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Chapter 8
Engineering Disease Resistance in Rice

K. K. Kumar, E. Kokiladevi, L. Arul, S. Varanavasiappan, and D. Sudhakar

Abstract Rice diseases cause substantial yield loss in rice. Through conventional 
breeding, resistance genes (R-gene) were transferred into elite rice genotypes par-
ticularly against  the fungal blast and bacterial blight diseases. Main drawback of 
this approach is that, in the long term, breakdown of resistance occurs due to evolu-
tion of new virulent pathogen strains. In the current scenario, developing rice with 
durable broad-spectrum resistance through genetic transformation is gaining impor-
tance. In this direction, genetic transformation of rice was being carried out for the 
past two decades via expressing pathogenesis-related (PR) proteins, antimicrobial 
peptide, and genes governing signaling pathways as well as elicitor proteins. In 
spite of several reports, the expression of PR proteins and antimicrobial peptides did 
not yield desirable disease control in rice. Better understanding of disease resistance 
mechanism in plants helped in identifying critical transcription factors (TFs) 
involved in disease resistance. Overexpression of NPR1 encoding non-expressor of 
pathogenesis-related protein 1 and OsWRKY45 transcription factors in rice showed 
strong disease resistance to multiple pathogens and at the same time resulted in fit-
ness cost. Recently, transgenic rice with high level of resistance to important rice 
diseases was achieved by expressing NPR1 and WRKY45 under tissue-specific/
pathogen-responsive promoter; thereby agronomic traits are not altered. Rice trans-
formants expressing the pathogen-derived elicitor proteins particularly from rice 
blast pathogen, Magnaporthe oryzae is a promising approach for imparting broad-
spectrum disease resistance without yield penalty. Host-delivered RNAi technology 
is the latest of the approaches toward enhancing disease resistance against sheath 
blight and viral disease of rice. Recently, genome-editing tools are being deployed 
in rice to enhance resistance against diseases of rice.
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8.1  Introduction

Rice (Oryza sativa L.), being one of the important cereal crops of the world, is 
affected by more than 70 diseases. The most important rice diseases are the blast 
caused by fungus Magnaporthe oryzae and the bacterial blight (BB) caused by 
Xanthomonas oryzae pv. oryzae (Xoo). Sheath blight (ShB) caused by fungus 
Rhizoctonia solani is also one of the important diseases of rice along with a few 
viral diseases. These diseases are responsible for causing annual yield losses of 
up to 50% of rice productivity (Datta et  al. 2002). Rice is known to possess 
many disease resistance genes (R-gene) associated with blast and bacterial 
blight diseases. More than 40 genes conferring BB resistance (Sundaram et al. 
2014), 101 blast-resistant genes (Rajashekara et al. 2014), and 350 quantitative 
trait loci (QTLs) have been identified (Sharma et al. 2012). Deployment of dis-
ease resistance (R) genes and quantitative trait loci through backcross breeding 
method has contributed greatly to increasing rice resistance against diverse 
pathogens (Kou and Wang 2010). However, such effort is hampered by the resis-
tance breakdown due to the variability in pathogen population or development 
of new strains due to mutation (Jones and Dangl 2006; Dangl et al. 2013). Unlike 
the BB or blast disease, no major resistant gene is known in rice germplasm for 
sheath blight disease. Breeding for sheath blight resistance has not been suc-
cessful as the resistance is controlled by multiple loci, and there is no reliable 
source of rice germplasm with complete resistance to the disease (Liu et  al. 
2009; Zuo et al. 2014). In the absence of suitable genetic resistance for ShB, 
chemical method is the only option for its control. Therefore, breeding for vari-
eties with durable and broad-spectrum disease resistance is critical to sustain-
able agricultural development.

More than 25 viruses are known to infect rice. Important viral diseases of rice 
include rice dwarf virus (RDV), rice black-streaked dwarf virus (RBSDV), rice 
stripe virus (RSV), rice tungro bacilliform virus (RTBV), and rice tungro spheri-
cal virus (RTSV). In Southern Vietnam during 2006–2007, more than 485,000 
hectares of paddy fields were severely affected by rice grassy stunt virus (RGSV) 
or co- infection by RGSV and rice ragged stunt virus (RRSV), resulting in heavy 
loss and directly affecting millions of rice farmers (Cabauatan et al. 2009). In 
China, epidemic outbreaks of the rice black-streaked dwarf disease resulted in a 
grain yield decrease of 10–40%, resulting in a total loss of grain production in 
the rice planting areas of southern China (Li et al. 1999). Rice tungro is one of 
the important viral diseases of rice, which is caused by the joint infection of two 
unrelated viruses Rice tungro bacilliform virus (RTBV), a double-stranded 
DNA-containing virus, and Rice tungro spherical virus (RTSV), a single-
stranded RNA virus. The most conspicuous symptoms of tungro are the stunting 
of plants and yellow-orange discoloration of leaves. In the recent times, genetic 
engineering has been sought as the method of choice for achieving disease resis-
tance in rice.
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8.2  Engineering Disease Resistance in Rice 
by Overexpressing Antimicrobial Proteins

Earlier generation of transgenic rice for disease resistance focused on expressing 
the antimicrobial proteins belonging to pathogenesis-related (PR) proteins or anti-
microbial peptide to engineer rice disease resistance. Enhanced disease resistance 
was observed via expressing the PR proteins or antimicrobial peptide, but the level 
of resistance conferred was not sufficient enough for commercial cultivation.

8.2.1  Overexpression of Pathogenesis-Related (PR) Proteins

Pathogenesis-related (PR) proteins are a group of plant proteins that express during 
pathogen infection as a defense mechanism. Several classes of PR proteins are 
known in plants. Plant chitinase (PR-3) and β-1-3-glucanase (PR-2) are two hydro-
lytic enzymes produced by the plants to break down the chitin (N-acetyl-D- 
Glucosamine) and glucan (laminarin) polymer, respectively, which constitute the 
major components of the fungal cell wall.

8.2.1.1  Overexpression of Chitinase

First attempt to engineer disease resistance in rice was done by Lin et al. (1995) by 
overexpressing rice chitinase gene, chi11, using constitutive maize ubiquitin pro-
moter and showed enhanced resistance to R. solani. Subsequently, rice chi11 gene 
was used to transform different genotypes of rice (Nishizawa et al. 1999; Datta et al. 
2000, 2001; Kumar et al. 2003; Sridevi et al. 2003; Kalpana et al. 2006; Maruthasalam 
et al. 2007). Recently, a high expressing novel chitinase gene was isolated from the 
sheath blight-resistant QTL region (qSBR11-1 on chromosome 11) of resistant 
indica rice variety Tetep (Richa et al. 2016). Transformation of susceptible japonica 
rice line Taipei 309 (TP309) with the novel rice chitinase gene provided enhanced 
resistance against sheath blight pathogen, R. Solani (Richa et al. 2017). Li et al. 
(2009) transformed rice overexpressing Momordica charantia class I chitinase gene 
(McCHIT1) and showed an enhanced resistance to R. solani and M. oryzae. 
Compared to chitinases of plant origin, chitinases from biocontrol agents exhibit 
higher antifungal activity. Shah et al. (2009) transformed rice cv. PB1 with an endo-
chitinase gene (cht42) from a fungus Trichoderma virens and recorded 62% reduc-
tion in sheath blight disease index.

Reports on co-expression of rice chitinase gene along with other PR protein 
showed synergistic effect for disease control in rice. The co-transformants express-
ing both tlp and chi11 in rice showed an elevated resistance against R. solani 
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(Fig.  8.1) and Sarocladium oryzae than plants expressing either tlp or Chi11 
(Kalpana et al. 2006; Maruthasalam et al. 2007). Transgenic rice plants transformed 
with Chi11, tlp, and Xa21 and displayed resistance to both sheath blight and bacte-
rial leaf blight (Fig. 8.2) (Maruthasalam et al. 2007). Transgenic rice constitutively 
co-expressing tlp-D34 (thaumatin-like protein) gene and chi11 showed enhance-
ment of sheath blight resistance with disease index reduced to 39% (Shah et  al. 
2013). Co-expression of a rice basic chitinase gene and a ribosome-inactivating 
protein in rice caused a significant reduction in sheath blight development (Kim 
et al. 2003). Co-expression of OsChi11 and Osoxo4 genes in a green tissue-specific 
manner provided 63% resistance against sheath blight without affecting agronomi-
cally important traits (Karmakar et al. 2016). Maize phosphoenolpyruvate carbox-
ylase (PEPC) promoter was used for OsChi11 expression, and rice PD540–544 promoter 
was used for Osoxo4 gene expression.

Fig. 8.1 Pyramiding of PR proteins (chi11 and tlp) in transgenic rice cv. Pusa Basmati1 (PB1) 
demonstrated enhanced level of resistance to sheath blight disease. Bioassay was done in intact 
leaf sheaths of non-transgenic and transgenic PB1 lines using sheath blight pathogen. Reaction of 
SM-PB1-9 (chi11) (a) SM-PB1-5 (tlp) (b) SM-PB1-1 (Chi11 + tlp + Xa21) (c) and untransformed 
PB1 (d) to sheath blight pathogen infection at 24, 48, 72, 96, 120, 144, and 168 h after infection 
(HAI). (Source: Maruthasalam et al. 2007)
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8.2.1.2  Overexpression of other PR Proteins in Rice

Oxalic acid (OA) is a nonhost-specific toxin secreted by certain plant pathogens 
during infection (Dutton and Evans 1996). Plant oxalate oxidase (OxO) enzyme 
degrades OA into CO2 and hydrogen peroxide (H2O2). OxO-generated H2O2 may 
function as a secondary messenger in the activation of phytoalexin biosynthetic 
pathways, hypersensitive response (HR), systemic acquired resistance (SAR), and 
PR gene expression in plants. Genome analysis of rice showed four tandemly dupli-
cated oxo genes (Osoxo1–Osoxo4) in chromosome 3, with Osoxo4 playing a role in 
disease resistance (Carrillo et al. 2009). Transgenic rice overexpressing the rice oxa-
late oxidase 4 (Osoxo4) gene under a green tissue-specific promoter (rice PD540–
544) exhibited 50% protection against R. solani without any agronomic imbalance 
(Molla et al. 2013).

Germin-like protein (GLP) gene family is one of the important defense gene 
families that have been considered to play an important role in several aspects of 
plant development or stress tolerance (Knecht et  al. 2010). One of the rice GLP 
genes, OsGLP2-1, was significantly induced by blast fungus (Liu et  al. 2016). 
Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, pan-
icle blast, and bacterial blight (Liu et al. 2016). OsGLP2-1-mediated resistance to 
blast and bacterial blight was involved in the activation of jasmonic acid (JA)-
dependent pathway instead of salicylic acid (SA)-dependent pathway.

Fig. 8.2 Transgenic rice plants pyramided with chi11+ tlp + Xa21 showed resistance to sheath 
blight and bacterial leaf blight. Reaction of SM-PB1-1 (a) and untransformed PB1 (b) to ShB 
infection at 168 HAI. Reaction of SM-PB1-1 (c) and non-transgenic PB1 (d) to Xoo infection at 
14 days after inoculation. (Source: Maruthasalam et al. 2007)
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Osmotin and osmotin-like proteins (OLP) belong to thaumatin-like proteins 
(TLP) of the PR-5 family because they all contain a typical thaumatin domain. It is 
involved in plant permeability stress and defense responses because of its antibacte-
rial properties in vivo against a broad range of plant pathogens (Narasimhan et al. 
2005). Xue et al. (2016) found that OsOSM1 expression is strongly induced by R. 
solani in ShB-resistant rice variety YSBR1. Overexpression of OsOSM1 
(OsOSM1ox) in susceptible variety Xudao 3 significantly increases resistance to SB 
in transgenic rice (Xue et al. 2016). They found that JA-responsive marker genes are 
induced in OsOSM1ox lines and suggest that the activation of JA signalling path-
way may account for the increased resistance in transgenic OsOSM1ox lines.

8.3  Engineering Disease Resistance in Rice 
by Overexpressing Antimicrobial Peptides

Antimicrobial  peptides (AMPs) are used by both plant and animal systems to 
destroy microorganism, including bacteria, fungi, mycoplasma, and viruses. AMPs 
are characterized to possess high anti microbial activity and be very quick in killing 
microbes and at the same time are nontoxic to eukaryotic cells. Defensins are small 
antifungal peptides (~5 KDa) of eukaryotic origin present in plant, animal, and 
insects. Plant defensins (PR-12) are low molecular weight cysteine-rich peptide 
thought to affect cell membrane of microbes and prevent its ion uptake. Transgenic 
rice expressing Dahlia merckii defensin (DM-AMP1) gene gave better level of pro-
tein (up to 80%) to the two important rice fungal pathogens M. oryzae and R. solani 
(Jha et al. 2009). The Dm-AMP1 signal peptide had successfully targeted the Dm- 
AMP1 to apoplast in transgenic rice. Transgenic rice expressing the antimicrobial 
peptide from onion (Ace-AMP1) improved their resistances to blast, sheath blight, 
and bacterial blight by 86%, 67%, and 82%, respectively (Patkar and Chattoo 2006). 
Rice overexpressing Rs-AFP2 defensin gene from Raphanus sativus suppressed the 
growth of M. oryzae and R. solani by 77% and 45%, respectively (Jha and Chattoo 
2010). Transgenic expression of Rs-AFP2 was not accompanied by an induction of 
PR gene expression, suggesting that the expression of Rs-AFP2 directly inhibits the 
pathogens. The antimicrobial peptide of humans, LL-37, is a 37-residue-long pep-
tide which possesses broad-spectrum antibacterial activity and was used for rice 
transformation. Transgenic rice expressing the LL-37 peptide in the intercellular 
space showed enhanced disease resistance against bacterial leaf blight and blast 
(Lee et al. 2017). To avoid degradation by the plant proteases, the fusion of vicilin 
signal peptide at the N-terminal of LL-37 directed it to intercellular space. The 
pGD1 (phosphogluconate dehydrogenase) promoter from rice was used to induce 
stable expression of SP-LL-37  in transgenic rice. Giant silk moth (Hyalophora 
cecropia) encodes the antimicrobial protein cecropin A and cecropin B. Transgenic 
rice plant expressing plant codon-optimized cecropin A gene exhibited resistance to 
rice blast without an induction of PR gene expression (Coca et al. 2006). Similarly, 
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transgenic rice plants expressing cecropin B exhibited reduction in lesion due to BB 
pathogen infection (Sharma et al. 2000; Coca et al. 2004). Overall, the overexpres-
sion of antimicrobial protein in transgenic rice confers enhanced level of resistance 
to all important diseases of rice.

8.4  Engineering Broad-Spectrum Disease Resistance in Rice

Plants defend against microbial pathogen attack by activating a variety of defense 
systems that are mediated through multiple signalling pathways. Plant defense sig-
nalling is mainly mediated through the plant hormones salicylic acid (SA), jasmonic 
acid (JA), and ethylene (ET). In general, plants upon exposure to pathogen induce 
two well-known forms of immune responses: SA-mediated systemic acquired resis-
tance (SAR) and JA/ET-mediated inducible systemic resistance (ISR). The induced 
immune response often confers durable, broad-spectrum, and systemic resistance 
against different pathogens at distal tissue from the infection or treatment site. Many 
transcription factors are successfully used for engineering disease resistance in rice 
(Table 8.1). Transcription factors NPR1 and WRKY45 act as key positive regulator 
of SA-mediated pathway in plants. The SA pathway in rice appears to branch into 
OsNPR1/NH1 and WRKY45-mediated sub-pathway. Plant-inducible immune 
response can also be triggered by exogenous application of a number of elicitors or 
elicitor transgene expression.

8.4.1  Rice Transgenic Plants Expressing NPR1 Gene

8.4.1.1  AtNPR1

Arabidopsis thaliana NPR1 (AtNPR1) is a key positive regulator, which acts down-
stream of the signal molecule SA in regulating gene expression of SAR pathway 
(Cao et al. 1994). Transgenic rice constitutively expressing the AtNPR1 gene results 
in disease resistance to bacterial pathogen Xoo but had a negative impact on growth 
and agronomic traits due to triggering lesion-mimic/cell death (LMD) phenotype 
(Fitzgerald et  al. 2004). In another study, transgenic rice plants constitutively 
expressing AtNPR1 have been reported to exhibit negative physiological conse-
quences in the form of growth retardation, height reduction, and decreased seed 
production (Quilis et al. 2008). Green tissue-specific expression of AtNPR1 using 
the PD540–544 promoter in rice confers resistance to the sheath blight pathogen, with 
no concomitant abnormalities in plant growth and yield parameters (Molla et al. 
2016). They demonstrated that an increase in the AtNPR1 transcript levels in the 
transgenic rice plants resulted in the activation of many defense-related PR genes, 
and the elevated induction of PR genes appeared to translate into enhanced  resistance 
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of transgenic rice to R. solani. Expression of AtNPR1 under pathogen- inducible 
promoter can overcome fitness cost in rice. Earlier plant defense gene expression 
was thought to be regulated at transcriptional level by the pathogen- inducible pro-
moter. However recently, Xu et al. (2017a) did global transcriptome profiling on 
Arabidopsis plant exposed to elf18 elicitor and discovered that fundamental layer of 
regulation also occurs at translation level during defense response. In this study, 
they identified a pathogen-inducible TFB1 gene in Arabidopsis that is rapidly and 
transiently induced upon pathogen challenge. TFB1 promoter with 5′ leader 
sequence (before the start codon for TFB1) contains two untranslated ORF (uORFs) 
in it. Translation of TBF1 is normally suppressed by these two uORFs within the 5′ 
leader sequence (Pajerowska-Mukhtar et al. 2012). Xu et al. (2017b) transformed 
rice with a construct that expresses AtNPR1 under TFB1 promoter cassette (TFB1 
promoter plus 5′ leader sequence with two pathogen-responsive upstream open 
reading frames, uORFsTFB1). Thus, they engineered broad-spectrum disease resis-
tance in rice without compromising on rice plant fitness. The rice plants displayed 
resistance to BLB, fungal blast, and bacterial leaf streak. Thus using TFB1 cassette, 
it is possible to develop transgenic plants with enhanced broad- spectrum disease 
resistance with minimal adverse effects on growth and development. In an another 
study, rice co-expressing AtNPR1 and OsCHI11 under green tissue-specific pro-
moter showed enhanced sheath blight tolerance as compared to single-gene trans-
formants (Karmakar et al. 2017).

8.4.1.2  OsNPR1/NH1

Overexpression of OsNPR1/NH1 was shown to confer strong resistance to both Xoo 
and M. oryzae (Chern et al. 2005; Sugano et al. 2010). Overexpression of OsNPR1/
NH1 in rice induced constitutive activation of PR gene expression, accompanied 
by lesion-mimic symptoms and light hypersensitivity (Chern et  al. 2005). 
Overexpression of OsNPR1 conferred disease resistance to bacterial blight but also 
enhanced herbivore susceptibility in transgenic plants (Yuan et al. 2007). Sugano 
et al. (2010) conducted experiments to determine the function of OsNPR1 and found 
that overexpression of OsNPR1 led to increased activity in defense mechanisms 
against pathogens but reduced cellular activity with regard to photosynthesis and 
protein synthesis that leave the plant more vulnerable to herbivore predation.

8.4.1.3  BjNPR1

Transgenic indica rice expressing Brassica juncea NPR1 (BjNPR1) exhibits 
enhanced resistance to rice blast, sheath blight, and bacterial leaf blight diseases 
(Sadumpati et al. 2013). Rice transformants with higher levels of BjNPR1 revealed 
improvement in certain agronomic traits such as increases in plant height, panicle 

K. K. Kumar et al.
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length, flag-leaf length, number of seeds/panicle, and seed yield/plant as compared 
to the untransformed plants.

8.4.2  Rice Transgenic Plants Expressing OsWRKY45

Although discovered recently, WRKY transcription factors are becoming one of the 
best characterized classes of plant transcription factors and are at the forefront of 
research on plant defense responses. More recent studies have provided direct evi-
dence for the involvement of specific WRKY proteins in plant defense responses. 
Interaction between rice and Xoo is a classical example of host-pathogen interaction 
and serves as an ideal model system for investigation. WRKYs, a class of plant- 
specific transcription factors, act as a key regulator of plant immune response (Ulker 
and Somssich 2004). The “WRKY” domain of ~60 amino acids binds to the cognate 
cis-acting “W” box motif (C/T)TGAC(C/T) in the promoter of several downstream 
target genes. Rice overexpressing OsWRKY45 under strong constitutive promoter 
(maize ubiquitin promoter, PZmUbi) showed extremely strong disease resistance to 
both rice blast and leaf blight but at significant costs on rice growth and yield 
(Shimono et al. 2007; Shimono et al. 2012). The WRKY45-OX rice plants culti-
vated in a growth chamber showed restricted growth, and those cultivated in a 
greenhouse showed only minor growth retardation (Shimono et al. 2007).To reduce 
the negative effect of WRKY45 overexpression in rice, Goto et al. (2015) optimized 
expression of WRKY45 gene in rice using a moderate-strength constitutive rice 
ubiquitin promoter (POsUbi7). Transgenic rice plants expressing WRKY gene at 
moderate level showed strong resistance to both blast and BLB diseases in a green-
house, although the degree of resistance was a little weaker than that of the repre-
sentative PZmUbi line (Goto et  al. 2015). At the same time, adverse effects of 
environmental factors on WRKY45-ox lines are alleviated in POsUbi7 lines, 
whereas most of the PZmUbi plants died after the low-temperature treatment, indi-
cating that a high level of WRKY45 expression rendered rice plants cold sensitive.

Blast pathogen, M. oryzae hyphae, invades rice cells within 24 h post- inoculation. 
However, WRKY45 is induced after the M. oryzae invasion in rice (Shimono et al. 
2007). Due to the time lag in WRKY45 protein induction, it is unable to exert its full 
defense potential against blast pathogen (Shimono et al. 2007, 2012). To address 
this issue, Goto et  al. (2016) developed rice lines in which WRKY45 induction 
occurs soon after pathogen challenge using an early pathogen-responsive promoter. 
Goto et al. (2016) developed transgenic rice with strong disease resistance to blast 
and BB by expressing WRKY45 under the control of pathogen-responsive promot-
ers in combination with a translational enhancer derived from a 5′-untranslated 
region (UTR) of rice alcohol dehydrogenase (ADH). Although pathogen-responsive 
promoters alone failed to confer effective disease resistance, the use of the ADH 
5’-UTR in combination with them, in particular the PR1b and GST promoters, 
enhanced disease resistance. The 2-kb upstream sequence of PR1b showed a very 
early pathogen response with high level of WRKY45 expression confined to infec-
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tion site. This early and strong local induction of WRKY45 may be critical for the 
strong disease resistance in WRKY45-expressing lines. Field trials showed that 
overall PR1b promoter-driven (with ADH 5’-UTR) lines performed the best without 
any negative effects on agronomic traits, which is comparable to control untrans-
formed rice.

Recently, OsWRKY67 was found to be upregulated against pathogen challenges. 
Activation of OsWRKY67 by T-DNA tagging significantly improved the resistance 
against two rice pathogens, blast and BB.  Subsequently, overexpression of 
OsWRKY67 in rice confirmed enhanced disease resistance but led to a restricted plant 
growth of the transgenic plants with high levels of OsWRKY67 protein. OsWRKY67 
RNAi lines significantly reduced resistance to M. oryzae and Xoo isolates tested and 
abolished XA21-mediated resistance, implying the possibility of broad-spectrum 
resistance from OsWRKY67 (Vo et  al. 2018). On the other side, OsWRKY62 was 
reported to act as negative regulator of innate and Xa21-mediated resistance against 
bacterial blight (Peng et al. 2008). Further in the study, transgenic rice lines overex-
pressing OsWRKY62 challenged with Xoo were found to show significantly longer 
lesions than the wild-type controls. Thus, the negative role played by OsWRKY62 
was evident and suggests suppression of such a kind of negative players could be 
employed towards enhancing the innate defense system in rice. Similarly, overex-
pression of OsWRKY72 was found to be negatively influencing BB resistance in rice 
(Seo et al. 2011).

8.4.3  Engineering Disease Resistance in Rice by Enhancing 
Ethylene Biosynthesis

Recent evidence indicates that ethylene (ET) pathway also plays a major role in 
mediating plant disease resistance. Six rice ACS genes (OsACS1-6) are reported to 
exist in the rice genome. During the rice-M. oryzae interaction, endogenous ET 
levels increased within 48 h after inoculation with a significantly higher production 
of ET in the incompatible Pii R-gene-mediated interaction (Iwai et  al. 2006). 
OsACS1 and OsACS2 were significantly induced upon M. oryzae infection, along 
with the induction of an ACC oxidase (ACO) gene, OsACO7. Silencing of OsACS2 
and OsACO7 by RNA interference (RNAi) resulted in increased susceptibility to 
rice blast (Seo et al. 2011), suggesting that OsACS2 and ET production play a posi-
tive role in rice resistance to M. oryzae infection. Helliwell et al. (2013) genetically 
manipulated the endogenous ET level in transgenic rice by expressing OsACS2 
(1-aminocyclopropane-1-carboxylic acid synthase) transgene under control of a 
strong rice pathogen-inducible promoter PBZ1. Rice plants generated exhibited 
increased resistance to R. solani and different races of M. oryzae. These results sug-
gest that pathogen-inducible production of ET in transgenic rice can enhance broad- 
spectrum disease resistance to necrotrophic and hemibiotrophic fungal pathogens 
without negatively impacting crop productivity.
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8.4.4  Engineering Rice Disease Resistance by Expressing 
Pathogen Protein Elicitor Gene

One promising approach to the achievement of broad-spectrum resistance is to 
incorporate genes that elicit general defense responses in plants. Several microbial 
protein elicitors have been shown to induce systemic acquired resistance in plants 
by activation of both SA- and ET/JA- mediated signalling pathway. The bacterial 
harpin and flagellin protein acts as elicitor in plants. Shao et al. (2008) introduced a 
harpin-encoding gene, hrf1, derived from Xoo into rice. Transgenic rice expressing 
Xoo harpin gene was highly resistant to all major races of M. oryzae. Bacterial fla-
gellin expression induces disease resistance in transgenic rice (Takakura et  al. 
2008). Expression of the PemG1 gene from M. oryzae in transgenic rice results in 
enhanced resistance to the rice blast fungus (Qiu et al. 2009). By characterizing the 
protein in the culture filtrate of rice blast fungus, two novel protein elicitors, 
MoHrip1 and MoHrip2, were identified, and subsequently their gene was isolated 
from the M. oryzae (Chen et  al. 2012, 2014). The MoHrip1- and MoHrip2- 
expressing transgenic rice plants displayed higher resistance to rice blast and stron-
ger tolerance to drought stress than wild-type rice (Wang et al. 2017). The MoHrip1 
and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as 
increased plant height, tiller number, thousand-kernel weight, and ear number. Rice 
transformants overexpressing MoSM1 protein elicitor gene from M. oryzae confers 
broad- spectrum resistance to both Xoo and BLB but at the same time had no effect 
on drought, salinity, or grain yield (Hong et al. 2017). The MoSM1-OE plants con-
tained elevated levels of salicylic acid (SA) and jasmonic acid (JA) and constitu-
tively activated the expression of SA and JA signaling-related regulatory and 
defense genes. However, no alteration in resistance to sheath blight disease was 
observed in MoSM1-OE lines.

8.5  RNAi-Mediated Gene Silencing in Rice to Engineer 
Disease Resistance

RNA interference, an evolutionarily conserved process that is active in a wide vari-
ety of eukaryotic organisms, is a sequence-specific gene-silencing mechanism that 
is induced by dsRNA (Baulcombe 2004). The dsRNA is diced into small interfering 
RNAs (siRNAs) of 21–24 nucleotides by an endonuclease called dicer. These siR-
NAs are then incorporated into the RNA- induced silencing complex to guide deg-
radation or translational repression in a sequence-specific manner. Host-delivered 
RNAi (HD-RNAi) is a method which involves the production of double-stranded 
RNA (dsRNA) molecules targeting pathogen genes in the host plant, which will be 
processed further into small interfering RNA molecules (siRNAs). HD-RNAi has 
been successful in engineering resistance against plant virus (Duan et  al. 2012), 
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insects (Huvenne and Smagghe, 2010), nematode (Fairbairn et al. 2007), and fungi 
(Nunes and Dean, 2012). Recently, Tiwari et  al. (2017) demonstrated that host- 
delivered RNAi method can be used for the control of sheath blight in rice. They 
transformed rice with the hairpin RNAi construct containing fusion of two pathoge-
nicity Map Kinase 1 (PKM1) genes, RPMK1-1 and RPKM1-2 of R. solani. Due to 
host-delivered siRNA-mediated silencing of the target genes, the expression level of 
RPMK1-1 and RPMK1-2 was significantly lower in R. solani infecting transgenic 
rice, thereby enhancing sheath blight resistance in rice.

Ding et  al. (2006) has developed a Brome Mosaic Virus (BMV)-based VIGS 
(virus-induced gene silencing) system to produce the siRNA of the target gene in 
rice. BMV-based system was employed to target the three predicted pathogenicity 
genes, MoABC1, MoMAC1, and MoPMK1. Zhu et al. (2017) studied the effective-
ness of BMV-mediated HIGS (host-induced gene silencing) in silencing three pre-
dicted pathogenicity genes of M. oryzae. Inoculation of BMV viral vectors in rice 
resulted in systemically generating fungal gene-specific small interfering 
RNA(siRNA) molecules, which inhibited disease development and reduced the 
transcription of targeted fungal genes after subsequent M. oryzae inoculation (Zhu 
et al. 2017).

Virus resistance mediated by natural resistance genes and RNA silencing- 
mediated virus resistance are currently two major research focuses (Sasaya et al. 
2014). Plant uses RNA silencing as a natural defense mechanism against plant 
viruses. Thus RNA silencing has been successfully exploited for engineering virus 
resistance in plants including rice. So far no natural resistance gene discovered for 
RBSDV in rice germplasm (Nicaise 2014). Rice black-streaked dwarf virus 
(RBSDV) is a dsRNA virus that causes severe yield loss in rice grown in Asia. Wang 
et  al. (2016b) transformed rice with hairpin RNAi (hpRNAi) construct targeting 
four RBSDV genes, S1, S2, S6, and S10, encoding the RNA-dependent RNA poly-
merase, the putative core protein, the RNA silencing suppressor, and the outer cap-
sid protein, respectively. Transgenic rice plants expressing the RBSDV hpRNA 
showed strong virus resistance in both the field and artificial assay system. Wang 
et al. (2016b) showed that long hpRNA targeting multiple viral genes can be used to 
generate stable and durable virus resistance in rice. They did small RNA deep 
sequencing on the RBSDV-resistant transgenic lines and detected siRNAs from all 
four viral gene sequences in the hpRNA transgene, indicating that the whole chime-
ric fusion sequence can be efficiently processed by dicer into siRNAs. Earlier to this 
report, transgenic rice plants containing an hpRNA transgene targeting the P9-1- 
encoding gene were almost immune to RBSDV infection (Shimizu et al. 2011).

8.6  Genome Engineering in Rice for Disease Resistance

Genome-editing technologies offer possibility of genome modification in a site- 
directed manner. Three popular genome-editing methods are zinc finger nucleases 
(ZNFs), transcription activator-like effector nucleases (TALENs), and CRISPER/
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Cas9 system. Among the three methods, CRISPER/Cas9 system is an effective sys-
tem for introducing mutation in the gene of interest in crop plants. Gene editing was 
successfully used for engineering disease resistance in rice. The rice bacterial blight 
susceptibility gene Os11N3 (also called OsSweet14) was disrupted using TALEN 
genome-editing tool to provide Xoo resistance (Li et al. 2012). The SWEET gene 
encodes sucrose efflux transporter family and is hijacked by Xoo, using its endog-
enous TAL effectors AvrXa7 or PthXo3, to activate the gene and thus divert sugars 
from the plant cell so as to satisfy the pathogen’s nutritional needs and enhance its 
persistence. Recently, Wang et al. (2016a) mutated (loss-of-function) the OsERF922 
gene by CRISPR/Cas9 method. Mutated rice lines thus created showed enhanced 
rice blast resistance without affecting the main agronomic traits. A natural allele of 
a C2H2-domain transcription factor gene, bsr-d1, confers broad-spectrum resis-
tance to rice blast in Digu rice variety (Li et  al. 2017). CRISPR/Cas9-mediated 
knockout of Bsr-d1 enhanced blast resistance without alteration in agronomic char-
acter (Li et al. 2017).
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