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Abstract. Efficient query answering over Description Logic (DL)
ontologies with very large datasets is becoming increasingly vital. Recent
years have seen the development of various approaches to ABox partition-
ing to enable parallel processing. Instance checking using the enhanced
most specific concept (MSC) method is a particularly promising app-
roach. The applicability of these distributed reasoning methods to typ-
ical ontologies has been shown mainly through anecdotal observation.
In this paper, we present a parallelizable, enhanced MSC method for
the answering of ABox conjunctive queries, using a set of syntactic con-
ditions that permit querying of large practical ontologies in reasonable
time, and combining it with pattern matching to answer queries over
role assertions. We also present execution time and efficiency of an imple-
mentation deployed over computing clusters of various sizes, showing the
ability of the method to process instance checking for large scale datasets.

1 Introduction

Description Logics (DL) are now widely being used to model and represent struc-
tured and semi-structured data in different applications [1], particularly through
the use of the Web Ontology Language (OWL). A core task for DL systems is to
provide an efficient way to answer queries over the extensional level of the ontol-
ogy, that is, to compute answers that are not only asserted, but logically implied
by the ontology [2]. Considerable efforts have been dedicated to the optimization
of algorithms for query answering [2–4]. One of the challenges faced in this era
of increasing data wealth is to produce responsive results for queries over very
large data sets [5]. However, even as reasoners for very expressive DLs have been
created, performing reasoning over very large ABoxes is still prohibitive [2,6,7].

In the last few years, methods for parallel and distributed reasoning over
expressive ontologies have been published [5,8–10]; these methods generally seek
to make use of fast syntactic checks to generate a set of independent partitions
that can be processed in parallel. In [11], we have proposed a method for instance
checking, combining the work in [8,9] with the idea of a most specific concept
(MSC) [12–14] to move the reasoning task from the very large ABox into a
much smaller TBox. Empirical evaluation of the method has shown its ability
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to perform sound and complete instance checking over SHI DLs within rea-
sonable time. Moreover, the method is inherently parallelizable, lending itself to
implementation within clusters of commodity hardware.

In this paper, we examine this enhanced MSC method first described in [11],
extend it to use in conjunctive queries, and evaluate its parallelization. First, we
provide a detailed definition of the MSC method and of the syntactic conditions
that enable its use for instance checking. Following this, we describe the use of the
MSC method in conjunction with pattern matching to answer ABox conjunctive
queries. Subsequently, results of tests performed for accuracy of the enhanced
MSC method and of its extension to conjunctive queries are presented, as well as
results from experiments over a parallelized implementation. Finally, we discuss
our future work and provide our conclusions.

2 The Enhanced Most Specific Concept (MSC) Method

2.1 Basic MSC Method

A Description Logics (DL) knowledge base, also referred to as an ontology, is
typically defined a tuple, denoted K = (T ,A), where the terminological compo-
nent or TBox T contains definitions of concepts and roles, and the assertional
component or ABox A contains assertions about membership of individuals in
concepts and about role relations between individuals. The set of roles, concepts,
and individual instances in an ontology are denoted respectively by R, C, and
I. The discussion in this paper assumes that the reader is familiar with DL con-
cepts and notations; the reader is referred to [15] for details. For the discussion
below, we will use the example illustrated in Table 1.

Definition 1 (Most Specific Concept). [12,13] Let K = {T ,A} be an ontol-
ogy, and a be an individual in I. The most specific concept for a w.r.t. A, writ-
ten MSCT (A, a), is a concept such that for every concept D where K |= D(a),
T |= MSCT (A.a) � D.

If MSCT (A, a) can be derived, then, to test whether K |= Q(a) holds for an
arbitrary concept Q it suffices to test if (T ∪ {Q}) |= MSCT ∪{Q}(A, a) � Q.
We call the concept Q the query. Note that Q needs to be inserted into the
TBox in simple form, which may require in turn the insertion of additional
named concepts as well as general concept inclusion (GCI) axioms to express
the necessary equivalences for these inserted concepts. In the remainder of this
paper, we will assume that the query Q has been inserted into the TBox so that
MSCT (A, a) denotes the MSC calculated including Q.

Computation of the MSC for a given individual a as defined above can be per-
formed using a rolling up procedure adapted from the one first introduced in [16].

Definition 2 (Basic MSC Rollup Procedure). Provided that the ABox does
not contain assertion cycles, computation of the MSC can be performed recur-
sively as follows:



Parallelization of Conjunctive Query Answering over Ontologies 3

Table 1. Example ABox

TBox

Headmaster � Professor

Professor � Person

MagicCourse � Course

Muggle � ¬Wizard
takesCourse.MagicCourse � Wizard

∃isHeadOf.School � Person � Headmaster

ABox

School(hogwarts)

Professor(albus)

Professor(severus)

MagicCourse(potions)

MagicCourse(transfiguration)

Course(math)

Student(harry)

Muggle(dudley)

isHeadOf(hogwarts, albus)

takesCourse(harry, transfiguration)

taughtBy(transfiguration, albus)

taughtBy(potions, severus)

1. for a given individual a, start with an empty MSCT (A, a);
2. for every concept assertion C(a),

MSCT (A, a) ← MSCT (A, a) � C;
3. for every role assertion R(a, b),

MSCT (A, a) ← MSCT (A, a) � ∃R.MSCT (A\{R(a, b)}, b);
4. for every individual equality assertion a = a′,

MSCT (A, a) ← MSCT (A, a) � MSCT (A, a′).

So, in the example ABox above, the MSC for severus is

MSCT (A, severus) = Professor � ∃taughtBy−.MagicCourse (1)

It is important to note that while class assertions generate relatively simple
concepts, role assertions are capable of generating very complex concepts. Sup-
pose for example that ABox An consists of role assertions R0(a0, a1), R1(a1, a2),
. . . , Rn(an, an+1); then, the MSC of a0 is:

MSCT (An, a0) = ∃R1.(∃R2.(. . . (∃Rn.MSCT (an+1)) . . . )) (2)
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Thus, in the example ABox of Table 1, the MSC for harry is

MSCT (A, harry) = Student � ∃takesCourse−.
(MagicCourse � ∃taughtBy.

(Professor � isHeadOf
−.School)) (3)

Two main issues preclude this basic MSC method from proving fully useful
with expressive ontologies. First, if assertion cycles are present in the ABox, the
method does not terminate. For example, consider what would happen if the
following is inserted in the TBox:

isProtegeOf(albus, harry) (4)

In this case, a cycle forms among harry, transfiguration, and albus.
Second, unless the ABox is highly disconnected, the method has the potential

to generate very large concepts, of size in the same order of the ABox itself.
Consider what happens if the following assertion is added to the ABox:

takesCourse(harry, potions) (5)

In this case, all individuals become connected with each other, and the MSC of
every individual ends up being the same size of the ABox.

Xu et al. [11] define a set of improvements that result in the Enhanced MSC
Method. This enhancement consists of two parts: a mechanism to address asser-
tion cycles, and a set of syntactic conditions to reduce the size of the MSCs in
practical ontologies.

2.2 MSC Computation with Assertion Cycles

To address assertion cycles, Xu et al. [11] use nominals to indicate the joint node
of a cycle, as previously suggested in [13,17].

Definition 3 (MSC Rollup of Assertion Cycles). When a cycle is found
starting and ending at individual ac, the individual is represented by its corre-
sponding nominal class {ac}, and the conversion of role assertions within the
cycle requires modification of the rollup method as follows: If ac is an individual
where a cycle is found, select a direction to go through the cycle and:

– for R(ac, x), x �= ac

MSCT (A, ac) ← MSCT (A, ac) � ({ac} � ∃R.MSCT (A\{R(ac, x)}, x))
– for R(y, ac), y �= ac

MSCT (A, y) ← MSCT (A, y) � ∃R.{ac}
– for R(ac, ac),

MSCT (A, ac) ← MSCT (A, ac) � {ac}
�∃R.{ac}

– for any other R(x, y) in the cycle, for x �= ac and y �= ac,
MSCT (A, x) ← MSCT (A, x) � ∃R.MSCT (A\{R(x, y)}, y)
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Thus, an ABox Ac = {R0(a0, a1), R1(a1, a2), . . . , Rn(an, a0)} has an assertion
cycle, then the MSC is obtained as follows:

MSCT (Ac, a0) = {a0} � ∃R1.(∃R2.(. . . (∃Rn.{a0}) . . . )) (6)

So, suppose that the ABox in Table 1 is augmented with the assertion in
Eq. (4), then the MSC for harry becomes

MSCT (A, harry) ={harry} � Student � ∃takesCourse−.
(MagicCourse � ∃taughtBy.

(Professor � isHeadOf
−.School

� isProtegeOf
−.{harry})) (7)

Use of the MSC method to perform instance retrieval is straightforward.
Suppose it is desired to query an ABox to retrieve all instances of a concept Q.
It suffices to generate MSCT (A, a) for every individual a in the ABox, and then
accept every individual where (T ∪Q) |= MSCT (A, a) � Q. Note that the query
concept Q is added to the TBox being verified.

2.3 Syntactic Conditions

In [11], syntactic conditions verifiable in polynomial time or better were defined,
to enable reduction on the size of the MSC and thus permit TBox reasoning in
tractable time. These conditions are based on the following:

Lemma 1. Given two individuals a and b and a role R, a role assertion R(a, b)
influences the classification of individual a into concept A if and only if

K |= ∃R.B � A0 � A (8)

where K |= B(b) and where A0 �� A summarizes information about a not con-
tained in A.

Proposition 1. Let K = (T ,A) be a SHI ontology containing named concept
A, concepts A0 and B, and role R. If Eq. (8) holds, there must exist some GCIs
in T of the form

∃R′.C1 �� C2 � C3 (9)

where R � R′, �� is a placeholder for either � or �, and Ci’s are concepts.

Proof of this proposition can be found in [8].
Proposition 1 directly leads to a first syntactic condition denoted

SYN COND.

Definition 4 (SYN COND). Role assertions of the form R(a, b) are said to
be true for SYN COND if role R participates in at least one axiom that can be
logically converted to the form of Eq. 9 for some R � R′, false otherwise.
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Assertions R(a, b) with SYN COND = false do not affect the classification of
a unless either R or some R′ such that R ⊆ R′ exist in the query, and can be
safely removed from the calculation of MSCT (A, a). By symmetry to the inverse
role R−, this condition also applies to b. In practice, the axioms more likely to
be found are of the form C � ∃R.D, which is equivalent to C � 
 � ∃R.D.
Also note that (C � ∀R.D) ≡ (∃R.¬C � ¬D). In the example in Table 1,
assertions with role isHeadOf have SYN COND = true, while assertions with
roles takesCourse and taughtBy have SYN COND = false and can be safely
removed from consideration, unless the roles exist in the query itself. Note that
in this case, the MSC for harry is reduced to

MSCT (A, harry) = Student � ∃takesCourse−.MagicCourse (10)

A second syntactic condition presented in [11] relies on the identification of
explicit concept assertions and disjointness axioms that indicate that an indi-
vidual cannot be classified to an existential restriction:

Definition 5 (SYN COND DJ). Role assertions R(a, b) with SYN COND
= true are said to be true for SYN COND DJ if there do not exist any of:

– an explicit concept assertion B0(b) such that K |= B0 � ¬C1;
– an explicit concept assertion A0(a) such that K |= A0 � ¬C3; or
– an explicit concept assertion A0(a) such that K |= A0 � ¬(C3 � ¬C2)

for C1, C2, an C3 as in Eq. (9) and R � R′.

Role assertions with SYN COND DJ = false can be safely removed from the
calculation of the MSC of any individual, since they do not affect classification of
either a or b. For example, in Table 1, role assertions with role takesCourse have
SYN COND = true due to the assertion takesCourse.MagicCourse � Wizard.
However, suppose that the following assertion were inserted into the ABox:

takesCourse(dudley, math) (11)

This assertion has SYN COND DJ = false, since dudley is an instance of Muggle,
which in turn is disjoint with Wizard, the filler concept in the assertion above.

Definition 6 (SYN COND SC). Role assertions R(a, b) with SYN COND
= true are said to be true for SYN COND SC if, for every GCI of the form in
Eq. (9) there exists an explicit concept assertion A0(a) such that K |= A0 � C3.

Role assertions with SYN COND SC = true are redundant for the classification
of a, and can therefore be safely removed from the calculation of the MSC of
any individual. For example, the role assertion Headmaster(albus) would have
SYN COND SC = true.

Application of these three syntactic conditions to the computation of the
MSC of a given individual results in a significant reduction in the size of the MSC
for practical ontologies. The reasons for this reduction will be established in more
detail in the next section, but first we provide a definition for the parallelization
of the algorithm.
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2.4 Parallelization of the MSC Method

The MSC method, including the syntactic conditions detailed above, is highly
parallelizable, due to the following:

Proposition 2. For a given knowledge base K = (T ,A), computation of
MSCT (A, a) for an individual a can be performed independently of the com-
putation of the MSC of any other individual.

Proof of this proposition follows directly from the definition of the MSC com-
putation in Definitions 2 and 3, as well as in the definition of the syntactic
conditions, where it should be clear that MSC computation depends only on the
initial state of the knowledge base. This means that the calculation of the MSCs
for all individuals can be done in parallel. Instance checking then needs to be
performed against T ∪ MSCT (A, a) for every individual a.

As is shown later in Sect. 4, parallelization of the MSC method allows for the
processing of extremely large ABoxes within clusters of commodity hardware.
The resulting computational complexity is sublinear with respect to the size of
the ABox, which indicates linear complexity for single-machine implementation.

3 Conjunctive Query Answering and SPARQL

The enhanced MSC method described in the previous section provides an effec-
tive, parallelizable algorithm for instance checking. In this section, we discuss its
use for ABox conjunctive query answering.

Definition 7 ABox Conjunctive Query [7]. Let C, R and I denote the set
of concepts, roles, and individuals in the ABox as before, and let V denote a set
of variables disjoint with C, R and I. An atom is an expression C(t), R(t, t′),
or t = t′, where t and t′ are members of V ∪ I. An ABox conjunctive query is a
collection of atoms.

The result set of an ABox conjunctive query is a set of tuples, where each tuple
contains a set of individuals that map to each variable in a conjunctive query.
In the following discussions, we will use the notation ?x where necessary to
refer specifically to variables, where x is any lowercase letter, borrowing from
SPARQL notation.

ABox conjunctive queries are expressible in the SPARQL query language
for RDF. SPARQL is designed as an extensible language where different entail-
ment regimes can be employed, thus enabling the use of logic reasoning to derive
results. Several works have been published that employ description logic entail-
ment, particularly when using DL entailment regimes over OWL knowledge bases
[18–20]. There are also efforts to enable SPARQL querying of large RDF graphs
using distributed computing techniques [21,22]; however, these efforts do not
include the use of DL entailment and are thus limited to the lesser expressive
RDF semantics. It must be noted that SPARQL can be used for other queries
- for example, they can be used to query for all class memberships for a sin-
gle individual [20]. Arguably, however, ABox conjunctive queries are the most



8 E. P. Shironoshita et al.

widely used, as they are designed to retrieve instances and their associated data
values, in a manner analogous to SQL queries in relational databases.

Resolution of ABox conjunctive query atoms of the form C(t) using the MSC
method is straightforward, as this is equivalent to instance retrieval for a given
class. On the other hand, query atoms of the form R(t, t′) and t = t′ require
additional processing to ensure that all possible individual equalities are taken
into account. For example, suppose that in the example in Table 1, the following
assertion were added:

albus = dumbledore (12)

Then, a query for ?a = albus should return both albus and dumbledore. More-
over, a query for isHeadOf(?b,?a) would need to return the tuples (hogwarts,
albus) and (hogwarts, dumbledore).

For R(t, t′), one possible solution is to simply traverse the ABox and perform
pattern matching:

Definition 8 Pattern Matching. Triples R′(a, b) are matched to a query
R(t, t′) if all the following conditions are fulfilled:

(a) R′ � R;
(b) if t (t′) is an individual, then t = a (t′ = b); and
(c) if t (t′) is a variable, then true;

If all conditions are fulfilled, then the triple R(a, b) produces a solution to
the query atom by mapping t to a if t is a variable, and similarly t′ to b.
For example, the query atom taughtBy(?a, ?b) results in two solution sets,
(transfiguration, albus) and (potions, severus).

Note however that this means that it is necessary to determine if the knowl-
edge base entails individual equality; if the assertion in Eq. (12) were included
in the ABox, then (transfiguration, dumbledore) would also be a solution to
the query. Of course, resolution of equality is also trivially necessary to resolve
atoms of the form t = t′.

It is possible to avoid this issue if the unique name assumption (UNA) is
made, similar to database querying. Alternatively, it has been shown that for
ontologies in the DL-Lite family, reasoning without the UNA can be reduced
to reasoning with the UNA in polynomial time, through the resolution of func-
tional properties and of the symmetric-reflexive-transitive closure of the individ-
ual equality assertions [23].

Proposition 3. In a SHI DL, reasoning without the UNA can be reduced to
reasoning with the UNA in polynomial time.

Proof. The differences between the various DL-Lite families, and particularly
the DL-LiteHF

core version, and a SHI DL, reside in restrictions regarding class
constructs. Given that neither DL-Lite nor SHI allow nominals in the TBox,
it is not possible for any class assertion to result in an inference of individual
equality. Therefore, the results for DL-Lite regarding reduction to UNA in [23]
are also applicable to SHI DLs.
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Clearly then, ABox conjunctive queries, including those expressed in the
SPARQL query language, can be resolved using the enhanced MSC method for
class query atom resolution, and pattern matching for role query atom resolution.
Since pattern matching is also inherently parallelizable, as it involves verification
of every triple in the ABox independent of the others, the entire query answering
algorithm can be implemented as an iterative parallel solution.

Corollary 1. In a SHIQ DL, reasoning without the UNA can be reduced to
reasoning with the UNA in polynomial time.

The proof follows from Proposition 3.
The MSC method can be extended to DL with expressivity SHIQ if UNA

is assumed, which can be done using the result above. Details of such extension
are outside the scope of this paper, but are straightforward, and generally follow
the extensions to equality-free module extraction detailed in [8].

4 Experimental Evaluation

4.1 MSC Method Accuracy

To test both the accuracy and to measure parallelization speedup of the enhanced
MSC method, we set up clusters of compute-optimized instances through Ama-
zon Web Services (AWS)1. The enhanced MSC method with syntactic condition
correction was implemented in Java and Scala to work over Apache Spark2,
installed over Hadoop HDFS and YARN.

For the accuracy tests, we used an in-memory version of our enhanced MSC
implementation. We set up clusters of two c4.xlarge machines, each containing
4 virtual CPUs and 7.5 GB of memory, to run the enhanced MSC method, and
compared the results against the HermiT reasoner version 3.8.13, running on a
single c4.xlarge machine; HermiT was chosen as a comparison standard due to

Table 2. Times (in seconds) for execution of class and existential restriction queries

Classes Existential restrictions

MSC HermiT MSC HermiT

Min. 7.82 0.67 7.30 0.76

Max. 19.66 780.20 26.94 2, 848.68

Avg. 8.38 19.42 9.14 489.95

Std. Dev. 1.42 90.50 3.24 698.14

Median 8.16 0.79 8.19 135.94

1 aws.amazon.com.
2 https://spark.apache.org/.
3 http://www.hermit-reasoner.com.

http://aws.amazon.com
https://spark.apache.org/
http://www.hermit-reasoner.com
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its stability and speed; future tests will be done against other reasoners such as
Pellet4 and Konclude5. These tests were performed against a single department
dataset for the University Ontology Benchmark (UOBM) [24], containing about
150,000 triples. The UOBM TBox was modified to convert cardinality restric-
tions to existential restrictions, since our current implementation only handles
expressivity up to SHI. This modified version can be provided upon request.
The UOBM Tbox contains a total of 113 named classes and 35 object proper-
ties. We tested our enhanced MSC implementation against all 35 named class
queries, and all 3,955 possible single-depth existential restriction queries, and
verified 100% agreement between our enhanced MSC method implementation
and HermiT. In addition, we recorded the running time for all query executions
- the results can be seen in Table 2. It is interesting to note that the enhanced
MSC method performs much better than HermiT for existential restrictions.
Also note the large standard deviation found when running a hypertableaux-
based reasoner like HermiT, where a few queries take a very long time to finish.
This result also suggests the possibility of using enhanced MSC in tandem with
a traditional reasoner when dealing with smaller datasets.

4.2 Parallelization

To test the parallelization of the MSC method, we used the c3.8xlarge instances,
which provide 32 virtual CPUs and 60 GBs of storage. We used the Lehigh
University Benchmark (LUBM) [25] to generate data sets of up to 500 mil-
lion triples. LUBM was chosen as an initial test ontology due to its ability to
generate datasets of varying size, while providing a reasonably expressive TBox.
These data sets were stored using the TitanDB6 graph database interface over an
Apache HBase7 backend. Both TitanDB and HBase were installed over Hadoop
HDFS 2.7. Our prototype application over Spark accesses TitanDB through its
standard Java interface. Data distribution and replication are performed by the
database and are transparent to our application.

A test was performed to evaluate the scalability of the parallel MSC method
over the number of triples in the ABox. This test was performed over a cluster of
10 c3.8xlarge machines in AWS. The results are shown in the log-log diagram in
Fig. 1. As can be observed, the method shows clear sub-linear performance with
respect to the size of the data set, as expected from an algorithm with linear
performance in a sequential machine.

The performance with respect to the number of machines was evaluated in
two parts. First, to evaluate under small cluster conditions, a 500,000 triple set
was assembled and used to test against 1 to 10 machines. The execution time and
the efficiency with respect to single-machine execution are shown in Fig. 2(a).
To obtain evaluation for large numbers of machines, we used the ABox with 500

4 https://github.com/stardog-union/pellet.
5 http://derivo.de/produkte/konclude/.
6 http://thinkaurelius.github.io/titan/.
7 http://hbase.apache.org/.

https://github.com/stardog-union/pellet
http://derivo.de/produkte/konclude/
http://thinkaurelius.github.io/titan/
http://hbase.apache.org/
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Fig. 1. Execution time vs. data set size with LUBM datasets, in AWS, for 10 c3.8xlarge
machines with 32 cores each.

million triples and ran it against 10 to 50 machines; to provide a more realistic
estimation, the efficiency value was corrected against the result for 500,000 triples
in 10 machines. These higher scalability results are shown in Fig. 2(b).

In terms of raw performance, the parallel enhanced MSC algorithm was capa-
ble of performing instance checking for a dataset with 500 million triples and over
110 million individual instances in about 1,240 s, or around 20 min, using a cluster
of 10 machines and a total of 320 execution cores. Using 50 machines, the execu-
tion time was 346 s, or somewhat less than 6 min. As a comparison, although the
difference in algorithms means that execution times are not directly comparable,
Oracle reports full ABox inference over 869 million triples in 62 min, and query
performance over this pre-reasoned ABox in about 4.3 min, using specialized
hardware [26]. It is also important to note that, since tests were performed over
an uncontrolled environment, external perturbations could have affected some
measurements. Nevertheless, it is clear that the MSC method provides perfor-
mance comparable with top-of-the-line database technologies and very broad
scalability.

(a) Efficiency for small # of machines (b) Efficiency for large # of machines

Fig. 2. Execution time and efficiency of parallelization.
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Fig. 3. Execution time for LUBM SPARQL queries, single node.

These results demonstrate that the enhanced MSC method is inherently par-
allelizable, enabling it to work with large scale ABoxes, and shows that it is
useful with practical ontologies.

4.3 SPARQL Query Accuracy

An initial, non-parallelized prototype of a SPARQL query engine using the
enhanced MSC method combined with pattern matching has been created. This
initial prototype has been tested for accuracy against a LUBM(1, 0) dataset
using a set of 14 test queries provided by the LUBM creators [25]. Testing shows
100% accuracy for all queries.

Speed of execution was measured by running the prototype on a VMWare vir-
tual machine configured over a Dell PowerEdge R710 machine using an Intel Xeon
E5620 CPU @ 2.40 GHz, running VSphere 4 Hypervisor. The virtual machine was
set up for 4 cores and 64 GB of memory. The results are shown in Fig. 3. We expect
to achieve significantly faster times using the enhanced MSC method, and are addi-
tionally working on the use of optimizations as described in [18].

5 Discussion and Future Work

The enhanced MSC method is inherently parallelizable, since instance checking
for every individual in the ABox can be performed independently. Coupled with
recent advances in cluster computing such as Apache Spark, large triple stores
can be queried efficiently using commodity hardware clusters or cloud platforms.
In combination with pattern matching, the method can also be used for answer-
ing conjunctive queries over the ABox, including those that can be formulated
using the SPARQL query language.

We are currently working on the implementation of the ABox conjunctive
query answering prototype to work over Spark, in order to test speedup and effi-
ciency in its parallelization. We are also exploring the use of some optimization
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mechanisms that can be used to reduce the execution time. A parallelized imple-
mentation will also enable us to perform tests with other existing benchmarks
such as the DBPedia SPARQL Benchmark (DBPSB). In addition, we are work-
ing on improvements in the efficiency of the parallelization of the MSC method.
In particular, we are looking into combining multiple individuals that form part
of the same connected component in the ABox in the same parallel task, since
it can be seen in Definitions 2 and 3 that portions of the MSC computation can
be shared among individuals provided that they are connected to each other.

6 Conclusion

In this paper, we have presented a parallel implementation of the enhanced MSC
method and an extension to conjunctive queries using pattern matching, and we
have evaluated execution time and efficiency as we varied the size of the data
and the number of processors used. Since the method performs independent
checking for every individual in the ABox, it is inherently parallelizable. The
results show sub-linear performance with respect to the size of the ABox, which
stems from its performance in linear time in the computation of the MSCs, and
almost constant time for reasoning due to the small size of the resulting MSC.
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