
Maintaining Chordal Graphs
Dynamically: Improved Upper and Lower

Bounds

Niranka Banerjee1(B), Venkatesh Raman1, and Srinivasa Rao Satti2

1 The Institute of Mathematical Sciences, HBNI, CIT Campus,
Taramani, Chennai 600 113, India
{nirankab,vraman}@imsc.res.in

2 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
ssrao@cse.snu.ac.kr

Abstract. We study upper and lower bounds for the problem of main-
taining a chordal graph G under edge insertions and deletions. Let G be
a chordal graph on n vertices and m edges and let (u, v) be the edge to
be deleted or inserted.

– Let k be the size of the maximum clique in G. Our first result is
an improved analysis of an earlier approach due to Ibarra [12] to
support edge deletions. We can construct a data structure in O(nk2)
time such that we can report in O(1) time if G\(u, v) is chordal and
if it is, we can update the structure in O(n+k2) time. We then show
using a charging argument that the update time can be improved to
O(n2/Δ + k2) amortized time over a sequence of Δ deletions.

– We develop a data structure to maintain a perfect elimination order-
ing (PEO) of chordal graphs where we can detect whether G\(u, v)
is chordal in O(min{degree(u), degree(v)}) time, and if it is chordal,
we can update the structure in O(degree(u) + degree(v)) time. In
graphs of bounded degree, our query and update bounds are a
constant.

– Finally, we show that we can obtain a PEO of the graph from a
clique-tree in O(n) time after an edge insertion or deletion (against
a naive O(m + n) time). This answers a question posed by Ibarra [12].

Regarding lower bounds, we show that any dynamic structure to main-
tain a chordal graph requires Ω(log n) amortized time per edge addition
or deletion or per query to detect chordality, in the cell probe model with
word size log n.

1 Introduction

A graph is chordal if every cycle of size four or more in the graph has a chord. The
study of chordal graphs has quite a rich history and the class of graphs has found
use in a wide range of areas such as in biology, artificial intelligence, database sys-
tems and facility location problems [4,7,18]. There are O(m + n) time algorithms
to detect whether a graph on n vertices and m edges is chordal by computing
c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 29–40, 2018.
https://doi.org/10.1007/978-3-319-90530-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90530-3_4&domain=pdf
http://orcid.org/0000-0003-0636-9880

30 N. Banerjee et al.

what is called a perfect elimination ordering or a clique tree decomposition of
the graph [17,18]. A perfect elimination ordering in a graph is an ordering of
the vertices of the graph such that for each vertex x, x and the neighbors of
x that occur after x in the ordering form a clique. A graph is chordal if and
only if it has a perfect elimination ordering (PEO) of its vertices. Another char-
acterization of chordal graphs is in the form of clique trees. A clique tree of a
graph is a tree decomposition of the graph, where the bags in each node of the
decomposition induce a maximal clique. A graph is chordal if and only if it has
a clique tree [3,19].

We consider the problem of maintaining chordal graphs under edge insertions
and deletions. As in the well-studied area of dynamic graph algorithms, we want
our algorithm to report and update faster than what would require in the static
algorithm to test chordality of the resulting graph from scratch, i.e. better than
O(m + n) time. Sometimes it is convenient to restrict the update operations
on the graph. If we are allowed only insertions on the graph, then a structure
supporting such an operation is said to work in the incremental setting. Similarly,
if we are allowed only delete operations, such a structure is said to work in the
decremental setting. A structure that allows both insertions and deletions is
called a fully dynamic structure.

Our structures (as in the case of previous ones for the problem) always main-
tain a chordal graph in that whenever the addition or deletion of an edge makes
the graph non-chordal, the algorithm reports that it is non-chordal and does not
perform the update. We call the operation that detects chordality and returns
a yes or no answer as a query, and the operation to update the resulting graph
(if the resulting graph is chordal) as the update operation.

1.1 Previous Work

Ibarra [12] developed two fully dynamic algorithms for maintaining chordality.
First one has a query and update time of O(n) with a preprocessing time of
O(m + n), while the other has a query time of O(

√
m) and the update time of

O(m + n) with a preprocessing time of O(mn + n2). The latter is particularly
useful for sparse graphs. Mezzini [13] developed a fully dynamic algorithm with
O(1) query and O(n2) update time, for both addition and deletion of edges.
Berry et al. [1] gave an algorithm which takes amortized O(n) time for insertion,
deletion and deletion queries and an amortized O(1) time for insertion queries.

Tarjan and Yannakakis [18] give an algorithm to convert what are called
acyclic hypergraphs (clique trees are acyclic hypergraphs) to PEO in O(m + n)
time. In this paper, we give a data structure to augment clique trees and an
algorithm to obtain a PEO from that, to support maintenance of PEO under
insertions and deletions of edges in O(n) time.

Logarithmic time lower bounds for update and query times for graph prob-
lems were first developed by Fredman et al. [10], who gave an Ω(log n/ log log n)
amortized query and update times for fully dynamic connectivity in the cell
probe model with word size O(log n). The cell probe model [20] is a useful model
for proving lower bounds of algorithms; computation in this model is framed as

Maintaining Chordal Graphs Dynamically 31

querying a set of memory cells. Patrascu et al. [16] improved the bounds to
Ω(log n) amortized. For maintaining special classes of graphs, Hell et al. [9] gave
an Ω(log n/ log log n) amortized lower bound per update and query operation for
fully dynamic recognition of proper interval graphs with word size of O(log n).
It is not difficult to improve the lower bound to Ω(log n) by applying the result
of Patrascu et al. [16]. Hell et al. [9] also state without proof that a similar tech-
nique may be applied to get lower bounds for dynamic recognition of chordal
graphs. In this paper, we give a formal proof of the Ω(log n) lower bound that
also applies for a few other subclasses of chordal graphs.

Amortization bounds in all these structures report the time per update/query
required by the algorithm over a long sequence of query and update operations.
In particular, the algorithm will not perform an update if the graph property
is not satisfied on the resulting graph. For example if at some update, an edge
is deleted and the resulting graph is not chordal then we insert the edge back
again and continue to the next update.

1.2 Our Results

Our first structure follows Ibarra’s approach in maintaining chordality by main-
taining a clique tree decomposition of the chordal graph. However, we design
and analyze our structures based on the maximum size k of a bag in the clique
tree. Specifically we show that we can construct a data structure in O(nk2) time
such that given an edge e to be deleted from G, we can report in O(1) time if
G\e is chordal and if it is, we can update the structure in O(n + k2) time. For
example, for planar graphs where the maximum size of a clique is a constant,
our structure supports an O(1) query and O(n) update time in the worst case.
Using a careful charging argument, we show that the update time is actually
O(n2/Δ + k2) amortized over Δ edge deletions. Hence, in particular if Δ is at
least n2/k2, the amortized bound becomes O(k2). For example, if k = Θ(n1/4)
and the initial chordal graph has Θ(n3/2) = Θ(n2/k2) edges, over all these edge
deletions, our amortized bound for an update is O(k2) which is O(

√
n) while the

query is still supported in constant time.
Our next results uses a perfect elimination ordering of chordal graphs.

– We show that a PEO can be represented by a dynamic list [6] so that
given a query edge (u, v) to be deleted, we can detect chordality in
O(min{degree(u), degree(v)}) and update the resulting chordal graph in
O(degree(u) + degree(v)) time. Our bounds match the bounds in Ibarra’s
result for the decremental setting in the worst case, but give better results
when u and v have low degree. In particular, for chordal graphs with bounded
degree, our method takes a constant time to update a PEO under edge
deletions.

– We then give a method to augment a clique-tree decomposition of a chordal
graph with simple data structures and show that we can obtain a PEO of
the graph from a clique-tree in O(n) time after an edge insertion or dele-
tion(against a naive O(m + n) time algorithm). This answers a question posed

32 N. Banerjee et al.

by Ibarra [12]. The only non-trivial algorithms for problems such as minimum
coloring, maximum independent set, minimum clique cover on chordal graphs
are known via PEO [8]. Thus, our conversion from clique tree to PEO means
that all of Ibarra’s results which took O(n) query and update time or more can
now be directly translated to PEO and hence all these problems on chordal
graphs can also be solved more efficiently.

Finally, we give the first non-trivial lower bound for the fully dynamic mainte-
nance of chordal graphs. By giving a reduction from the problem of dynamically
maintaining a forest under edge insertions and deletions, we show that any struc-
ture to maintain a chordal graph requires Ω(log n) amortized time for a query
or an update.

1.3 Organization of the Paper

In Sect. 2, we develop a structure using clique trees if only deletion of edges are
allowed. We analyze this structure in two different ways to give a worst case and
an amortized bound. Section 3 gives a worst case algorithm, on deletion of edges
using a PEO ordering of the graph.

We then give an algorithm to obtain a PEO from a clique tree efficiently.
Section 4 gives the lower bound for our problem.

We conclude in Sect. 5 with open problems and further directions of research.

2 Decremental Algorithms Using Clique Tree

We assume that the vertices in the graph are labelled 1, 2,...,n. The neighborhood
of a vertex u refers to the adjacent vertices of u in the graph and degree(u) refers
to the number of neighbors of a vertex u. We start with the definiton of a clique
tree decomposition of a graph. Given a graph G = (V,E) with |V | = n and
|E| = m, a tree decomposition of G is a pair (T, {Xi}i∈V (T)), where T is a tree,
V (T) is its vertex set, and there is a set Xi ⊆ V associated with each node i of
the tree, with the following properties [5]: (1) The union of all sets Xi equals V.
(2) For every edge (u, v) in the graph, there is a subset Xi that contains both
u and v. (3) For each vertex v of the graph, all the nodes Xi that v belongs to
form a subtree of T .

A clique tree of a graph G is a tree decomposition where the subsets Xi in
each node induce a maximal clique. To distinguish between vertices of the graph
and its associated tree decomposition, we call the vertices of the tree as nodes.
We will use bags and nodes interchangeably to denote the sets Xi when there
is no confusion. We define the neighbors of a node in the clique tree to be its
parent and all its children.

2.1 Structure with a Worst Case Update Time

We provide structures here that use the clique-tree decomposition of chordal
graphs. They mainly use the following characterizations of chordal graphs.

Maintaining Chordal Graphs Dynamically 33

Theorem 1 [3,19]. A graph G is chordal if and only if G has a clique tree.

Lemma 1 [12]. Given a chordal graph G, and an edge e = (u, v), G\e is chordal
if and only if u and v are together present in exactly one maximal clique, and
hence in only one bag of the clique tree.

Using this, we prove the following:

Theorem 2. Let G be a chordal graph. Let k be the maximum size of a clique
in G. We can construct a data structure in O(nk2) time such that given an edge
(u, v) to be deleted from G, we can report in O(1) time if G\(u, v) is chordal and
if it is, we can update the structure in O(n + k2) time.

Proof. We first give a high level description of Ibarra’s algorithm in maintaining
a clique tree of the chordal graph under edge deletions. We then explain the data
structures to implement it to support the operations in the claimed bounds.

Algorithm

1. Check if the given edge (u, v) is present in only one bag, if not report a
negative answer, and if yes, then we need to update the clique tree.

2. If Y is the unique bag containing the edge (u, v), the node corresponding to
Y is split into two nodes, Y1 and Y2. Y1 now contains Y \u and Y2 contains
Y \v. Y2 becomes the parent of Y1. From the children of Y1 remove all nodes
which contain u and make them children of Y2. The other children remain as
children of Y1.

3. Check whether the bags of any neighbor of these newly formed nodes is a
superset of the node. If yes, we “absorb” these nodes into the corresponding
neighbor.
To check whether one node is a superset of the other, Ibarra maintains the
intersection size of two adjacent nodes X and Y . We denote this to be the
int value between nodes X and Y . Let Y be the node which has been split
and let � be the size of Y before splitting. If |X ∩ Y | = � − 1 then X absorbs
the new Y . Check [12] for details.

Now we give details of the structures used to implement the algorithm. First, we
build a clique tree from the given graph G. The clique tree can be represented
by a pointer representation where each node points to its parent in the tree.
Furthermore, we maintain the following structures.

– For each edge in the graph G we store,
• a counter indicating the number of nodes of the clique tree to which the

edge belongs, and
• two way pointers from/to each edge to/from all the nodes it belongs to.

We can store this structure as an adjacency matrix, with each position (u, v)
in the matrix having the counter and the list of pointers. Accessing the infor-
mation corresponding to edge (u, v) can be done in O(1) time.

– Similarly for each vertex of the graph G we maintain a counter and a list of
two way pointers to all the nodes it belongs to.

34 N. Banerjee et al.

– For each node X in the clique tree, we store
• the list of vertices sorted according to their labels,
• For each node Y in the clique tree which is a neighbor of X, we store |X∩Y |

in non-increasing order of values in an array associated with the bag X with
a pointer from each cell in the array to the node it corresponds to.

Now we explain how to support the delete operation. Given a query (u, v), we
first look at the counter value of (u, v) in the adjacency matrix. If it is more than
one, we report that G\(u, v) is not chordal. Otherwise, we need to update the
clique tree.

Let the node which is pointed to by the cell (u, v) in the adjacency matrix
be Y and its parent be Ypar. Also let |Y | = �. We create two new nodes Y1

which contains Y \u and Y2 that contains Y \v. Y2 becomes the parent of Y1.
Ypar becomes Y2’s parent. For all the children of Y , all nodes which contain u
become children of Y2 and all nodes which contain v become children of Y1. The
connected subtree property ensures that v does not appear in Y2 or any of its
ancestors. So the int values between the nodes Ypar, Y1, Y2 and all its children
remain the same as it was between Y and these children. The new nodes formed
may now be subsets of any of its adjacent nodes. To maintain the clique tree,
we now consider four distinct cases:

Case 1. If none of the intersections between Y1, Y2 and their neighborhood is �−1
(we can find this from the sorted lists associated with Y1 and Y2) then
neither Y1 nor Y2 is absorbed. In this case, update the int value of Y2 and
its parent by creating a sorted list for Y2 and inserting the int value of
Y2∩Ypar in the array of Ypar. Add pointers of all edges and vertices which
are part of Y2 to point at the node and change the counters.

Case 2. If Y1 gets absorbed into one of its neighbors (check int of Y1 with its
neighbors and see which one is � − 1, in case of a tie choose any one),
delete the node Y1, adjust the parent pointer of its neighbor to now
point at Y2, and adjust all the parent pointers of all the other neighbors
of Y1, to point at this new node. Merge the two sorted int lists of Y1

and its neighbor together.
Case 3. Our algorithm is similar to Case 2 if Y2 gets absorbed into one of its

neighbors.
Case 4. If both Y1 and Y2 are absorbed into one of their neighbors, the parent

pointer of the neighbor which absorbs Y1, now points to the neighbor
which absorbed Y2. The int value between these two nodes becomes �−2.

Update the sorted lists in each of the new nodes formed in the clique tree.
Now, we analyze the runtime for construction of our structures. Building

a clique tree requires O(m + n) time. Let k be the maximum size of a node
in the clique tree. From the property of chordal graphs, we know that there
are a maximum of n nodes in the tree. Then there are a total of m = O(nk2)
edges of the graph in the clique tree. Thus, building a clique tree takes O(nk2)
time giving a total preprocessing time of O(nk2). Storing a counter and the
pointers for each edge and vertex of the clique tree takes a total of O(nk2) time.

Maintaining Chordal Graphs Dynamically 35

For deletion query, we look at the concerned cell of the adjacency matrix and
check if the counter value is 1 in O(1) time.

For update, for each of the cases above it takes O(k2) time to update the
counters and the pointers for all edges (there are at most k2 edges in a node)
and O(k) time to update for all the vertices. In O(1) time we can, from the
sorted int lists find if a node will be absorbed or not. In Case 1, updating the
parent pointer information takes O(1) time. Updating the sorted int list takes
O(log n) time. In Cases 2, 3 and 4, where the nodes Y1 and/or Y get absorbed,
we need to update the pointers of all neighbors of Y and also merge two sorted
lists. This takes O(n) time. Updating the vertex information of each node takes
O(k) time. Thus the total time taken to update is O(n + k2). �

2.2 Amortized Analysis

We now give a better amortized runtime bound for the above algorithm by
analyzing it differently. We show

Theorem 3. Let G be a chordal graph. We can, in O(nk2) time, construct a
data structure such that given a sequence of Δ edge deletions, we can support
deletion query in O(1) time and deletion update in O(n2/Δ+k2) amortized time.

Proof. Updation of the structures involve the time to split a node in the clique
tree and also to absorb the node into one of its neighbors and updating the
clique tree. We deal with the total time taken to perform the split and absorb
operations seperately.

First, we look at the total time spent for the split operations for each node.
Let Y be a node in the clique tree before any deletion operation and let d be
the degree of the node Y . Over the course of edge deletions, Y gets split into
multiple nodes. Let us denote these set of nodes to be Ysplit. Whenever a node
from Ysplit splits the node size decreases by one and the total cost incurred is
the degree of that node. To analyze the runtime we can imagine a binary tree
whose root node is Y with a node size of k. Y has two children each (because
of a split) with each node of size k − 1. They have four children each of which
correspond to a node of size k − 2 and so on. The total cost incurred at each
level is d. The maximum height of this tree is k. So the total time spent by Y is
O(kd). Now, k

∑
d is at most k(n − 1) and hence we have the total time taken

by the algorithm for splitting nodes is O(kn).
Now, let us analyze the total runtime for absorption of nodes in the algorithm.

Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree of the
node Y , and dnbr be the degree of the node Ynbr before absorption. The cost of
absorption to update the pointers of Ynbr is equal to d.

We associate a charge with every node to account for part of the work done
during the absorption. Eventually the sum of the charges in the (existing) nodes
account for the total work done for absorptions. Let Y be a node which is
absorbed into Ynbr at some point in the sequence of deletions. The amount
of work done for this absorption is the number of children of Y (which now

36 N. Banerjee et al.

become the children of Ynbr) to update the child pointers of Ynbr. We account
for this by adding a charge of d to the node Ynbr. In addition, we pass the charge
accumulated in Y to Ynbr. So the new charge at Ynbr is the old charge in that
node plus the charge at Y plus d.

We first claim that the charge accumulated at any node with degree d is at
most d2. If this was true before, then the new charge at Ynbr is at most its old
charge plus d + d2 (as the charge at Y was at most d2 by induction hypothesis
and its degree is at most d). The old charge at Ynbr by induction hypothesis
is at most d2nbr, and its new degree is d + dnbr. The new charge is at most
d2nbr + d2 + d ≤ (d + dnbr)2 which proves the claim.

Hence the total charge on the existing nodes at any point of time is at most
4n2 as the sum of the degrees is at most 2n. We spend another O(k2) time for
each update to update the nodes corresponding to every pair of vertices in the
bag that got split. Thus, the amortized time for Δ edge deletions is O(n2/Δ+k2).

�
We can, in O(nk2) time, construct a data structure such that given a sequence of
Ω(n2/k2) edge deletions, we can support deletion query in O(1) time and deletion
update in O(k2) total time. In particular if the graph has at least m = Ω(n3/2)
edges and the size of the maximum clique is O(n1/4), then we have an O(1)
query and O(n1/2) update time.

3 Dynamic Maintenance of Perfect Elimination Ordering

3.1 Decremental Algorithm

We now give a decremental algorithm using perfect elimination ordering (PEO).
Towards that we first state the following characterization.

Lemma 2 [14]. Let G be a chordal graph, and let e = (u, v) be an edge. G\(u, v)
is chordal if and only if all the common neighbors of u and v are adjacent to
each other, i.e., they form a clique.

Using the above characterization and the well-known dynamic list to repre-
sent the PEO, we obtain the following result.

Theorem 4. �1 Let G be a chordal graph represented by its adjacency list and
adjacency matrix. We can, in O(m + n) time, construct a PEO of G, such that
whenever an edge (u, v) is deleted, we can determine if G\(u, v) is chordal in
O(min{degree(u), degree(v)}) time, and update the structures if it is the case,
in O(degree(u) + degree(v)) time.

If the chordal graph has bounded degree, we get the following.

Corollary 1. Let G be a chordal graph with bounded degree given by its adja-
cency matrix and adjacency list. We can in O(m + n) time construct a PEO of
the vertices of G such that whenever an edge (u, v) is deleted, we can in O(1)
time determine if G\(u, v) is chordal and if yes, we can update the structure in
O(1) time.
1 Proof deferred to the full version.

Maintaining Chordal Graphs Dynamically 37

3.2 Fully Dynamic Maintenance of PEO

We show how to convert a clique tree decomposition of a chordal graph to
its PEO ordering in O(n) time even under edge insertions and deletions, thus
answering a question posed by Ibarra [12]. In O(m + n) time we can obtain
a clique tree from a graph G as well as store the intersection values between
every pair of adjacent nodes in a clique tree [17,18]. In addition, we show that
for the lists associated with two adjacent nodes, defined as A and B, we can
also store the values A\B and B\A and update them on edge addition and
deletion efficiently. This added information helps to convert from a clique tree
to PEO efficiently in O(n) time. Using the help of the following lemma (proof in
appendix) we show how to maintain this structure for edge additions/deletions.

Lemma 3. �2 Let G be a chordal graph given with its clique-tree decomposition.
We can construct a data structure in O(nk log k) time (where k refers to the
maximum node size in the clique tree) and store the vertices differing between
two adjacent nodes in the clique tree i.e. for the lists A and B associated with the
two adjacent nodes, we store the values A\B and B\A on the edge connecting the
nodes. We can update this structure and the clique-tree in O(n) time on addition
or deletion of an edge from the graph G.

Using this lemma, we look at converting a clique tree to a PEO ordering
efficiently. The proof of the following theorem gives details of implementation in
O(n) time.

Theorem 5. Let G be a chordal graph given with its clique-tree decomposition.
We can augment it in O(nk log k) time (where k refers to the maximum node size
in the clique tree) such that we can convert the clique tree to a PEO in O(n) time
on addition or deletion of an edge provided the modified graph remains chordal.

Proof. Let A and B denote the lists associated with two adjacent nodes. Define
P = A\B and Q = B\A. Using Lemma 3 we construct and store the clique tree
data structure augmented with the sets P and Q on each edge. Arbitrarily root
the clique tree and do a depth first search traversal ordered by the start times
of the nodes. We take all the vertices in that node and push it into a stack. We
continue our DFS traversal and whenever we arrive at a node A, we push the
vertices A\B into the stack, where B is its parent. At the end of the traversal,
pop the vertices from the stack. The order in which they are popped is the order
of the PEO.

For correctness we need to show that this traversal maintains the PEO at
any time instant. Initially when we consider the root node, they form a maximal
clique, so pushing them in any order in the stack does not violate the PEO
property. Let us take a node A at some intermediate step of the traversal and
push A\B into the stack. For a vertex a ∈ A\B to violate the PEO ordering, a
has to be a neighbor of b and c, two vertices already in the stack below a but

2 Proof deferred to the full version.

38 N. Banerjee et al.

b and c are not adjacent to each other. But this cannot happen. As b and c are
already in the stack they have been visited earlier in the traversal. We show b
and c are both in node A. If not, they cannot appear after A in the traversal
as it violates the connected subtree property. A is the first node in the traversal
which contains a and as (a, b) and (a, c) are neighbors they have to appear in
some node by definition of clique trees. Therefore, the vertices b and c are both
in node A as well. As each node is a maximal clique, vertices b and c are also
neighbors. So we see that the algorithm does not violate the PEO ordering.

During the traversal we push each vertex into the stack only once and pop
them out once. Hence, the total time spent is O(n). �

4 Lower Bound

We first observe that the reduction [16] from the Query-Sum problem to dynamic
connectivity also holds for fully dynamic connectivity on forests to show the
following.

Theorem 6 [16]. Consider any dynamic data structure that performs a
sequence of n edge insertions and deletions that maintain the forest structure
starting from an edgeless graph. Suppose the structure also supports queries of
the form whether a pair of vertices are in the same connected component. Then
such a structure requires Ω(log n) amortized time per query and update to sup-
port a sequence of n query and update operations in the cell probe model of word
size log n.

We use this observation to give a reduction to our problem to prove a similar
lower bound.

Theorem 7. Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or query in
the cell probe model of word size log n.

Proof. The main idea is to ensure that when a query for a pair (u, v) comes, we
add a new path of length three between u and v and check whether the resulting
graph is chordal. If the pair of vertices are in different components, then the new
additions don’t add any cycle, and if they are in the same component, then new
additions create a chordless cycle of length greater than three. Hence we can test
the reachability question using the chordality query. We give the details below.

Given an instance I of the fully dynamic connectivity problem on forests
with n vertices, we create a graph on n + 2 vertices where the first n vertices
correspond to the original vertices, and there are two new vertices s and t with an
edge between s and t. Whenever an edge {u, v} is added to I, we call the addition
of edge {u, v} to I ′. Whenever an edge {u, v} is deleted from I, we delete the
same edge from I ′. The forest maintenance property of the instance I ensures
that these addition or deletion of edges always ensures a forest is maintained in
I ′ as well.

Maintaining Chordal Graphs Dynamically 39

When a query between a pair of vertices u and v comes, we simply add the
edges {u, s} and {t, v} and ask whether the resulting graph is chordal. If it is,
then we declare that u and v are in different components of the forest, and
otherwise they are in the same component. We then delete the edges {u, s} and
{t, v} from the graph. If u and v are in the same component, then the path in
the component between u and v along with edges {u, s}, {s, t} and {t, v} form a
chordless cycle. This proves the correctness of the reduction.

Thus every connectivity query in I is implemented by two edge additions, a
chordality query and two edge deletions in I ′. Furthermore, every update in I
is implemented by the same update in I ′. Thus from Theorem 6, the theorem
follows.

We observe that the only property of chordal graphs we used in the above reduc-
tion is that trees are chordal and any induced cycle of length greater than three is
not chordal. Hence the same reduction works for any subclass of chordal graphs
that contains the class of trees. Thus we have

Corollary 2. Any dynamic structure that maintains a Ptolemaic graph or a
k-tree or a strongly chordal graph (for definitions refer [2,11,15]) under edge
insertions and deletions requires Ω(log n) amortized time per update or query.

5 Conclusions

We have presented improved upper and lower bounds for maintaining chordal
graphs under edge deletions and insertions. graphs. We also showed that we can
shift between different decompositions of chordal graphs in O(n) time which
helps to solve applications that require different decompositions. An interesting
open problem is to prove a super logarithmic lower bound for the query and
update operations for maintenance of chordal graphs. We have given a struc-
ture to maintain a PEO under edge insertions and deletions in O(n) time by
augmenting the clique tree decomposition. It would be an interesting problem
to see if the optimization problems (like maximum clique and independent set)
that use PEO can be updated in O(n) time under edge insertions and deletions.

Acknowledgement. The first author would like to thank Keerti Choudhary for useful
discussions leading to Theorem 5.

References

1. Berry, A., Sigayret, A., Spinrad, J.: Faster dynamic algorithms for chordal graphs,
and an application to phylogeny. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787,
pp. 445–455. Springer, Heidelberg (2005). https://doi.org/10.1007/11604686 39

2. Brandstädt, A., Dragan, F.F., Chepoi, V., Voloshin, V.I.: Dually chordal graphs.
SIAM J. Discrete Math. 11(3), 437–455 (1998)

3. Buneman, P.: A characterisation of rigid circuit graphs. Discrete Math. 9(3), 205–
212 (1974)

https://doi.org/10.1007/11604686_39

40 N. Banerjee et al.

4. Deshpande, A., Garofalakis, M.N., Jordan, M.I.: Efficient stepwise selection in
decomposable models. In: UAI 2001: Proceedings of the 17th Conference in Uncer-
tainty in Artificial Intelligence, University of Washington, Seattle, Washington,
USA, 2–5 Aug 2001, pp. 128–135 (2001)

5. Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2012)
6. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In:

Proceedings of the 19th Annual ACM Symposium on Theory of Computing 1987,
New York, NY, USA, pp. 365–372 (1987)

7. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM 30(3), 514–550 (1983)

8. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972)

9. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and
representing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2001)

10. Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity
problems in graphs. Algorithmica 22(3), 351–362 (1998)

11. Howorka, E.: A characterization of ptolemaic graphs. J. Graph Theory 5(3), 323–
331 (1981)

12. Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM
Trans. Algorithms 4(4), 40:1–40:20 (2008)

13. Mezzini, M.: Fully dynamic algorithm for chordal graphs with O(1) query-time and
O(n2) update-time. Theor. Comput. Sci. 445, 82–92 (2012)

14. Mezzini, M., Moscarini, M.: Simple algorithms for minimal triangulation of a graph
and backward selection of a decomposable markov network. Theor. Comput. Sci.
411(7–9), 958–966 (2010)

15. Nesetril, J.: Structural properties of sparse graphs. Electron. Notes Discrete Math.
31, 247–251 (2008)

16. Patrascu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006)

17. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

18. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984)

19. Walter, J.R.: Representations of chordal graphs as subtrees of a tree. J. Graph
Theory 2(3), 265–267 (1978)

20. Yao, A.C.-C.: Should tables be sorted? J. ACM 28(3), 615–628 (1981)

	Maintaining Chordal Graphs Dynamically: Improved Upper and Lower Bounds
	1 Introduction
	1.1 Previous Work
	1.2 Our Results
	1.3 Organization of the Paper

	2 Decremental Algorithms Using Clique Tree
	2.1 Structure with a Worst Case Update Time
	2.2 Amortized Analysis

	3 Dynamic Maintenance of Perfect Elimination Ordering
	3.1 Decremental Algorithm
	3.2 Fully Dynamic Maintenance of PEO

	4 Lower Bound
	5 Conclusions
	References

