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Abstract. To prove that P �= NP, it suffices to prove a superpolyno-
mial lower bound on Boolean circuit complexity of a function from NP.
Currently, we are not even close to achieving this goal: we do not know
how to prove a 4n lower bound. What is more depressing is that there
are almost no techniques for proving circuit lower bounds.

In this note, we briefly review various approaches that could poten-
tially lead to stronger linear or superlinear lower bounds for unrestricted
Boolean circuits (i.e., circuits with no restriction on depth, fan-out, or
basis).

1 Computational Model: Boolean Circuits

A straight-line program is a simple and natural program for computing a Boolean
function f : {0, 1}n → {0, 1}. The input to such a program is variables x1, . . . , xn

and each line of the program computes the value of a new Boolean variable by
applying a binary Boolean operation to some of two previous variables. A circuit
is a convenient way of representing a straight-line program as a directed acyclic
graph. Below we show an example of a program and the corresponding circuit
of size four for the majority function on three input bits x1, x2, x3 (that outputs
1 iff x1 + x2 + x3 ≥ 2).

x1 x2 x3

∧x4 ⊕ x5

∧ x6

⊕x7

x4 = x1 ∧ x3

x5 = x1 ⊕ x2

x6 = x5 ∧ x3

x7 = x4 ⊕ x6

To prove that P �= NP, it suffices to find a Boolean function from NP that
cannot be computed by polynomial size circuits (more precisely, a family of func-
tions {fn}∞

n=1 such that fn has n inputs,
⋃∞

n=1 f−1
n (1) ∈ NP, and circuit size

of fn grows superpolynomially in n). This problem turned out to be extremely
difficult: we do not know how to prove 4n lower bound, not to mention super-
linear or superpolynomial lower bounds. Most of the known lower bounds are
proved using the so-called gate elimination method which is difficult to use to
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beat the 4n barrier. In the rest of this note, we briefly review various approaches
that could potentially lead to stronger linear or superlinear lower bounds. The
focus of this note is unrestricted circuit model: we do not pose any restriction
on the depth of a circuit, the fan-out of its gates, or the basis of allowed opera-
tions computed at gates. For various restricted circuit classes, such as monotone
circuits (circuits using ∧ and ∨ operations only), constant depth circuits, and
formulas (circuit of fan-out 1), much stronger lower bounds are known. What is
more important, various beautiful techniques for proving such lower bounds have
been developed. An exposition of these bounds and techniques can be found in
an excellent recent book by Jukna [1].

2 Lower Bounds: Approaches and Open Problems

Notation

We use Bn,m to denote the set of all Boolean functions with n inputs and m out-
puts. By default, we will assume that m = 1, that is, we consider Boolean predi-
cates. We use Bn as a shortcut for Bn,1. By a function f we mean (unless stated
otherwise) a family of functions: f = {fn : fn ∈ Bn}∞

n=1.

2.1 Known Lower Bounds and Gate Elimination Method

How to prove, say, a 3n − o(n) lower bound for a Boolean function f? One way
to do this is by induction: first show that f is resistant to n− o(n) substitutions
of some type (say, xi ← c, where c ∈ {0, 1}, or xi ← ⊕

j∈J xj ⊕ c); then show
that for any circuit computing f one can find a substitution eliminating at least
three gates. This type of argument is known as gate elimination and it is used
in most of the known lower bounds proofs, in particular, in the proof of the
currently strongest lower bound (3 + 1/86)n − o(n) for affine dispersers by Find
et al. [2]. A gate elimination proof usually consists of many cases depending
on how the top part of a circuit looks like. The stronger is the lower bound
the larger is the number of cases: if one wants to prove, say, 4n lower bound,
one needs to carefully check that no two of the four gates eliminated at each
iteration coincide. This makes gate elimination proofs quite tedious. Moreover,
it was recently shown by Golovnev et al. [3] that certain formalizations of the
gate elimination method are not able to prove stronger than cn lower bounds for
a small constant c. For example, they constructed a simple function f such that
no substitution of the form xi ← g, where g is an arbitrary function on all the
remaining variables, can reduce the circuit size of f by more than 5. Can one at
least prove a 4n lower bound using gate elimination?

Further reading. An exposition of the proofs based on the gate elimination
method is given by Wegener [4, Chap. 5]. A more recent survey is given by
Golovnev et al. [3, Sect. 2].
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2.2 Multi-output Functions

Can one prove stronger lower bounds for functions with multiple outputs? In
this case, we assume that for each output of such a function, a circuit contains
a gate computing this output. Computing several functions simultaneously is
definitely not easier than computing any one of them. However, currently, we do
not know how to exploit this fact in lower bounds proofs: the strongest lower
bound for functions with o(n) outputs is the same as for functions with a single
output (up to additive o(n) terms). When the number of outputs becomes linear,
one can use the following observation by Lamagna and Savage [5]: the circuit
complexity of computing k different functions f1, . . . , fk ∈ Bn simultaneously is
at least (mini gates(fi) − 1) + k. This is just because none of the topologically
first mini gates(fi) − 1 gates can compute any of the outputs and one needs at
least k gates to compute all outputs. This allows one to prove (c + 1)n − O(1)
lower bounds for functions from Bn,n from cn lower bounds for functions from
Bn,1: given f ∈ Bn, consider g = (g1, . . . , gn) ∈ Bn,n where gi(x) = f(x) ⊕ xi;
then, gates(gi) ≥ gates(f) − 1 and hence gates(g) ≥ gates(f) + n − 2. How to
prove a 5n lower bound for a function from Bn,n?

Further reading. A survey of lower bounds for multi-output functions is given
by Hiltgen [6, Chap. 4].

2.3 Non-gate-Elimination Lower Bounds

Are there approaches other than gate elimination for proving lower bounds for
unrestricted circuits. There are a few lower bounds that are not based on gate
elimination techniques. Alas, none of them is currently known to give a stronger
than 2n lower bound. Blum and Seysen [7] proved that any optimal circuit that
computes simultaneously AND and NOR of n input bits consists of two formulas
(that is, each output is computed by a tree) and hence has size 2n − 2. Note
that the gate elimination method with bit-fixing substitutions cannot be used for
this particular function: assigning a constant to an input variable immediately
trivializes one of the two output functions (and one loses a possibility to proceed
by induction). Melanich [8] came up with a similar, but simpler argument. She
considered the following multi-output function from Bn,o(n): there are n =

(
k
2

)

inputs x{i,j}, where 1 ≤ i �= j ≤ k, and k = o(n) outputs; the i-th output com-
putes the AND of variables {x{i,j}}j �=i. Each input contributes to two outputs
and hence the function can be computed by a circuit of size 2n− o(n). Melanich
proves that this straightforward circuit is optimal by showing that in any circuit
(computing this function) one can reduce the number of gates shared between
several outputs without increasing the size of the circuit. Chashkin [9] proved
a 2n − o(n) for a function f ∈ Bn,log2 n that has the form f(x) = Ax where
the matrix A ∈ {0, 1}log2 n×n has n pairwise distinct columns. He showed that
any circuit computing this function has at least n − o(n) branching gates (i.e.,
gates of out-degree at least 2). The lower bound then follows by counting the
number of edges. Can any of these non-gate-elimination methods be extended to
get stronger than 2n lower bounds?
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2.4 Symmetric Functions

Can one prove a superlinear lower bound for a symmetric function (i.e., a func-
tion whose output depends on the sum of input bits only)? In fact, one cannot:
while basic symmetric functions like parity, MOD3, and majority are used to
prove superpolynomial lower bounds in, e.g., constant depth circuit model, any
symmetric function can be computed by a circuit of size 4.5n + o(n) as shown
by Demenkov et al. [10]. The strongest known lower 2.5n − O(1) is proved by
Stockmeyer [11]. Hence, it is not excluded that there exist symmetric functions of
circuit size, say, 4n. Note that the multi-output function SUMn ∈ Bn,�log2(n+1)�
that outputs the binary encoding of the sum of n input bits is not easier
than any symmetric function f ∈ Bn: f can be computed by a circuit of size
gates(SUMn) + o(n). What is the circuit size of SUMn?

Further reading. Known lower and upper bounds on complexity of symmetric
functions in various models are summarized in Jukna’s book [1, end of Chap. 1].

2.5 Satisfiability Algorithms

Given a circuit with n inputs, how hard is it to find an assignment making
this circuit to output 1? Williams [12] recently developed a general framework
of getting circuit lower bounds from faster than brute force search satisfiability
algorithms. Extending Williams’ results, Jahanjou et al. [13] proved that one can
prove a 2cn lower bound (for a function from Bn,2) by designing an O(2n/nω(1))-
time algorithm for checking satisfiability of circuits of size 2cn. In a sense, results
like this show that designing fast satisfiability algorithms is not easier than prov-
ing circuit lower bounds. This also reflects the state-of-the-art on satisfiability
algorithms: we only know how to beat the brute force search for circuits of size at
most 2.99n [14]. Hence, the known satisfiability algorithms for small size (unre-
stricted) circuits currently do not give improved lower bounds. Can one improve
the brute force search for the satisfiability problem on circuits of size 4n? Do
non-trivial satisfiability algorithms for circuits of size cn imply cn lower bounds?

Further reading. A good starting point is a recent survey by Williams [15].

2.6 Mass Production

Can one take a sufficiently hard function with constant number of inputs and cook
out of it a family of functions of high circuit complexity? About 70 years ago,
Shannon [16] showed that almost all functions from Bn have circuit complexity
Ω(2n/n) (by showing that the total number 22

n

of functions is greater than the
number of circuits of size o(2n/n)). This implies that for any constant c, one
can find a function fk ∈ Bk, where k = k(c), of circuit size at least ck just
by enumerating functions one by one. A natural attempt to cook a family of
functions out of fk would be to define a function fn ∈ Bn,nk

as follows: split n
input bits into n

k blocks of k bits and apply fk to each of the blocks. In other
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words, we compute fk on n
k independent blocks of size k. The function fn can

be computed by a circuit of size n
k · gates(fk). If this naive way of computing

fk was close to optimal, one would get a close to cn lower bound on the circuit
size of fn. We, however, do not know how to prove this. Still, this is what is
known.

For a positive integer r and a function f ∈ Bn, by r×f we denote a function
from Brn,r that applies f to r independent blocks of size n. We say that a mass
production effect occurs for f when gates(r × f) is (much) smaller than r ·
gates(f). For very simple functions like f = x1 ⊕ · · · ⊕ xn (or any other function
whose optimal circuit is a read-once formula) there is no mass production effect:
gates(r × f) = r · gates(f). This can be shown just by counting wires: f depends
essentially on all its variables, hence there is at least one outgoing wire for every
input; since each internal (non-output) gate reduces the number of outgoing
wires at most by one, we conclude that gates(f) = n − 1 and gates(r × f) =
rn − r = r · (n − 1). Hiltgen [6] also shows that mass poduction effect occurs
for many functions of circuit size about 2n. On the other hand, for very hard
function f one can show that gates(r × f) is almost the same as gates(f) even if
r is superpolynomial in n. More precisely, Ulig [17] showed that gates(r × f) ≤
2n/n + o(2n/n) for any f ∈ Bn and r = 2o(n/ log n). What are the functions
avoiding mass production effect?

Further reading. More on mass production can be found in Wegener’s book
[4, Sect. 10.2] and Hiltgen’s PhD thesis [6, Sect. 4.4].

2.7 Logarithmic Depth Circuits

Can we at least prove superlinear lower bounds on circuits of logarithmic (i.e.,
O(log n)) depth? Alas, currently, it is not known. However, if we further restrict
the depth to be constant (in this case, one needs to allow arbitrary fan-in and
to specify the operations allowed at gates), then one can prove even superpoly-
nomial lower bounds! Moreover, Valiant [18] showed the following connection
between these two models: if a function can be computed by a circuits of loga-
rithmic depth and linear size, then it can also be computed by a subexponential
depth 3 circuit, more precisely by an OR of CNF’s of total size 2O(n/ log log n)

(here, the constant inside O(·) depends on constants a, b where the size and
depth of the original circuit is an and b log n). Currently, the strongest lower
bounds known for such depth 3 circuits are of the form 2Ω(n1/2), though expo-
nential lower bounds are known if we further restrict the length of clauses in
CNF’s to be constant.

Further reading. An exposition of Valiant’s reduction is given in the book
by Viola [19, Chap. 2], while known results on constant depth circuits are sum-
marized in the book by Jukna [1, Chaps. 11–12].
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2.8 Linear Circuits and Matrix Rigidity

Can we at least prove superlinear lower bounds for circuits consisting of parity
gates only? This question makes sense for multi-output functions. Specifically,
let us focus on functions of the form f(x) = Ax where A ∈ {0, 1}n×n. Non-
constructively, one can show that for almost all matrices A, the size of the
smallest linear circuit computing Ax is Ω(n2/ log n) (and there is a matching
upper bound by Lupanov [20]). Alas, we do not have superlinear lower bounds
even for this restricted model, even when we additionally restrict the depth to
be O(log n). Interestingly, Valiant’s depth reduction mentioned in Sec. 2.7 can
be used to relate the circuit size to the notion of matrix rigidity introduced by
Grigoriev [21] and Valiant [22]. Roughly speaking, for a parameter r, the rigidity
of A, RA(r), is the Hamming distance from A to the set of matrices of rank (over
F) at most r. Valiant shows that if RA(εn) ≥ n1+δ for positive constants ε, δ,
then the function Ax cannot be computed by linear circuits of logarithmic depth
of size O(n). So far, we have no such examples of explicit matrices.

Further reading. More on circuit complexity and matrix rigidity can be found in
the book by Lokam [23, Chap. 2]. Lower bounds for constant depth linear circuits
(where superlinear lower bounds are known!) are summarized in the recent book
by Jukna and Sergeev [24].

2.9 Multiplicative Complexity

What if some gates are given for free? Basically, each gate in a binary Boolean
circuit is either an XOR-type gate, i.e., computes a binary operation of the form
x⊕y⊕a where a ∈ {0, 1}, or an AND-type gate, i.e., computes (x⊕y)∧(y⊕b)⊕c
where a, b, c ∈ {0, 1}. It is well known that XOR-type gates are avoidable: any
function can be computed by a circuit in the basis U2 = B2\{⊕,≡}. On the other
hand, AND-type gates are unavoidable and it was shown by Nechiporuk [25]
that almost all Boolean functions require about 2n/2 such gates. The minimum
number of AND-type gates required to compute f is known as multiplicative
complexity of f , mc(f). Of course, mc(f) ≤ gates(f) and the known lower bounds
on multiplicative complexity are even weaker than those on circuit complexity.
At the same time, one can prove lower bounds on mc without analyzing the
structure of a circuit: as shown by Schnorr [26], a circuit with k AND-type gates
computes a function of degree at most k + 1. Here, the degree of a function is
the degree of its polynomial over F2. This immediately gives a lower bound n−1
on multiplicative complexity of functions of full degree: e.g., mc(AND) = n − 1.
Strangely enough, this is the strongest known lower bound: we do not know how
to prove mc(f) ≥ n, let alone proving mc(f) ≥ (1 + ε)n.

Acknowledgments. The research is supported by Russian Science Foundation
(project 16-11-10123). The author is thankful to Alexander Golovnev and Edward A.
Hirsch for fruitful discussions and many useful comments.



Lower Bounds for Unrestricted Boolean Circuits: Open Problems 21

References

1. Jukna, S.: Boolean Function Complexity – Advances and Frontiers. Algorithms
and Combinatorics. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-24508-4

2. Find, M.G., Golovnev, A., Hirsch, E.A., Kulikov, A.S.: A better-than-3n lower
bound for the circuit complexity of an explicit function. In: Dinur, I. (ed.) IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, Hyatt
Regency, New Brunswick, NJ, USA, 9–11 October 2016, pp. 89–98. IEEE Computer
Society (2016)

3. Golovnev, A., Hirsch, E.A., Knop, A., Kulikov, A.S.: On the limits of gate elimi-
nation. [27], pp. 46:1–46:13

4. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner, Hoboken
(1987)

5. Lamagna, E.A., Savage, J.E.: On the logical complexity of symmetric switching
functions in monotone and complete bases. Technical report, Brown University
(1973)

6. Hiltgen, A.P.: Cryptographically relevant contributions to combinational complex-
ity theory. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (1994)
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