message v in the process’ queue (if any) such that
case v of pat1 when e1 → e′

1; . . . ; patn when en → e′
n end can be reduced; then,

the receive expression evaluates to the same expression to which the above case
expression would be evaluated, with the additional side effect of deleting the mes-
sage v from the process’ queue. If there is no matching message in the queue,
the process suspends its execution until a matching message arrives.

Figure 2 shows an Erlang program implementing a simple client-server scheme
with one server and two clients (a), as well as its translation into Core Erlang (b),
where C, X and Y are anonymous variables introduced during the translation
process to represent sequences of actions using let expressions. The execution
starts with a call to function main/0. It first spawns two processes that execute
functions server/0 and client/1, respectively, and then calls to function client/1
too. Client requests have the form {P, req}, where P is the pid of the client.
The server receives the message, returns a message ack to the client, and calls
to function server/0 again in an endless loop. After processing the two requests,
the server will suspend waiting for another request.

Following [13], the semantics of the language is defined in a modular way,
so that the labelled transition relation �−→ models the evaluation of expressions
and ↪→ models the reduction of systems. Relation �−→ follows a typical call-by-
value semantics for side-effect free expressions;1 in this case, reduction steps
are labelled with τ . For the remaining functions, the expression rules cannot

1 Because of lack of space, we are not presenting the rules of
�−→ here, but refer the

interested reader to [13].

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 251

main() ->

S = spawn(server/0, []),

spawn(client/1, [S]),

client(S).

server() ->

receive

{P, req} ->

P ! ack,

server()

end.

client(S) ->

S ! {self(), req},

receive

ack -> ok

end.

main/0 = fun () → let S = spawn(server/0, [])
in let C = spawn(client/0, [S])
in apply client/0 (S)

server/0 = fun () → receive
{P, req} →
let X = P ! ack
in apply server/0 ()

end

client/1 = fun (S) → let Y = S ! {self(), req}
in receive

ack → ok
end

(a) Erlang (b) Core Erlang

Fig. 2. A simple client server

complete the reduction of an expression since some information is not locally
available. In these cases, the steps are labelled with the information needed to
complete the reduction within the system rules of Fig. 3. For sending a message,
an expression p′′ !v is reduced to v with the side-effect of (eventually) storing the
message v in the mailbox of process p′′. The associated label is thus send(p′′, v)
so that rule Send can complete the step by adding the pair (p′′, v) to the global
mailbox Γ .

The remaining functions, receive, spawn and self, are reduced to a fresh distin-
guished symbol κ (a sort of future) in the expression rules, since the value cannot
be determined locally. Therefore, in these cases, the labels also include κ. Then,
the system rules of Fig. 3 will bind κ to its correct value: the selected expression
in rule Receive and a pid in rules Spawn and Self .

To be more precise, for a receive statement, the label has the form rec(κ, cln)
where cln are the clauses of the receive statement. In rule Receive, the auxiliary
function matchrec is used to find the first message in the queue that matches a
clause, then returning a triple with the matching substitution θi, the selected
branch ei and the selected message v. Here, q\\v denotes a new queue that results
from q by removing the oldest occurrence of message v.

For a spawn, the label has the form spawn(κ, a/n, [vn]), where a/n and [vn]
are the arguments of spawn. Rule Spawn then adds a new process with a fresh
pid p′ initialised with the application apply a/n (v1, . . . , vn) and an empty queue.

For a self, only κ is needed in the label. Rule Self then proceeds in the obvious
way by binding κ to the pid of the process.

The rules presented so far allow one to store messages in the global mailbox,
but not to deliver them. This is the task of the scheduler, which is modelled
by rule Sched . This rule nondeterministically chooses a pair (p, v) in the global
mailbox Γ and delivers the message v to the target process p. Note also that Γ
is a multiset, so we use “∪” as multiset union.

252 I. Lanese et al.

(Seq)
θ, e

τ−→ θ′, e′

Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ; 〈p, (θ′, e′), q〉 | Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′

Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ∪ (p′′, v); 〈p, (θ′, e′), q〉 | Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(cln, q) = (θi, ei, v)
Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ; 〈p, (θ′θi, e′{κ �→ ei}), q\\v〉 | Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ; 〈p, (θ′, e′{κ �→ p′}), q〉 | 〈p′, (id, apply a/n (vn)), []〉 | Π

(Self)
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈p, (θ, e), q〉 | Π ↪→ Γ ; 〈p, (θ′, e′{κ �→ p}), q〉 | Π

(Sched)
Γ (p, v) ; p, (θ, e), q Π ↪ Γ ; p, (θ, e), v :q Π

Fig. 3. Standard semantics: system rules

3 Causal-Consistent Reversible Debugging

In this section, we present a causal-consistent reversible semantics for the con-
sidered language. The semantics is based on the reversible semantics for Erlang
introduced in [13,17]. In particular, [13] presents an uncontrolled reversible
semantics, which is highly non-deterministic, and a controlled semantics that
performs a backward computation up to a given checkpoint in a mostly deter-
ministic way. Here, we build on the uncontrolled semantics, and define a new
controlled semantics which is more appropriate as a basis for a causal-consistent
reversible debugger than the one in [13].

First, following [13], we introduce an instrumented version of the standard
semantics. For this purpose, we exploit a typical Landauer’s embedding [11]
and include a “history” h in the states. In contrast to the standard semantics,
messages now include a unique identifier (i.e., a timestamp λ). These identifiers
are required to avoid mixing different messages with the same value (and possibly
also with the same sender and/or receiver). More details can be found in [13].

The transition rules of the forward reversible semantics can be found in Fig. 4.
They are an easy—and conservative—extension of the semantics in Fig. 3 by
adding histories to processes. In the histories, we use terms headed by construc-
tors τ , check, send, rec, spawn, and self to record the steps performed by the
forward semantics. Note that the auxiliary function matchrec now deals with
messages of the form {v, λ}, trivially extending the original function in the stan-
dard semantics by ignoring λ when computing the first matching message.

Rollback Debugging Semantics. Now, we introduce a novel rollback seman-
tics to undo the actions of a given process. Here, processes in “rollback” mode are
annotated using 	
Ψ , where Ψ is a set with the requested rollbacks. In particular,

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 253

(Seq)
θ, e

τ−→ θ′, e′

Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ; 〈p, τ(θ, e) :h, (θ′, e′), q〉 | Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′ λ is a fresh identifier
Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ∪ (p′′, {v, λ}); 〈p, send(θ, e, p′′, {v, λ}) :h, (θ′, e′), q〉 | Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(cln, q) = (θi, ei, {v, λ})
Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ; 〈p, rec(θ, e, {v, λ}, q) :h, (θ′θi, e′{κ �→ ei}), q\\{v, λ}〉 | Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ; 〈p, spawn(θ, e, p′) :h, (θ′, e′{κ �→ p′}), q〉

| 〈p′, [], (id, apply a/n (vn)), []〉 | Π

(Self)
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈p, h, (θ, e), q〉 | Π ⇀ Γ ; 〈p, self(θ, e) :h, (θ′, e′{κ �→ p}), q〉 | Π

(Sched)
Γ (p, v, λ) ; p, h, (θ, e), q Π ⇀ Γ ; p, h, (θ, e), v, λ :q Π

Fig. 4. Forward reversible semantics

we consider the following rollbacks to undo the actions of a given process in a
causal-consistent way:

– s: one backward step;
– λ⇑: a backward derivation up to the sending of a message labelled with λ;
– λ⇓: a backward derivation up to the delivery of a message labelled with λ;
– λrec: a backward derivation up to the receive of a message labelled with λ;
– spp: a backward derivation up to the spawning of the process with pid p;
– sp: a backward derivation up to the creation of the annotated process;
– X: a backward derivation up to the introduction of variable X.

In the following, in order to simplify the reduction rules, we consider that our
semantics satisfies the following structural equivalence:

(SC1) Γ ; 	〈p, h, (θ, e), q〉
∅ | Π ≡ Γ ; 〈p, h, (θ, e), q〉 | Π
(SC2) Γ ; 	〈p, [], (θ, e), []〉
Ψ | Π ≡ Γ ; 〈p, [], (θ, e), []〉 | Π

Therefore, when the set of rollbacks is empty or the process is back to its initial
state, we consider that the required rollback has been completed.

Our rollback debugging semantics is modelled with the reduction relation
↽, defined by the rules in Fig. 5. Here, we assume that Ψ �= ∅ (but Ψ ′ might be
empty). Let us briefly explain the rules of the rollback semantics:

– Some actions can be directly undone. This is the case dealt with by rules
Seq , Send1 , Receive, Spawn1 , Self , and Sched . In every rule, we remove the
corresponding rollback request from Ψ . In particular, all of them remove s
(since a causal-consistent step has been performed). Rule Seq additionally
removes the variables whose bindings were introduced in the last step; rule
Send1 removes λ⇑ (representing the sending of the message with identifier λ);

254 I. Lanese et al.

(Seq)
Γ ; �〈p, τ(θ, e) :h, (θ′, e′), q〉�Ψ | Π ↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\({s}∪V) | Π

where V = Dom(θ′)\Dom(θ)

(Send1)
Γ ∪ {(p′, {v, λ})}; �〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉�Ψ | Π

↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\{s,λ⇑} | Π

(Send2)
Γ ; �〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉�Ψ | �〈p′, h ′, (θ′′, e′′), q′〉�Ψ ′ | Π
↽ Γ ; �〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉�Ψ | �〈p′, h ′, (θ′′, e′′), q′〉�Ψ ′∪{λ⇓} | Π

if (p′, {v, λ}) does not occur in Γ and λ⇓ 	∈ Ψ ′

(Receive)
Γ ; �〈p, rec(θ, e, {v, λ}, q) :h, (θ′, e′), q\\{v, λ}〉�Ψ | Π

↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\{s,λrec} | Π

(Spawn1)
Γ ; �〈p, spawn(θ, e, p′′) :h, (θ′, e′), q〉�Ψ | �〈p′′, [], (θ′′, e′′), []〉�Ψ ′ | Π

↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\{s,spp′′ } | Π

(Spawn2)
Γ ; �〈p, spawn(θ, e, p′′) :h, (θ, e), q〉�Ψ | �〈p′′, h ′′, (θ′′, e′′), q′′〉�Ψ ′ | Π
↽ Γ ; �〈p, spawn(θ, e, p′′) :h, (θ, e), q〉�Ψ | �〈p′′, h ′′, (θ′′, e′′), q′′〉�Ψ ′∪{sp} | Π

if h ′′ 	= [] ∨ q′′ 	= [] and sp 	∈ Ψ ′

(Self) Γ ; �〈p, self(θ, e) :h, (θ′, e′), q〉�Ψ | Π ↽ Γ ; �〈p, h, (θ, e), q〉�Ψ\{s} | Π

(Sched)
Γ ; �〈p, h, (θ, e), {v, λ} :q〉�Ψ | Π ↽ Γ ∪ (p, {v, λ}); �〈p, h, (θ, e), q〉�Ψ\{s,λ⇓} | Π

if the topmost rec(. . .) item in h (if any) has the
form rec(θ′, e′, v′, λ′ , q′) with q′ v′, λ′ = v, λ :q

Fig. 5. Rollback debugging semantics

rule Receive removes λrec (representing the receiving of the message with
identifier λ); rule Spawn1 removes spp′′ (representing the spawning of the
process with pid p′′); and rule Sched removes λ⇓ (representing the delivery
of the message with identifier λ). Note also that rule Sched requires a side
condition to avoid the (incorrect) commutation of rules Receive and Sched
(see [13] for more details on this issue).

– Other actions require some dependencies to be undone first. This is the case
of rules Send2 and Spawn2 . In the first case, rule Send2 applies in order to
“propagate” the rollback mode to the receiver of the message, so that rules
Sched and Send1 can be eventually applied. In the second case, rule Spawn2
applies to propagate the rollback mode to process p′′ so that, eventually, rule
Spawn1 can be applied. Observe that the rollback sp introduced by the rule
Spawn2 does not need to be removed from Ψ since the complete process is
deleted from Π in rule Spawn1 .

The correctness of the new rollback semantics can be shown following a simi-
lar scheme as in [13] for proving the correctness of the rollback semantics for
checkpoints.

We now introduce an operator that performs a causal-consistent backward
derivation and is parameterised by a system, a pid and a set of rollback requests:

rb(Γ ; 〈p, h, (θ, e), q〉 | Π, p, Ψ) = Γ ′;Π ′ if Γ ; 	〈p, h, (θ, e), q〉
Ψ | Π ↽∗ Γ ′;Π ′ �↽

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 255

The operator adds a set of rollback requests to a given process2 and then per-
forms as many steps as possible using the rollback debugging semantics.

By using the above parametric operator, we can easily define several rollback
operators that are useful for debugging. Our first operator, rollback(Γ ;Π, p), just
performs a causal-consistent backward step for process p:

rollback(Γ ;Π, p) = rb(Γ ;Π, p, {s})

Notice that this may trigger the execution of any number of backward steps in
other processes in order to first undo the consequences, if any, of the step in p.

This operator can easily be extended to an arbitrary number of steps:

rollback(Γ ;Π, p, n) =

⎧
⎨

⎩

Γ ;Π if n = 0
rollback(Γ ′;Π ′, p, n − 1) if n > 0 and

rollback(Γ ;Π, p) = Γ ′;Π ′

Also, we might be interested in going backward until a relevant action is undone.
For instance, we introduce below operators that go backward up to, respectively,
the sending of a message with a particular identifier λ, the receiving of a message
with a particular identifier λ, and the spawning of a process with pid p′:

rollback(Γ ;Π, p, λ⇑) = rb(Γ ;Π, p, {λ⇑})
rollback(Γ ;Π, p, λrec) = rb(Γ ;Π, p, {λrec})
rollback(Γ ;Π, p, spp′) = rb(Γ ;Π, p, {spp′})

Note that p is a parameter of the three operators, but it could also be auto-
matically computed (from λ in the first two rules, from p′ in the last one) by
inspecting the histories of the processes in Π. This is actually what CauDEr does.

Finally, we consider an operator that performs backward steps up to the
introduction of a binding for a given variable:

rollback(Γ ;Π, p,X) = rb(Γ ;Π, p, {X})

Here, p cannot be computed automatically from X, since variables are local and,
hence, variable X may occur in several processes; thus, p is needed to uniquely
identify the process of interest.3

4 CauDEr: A Causal-Consistent Reversible Debugger

The CauDEr implementation is conveniently bundled together with a graphical
user interface to facilitate the interaction of users with the reversible debugger.

CauDEr works as follows: when it is started, the first step is to select an Erlang
source file. The selected source file is then translated into Core Erlang, and the
2 Actually, in this work, we only consider a single rollback request at a time, so Ψ
is always a singleton. Nevertheless, our formalisation considers that Ψ is a set for
notational convenience and, also, in order to accept multiple rollbacks in the future.

3 Actually, in CauDEr, uniqueness of variable names is enforced via renaming.

256 I. Lanese et al.

Fig. 6. CauDEr screenshot

resulting code is shown in the Code tab. Then, the user can choose any of the
functions from the module and write the arguments that she wants to evaluate
the function with. An initial system state, with an empty global mailbox and a
single process performing the specified function application, appears in the State
tab when the user presses the START button. Now, the user can explore possi-
ble program executions both forward and backward, according to three different
modes, corresponding to the three tabs on the top right of the window in Fig. 6.
In the Manual mode, the user selects a process or message identifier, and but-
tons corresponding to forward and backward enabled reductions for the chosen
process/message are available. Note that a backward reduction is enabled only if
the action has no causal dependencies that need to be undone (single backward
reductions correspond to applications of rules Seq , Send1 , Receive, Spawn1 ,
Self , and Sched in Fig. 5, see the uncontrolled reversible semantics in [13] for
more details). In the Automatic mode one can decide the direction (forward or
backward) and the number of steps to be performed. Actual steps are selected
by a suitable scheduler. Currently, two (random) schedulers are available, one
of which gives priority to processes w.r.t. the scheduling of messages (as in the
“normalisation” strategy described in [13]), while the other has a uniform distri-
bution. None of these schedulers mimics the Erlang/OTP scheduler. Indeed, it
would be very hard to replicate this behaviour, as it depends on many parameters
(threads, workload, etc.). However, this is not necessary, since we are only inter-
ested in reproducing the errors that occur in actual executions, and we discuss in

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 257

future work how to obtain this without the need of mimicking the Erlang/OTP
scheduler. The Automatic tab also includes a Normalize button, that executes all
enabled actions but message schedulings. The last tab, Rollback, implements the
rollback operators described in Sect. 3.

While exploring the execution, two tabs are updated to provide information
on the system and its execution. The State tab describes the current system,
including the global mailbox GM, and, for each process, the following compo-
nents: the local mailbox LM, the history H, the environment ENV, and the expres-
sion under evaluation EXP. Identifiers of messages are highlighted in colour. This
tab can be configured to hide any component of the process representation. Also,
we consider two levels of abstraction for both histories and environments: for his-
tories, we can either show all the actions or just the concurrent actions (send,
receive and spawn); for environments, we can either show all variable bindings
(called the full environment) or only the bindings for those variables occurring
in the current expression (called the relevant environment).

The Trace tab gives a linearised description of the concurrent actions per-
formed in the system, namely sends and receives of messages, and spawns of
processes. This is aimed at giving a global picture of the system evolution, to
highlight anomalies that might be caused by bugs.

A further tab is available, Roll Log, which is updated in case of rollbacks. It
shows which actions have been actually undone upon a rollback request. This
tab allows one to understand the causal dependencies of the target process of
the rollback request, frequently highlighting undesired or missing dependencies
directly caused by bugs.

The release version (v1.0) of CauDEr is fully written in Erlang, and it is pub-
licly available from https://github.com/mistupv/cauder under the MIT license.
The only requirement to build the application is to have Erlang/OTP installed
and built with wxWidgets. The repository also includes some documentation
and a few examples to easily test the application.

4.1 The CauDEr Workflow

A typical debugging session with CauDEr proceeds as follows. First, the user
may run the program some steps forward using the Automatic mode in order
to exercise the code. After each sequence of forward steps, she looks at the
program output (which is not on the CauDEr window, but in the console where
CauDEr has been launched) and possibly at the State and Trace tabs to check for
abnormal behaviours. The State tab helps to identify these behaviours within a
single process, while the Trace tab highlights anomalies in the global behaviour.

If the user identifies an unexpected action, she can undo it by using any (or
a combination) of the available rollback commands. The Roll Log tab provides
information on the causal-consistent rollbacks performed (in some cases, this log
is enough to highlight the bug). From there, the user typically switches to the
Manual mode in order to precisely control the doing or undoing of actions in
a specific state. This may involve performing other rollbacks to reach previous

https://github.com/mistupv/cauder

258 I. Lanese et al.

states. Our experience says that inspecting the full environment during the Man-
ual exploration is quite helpful to locate bugs caused by sequential code.

4.2 Finding Concurrency Bugs with CauDEr

We use as a running example to illustrate the use of our debugger the well-known
problem of dining philosophers. Here, we have a process for each philosopher
and for each fork. We avoid implementations that are known to deadlock by
using an arbitrator process, the waiter, that acts as an intermediary between
philosophers and forks. In particular, if a philosopher wants to eat, he asks the
waiter to get the forks. The waiter checks whether both forks are free or not.
In the first case, he asks the forks to become used, and sends a message eat to
the philosopher. Otherwise he sends a message think to the philosopher. When a
philosopher is done eating, he sends a message eaten to the waiter, who in turn
will release (i.e., set to free) the corresponding forks. The full Erlang code of the
(correct) example, dining.erl, is available from https://github.com/mistupv/
dining-philos.

Message Order Violation Scenario. Here, we consider the buggy version
of the program that can be found in file dining simple bug.erl of the above
repository. In this example, running the program forward using the Automatic
mode for about 600 steps is enough to discern something wrong. In particular,
the user notices in the output that some philosophers are told to think when
they should be told to eat, even at the beginning of the execution. Since the bug
appears so early, it is probably a local bug, hence the user first focuses on the
State tab. When the user considers the waiter process, she sees in the history
an unexpected sequence of concurrent events of the following form (shown in
reverse chronological order):

. . . ,send(’think’,10),rec(’free’,9),send({’get state’,2},8),
rec({’hungry’,12},6),send({’get state’,2},7),rec({’hungry’,9},2), . . .

Here, the waiter has requested the state of a fork with send({’get state’,2},7),
where 2 is the process id of the waiter itself and 7 the message id. Unexpectedly,
the waiter has received a message hungry as a reply, instead of a message free
or used. To get more insight on this, the user decides to rollback the receive of
{’hungry’,12}, which has 6 as message id. As a result, the rollback gets the system
back to a state where send({’get state’,2},7) is the last concurrent event for the
waiter process. Finally, the user switches to the Manual mode and notices that the
next available action for the waiter process is to receive the message {’hungry’,12}
in the receive construct from the ask state function. Function ask state is called
by the waiter process when it receives a hungry request from a philosopher (to
get the state of the two forks). Obviously, a further message hungry should not
be received here. The user easily realises then that the pattern in the receive is
too general (in fact, it acts as a catch-all clause) and, as a result, the receive
is matching also messages from other forks and even philosophers. Indeed, after

https://github.com/mistupv/dining-philos
https://github.com/mistupv/dining-philos

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 259

sending the message get state to a fork, the programmer assumed that the next
incoming message will be the state of the fork. However, the function is being
evaluated in the context of the waiter process, where many other messages could
arrive, e.g., messages hungry or eaten from philosophers.

It would not be easy to find the same bug using a standard debugger. Indeed,
one would need to find where the wrong message hungry is sent, and put there
a breakpoint. However, in many cases, no scheduling error will occur, hence
many attempts would be needed. With a standard reversible debugger (like
Actoverse [19]) one could look for the point where the wrong message is received,
but it would be difficult to stop the execution at the exact message. Watch points
do not help much, since all such messages are equal, but only some of them are
received in the wrong receive operation. Indeed, in this example, the CauDEr
facility of rollbacking a specific message receiving, coupled with the addition of
unique identifiers to messages, is a key in ensuring the success of the debugging
session.

Livelock Scenario. Now, we consider the buggy version of the dining philoso-
phers that can be found in file dining bug.erl of our repository. In this case,
the output of the program shows that, after executing some 2000 steps with the
Automatic mode, some philosophers are always told to think, while others are
always told to eat. In contrast to the previous example, this bug becomes visible
only late in the execution, possibly only after some particular pattern of message
exchanges has taken place (this is why it is harder to debug). In order to analyse
the message exchanges the user should focus on the Trace tab first. By carefully
examining it, the user realises that, in some cases, after receiving a message
eaten from a philosopher, the waiter sends the two messages {’set state’,’free’,2}
to release the forks to the same fork:

Proc. 2 receives {’eaten’,10} (28)
Proc. 2 sends {’set state’,’free’,2} to Proc. 5 (57)
Proc. 5 receives {’set state’,’free’,2} (57)
Proc. 5 sends {’been set’,5} to Proc. 2 (58)
Proc. 2 receives {’been set’,5} (58)
Proc. 2 sends {’set state’,’free’,2} to Proc. 5 (59)
Proc. 5 receives {’set state’,’free’,2} (59)
Proc. 5 sends {’been set’,5} to Proc. 2 (60)
Proc. 2 receives {’been set’,5} (60)

Then, the user rollbacks the sending of the last message from the waiter process
(the one with message id 59) and chooses to show the full environment (a clever
decision). Surprisingly, the computed values for LeftForkId and RightForkId are
equal. She decides to rollback also the sending of message with id 57, but she
cannot see anything wrong there, so the computed value for RightForkId must
be wrong. Now the user focuses on the corresponding line on the code, and she
notices that the operands of the modulo operator have been swapped, which is
the source of the erroneous behaviour.

260 I. Lanese et al.

This kind of livelocks are typically hard to find with other debugging tools.
For instance, Concuerror [10] requires a finite computation, which is not the case
in this scenario where the involved processes keep doing actions all the time but
no global progress is achieved (i.e., some philosophers never eat).

5 Related Work

Causal-consistent debugging has been introduced by CaReDeb [7], in the context
of language μOz. The present paper improves on CaReDeb in many directions.
First, μOz is only a toy language where no realistic programs can be written (e.g.,
it supports only integers and a few arithmetic operations). Second, μOz is not
distributed, since messages are atomically moved from the sender to a message
queue, and from the queue to the target process. This makes its causality model,
hence the definition of a causal-consistent reversible semantics, much simpler.
Third, in [7] the precise semantics of debugging operators is not fully specified.
Finally, the implementation described in [7] is just a proof-of-concept.

More in general, our work is in the research thread of causal-consistent
reversibility (see [12] for a survey), first introduced in [4] in the context of process
calculus CCS. Most of the works in this area are indeed on process calculi, but
for the work on μOz already discussed (the theory was introduced in [14]) and a
line of work on the coordination language μklaim [8]. However, μklaim is a toy
language too. Hence, we are the first ones to consider a mainstream program-
ming language. A first approach to the definition of a causal-consistent semantics
of Erlang was presented in [17], and extended in [13]. While we based CauDEr
on the uncontrolled semantics therein (and on its proof-of-concept implementa-
tion), we provided in the present paper an updated controlled semantics more
suitable for debugging, and a mature implementation with a complete interface
and many facilities for debugging. Moreover, our tool is able to deal with a larger
subset of the language, mainly in terms of built-in functions and data structures.

While CaReDeb is the only other causal-consistent debugger we are aware
of, two other reversible debuggers for actor systems exist. Actoverse [19] deals
with Akka-based applications. It provides many relevant features which are com-
plementary to ours. These include a partial-order graphical representation of
message exchanges that would nicely match our causal-consistent approach,
message-oriented breakpoints that allow one to force specific interleavings in
message schedulings, and facilities for session replay to ensure bugs reappear
when executing forward again. In contrast, Actoverse provides less facilities for
state inspection and management than us (e.g., it has nothing similar to our
Roll var command). Also, the paper does not include any theoretical framework
defining the behaviour of the debugger. EDD is a declarative debugger for Erlang
(see [1] for a version dealing with sequential Erlang). EDD tracks the concurrent
actions of an execution and allows the user to select any of them to start the
questions. Declarative debugging is essentially orthogonal to our approach.

Causeway [20] is not a full-fledged debugger but a post-mortem trace anal-
yser, i.e., it performs no execution, but just explores a trace of a run. It con-
centrates on message passing aspects, e.g., it does not allow one to explore the

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 261

state of single processes (states are not in the logs analysed by Causeway). On
the contrary it provides nice mechanisms to abstract and filter different kinds of
communications, allowing the user to decide at each stage of the debugging pro-
cess which messages are of interest. These mechanisms would be an interesting
addition for CauDEr.

6 Discussion

In this work, we have presented the design of CauDEr, a causal-consistent
reversible debugger for Erlang. It is based on the reversible semantics introduced
in [13,17], though we have introduced in this paper a new rollback semantics
which is especially appropriate for debugging Erlang programs. We have shown
in the paper that some bugs can be more easily located using our new tool, thus
filling a gap in the collection of debugging tools for Erlang.

Currently, our debugger may run a program either forward or backward (in
the latter case, in a causal-consistent way). After a backward computation that
undoes some steps, we can resume the forward computation, though there are no
guarantees that we will reproduce the previous forward steps. Some debuggers
(so-called omniscient or back-in-time debuggers) allow us to move both forward
and backward along a particular execution. As a future work, we plan to define
a similar approach but ensuring that once we resume a forward computation, we
can follow the same previous forward steps or some other causal-consistent steps.
Such an approach might be useful, e.g., to determine which processes depend on
a particular computation step and, thus, ease the location of a bug.

Another interesting line of future work involves the possibility of captur-
ing a faulty behaviour during execution in the standard environment, and then
replaying it in the debugger. For instance, we could instrument source programs
so that their execution in a standard environment writes a log in a file. Then,
when the program ends up with an error, we could use this log as an input to
the debugger in order to explore this particular faulty behaviour (as postmortem
debuggers do). This approach can be applied even if the standard environment
is distributed and there is no common notion of time, since causal-consistent
reversibility relies only on a notion of causality.

For the same reason we could also develop a fully distributed debugger, where
each process is equipped with debugging facilities, and a central console allows
us to coordinate them. This would strongly improve scalability, since most of the
computational effort (running and backtracking programs) would be distributed.
However, this step requires a semantics without any synchronous interaction
(e.g., rules Send2 and Spawn2 would need to be replaced by a more complex
asynchronous protocol).

Acknowledgements. The authors gratefully acknowledge the anonymous referees for
their useful comments and suggestions.

262 I. Lanese et al.

References

1. Caballero, R., Martin-Martin, E., Riesco, A., Tamarit, S.: EDD: a declarative
debugger for sequential Erlang programs. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 581–586. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 49

2. Carlsson, R., et al.: Core Erlang 1.0.3 language specification (2004). https://www.
it.uu.se/research/group/hipe/cerl/doc/core erlang-1.0.3.pdf

3. Claessen, K., et al.: Finding race conditions in Erlang with QuickCheck and
PULSE. In: ICFP, pp. 149–160. ACM (2009)

4. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

5. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of Erlang-style
concurrency. In: Logozzo, F., Fäahndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp.
454–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-
9 24

6. Fredlund, L.A., Svensson, H.: McErlang: a model checker for a distributed func-
tional programming language. In: ICFP, pp. 125–136. ACM (2007)

7. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

8. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a
tuple-based language. J. Log. Algebr. Meth. Program. 88, 99–120 (2017)

9. Giantsios, A., Papaspyrou, N., Sagonas, K.: Concolic testing for functional lan-
guages. In: PPDP, pp. 137–148. ACM (2015)

10. Gotovos, A., Christakis, M., Sagonas, K.: Test-driven development of concurrent
programs using Concuerror. In: 10th ACM SIGPLAN Workshop on Erlang, pp.
51–61. ACM (2011)

11. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

12. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114, 19 (2014)

13. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang
(2017). Submitted for publication. http://users.dsic.upv.es/∼gvidal/lnpv17/paper.
pdf

14. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30793-5 1

15. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
PPDP, pp. 167–178. ACM Press (2006)

16. Lopez, C.T., Marr, S., Mössenböck, H., Boix, E.G.: A study of concurrency
bugs and advanced development support for actor-based programs. CoRR
abs/1706.07372 (2017)

17. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp.
259–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 15

18. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifica-
tions with property-based testing. In: 10th ACM SIGPLAN Workshop on Erlang,
pp. 39–50. ACM (2011)

https://doi.org/10.1007/978-3-642-54862-8_49
https://doi.org/10.1007/978-3-642-54862-8_49
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1007/978-3-642-54804-8_26
http://users.dsic.upv.es/~gvidal/lnpv17/paper.pdf
http://users.dsic.upv.es/~gvidal/lnpv17/paper.pdf
https://doi.org/10.1007/978-3-642-30793-5_1
https://doi.org/10.1007/978-3-642-30793-5_1
https://doi.org/10.1007/978-3-319-63139-4_15

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 263

19. Shibanai, K., Watanabe, T.: Actoverse: a reversible debugger for actors. In:
AGERE, pp. 50–57. ACM (2017)

20. Stanley, T., Close, T., Miller, M.S.: Causeway: a message-oriented dis-
tributed debugger. Technical report, HPL-2009-78 (2009). http://www.hpl.hp.
com/techreports/2009/HPL-2009-78.html

21. Svensson, H., Fredlund, L.A., Earle, C.B.: A unified semantics for future Erlang.
In: 9th ACM SIGPLAN Workshop on Erlang, pp. 23–32. ACM (2010)

http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html
http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html

Cheap Remarks About Concurrent
Programs

Michael Walker(B) and Colin Runciman

University of York, York, UK
{msw504,colin.runciman}@york.ac.uk

Abstract. We present CoCo, the Concurrency Commentator, a tool
that recovers a declarative view of concurrent Haskell functions operat-
ing on some shared state. This declarative view is presented as a collec-
tion of automatically discovered properties. These properties are about
refinement and equivalence of effects, rather than equality of final results.
The tool is based on testing in a dynamically pruned search-space, rather
than static analysis or theorem proving. Case studies about concurrent
stacks and semaphores demonstrate how use of CoCo can inform under-
standing of program behaviour.

1 Introduction

Concurrency is a necessary paradigm for many applications, and yet it is difficult
to get right in an imperative setting, where the order of effects is both impor-
tant and unpredictable. Declarative programming, whether logical or functional,
offers the promise of a simpler alternative; the programmer describes the desired
program, and does not need to worry about the explicit order of effects.

Haskell is a purely functional language. Concurrency in Haskell is modelled
with a monad abstraction which is built on top of effectful operations on shared
state [11]. Once again, the order of effects is both important and unpredictable.
Concurrent Haskell programs are not so declarative.

In this paper we present CoCo, a tool to recover a declarative view of con-
current programs. CoCo takes as input a collection of operations on some shared
mutable state. CoCo outputs are declarative properties of equivalence and refine-
ment between concurrent expressions: see Sects. 3 and 5 for examples.

A list of such declarative properties is useful in a number of ways: (1) it can
be an addition to existing documentation; (2) the programmer may gain new
insights about their program; and (3) the absence of expected properties, or the
presence of unexpected ones, may indicate an error.

Our technique uses testing, so is potentially unsound. A property is a con-
jecture supported only by a finite set of test cases. So some reported properties
may not hold in general.

Contributions. We present a method, based on program synthesis and systematic
concurrency testing, to discover properties of stateful operations in a declarative
c© Springer International Publishing AG, part of Springer Nature 2018
J. P. Gallagher and M. Sulzmann (Eds.): FLOPS 2018, LNCS 10818, pp. 264–279, 2018.
https://doi.org/10.1007/978-3-319-90686-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90686-7_17&domain=pdf

Cheap Remarks About Concurrent Programs 265

language. Furthermore, we demonstrate the viability of this method by imple-
menting the CoCo tool in Haskell. We then obtain illustrative results from CoCo
for some simple applications.

Roadmap. The rest of the paper is structured as follows: Sect. 2 introduces three
key concerns in the implementation of a tool such as CoCo. Section 3 gives an
introductory example. Section 4 gives a detailed discussion of how CoCo gener-
ates terms and discovers properties. Section 5 presents two case studies. Section 6
considers related work and how our contributions differ from it. Section 7 presents
conclusions and evaluates the approach.

2 Key Concerns of Observing Concurrent Programs

In implementing a tool to discover properties of concurrent programs, we have
some concerns which are not applicable to sequential programs. Firstly, concur-
rent programs are nondeterministic; so if we simply compared results of single
executions, the discovered properties may not hold in the general case. Secondly,
mutable state is subject to interference from other threads; so if we do not con-
sider concurrent interference, the discovered properties may not hold when there
are more threads involved. Finally, we need to decide what it means for two con-
current programs to be related.

Nondeterminism. If we restrict the nondeterminism in our program to schedule
nondeterminism, we can use systematic concurrency testing (SCT) [4,7,9,10]
techniques. These techniques aim to test a variety of schedules, making use of
runtime knowledge of the program to reduce the number of required executions,
without necessarily sacrificing completeness.

We have previously developed Déjà Fu [14] an SCT tool for Haskell, based
on a typeclass-abstraction over the primitive concurrency operations. CoCo uses
Déjà Fu to produce the set of results of a generated program fragment.

Interference. We do not know what sort of interference may lead to interest-
ing results. So CoCo requires the programmer to supply a function with effects,
which is executed concurrently during property discovery, to provide this inter-
ference. By supplying different sorts of interference, the programmer can see how
the API they provide behaves in different concurrent contexts.

Properties. We formulate our properties in terms of observational refinement [8],
where the observations we take are snapshots of the shared state. CoCo requires
the programmer to supply an observation function to produce these snapshots.
By varying their observation function, the programmer can see different aspects
of the API they provide.

We define a behaviour of a concurrent program as a pair of a final observation,
taken after the program terminates, and a possible failure. Failures are states
like a deadlock, or an uncaught exception. By considering the set of a program’s

266 M. Walker and C. Runciman

type C = Concurrency

sig :: Sig (MVar C Int) (Maybe Int) (Maybe Int)

sig = Sig

{ initialise = maybe newEmptyMVar newMVar

, expressions =

[-- example 1

lit "putMVar" (putMVar :: MVar C Int -> Int -> C ())

, lit "takeMVar" (takeMVar :: MVar C Int -> C Int)

, lit "readMVar" (readMVar :: MVar C Int -> C Int)

]

, backgroundExpressions =

[-- example 2

lit "tryPutMVar" (tryPutMVar :: MVar C Int -> Int -> C Bool)

]

, interfere = \v _ -> putMVar v 42

, observe = \v _ -> tryReadMVar v

, backToSeed = \v _ -> tryReadMVar v

}

Fig. 1. CoCo signature for MVars holding Ints.

possible behaviours, rather than simply final observations, we can distinguish
between operations which may fail and those which do not. Properties that we
report are of the form A === B, meaning that the sets of behaviours of A and
B are equal; and A ->- B, meaning that the set of behaviours of A is a strict
subset of the set of behaviours of B.

3 An Illustrative Example

Let us now show an example use of CoCo. We consider a type of concurrent
shared variable in the Haskell libraries. An MVar is a mutable memory cell
which may be full or empty. Instead of the standard version of the functions
from Haskell’s Control.Concurrent library module, we instead use typeclass-
generalised versions which Déjà Fu can test. We shall examine three basic oper-
ations over MVars: put, take, and read. To put is to block until the MVar is empty
and then set its value. To take is to block until the MVar is full, remove its value,
and return the value. To read is to take, but without emptying the MVar. Each
function has a non-blocking try variant, which returns an indicator of success.

Allowing shared values of type Int, we have the following type signatures:

putMVar :: MVar Concurrency Int -> Int -> Concurrency ()
takeMVar :: MVar Concurrency Int -> Concurrency Int
readMVar :: MVar Concurrency Int -> Concurrency Int

Here Concurrency is an implementation of the concurrency-typeclass. In this
case, the return type of each function is of the form Concurrency x, meaning

Cheap Remarks About Concurrent Programs 267

that the result of the function produces an x value and also has some effects
in the concurrency execution context. The MVar type is parameterised by the
monad type; MVar is an abstract type, with the concrete type determined by the
monad.

Table 1. The behaviours of the terms in property (2).

Term Seed Final state Deadlocks

Read Nothing Just 42 No

Just 0 Just 0 No

Take/Put Nothing Just 42 No

Just 0 Just 0 No

Just 42 Yes

Signatures. When we use CoCo, we must provide the functions and values which
may appear in properties. We must also provide a way to initialise the state, an
observation function, and an interference function. We call this collection of
programmer-supplied definitions the signature.

Figure 1 shows a signature for MVar operations. The initialisation function
constructs an empty or a full MVar. The interference function simply stores a new
value. The observation function takes a snapshot of the state. The backToSeed
function is used to check whether the state has been changed: if the original and
final seed values are the same, the state is unchanged.

It is essential to provide an initialisation function which gives a representative
collection of states, and an interference function which can disrupt the functions
of interest. If our initialisation function only produced a full MVar, we could find
properties which do not hold when the MVar is empty. Because our interference
function only writes to the MVar, we may find properties which do not hold
when there are multiple consumers. Developing a fuller understanding of the
functions under test may require examining the different property-sets found
under different execution conditions.

MVar properties. Given putMVar, takeMVar, and readMVar, CoCo produces:

readMVar @ === readMVar @ >> readMVar @ (1)
readMVar @ ->- takeMVar @ >>= \x -> putMVar @ x (2)
takeMVar @ === readMVar @ >> takeMVar @ (3)

putMVar @ x === putMVar @ x >> readMVar @ (4)

Here @ is the state argument, in this case the MVar.
Property (1) shows that readMVar is idempotent; (2) shows that it is not

merely a take followed by a put, it is rather a distinct operation; (3) and (4)
show that it does not modify the MVar, and that it does not block when the MVar
is full. Property (4) may appear to be type-incorrect, but remember that CoCo
does not consider equality of term results, only the effects.

268 M. Walker and C. Runciman

We see the effect of the interference in (2): with no other producers, this would
be an equivalence; it is only when interference by another thread is introduced
that the equivalence breaks down and the distinction is revealed. Table 1 shows
the possible behaviours. This property is a strict refinement because, while the
behaviours for the seed value Nothing are the same, the behaviours of the left
term for the seed value Just 0 are a strict subset of the behaviours of the right.

Background Expressions. Sometimes when expressing properties it is necessary
to call upon other expressions which are of secondary interest. Such expressions
are commonly called background expressions. A property is only reported if each
side includes at least one non-background expression. If we include tryPutMVar
as a background expression, CoCo discovers these additional properties:

readMVar @ === readMVar @ >> tryPutMVar @ x
readMVar @ === readMVar @ >>= \x -> tryPutMVar @ x (5)
readMVar @ ->- takeMVar @ >>= \x -> tryPutMVar @ x

putMVar @ x === putMVar @ x >> tryPutMVar @ x1

Property (5) shows how important the choice of interference function is. The left
and right terms are not equivalent. If the interference were to empty a full MVar
then the right term could restore its original value. As our interference function
only produces, rather than consumes, it will never alter the value in a full MVar.

The above example takes about 4 s to run in total, and the output displayed
here is the output of the tool, aside from the property numbers.

4 How CoCo Works

A simplified version of our approach is to generate all terms up to some syntactic
size limit, compute and store their behaviours, and then find properties by com-
paring the sets of behaviours of each pair of terms. This would be slow, however.
Following the lead of QuickSpec [3,12] we make three key improvements:

1. We generate schemas with holes, rather than terms with variables (Sect. 4.1)
2. We only compute the set of behaviours of the most general term of every

schema (Sect. 4.2)
3. We interleave property discovery with schema generation, and aggressively

prune redundant schemas (Sect. 4.3)

The main difference between our approach and QuickSpec is how we han-
dle monadic operations, and that QuickSpec compares equality of term results
whereas we compare refinement of term behaviours. Furthermore, we generate
lambda-terms in a restricted setting whereas QuickSpec does not do so at all.

Cheap Remarks About Concurrent Programs 269

4.1 Representing and Generating Expression Schemas

We can greatly reduce the number of expressions by not generating alpha-
equivalent ones. Instead of generating an expression like push @ x >> push @ y
we will instead generate the expression push @ ? >> push @ ? where each ? is a
hole for a variable. These expressions-with-holes are called schemas. One schema
can be instantiated into many terms by assigning variable names to groups of
holes. The push-push schema has two semantically distinct term instances: the
single-variable and the two-variable cases.

data Expr s h = Lit String Dynamic

| Var TypeRep (Var h)

| Bind TypeRep (Expr s h) (Expr s h)

| Ap TypeRep (Expr s h) (Expr s h)

| State

data Var h = Hole h | Named String | Bound Int

type Schema s = Expr s ()

type Term s = Expr s Void

Fig. 2. Representation of Haskell expressions.

Figure 2 shows our expression representation. The Expr type is parameterised
by the state type and a hole type. The state parameter ensures expressions that
assume different execution contexts cannot be inadvertently combined. The hole
parameter allows for a statically enforced distinction between schemas and terms.
Each Expr constructor carries around a type (except the state, which is implicit).
We hide the details of this representation and provide smart constructor func-
tions to ensure only well-typed expressions can be constructed.

Schema Generation. Generating new schemas is straightforward. We give expres-
sions a notion of size and generate schemas in size order. The needed expressions
of size 1 are supplied in the user’s signature. For larger sizes we combine pairs
of appropriately sized known schemas and keep the type-correct ones.

We interleave generation with evaluation and property discovery. In this way
we can partition schemas into equivalence classes and use only the smallest of
known-equivalent schemas when generating new ones.

Monadic Expressions. The expressions of most interest to us are monadic expres-
sions. Such expressions allow us to combine smaller effects to create larger ones.
We simplify this task by taking inspiration from Haskell’s do-notation. Do-
notation is a syntactic sugar for expressing sequences of monadic operations in an
imperative style, which has explicit variable bindings and makes the sequencing
of effects clear. Rather than generating lambda-terms, we use a kind of first-class

270 M. Walker and C. Runciman

do-notation where the monadic bind operation binds the result of evaluating the
binder to zero or more holes in the body. Restricting ourselves to this simpler case
allows us to avoid many of the complexities of trying to generate lambda-terms
directly.

For example, the schema pop @ >>= \x -> push @ x is generated like so:

1. Combine pop and @ to produce pop @
2. Combine push and @ to produce push @
3. Combine push @ and ? to produce push @ ?
4. Combine pop @ and push @ ? to produce both pop @ >> push @ ? and

pop @ >>= \x -> push @ x.

Bound variables use de Bruijn indices [5]. Names are only assigned when
expressions are displayed to the user.

4.2 Evaluating Most General Terms

Time spent evaluating terms dominates the execution cost of CoCo. In the worst
case the number of executions needed for a term is exponential in the number
of threads, pre-emptive context switches, and blocking operations [9].

What is more, our term evaluation always involves at least two threads: the
term thread executing the term itself, and an interference thread. The term
thread may fork additional threads. The interference thread is essential to dis-
tinguish refinement from equality in some cases, such as in property (2).

To avoid repeated work, we compute the behaviours of all the terms for a
schema when it is generated. We annotate each schema with some metadata,
including its behaviour-sets, and compare these cached behaviours later when
discovering properties. While possibly a significant space cost, storing this data
reduces the execution time of some of our test applications from hours to minutes.

Deriving Terms from Schemas. One schema may have many term instances.
For example, given a schema with two holes of two types, we can produce four
semantically distinct terms, here ordered from most general to most constrained:

f (? :: Int) (? :: Bool) (? :: Bool) (? :: Int)

f (w :: Int) (x :: Bool) (y :: Bool) (z :: Int)
f (w :: Int) (x :: Bool) (y :: Bool) (w :: Int)
f (w :: Int) (x :: Bool) (x :: Bool) (z :: Int)
f (w :: Int) (x :: Bool) (x :: Bool) (w :: Int)

We use a simple reduce-and-conquer algorithm to eliminate holes:

1. Pick a type and find the set of all holes of that type.
2. For each partition of the hole-set make a distinct copy of the schema and in

each case assign to each subset in the partition a distinct variable name.
3. If there are remaining hole types, continue recursively from (1).

Cheap Remarks About Concurrent Programs 271

Evaluating Terms. To compute the behaviours of every term for a schema, we
need only consider the most general term. The behaviours of all less-general
terms can be derived from the most general case by restricting to cases where
the variables are equal. For example, given the behaviours of f x y, we throw
away those where x �= y to obtain the behaviours of f x x.

Déjà Fu allows us to make an observation of the final state even if evaluation
of the term deadlocks. This is essential, as an operation which deadlocks may
have altered the state before blocking.

4.3 Property Discovery and Schema Pruning

Not only do we interleave generation with evaluation, we also interleave it with
property-discovery. After all schemas of a given size are generated and their most
general terms evaluated, we compare each such new schema against all smaller
ones to discover equivalences and refinements.

As one schema may correspond to many terms, we may discover many prop-
erties between a pair of schemas. In practice, most of these properties are con-
sequences of more general ones. We solve this problem by first producing all
properties between the pair of schemas, and then pruning properties which are
simple consequences of another. Property P2 is made redundant by property P1

if (1) both P1 and P2 are equivalences or both are refinements; and (2) P1 has
a more general allocation of variables to holes. As ->- is strict refinement, it is
impossible for both S === T and S ->- T to hold.

Smallest Schemas. To avoid discovering the same property multiple times, we
maintain a set of smallest schemas. At first we assume all schemas to be smallest.
If a syntactically smaller schema is a refinement of a larger one, the larger is
annotated as “not smallest”. When generating new monadic binds:

– A schema S >> T is only generated if both S and T are smallest schemas.
– A schema S >>= \x -> T[x] is only generated if T is a smallest schema.

We also only consider properties S === T or S ->- T where both S and T
are smallest schemas.

Neutral Schemas. A schema N is neutral if and only if, for all other schemas
S, these identities hold: N >> S === S === S >> N. For example, readMVar is
not a neutral MVar operation, as it may block, but the non-blocking alternative
tryReadMVar is neutral. A sufficient condition for a schema to be neutral is if its
most general term instance is (1) always atomic; (2) never fails; and (3) never
modifies the state.

We use a heuristic method based on execution traces to determine if a schema
is atomic, and use the seed values to determine if it modifies the state. If a schema
is judged to be neutral, we do not use it when constructing larger schemas.

272 M. Walker and C. Runciman

Projection to a Common Namespace. We compute the behaviours of every term
individually, yet we construct properties from pairs of terms. Each term intro-
duces its own variable namespace: the variable “x” in one term is unrelated to
the variable “x” in another. When discovering properties, we must first project
both terms into a common namespace. Each variable in each term can either be
given a unique name, or identified with a variable in the other term. We never
reduce the number of distinct variables in a term. To do so would only reproduce
another term generated from the same schema.

As a pair of terms may have many projections, we may discover many prop-
erties between them: at most one for each projection. In practice, most of these
properties are consequences of more general ones. We only keep the most general.

newtype LockStack m a = LockStack (MVar m [a])

push :: MonadConc m => a -> LockStack m a -> m ()

push a (LockStack v) = modifyMVar v (\as -> return (a:as, ()))

pop :: MonadConc m => LockStack m a -> m (Maybe a)

pop (LockStack v) = modifyMVar v (\as -> (drop 1 as, listToMaybe as))

peek :: MonadConc m => LockStack m a -> m (Maybe a)

peek (LockStack v) = fmap listToMaybe (readMVar v)

Fig. 3. A lock-based mutable stack.

5 Case Studies

We now present two illustrative case studies: concurrent stacks in Sect. 5.1, and
semaphores in Sect. 5.2.

5.1 Concurrent Stacks

Lock-Based Stacks. Mutable stacks are commonly used for synchronisation
amongst multiple threads. A simple mutable stack is just an immutable list
inside an MVar shared variable, as in Fig. 3. We now run CoCo on those functions,
where the initialisation function constructs a stack from a list, the observation
function converts it back to a list, and the interference function sets the contents
of the stack to a given list. CoCo discovers the following properties:

peek @ ->- push x @ >> pop @ (6)
peek @ ->- (push x @) ||| (pop @) (7)
peek @ ->- pop @ >>= \m -> whenJust push @ m (8)

Cheap Remarks About Concurrent Programs 273

Here whenJust is defined as \f s -> maybe (pure ()) (‘f‘ s) and ||| is
concurrent composition. Property (6) may seem surprising: the left term returns
the top of stack whereas the right term returns the value pushed. Remember
that CoCo does not consider equality of results when determining properties,
only the effect on the state. Property (7) is a consequence of (6). Property (8) is
analogous to the readMVar properties presented in Sect. 3, as we might expect
given how the stack operations are defined.

Buggy Functions. Suppose we add an incorrect push2 function, which is meant
to push two values atomically, but which only pushes the second value twice.
CoCo finds this property:

push2 x1 x @ ->- push x @ >> push x @

As this is a strict refinement, we now know that push2 is more deterministic in
some way than two pushes. As we know that the composition of two pushes is
not atomic, this strongly suggests that push2 is. We can also see the effect of
push2 on the state, and that it is incorrect!

newtype CASStack m a = CASStack (CRef m [a])

push :: MonadConc m => a -> CASStack m a -> m ()

push a (CASStack r) = modifyCRefCAS r (\as -> (a:as, ()))

pop :: MonadConc m => CASStack m a -> m (Maybe a)

pop (CASStack r) = modifyCRefCAS r (\as -> (drop 1 as, listToMaybe as))

peek :: MonadConc m => CASStack m a -> m (Maybe a)

peek (CASStack r) = fmap listToMaybe (readCRef r)

Fig. 4. A lock-free mutable stack.

Choice of Observation. Properties are discovered using a programmer-supplied
observation function, so different functions can be used to discover different
properties. By changing the observation of our stack from equality-as-a-list to
peek, we discover a new collection of properties. Here we have fixed the push2
function to behave correctly and also removed ||| from the signature.

peek @ ->- push x @ >> pop @
peek @ === pop @ >>= \m -> whenJust push @ m

push x @ === pop @ >> push x @
push x1 @ === push2 x x1 @ (9)
push x1 @ === push x @ >> push x1 @ (10)

whenJust push @ m === whenJust (push2 x) @ m

274 M. Walker and C. Runciman

Properties (9) and (10) show the power of supplying a custom observation func-
tion: in the left and right terms, the stack states are not equal. In both (9) and
(10) the left term increases the stack depth by one, and the right by two. We
now see that push2 leaves its second argument on the top of the stack. We could
not directly observe this before, as a single push would leave the stack sizes out
of balance. Throwing away unnecessary details, in this case the tail of the stack,
allows us to see more than we previously could.

It is important to bear in mind that there is no best observation to make,
no best interference to consider, and no best set of properties to discover. Each
choice of observation and interference will reveal something about the functions
under test. By considering different cases, we can arrive at a fuller understanding
of our code.

Choice of Implementation. Due to their blocking behaviour, MVars can have
poor performance under contention. An alternative concurrency primitive is the
CRef,1 corresponding to a lock-free mutable location in memory. An atomic
compare-and-swap operation updates CRef values efficiently even with con-
tention. Figure 4 shows our implementation, which is similar to the MVar stack.

A feature of CoCo that differentiates it from other property-discovery tools
is the ability to compare two different signatures which have compatible obser-
vation types. We can compare the MVar and CRef stacks by simply supplying
both signatures to the tool, each of which contains push, pop, peek, whenJust,
and |||. CoCo then reports 19 properties, including these three:

popM @ === popC @ (11)
peekM @ === peekC @ (12)

pushM x @ === pushC x @ (13)

Here we use the list observation again. Functions with names ending M are for
MVar stacks, functions with names ending C for CRef stacks. Properties (11),
(12), and (13) tell us what we want to know: the CRef stack is equivalent to the
MVar stack.

A common approach when first writing a program is to do everything in a
simple and clearly correct fashion. After checking correctness, we may gradually
rewrite components to meet performance requirements. At which point testing
must establish that the rewritten components preserve the behaviour. The ability
to determine observational equivalence of different implementations of the same
API is an alternative to the more-common unit-testing for this task [8].

5.2 Semaphores

A semaphore is a common synchronisation primitive. A semaphore can be
thought of as a record of how many units of some abstract resource are available,
with operations to adjust the record in a race-free way. Binary semaphores only

1 In regular GHC Haskell this is the IORef, here Déjà Fu deviates from the norm.

Cheap Remarks About Concurrent Programs 275

have two states, and are used to implement locks. Counting semaphores have
an arbitrary number of states. An implementation of counting semaphores is
provided in the Control.Concurrent.QSemN library module.

Figure 5 shows the signature we provide to CoCo. CoCo supports polymor-
phic function types, as can be seen in the type of |||, where A and B are types we
use as type variables. The commLit function indicates that the supplied binary
function is commutative, which is used to prune the generated schemas further.

The new, wait, signal, and remaining functions are provided by the QSemN
library module. We construct a new semaphore by allocating an arbitrary
amount of resource; we observe how much resource remains; and we interfere
by taking and then replacing half of the resource. The interference thread is
interleaved with the term thread, so it may cause the term thread to block.

CoCo finds 57 properties in this example, so in the remainder of the section
we only discuss selected properties.

Waiting and Signalling. CoCo tells us that the effect of waiting for zero resource
and of signalling the availability of zero resource are the same — neither affects
the state of the semaphore:

wait @ 0 === wait @ 0 >> wait @ 0 (14)
signal @ 0 === wait @ 0 >> wait @ 0

Property (14) also shows that waiting for zero resource is not a neutral operation,
as if it were CoCo would prune the property away. This suggests that wait may
block.

type C = Concurrency

sig :: Sig (QSemN C) Int Int

sig = Sig

{ initialise = new . abs

, expressions =

[lit "wait" (wait :: QSemN C -> Int -> C ())

, lit "signal" (signal :: QSemN C -> Int -> C ())

]

, backgroundExpressions =

[commLit "|||" ((|||) :: C A -> C B -> C ())

, commLit "+" ((+) :: Int -> Int -> Int)

, lit "-" ((-) :: Int -> Int -> Int)

, lit "0" (0 :: Int)

, lit "1" (1 :: Int)

]

, interfere = \q n -> let i = n ‘div‘ 2 in wait q i >> signal q i

, observe = \q _ -> remaining q

, backToSeed = \q _ -> remaining q

}

Fig. 5. CoCo signature for the QSemN type.

276 M. Walker and C. Runciman

CoCo also generates properties revealing another implementation detail, that
the programmer can wait for a negative value instead of calling signal:

signal @ 1 === wait @ (0 - 1)
signal @ (1 + 1) === wait @ (0 - (1 + 1))

We might suspect that the more general property signal @ x === wait @ (-x)
holds for all positive x. CoCo finds this form if we extend our signature with abs
and negate:

signal @ (abs x) === wait @ (negate (abs x)) (15)

A Lack of Composability. CoCo reports some strict refinements involving signal
and wait where we might expect equivalences:

signal @ 0 ->- signal @ x >> wait @ x (16)
signal @ (x + x1) ->- signal @ x >> signal @ x1 (17)
signal @ (x + x1) ->- (signal @ x) ||| (signal @ x1) (18)

We have just seen with property (15) that funny things happen with negative
numbers, so it should be no surprise that these refinements are only equivalences
when x and x1 are positive.

Table 2. Scaling behaviour of the semaphore case study.

Term size 1 2 3 4 5 6 7 8

Schemas 15 29 56 88 238 385 1689 2740

Properties 0 0 0 0 1 1 55 55

Time (s) 0.03 0.03 0.45 0.45 9.2 9.2 970 970

Time/Schema2 1.3e−4 3.6e−5 1.4e−4 5.8e−5 1.6e−4 6.2e−5 3.4e−4 1.3e−4

Types. Signalling or awaiting a negative quantity is a breach of the semaphore
protocol. Perhaps a better interface for semaphores would only allow nonnega-
tive quantities. The change might avoid accidental breakage in the future if the
semantics of negative values are unwittingly changed.

CoCo supports many types, but not all. If the programmer wishes to use
types outside of the built-in collection, they must provide some information: a
way to enumerate values, an equality predicate, and a symbol to use in variable
names. In this way, the programmer can extend CoCo to work with arbitrary
types, or alter the behaviour of existing types. If we have signal and wait use
natural numbers rather than integers, properties (16–18) become equivalences:

signal @ 0 === signal @ n >> wait @ n
signal @ (n + n1) === signal @ n >> signal @ n1
signal @ (n + n1) === (signal @ n) ||| (signal @ n1)

We could pursue this issue further by examining the terms with Déjà Fu
when given a negative quantity, or we could change the type of the function to
forbid that case. Ideally, illegal states should be unrepresentable.

Cheap Remarks About Concurrent Programs 277

Scaling. Table 2 shows how CoCo scales as the term size increases. The execution
time grows rapidly, but the time to compare pairs of schemas So reducing the
number of schemas is the most effective way to reduce the execution time. One
such area for future improvement is in cases where one schema is an instance
of another. Such schemas may arise when the signature includes constants. For
example, the schema signal @ 1 is an instance of signal @ x. The ‘most gen-
eral term’ rule does not apply here, as these are different schemas. If CoCo were
able to synthesise preconditions, it would be possible in some cases to eliminate
constants from signatures, solving this problem.

6 Related Work

QuickSpec and Speculate. The main related work to ours is QuickSpec [3,12],
which automatically discovers equational laws of pure functions by generating
schemas and testing terms. The Speculate [1] tool is similar to QuickSpec but in
addition can discover conditional equations and inequalities. Speculate properties
may have preconditions, which the tool can find. CoCo does not support condi-
tional equations, but they could be useful. To return to the semaphore case study
from Sect. 5.2, the presence of conditional equations would allow us to discover
the conditional property x >= 0 ==> signal @ x === wait @ (negate x),
without needing to introduce the abs function. Neither QuickSpec nor Spec-
ulate support functions with effects or generating lambda-terms.

Bach. The Bach [13] tool uses a database of examples of input/output values
from functions to synthesise properties using a Datalog-based oracle. It uses a
notion of evidence to decide whether an inferred property holds: negative evi-
dence consists of counterexamples; positive evidence consists of witnesses. Bach
requires functions to have at most one output for each input, to construct neg-
ative evidence. This makes Bach unsuitable for concurrency, which is nondeter-
ministic.

Daikon. The Daikon [6] tool discovers likely invariants of C, C++, Java, and
Perl programs. It observes variables during program execution, applying machine
learning techniques to discover properties. Daikon does not synthesise and test
program terms. It is only able to discover invariants which exist in the program.
In contrast, the tools mentioned so far, including CoCo, discover properties of
combinations of expressions that may not appear in the original program at all.

7 Conclusions and Evaluation

Our broad aim is to help programmers overcome the difficulty of writing correct
concurrent programs even in a declarative setting. To work towards this, we
have presented a new tool, CoCo, to discover behavioural properties of effectful
functions operating on shared state.

278 M. Walker and C. Runciman

Applicability Beyond Haskell. CoCo is tied to Haskell in two ways: it has some
knowledge of Haskell types, which is used to generate expressions; and it relies
on the Déjà Fu tool to find the results of executing an expression under different
schedules. However, it could be reimplemented for another language. For exam-
ple, in Erlang the objects of interest are processes. Initialisation is to create a
process in a known state. Observation is to request information from a process.
Interference is to instruct a process to change its internal state. The PULSE tool
for systematically testing Erlang programs [2] would play the part of Déjà Fu.

Value of Reported Properties. Although only supported by a finite number of
test cases, the properties reported by CoCo are surprisingly accurate in practice.
These properties can provide helpful insights into the behaviour of functions. As
demonstrated in the semaphore case study (Sect. 5.2), surprising properties can
suggest that implementations of some functions rely on unstated assumptions.

Ease of Use. Ideally, a testing tool should not force the programmer to structure
their code in a specific way. CoCo requires the use of the concurrency typeclass
from Déjà Fu, which is not widespread in practice. However, it has been our expe-
rience that reformulating concurrent Haskell code for the necessary abstraction
is a type-directed and mechanical process, requiring little insight.

References

1. Braquehais, R., Runciman, C.: Speculate: discovering conditional equations and
inequalities about black-box functions by reasoning from test results. In: Proceed-
ings of the 10th ACM SIGPLAN International Symposium on Haskell, Haskell
2017, pp. 40–51. ACM, New York (2017)

2. Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T., Wiger,
U.: Finding race conditions in Erlang with QuickCheck and PULSE. In: Proceed-
ings of the 14th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2009, pp. 149–160. ACM (2009)

3. Claessen, K., Smallbone, N., Hughes, J.:QuickSpec: guessing formal specifications
using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp.
6–21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13977-2 3

4. Coons, K.E., Musuvathi, M., McKinley, K.S.: Bounded partial-order reduction.
In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA 2013, pp.
833–848. ACM (2013)

5. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae (Proc.) 75(5), 381–392 (1972)

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

7. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005, pp. 110–121. ACM (2005)

https://doi.org/10.1007/978-3-642-13977-2_3

Cheap Remarks About Concurrent Programs 279

8. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In: Robi-
net, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-16442-1 14

9. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2007, pp. 446–455.
ACM (2007)

10. Musuvathi, M., Qadeer, S.: Fair stateless model checking. In: Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2008, pp. 362–371. ACM (2008)

11. Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1996, pp. 295–308. ACM (1996)

12. Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications for
the busy programmer. J. Funct. Program. 27 (2017)

13. Smith, C., Ferns, G., Albarghouthi, A.: Discovering relational specifications. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2017, pp. 616–626. ACM (2017)

14. Walker, M., Runciman, C.: Déjà Fu: a concurrency testing library for Haskell. In:
Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, pp.
141–152. ACM (2015)

https://doi.org/10.1007/3-540-16442-1_14

Author Index

Antoy, Sergio 149
Avanzini, Martin 132

Cheng, Chen-Mou 68
Cheung, Steven 84
Chitil, Olaf 230
Codish, Michael 182

Dal Lago, Ugo 132
Darvariu, Victor 84

Ehlers, Thorsten 182
Emoto, Kento 166

Frühwirth, Thom 116

Gall, Daniel 116
Gange, Graeme 182
Ghica, Dan R. 84

Hamana, Makoto 99
Hanus, Michael 149
Hsu, Ruey-Lin 68
Hu, Zhenjiang 166

Itzhakov, Avraham 182
Iwasaki, Hideya 166

Kiselyov, Oleg 33

Lanese, Ivan 247

Matsuoka, Satoshi 17
Matsuzaki, Kiminori 166
Mizuno, Masayuki 1
Morihata, Akimasa 166
Moser, Georg 214
Mu, Shin-Cheng 68
Muroya, Koko 84

Nishida, Naoki 247

Palacios, Adrián 247

Riesco, Adrián 198
Rowe, Reuben N. S. 84
Runciman, Colin 264

Sakaguchi, Kazuhiko 51
Schneckenreither, Manuel 214
Stuckey, Peter J. 182
Sumii, Eijiro 1

Tsushima, Kanae 230

Vidal, Germán 247

Walker, Michael 264

Yamada, Akihisa 132

	Preface
	Organization
	Abstracts of Invited Talks
	Can Programming Be Liberated from Unidirectional Style?
	miniKanren: A Family of Languages for Relational Programming
	Building Verified Cryptographic Components Using F*
	Contents
	Formal Verification of the Correspondence Between Call-by-Need and Call-by-Name
	1 Introduction
	2 -Calculus and Call-by-Name Evaluation
	3 Ariola and Felleisen's Call-by-Need -Calculus
	4 Outline of Our Standardization-Based Proof
	5 Formalization in Coq
	6 Related Work
	7 Conclusion
	References

	Direct Encodings of NP-Complete Problems into Horn Sequents of Multiplicative Linear Logic
	1 Introduction
	2 Intuitionistic Multiplicative Linear Logic, Horn Sequents, and MLL
	2.1 Intuitionistic Multiplicative Linear Logic and Horn Sequents
	2.2 Multiplicative Linear Logic
	2.3 MLL Proof Nets

	3 The Encoding of 3D MATCHING
	3.1 Preliminaries
	3.2 The Encoding into a Horn Sequent
	3.3 The Correctness Proof

	4 The Encoding of PARTITION
	4.1 Preliminaries
	4.2 The Encoding into a Horn Sequent
	4.3 The Correctness Proof

	5 Concluding Remarks
	References

	 to SKI, Semantically
	1 Introduction
	2 Lambda- and SKI-calculi and the Bracket Abstraction
	3 Semantic Translation
	3.1 Lazy Weakening

	4 OCaml Implementation
	4.1 The Eta-Optimization

	5 Compiling Real Programs
	6 Linear algorithm
	7 Related Work
	8 Conclusions
	References

	Program Extraction for Mutable Arrays
	1 Introduction
	2 Finite Types and Finite Functions in Coq
	2.1 A Finite Type Library—fintype
	2.2 A Finite Function Library—finfun

	3 Representing Mutable Arrays in Coq
	3.1 Program Extraction for the Array State Monad
	3.2 Small Example: Swap Two Elements

	4 Optimizations by an Improved Extraction Plugin
	4.1 Destructing Large Records
	4.2 -expansion on Case Analysis

	5 Case Studies
	5.1 The Union–find Data Structure
	5.2 The Quicksort Algorithm

	6 Related Work
	7 Conclusion
	References

	Functional Pearl: Folding Polynomials of Polynomials
	1 Introduction
	2 Univariate and Multivariate Polynomials
	2.1 Univariate Polynomial and Its Semantics
	2.2 Bivariate Polynomials
	2.3 Multivariate Polynomials

	3 Operations on Polynomials
	3.1 Rotation
	3.2 Substitution
	3.3 Expansion

	4 Compiling Polynomials
	5 Conclusions and Related Work
	References

	A Functional Perspective on Machine Learning via Programmable Induction and Abduction
	1 A Principled Functional Language for Machine Learning
	2 Deduction, Induction, Abduction
	2.1 Proofs-as-Programs for Induction
	2.2 Proofs-as-Programs for Abduction

	3 Programming with Induction-Abduction
	4 The Abductive Calculus
	5 DecML, A Functional Language for Machine Learning
	6 Related and Further Work
	References

	Polymorphic Rewrite Rules: Confluence, Type Inference, and Instance Validation
	1 Introduction
	1.1 Example: Confluence of the Computational -Calculus
	1.2 Critical Pair Checking Using the Tool PolySOL

	2 Polymorphic Computation Rules
	3 Type Inference for Polymorphic Computation Rules
	4 Confluence of Polymorphic Computation Systems
	5 Example: Confluence of the Call-by-Need -Calculus
	6 Summary and Related Work
	6.1 Summary
	6.2 Related Work

	References

	Confluence Modulo Equivalence with Invariants in Constraint Handling Rules
	1 Introduction
	2 Preliminaries
	2.1 Confluence Modulo Equivalence
	2.2 Constraint Handling Rules
	2.3 Confluence of CHR Programs

	3 Compatibility of Equivalence Relations
	4 Confluence Modulo Equivalence w.r.t. an Invariant
	5 Discussion and Related Work
	6 Conclusion and Future Work
	References

	On Probabilistic Term Rewriting
	1 Introduction
	2 Related Work
	3 Probabilistic Abstract Reduction Systems
	3.1 Notions of Probabilistic Termination
	3.2 Probabilistic Ranking Functions
	3.3 Relation to Formulation by Bournez and Garnier

	4 Probabilistic Term Rewrite Systems
	4.1 Interpretation Methods for Proving SAST
	4.2 Barycentric Algebras

	5 Conclusion
	References

	Equivalence Checking of Non-deterministic Operations
	1 Motivation
	2 Functional Logic Programming and Curry
	3 Equivalent Operations
	4 Refined Equivalence Criteria
	5 Property-Based Checking
	6 Related Work
	7 Conclusions
	References

	Optimizing Declarative Parallel Distributed Graph Processing by Using Constraint Solvers
	1 Introduction
	2 Fregel: Functional VcGP Language
	2.1 Pregel
	2.2 Fregel

	3 Optimizing Fregel Programs
	3.1 Reducing Communication
	3.2 Inactivating Vertices
	3.3 Removing Barriers
	3.4 Prioritized Execution
	3.5 Limitation and Generalization

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Setup of Experiments
	4.3 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Breaking Symmetries with Lex Implications
	1 Introduction
	2 Preliminaries
	3 Removing Redundant Constraints
	4 Generating Compact and Complete Symmetry Breaks for Graphs
	5 An Application: Computing Ramsey Colorings (4,4;n)
	6 Conclusion
	References

	Model Checking Parameterized by the Semantics in Maude
	1 Introduction
	2 Preliminaries
	2.1 Implementing Semantics in Maude
	2.2 Shared-Memory Semantics
	2.3 Message-Passing Semantics
	2.4 Maude Metalevel and Loop Mode

	3 Model Checking Shared-Memory Languages
	4 Model Checking Message-Passing Languages
	5 Concluding Remarks and Ongoing Work
	References

	Automated Amortised Resource Analysis for Term Rewrite Systems
	1 Introduction
	2 Preliminaries
	3 Resource Annotations
	4 Implementation
	5 Experimental Evaluation
	6 Conclusion
	References

	A Common Framework Using Expected Types for Several Type Debugging Approaches
	1 Introduction
	2 Language and Principal Typing Tree (PTT)
	3 Expected Typings and Type Debugging Information Tree
	3.1 How to Obtain Expected Types
	3.2 Inferring Expected Typings
	3.3 Type Annotations/Signatures
	3.4 Why Obtain Expected Typings from Principal Typings?
	3.5 Expected Typings in the Presence of Multiple Type Errors

	4 Using the Type Debugging Information Tree
	4.1 Enumeration of Type Error Messages
	4.2 Type Error Slicing
	4.3 Improved Interactive Type Error Debugging

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	CauDEr: A Causal-Consistent Reversible Debugger for Erlang
	1 Introduction
	2 The Language
	3 Causal-Consistent Reversible Debugging
	4 CauDEr: A Causal-Consistent Reversible Debugger
	4.1 The CauDEr Workflow
	4.2 Finding Concurrency Bugs with CauDEr

	5 Related Work
	6 Discussion
	References

	Cheap Remarks About Concurrent Programs
	1 Introduction
	2 Key Concerns of Observing Concurrent Programs
	3 An Illustrative Example
	4 How CoCo Works
	4.1 Representing and Generating Expression Schemas
	4.2 Evaluating Most General Terms
	4.3 Property Discovery and Schema Pruning

	5 Case Studies
	5.1 Concurrent Stacks
	5.2 Semaphores

	6 Related Work
	7 Conclusions and Evaluation
	References

	Author Index

