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Abstract. We consider structural parameterizations of the fundamen-
tal dominating set problem and its variants in the parameter ecology
program. We give improved fixed-parameter tractable (FPT) algorithms
and lower bounds under well-known conjectures for dominating set in
graphs that are k vertices away from a cluster graph or a split graph.
These are graphs in which there is a set of k vertices (called the mod-
ulator) whose deletion results in a cluster graph or a split graph. We
also call k as the deletion distance (to the appropriate class of graphs).
Specifically, we show the following results. When parameterized by the
deletion distance k to cluster graphs,

– we can find a minimum dominating set in O∗(3k) time (O∗ notation
ignores polynomial factors of input). Within the same time, we can
also find a minimum independent dominating set (IDS) or a mini-
mum efficient dominating set (EDS) or a minimum total dominating
set. These algorithms are obtained through a dynamic programming
approach for an interesting generalization of set cover which may be
of independent interest.

– We complement our upper bound results by showing that at least for
dominating set and total dominating set, O∗((2−ε)k) time algorithm
is not possible for any ε > 0 under, what is known as, Set Cover
Conjecture. We also show that most of these variants of dominating
set do not have polynomial sized kernel.

The standard dominating set and most of its variants are NP-hard or
W[2]-hard in split graphs. For the two variants IDS and EDS that are
polynomial time solvable in split graphs, we show that when parameter-
ized by the deletion distance k to split graphs,

– IDS can be solved in O∗(2k) time and we provide an Ω(2k) lower
bound under the strong exponential time hypothesis (SETH);

– the 2k barrier can be broken for EDS by designing an O∗(3k/2) algo-
rithm. This is one of the very few problems with a runtime better
than O∗(2k) in the realm of structural parameterization. We also
show that no 2o(k) algorithm is possible unless the exponential time
hypothesis (ETH) is false.
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1 Introduction

1.1 Motivation

The Dominating Set problem is one of the classical NP-Complete graph theo-
retic problems. It asks for a minimum set of vertices in a graph such that every
vertex is either in that set or has a neighbor in that set. It, along with several
variations including independent domination, total domination, efficient dom-
ination, connected domination, total perfect domination, threshold domination
are well-studied in all algorithmic paradigms including parameterized complex-
ity and approximation and in structural points of view. All of these versions
are hard for the parameterized complexity class W[1] in general graphs when
parameterized by solution size [12] and hence is unlikely to be fixed-parameter
tractable (See [8] for more details).

One of the goals in parameterized complexity is to identify parameters under
which (even hard) problems are fixed-parameter tractable. This is also of practi-
cal interest as often there are some small parameters (other than solution size)
that capture important practical inputs. This has resulted in the parameter ecol-
ogy program where one studies problems under a plethora of parameters and
recently there has been a lot of active research [4,13,18] in this area. In par-
ticular, identifying a parameter as small as possible, under which a problem is
fixed-parameter tractable or has a polynomial sized kernel is an interesting direc-
tion of research. We continue this line of research and consider parameterizations
of Dominating Set variants that are more natural and functions of the input
graph. Structural parameterization of a problem is where the parameter is a
function of the input structure rather than the standard output size. To the best
of our knowledge, this is the first serious study of structural parameterization of
any version of the dominating set problem.

Our parameter of interest is the ‘distance’ of the graph from a natural class of
graphs. Here by distance we mean the number of vertices whose deletion results
in the class of graphs. Note that if dominating set is NP-hard in a graph class,
then it will continue to be NP-hard even on graphs that are k away from the
class, even for constant k (in particular for k = 0) and hence is unlikely to be
fixed-parameter tractable. Hence it is natural to consider graphs that are not
far from a class of graphs where Dominating Set is polynomial time solvable.
Our case study considers two such special graphs: cluster graphs where each
connected component is a clique and split graphs where the vertex set can be
partitioned into a clique and an independent set. In the former, all the variants
of dominating set we consider are polynomial time solvable, while in the latter
class of split graphs, we consider independent and efficient dominating set that
are polynomial time solvable. We call the set of vertices whose deletion results
in a cluster graph and split graph as cluster vertex deletion set (CVD) and split
vertex deletion set (SVD) respectively.

Finally, we remark that the size of minimum CVD and minimum SVD are
at most the size of a minimum vertex cover in a graph, which is a well-studied
parameterization in the parameter-ecology program [13].
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1.2 Definitions, Our Results and Organization of the Paper

We start with describing the variants of dominating set we consider in the paper.
A subset S ⊆ V (G) is a dominating set if N [S] = V (G). If S is an independent
set, then S is an independent dominating set. It is called an efficient dominating
set if for every vertex v ∈ V , |N [v] ∩ S| = 1. Note that an efficient dominating
set may not exist for a graph (for example, for a 4-cycle). If for every vertex v,
|N(v)∩S| ≥ r, S is a threshold dominating set with threshold r. When r = 1, S
is a total dominating set. Note that for dominating set, the vertices in S do not
need other vertices to dominate them, but they do in a total dominating set. For
more on these dominating set variants, see [15]. We will often denote dominating
set, efficient dominating set, independent dominating set, total dominating set
and threshold dominating set by DS, EDS, IDS, TDS and ThDS respectively in
the rest of the article. When we say that a graph G is k-away from a graph in a
graph class, what we mean is that there is a subset S of k vertices in the graph
such that G\S belongs to the class.

Now we describe the main results in the paper (See Table 1 for a summary).
When parameterized by the deletion distance k to cluster graphs,

– we can find a minimum dominating set in O∗(3k) time. Within the same
time, we can also find a minimum independent dominating set (IDS) or a
minimum efficient dominating set (EDS) or a minimum total dominating set.
We also give an O∗((r + 2)k) algorithm for minimum threshold dominating
set with threshold r. These algorithms are obtained through a dynamic pro-
gramming approach for interesting generalizations of set cover which may be
of independent interest. These results are discussed in Sect. 4.1.

– We complement our upper bound results by showing that for dominating
set and total dominating set, O∗((2 − ε)k) algorithm is not possible for any
ε > 0 under what is known as Set Cover Conjecture. We also show that
for IDS, O∗((2 − ε)k) algorithm is not possible for any ε > 0 under the
Strong Exponential Time Hypothesis (SETH) and for EDS no 2o(k) algorithm
is possible unless the Exponential Time Hypothesis (ETH) is false. It also
follows from our reductions that dominating set, TDS and IDS do not have
polynomial sized kernels unless NP ⊆ coNP/poly. These results are discussed
in Sect. 4.2.

The standard dominating set and most of its variants are NP-hard or W[2]-hard
in split graphs [20]. For the two variants IDS and EDS that are polynomial
time solvable in split graphs, we show that when parameterized by the deletion
distance k to split graphs,

– IDS can be solved in O∗(2k) time and provide an O∗((2−ε)k) lower bound for
any ε > 0 assuming SETH. We also show that IDS-SVD has no polynomial
kernel unless NP ⊆ coNP/poly.

– The 2k barrier can be broken for EDS by designing an O∗(3k/2) algorithm.
This is one of the very few problems with a runtime better than O∗(2k) in the
realm of structural parameterization. We also show that no 2o(k) algorithm
is possible unless the ETH is false. These results are discussed in Sect. 5.
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Table 1. Summary of results. Results marked � indicate our results.

Cluster deletion set Split deletion set

Algorithms Lower bounds Algorithms Lower bounds

DS, TDS O∗(3k) � O∗((2 − ε)k) and
No polynomial kernel �

para-NP-hard

IDS O∗(3k) � O∗((2 − ε)k) and
No polynomial kernel

O(2k) � O∗((2 − ε)k) and
No polynomial kernel

EDS O∗(3k) � O∗(2o(k)) � O∗(3k/2) � O∗(2o(k)) �

ThDS O∗((r + 2)k) � No polynomial kernel � para-NP-hard

2 Preliminaries and Notations

We use [n] to denote the set {1, . . . , n}. We use standard terminologies of graph
theory book by Diestel [10]. For a graph G = (V,E) we denote n as the number
of vertices and m as the number of edges. For a vertex v ∈ V (G), we denote
NG(v) = {(u ∈ V (G)|(u, v) ∈ E(G)} as the open neighborhood of v. When
there is no confusion, we drop the subscript G. By N [v] we denote the close
neighborhood of v, i.e. N [v] = N(v) ∪ {v}. For S ⊆ V (G), we denote N(S) =
{v ∈ V (G)|∃u ∈ S such that (u, v) ∈ E(G)}\S. And we denote N [S] = N(S)∪S.
By N=2(v) we denote the set of vertices that are at minimum distance exactly
two from v. For S ⊆ V (G), we denote G[S] to be the subgraph induced on S.
We say that for vertices u, v ∈ V , u dominates v if v ∈ N(u).

We give a general template of formal definition of problems as follows:

P-Q Parameter: |S|
Input: An undirected graph G = (V,E), S ⊆ V (G) which is a Q and an
integer �.
Question: Is there a P in G of size atmost �?

where P represents an acronym of a dominating set variant among DS, EDS,
IDS, TDS and ThDS and Q that of a modulator among CVD and SVD. For
example, in the EDS-SVD problem we are interested in finding an EDS of size
atmost � given a k sized SVD where k is the parameter.
We use the following conjectures and theorems to prove some of our lower
bounds.

Conjecture 1 (Strong Exponential Time Hypothesis (SETH)) ([17]). There is no
ε > 0 such that ∀q ≥ 3, q-CNFSAT can be solved in O∗((2 − ε)n) time where n
is the number of variables in input formula.

Conjecture 2 (Exponential Time Hypothesis (ETH)) ([16,17]). 3-CNF-SAT can-
not be solved in O∗(2o(n)) time where the input formula has n variables and m
clauses.
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Conjecture 3 (Set Cover Conjecture (SCC)) ([7]). There is no ε > 0 such that
SET COVER can be solved in O∗((2 − ε)n) time where n is the size of the
universe.

Theorem 1 ([11]). SET-COVER parameterized by the universe size does not
admit any polynomial kernel unless NP ⊆ coNP/poly.

Theorem 2 ([14]). CNF-SAT parameterized by the number of variables
admits no polynomial kernel unless NP ⊆ coNP/poly.

3 Related Work

Clique-width [6] of a graph is a parameter that measures how close to a clique
the graph is. Courcelle et al. [5] showed that for a graph with clique-width at
most k, any problem expressible in MSO1 (monadic second order logic of the
first kind) has an FPT algorithm with k as the parameter if a k-expression for
the graph (a certificate showing that the clique-width of the graph is at most k)
is also given as input. The clique-width of a graph that is k away from a cluster
graph can be shown to be k + 1 (with a k-expression) and all the dominating
set variants discussed in the paper can be expressed in MSO1 and hence can
be solved in FPT time in such graphs. But the running time function f(k) in
Courcelle’s theorem is huge (more than doubly exponential). Oum et al. [19]
gave an O∗(kO(k)) algorithm to solve the minimum dominating set for clique-
width k graphs without assuming that the k-expression is given. There is a
O∗(4k) algorithm by Bodlaender et al. [2] for finding minimum dominating set
in graphs with clique-width k when the k-expression is given as input. It is easy
to construct the k-expression for graphs k away from a cluster graph and hence
we have a O∗(4k) algorithm. The algorithms we give in Sect. 4, not only improve
the running time but also are applicable for other variants of dominating set.

4 Dominating Set Variants Parameterized by CVD Size

4.1 Upper Bounds

In cluster graphs, a dominating set simply picks an arbitrary vertex from each
clique. This dominating set is also efficient and independent. For threshold dom-
inating set with threshold r, we arbitrarily pick r + 1 vertices from every clique
if possible so that every vertex has r neighbors excluding itself.

We can assume that the CVD set S of size k is given with the input. If not,
we can use the algorithm by Boral et al. [3] that runs in O∗(1.92k) time and
either outputs a CVD set of size at most k or says that no such set exists.

We first look at the problem DS-CVD which is NP-hard as any graph having
an edge has a CVD set of at most n − 2.

Theorem 3. DS-CVD can be solved in O∗(3k) time.
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Proof. Our FPT algorithm starts with making a guess S′ for the solution’s inter-
section with S. We delete vertices in N [S′] ∩ S as they have been already domi-
nated. We will keep the vertices of N [S′] ∩ (V \S) as they can be used to cover
the remaining vertices of S.

Let us denote the cliques in G′ = G\S as C1, C2, . . . , Cq where q ≤ n − k.
We label the vertices of G′ as v1, v2, . . . , v|V \S| such that the first l1 of them
belong to the clique C1, the next l2 of them belong to clique C2 and so on for
integers l1, l2, . . . , lq. Note that for some cliques, all the vertices of the clique gets
dominated by S′. We are left with the problem of picking the minimum number
of vertices from the cliques to dominate, the vertices of the cliques that are not
yet dominated (by S′), and S\N [S′]. We abstract out the problem below.

DS-disjointcluster Parameter: |S|
Input: An undirected graph G = (V,E), S ⊆ V such that every connected
component of G\S is a clique, a (0, 1) vector (f1, f2, . . . , fq) corresponding
for the cliques (C1, . . . , Cq) and an integer �.
Question: Does there exist a subset T ⊆ V \S of size �, that dominates all
vertices of S and all vertices of all cliques Ci with flags fi = 1?

For the problem we started off with, the set S in this new formulation is the
remaining vertices of S after deleting N [S′] ∩ S. Also fi is set to 1 if the clique
Ci has not been dominated by S′ and is set to 0 otherwise.

Lemma 1. DS-disjointcluster can be solved in O∗(2|S|) time.

Proof. We formulate this problem instance as a variant of SET-COVER

instance. Define the universe U as the set S. For each vertex v ∈ V \S, we define
a set Sv = N(v) ∩ S. Define the family of sets F = {Sv|v ∈ V \S}. We say that
a subfamily F ′ ⊆ F covers a subset W ⊆ U if for every element w ∈ W , there
exist some set in F ′ containing w. Now a SET-COVER solution F ′ ⊆ F for
(U,F) will cover all the elements of S. In the graph, the vertices corresponding to
the sets in F ′ will dominate all the vertices in S. But DS-disjointcluster has
the additional requirement of dominating the vertices of every clique Ci with
fi = 1 as well. This means from every such clique at least one vertex has to
be picked. With this in mind, we define for each clique Ci a collection of sets
Bi = {Sv : v ∈ Ci}. We call these sets as blocks. Hence the number of blocks
and the number of cliques in G\S are the same. We order the sets in the block
in the order of the vertices v1, . . . , v|V \S|. We have the following problem which
is a slight generalization of SET-COVER.

Set-Cover with Partition Parameter: |U | = k
Input: A universe U , a family of sets F = {S1, . . . , Sm}, a partition B =
(B1,B2, . . . ,Bq) of F , a (0, 1) vector (f1, f2, . . . , fq) corresponding to each
block in the partition (B1,B2, . . . ,Bq) and an integer �.
Question: Does there exist a subset F ′ ⊆ F of size � covering U and from
each block Bi with flags fi = 1 at least one set is picked?
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Lemma 2 (�).1 Set-Cover with Partition can be solved in O∗(2|U |) time.

We construct the Set-Cover with Partition instance from the DS-

disjointcluster instance as discussed above. It can be easily seen that there
exists a solution of size � in DS-disjointcluster instance if and only if
there exists a solution of size � in Set-Cover with Partition instance. In
Lemma 2, we solve Set-Cover with Partition via dynamic programming.
And |S| = |U |. This completes the proof. 
�

Now for each guess S′ ⊆ S with |S′| = i, we construct the Set-Cover with

Partition instance with |U | ≤ k − i and solve it with running time O∗(2k−i).

Hence the total running time is
k∑

i=1

(
k
i

)O∗(2k−i) which is O(3knO(1)). 
�
We show that with some careful modifications to the above dynamic pro-

gramming algorithm, efficient FPT algorithms for minimum EDS, IDS, TDS and
ThDS when parameterized by the size of cluster deletion set can be obtained.

Theorem 4 (�). EDS-CVD, TDS-CVD and IDS-CVD can be solved in
O∗(3k) time. ThDS-CVD can be solved in O∗((r + 2)k) time.

4.2 Lower Bounds

Lemma 3 (�). There is a polynomial time algorithm that takes an instance
(U,F , �) of SET-COVER and outputs an instance (G, �) of DS-CVD (or TDS-

CVD) such that G has a cluster vertex deletion set with exactly |U | vertices, such
that (U,F , �) has a set cover of size � if and only if G has a (total) dominating
set of size �.

The following theorem follows from the above lemma and Conjecture 3.

Theorem 5 (�). DS-CVD and TDS-CVD cannot be solved in O∗((2 − ε)k)
running time for any ε > 0 unless Set Cover Conjecture fails.

The following theorem follows from Theorem 1 and Lemma 3.

Theorem 6 (�). DS-CVD, TDS-CVD and ThDS-CVD do not have polyno-
mial sized kernels unless NP ⊆ coNP/poly.

Note that the proof idea of Theorem 6 does not work for IDS-CVD. To
show O∗((2− ε)k) lower bound for IDS-CVD under SETH, we use the following
theorem and an observation. Here MMVC-VC problem refers to the problem
of finding a maximum sized minimal vertex cover (MMVC) in a graph parame-
terized by the size of a given vertex cover (VC). Recall that a vertex cover in a
graph is a subset of vertices that covers all edges.

1 Due to lack of space, the proofs of Theorems, Lemmas, Observations, Safeness of
Reduction Rules marked � and some omitted details will appear in the full version.
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Theorem 7 ([21]).2 Unless SETH fails, MMVC-VC cannot be solved in
O∗((2−ε)k) time. Moreover, MMVC-VC does not admit polynomial sized kernel
unless NP ⊆ coNP/poly.

Observation 1 (�). If T is a minimal vertex cover of the graph G, then
V (G)\T is an independent dominating set in G. Furthermore, if T is a maxi-
mum minimal vertex cover, then V (G)\T is a minimum independent dominating
set.

From Observation 1, we know that the complement of a maximum minimal
vertex cover is a minimum independent dominating set. Also, any vertex cover is
a cluster vertex deletion set. So, from Theorem 7, we have the following result.

Corollary 1 (�). IDS-CVD cannot be solved in O∗((2−ε)k) time for any ε > 0
unless SETH fails. Moreover, IDS-CVD does not have any polynomial kernel
unless NP ⊆ coNP/poly.

For EDS-CVD, we can only prove a weaker lower bound of 2o(k) time assuming
ETH, but we give the lower bound for EDS parameterized by even a larger
parameter, i.e. the size of a vertex cover. We have the following results.

Theorem 8 (�). EDS-VC cannot be solved in 2o(|S|) time unless ETH fails.

Corollary 2. EDS-CVD cannot be solved in 2o(|S|) time unless ETH fails.

5 Dominating Set Variants Parameterized by SVD Size

In this section, we address the parameterized complexity of dominating set vari-
ants when parameterized by the size of a given SVD set S. Note that DS and
TDS are NP-hard on split graphs [20]. Hence we focus only on EDS and IDS.

We assume that S is given with the input. Otherwise given (G, k), we use an
O∗(1.27k+o(k)) algorithm due to Cygan and Pilipczuk [9] to find a set of vertices
of size at most k whose removal makes G into a split graph.

5.1 EDS and IDS Parameterized by SVD Size

First, we provide a simple algorithm for IDS-SVD. The idea is to make a guess
for the solution within the SVD and solve the resulting disjoint problem in
polynomial time. It turns out that it works for EDS-SVD too.

Theorem 9 (�). EDS-SVD and IDS-SVD can be solved in O∗(2k) time.

2 Note that the SETH based lower bound result and the result ruling out the existence
of polynomial kernel in this paper use different constructions.
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5.2 Lower Bounds for IDS and EDS

We know that any vertex cover is a split vertex deletion set. So, we have the
following corollary as a consequence of Theorem 7.

Corollary 3 (�).3 IDS-SVD cannot be solved in O∗((2 − ε)k) time unless
SETH fails and it does not admit polynomial kernels unless NP ⊆ coNP/poly.

For EDS, as the size of the SVD set is always smaller than the size of the vertex
cover, we have the following corollary of Theorem 8.

Corollary 4. EDS-SVD cannot be solved in 2o(|S|) time unless ETH fails.

5.3 Improved Algorithm for EDS-SVD

In this section, we give an improved algorithm for EDS-SVD parameterized by
the size of a given split vertex deletion set S breaking the barrier of O∗(2k).
Let F = G\S. As F is a split graph, V (F ) = C � I where C induces a clique
and I induces an independent set. The algorithm uses the standard branching
technique. Consider any efficient dominating set D of a graph. Any two vertices
u, v ∈ D must have distance at least three. At any intermediate stage of the
algorithm, we make a choice of not picking a vertex and we mark such vertices
by coloring them red. Other vertices are colored blue. Hence all vertices of G
are blue initially. We initialize D = ∅ which is the solution set we seek. Consider
any pair of blue vertices x, y ∈ S. If the distance between x and y is at most two
in G, then we use the following branching rule. And we measure the progress
of the algorithm by μ(G) which is the number of blue vertices in S, which is k
initially.

Branching Rule 1. Consider a pair of blue vertices x, y ∈ S such that the
distance between x and y is at most two in G. In the first branch, we add x into
D, delete N [x] from G, color the vertices in N=2(x) by red. In the second branch,
we add y into D, delete N [y] from G, color the vertices in N=2(y) by red. In the
third branch, we color x, y by red.

Clearly the branches are exhaustive as both x and y cannot be in the EDS
solution we seek. Furthermore, in the first branch, x is deleted from S and y
is colored red. Symmetrically in the second branch, y is deleted from S and
x is colored red. In the third branch, x and y are colored red. So in all the
branches, μ(G) drops by at least two resulting in a (2, 2, 2) branching rule. When
this branching rule is not applicable, for every pair of blue vertices x, y ∈ S,
N [x] ∩ N [y] = ∅. Now, as C is a clique, we can have at most one vertex from
C in the solution. When we decide to pick some vertex v ∈ C into the solution,
then we delete N [v] and color N=2(v) as red. So all vertices of C get deleted.
There are at most |C| vertices in C. When we decide not to pick any vertex from
C into the solution, then we color all vertices of C as red. So we have (|C| + 1)
3 We provide an alternate proof in the full version.
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choices from the vertices of C. Measure μ(G) does not increase in any of these
choices. A multiplicative factor of (|C| + 1) would come in the running time
because of this one-time branching. Now, we are left with only the vertices of I.
Now, we apply the following reduction rule to rule out some simple boundary
conditions.

Reduction Rule 1. If there exists a red vertex x ∈ V (G) such that NG(x) has
only one blue vertex y, then add y into D, delete N [y] from G and color N=2(y)
as red. Also if there exists a blue vertex x ∈ V (G) such that NG(x) contains no
blue vertex, then add x into D, delete N [x] from G and color N=2(x) as red.

It is easy to see that the above reduction rule is safe. Note that we have some blue
vertices in I. Such vertices can only be dominated by themselves or a unique
blue vertex in S, as otherwise Branching Rule 1 would have been applicable.
Now, suppose that there exists a blue vertex x ∈ S that has at least two blue
neighbors u, v ∈ I. If we decide to pick u (or symmetrically v) into D, then we
are not allowed to pick x or v (symmetrically u) in D but then u or v cannot be
dominated. This forces x into D. We have the following reduction rule.

Reduction Rule 2 (�). If there exists a blue vertex x ∈ S such that NG(x)
contains at least two blue neighbors in I, then add x into D, delete N [x] from
G and color vertices in N=2(x) red.

Lemma 4 (�). Reduction Rules 1 and 2 do not increase μ(G).

Now if there are red vertices in I having no blue neighbor in S, then we move
to the next branch as such a vertex cannot be dominated. Thus any blue vertex
in I has only one blue neighbor in S and any blue vertex in S has only one blue
neighbor in I. As Reduction Rule 1 is not applicable, any red vertex x ∈ S ∪ C
has at least two blue neighbors in u, v ∈ NG(x). Clearly both {u, v} �⊂ S as
otherwise Branching Rule 1 would have been applicable. So, now we are left
with the case that u, v ∈ I or u ∈ I, v ∈ S but (u, v) may or may not be an edge.
Now we apply the following branching rule.

Branching Rule 2. Let x be a red vertex in S with two blue neighbors u, v.

1. If u, v ∈ I, then we branch as follows. In one branch we add u into D, delete
N [u] from G , color N=2(u) as red. As v ∈ N=2(u) and v has only one blue
neighbor z ∈ S, we add z also into D, delete N [z] from G and color N=2(z) by
red. In the second branch, we add v into D, delete N [v] from G, color N=2(v)
as red. As u ∈ N=2(v) and u has only one blue neighbor y ∈ S, we add y also
into D, delete N=2(y) from G and color N=2(z) by red. In the third branch,
color both u and v by red. Add the only blue neighbor y of u and z of v into
D. Delete N [y], N [z] from G and color the vertices in N=2(y) ∪ N=2(z) by
red.

2. u ∈ I, v ∈ S, (u, v) /∈ E(G), then we branch as follows. In the first branch,
we add u to D, color v as red. This forces us to pick the only blue neighbor
z of v where z ∈ I. So, we add z to D. Delete N [u], N [z] from G and color
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N=2(u), N=2(z) as red. In the second branch, e color u as red. This forces us
to pick the only neighbor y of u where y ∈ S. And we pick v into D as well
as y into D. We delete N [v], N [y] from G and color N=2(v), N=2(y) by red.
In the third branch, we color both u and v by red. This forces us to pick the
only blue neighbor z ∈ NG(v) ∩ I, y ∈ NG(u) ∩ S into D. So, we pick z into
D, delete N [z], N [y] from G and color N=2(y), N=2(z) by red.

It is easy to see that μ(G) drops by at least two in all three branches as eventually
two blue vertices of S get deleted in all the branches.

When none of the above rules are applicable, then we have u ∈ S, v ∈ I and
(u, v) ∈ E(G). We know that either u ∈ D or v ∈ D. Consider the red vertices
in N(u) and red vertices in N(v). As Branching Rule 1, Reduction Rule 1 and
Branching Rule 2 are not applicable, by the following lemma using which we can
pick u or v arbitrarily.

Lemma 5 (�). If Branching Rule 1, Reduction Rule 1 and Branching Rule 2
are not applicable, then N(u)\{v} = N(v)\{u}.

This completes the description of our algorithm that consists of a sequence of
reduction rules and branching rules. The measure is k initially and the branching
continues as long as k drops to 0. So, we have the following recurrence.

T (k) ≤ 3T (k − 2) + α · (n + k)c

Solving this recurrence, we get O(1.732k ·nO(1)) implying the following theorem.

Theorem 10. EDS-SVD can be solved in O∗(3k/2) time.

6 Concluding Remarks

We have initiated a study of structural parameterizations of some dominating set
variants and complemented with lower bounds based on ETH and SETH. One
immediate open problem is to narrow the gap between upper and lower bounds,
especially for the dominating set variants parameterized by the size of CVD set.

We know that IDS is the complementary version of Maximum Minimal

Vertex Cover problem. So a natural approach for an O∗(2k) algorithm for
IDS-CVD is to apply the ideas used in [21] to get O∗(2k) algorithm for MMVC-

VC. But this seems to require more work as there may not exist a minimal vertex
cover that intersects the CVD set S in a particular subset.

Recently Bergougnoux and Kanté [1] have given an O∗(2O(k)) algorithm for
connected dominating set (the dominating set induces a connected graph) for
clique-width k graphs when the k-expression is given as input. An interesting
open problem is whether connected dominating set has a simpler FPT algorithm
as in the FPT algorithms in this paper, when parameterized by the CVD set
size.
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