
Grammar-Based Compression
of Unranked Trees

Adrià Gascón1, Markus Lohrey2, Sebastian Maneth3, Carl Philipp Reh2(B),
and Kurt Sieber2

1 Warwick University and Alan Turing Institute, Warwick, UK
2 Universität Siegen, Siegen, Germany

reh@eti.uni-siegen.de
3 Universität Bremen, Bremen, Germany

Abstract. We introduce forest straight-line programs (FSLPs) as a com-
pressed representation of unranked ordered node-labelled trees. FSLPs
are based on the operations of forest algebra and generalize tree straight-
line programs. We compare the succinctness of FSLPs with two other
compression schemes for unranked trees: top dags and tree straight-
line programs of first-child/next sibling encodings. Efficient translations
between these formalisms are provided. Finally, we show that equality
of unranked trees in the setting where certain symbols are associative or
commutative can be tested in polynomial time. This generalizes previous
results for testing isomorphism of compressed unordered ranked trees.

1 Introduction

Generally speaking, grammar-based compression represents an object succinctly
by means of a small context-free grammar. In many grammar-based compres-
sion formalisms such a grammar can be exponentially smaller than the object.
Henceforth, there is a great interest in problems that can be solved in polynomial
time on the grammar, while requiring at least linear time on the original uncom-
pressed object. One of the most well-known and fundamental such problems is
testing equality of the strings produced by two context-free string grammars,
each producing exactly one string (such grammars are also known as straight-
line programs — in this paper we use the term string straight-line program,
SSLP for short). Polynomial time solutions to this problem were discovered, in
different contexts by different groups of people, see the survey [14] for references.

Grammar-based compression has been generalized from strings to ordered
ranked node-labelled trees, by means of linear context-free tree grammars gen-
erating exactly one tree [6]. Such grammars are also known as tree straight-line
programs, TSLPs for short. Equality of the trees produced by two TSLPs can also
be checked in polynomial time: one constructs SSLPs for the pre-order traversals
of the trees, and then applies the above mentioned result for SSLPs, see [6]. The
tree case becomes more complex when unordered ranked trees are considered.
Such trees can be represented using TSLPs, by simply ignoring the order of
c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 118–131, 2018.
https://doi.org/10.1007/978-3-319-90530-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90530-3_11&domain=pdf

Grammar-Based Compression of Unranked Trees 119

children in the produced tree. Checking isomorphism of unordered ranked trees
generated by TSLPs was recently shown to be solvable in polynomial time [16].
The solution transforms the TSLPs so that they generate canonical representa-
tions of the original trees and then checks equality of these canonical forms.

The aforementioned result for ranked trees cannot be applied to unranked
trees (where the number of children of a node is not bounded), which arise for
instance in XML document trees. This is unfortunate, because (i) grammar-
based compression is particularly effective for XML document trees (see [15]),
and (ii) XML document trees can often be considered unordered (one speaks of
“data-centric XML”, see e.g. [1,3,5,20]), allowing even stronger grammar-based
compressions [17].

In this paper we introduce a generalization of TSLPs and SSLPs that
allows to produce ordered unranked node-labelled trees and forests (i.e., ordered
sequences of trees) that we call forest straight-line programs, FSLPs for short. In
contrast to TSLPs, FSLPs can compress very wide and flat trees. For instance,
the tree f(a, a, . . . , a) with n many a’s is not compressible with TSLPs but can
be produced by an FSLP of size O(log n). FSLPs are based on the operations
of horizontal and vertical forest composition from forest algebras [4]. The main
contributions of this paper are the following:

Comparison with Other Formalisms. We compare the succinctness of
FSLPs with two other grammar-based formalisms for compressing unranked
node-labelled ordered trees: TSLPs for “first-child/next-sibling” (fcns) encodings
and top dags. The fcns-encoding is the standard way of transforming an unranked
tree into a binary tree. Then the resulting binary tree can be succinctly repre-
sented by a TSLP. This approach was used to apply the TreeRePair-compressor
from [15] to unranked trees. We prove that FSLPs and TSLPs for fcns-encodings
are equally succinct up to constant multiplicative factors and that one can change
between both representations in linear time (Propositions 9 and 10).

Top dags are another formalism for compressing unranked trees [2]. Top dags
use horizontal and vertical merge operations for tree construction, which are
very similar to the horizontal and vertical concatenation operations from FSLPs.
Whereas a top dag can be transformed in linear time into an equivalent FSLP
with a constant multiplicative blow-up (Proposition 6), the reverse transforma-
tion (from an FSLP to a top dag) needs time O(σ·n) and involves a multiplicative
blow-up of size O(σ) where σ is the number of node labels of the tree (Propo-
sition 7). A simple example (Example 8) shows that this σ-factor is unavoidable.
The reason for the σ-factor is a technical restriction in the definition of top dags:
In contrast to FSLPs, top dags only allow sharing of common subtrees but not
of common subforests. Hence, sharing between (large) subtrees which only dif-
fer in their root labels may be impossible at all (as illustrated by Example 8),
and this leads to the σ-blow-up in comparison to FSLPs. The impossibility of
sharing subforests would also complicate the technical details of our main algo-
rithmic results for FSLPs (in particular Proposition 10 and Theorem 13 which is
discussed below) for which we make heavy use of a particular normal form for
FSLPs that exploits the sharing of proper subforests. We therefore believe that
at least for our purposes, FSLPs are a more adequate formalism than top dags.

120 A. Gascón et al.

Testing Equality Modulo Associativity and Commutativity. Our main
algorithmic result for FSLPs can be formulated as follows: Fix a set Σ of node
labels and take a subset C ⊆ Σ of “commutative” node labels and a subset
A ⊆ Σ of “associative” node labels. This means that for all a ∈ A, c ∈ C and all
trees t1, t2, . . . , tn (i) we do not distinguish between the trees c(t1, . . . , tn) and
c(tσ(1), . . . , tσ(n)), where σ is any permutation (commutativity), and (ii) we do
not distinguish the trees a(t1, . . . , tn) and a(t1, . . . , ti−1, a(ti, . . . , tj−1), tj , . . . , tn)
for 1 ≤ i ≤ j ≤ n + 1 (associativity). We then show that for two given FSLPs
F1 and F2 that produce trees t1 and t2 (of possible exponential size), one can
check in polynomial time whether t1 and t2 are equal modulo commutativity and
associativity (Theorem 13). Note that unordered tree isomorphism corresponds
to the case C = Σ and A = ∅ (in particular we generalize the result from [16] for
ranked unordered trees). Theorem13 also holds if the trees t1 and t2 are given
by top dags or TSLPs for the fcns-encodings, since these formalisms can be
transformed efficiently into FSLPs. Theorem13 also shows the utility of FSLPs
even if one is only interested in say binary trees, which are represented by TSLPs.
The law of associativity will yield very wide and flat trees that are no longer
compressible with TSLPs but are still compressible with FSLPs.

Missing proofs can be found in the arXiv version of this paper [11].

2 Straight-Line Programs over Algebras

We will produce strings, trees and forests by algebraic expressions over certain
algebras. These expressions will be compressed by directed acyclic graphs. In
this section, we introduce the general framework, which will be reused several
times in this paper.

An algebraic structure is a tuple A = (A, f1, . . . , fk) where A is the universe
and every fi : Ani → A is an operation of a certain arity ni. In this paper,
the arity of all operations will be at most two. If ni = 0, then fi is called
a constant. Moreover, it will be convenient to allow partial operations for the
fi. Algebraic expressions over A are defined in the usual way: if e1, . . . , eni

are
algebraic expressions over A, then also fi(e1, . . . , eni

) is an algebraic expressions
over A. For an algebraic expression e, �e� ∈ A denotes the element to which e
evaluates (it can be undefined).

A straight-line program (SLP for short) over A is a tuple P = (V, S, ρ), where
V is a set of variables, S ∈ V is the start variable, and ρ maps every variable
A ∈ V to an expression of the form fi(A1, . . . , Ani

) (the so called right-hand
side of A) such that A1, . . . , Ani

∈ V and the edge relation E(P) = {(A,B) ∈
V × V |B occurs in ρ(A)} is acyclic. This allows to define for every variable
A ∈ V its value �A�P inductively by �A�P = fi(�A1�P , . . . , �Ani

�P) if ρ(A) =
fi(A1, . . . , Ani

). Since the fi can be partially defined, the value of a variable can
be undefined. The SLP P will be called valid if all values �A�P (A ∈ V) are
defined. In our concrete setting, validity of an SLP can be tested by a simple
syntax check. The value of P is �P � = �S�P . Usually, we prove properties of
SLPs by induction along the partial order E(P)∗.

Grammar-Based Compression of Unranked Trees 121

It will be convenient to allow for the right-hand sides ρ(A) algebraic expres-
sions over A, where the variables from V can appear as atomic expressions.
By introducing additional variables, we can transform such an SLP into an
equivalent SLP of the original form. We define the size |P | of an SLP P as
the total number of occurrences of operations f1, . . . , fk in all right-hand sides
(which is the number of variables if all right-hand sides have the standard form
fi(A1, . . . , Ani

)).
Sometimes it is useful to view an SLP P = (V, S, ρ) as a directed acyclic

graph (dag) (V,E(P)), together with the distinguished output node S, and the
node labelling that associates the label fi with the node A ∈ V if ρ(A) =
fi(A1, . . . , Ani

). Note that the outgoing edges (A,A1), . . . , (A,Ani
) have to be

ordered since fi is in general not commutative and that multi-edges have to be
allowed. Such dags are also known as algebraic circuits in the literature.

String Straight-Line Programs. A widely studied type of SLPs are SLPs over
a free monoid (Σ∗, ·, ε, (a)a∈Σ), where · is the concatenation operator (which, as
usual, is not written explicitly in expressions) and the empty string ε and every
alphabet symbol a ∈ Σ are added as constants. We use the term string straight-
line programs (SSLPs for short) for these SLPs. If we want to emphasize the
alphabet Σ, we speak of an SSLP over Σ. In many papers, SSLPs are just called
straight-line programs; see [14] for a survey. Occasionally we consider SSLPs
without a start variable S and then write (V, ρ).

Example 1. Consider the SSLP G = ({S,A,B,C}, S, ρ) over the alphabet {a, b}
with ρ(S) = AAB, ρ(A) = CBB, ρ(B) = CaC, ρ(C) = b. We have �B�G =
bab, �A�G = bbabbab, and �G� = bbabbabbbabbabbab. The size of G is 8 (six
concatenation operators are used in the right-hand sides, and there are two
occurrences of constants).

In the next two sections, we introduce two types of algebras for trees and forests.

3 Forest Algebras and Forest Straight-Line Programs

Trees and Forests. Let us fix a finite set Σ of node labels for the rest of the
paper. We consider Σ-labelled rooted ordered trees, where “ordered” means that
the children of a node are totally ordered. Every node has a label from Σ. Note
that we make no rank assumption: the number of children of a node (also called
its degree) is not determined by its node label. The set of nodes (resp. edges)
of t is denoted by V (t) (resp., E(t)). A forest is a (possibly empty) sequence
of trees. The size |f | of a forest is the total number of nodes in f . The set of
all Σ-labelled forests is denoted by F0(Σ) and the set of all Σ-labelled trees is
denoted by T0(Σ). As usual, we can identify trees with expressions built up from
symbols in Σ and parentheses. Formally, F0(Σ) and T0(Σ) can be inductively
defined as the following sets of strings over the alphabet Σ ∪ {(,)}.

– If t1, . . . , tn are Σ-labelled trees with n ≥ 0, then the string t1t2 · · · tn is a
Σ-labelled forest (in particular, the empty string ε is a Σ-labelled forest).

122 A. Gascón et al.

– If f is a Σ-labelled forest and a ∈ Σ, then a(f) is a Σ-labelled tree (where
the singleton tree a() is usually written as a).

Let us fix a distinguished symbol x 	∈ Σ for the rest of the paper (called the
parameter). The set of forests f ∈ F0(Σ ∪ {x}) such that x has a unique occur-
rence in f and this occurrence is at a leaf node is denoted by F1(Σ). Let
T1(Σ) = F1(Σ) ∩ T0(Σ ∪ {x}). Elements of T1(Σ) (resp., F1(Σ)) are called
tree contexts (resp., forest contexts). We finally define F(Σ) = F0(Σ) ∪ F1(Σ)
and T (Σ) = T0(Σ) ∪ T1(Σ). Following [4], we define the forest algebra FA(Σ) =
(F(Σ),�,�, (a)a∈Σ , ε, x) as follows:

– � is the horizontal concatenation operator: for forests f1, f2 ∈ F(Σ), f1 � f2
is defined if f1 ∈ F0(Σ) or f2 ∈ F0(Σ) and in this case we set f1 � f2 = f1f2
(i.e., we concatenate the corresponding sequences of trees).

– � is the vertical concatenation operator: for forests f1, f2 ∈ F(Σ), f1 � f2 is
defined if f1 ∈ F1(Σ) and in this case f1 � f2 is obtained by replacing in f1
the unique occurrence of the parameter x by the forest f2.

– Every a ∈ Σ is identified with the unary function a : F(Σ) → T (Σ) that
produces a(f) when applied to f ∈ F(Σ).

– ε ∈ F0(Σ) and x ∈ F1(Σ) are constants of the forest algebra.

For better readability, we also write f〈g〉 instead of f � g, fg instead of f � g,
and a instead of a(ε). Note that a forest f ∈ F(Σ) can be also viewed as an
algebraic expression over FA(Σ), which evaluates to f itself (analogously to the
free term algebra).

First-Child/Next-Sibling Encoding. The first-child/next-sibling encoding
transforms a forest over some alphabet Σ into a binary tree over Σ {⊥}.
We define fcns: F0(Σ) → T0(Σ {⊥}) inductively by: (i) fcns(ε) = ⊥ and
(ii) fcns(a(f)g) = a(fcns(f)fcns(g)) for f, g ∈ F0(Σ), a ∈ Σ. Thus, the left
(resp., right) child of a node in fcns(f) is the first child (resp., right sibling) of
the node in f or a ⊥-labelled leaf if it does not exist.

Example 2. If f = a(bc)d(e) then

fcns(f) = fcns(a(bc)d(e)) = a(fcns(bc)fcns(d(e)))
= a(b(⊥fcns(c))d(fcns(e)⊥)) = a(b(⊥c(⊥⊥))d(e(⊥⊥)⊥)).

Forest Straight-Line Programs. A forest straight-line program over Σ, FSLP
for short, is a valid straight-line program over the algebra FA(Σ) such that
�F � ∈ F0(Σ). Iterated vertical and horizontal concatenations allow to generate
forests, whose depth and width is exponential in the FSLP size. For an FSLP
F = (V, S, ρ) and i ∈ {0, 1} we define Vi = {A ∈ V | �A�F ∈ Fi(Σ)}.

Example 3. Consider the FSLP F = ({S,A0, A1, . . . , An, B0, B1, . . . , Bn}, S, ρ)
over {a, b, c} with ρ defined by ρ(A0) = a, ρ(Ai) = Ai−1Ai−1 for 1 ≤ i ≤ n,
ρ(B0) = b(AnxAn), ρ(Bi) = Bi−1〈Bi−1〉 for 1 ≤ i ≤ n, and ρ(S) = Bn〈c〉. We
have �F � = b(a2nb(a2n · · · b(a2nc a2n) · · · a2n)a2n), where b occurs 2n many times.
A more involved example can be found in the arXiv version of this paper [11].

Grammar-Based Compression of Unranked Trees 123

FSLPs generalize tree straight-line programs (TSLPs for short) that have been
used for the compression of ranked trees before, see e.g. [6,15]. We only need
TSLPs for binary trees. A TSLP over Σ can then be defined as an FSLP T =
(V, S, ρ) such that for every A ∈ V, ρ(A) has the form a, a(BC), a(xB), a(Bx),
or B〈C〉 with a ∈ Σ, B,C ∈ V . TSLPs can be used in order to compress the
fcns-encoding of an unranked tree; see also [15]. It is not hard to see that an
FSLP F that produces a binary tree can be transformed into a TSLP T such
that �F � = �T � and |T | ∈ O(|F |). This is an easy corollary of our normal form
for FSLPs that we introduce next (see also the proof of Proposition 9).

Normal Form FSLPs. In this paragraph, we introduce a normal form for
FSLPs that turns out to be crucial in the rest of the paper. An FSLP F = (V, S, ρ)
is in normal form if V0 = V �

0 V ⊥
0 and all right-hand sides have one of the

following forms:

– ρ(A) = ε, where A ∈ V �
0 ,

– ρ(A) = BC, where A ∈ V �
0 , B,C ∈ V0,

– ρ(A) = B〈C〉, where B ∈ V1 and either A,C ∈ V ⊥
0 or A,C ∈ V1,

– ρ(A) = a(B), where A ∈ V ⊥
0 , a ∈ Σ and B ∈ V0,

– ρ(A) = a(BxC), where A ∈ V1, a ∈ Σ and B,C ∈ V0.

Note that the partition V0 = V �
0 V ⊥

0 is uniquely determined by ρ. Also note
that variables from V1 produce tree contexts and variables from V ⊥

0 produce
trees, whereas variables from V �

0 produce forests with arbitrarily many trees.
Let F = (V, S, ρ) be a normal form FSLP. Every variable A ∈ V1 produces

a vertical concatenation of (possibly exponentially many) variables, whose right-
hand sides have the form a(BxC). This vertical concatenation is called the spine
of A. Formally, we split V1 into V �

1 = {A ∈ V1 | ∃B,C ∈ V1 : ρ(A) = B〈C〉} and
V ⊥
1 = V1 \ V �

1 . We then define the vertical SSLP F� = (V �
1 , ρ1) over V ⊥

1 with
ρ1(A) = BC whenever ρ(A) = B〈C〉. For every A ∈ V1 the string �A�F � ∈ (V ⊥

1)∗

is called the spine of A (in F), denoted by spineF (A) or just spine(A) if F is
clear from the context. We also define the horizontal SSLP F� = (V �

0 , ρ0) over
V ⊥
0 , where ρ0 is the restriction of ρ to V �

0 . For every A ∈ V0 we use hor(A) to
denote the string �A�F � ∈ (V ⊥

0)∗. Note that spine(A) = A (resp., hor(A) = A)
for every A ∈ V ⊥

1 (resp., A ∈ V ⊥
0).

The intuition behind the normal form can be explained as follows: Consider
a tree context t ∈ T1(Σ) \ {x}. By decomposing t along the nodes on the unique
path from the root to the x-labelled leaf, we can write t as a vertical concate-
nation of tree contexts a1(f1xg1), . . . , an(fnxgn) for forests f1, g1, . . . , fn, gn and
symbols a1, . . . , an. In a normal form FSLP one would produce t by first deriving
a vertical concatenation A1〈· · · 〈An〉 · · ·〉. Every Ai is then derived to ai(BixCi),
where Bi (resp., Ci) produces the forest fi (resp., gi). Computing an FSLP for
this decomposition for a tree context that is already given by an FSLP is the
main step in the proof of the normal form theorem below. Another insight is that
proper forest contexts from F1(Σ) \T1(Σ) can be eliminated without significant
size blow-up.

124 A. Gascón et al.

Theorem 4. From a given FSLP F one can construct in linear time an FSLP
F ′ in normal form such that �F ′� = �F � and |F ′| ∈ O(|F |).

4 Cluster Algebras and Top Dags

In this section we introduce top dags [2,12] as an alternative grammar-based
formalism for the compression of unranked trees. A cluster of rank 0 is a tree
t ∈ T0(Σ) of size at least two. A cluster of rank 1 is a tree t ∈ T0(Σ) of size
at least two together with a distinguished leaf node that we call the bottom
boundary node of t. In both cases, the root of t is called the top boundary node
of t. Note that in contrast to forest contexts there is no parameter x. Instead,
one of the Σ-labelled leaf nodes may be declared as the bottom boundary node.
When writing a cluster of rank 1 in term representation, we underline the bottom
boundary node. For instance a(b c(a b)) is a cluster of rank 1. An atomic cluster
is of the form a(b) or a(b) for a, b ∈ Σ. Let Ci(Σ) be the set of all clusters of rank
i ∈ {0, 1} and let C(Σ) = C0(Σ) ∪ C1(Σ). We write rank(s) = i if s ∈ Ci(Σ) for
i ∈ {0, 1}. We define the cluster algebra CA(Σ) = (C(Σ),�,�, (a(b), a(b))a,b∈Σ)
as follows:

– � is the horizontal merge operator: s� t is only defined if rank(s) + rank(t) ≤
1 and s, t are of the form s = a(f), t = a(g), i.e., the root labels coincide. Then
s� t = a(fg). Note that at most one symbol in the forest fg is underlined.
The rank of s� t is rank(s) + rank(t). For instance, a(b c(a b))� a(b c) =
a(b c(a b)b c).

– � is the vertical merge operator: s� t is only defined if s ∈ C1(Σ) and the
label of the root of t (say a) is equal to the label of the bottom boundary node
of s. We then obtain s� t by replacing the unique occurrence of a in s by t.
The rank of s� t is rank(t). For instance, a(b c(a b))� a(bc) = a(b c(a(bc) b)).

– The atomic clusters a(b) and a(b) are constants of the cluster algebra.

A top tree for a tree t ∈ T0 is an algebraic expression e over the algebra CA(Σ)
such that �e� = t. A top dag over Σ is a straight-line program D over the algebra
CA(Σ) such that �D� ∈ T0(Σ). In our terminology, cluster straight-line program
would be a more appropriate name, but we prefer to call them top dags.

Example 5. Consider the top dag D = ({S,A0, . . . , An, B0, . . . , Bn}, S, ρ), where
ρ(A0) = b(a), ρ(Ai) = Ai−1 � Ai−1 for 1 ≤ i ≤ n, ρ(B0) = An � b(b)� An,
ρ(Bi) = Bi−1 �Bi−1 for 1 ≤ i ≤ n, and ρ(S) = Bn � b(c). We have �D� =
b(a2nb(a2n · · · b(a2nb(c) a2n) · · · a2n)a2n), where b occurs 2n + 1 many times.

5 Relative Succinctness

We have now three grammar-based formalisms for the compression of unranked
trees: FSLPs, top dags, and TSLPs for fcns-encodings. In this section we study
their relative succinctness. It turns out that up to multiplicative factors of size
|Σ| (number of node labels) all three formalisms are equally succinct. Moreover,

Grammar-Based Compression of Unranked Trees 125

the transformations between the formalisms can be computed very efficiently.
This allows us to transfer algorithmic results for FSLPs to top dags and TSLPs
for fcns encodings, and vice versa. We start with top dags:

Proposition 6. For a given top dag D one can compute in linear time an FSLP
F such that �F � = �D� and |F | ∈ O(|D|).

Proposition 7. For a given FSLP F with �F � ∈ T0(Σ) and |�F �| ≥ 2 one
can compute in time O(|Σ| · |F |) a top dag D such that �D� = �F � and |D| ∈
O(|Σ| · |F |).

The following example shows that the size bound in Proposition 7 is sharp:

Example 8. Let Σ = {a, a1, . . . , aσ} and for n ≥ 1 let tn = a(a1(am) · · · aσ(am))
with m = 2n. For every n > σ the tree tn can be produced by an FSLP of size
O(n): using n = log m many variables we can produce the forest am and then
O(n) many additional variables suffice to produce tn. On the other hand, every
top dag for tn has size Ω(σ ·n): consider a top tree e that evaluates to tn. Then e
must contain a subexpression ei that evaluates to the subtree ai(am) (1 ≤ i ≤ σ)
of tn. The subexpression ei has to produce ai(am) using the �-operation from
copies of ai(a). Hence, the expression for ai(am) has size n = log2 m and different
ei contain no identical subexpressions. Therefore every top dag for tn has size
at least σ · n.

In contrast, FSLPs and TSLPs for fcns-encodings turn out to be equally succinct
up to constant factors:

Proposition 9. Let f ∈ F(Σ) be a forest and let F be an FSLP (or TSLP)
over Σ {⊥} with �F � = fcns(f). Then we can transform F in linear time into
an FSLP F ′ over Σ with �F ′� = f and |F ′| ∈ O(|F |).

Proposition 10. For every FSLP F over Σ, we can construct in linear time a
TSLP T over Σ ∪ {⊥} with �T � = fcns(�F �) and |T | ∈ O(|F |).

Proposition 10 and the construction from [7, Proposition 8.3.2] allow to reduce
the evaluation of forest automata on FSLPs (for a definition of forest and tree
automata, see [7]) to the evaluation of ordinary tree automata on binary trees.
The latter problem can be solved in polynomial time [18], which yields:

Corollary 11. Given a forest automaton A and an FSLP (or top dag) F we
can check in polynomial time whether A accepts �F �.

In [2], a linear time algorithm is presented that constructs from a tree of size
n with σ many node labels a top dag of size O(n/ log0.19

σ n). In [12] this bound
was improved to O(n log log n/ logσ n) (for the same algorithm as in [2]). In [19]
we recently presented an alternative construction that achieves the information-
theoretic optimum of O(n/ logσ n) (another optimal construction was presented
in [9]). Moreover, as in [2], the constructed top dag satisfies the additional size
bound O(d·log n), where d is the size of the minimal dag of t. With Propositions 6
and 10 we get:

126 A. Gascón et al.

Corollary 12. Given a tree t of size n with σ many node labels, one can
construct in linear time an FSLP for t (or an TSLP for fcns(t)) of size
O(n/ logσ n) ∩ O(d · log n), where d is the size of the minimal dag of t.

6 Testing Equality Modulo Associativity
and Commutativity

In this section we will give an algorithmic application which proves the utility
of FSLPs (even if we deal with binary trees). We fix two subsets A ⊆ Σ (the set
of associative symbols) and C ⊆ Σ (the set of commutative symbols). This means
that we impose the following identities for all a ∈ A, c ∈ C, all trees t1, . . . , tn ∈
T0(Σ), all permutations σ : {1, . . . , n} → {1, . . . , n}, and all 1 ≤ i ≤ j ≤ n + 1:

a(t1 · · · tn) = a(t1 · · · ti−1a(ti · · · tj−1)tj · · · tn) (1)
c(t1 · · · tn) = c(tσ(1) · · · tσ(n)). (2)

Note that the standard law of associativity for a binary symbol ◦ (i.e., x◦(y◦z) =
(x◦y)◦ z) can be captured by making ◦ an (unranked) associative symbol in the
sense of (1). Our main result is:

Theorem 13. For trees s, t we can test in polynomial time whether s and t are
equal modulo the identities in (1) and (2), if s and t are given succinctly by one
of the following three formalisms: (i) FSLPs, (ii) top dags, (iii) TSLPs for the
fcns-encodings of s, t.

6.1 Associative Symbols

Below, we define the associative normal form nfA(f) of a forest f and show
that from an FSLP F we can compute in linear time an FSLP F ′ with
�F ′� = nfA(�F �). For trees s, t ∈ T0(Σ) we have that s = t modulo the identities
in (1) if and only if nfA(s) = nfA(t). The generalization to forests is needed
for the induction, where a slight technical problem arises. Whether the forests
t1 · · · ti−1a(ti · · · tj−1)tj · · · tn and t1 · · · tn are equal modulo the identities in (1)
actually depends on the symbol on top of these two forests. If it is an a, and
a ∈ A, then the two forests are equal modulo associativity, otherwise not. To
cope with this problem, we use for every associative symbol a ∈ A a function
φa: F0(Σ) → F0(Σ) that pulls up occurrences of a whenever possible.

Let • /∈ Σ be a new symbol. For every a ∈ Σ ∪ {•} let φa: F0(Σ) → F0(Σ)
be defined as follows, where f ∈ F0(Σ) and t1, . . . , tn ∈ T0(Σ):

φa(b(f)) =

{
φa(f) if a ∈ A and a = b,

b(φb(f)) otherwise,
φa(t1 · · · tn) = φa(t1) · · · φa(tn).

In particular, φa(ε) = ε. Moreover, define nfA: F0(Σ) → F0(Σ) by nfA(f) =
φ•(f).

Grammar-Based Compression of Unranked Trees 127

Example 14. Let t = a(a(cd)b(cd)a(e)) and A = {a}. We obtain

φa(t) = φa(a(cd)b(cd)a(e)) = φa(a(cd))φa(b(cd))φa(a(e))
= φa(cd)b(φb(cd))φa(e) = cdb(cd)e,

φb(t) = a(φa(a(cd)b(cd)a(e))) = a(cdb(cd)e).

To show the following simple lemma one considers the terminating and confluent
rewriting system obtained by directing the Eq. (1) from right to left.

Lemma 15. For two forests f1, f2 ∈ F0(Σ), nfA(f1) = nfA(f2) if and only if
f1 and f2 are equal modulo the identities in (1) for all a ∈ A.

Lemma 16. From a given FSLP F = (V, S, ρ) over Σ one can construct in
time O(|F | · |Σ|) an FSLP F ′ with �F ′� = nfA(�F �).

For the proof of Lemma 16 one introduces new variables Aa for all a ∈ Σ ∪ {•}
and defines the right-hand sides of F ′ such that �Aa�F ′ = φa(�A�F) for all
A ∈ V0 and �Ba〈φb(f)〉�F ′ = φa(�B〈f〉�F) for all B ∈ V1, f ∈ F0(Σ), where b is
the label of the parent node of the parameter x in �B�F . This parent node exists
if we assume the FSLP F to be in normal form.

6.2 Commutative Symbols

To test whether two trees over Σ are equivalent with respect to commutativity,
we define a commutative normal form nfC(t) of a tree t ∈ T0(Σ) such that
nfC(t1) = nfC(t2) if and only if t1 and t2 are equivalent with respect to the
identities in (2) for all c ∈ C.

We start with a general definition: Let Δ be a possibly infinite alphabet
together with a total order <. Let ≤ be the reflexive closure of <. Define the
function sort<: Δ∗ → Δ∗ by sort<(a1 · · · an) = ai1 · · · ain with {i1, . . . , in} =
{1, . . . , n} and ai1 ≤ · · · ≤ ain .

Lemma 17. Let G be an SSLP over Δ and let < be some total order on Δ. We
can construct in time O(|Δ| · |G|) an SSLP G′ such that �G′� = sort<(�G�).

In order to define the commutative normal form, we need a total order on F0(Σ).
Recall that elements of F0(Σ) are particular strings over the alphabet Γ := Σ ∪
{(,)}. Fix an arbitrary total order on Γ and let <llex be the length-lexicographic
order on Γ ∗ induced by <: for x, y ∈ Γ ∗ we have x <llex y if |x| < |y| or (|x| = |y|,
x = uav, y = ubv′, and a < b for u, v, v′ ∈ Γ ∗ and a, b ∈ Γ). We now consider
the restriction of <llex to F0(Σ) ⊆ Γ ∗. For the proof of the following lemma
one first constructs SSLPs for the strings �F1�, �F2� ∈ Γ ∗ (the construction is
similar to the case of TSLPs, see [6]) and then uses [16, Lemma 3] according to
which SSLP-encoded strings can be compared in polynomial time with respect
to <llex.

Lemma 18. For two FSLPs F1 and F2 we can check in polynomial time whether
�F1� = �F2�, �F1� <llex �F2� or �F2� <llex �F1�.

128 A. Gascón et al.

From the restriction of <llex to T0(Σ) ⊆ Γ ∗ we obtain the function sort<llex on
T0(Σ)∗ = F0(Σ). We define nfC : F0(Σ) → F0(Σ) by

nfC(a(f)) =

{
a(sort<llex(nfC(f))) if a ∈ C
a(nfC(f)) otherwise,

nfC(t1 · · · tn) = nfC(t1) · · · nfC(tn).

Obviously, f1, f2 ∈ F(Σ) are equal modulo the identities in (2) for all c ∈ C if
and only if nfC(f1) = nfC(f2). Using this fact and Lemma 15 it is not hard to
show:

Lemma 19. For f1, f2 ∈ F0(Σ) we have nfC(nfA(f1)) = nfC(nfA(f2)) if and
only if f1 and f2 are equal modulo the identities in (1) and (2) for all a ∈ A,
c ∈ C.
For our main technical result (Theorem 21) we need a strengthening of our FSLP
normal form. Recall the notion of the spine from Sect. 3. We say that an FSLP
F = (V, S, ρ) is in strong normal form if it is in normal form and for every
A ∈ V ⊥

0 with ρ(A) = B〈C〉 either B ∈ V ⊥
1 or |�C�F | ≥ |�D�F | − 1 for every

D ∈ V ⊥
1 which occurs in spine(B) (note that |�D�F | − 1 is the number of nodes

in �D�F except for the parameter x).

Lemma 20. From a given FSLP F = (V, S, ρ) in normal form we can construct
in polynomial time an FSLP F ′ = (V ′, S, ρ′) in strong normal form with �F � =
�F ′�.

For the proof of Lemma 20 we modify the right-hand sides of variables A ∈ V ⊥
0

with ρ(A) = B〈C〉 and |spine(B)| ≥ 2. Basically, we replace the vertical con-
catenations B〈C〉 by polynomially many vertical concatenations Bi〈Ci〉 which
satisfy the condition of the strong normal form. We can now prove the main
technical result of this section:

Theorem 21. From a given FSLP F we can construct in polynomial time an
FSLP F ′ with �F ′� = nfC(�F �).

Proof. Let F = (V, S, ρ). By Theorem 4 and Lemma 20 we may assume that F
is in strong normal form. For every A ∈ V1 let

args(A) = {t ∈ T0(Σ) | |t| ≥ |�D�F | − 1for each symbol D in spine(A)}
We want to construct an FSLP F ′ = (V ′, S, ρ′) with V0 ⊆ V ′

0 and V1 = V ′
1 such

that

(1) �A�F ′ = nfC(�A�F) for all A ∈ V0,
(2) �A�F ′〈nfC(t)〉 = nfC(�A�F 〈t〉) for all A ∈ V1, t ∈ args(A).

From (1) we obtain �F ′� = �S�F ′ = nfC(�S�F) = nfC(�F �) which concludes the
proof.

To define ρ′, let V c = V c
0 ∪V c

1 with V c
1 = {A ∈ V1 | ρ(A) = a(BxC) with a ∈

C} and V c
0 = {A ∈ V0 | ρ(A) = a(B) with a ∈ C or ρ(A) = D〈C〉 with D ∈ V c

1 }
be the set of commutative variables. We set ρ′(A) = ρ(A) for A ∈ V \ V c. For
A ∈ V c we define ρ′(A) by induction along the partial order of the dag:

Grammar-Based Compression of Unranked Trees 129

1. ρ(A) = a(B): Let MA be the set of all C ∈ V ⊥
0 which are below A in the

dag, and let w = hor(B) = �B�F � ∈ M∗
A. By induction, ρ′ is already defined

on MA, and thus �C�F ′ is defined for every C ∈ MA. By Lemma 18, we can
compute in polynomial time a total order < on MA such that C < D implies
�C�F ′ ≤llex �D�F ′ for all C,D ∈ MA. By Lemma 17, we can construct in linear
time an SSLP Gw = (Vw, Sw, ρw) with �Gw� = sort<(w), and we may assume
that all variables D ∈ Vw are new. We add these variables to V ′

0 together
with their right hand sides ρ′(D) = ρw(D), and we finally set ρ′(A) = a(Sw).

2. ρ(A) = B〈C〉: Let ρ(B) = a(DxE). We define Gw = (Vw, Sw, ρw) as before,
but with w = �DCE�F � instead of w = �B�F � , and we set ρ′(A) = a(Sw).

3. ρ(A) = a(BxC): We define Gw = (Vw, Sw, ρw) as before, this time with
w = �BC�F � , and we set ρ′(B) = a(Swx).

The main idea is that the strong normal form ensures that in right-hand sides of
the form a(DxE) with a ∈ C one can move the parameter x to the last position
(see point 3 above), since only trees that are larger than all trees produced from
D and E are substituted for x. ��

Proof of Theorem 13. By Propositions 6 and 9 it suffices to show Theorem 13
for the case that t1 and t2 are given by FSLPs F1 and F2, respectively. By
Lemma 19 and Lemma 18 it suffices to compute in polynomial time FSLPs F ′

1

and F ′
2 for nfC(nfA(t1)) and nfC(nfA(t2)). This can be achieved using Lemma 16

and Theorem 21. ��

7 Future Work

We have shown that simple algebraic manipulations (laws of associativity and
commutativity) can be carried out efficiently on grammar-compressed trees. In
the future, we plan to investigate other algebraic laws. We are optimistic that
our approach can be extended by idempotent symbols (meaning that a(fttg) =
a(ftg) for forests f, g and a tree t).

Another interesting open problem concerns context unification modulo asso-
ciative and commutative symbols. The decidability of (plain) context-unification
was a long standing open problem that was finally solved by Jeż [13], who showed
the existence of a polynomial space algorithm. Jeż’s algorithm uses his recom-
pression technique for TSLPs. One might try to extend this technique to FSLPs
with the goal of proving decidability of context unification for terms that also
contain associative and commutative symbols. For first-order unification and
matching [10], context matching [10], and one-context unification [8] there exist
algorithms for TSLP-compressed trees that match the complexity of their uncom-
pressed counterparts. One might also try to extend these results to the associative
and commutative setting.

Acknowledgements. The first author was supported by the EPSRC grant
EP/N510129/1 at the Alan Turing Institute and the EPSRC grant EP/J017728/2
at University of Edinburgh. The second author was supported by the DFG research
project LO748/10-1.

130 A. Gascón et al.

References

1. Abiteboul, S., Bourhis, P., Vianu, V.: Highly expressive query languages for
unordered data trees. Theor. Comput. Syst. 57(4), 927–966 (2015)

2. Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top trees.
Inf. Comput. 243, 166–177 (2015)

3. Boiret, A., Hugot, V., Niehren, J., Treinen, R.: Logics for unordered trees with data
constraints on siblings. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B.
(eds.) LATA 2015. LNCS, vol. 8977, pp. 175–187. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-15579-1 13

4. Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Proceedings of Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas], Texts in
Logic and Games, vol. 2, pp. 107–132. Amsterdam University Press (2008)

5. Boneva, I., Ciucanu, R., Staworko, S.: Schemas for unordered XML on a DIME.
Theory Comput. Syst. 57(2), 337–376 (2015)

6. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML
document trees. Inf. Syst. 33(4–5), 456–474 (2008)

7. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. http://www.
grappa.univ-lille3.fr/tata (2007)

8. Creus, C., Gascón, A., Godoy, G.: One-context unification with STG-compressed
terms is in NP. In: Proceedings of RTA 2012, LIPIcs 15, pp. 149–164. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2012)

9. Dudek, B., Gawrychowski, P.: Slowing down top trees for better worst-case bounds
(2018). https://arxiv.org/abs/1801.01059

10. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Unification and matching on com-
pressed terms. ACM Trans. Comput. Logic 12(4), 26:1–26:37 (2011)

11. Gascón, A., Lohrey, M., Maneth, S., Reh, P., Sieber, K.: Grammar-based compres-
sion of unranked trees (2018). https://arxiv.org/abs/1802.05490

12. Hübschle-Schneider, L., Raman, R.: Tree compression with top trees revisited. In:
Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 15–27. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20086-6 2

13. Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 21

14. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012)

15. Lohrey, M., Maneth, S., Mennicke, R.: XML tree structure compression using
RePair. Inf. Syst. 38(8), 1150–1167 (2013)

16. Lohrey, M., Maneth, S., Peternek, F.: Compressed tree canonization. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 337–349. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 27

17. Lohrey, M., Maneth, S., Reh, C.P.: Compression of unordered XML trees. In: Pro-
ceedings of ICDT 2017, LIPIcs 68, pp. 18:1–18:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017)

18. Lohrey, M., Maneth, S., Schmidt-Schauß, M.: Parameter reduction and automata
evaluation for grammar-compressed trees. J. Comput. Syst. Sci. 78(5), 1651–1669
(2012)

https://doi.org/10.1007/978-3-319-15579-1_13
https://doi.org/10.1007/978-3-319-15579-1_13
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://arxiv.org/abs/1801.01059
https://arxiv.org/abs/1802.05490
https://doi.org/10.1007/978-3-319-20086-6_2
https://doi.org/10.1007/978-3-662-43951-7_21
https://doi.org/10.1007/978-3-662-47666-6_27
https://doi.org/10.1007/978-3-662-47666-6_27

Grammar-Based Compression of Unranked Trees 131

19. Lohrey, M., Reh, P., Sieber, K.: Optimal top dag construction (2017). https://
arxiv.org/abs/1712.05822

20. Sundaram, S., Madria, S.K.: A change detection system for unordered XML data
using a relational model. Data Knowl. Eng. 72, 257–284 (2012)

https://arxiv.org/abs/1712.05822
https://arxiv.org/abs/1712.05822

	Grammar-Based Compression of Unranked Trees
	1 Introduction
	2 Straight-Line Programs over Algebras
	3 Forest Algebras and Forest Straight-Line Programs
	4 Cluster Algebras and Top Dags
	5 Relative Succinctness
	6 Testing Equality Modulo Associativity and Commutativity
	6.1 Associative Symbols
	6.2 Commutative Symbols

	7 Future Work
	References

