
Fedor V. Fomin
Vladimir V. Podolskii (Eds.)

 123

LN
CS

 1
08

46

13th International Computer Science Symposium
in Russia, CSR 2018
Moscow, Russia, June 6–10, 2018, Proceedings

Computer Science – 
Theory and Applications



Lecture Notes in Computer Science 10846

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407



Fedor V. Fomin • Vladimir V. Podolskii (Eds.)

Computer Science –

Theory and Applications
13th International Computer Science Symposium in Russia, CSR 2018
Moscow, Russia, June 6–10, 2018
Proceedings

123



Editors
Fedor V. Fomin
Department of Informatics
University of Bergen
Bergen
Norway

Vladimir V. Podolskii
Steklov Mathematical Institute
Moscow
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-90529-7 ISBN 978-3-319-90530-3 (eBook)
https://doi.org/10.1007/978-3-319-90530-3

Library of Congress Control Number: 2018941549

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The 13th International Computer Science Symposium in Russia (CSR 2018) was held
during June 6–10, 2018, in Moscow, Russia. The symposium was organized by the
Higher School of Economics. It was the 13th event in the CSR series of regular
international meetings, following St. Petersburg (2006), Ekaterinburg (2007), Moscow
(2008), Novosibirsk (2009), Kazan (2010), St. Petersburg (2011), Nizhny Novgorod
(2012), Ekaterinburg (2013), Moscow (2014), Listvyanka (2015), St. Petersburg
(2011), and Kazan (2017). CSR covers a wide range of areas in theoretical computer
science and its applications.

The opening lecture was given by Noga Alon (Tel Aviv University and Princeton).
Seven other invited plenary lectures were given by Markus Bläser (Saarland Univer-
sity), Vladimir Gurvich (Rutgers University), Alexander Kulikov (St. Petersburg
Department of Steklov Institute of Mathematics), Kurt Mehlhorn (Max-Planck-Institut
für Informatik), Michael Saks (Rutgers University), Rahul Santhanam (University of
Oxford), and László A. Végh (London School of Economics).

This volume contains the accepted papers and those sent by the invited speakers. We
received 42 submissions in total, and out of these the Program Committee selected 24
papers for presentation at the symposium and for publication in the proceedings. Each
submission was reviewed by at least three Program Committee members. The Program
Committee also selected the winners of the two Yandex Best Paper Awards.

The Best Paper Award: Jayakrishnan Madathil, Saket Saurabh, and
Meirav Zehavi, “Max-Cut Above Spanning Tree Is Fixed Parameter Tractable”

The Best Student Paper Award: Alexander Kozachinskiy, “Recognizing
Read-Once Functions from Depth-Three Formulas”

Many people and organizations contributed to the smooth running and the success
of CSR 2016. In particular our thanks go to:

– All authors who submitted their current research to CSR
– All invited speakers who agreed to give a talk at the conference
– Our reviewers and additional reviewers, whose expertise flowed into the decision

process
– The members of the Program Committee, who graciously gave their time and

energy
– The members of the local Organizing Committee, who made the conference

possible
– The EasyChair conference management system for hosting the evaluation process
– The Higher School of Economics for hosting the conference
– Yandex for supporting the conference and providing Best Paper Awards
– The European Association for Theoretical Computer Science (EATCS) for the

scientific support of the conference

March 2018 Fedor V. Fomin
Vladimir Podolskii
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Constructive and Non-constructive
Combinatorics

Noga Alon1,2

1 Princeton University, Princeton, NJ 08544, USA
2 Tel Aviv University, Tel Aviv, 69978, Israel

nalon@math.princeton.edu

Purely combinatorial proofs of combinatorial statements usually provide efficient
procedures for solving the corresponding algorithmic problems, even if they deal with
NP-hard invariants. One representative classical example out of many is Dirac’s
Theorem that asserts that any simple graph with n� 3 vertices and minimum degree at
least n/2 contains a Hamilton cycle. The proof supplies a simple polynomial time
algorithm for finding a Hamilton cycle in any such graph, although the problem of
deciding whether or not a given input graph contains a Hamilton cycle is NP-hard.
Similar examples include Turán’s Theorem, Vizing’s Theorem or the Four Color
Theorem.

Modern combinatorics often applies more sophisticated, non-combinatorial tools,
including probabilistic, topological or algebraic techniques. Probabilistic proofs usually
supply efficient (deterministic or randomized) algorithms, and in many cases the ran-
domized algorithms can be derandomized and converted into deterministic ones. See
[5, 8, 10] for some prominent examples obtained during the last decade. In contrast,
proofs based on topological and algebraic reasoning are often non-constructive and
provide no efficient solutions for the corresponding algorithmic problems. Finding such
solutions is an intriguing challenge. In the lecture I will describe several old and new
examples of this type. A representative example is the following, known as the Cycle
and Triangles question. While it may look somewhat special, I have chosen it as it can
be solved either by applying topological techniques or by using algebraic tools, and yet
there is neither a known combinatorial solution nor a known algorithmic one.

Du, Hsu and Wang [6] conjectured that if a graph on 3n vertices is the edge disjoint
union of a Hamilton cycle of length 3n and n vertex disjoint triangles then its inde-
pendence number is n. Erdős conjectured that in fact any such graph is 3 colorable.
Using the algebraic approach in [4], Fleischner and Stiebitz [7] proved this conjecture
in a stronger form - any such graph is in fact 3-list-colorable, namely, for every
assignment of a list of 3 colors for each vertex, there is a proper coloring assigning to
each vertex a color from its list.

As proved in a recent paper [1] the original conjecture, in a slightly stronger form,
can be derived quickly from a result of Schrijver about critical subgraphs of the
Kneser graph [11]. Strengthening Lovász theorem he proved, using the Borsuk-Ulam

Research supported in part by an ISF grant and by a GIF grant.



Theorem, that in any coloring of the independent sets of vertices of size k in a cycle of
length n by less than n� 2kþ 2 colors there are two disjoint independent sets having
the same color. This supplies a short proof of the following statement: Let
C3n ¼ ðV ;EÞ be cycle of length 3n and let V ¼ A1 [A2 [ . . .[An be a partition of its
vertex set into n pairwise disjoint sets, each of size 3. Then there exist two disjoint
independent sets in the cycle, each containing one point from each Ai.

Here is a proof. Define a coloring of the independent sets of size n in C3n as
follows. If S is such an independent set and there is an index i so that jS\Aij � 2, color
S by the smallest such i. Otherwise, color S by the color nþ 1. By the above result of
Schrijver there are two disjoint independent sets S1; S2 with the same color. This color
cannot be any i� n, since if this is the case then

jðS1 [ S2Þ \Aij ¼ jS1 \Aij þ jS2 \Aij � 2þ 2 ¼ 4[ 3 ¼ jAij;
which is impossible. Thus S1 and S2 are both colored nþ 1, meaning that each of them
contains exactly one element of each Ai. h

Several extensions are proved in [1]. The Fleischner-Stiebitz theorem implies that
the representing set in the Du-Hsu-Huang conjecture can be required to contain any
given vertex. This can also be deduced from the topological version of Hall’s Theo-
rem of Aharoni and Haxell, as shown in [2]. None of the above proofs supplies an
efficient algorithm for finding the desired independent set.

In the lecture I will describe several additional non-constructive proofs of combi-
natorial statements proved by applying the Borsuk-Ulam theorem, as well as additional
algebraic proofs that supply no efficient algorithms. Certain results of this type can be
found in [3, 9], and I will mention a few more recent examples. I will also discuss the
reasons that suggest that the derivation of constructive proofs may be hard.
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Physarum Solves Non-negative Undirected
Linear Programs

Ruben Becker1, Vincenzo Bonifaci2, Andreas Karrenbauer1,
Pavel Kolev1, and Kurt Mehlhorn1

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

2 Institute for the Analysis of Systems and Informatics,
National Research Council of Italy (IASI-CNR), Rome, Italy

Physarum polycephalum is a slime mold that apparently is able to solve shortest path
problems. Nakagaki, Yamada, and Tóth [1] report about the following experiment;
see Fig. 1. They built a maze, covered it by pieces of Physarum (the slime can be cut
into pieces which will reunite if brought into vicinity), and then fed the slime with
oatmeal at two locations. After a few hours the slime retracted to a path that follows
the shortest path in the maze connecting the food sources. The authors report that
they repeated the experiment with different mazes; in all experiments, Physarum
retracted to the shortest path.

The paper [3] proposes a mathematical model for the behavior of the slime and
argues extensively that the model is adequate. Physarum is modeled as an electrical
network with time varying resistors. We have a simple undirected graph G ¼ ðN;EÞ
with distinguished nodes s0 and s1 modeling the food sources. Each edge e 2 E has a
positive length ce and a positive capacity xeðtÞ; ce is fixed, but xeðtÞ is a function of
time. The resistance reðtÞ of e is reðtÞ ¼ ce=xeðtÞ. In the electrical network defined by
these resistances, a current of value 1 is forced from s0 to s1. For an (arbitrarily
oriented) edge e ¼ ðu; vÞ, let qeðtÞ be the resulting current over e. Then, the capacity of
e evolves according to the differential equation

Fig. 1. The experiment in [1] (reprinted from there): (a) shows the maze uniformly covered by
Physarum; yellow color indicates presence of Physarum. Food (oatmeal) is provided at the locations
labeled AG. After a while the mold retracts to the shortest path connecting the food sources as shown
in (b) and (c). (d) shows the underlying abstract graph. The video [2] shows the experiment.



_xeðtÞ ¼ jqeðtÞj � xeðtÞ; ð1Þ

where _xe is the derivative of xe with respect to time. In equilibrium ( _xe ¼ 0 for all e), the
flow through any edge is equal to its capacity. In non-equilibrium, the capacity grows
(shrinks) if the absolute value of the flow is larger (smaller) than the capacity. In the
sequel, we will mostly drop the argument t as is customary in the treatment of
dynamical systems. It is well-known that the electrical flow q is the feasible flow
minimizing energy dissipation

P
e req

2
e (Thomson’s principle).

Miyaji and Ohnishi were the first to analyze convergence for special graphs (par-
allel links and planar graphs with source and sink on the same face) in [4]. In [5]
convergence was proven for all graphs. We state the result from [5] for the special case
that the shortest path is unique.

Theorem 1 ([5]). Assume c[ 0 and that the undirected shortest path P� from s0 to s1
w.r.t. the cost vector c is unique. Assume xð0Þ[ 0. Then x(t) in (1) converges to P�.
Namely, xeðtÞ ! 1 for e 2 P� and xe ! 0 for e 62 P� as t ! 1.

[5] also proves an analogous result for the undirected transportation problem; [6]
simplified the argument under additional assumptions. The paper [7] studies a more
general dynamics and proves convergence for parallel links.

In this paper1, we extend this result to non-negative undirected linear programs

minfcTx : Af ¼ b; jf j � xg; ð2Þ

where A 2 IRn�m, b 2 IRn, x 2 IRm, c 2 IRm
� 0, and the absolute values are taken

componentwise. Undirected LPs can model a wide range of problems, e.g. optimization
problems such as shortest path and min-cost flow in undirected graphs, and the Basis
Pursuit problem in signal processing [9].

We use n for the number of rows of A and m for the number of columns, since this
notation is appropriate when A is the node-edge-incidence matrix of a graph. A vector
f is feasible if Af ¼ b. We assume that the system Af ¼ b has a feasible solution and
that there is no non-zero f in the kernel of A with cefe ¼ 0 for all e. A vector f lies in the
kernel of A if Af ¼ 0. The vector q in (1) is now the minimum energy feasible solution

qðtÞ ¼ argminf2IRm

X
e:xe 6¼0

ce
xeðtÞ f

2
e : Af ¼ b ^ fe ¼ 0 whenever xe ¼ 0

( )
: ð3Þ

We remark that q is unique. If A is the incidence matrix of a graph (the column
corresponding to an edge e has one entry þ 1, one entry �1 and all other entries are
equal to zero), (2) is a transshipment problem with flow sources and sinks encoded by a
demand vector b. The condition that there is no solution in the kernel of A with cefe ¼ 0
for all e states that every cycle contains at least one edge of positive cost. In that setting,

1 The full paper [8] is available on the arxiv.
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q(t) as defined by (3) coincides with the electrical flow induced by resistors of value
ce=xeðtÞ.
Theorem 2. Let c� 0 satisfy cT jf j[ 0 for every nonzero f in the kernel of A. Let x� be
an optimum solution of (2) and let XI be the set of optimum solutions. Assume
xð0Þ[ 0. The following holds for the dynamics (1) with q as in (3):

(i) The solution x(t) exists for all t� 0.
(ii) The cost cTxðtÞ converges to cTx� as t goes to infinity.
(iii) The vector x(t) converges to XI.
(iv) For all e with ce [ 0, xeðtÞ � jqeðtÞj converges to zero as t goes to infinity.2 If x�

is unique, x(t) and q(t) converge to x� as t goes to infinity.

Item (i) was previously shown in [10] for the case of a strictly positive cost vector.
The result in [10] is stated for the cost vector c ¼ 1. The case of a general positive cost
vector reduces to this special case by rescaling the solution vector x. We stress that the
dynamics (1) is biologically-grounded. It was proposed to model a biological system
and not as an optimization method. Nevertheless, it can solve a large class of
non-negative LPs. Table 1 summarizes our first main result and puts it into context.
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Reference Problem Existence of
solution

Convergence
to OPT

Comments

[4] Undirected shortest
path

Yes Yes Parallel edges, planar
graphs

[5] Undirected shortest
path

Yes Yes All graphs

[10] Undirected positive
LP

Yes No c� 0

Our Result Undirected
Nonnegative LP

Yes Yes (1) c� 0

(2) 8v 2 kerðAÞ : cT jvj[ 0

XVI R. Becker et al.
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Limitations of Algebraic Lower Bound Proofs

Markus Bläser

Saarland University
mblaeser@cs.uni-saarland.de

Abstract. Algebraic natural proofs were recently introduced by Forbes et al.
[FSV17] and independently by Grochow et al. [GKSS17]. Assume we are given
some polynomial of which we think that it is hard to compute, say the per-
manent pern 2 K½X1;1; . . .;Xn;n� of size n� n. pern is a multilinear polynomial of
degree n in n2 variables. The space of all such polynomials has dimension
n2

n

� �
. For such a polynomial f, let cf denote its coefficient vector, which has

length n2

n

� �
. An algebraic proof that the permanent is hard is a polynomial

P that vanishes on all polynomials of low complexity but not on the permanent,
that is, Pðcf Þ ¼ 0 for all f as above of low complexity but PðcpernÞ 6¼ 0. What is
the complexity of such a P? If such a P has high complexity, then this means
that proving a circuit lower bound for pern is hard.

For Boolean circuit complexity, Razborov and Rudich [RR97] introduced
so-called natural proofs. The objects they consider are truth tables of Boolean
functions (instead of coefficient vectors). A natural proof P is a predicate on the
set of truth tables that has two properties: The first one is largeness, that is, P is
true for a sufficiently large fraction of all Boolean functions. The second one is
constructivity, that is, P is computable by small circuits. Razborov and Rudichs
famous barrier result states that natural proofs can only yield superpolynomial
bounds if certain pseudorandom generators do not exist.
In the algebraic setting, largeness comes for free, the zero set of any nonzero

polynomial is small in the sense that almost all inputs do not lie in the zero set.
We can now ask the question whether there is some sort of barrier in the
algebraic world, too, or could it be that there is a polynomial P that is easy to
compute, vanishes on all coefficient vectors of polynomials of low complexity,
but PðcpernÞ 6¼ 0
Unfortunately, there is no known analogous theory of pseudorandomness in

the algebraic setting. Therefore, Forbes et al. use a concept called succinct
hitting sets instead. This assumption is related to polynomial identity testing, but
it is currently not clear how plausible this assumption is. Forbes et al. are only
able to construct succinct hitting sets against rather weak models of arithmetic
circuits.
Let S�K½X1; . . .;Xn� be a set of polynomials.H�Kn is called a hitting set for S,

if for all p 2 S, there is an x 2 H such that pðxÞ 6¼ 0. If P is a polynomial that
vanishes on all cofficient vectors cf of polynomials f of low complexity and P has
itself low complexity, then this can be interpreted as follows: Polynomials of low
complexity do not have simple hitting sets. This is the main idea behind the
concept of succinct hitting sets.



There is one further complication: If a polynomial vanishes on a particular set,
it also vanishes on the Zariski closure of this set. So an algebraic proof against
some class S will vanish on polynomials f that are not contained in S, but are
contained in the closure S. Polynomials in the border S n S have higher com-
plexity than polynomials in S (otherwise, they would be in S), yet they cannot be
distinguished by an algebraic proof from polynomials in S, independently of any
barrier. Therefore, to study algebraic proofs properly, one needs to look at Zariski
closed classes of polynomials.
In the setting above, the proof polynomial P has much more variables than the

polynomials f. There are also settings were these numbers are polynomially
related, tensors are such an example. One can think of a tensor as a
“three-dimensional matrix” t ¼ ðth;i;jÞ 2 K‘�m�n :¼ K‘ 	 Km 	 Kn. A rank-one
tensor is a tensor of the form u	 v	 w with u 2 K‘, v 2 Km and w 2 Kn. The
rank R(t) of t is the smallest number r of rank-one tensors s1; . . .; sr such that
t ¼ s1 þ s2 þ . . .þ sr . Let Sr ¼ fs 2 K‘ 	 Km 	 Kn j RðsÞ� rg be the set of all
tensors of rank at most r. An algebraic proof that RðtÞ[ r is a polynomial P in
‘mn variables such that P vanishes on Sr and PðtÞ 6¼ 0. However, the set Sr is not
Zariski-closed. That is, it is not the vanishing set of a set of polynomials. So we
look at the Zariski closure Xr of Sr instead. These tensors are called the tensors of
border rank � r. As seen above, the appropriate quantity to study when con-
sidering algebraic proofs is the border rank.
Given a tensor t and a bound b, it is NP-hard to decide whether RðTÞ� b as

shown by Håstad [Hås90], however, it is not known whether this holds for the
border rank. We define a similar quantity, which we call (border) completion
rank, and proof that completion rank and even border completion rank are NP-
hard to compute. Next we construct a small family of tensors (small means that
they come from a closed, even low dimensional set) such that not all of these
tensors can have algebraic proofs of polynomial size against the set of all tensors
of completion rank � r for some appropriately chosen r. This means that there is
a tensor t such that any polynomial P with PðtÞ 6¼ 0 that vanishes on all tensor of
completion rank r has superpolynomial circuit complexity. This result if of
course conditional, but it is based on the widely believed assumption that
coNP 6�9BPP. One can view this as a meta-result: Proving lower bounds via
algebraic proofs is difficult. At least, if we want to represent the proof by an
algebraic circuit.
Even the geometric complexity approach initiated by Mulmuley and Sohoni

[MS01] eventually produces an algebraic proof. However, it is produced from
some intermediate representation, which can be more compact. We provide one
such example: We show, of course conditionally, that matrices with nonzero
permanent cannot have small algebraic proofs. However, geometric complexity
theory provides very short proofs for them.
(Parts of the presentation are joint work with Christian Ikenmeyer, Gorav

Jindal, and Vladimir Lysikov)
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Abstract. In this talk I summarize the results obtained in 1999–2008 by
Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassiony, Kazuhisa
Makino, and myself, on complexity of generation algorithms. These algorithms
can be partitioned into three groups: supergraph, flash-light (backtrack), and
dual-bounded generation. We will call a problem tractable if it can be solved by
a polynomial (nconst) or quasi-polynomial (npolylogðnÞ) time algorithm. More
generally, for any positive non-decreasing function g ¼ gðnÞ, generating can be
performed in total or incremental time g, or with g-delay. Most of the poly-
nomial delay algorithms are provided by the flash-light (backtrack) method. As
for the incremental algorithms, generating the next object is equivalent with just
verifying its existence, which is a standard decision problem. Thus, incremental
generation, in contrast to the delay one, may be NP-hard or NP-complete. For
example, we show that generating all vertices of a polyhedron, given by its
facets, is NP-complete (while the complexity status is still open in case of the
polytopes, that is, bounded polyhedra). This problem is reduced to generating all
negative cycles of a weighted digraph, which is NP-complete (for graphs, too).
Generating all minimal transversals to a hypergraph, so-called dualization, plays
an important role. For this problem an incremental quasi-polynomial algorithm
(but no polynomial one) is known. We outline several wide classes of generation
problems that can be reduced to dualization and, thus, solved in incremental
quasi-polynomial time. We survey algorithms and complexity bounds for the
above and many other generation problems.

This work was supported in part by the Russian Academic Excellence Project ‘5-100’.



Lower Bounds for Unrestricted Boolean
Circuits: Open Problems

Alexander S. Kulikov
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Abstract. To prove that P 6¼ NP, it suffices to prove a superpolynomial lower
bound on Boolean circuit complexity of a function from NP. Currently, we are
not even close to achieving this goal: we do not know how to prove a 4n lower
bound. What is more depressing is that there are almost no techniques for
proving circuit lower bounds.

In this note, we briefly review various approaches that could potentially lead
to stronger linear or superlinear lower bounds for unrestricted Boolean circuits
(i.e., circuits with no restriction on depth, fan-out, or basis).



Online Labeling: Algorithms, Lower Bounds
and Open Questions
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Abstract. The online labeling problem (also known as the file maintenance
problem), is a natural algorithmic problem that has arisen as a buidling block for
data structures. A stream of distinct integer items is to be assigned labels online
from a label set f1; . . .;mg so that the order of the labels respects the natural
order of the items. Maintaining order on the labels may require relabeling items.
The algorithm pays 1 each time an item is labeled or relabeled and the goal
of the algorithm is to minimize the total cost.

We survey upper and lower bounds and open problems in both the deter-
ministic and randomized setting.
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Abstract. The Minimum Circuit Size Problem (MCSP) and the Circuit Satis-
fiability Problem (SAT) are fundamental problems in theoretical computer sci-
ence. These problems are in a sense dual to each other - while MCSP asks if a
Boolean function given by its truth table has small circuits, SAT and its variants
ask about properties of the Boolean function corresponding to a given circuit.
SAT has featured in some of the most important and influential results in
complexity theory over the past few decades, including the Cook-Levin theo-
rem, the PCP theorem and Williams’ connection between SAT algorithms and
circuit lower bounds. MCSP, however, remains mysterious. This lecture will
describe a research program aiming for a deeper understanding of MCSP guided
by a comparative analysis with SAT, emphasizing the following phenomena:

1. Explicit constructions: While it is easy to compute explicitly positive and
negative instances of SAT of any given length, the corresponding question
for MCSP is intimately tied to long sought-after circuit lower bounds.

2. NP-hardness: While the classical Cook-Levin theorem establishes the
NP-hardness of SAT, the NP-hardness of MCSP remains open. There are
some NP-hardness results for variants of MCSP where the circuit class is
strongly restricted. On the other hand, there is a recent line of work ruling out
NP-hardness under restricted reductions or deriving hard-to-prove com-
plexity consequences from NP-hardness under standard reductions. In sum,
there is no strong evidence for or against NP-completeness.

3. Search to decision reductions: The complexity of deciding SAT is
polynomial-time equivalent to the complexity of finding a satisfying
assignment for a satisfiable circuit, using the downward self-reducibility of
SAT. MCSP does not appear to have a similar downward self-reducibility
property. Recent work gives an approximate search-to-decision reduction for
MCSP using an intriguing connection with learning theory.

4. Average-case complexity: SAT for k-CNFs appears hard empirically for high
enough clause density under a natural distribution where clauses are picked
uniformly and independently at random. This motivates Feige’s hypothesis,
which is known to imply strong hardness of approximation results for various
natural NP problems. The complexity of MCSP under the uniform distri-
bution on inputs has been studied under the guise of the “natural proofs” of
Razborov and Rudich, which have strong connections to cryptography and
proof complexity. Though SAT is not known to reduce to MCSP in the worst
case, a recent result shows that the MKTP problem, a close cousin of MCSP,
is hard on average under the uniform distribution if Feige’s hypothesis holds.



Keywords: Minimum circuit size problem • Satisfiability • NP-hardness
Learning • Natural proofs
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Abstract. The talk presents an overview of recent developments on the
approximability of the Asymmetric Traveling Salesman Problem
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In the traveling salesman problem (TSP), the input is given by n cities and their
pairwise distances, and the goal is to find a shortest tour visiting every city and
returning to the starting city. It is one of the best known optimization problems, with
variants studied since the 19th century. The problem is NP-complete; if no assumptions
are made on the distance function, it cannot be approximated within any constant
factor. It is therefore common to assume that the distances satisfy the triangle
inequality, or equivalently, that the traveler is allowed to visit some cities more than
once.

In this talk, we focus on approximation algorithms for TSP. A classical algorithm
by Christofides from 1976 [5] gives a 3

2-approximation algorithm if the distance
function is assumed to be symmetric. Forty years on, this simple algorithm is still the
best known approximation algorithm for general symmetric costs. Improved guarantees
have been given in recent work for the special setting of unweighted shortest path
metrics, [9, 13–15].

In contrast to the tight guarantees for the symmetric case, our understanding of the
more general asymmetric traveling salesman problem (ATSP) is far from complete.
A classical LP relaxation was obtained by Held and Karp in the 1970s [10, 11]. This
has been used as the lower bound in all approximation algorithms (both symmetric and
asymmetric). Whereas the best lower bound on the integrality gap is 2 in the asym-
metric case [4], even finding a constant factor approximation guarantee has remained
open until very recently.

An elegant approximation algorithm for ATSP was given by Frieze, Galbiati and
Maffioli [7], with approximation guarantee of log2ðnÞ. This algorithm constructs a
sequence of cycle covers, gradually growing the connected components of the solution.
A series of papers [3, 6, 12] have improved the approximation factor by constant
factors, but finding an oðlognÞ approximation guarantee remained open for a longer
time period.



This was first achieved in the breakthrough result Asadpour et al. [2], who obtained
an Oðlog n = log log nÞ-approximation factor for ATSP. They introduced a new and
influential approach, making a connection between the approximability of ATSP and
the existence of thin trees, a problem studied in the context of graph theory. In par-
ticular, they showed that finding a tree of constant “thinness” would imply a constant
factor approximation for ATSP. Following this approach, Oveis Gharan and Saberi
gave a constant factor approximation for graphs with bounded genus [8]. More
recently, Anari and Oveis Gharan have obtained an upper bound Oðpoly log log nÞ [1]
on the integrality gap of the Held-Karp relaxation. This, however, does not provide an
efficient approximation algorithm of the same guarantee, since their arguments are
non-constructive.

An ATSP solution must satisfy three properties simultaneously: connectivity,
Eulerian degree constraints, and integrality. For any two among these three require-
ments, a minimum cost solution can be found efficiently. Indeed, connected and
Eulerian (but not necessarily integral) vectors are exactly the feasible solutions to the
Held-Karp relaxation; connected and integral (but not necessary Eulerian) edge sets are
the spanning trees; and Eulerian and integral (but not necessary connected) edge sets
are the cycle covers. At a very high level, all ATSP approximation algorithms start by
either relaxing the Eulerian constraints, or relaxing connectivity.

The thin tree approach start by relaxing the Eulerian constraint, starting with a
special spanning tree. The thinness property can be then used to fix the violations of the
Eulerian constraints. In contrast, the Frieze, Galbiati and Maffioli [7] algorithm start by
relaxing connectivity: they construct a sequence of cycle covers whose union becomes
connected.

Svensson introduced a new approach via relaxing connectivity, by giving a
reduction from ATSP to a problem called Local-Connectivity ATSP [16]. An “a-light”
solution to this problem implies an OðaÞ approximation to ATSP. The paper [16] used
this approach for giving a ð27þ eÞ-approximation algorithm for the special case of
node-weighted metrics, where Local-Connectivity ATSP is relatively easy to imple-
ment. We have generalized this to graphs with at most two different edge weights in
subsequent work [17], however, this already required substantial technical effort.

In our recent paper [18], we have built upon and generalized both of these results to
obtain the first constant-factor approximation algorithm for ATSP for arbitrary metrics.
The constant factor in the paper is 5500; however, this is not optimized for the sake of
simplicity in the presentation.

In contrast to the two edge weights result [17], we do not try to tackle
Local-Connectivity ATSP directly in arbitrary weighted graphs. Instead, we introduce a
series of natural reduction steps to reduce the problem of approximating ATSP in
general to that of approximating ATSP on special, structured instances called verte-
brate pairs. These instances enjoy properties that make them amenable for
Local-Connectivity ATSP.

All these reductions build on classical techniques from mathematical optimization
and from graph theory. We start by applying the uncrossing technique for the optimal
solution to the dual of the Held-Karp LP to reduce general ATSP instances to
laminarly-weighted ATSP instances. These enjoy a special weight structure defined by
a laminar family of vertex subsets.
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The subsequent steps define a natural contraction operation and, using a recursive
algorithm, reduce the problem to irreducible instances. The very same property that
makes these instances difficult for the reduction in turn enables us to construct a
backbone, a special subtour that visits most vertices in the instance. In the final step, we
take advantage of the backbone for implementing Local-Connectivity ATSP.

We believe that, by further optimizing these techniques, the integrality gap of the
LP relaxation can be upper-bounded by the hundreds. In order to achieve an upper
bound closer to the current lower bound 2, even to say 50 is likely to require some
substantial new ideas.
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Abstract. In this talk I summarize the results obtained in 1999–2008
by Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassiony,
Kazuhisa Makino, and myself, on complexity of generation algorithms.
These algorithms can be partitioned into three groups: supergraph, flash-
light (backtrack), and dual-bounded generation. We will call a prob-
lem tractable if it can be solved by a polynomial (nconst) or quasi-
polynomial (npolylog(n)) time algorithm. More generally, for any positive
non-decreasing function g = g(n), generating can be performed in total
or incremental time g, or with g-delay. Most of the polynomial delay
algorithms are provided by the flash-light (backtrack) method. As for
the incremental algorithms, generating the next object is equivalent with
just verifying its existence, which is a standard decision problem. Thus,
incremental generation, in contrast to the delay one, may be NP-hard
or NP-complete. For example, we show that generating all vertices of a
polyhedron, given by its facets, is NP-complete (while the complexity
status is still open in case of the polytopes, that is, bounded polyhedra).
This problem is reduced to generating all negative cycles of a weighted
digraph, which is NP-complete (for graphs, too). Generating all minimal
transversals to a hypergraph, so-called dualization, plays an important
role. For this problem an incremental quasi-polynomial algorithm (but
no polynomial one) is known. We outline several wide classes of gener-
ation problems that can be reduced to dualization and, thus, solved in
incremental quasi-polynomial time. We survey algorithms and complex-
ity bounds for the above and many other generation problems.
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2 V. Gurvich

1 How They Measure Complexity of Generation

Generating all vertices of the n-cube {−1 ≤ xi ≤ 1 | i = 1, . . . , n}, obviously,
requires exponential in n time, just because there are 2n vertices. Yet, it would
be naive to treat this problem as a hard one.

To introduce the “right scale of complexity”, it is conventional to measure
the generation time in both initial input and output size, T = T (|II|, |O|).
We say that a generation problem is solved in total or output polynomial (P)
or quasi-polynomial (QP) time, whenever T is a P or QP function of its two
variables.

However, when the output is large, it may be a bad good idea to wait (for
a very long time, maybe) and to obtain all required objects only at the very
end. We would prefer to output the objects one by one in some order, say,
O = {o1, . . . , ok, . . . , oN}. Denote by Ok = {o1, . . . , ok} the first k − 2 objects
and by T (ok) the time between outputting ok−1 and ok. We assume that O0 = ∅
and T (O0) = 0. A generation algorithm is called

– (I) incremental P or QP, if T (ok) is P or QP in k and in |II|;
– (D) P or QP delay, if for each k, time T (ok) is P or QP in |II|.

Such an approach was suggested in [45]; see also [3,9,15,26–29,37,42,44,47,48],
cited in the chronological order. We have to add several remarks:

– Obviously, (I) is weaker than (D), just because for (I) the generation time is
allowed to increase with k.

– One can equivalently reformulate (D) requiring that T (Ok) is at most k times
P or QP in |II|, which assumes a trick. It is not necessary to output all
generated objects immediately, instead one can delay their output, which
may help with keeping the required inequality.

– In case of (I), generating the next object is equivalent [37,45] with just veri-
fying its existence, which is a standard decision problem. If it is NP-complete
or NP-hard, we say this about the generation problem itself.

– In contrast, in case of (D) we are not aware of any indicator showing that it
is NP-hard to solve a problem with P or QP delay.

– Of course, QP is growing faster than P, but it is much closer to P than
to an exponent: nc = 2c log n < nlog n = 2log

2 n � 2n or, more generally,
nc1 < npoly log n � cn

2 , where c1, c2, and c are positive real constants, c2 > 1;
where > (resp., �) means asymptotically larger (resp., “much larger”).

– More generally, for any positive non-decreasing function g = g(n), generation
may be performed in total or incremental time g, or with g-delay.

– For some problems it may be NP-hard already to verify the existence of
required objects. Presume, for example, that we have to output all Hamilto-
nian cycles of a graph. Then, it is hard even to start generation.

– In contrast, if we have already output exponentially many, in |II|, objects
of O, then “we are safe”, because allowed to spend even exponential time
generating the next object.
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– Thus, solving a typical hard generation problem, we successfully output poly-
nomially many, in |II|, objects and then “suddenly get stuck”; see the next
section for examples.

– At first glance, it seems that hardness of a generation problem may depend
on the order in which we output the objects. But in fact it cannot. Indeed,
suppose that generating ok is NP-hard. Then, it is hard to decide if the list
Ok−1 is already complete, or it can be extended. Assume for contradiction
that there exists another algorithm (outputting the same objects in some
other order) which is efficient, say, QP incremental. But then, we could solve
the above hard problem efficiently as follows. Let us try to output k objects
by the new algorithm. Either it will output exactly Ok−1 and stop, thus,
showing that there exists no ok; or on some step, which number is at most k,
it will output an object o �∈ Ok−1, thus, showing that Ok−1 is not a complete
list and its extending is not a hard problem.

– The same arguments prove that no total QP algorithm can exist either.
Assume the opposite. Then, we just let such an algorithm run for a time
T > QP (k) to obtain a solution of the above NP-hard problem. As before,
we either output Ok−1 and stop, or get an o �∈ Ok−1.

– Standardly, we always assume that P �= NP and also that QP �= NP .

2 Hard Generation Problems

2.1 Examples

For a multi-hypergraph H on the ground-set V and positive integer k generate all
k-unions, that is, all minimal subsets of V that contain at least k hyperedges of
H, counted with their multiplicity. Standardly, the terms minimal and maximal
applied to a subset mean inclusion-minimal and inclusion-maximal.

Consider the following decision problem: given a list of k-unions, whether
there are more of them, or the list is complete? Obviously, the problem is in
NP; we will show that it is NP-complete reducing to it the following classical
NP-complete problem: given a simple graph G = (V,E) whether it contains
an independent (edgeless) set V ′ ⊆ V of size k. To each G we assign an H as
follows: treat every edge (resp., vertex) of G as a hyperedge of H of multiplicity
k − 2 (resp., 1). Then, {v′, v′′} ⊆ V is a k-union of H whenever it is an edge
e = (v′, v′′) ∈ E. Thus, it is easy to generate m = |E| (linearly many in |II|)
k-unions. Yet, one more exists if and only if G has an independent set of size k,
and this decision problem is NP-complete. The problem remains NP-complete if
we replace the multi-hypergraphs by standard ones; see [39,40].

NP-completeness in the above example is based on the presence of an integer
parameter k. An example of a “purely combinatorial” NP-complete generation
problem, which was found first, is generating all minimal directed cuts in a
(strongly connected) digraph; see [35] and Sect. 5.3 below.

Another important example is “Generating all vertices of a polyhedron given
by its facets”; see more details in [15,31], and in the rest of this sections.
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2.2 Circulation Cones and Polyhedra of Digrahs

Given a digraph G = (V,E) in which loops are not allowed, standardly we define
a function sign : V ×E → {0,±1}: for each v ∈ V and e ∈ E we set sign(v, e) = 1
if e is going from v, sign(v, e) = −1 if e is going into v, and sign(v, e) = 0 if v
and e are not incident.

Also we define two more mappings x : E → R+ and w : E → R+ that will be
interpreted as a flow and weight functions. Then, the circulation cone is defined
by the system of equalities

∑

e∈E

x(e)sign(v, e) = 0 ∀ v ∈ V.

(Recall that xe ≥ 0.) A circulation polyhedron we obtain by adding to the above
linear constraints one more hyperplane

∑

e∈E

w(e)x(e) = −1.

It is not difficult to see [15,35] that its vertices are in one-to-one correspondence
with the directed cycles of the negative total weight, so-called negative cycles.

Theorem 1 ([15,35]). Generating all negative (directed) cycles of a (directed)
graph is NP-complete.

Corollary 1 ([15,35]). Generating all vertices of a polyhedron is NP-complete.

The proof is immediate from the above arguments and Theorem1. The proof
of the latter will be briefly sketched in Sects. 2.3–2.5.

In [15,35] the extreme rays are also characterized, and it appears that they
exist in all non-trivial circulation polyhedra, implying that they are unbounded.
Corollary 1 does not extend this case and, hence, for the bounded polyhedra
(that is, for polytopes) vertex-generation may be tractable.

2.3 Verifying Boolean Equalities and Inequalities

Let C and D be a monotone CNF, resp., DNF of variables x1, y1, . . . , xk, yk and

C0 = (x1 ∨ y1) ∧ . . . ∧ (xk ∨ yk), D0 = x1y1 ∨ . . . ∨ xkyk.

Theorem 2 ([15,25]). The following 12 claims are polynomially equivalent:

C is not satisfiable, C ⇒ D0, D0 ≥ C, D0 ∨ C = D0, D0 ∧ C = C, CD0 = 0;

D isnot a tautology, D ⇐ C0, C0 ≤ D, C0 ∧D = C0, C0 ∨D = D, C ∨D0 = 1.

Hence, all 12 are co-NP-complete. In contrast, verifying CD0=0, C∨D0=1,
and D ≤ C0 are polynomial (in fact, very simple) problems, while verifying the
equality C = D is exactly dualization, see Sect. 4.2.
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2.4 Sausage Lemma

The properties of Theorem 2 can be reformulated in many different ways. First
time, some of them were stated in terms of graphs and digraphs in [25]; see also
[30]. The following weak version will already imply Theorem1.

Let GS = (VS , ES) and GT = (VT , ET ) be a pair of (non-directed) graphs
that have one vertex in common, VS ∩VT = {v}, and the same number of edges.
Fix two poles s ∈ VS \ {v} and t ∈ VT \ {v} and a one-to-one correspondence
φ : ES → ET .

Lemma 1 ([25]). It is co-NP-complete to decide if there exists a path between
s and t that contains no pair of edges identified by φ. The problem remains co-
NP-complete when (GS , s, v) and (GT , v, t) are series-parallel two-pole networks
of depth 3. If depth is bounded by 2, the problem is polynomially equivalent with
dualization; see Sect. 4.2.

2.5 A Sketch of the Proof of Theorem 1 for Digraphs

It is well-known that in a non-directed series-parallel two-pole network (G, s, t),
all s-t pathes pass every edge in the same direction. Let us direct each edges
accordingly, from s to t, subdivide it by three inner vertices, and assign weights
(+1,−1,−1,+1) to the obtained four edges.

For any two edges e′ ∈ ES and e′′ ∈ ET such that φ(e′) = e′′ let us merge
the first inner vertex (resp., the third one) of e′ and the third inner vertex (resp.,
the first one) of e′′, thus, getting a negative directed cycle (−1,−1,−1,−1); see
Fig. 1. Since we are doing such merging for m = |ES | = |ET | edges, we obtain a
“pretty messy” graph with m negative cycles.

Consider GS and GT , with all merging of their vertices considered above;
add one more edge of weight (−1) directed from t to s, and denote the obtained
digraph by G. Let us try to generate all negative directed cycles in G. We already
have m such cycles, yet, it is co-NP-complete to decide if there are more. Indeed,
it is not difficult to show [15,35] that the answer is positive if and only if there
exists an s-t directed path in G that contains no pair of edges identified by φ,
and this is hard to decide, by Lemma1.

Fig. 1. Edges e′ and e′′ such that φ(e′) = e′′ are subdivided by vertices u1, u2, u3 and
v1, v2, v3, respectively; furthermore, v1 = u3 and v3 = u1.



6 V. Gurvich

3 Flash-Light and Supergraph

Flash-light. Consider, for example, generating all s-t paths in a graph G =
(V,E). We order edges of E and then start to generate all paths from s in
the lexicographical order. It may happen that such a path cannot already be
extended to an s-t path and we will spend in vane exponential in n = |V |
time trying to find one. Yet, this complication can be easily avoided, since the
corresponding decision problem “whether a given path from s can be extended
to an s-t path” is polynomial. Solving it after each extension of the current path
(which is somewhat similar to using a flash-light in a dark place) we generate all
s-t paths with polynomial delay. In [45] this method was applied to generating
(directed) pathes, cycles, and spanning trees in (directed) graphs. More general
problems were considered in [32,33,36].

Most polynomial delay generation algorithms are obtained by the flash-light
method. However, many generation problems can be solved efficiently, while the
corresponding flash-light decision problems are NP-hard. For example, generat-
ing minimal cuts is incremental P, while recognition of an edge-subset of such
cut is NP-complete [32,33,36]; generating minimal transversals of a hypergraph
(dualization, see Sect. 4.2) is incremental QP, while recognition of a subtransver-
sal is NP-complete already for graphs [7]. It is NP-complete to decide whether
a set of vertices contains a maximal clique.

Supergraph. This method assigns a vertex o ∈ O to each object that we have
to generate and an edge e = (o′, o′′) to each pair of objects that are neighbors
in a sense; for example, O consists of all bases of a matroid and E is deter-
mined by the exchange property. Then, we generate all objects traversing the
obtained “supergraph”. We have either to prove its connectivity or to traverse
every connected component; see, for example, [5,32,33].

4 Generating Dual-Bounded Hypergraphs

4.1 Monotone Generation

Given a ground-set V and a property of its subsets defined by a set-function f :
2V → {0, 1}. The property are called monotone if f is monotone non-decreasing.
Then the (monotone generation) problem is to output all minimal subsets of V ′ ⊆
V such that f(V ′) = 1. In this section we restrict ourselves by such problems.

4.2 Dualization

Given a hypergraph H = (V,E) its dual Hd = (V ′, E′) is defined on the same
ground-set V as the family of all minimal transversals to E, that is, e ∩ e′ �= ∅
for all e ∈ E, e′ ∈ E′, and for every e′′ such that e ∩ e′′ �= ∅ for all e ∈ E there
exists a e′ ∈ E′ such that e′ ⊆ e′′. By definition, V ′ ⊆ V and Hd is a Sperner
hypergraph, that is, e′

1 ⊆ e′
2 for no e′

1, e
′
2 ∈ E′. If H is Sperner too then V = V ′

and Hdd = H.
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Given H and a family of its transversals H ′, verify the equality Hd = H ′

assuming that both H and H ′ are Sperner. This is the famous dualization prob-
lem. Solving it successively several times one can, given H, generate Hd.

Note that the complement in V to a (minimal) transversal of H is a (maximal)
independent set (MIS) of H. Indeed, by definition, it contains no edge of H. Thus,
dualization and generating all MIS(H) are trivially equivalent.

Given a set and a family of its subsets, generate all minimal set-covers. This
is another equivalent reformulation.

No P time algorithm for dualization is known, yet, a QP one was constructed
in [20]. Later, this result was generalized in several directions. In particular, the
Boolean cube was replaced by the product of discrete intervals [13,14], of posets,
and of forests [21–24].

For the hypergraphs of bounded dimension, dim(H) = maxe∈E |e| (resp.,
degree, deg(H) = maxv∈V (|E′| | v ∈ e′ ∀ e′ ∈ E′ ⊆ E) dualization can be solved
in polynomial (of degree dim(H) + 1 (resp., deg(H) + 1)) time. Moreover, in
case of bounded dimension, dualization can be efficiently solved in parallel: the
problem is in NC for dim(H) ≤ 3 and in RNC for dim(H) = 4, 5, . . .; see [8].

Dualization is also tractable for the hypergraphs of bounded edge-intersection
[11]. Let A(k, r) denote the class of hypergraphs in which the intersection of any
k distinct edges is of size at most r. It is shown in [11] that for the hyper-
graphs of bounded dimension, A(1, c), as well as for the hypergraphs of bounded
degree, A(c, 0), dualization can be solved in incremental polynomial time and in
space polynomial only in the size of H. This result is extended for A(k, r) with
bounded k + r. For this class dualization is NC-reducible to generating a sin-
gle minimal transversal for a partial subhypergraph of H ∈ A(k, r). Somewhat
surprisingly, the latter problem seems difficult to solve in parallel and the above
observation results only in an efficient parallel algorithms for the incremental
(sic!) dualization in classes A(1, c), A(c, 0), and A(2, 1).

Thus, we can always generate Hd by a QP incremental algorithm. In many
cases QP can be relaced by P; in particular, in all above cases, see also [19].

Given a hypergraph H = (V,E), denote by Hc = (V,E′) the edge-
complement hypergraph, E′ = {V \ e | e ∈ E}. Clearly Hcc = H for any
H. Let B be the bases of a matroid M . Then, by definition, Bc consists of the
bases of the dual matroid Md. Furthermore, Bd are the transversals to bases;
Bcd are the minimal sets not contained in a base of M , or in other words, the
circuits C of M . Hence, Cdc = Bcddc = B.

All hypergraphs listed above can be generated in incremental P time [10,46],
due to the exchange axioms. Note that very long sequences cdcdcd, . . . and
dcdcdc, . . . may consist of pairwise distinct hypergraphs.

If we have P or QP reduction of a generation problem S to dualization, we
say that S is tractable, since dualization is QP and, hence, it is very unlikely
that S is NP-hard. On the other hand, when dualization is reduced to S, we say
that S is difficult, since no P time algorithm for dualization is known. This is an
example of the policy of double standards.
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4.3 Joint Generation [6,9,25]

Let a hypergraph H be given by a P or QP oracle and we want to output
both H and Hd, assuming that they are both Sperner. This can be done by
solving dualization successively. Indeed, given partial hypergraphs H ′ ⊆ H and
H ′′ ⊆ Hd, we can verify their duality in QP time. If they are dual, we output
H = H ′,Hd = H ′′ and stop; if they are not, dualization and the oracle allow us
to extend either H ′ or H ′′ still keeping both containments H ′ ⊆ H and H ′′ ⊆ Hd

[6,25]. However, we do not control, which one will be extended.
Thus, joined generation of H and Hd simultaneously can be realized by an

incremental QP time algorithm; in contrast, generating H, or Hd, or even both,
but separately, can be NP-hard; [25]. This looks like a paradox but can be simply
explained. Suppose, we are interested in H, while Hd is just garbage. Yet, joint
generation may output edges of H separated by long sequences of edges of Hd

which lengths are growing exponentially. Still, joint generation is effective under
certain extra assumptions.

4.4 Generating (Uniformly) Dual-Bounded Hypergraphs

Let |H| denote the size (that is, the number of edges) of H. As we saw, joint
generation of H and Hd may be not efficient for H when |Hd| is exponential in
|H|. A class H of hypergraphs is called P or QP dual-bounded (DB) if in this
class |Hd| is bounded by a P or QP in |H| and in the size |II| of the initial
input. Obviously, generating P or QP DB hypergraphs can be performed in the
total P or QP time, respectively. Moreover, we can even obtain an incremental
P or QP algorithm, rather than a total one, requiring a stronger inequality.

A class of hypergraphs H is called P or QP uniformly DB if |H ′d| is bounded
by a P or QP in |H ′| for all partial hypergraphs H ′ ⊆ H ∈ H simultaneously.

All hypergraphs from a P or QP uniformly DB class can be generated in
incremental P or QP time.

By definition, class H is uniformly DB whenever it is DB and hereditary (that
is, H ′ ∈ H for any H ′ ⊆ H ∈ H). In addition, many DB but non-hereditary
classes are uniformly DB, as well. Moreover, all “natural” DB classes that we
know are uniformly DB, although “artificial” exceptions exist; see more details
in [9,14,16,18]. This is somewhat surprising, because uniformity looks like an
essential addition to DB.

5 More Examples of Generation Problems

5.1 Monotone Integer Programming [12–14,36]

Consider the following system of linear inequalities
(*) Ax ≥ b, 0̄ ≤ x ≤ c, where A ∈ R

m×n, b ∈ R
m
+ , c ∈ R

n

+ (that is,
coordinates of c can take value +∞), x ∈ Z

n
+, and 0̄ ∈ R

n
+ is the origin.

System (*) is called monotone if Ax ≥ b ⇒ Ax′ ≥ b ∀x, x′ | 0̄ ≤ x ≤ x′ ≤ c.
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Non-negativity of the matrix, A ∈ R
m×n
+ , is sufficient for monotonicity, but

not necessary. Note that without monotonicity, already verification of solvability
of (*) is NP-complete, while for monotone systems it is trivial. In this case we
will consider monotone generation.

Problem (K): generate all minimal integer solutions Z(A, b, c) to (*).
If A is a (0, 1) matrix, x is a (0, 1) n-vector, and b = e is the vector of m

ones, then (K) is the dualization of the hypergraph H defined by the rows of A;
then, a (minimal) solution x to (*) is a (minimal) transversal to H.

We generalize, replacing a (0, 1) vector x by a non-negative integer one, b = e
by an arbitrary b ∈ R

m
+ , and finally, H(A, b, c) by Z(A, b, c), thus, replacing

the Boolean cube by the direct product of discrete intervals (a box). These
replacements keeps all basic properties [9].

Now, let us Consider the dual problem.
Problem (L): generate MIS(Z(A, b, c)) = Zdc(A, b, c), in other words, all

maximal x ∈ Z
n
+ not feasible to the monotone system (*), that is, x �∈ Z(A, b, c).

Problem (K) is uniformly DB, satisfying the inequality inequality

|Zd(A, b, c)| ≤ mn|Z(A, b, c)|,
which is “almost” precise. Namely, there exists an example with

|Zd(A, b, c)| ≥ mn

2log2m
|Z(A, b, c)|.

An incremental QP generation algorithm for Z(A, b, c) is provided by the
method of joint generation, while generating Zd(A, b, c) is NP-complete [12].

5.2 Maximal Frequent and Minimal Infrequent Sets in Data Mining
[1,17,24]

Given a binary m × n matrix A and positive integer t, a set C of columns is
called t-frequent if there exist at least t rows such that in the obtained t × |C|
submatrix all entries are 1s; otherwise C is called t-infrequent. Let α and β
denote the numbers of the maximal t-frequent and minimal t-infrequent sets,
respectively. The DB inequality α ≤ (m − t + 1)β, implies that generating all
minimal t-infrequent sets is incremental QP. In contrast, generating all maximal
t-frequent sets is NP-complete. See [17] for more details.

5.3 Minimal Strongly Connected Subgraphs and Dicuts [35]

Given a (strongly connected) digraph G = (V,E), generate all
– (K) minimal edge-sets E′ ⊆ E such that the digraph G′ = (V,E′) is strongly

connected;
– (L) minimal dicuts, that is, minimal edge-sets E′′ ⊆ E such that the digraph

G′ = (V,E \ E′′) is not strongly connected.

These dual problems are not DB; the size of each set may be exponential in the
size of the other. Problem (K) is solved in incremental P time by the supergraph
method, while (L) is NP-complete [35]. The proof of the latter claim is based on
the “sausage lemma” (Sect. 2.4 and [25]) but requires extra tricks [35].
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5.4 Generating Generalized Paths, Cuts, and Spanning Sets
in Graphs [32,33,36,45]

Given a (non-directed connected) graph G = (V,E) and k edge-subsets E1, . . . ,
Ek ⊆ E, for every I ⊆ [k] define the graph GI = (V,∪i∈IEi) and consider the
following two pairs of problems. Generate all

– (K1) generalized spanning sets, that is, all minimal I ⊆ [k] = {1, . . . , k} such
that graph GI is connected;

– (L1) generalized complementary cuts, that is, all maximal I ⊆ [k] such that
graph GI is not connected.

Given also two poles s, t ∈ V, generate all

– (K2) generalized s-t-paths, that is, all minimal I ⊆ [k] such that s and t
belong to one connected component of GI .

– (L2) generalized complementary s-t-cuts, that is, all maximal I ⊆ [k] such
that s and t are in distinct connected component of GI .

Problem (K1) is QP uniformly DB and, hence, can be solved in incremental
QP time. Three other problems are NP-complete; all three proofs are based on
the sausage lemma.

5.5 Spanning Linear Spaces by Linear Subspaces [10,34]

Let L = {L1, . . . , Lk} be a set of linear subspaces in a space L = F d of dimension
d over a field F and t ≤ d be a positive integer threshold, for every I ⊆ [k] set
LI = ∪i∈ILi, or in other words, LI is spanned by Li, i ∈ I;

Consider the following pair of dual problems. Generate all

– (K) minimal subsets I ⊆ [k] such that dim(LI) ≥ t;
– (L) maximal subsets I ⊆ [k] such that dim(LI) < t.

If t = d then LI = L, that is, Li, i ∈ I, span the whole space. Problem (K)
is QP uniformly DB and, hence, is incremental QP, while (L) is NP-complete.

Let us fix a basis B in L and assume that subspaces Li, i ∈ I, are defined
by subsets of B. In this case problem (K) is reduced to generating all minimal
covers of B by these subsets. This problem is equivalent to dualization.

5.6 Polymatroid Functions and Systems of Polymatroid Inequalities
[10,34,38,41]

An integer non-negative set-function f : 2V → Z+ is called polymatroid if it is
submodular, f(I ′ ∪I ′′)+f(I ′ ∩I ′′) ≤ f(I ′)+f(I ′′) for any I ′, I ′′ ∈ V , monotone
non-decreasing, and f(∅) = 0.

For example, f(I) = dim(LI) from the previous section is a polymatroid
function. A special case of this example is the number of vertices minus the
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number of connected components of a graph. In other words, given a graph
G = (V,E) and a family I of its edge-sets {Ei ⊆ E | i ∈ I}, we set f(I) =
|V | − C(G(V,EI)), where EI = ∪i∈IEi and C(G) is the number of connected
components of G. Another example is the number of degrees of freedom of a
mechanical system. See [38] for more examples and details.

Given a system of polymatroid inequalities
(*) fj(I) ≥ tj , j ∈ [r] = {1, . . . , r}, where functions fj are polymatroid

and thresholds tj are QP in n = |V |, generate all
(K) minimal I ⊆ V satisfying (*); (L) maximal I ⊆ V not satisfying (*).
Problem (K) is QP uniformly DB, and, hence, it is incremental QP, while

(L) is NP-complete.

5.7 Uniformly DB Inequalities for Polymatroid Systems [10,34]

Let H(f, t) be the family of all minimal subsets of V satisfying (*).
Standardly, MIS(H(f, t)) denote the family of all maximal subsets of V not

satisfying (*). Let β = |H(f, t)| and α = |MIS(H(f, t)| denote the numbers of
sets in these families. Then,

α ≤ βlog t/c(n,β) for β ≥ 2 and α ≤ n when β = 1,

where c = c(n, β) is the (unique) root of the equation

2c(nc/ log β − 1) = 1.

This is a DB inequality for (K). It is QP whenever t is QP in n = |V |. This
DB inequality can be replaced by a much simpler, although slightly weaker, one:

α ≤ (nβ)log t.

This bound can be viewed as a generalization, from graphs to hypergraphs,
of an upper bound for the number of MIS. For graphs we have

2p ≤ |MIS(G)| ≤ δp + 1,

where p = p(G) is the maximum size of the induced matchings in G and δ =
δ(G) is the maximum number of pairs of vertices at distance 2; in particular,
δ ≤ (

n−1
2

)
, where the equality is achieved only on stars. This bound was proven

in [4]; slightly weaker results were obtained in [2,43].
For the systems of r polymatroid inequalities, we generalize as follows:

α ≤ r max(n, βlog t/c(n,β)), where t = max(t1, . . . , tr).

Interestingly, the coefficient 1/c = 1/c(n, β) in the exponent is accurate and
cannot be reduced.
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Abstract. To prove that P �= NP, it suffices to prove a superpolyno-
mial lower bound on Boolean circuit complexity of a function from NP.
Currently, we are not even close to achieving this goal: we do not know
how to prove a 4n lower bound. What is more depressing is that there
are almost no techniques for proving circuit lower bounds.

In this note, we briefly review various approaches that could poten-
tially lead to stronger linear or superlinear lower bounds for unrestricted
Boolean circuits (i.e., circuits with no restriction on depth, fan-out, or
basis).

1 Computational Model: Boolean Circuits

A straight-line program is a simple and natural program for computing a Boolean
function f : {0, 1}n → {0, 1}. The input to such a program is variables x1, . . . , xn

and each line of the program computes the value of a new Boolean variable by
applying a binary Boolean operation to some of two previous variables. A circuit
is a convenient way of representing a straight-line program as a directed acyclic
graph. Below we show an example of a program and the corresponding circuit
of size four for the majority function on three input bits x1, x2, x3 (that outputs
1 iff x1 + x2 + x3 ≥ 2).

x1 x2 x3

∧x4 ⊕ x5

∧ x6

⊕x7

x4 = x1 ∧ x3

x5 = x1 ⊕ x2

x6 = x5 ∧ x3

x7 = x4 ⊕ x6

To prove that P �= NP, it suffices to find a Boolean function from NP that
cannot be computed by polynomial size circuits (more precisely, a family of func-
tions {fn}∞

n=1 such that fn has n inputs,
⋃∞

n=1 f−1
n (1) ∈ NP, and circuit size

of fn grows superpolynomially in n). This problem turned out to be extremely
difficult: we do not know how to prove 4n lower bound, not to mention super-
linear or superpolynomial lower bounds. Most of the known lower bounds are
proved using the so-called gate elimination method which is difficult to use to
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beat the 4n barrier. In the rest of this note, we briefly review various approaches
that could potentially lead to stronger linear or superlinear lower bounds. The
focus of this note is unrestricted circuit model: we do not pose any restriction
on the depth of a circuit, the fan-out of its gates, or the basis of allowed opera-
tions computed at gates. For various restricted circuit classes, such as monotone
circuits (circuits using ∧ and ∨ operations only), constant depth circuits, and
formulas (circuit of fan-out 1), much stronger lower bounds are known. What is
more important, various beautiful techniques for proving such lower bounds have
been developed. An exposition of these bounds and techniques can be found in
an excellent recent book by Jukna [1].

2 Lower Bounds: Approaches and Open Problems

Notation

We use Bn,m to denote the set of all Boolean functions with n inputs and m out-
puts. By default, we will assume that m = 1, that is, we consider Boolean predi-
cates. We use Bn as a shortcut for Bn,1. By a function f we mean (unless stated
otherwise) a family of functions: f = {fn : fn ∈ Bn}∞

n=1.

2.1 Known Lower Bounds and Gate Elimination Method

How to prove, say, a 3n − o(n) lower bound for a Boolean function f? One way
to do this is by induction: first show that f is resistant to n− o(n) substitutions
of some type (say, xi ← c, where c ∈ {0, 1}, or xi ← ⊕

j∈J xj ⊕ c); then show
that for any circuit computing f one can find a substitution eliminating at least
three gates. This type of argument is known as gate elimination and it is used
in most of the known lower bounds proofs, in particular, in the proof of the
currently strongest lower bound (3 + 1/86)n − o(n) for affine dispersers by Find
et al. [2]. A gate elimination proof usually consists of many cases depending
on how the top part of a circuit looks like. The stronger is the lower bound
the larger is the number of cases: if one wants to prove, say, 4n lower bound,
one needs to carefully check that no two of the four gates eliminated at each
iteration coincide. This makes gate elimination proofs quite tedious. Moreover,
it was recently shown by Golovnev et al. [3] that certain formalizations of the
gate elimination method are not able to prove stronger than cn lower bounds for
a small constant c. For example, they constructed a simple function f such that
no substitution of the form xi ← g, where g is an arbitrary function on all the
remaining variables, can reduce the circuit size of f by more than 5. Can one at
least prove a 4n lower bound using gate elimination?

Further reading. An exposition of the proofs based on the gate elimination
method is given by Wegener [4, Chap. 5]. A more recent survey is given by
Golovnev et al. [3, Sect. 2].
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2.2 Multi-output Functions

Can one prove stronger lower bounds for functions with multiple outputs? In
this case, we assume that for each output of such a function, a circuit contains
a gate computing this output. Computing several functions simultaneously is
definitely not easier than computing any one of them. However, currently, we do
not know how to exploit this fact in lower bounds proofs: the strongest lower
bound for functions with o(n) outputs is the same as for functions with a single
output (up to additive o(n) terms). When the number of outputs becomes linear,
one can use the following observation by Lamagna and Savage [5]: the circuit
complexity of computing k different functions f1, . . . , fk ∈ Bn simultaneously is
at least (mini gates(fi) − 1) + k. This is just because none of the topologically
first mini gates(fi) − 1 gates can compute any of the outputs and one needs at
least k gates to compute all outputs. This allows one to prove (c + 1)n − O(1)
lower bounds for functions from Bn,n from cn lower bounds for functions from
Bn,1: given f ∈ Bn, consider g = (g1, . . . , gn) ∈ Bn,n where gi(x) = f(x) ⊕ xi;
then, gates(gi) ≥ gates(f) − 1 and hence gates(g) ≥ gates(f) + n − 2. How to
prove a 5n lower bound for a function from Bn,n?

Further reading. A survey of lower bounds for multi-output functions is given
by Hiltgen [6, Chap. 4].

2.3 Non-gate-Elimination Lower Bounds

Are there approaches other than gate elimination for proving lower bounds for
unrestricted circuits. There are a few lower bounds that are not based on gate
elimination techniques. Alas, none of them is currently known to give a stronger
than 2n lower bound. Blum and Seysen [7] proved that any optimal circuit that
computes simultaneously AND and NOR of n input bits consists of two formulas
(that is, each output is computed by a tree) and hence has size 2n − 2. Note
that the gate elimination method with bit-fixing substitutions cannot be used for
this particular function: assigning a constant to an input variable immediately
trivializes one of the two output functions (and one loses a possibility to proceed
by induction). Melanich [8] came up with a similar, but simpler argument. She
considered the following multi-output function from Bn,o(n): there are n =

(
k
2

)

inputs x{i,j}, where 1 ≤ i �= j ≤ k, and k = o(n) outputs; the i-th output com-
putes the AND of variables {x{i,j}}j �=i. Each input contributes to two outputs
and hence the function can be computed by a circuit of size 2n− o(n). Melanich
proves that this straightforward circuit is optimal by showing that in any circuit
(computing this function) one can reduce the number of gates shared between
several outputs without increasing the size of the circuit. Chashkin [9] proved
a 2n − o(n) for a function f ∈ Bn,log2 n that has the form f(x) = Ax where
the matrix A ∈ {0, 1}log2 n×n has n pairwise distinct columns. He showed that
any circuit computing this function has at least n − o(n) branching gates (i.e.,
gates of out-degree at least 2). The lower bound then follows by counting the
number of edges. Can any of these non-gate-elimination methods be extended to
get stronger than 2n lower bounds?
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2.4 Symmetric Functions

Can one prove a superlinear lower bound for a symmetric function (i.e., a func-
tion whose output depends on the sum of input bits only)? In fact, one cannot:
while basic symmetric functions like parity, MOD3, and majority are used to
prove superpolynomial lower bounds in, e.g., constant depth circuit model, any
symmetric function can be computed by a circuit of size 4.5n + o(n) as shown
by Demenkov et al. [10]. The strongest known lower 2.5n − O(1) is proved by
Stockmeyer [11]. Hence, it is not excluded that there exist symmetric functions of
circuit size, say, 4n. Note that the multi-output function SUMn ∈ Bn,�log2(n+1)�
that outputs the binary encoding of the sum of n input bits is not easier
than any symmetric function f ∈ Bn: f can be computed by a circuit of size
gates(SUMn) + o(n). What is the circuit size of SUMn?

Further reading. Known lower and upper bounds on complexity of symmetric
functions in various models are summarized in Jukna’s book [1, end of Chap. 1].

2.5 Satisfiability Algorithms

Given a circuit with n inputs, how hard is it to find an assignment making
this circuit to output 1? Williams [12] recently developed a general framework
of getting circuit lower bounds from faster than brute force search satisfiability
algorithms. Extending Williams’ results, Jahanjou et al. [13] proved that one can
prove a 2cn lower bound (for a function from Bn,2) by designing an O(2n/nω(1))-
time algorithm for checking satisfiability of circuits of size 2cn. In a sense, results
like this show that designing fast satisfiability algorithms is not easier than prov-
ing circuit lower bounds. This also reflects the state-of-the-art on satisfiability
algorithms: we only know how to beat the brute force search for circuits of size at
most 2.99n [14]. Hence, the known satisfiability algorithms for small size (unre-
stricted) circuits currently do not give improved lower bounds. Can one improve
the brute force search for the satisfiability problem on circuits of size 4n? Do
non-trivial satisfiability algorithms for circuits of size cn imply cn lower bounds?

Further reading. A good starting point is a recent survey by Williams [15].

2.6 Mass Production

Can one take a sufficiently hard function with constant number of inputs and cook
out of it a family of functions of high circuit complexity? About 70 years ago,
Shannon [16] showed that almost all functions from Bn have circuit complexity
Ω(2n/n) (by showing that the total number 22

n

of functions is greater than the
number of circuits of size o(2n/n)). This implies that for any constant c, one
can find a function fk ∈ Bk, where k = k(c), of circuit size at least ck just
by enumerating functions one by one. A natural attempt to cook a family of
functions out of fk would be to define a function fn ∈ Bn,nk

as follows: split n
input bits into n

k blocks of k bits and apply fk to each of the blocks. In other
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words, we compute fk on n
k independent blocks of size k. The function fn can

be computed by a circuit of size n
k · gates(fk). If this naive way of computing

fk was close to optimal, one would get a close to cn lower bound on the circuit
size of fn. We, however, do not know how to prove this. Still, this is what is
known.

For a positive integer r and a function f ∈ Bn, by r×f we denote a function
from Brn,r that applies f to r independent blocks of size n. We say that a mass
production effect occurs for f when gates(r × f) is (much) smaller than r ·
gates(f). For very simple functions like f = x1 ⊕ · · · ⊕ xn (or any other function
whose optimal circuit is a read-once formula) there is no mass production effect:
gates(r × f) = r · gates(f). This can be shown just by counting wires: f depends
essentially on all its variables, hence there is at least one outgoing wire for every
input; since each internal (non-output) gate reduces the number of outgoing
wires at most by one, we conclude that gates(f) = n − 1 and gates(r × f) =
rn − r = r · (n − 1). Hiltgen [6] also shows that mass poduction effect occurs
for many functions of circuit size about 2n. On the other hand, for very hard
function f one can show that gates(r × f) is almost the same as gates(f) even if
r is superpolynomial in n. More precisely, Ulig [17] showed that gates(r × f) ≤
2n/n + o(2n/n) for any f ∈ Bn and r = 2o(n/ log n). What are the functions
avoiding mass production effect?

Further reading. More on mass production can be found in Wegener’s book
[4, Sect. 10.2] and Hiltgen’s PhD thesis [6, Sect. 4.4].

2.7 Logarithmic Depth Circuits

Can we at least prove superlinear lower bounds on circuits of logarithmic (i.e.,
O(log n)) depth? Alas, currently, it is not known. However, if we further restrict
the depth to be constant (in this case, one needs to allow arbitrary fan-in and
to specify the operations allowed at gates), then one can prove even superpoly-
nomial lower bounds! Moreover, Valiant [18] showed the following connection
between these two models: if a function can be computed by a circuits of loga-
rithmic depth and linear size, then it can also be computed by a subexponential
depth 3 circuit, more precisely by an OR of CNF’s of total size 2O(n/ log log n)

(here, the constant inside O(·) depends on constants a, b where the size and
depth of the original circuit is an and b log n). Currently, the strongest lower
bounds known for such depth 3 circuits are of the form 2Ω(n1/2), though expo-
nential lower bounds are known if we further restrict the length of clauses in
CNF’s to be constant.

Further reading. An exposition of Valiant’s reduction is given in the book
by Viola [19, Chap. 2], while known results on constant depth circuits are sum-
marized in the book by Jukna [1, Chaps. 11–12].
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2.8 Linear Circuits and Matrix Rigidity

Can we at least prove superlinear lower bounds for circuits consisting of parity
gates only? This question makes sense for multi-output functions. Specifically,
let us focus on functions of the form f(x) = Ax where A ∈ {0, 1}n×n. Non-
constructively, one can show that for almost all matrices A, the size of the
smallest linear circuit computing Ax is Ω(n2/ log n) (and there is a matching
upper bound by Lupanov [20]). Alas, we do not have superlinear lower bounds
even for this restricted model, even when we additionally restrict the depth to
be O(log n). Interestingly, Valiant’s depth reduction mentioned in Sec. 2.7 can
be used to relate the circuit size to the notion of matrix rigidity introduced by
Grigoriev [21] and Valiant [22]. Roughly speaking, for a parameter r, the rigidity
of A, RA(r), is the Hamming distance from A to the set of matrices of rank (over
F) at most r. Valiant shows that if RA(εn) ≥ n1+δ for positive constants ε, δ,
then the function Ax cannot be computed by linear circuits of logarithmic depth
of size O(n). So far, we have no such examples of explicit matrices.

Further reading. More on circuit complexity and matrix rigidity can be found in
the book by Lokam [23, Chap. 2]. Lower bounds for constant depth linear circuits
(where superlinear lower bounds are known!) are summarized in the recent book
by Jukna and Sergeev [24].

2.9 Multiplicative Complexity

What if some gates are given for free? Basically, each gate in a binary Boolean
circuit is either an XOR-type gate, i.e., computes a binary operation of the form
x⊕y⊕a where a ∈ {0, 1}, or an AND-type gate, i.e., computes (x⊕y)∧(y⊕b)⊕c
where a, b, c ∈ {0, 1}. It is well known that XOR-type gates are avoidable: any
function can be computed by a circuit in the basis U2 = B2\{⊕,≡}. On the other
hand, AND-type gates are unavoidable and it was shown by Nechiporuk [25]
that almost all Boolean functions require about 2n/2 such gates. The minimum
number of AND-type gates required to compute f is known as multiplicative
complexity of f , mc(f). Of course, mc(f) ≤ gates(f) and the known lower bounds
on multiplicative complexity are even weaker than those on circuit complexity.
At the same time, one can prove lower bounds on mc without analyzing the
structure of a circuit: as shown by Schnorr [26], a circuit with k AND-type gates
computes a function of degree at most k + 1. Here, the degree of a function is
the degree of its polynomial over F2. This immediately gives a lower bound n−1
on multiplicative complexity of functions of full degree: e.g., mc(AND) = n − 1.
Strangely enough, this is the strongest known lower bound: we do not know how
to prove mc(f) ≥ n, let alone proving mc(f) ≥ (1 + ε)n.
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Abstract. The online labeling problem (also known as the file mainte-
nance problem), is a natural algorithmic problem that has arisen as a
buidling block for data structures. A stream of distinct integer items is
to be assigned labels online from a label set {1, . . . , m} so that the order
of the labels respects the natural order of the items. Maintaining order
on the labels may require relabeling items. The algorithm pays 1 each
time an item is labeled or relabeled and the goal of the algorithm is to
minimize the total cost.

We survey upper and lower bounds and open problems in both the
deterministic and randomized setting.

Keywords: Online labeling · Data structures

1 The File Maintenance Problem

The online labeling problem (also known as the file maintenance problem) is
a simple and appealing algorithmic problem that was introduced in the early
1980’s by Itai et al. [17], involving the online labeling of items in a stream of
distinct elements from a totally ordered set. The problem appears in connection
with various data structure problems. In this extended abstract we survey known
results, both upper and lower bounds, for this problem, as well as open questions.

The setting of the problem is a stream of distinct data items arriving online
that are assigned labels from a label set {1, . . . , m}. The items come from a
totally ordered set, which we take to be the set {1, . . . , r}. The items arrive
one at a time, and each item must be labeled when it arrives. At all times, the
labeling of the items must respect the ordering of the items; if items y and z
satisfy y < z then the label of y must be less than the label of z. Maintaining this
order requirement may require relabeling items when new items arrive. We are
assessed a charge of 1 when an item is initially labeled and each time an item is
relabeled. The goal is to minimize the total cost of all labelings and relabelings.

An alternative formulation for this problem is the file maintenance problem.
In this formulation items are not assigned labels from the set {1, . . . , m} but
instead are stored in an array of length m. The items may be located anywhere in
the array (and there are in general many empty locations) but we must maintain
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the condition that the left to right order of items in the array respects the
intrinsic ordering on the items. We pay 1 for storing an item, and 1 each time
we move an item. Viewing the index of the array location where containing an
item as its label, it’s easy to see that file maintenance and online labeling are
equivalent. In this paper we’ll use the online labeling formulation.

This problem was introduced in [17] in the context of an application to prior-
ity queue implementation. Other applications in algorithm design include design
of cache-oblivious B-trees (Bender et al. [4] and Brodal et al. [8]), and cache-
oblivious dynamic dictionaries (Bender et al. [6]). It was also shown (Emek and
Korman [16]) that lower bounds on the cost of file maintenance can be used to
obtain lower bounds on a problem in distributed resource allocation called the
Distributed Controller problem (introduced in [1]).

The online labeling problem is parameterized by the label range m, the uni-
verse size r and the list size n. If the universe size r is less than or equal to the
label range m, one can simply label each arriving item by itself. This algorithm
requires no relabelings, and so the cost is simply n. Note also that the problem
is obviously infeasible if n > m. Thus the interesting range of parameters is
n ≤ m < r.

To formalize the problem: A labeling function for the subset Y ⊆ [1, r] of
items is a map f : Y −→ [1,m] that is strictly order preserving, i.e., for x, y ∈ Y
if x < y then f(x) < f(y). In particular f is one-to-one, so |Y | ≤ m. Labels that
are in the image of f are occupied and the others are unoccupied. A configuration
is a pair (Y, f) where Y is a set of items and f is a labeling function for Y .

The online labeling problem with parameters m, r, n as above, can be
described as a two player game Gn(m, r), called the online labeling game between
the algorithm and the adversary. The game is played in a sequence of n rounds.
In each round t the adversary selects an item yt that was not previously selected,
i.e, from the set {1, . . . , r} − {y1, . . . , yt−1}. The algorithm then chooses a label-
ing function f t for the set Y t = {y1, . . . , yt}. We say that item yt is arrives at
round t. (Y t, f t) is called the configuration at the end of round t and also the
configuration at the beginning of round t + 1.

Formally, an adversary strategy is a sequence (y1, . . . , yn) of distinct items
and an algorithm is any map that associates a labeling function to every sequence
(y1, . . . , yt) (where t ≤ n).

We say that item yt is labeled in round t, and that an item y ∈ Y t−1 is
relabeled in round t if f t(y) �= f t−1(y). The cost up to round t is χt =

∑t
i=1 |Li|,

where Li is the set of items labeled or relabeled in round i. The objective of the
algorithm is to minimize χn and the objective of the adversary is to maximize
χn. We also define the amortized cost per item αn = χn/n.

The cost of an algorithm is the maximum over all adversary sequences of
the cost of the algorithm on the sequence. We write χn(m, r) for the value of
the game, which is the minimum cost of an algorithm. We define αn(m, r) to be
χn(m, r): this is the optimal amortized cost per item.

One may consider both the case where the algorithm is deterministic, and the
case that the algorithm is randomized. In the language of games, a randomized
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algorithm is a mixed strategy, i.e. a probability distribution over deterministic
strategies. The cost of a randomized algorithm on an adversary sequence is the
expected cost (over the random choices of the algorithm), and the (worst case
expected) cost of the algorithm is the maximum over all adversary sequences
of the expected cost of the algorithm on that sequence. The minimum cost
of any randomized algorithm is denoted χ̃n(m, r), and the amortized cost is
α̃n(m, r) = χ̃n(m, r)/n.

2 Deterministic Algorithms with Arbitrary Universe

The universe size r plays a secondary role in results on the problem: the main
known upper bounds are independent of r, and hold for any (even infinite) totally
ordered universe (e.g., the real numbers). For now we focus on this case, and
mention the role of the universe size later.

The label range m must (of course) be at least the number n of items to be
labeled. It is also easy to show that if m ≥ 2n then there is an algorithm that
never relabels any items, so its cost is exactly n. So we assume n ≤ m < 2n. In
the case of arbitrary universe, there are upper and lower bounds known that are
matching up to a constant or weakly superconstant factor for all m.

There are two natural range of parameters that have received the most atten-
tion. In the case of linear label range we have m = (1+C)n for some C > 0, and
in the case of polynomial label range we have m = θ(n1+C) for some constant
C > 0.

All known upper bounds are provided by analysis of explicit algorithms. The
published algorithms all work for arbitrary (even infinite) universes, and r plays
no role in their analysis. Itai et al. [17] gave an algorithm for the case of linear
label range having worst case amortized cost O((log n)2) per item. Improvements
and simplifications were given by Willard [20] and Bender et al. [4]. In the special
case that m = n, algorithms with amortized cost O((log n)3) per item were given
[7,21]. It is also well known that the algorithm of Itai et al. can be adapted to
give amortized cost O(log n) per item in the case of polynomial label range. An
algorithm with O(log n) worst case cost per item for polynomial label range was
given by Kopelowitz [19]. Bulánek et al. (see [3]) gave an algorithm that has
amortized cost O(log n/ log log m), for m large enough (bigger than 2logn3

but
at most 2n).

As mentioned, the known lower bound results for deterministic algorithms
come close to matching these upper bounds.

For the case of polynomial label range, Dietz et al. [13] (also in [21]) proved
an amortized lower bound Ω(log n) which matches the upper bound. This lower
bound was extended, and the proof simplified, by Babka et al. [2,3] who gave an
amortized lower bound of Ω( log n

1+log logm−log log n ) that is valid for m between n

and 2n. This bound includes the lower bound of [13] for polynomial label range,
and also matches the above-mentioned upper bound of O(log n/ log log m) when
m is at least 2logn3

.
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For the case of linear label range, Bulánek et al. [9] proved an amortized
lower bound of Ω(log2 n) matching the upper bound in the initial paper of [17].
This lower bound built on earlier work of Dietz and Zhang ([12,15], also available
in Zhang’s Ph.D. thesis [21]) that proved the same lower bound for a restricted
class of algorithms, called smooth algorithms. In [9] an amortized lower bound
of Ω(log3 n) was proved in the case m = n, matching the upper bound of [7,21].

Table 1, adapted from [3], summarizes the known results for determinstic
online labeling with arbitrary universe.

Table 1. Known bounds for amortized cost of deterministic online labeling.

Array size (m) Asymptotic bound Lower bound Upper bound

m = n Θ
(
(logn)3

)
[9] [21]

m = cn, constant c > 1 Θ
(
(logn)2

)
[9] [17]

m = nC , constant C > 1 Θ(logn) [13] [17]

m = nω(1) Ω
(

log n
1+log log m−log log n

)
[2]

m ≥ 21+log3 n Θ
(

log n
log log m

)
[2] [3,9]

3 The Role of the Universe Size

Thus far, we’ve ignored the possible role of the universe size r, and allowed r
to be infinite. All of the algorithmic results described above hold for arbitrary
universe size, and it is unclear the extent to which restricting the universe size
can be exploited by algorithms. As noted earlier, if the universe size r is restricted
below the label range m, then we can use the identity labeling, which has a cost
of only n. What if the universe size is not much bigger than m, for example, is
bounded by some constant multiple of m. Surprisingly, in the case of linear label
range, the tight amortized Ω(log2 n) lower bound shown in [9] for linear array
size holds even if the universe size r is bounded by a (sufficiently large) constant
multiple of m. However, the known proofs of the lower bounds for polynomial
(or larger) label range seem to require r to be exponential in n. This leaves
open the intriguing question of whether one can improve on the best algorithms
when r is bounded by a not too large function of m. For example, in the case of
polynomal label range, m = n1+C for C > 0, can one can improve on the O(log n)
amortized cost algorithm if the range r is bounded above by a polynomial in m,
or by O(m log m)?

4 Randomized Online Labeling

As discussed earlier, a randomized online labeling algorithm can be viewed as a
probability distribution over deterministic online labeling algorithms. The cost of
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an input sequence is the expected cost of the input sequence over the randomness
of the algorithm.

In the deterministic setting, we can think of the game as happening in rounds,
where in round t the adversary selects yt knowing the current labeling function
of Y t−1. In the randomized setting, the adversary does not know the current
labeling function of Y t−1; he only knows the probability distribution induced by
the algorithm over labelings of Y t−1.

As usual, randomized algorithms are at least as powerful as deterministic
algorithms, and the natural question is: does randomness help for online labeling?

In the case of polynomial label range, Bulánek et al. [10] proved that the
Ω(log n) amortized lower bound that was proved for deterministic algorithms
extends to the randomized case. However, in other ranges of m it is not known
whether randomized algorithms can improve on deterministic algorithms. An
especially interesting open question is whether the tight Ω(log2 n) lower bound
for the case m = (1 + C)n (linearly many labels) extends to randomized algo-
rithm, or is there a randomized algorithm whose cost beats the O(log2 n) deter-
ministic algorithm of [17]?
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Abstract. We study upper and lower bounds for the problem of main-
taining a chordal graph G under edge insertions and deletions. Let G be
a chordal graph on n vertices and m edges and let (u, v) be the edge to
be deleted or inserted.

– Let k be the size of the maximum clique in G. Our first result is
an improved analysis of an earlier approach due to Ibarra [12] to
support edge deletions. We can construct a data structure in O(nk2)
time such that we can report in O(1) time if G\(u, v) is chordal and
if it is, we can update the structure in O(n+k2) time. We then show
using a charging argument that the update time can be improved to
O(n2/Δ + k2) amortized time over a sequence of Δ deletions.

– We develop a data structure to maintain a perfect elimination order-
ing (PEO) of chordal graphs where we can detect whether G\(u, v)
is chordal in O(min{degree(u), degree(v)}) time, and if it is chordal,
we can update the structure in O(degree(u) + degree(v)) time. In
graphs of bounded degree, our query and update bounds are a
constant.

– Finally, we show that we can obtain a PEO of the graph from a
clique-tree in O(n) time after an edge insertion or deletion (against
a naive O(m + n) time). This answers a question posed by Ibarra [12].

Regarding lower bounds, we show that any dynamic structure to main-
tain a chordal graph requires Ω(log n) amortized time per edge addition
or deletion or per query to detect chordality, in the cell probe model with
word size log n.

1 Introduction

A graph is chordal if every cycle of size four or more in the graph has a chord. The
study of chordal graphs has quite a rich history and the class of graphs has found
use in a wide range of areas such as in biology, artificial intelligence, database sys-
tems and facility location problems [4,7,18]. There are O(m + n) time algorithms
to detect whether a graph on n vertices and m edges is chordal by computing
c© Springer International Publishing AG, part of Springer Nature 2018
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what is called a perfect elimination ordering or a clique tree decomposition of
the graph [17,18]. A perfect elimination ordering in a graph is an ordering of
the vertices of the graph such that for each vertex x, x and the neighbors of
x that occur after x in the ordering form a clique. A graph is chordal if and
only if it has a perfect elimination ordering (PEO) of its vertices. Another char-
acterization of chordal graphs is in the form of clique trees. A clique tree of a
graph is a tree decomposition of the graph, where the bags in each node of the
decomposition induce a maximal clique. A graph is chordal if and only if it has
a clique tree [3,19].

We consider the problem of maintaining chordal graphs under edge insertions
and deletions. As in the well-studied area of dynamic graph algorithms, we want
our algorithm to report and update faster than what would require in the static
algorithm to test chordality of the resulting graph from scratch, i.e. better than
O(m + n) time. Sometimes it is convenient to restrict the update operations
on the graph. If we are allowed only insertions on the graph, then a structure
supporting such an operation is said to work in the incremental setting. Similarly,
if we are allowed only delete operations, such a structure is said to work in the
decremental setting. A structure that allows both insertions and deletions is
called a fully dynamic structure.

Our structures (as in the case of previous ones for the problem) always main-
tain a chordal graph in that whenever the addition or deletion of an edge makes
the graph non-chordal, the algorithm reports that it is non-chordal and does not
perform the update. We call the operation that detects chordality and returns
a yes or no answer as a query, and the operation to update the resulting graph
(if the resulting graph is chordal) as the update operation.

1.1 Previous Work

Ibarra [12] developed two fully dynamic algorithms for maintaining chordality.
First one has a query and update time of O(n) with a preprocessing time of
O(m + n), while the other has a query time of O(

√
m) and the update time of

O(m + n) with a preprocessing time of O(mn + n2). The latter is particularly
useful for sparse graphs. Mezzini [13] developed a fully dynamic algorithm with
O(1) query and O(n2) update time, for both addition and deletion of edges.
Berry et al. [1] gave an algorithm which takes amortized O(n) time for insertion,
deletion and deletion queries and an amortized O(1) time for insertion queries.

Tarjan and Yannakakis [18] give an algorithm to convert what are called
acyclic hypergraphs (clique trees are acyclic hypergraphs) to PEO in O(m + n)
time. In this paper, we give a data structure to augment clique trees and an
algorithm to obtain a PEO from that, to support maintenance of PEO under
insertions and deletions of edges in O(n) time.

Logarithmic time lower bounds for update and query times for graph prob-
lems were first developed by Fredman et al. [10], who gave an Ω(log n/ log log n)
amortized query and update times for fully dynamic connectivity in the cell
probe model with word size O(log n). The cell probe model [20] is a useful model
for proving lower bounds of algorithms; computation in this model is framed as
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querying a set of memory cells. Patrascu et al. [16] improved the bounds to
Ω(log n) amortized. For maintaining special classes of graphs, Hell et al. [9] gave
an Ω(log n/ log log n) amortized lower bound per update and query operation for
fully dynamic recognition of proper interval graphs with word size of O(log n).
It is not difficult to improve the lower bound to Ω(log n) by applying the result
of Patrascu et al. [16]. Hell et al. [9] also state without proof that a similar tech-
nique may be applied to get lower bounds for dynamic recognition of chordal
graphs. In this paper, we give a formal proof of the Ω(log n) lower bound that
also applies for a few other subclasses of chordal graphs.

Amortization bounds in all these structures report the time per update/query
required by the algorithm over a long sequence of query and update operations.
In particular, the algorithm will not perform an update if the graph property
is not satisfied on the resulting graph. For example if at some update, an edge
is deleted and the resulting graph is not chordal then we insert the edge back
again and continue to the next update.

1.2 Our Results

Our first structure follows Ibarra’s approach in maintaining chordality by main-
taining a clique tree decomposition of the chordal graph. However, we design
and analyze our structures based on the maximum size k of a bag in the clique
tree. Specifically we show that we can construct a data structure in O(nk2) time
such that given an edge e to be deleted from G, we can report in O(1) time if
G\e is chordal and if it is, we can update the structure in O(n + k2) time. For
example, for planar graphs where the maximum size of a clique is a constant,
our structure supports an O(1) query and O(n) update time in the worst case.
Using a careful charging argument, we show that the update time is actually
O(n2/Δ + k2) amortized over Δ edge deletions. Hence, in particular if Δ is at
least n2/k2, the amortized bound becomes O(k2). For example, if k = Θ(n1/4)
and the initial chordal graph has Θ(n3/2) = Θ(n2/k2) edges, over all these edge
deletions, our amortized bound for an update is O(k2) which is O(

√
n) while the

query is still supported in constant time.
Our next results uses a perfect elimination ordering of chordal graphs.

– We show that a PEO can be represented by a dynamic list [6] so that
given a query edge (u, v) to be deleted, we can detect chordality in
O(min{degree(u), degree(v)}) and update the resulting chordal graph in
O(degree(u) + degree(v)) time. Our bounds match the bounds in Ibarra’s
result for the decremental setting in the worst case, but give better results
when u and v have low degree. In particular, for chordal graphs with bounded
degree, our method takes a constant time to update a PEO under edge
deletions.

– We then give a method to augment a clique-tree decomposition of a chordal
graph with simple data structures and show that we can obtain a PEO of
the graph from a clique-tree in O(n) time after an edge insertion or dele-
tion(against a naive O(m + n) time algorithm). This answers a question posed
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by Ibarra [12]. The only non-trivial algorithms for problems such as minimum
coloring, maximum independent set, minimum clique cover on chordal graphs
are known via PEO [8]. Thus, our conversion from clique tree to PEO means
that all of Ibarra’s results which took O(n) query and update time or more can
now be directly translated to PEO and hence all these problems on chordal
graphs can also be solved more efficiently.

Finally, we give the first non-trivial lower bound for the fully dynamic mainte-
nance of chordal graphs. By giving a reduction from the problem of dynamically
maintaining a forest under edge insertions and deletions, we show that any struc-
ture to maintain a chordal graph requires Ω(log n) amortized time for a query
or an update.

1.3 Organization of the Paper

In Sect. 2, we develop a structure using clique trees if only deletion of edges are
allowed. We analyze this structure in two different ways to give a worst case and
an amortized bound. Section 3 gives a worst case algorithm, on deletion of edges
using a PEO ordering of the graph.

We then give an algorithm to obtain a PEO from a clique tree efficiently.
Section 4 gives the lower bound for our problem.

We conclude in Sect. 5 with open problems and further directions of research.

2 Decremental Algorithms Using Clique Tree

We assume that the vertices in the graph are labelled 1, 2,...,n. The neighborhood
of a vertex u refers to the adjacent vertices of u in the graph and degree(u) refers
to the number of neighbors of a vertex u. We start with the definiton of a clique
tree decomposition of a graph. Given a graph G = (V,E) with |V | = n and
|E| = m, a tree decomposition of G is a pair (T, {Xi}i∈V (T )), where T is a tree,
V (T ) is its vertex set, and there is a set Xi ⊆ V associated with each node i of
the tree, with the following properties [5]: (1) The union of all sets Xi equals V.
(2) For every edge (u, v) in the graph, there is a subset Xi that contains both
u and v. (3) For each vertex v of the graph, all the nodes Xi that v belongs to
form a subtree of T .

A clique tree of a graph G is a tree decomposition where the subsets Xi in
each node induce a maximal clique. To distinguish between vertices of the graph
and its associated tree decomposition, we call the vertices of the tree as nodes.
We will use bags and nodes interchangeably to denote the sets Xi when there
is no confusion. We define the neighbors of a node in the clique tree to be its
parent and all its children.

2.1 Structure with a Worst Case Update Time

We provide structures here that use the clique-tree decomposition of chordal
graphs. They mainly use the following characterizations of chordal graphs.
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Theorem 1 [3,19]. A graph G is chordal if and only if G has a clique tree.

Lemma 1 [12]. Given a chordal graph G, and an edge e = (u, v), G\e is chordal
if and only if u and v are together present in exactly one maximal clique, and
hence in only one bag of the clique tree.

Using this, we prove the following:

Theorem 2. Let G be a chordal graph. Let k be the maximum size of a clique
in G. We can construct a data structure in O(nk2) time such that given an edge
(u, v) to be deleted from G, we can report in O(1) time if G\(u, v) is chordal and
if it is, we can update the structure in O(n + k2) time.

Proof. We first give a high level description of Ibarra’s algorithm in maintaining
a clique tree of the chordal graph under edge deletions. We then explain the data
structures to implement it to support the operations in the claimed bounds.

Algorithm

1. Check if the given edge (u, v) is present in only one bag, if not report a
negative answer, and if yes, then we need to update the clique tree.

2. If Y is the unique bag containing the edge (u, v), the node corresponding to
Y is split into two nodes, Y1 and Y2. Y1 now contains Y \u and Y2 contains
Y \v. Y2 becomes the parent of Y1. From the children of Y1 remove all nodes
which contain u and make them children of Y2. The other children remain as
children of Y1.

3. Check whether the bags of any neighbor of these newly formed nodes is a
superset of the node. If yes, we “absorb” these nodes into the corresponding
neighbor.
To check whether one node is a superset of the other, Ibarra maintains the
intersection size of two adjacent nodes X and Y . We denote this to be the
int value between nodes X and Y . Let Y be the node which has been split
and let � be the size of Y before splitting. If |X ∩ Y | = � − 1 then X absorbs
the new Y . Check [12] for details.

Now we give details of the structures used to implement the algorithm. First, we
build a clique tree from the given graph G. The clique tree can be represented
by a pointer representation where each node points to its parent in the tree.
Furthermore, we maintain the following structures.

– For each edge in the graph G we store,
• a counter indicating the number of nodes of the clique tree to which the

edge belongs, and
• two way pointers from/to each edge to/from all the nodes it belongs to.

We can store this structure as an adjacency matrix, with each position (u, v)
in the matrix having the counter and the list of pointers. Accessing the infor-
mation corresponding to edge (u, v) can be done in O(1) time.

– Similarly for each vertex of the graph G we maintain a counter and a list of
two way pointers to all the nodes it belongs to.
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– For each node X in the clique tree, we store
• the list of vertices sorted according to their labels,
• For each node Y in the clique tree which is a neighbor of X, we store |X∩Y |

in non-increasing order of values in an array associated with the bag X with
a pointer from each cell in the array to the node it corresponds to.

Now we explain how to support the delete operation. Given a query (u, v), we
first look at the counter value of (u, v) in the adjacency matrix. If it is more than
one, we report that G\(u, v) is not chordal. Otherwise, we need to update the
clique tree.

Let the node which is pointed to by the cell (u, v) in the adjacency matrix
be Y and its parent be Ypar. Also let |Y | = �. We create two new nodes Y1

which contains Y \u and Y2 that contains Y \v. Y2 becomes the parent of Y1.
Ypar becomes Y2’s parent. For all the children of Y , all nodes which contain u
become children of Y2 and all nodes which contain v become children of Y1. The
connected subtree property ensures that v does not appear in Y2 or any of its
ancestors. So the int values between the nodes Ypar, Y1, Y2 and all its children
remain the same as it was between Y and these children. The new nodes formed
may now be subsets of any of its adjacent nodes. To maintain the clique tree,
we now consider four distinct cases:

Case 1. If none of the intersections between Y1, Y2 and their neighborhood is �−1
(we can find this from the sorted lists associated with Y1 and Y2) then
neither Y1 nor Y2 is absorbed. In this case, update the int value of Y2 and
its parent by creating a sorted list for Y2 and inserting the int value of
Y2∩Ypar in the array of Ypar. Add pointers of all edges and vertices which
are part of Y2 to point at the node and change the counters.

Case 2. If Y1 gets absorbed into one of its neighbors (check int of Y1 with its
neighbors and see which one is � − 1, in case of a tie choose any one),
delete the node Y1, adjust the parent pointer of its neighbor to now
point at Y2, and adjust all the parent pointers of all the other neighbors
of Y1, to point at this new node. Merge the two sorted int lists of Y1

and its neighbor together.
Case 3. Our algorithm is similar to Case 2 if Y2 gets absorbed into one of its

neighbors.
Case 4. If both Y1 and Y2 are absorbed into one of their neighbors, the parent

pointer of the neighbor which absorbs Y1, now points to the neighbor
which absorbed Y2. The int value between these two nodes becomes �−2.

Update the sorted lists in each of the new nodes formed in the clique tree.
Now, we analyze the runtime for construction of our structures. Building

a clique tree requires O(m + n) time. Let k be the maximum size of a node
in the clique tree. From the property of chordal graphs, we know that there
are a maximum of n nodes in the tree. Then there are a total of m = O(nk2)
edges of the graph in the clique tree. Thus, building a clique tree takes O(nk2)
time giving a total preprocessing time of O(nk2). Storing a counter and the
pointers for each edge and vertex of the clique tree takes a total of O(nk2) time.
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For deletion query, we look at the concerned cell of the adjacency matrix and
check if the counter value is 1 in O(1) time.

For update, for each of the cases above it takes O(k2) time to update the
counters and the pointers for all edges (there are at most k2 edges in a node)
and O(k) time to update for all the vertices. In O(1) time we can, from the
sorted int lists find if a node will be absorbed or not. In Case 1, updating the
parent pointer information takes O(1) time. Updating the sorted int list takes
O(log n) time. In Cases 2, 3 and 4, where the nodes Y1 and/or Y get absorbed,
we need to update the pointers of all neighbors of Y and also merge two sorted
lists. This takes O(n) time. Updating the vertex information of each node takes
O(k) time. Thus the total time taken to update is O(n + k2). �

2.2 Amortized Analysis

We now give a better amortized runtime bound for the above algorithm by
analyzing it differently. We show

Theorem 3. Let G be a chordal graph. We can, in O(nk2) time, construct a
data structure such that given a sequence of Δ edge deletions, we can support
deletion query in O(1) time and deletion update in O(n2/Δ+k2) amortized time.

Proof. Updation of the structures involve the time to split a node in the clique
tree and also to absorb the node into one of its neighbors and updating the
clique tree. We deal with the total time taken to perform the split and absorb
operations seperately.

First, we look at the total time spent for the split operations for each node.
Let Y be a node in the clique tree before any deletion operation and let d be
the degree of the node Y . Over the course of edge deletions, Y gets split into
multiple nodes. Let us denote these set of nodes to be Ysplit. Whenever a node
from Ysplit splits the node size decreases by one and the total cost incurred is
the degree of that node. To analyze the runtime we can imagine a binary tree
whose root node is Y with a node size of k. Y has two children each (because
of a split) with each node of size k − 1. They have four children each of which
correspond to a node of size k − 2 and so on. The total cost incurred at each
level is d. The maximum height of this tree is k. So the total time spent by Y is
O(kd). Now, k

∑
d is at most k(n − 1) and hence we have the total time taken

by the algorithm for splitting nodes is O(kn).
Now, let us analyze the total runtime for absorption of nodes in the algorithm.

Let Y ′s neighbor where it gets absorbed be Ynbr. Let d be the degree of the
node Y , and dnbr be the degree of the node Ynbr before absorption. The cost of
absorption to update the pointers of Ynbr is equal to d.

We associate a charge with every node to account for part of the work done
during the absorption. Eventually the sum of the charges in the (existing) nodes
account for the total work done for absorptions. Let Y be a node which is
absorbed into Ynbr at some point in the sequence of deletions. The amount
of work done for this absorption is the number of children of Y (which now
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become the children of Ynbr) to update the child pointers of Ynbr. We account
for this by adding a charge of d to the node Ynbr. In addition, we pass the charge
accumulated in Y to Ynbr. So the new charge at Ynbr is the old charge in that
node plus the charge at Y plus d.

We first claim that the charge accumulated at any node with degree d is at
most d2. If this was true before, then the new charge at Ynbr is at most its old
charge plus d + d2 (as the charge at Y was at most d2 by induction hypothesis
and its degree is at most d). The old charge at Ynbr by induction hypothesis
is at most d2nbr, and its new degree is d + dnbr. The new charge is at most
d2nbr + d2 + d ≤ (d + dnbr)2 which proves the claim.

Hence the total charge on the existing nodes at any point of time is at most
4n2 as the sum of the degrees is at most 2n. We spend another O(k2) time for
each update to update the nodes corresponding to every pair of vertices in the
bag that got split. Thus, the amortized time for Δ edge deletions is O(n2/Δ+k2).

�
We can, in O(nk2) time, construct a data structure such that given a sequence of
Ω(n2/k2) edge deletions, we can support deletion query in O(1) time and deletion
update in O(k2) total time. In particular if the graph has at least m = Ω(n3/2)
edges and the size of the maximum clique is O(n1/4), then we have an O(1)
query and O(n1/2) update time.

3 Dynamic Maintenance of Perfect Elimination Ordering

3.1 Decremental Algorithm

We now give a decremental algorithm using perfect elimination ordering (PEO).
Towards that we first state the following characterization.

Lemma 2 [14]. Let G be a chordal graph, and let e = (u, v) be an edge. G\(u, v)
is chordal if and only if all the common neighbors of u and v are adjacent to
each other, i.e., they form a clique.

Using the above characterization and the well-known dynamic list to repre-
sent the PEO, we obtain the following result.

Theorem 4. �1 Let G be a chordal graph represented by its adjacency list and
adjacency matrix. We can, in O(m + n) time, construct a PEO of G, such that
whenever an edge (u, v) is deleted, we can determine if G\(u, v) is chordal in
O(min{degree(u), degree(v)}) time, and update the structures if it is the case,
in O(degree(u) + degree(v)) time.

If the chordal graph has bounded degree, we get the following.

Corollary 1. Let G be a chordal graph with bounded degree given by its adja-
cency matrix and adjacency list. We can in O(m + n) time construct a PEO of
the vertices of G such that whenever an edge (u, v) is deleted, we can in O(1)
time determine if G\(u, v) is chordal and if yes, we can update the structure in
O(1) time.
1 Proof deferred to the full version.
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3.2 Fully Dynamic Maintenance of PEO

We show how to convert a clique tree decomposition of a chordal graph to
its PEO ordering in O(n) time even under edge insertions and deletions, thus
answering a question posed by Ibarra [12]. In O(m + n) time we can obtain
a clique tree from a graph G as well as store the intersection values between
every pair of adjacent nodes in a clique tree [17,18]. In addition, we show that
for the lists associated with two adjacent nodes, defined as A and B, we can
also store the values A\B and B\A and update them on edge addition and
deletion efficiently. This added information helps to convert from a clique tree
to PEO efficiently in O(n) time. Using the help of the following lemma (proof in
appendix) we show how to maintain this structure for edge additions/deletions.

Lemma 3. �2 Let G be a chordal graph given with its clique-tree decomposition.
We can construct a data structure in O(nk log k) time (where k refers to the
maximum node size in the clique tree) and store the vertices differing between
two adjacent nodes in the clique tree i.e. for the lists A and B associated with the
two adjacent nodes, we store the values A\B and B\A on the edge connecting the
nodes. We can update this structure and the clique-tree in O(n) time on addition
or deletion of an edge from the graph G.

Using this lemma, we look at converting a clique tree to a PEO ordering
efficiently. The proof of the following theorem gives details of implementation in
O(n) time.

Theorem 5. Let G be a chordal graph given with its clique-tree decomposition.
We can augment it in O(nk log k) time (where k refers to the maximum node size
in the clique tree) such that we can convert the clique tree to a PEO in O(n) time
on addition or deletion of an edge provided the modified graph remains chordal.

Proof. Let A and B denote the lists associated with two adjacent nodes. Define
P = A\B and Q = B\A. Using Lemma 3 we construct and store the clique tree
data structure augmented with the sets P and Q on each edge. Arbitrarily root
the clique tree and do a depth first search traversal ordered by the start times
of the nodes. We take all the vertices in that node and push it into a stack. We
continue our DFS traversal and whenever we arrive at a node A, we push the
vertices A\B into the stack, where B is its parent. At the end of the traversal,
pop the vertices from the stack. The order in which they are popped is the order
of the PEO.

For correctness we need to show that this traversal maintains the PEO at
any time instant. Initially when we consider the root node, they form a maximal
clique, so pushing them in any order in the stack does not violate the PEO
property. Let us take a node A at some intermediate step of the traversal and
push A\B into the stack. For a vertex a ∈ A\B to violate the PEO ordering, a
has to be a neighbor of b and c, two vertices already in the stack below a but

2 Proof deferred to the full version.
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b and c are not adjacent to each other. But this cannot happen. As b and c are
already in the stack they have been visited earlier in the traversal. We show b
and c are both in node A. If not, they cannot appear after A in the traversal
as it violates the connected subtree property. A is the first node in the traversal
which contains a and as (a, b) and (a, c) are neighbors they have to appear in
some node by definition of clique trees. Therefore, the vertices b and c are both
in node A as well. As each node is a maximal clique, vertices b and c are also
neighbors. So we see that the algorithm does not violate the PEO ordering.

During the traversal we push each vertex into the stack only once and pop
them out once. Hence, the total time spent is O(n). �

4 Lower Bound

We first observe that the reduction [16] from the Query-Sum problem to dynamic
connectivity also holds for fully dynamic connectivity on forests to show the
following.

Theorem 6 [16]. Consider any dynamic data structure that performs a
sequence of n edge insertions and deletions that maintain the forest structure
starting from an edgeless graph. Suppose the structure also supports queries of
the form whether a pair of vertices are in the same connected component. Then
such a structure requires Ω(log n) amortized time per query and update to sup-
port a sequence of n query and update operations in the cell probe model of word
size log n.

We use this observation to give a reduction to our problem to prove a similar
lower bound.

Theorem 7. Any dynamic structure that maintains a chordal graph under edge
insertions and deletions requires Ω(log n) amortized time per update or query in
the cell probe model of word size log n.

Proof. The main idea is to ensure that when a query for a pair (u, v) comes, we
add a new path of length three between u and v and check whether the resulting
graph is chordal. If the pair of vertices are in different components, then the new
additions don’t add any cycle, and if they are in the same component, then new
additions create a chordless cycle of length greater than three. Hence we can test
the reachability question using the chordality query. We give the details below.

Given an instance I of the fully dynamic connectivity problem on forests
with n vertices, we create a graph on n + 2 vertices where the first n vertices
correspond to the original vertices, and there are two new vertices s and t with an
edge between s and t. Whenever an edge {u, v} is added to I, we call the addition
of edge {u, v} to I ′. Whenever an edge {u, v} is deleted from I, we delete the
same edge from I ′. The forest maintenance property of the instance I ensures
that these addition or deletion of edges always ensures a forest is maintained in
I ′ as well.
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When a query between a pair of vertices u and v comes, we simply add the
edges {u, s} and {t, v} and ask whether the resulting graph is chordal. If it is,
then we declare that u and v are in different components of the forest, and
otherwise they are in the same component. We then delete the edges {u, s} and
{t, v} from the graph. If u and v are in the same component, then the path in
the component between u and v along with edges {u, s}, {s, t} and {t, v} form a
chordless cycle. This proves the correctness of the reduction.

Thus every connectivity query in I is implemented by two edge additions, a
chordality query and two edge deletions in I ′. Furthermore, every update in I
is implemented by the same update in I ′. Thus from Theorem 6, the theorem
follows.

We observe that the only property of chordal graphs we used in the above reduc-
tion is that trees are chordal and any induced cycle of length greater than three is
not chordal. Hence the same reduction works for any subclass of chordal graphs
that contains the class of trees. Thus we have

Corollary 2. Any dynamic structure that maintains a Ptolemaic graph or a
k-tree or a strongly chordal graph (for definitions refer [2,11,15]) under edge
insertions and deletions requires Ω(log n) amortized time per update or query.

5 Conclusions

We have presented improved upper and lower bounds for maintaining chordal
graphs under edge deletions and insertions. graphs. We also showed that we can
shift between different decompositions of chordal graphs in O(n) time which
helps to solve applications that require different decompositions. An interesting
open problem is to prove a super logarithmic lower bound for the query and
update operations for maintenance of chordal graphs. We have given a struc-
ture to maintain a PEO under edge insertions and deletions in O(n) time by
augmenting the clique tree decomposition. It would be an interesting problem
to see if the optimization problems (like maximum clique and independent set)
that use PEO can be updated in O(n) time under edge insertions and deletions.
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Abstract. The Congested Clique is a distributed-computing model for
single-hop networks with restricted bandwidth that has been very inten-
sively studied recently. It models a network by an n-vertex graph in which
any pair of vertices can communicate one with another by transmitting
O(log n) bits in each round. Various problems have been studied in this
setting, but for some of them the best-known results are those for general
networks. For other problems, the results for Congested Cliques are bet-
ter than on general networks, but still incur significant dependency on
the number of vertices n. Hence the performance of these algorithms may
become poor on large cliques, even though their diameter is just 1. In this
paper we devise significantly improved algorithms for various symmetry-
breaking problems, such as forests-decompositions, vertex-colorings, and
maximal independent set.

We analyze the running time of our algorithms as a function of the
arboricity a of a clique subgraph that is given as input. The arboric-
ity is always smaller than the number of vertices n in the subgraph,
and for many families of graphs it is significantly smaller. In particu-
lar, trees, planar graphs, graphs with constant genus, and many other
graphs have bounded arboricity, but unbounded size. We obtain O(a)-
forest-decomposition algorithm with O(log a) time that improves the
previously-known O(log n) time, O(a2+ε)-coloring in O(log∗ n) time that
improves upon an O(log n)-time algorithm, O(a)-coloring in O(aε)-time
that improves upon several previous algorithms, and a maximal indepen-
dent set algorithm with O(

√
a) time that improves at least quadratically

upon the state-of-the-art for small and moderate values of a.
Those results are achieved using several techniques. First, we produce

a forest decomposition with a helpful structure called H-partition within
O(log a) rounds. In general graphs this structure requires Θ(log n) time,
but in Congested Cliques we are able to compute it faster. We employ
this structure in conjunction with partitioning techniques that allow us
to solve various symmetry-breaking problems efficiently.
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1 Introduction

1.1 The Congested Clique Model and Problems

In the message-passing LOCAL model of distributed computing a network is
represented by an n-vertex graph G = (V,E). Each vertex has its own process-
ing unit and memory of unrestricted size. In addition, each vertex has a unique
identity number (ID) of size O(log n). Computation proceeds in synchronous
rounds. In each round vertices perform local computations and send messages
to their neighbors. The running time in this model is the number of rounds
required to complete a task. Local computation is not counted towards run-
ning time. Message size is not restricted. Therefore, this model is less suitable
for networks that are constrained in message size as a result of limited channel
bandwidth. To handle such networks, a more realistic model has been studied.
This is the CONGEST model that is similar to the LOCAL model, except that
each edge is only allowed to transmit O(log n) bits per round. An important type
of CONGEST networks that has been intensively studied recently is the Con-
gested Clique model. It represents single-hop networks with limited bandwidth.
Although the diameter of such networks is 1, which would make any problem
on such graphs trivial in the LOCAL model, in the Congested Cliques various
tasks become very challenging. Note that the Congested Clique is equivalent to a
general n-vertex graph in which any pair of vertices (not necessarily neighbors)
can exchange messages of size O(log n) in each round. Such a general graph
corresponds to a subgraph of an n-clique. The subgraph constitutes the input,
while the clique constitutes the communication infrastructure.

The study of the problem of Minimum Spanning Tree (henceforth, MST)
was initiated in the Congested Clique model by Lotker et al. [16]. They devised
a deterministic O(log log n)-rounds algorithm that improved a straight-forward
O(log n) solution. In the sequel, randomized O(log log log n)-rounds- [10,17],
O(log∗ n)-rounds1- [8], and O(1)-rounds [12] algorithms for MST in Congested
Cliques were devised. These algorithms, however, may fail with certain prob-
abilities. Thus obtaining deterministic algorithms that never fail seems to be
a more challenging task in this setting. Since the publication of the result of
[16] many additional problems have been studied in the Congested Clique set-
ting [4–7,11]. In particular, several symmetry-breaking problems were investi-
gated. Solving such problems is very useful in networks in order to allocate
resources, schedule tasks, perform load-balancing, and so on. Hegeman and
Pemmaraju [11] obtained a randomized O(Δ)-coloring algorithm with O(1)
rounds if the maximum degree Δ is at least Ω(log4 n), and O(log log n)-time
otherwise. We note that although in a clique it holds that Δ = n − 1, and an
O(Δ)-coloring algorithm is trivial (by choosing unique vertex identifiers as col-
ors), the problem is defined in a more general way. Specifically, we are given a
clique Q = (V,E), and a subgraph G′ = (V,E′), E′ ⊆ E. The goal is comput-
ing a solution for G′ as a function of Δ = Δ(G′), rather then Δ(Q). In this
1 log∗ n is the number of times the log2 function has to be applied iteratively until

we arrive at a number smaller than 2. That is, log∗ 2 = 1, and for n > 2, log∗ n =
1 + log∗(log n).
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case the O(Δ)-coloring problem becomes non-trivial at all. We are not aware of
previously-known deterministic algorithms for coloring in the Congested Clique
that outperform algorithms for general graphs. (Except an algorithm of [5] that
is not applicable in general, but rather if Δ = O(n1/3). In this case its running
time is O(log Δ).)

Another symmetry-breaking problem that was studied in the Congested
Clique is Maximal Independent Set (henceforth, MIS). The goal of this prob-
lem is to compute a subset of non-adjacent vertices that cannot be extended.
Again, this problem is interesting in subgrahs of the Congested Clique, rather
than the Congested Clique as a whole. A deterministic algorithm for this prob-
lem with running time O(log Δ log n) was devised in [5]. If Δ = O(n1/3) then
the running time of the algorithm of [5] improves to O(log Δ). Ghaffari [7]
devised a randomized MIS algorithm for the Congested Clique that requires
Õ(log Δ/

√
log n+1) ≤ Õ(

√
log Δ) rounds. Interestingly, when Δ is not restricted,

all above-mentioned deterministic algorithms and most randomized ones have
significant dependency on the clique size n. Obtaining a deterministic algorithm
for these problems that does not depend on n is an important objective, since
very large clique subgraphs may have some bounded parameters (e.g., bounded
arboricity) that can be utilized in order to improve running time.

1.2 Our Results and Techniques

We devise improved deterministic symmetry-breaking algorithms for the Con-
gested Clique that have very loose dependency on n, or not at all. Specifically,
for clique subgraphs with arboricity2 a we obtain O(a)-coloring in O(aε) time
(for an arbitrarily small constant ε > 0), O(a1+ε)-coloring in O(log2 a) time,
O(a(2+ε))-coloring in O(log∗ n) time and Maximal Independent Set in O(

√
a)

time. The best previously-known algorithms for these coloring problems are
those for general graphs, and incur a multiplicative factor of log n. See table
below. Moreover, in general graphs, the log n factor is unavoidable when solv-
ing the coloring problems in which the number of colors is a function of a [1].
Our results demonstrate that in Congested Cliques much better solutions are
possible. Our MIS algorithm outperforms the results of [4] when there is a large
gap between a and Δ or between a and n. For example, trees, planar graphs,
graphs of constant genus, and graphs that exclude any fixed minor, all have
arboricity a = O(1). On the other hand, their maximum degree Δ and size n
are unbounded.

Our main technical tool is an O(a)-forests-decomposition algorithm that
requires O(log a) rounds in the Congested Clique. This is in contrast to gen-
eral graphs where O(a)-forests-decomposition requires Θ(log n) rounds [1]. Once
we compute such a forests decomposition, each vertex knows its O(a) parents
in the O(a) forests of the decomposition. We orient edges towards parents. The
union of all edges that point towards parents constitute the edge set E′ of the
2 The arboricity is the minimum number of forests that graph edges can be partitioned

into. It always holds that a(G′) ≤ Δ(G′), and often the arboricity of a graph is
significantly smaller than its maximum degree.
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Our results (deterministic) Previous results (deterministic and randomized)

Running time Running time

Forest-decomposition O(log a) Forest-decomposition [1] O(log n)

O(a2+ε)-coloring O(log∗ n) O(a2+ε)-coloring [1] O(log n)

O(a2)-coloring O(log a) + log∗ n O(a2)-coloring [1] O(log n)

O(a1+ε)-coloring O(log 2a) O(a1+ε)-coloring [2] O(log a log n)

O(a)-coloring O(aε) O(a)-coloring [2] O(min(aε log n, aε + log1+ε n))

MIS O(
√

a) MIS [1] O(a + log n)

MIS [5] O(log Δ log n)

MIS (rand.) [7] Õ(
√
log Δ)

O(Δ)-coloring O(aε) O(Δ)-coloring (rand.) [11] O(log log n)

input. This is because for each edge, one of its endpoint is oriented outwards,
and is considered in the union. Note also that the out degree of each vertex
is O(a). Then, within O(a) rounds each vertex can broadcast the information
about all its outgoing edges to all other vertices in the graph. Indeed, each out-
going edge can be represented by O(log n) bits using IDs of endpoints. Then, in
round i ∈ O(a), each vertex broadcasts to all vertices the information of its ith
outgoing edges. After O(a) rounds all vertices know all edge of E′ and are able
to construct locally (in their internal memory) the input graph G′ = (V,E′).

Once vertices know the input graph they can solve any computable problem
(for unweighted graphs or graphs with weights consisting of O(log n) bits) locally.
The vertices run the same deterministic algorithm locally, and obtain a consis-
tent solution (the same in all vertices). Then each vertex deduces its part from
the solution of the entire graph. This does not require communication whatso-
ever, and so the additional (distributed) running time for this computation is 0.
Thus our results demonstrate that any computable problem can be solved in the
Congested Clique in O(a) rounds deterministically. This is an alternative way
of showing what follows from Lenzen’s [14] routing scheme, since a graph with
arboricity a has O(n · a) edges that can be announced within O(a) rounds of
Lenzen’s algorithm. But the additional structure of forests-decomposition that
we obtain is useful for speeding up certain computations, as we discuss below.
We note that although in this model it is allowed to make unrestricted local
computation, in this paper we do not abuse this ability, and devise algorithms
whose local computations are reasonable (i.e., polynomial).

Since any computable problem can be solved in O(a) rounds, our next goal
is obtaining algorithms with a better running time. We do so by partitioning
the input into subgraphs of smaller arboricity. We note that vertex disjoint sub-
graphs are Congested Cliques by themselves that can be processed in parallel.
For example, partitioning the input graph into O(a1−ε)-subgraphs of arboricity
O(aε), and coloring subgraphs in parallel using disjoint palettes, makes it pos-
sible to color the entire input graph with O(a) colors in O(aε) time rather than
O(a). Partitioning also works for MIS, although this problem is more difficult to
parallelize. (In the general CONGEST model the best algorithm in terms of a has
running time O(a+log∗ n).) Nevertheless, using our new partitioning techniques
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we obtain an MIS with O(
√

a) time in the Congested Clique. We believe that
this technique is of independent interest, and may be applicable more broadly.
Specifically, by quickly partitioning the input into subgraphs of small arboricity,
we can solve any computable problem in these subgraphs in O(aε) time, rather
than O(a). Given a method that efficiently combines these solutions, it would be
possible to obtain a solution for the entire input significantly faster than O(a).

1.3 Related Work

Lenzen [14] devised a communication scheme for the Congested Clique. Specifi-
cally, if each vertex is required to send O(n) messages of O(log n) bits each, and
if each vertex needs to receive at most O(n) messages, then this communication
can be performed within O(1) rounds in the Congested Clique. Algebraic meth-
ods for the Congested Clique were studied in [4,6]. Symmetry-breaking problems
were very intensively studied in general graphs. Many of these results apply to
the Congested Clique. In particular, Goldberg et al. [9] devised a (Δ+1)-coloring
algorithm with running time O(Δ log n). Linial [15] devised an O(Δ2)-coloring
algorithm with running time O(log∗ n). Kuhn and Wattenhofer [13] obtained a
(Δ + 1)-coloring algorithm with running time O(Δ log Δ + log∗ n). Barenboim
and Elkin [2] devised an O(min(aε log n, aε +log1+ε n)) time algorithm for O(a)-
coloring, and O(log a log n) time algorithm for O(a1+ε)-coloring.

2 Preliminaries

In this section we provide some basic definition. In the full version of this paper
[3] we also survey several known procedures that are used in our algorithms that
we describe in the next sections.

2.1 Definitions

Given a graph G = (V,E), the k-vertex-coloring problem goal is finding a proper
coloring ϕ : V → 1,2, . . . , k that satisfies ϕ(v) �= ϕ(u),∀(u, v) ∈ E. The out-
degree of a vertex v in a directed graph is the number of edges incident to v
that are oriented out of v. An orientation μ of (the edge set of) a graph is an
assignment of direction to each edge (u, v) ∈ E either towards u or towards v.
In our work we use a concept of partial orientations, which was employed by
Barenboim and Elkin [2]. A partial orientation is allowed not to orient some
edges of the graph. By this definition, a partial orientation σ has deficit at most
d ≥ 0, if for every vertex v in the graph the number of edges incident to v that σ
does not orient is no greater than d. Another important parameter of a partial
orientation is its length l. This is the length of the longest path P in which all
edges are oriented consistently by σ. (That is, each vertex in the path has out-
degree and in-degree at most 1 in the path.) An H-partition (H1,H2, . . . , H�) of
G = (V,E) with degree A, for some parameter A, is a partition of V , such that for
any vertex in a set Hi, i ∈ [�], the number of its neighbors in Hi ∪Hi+1∪ . . .∪H�

is at most A.
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3 Forest-Decomposition-CC

In this section we describe our Forest-Decomposition algorithm for the Con-
gested Clique. Our Forest-Decomposition algorithm starts with computing an
H-partition. This computation is performed faster in Congested Cliques than in
general graphs thanks to the following observation. Once the first O(log a) H-
sets are computed (within O(log a) time), the subgraph induced by the remain-
ing active vertices has at most O(n) edges. (We prove this in Lemma 1 below.)
Consequently, all these vertices can learn this entire subgraph using Lenzen’s
algorithms within O(1) rounds. Then each vertex can locally compute the H-set
it belongs to. This is in contrast to the algorithm for general graphs where the
running time is Θ(log n), even for graphs with O(n) edges.

First we provide a procedure which computes an H-partition within O(1)
rounds, on graphs with edge set of size at most O(n). This procedure is based
on Lenzen’s routing scheme. The main idea of the procedure is that each vertex
can transmit all edges adjacent on it to all other vertices in the graph. This is
because the overall number of messages each vertex receives in this case is O(n).
Indeed, each edge can be encoded as a message of size O(log n) that contains the
IDs of the edge endpoints, and the number of messages is bounded by the number
of edges in the graph. Since the number of sent messages of each vertex is also
bounded by O(n), Lenzen’s scheme allows all vertices to transmit all their edges
to all other vertices within constant number of rounds, as long as the number of
edges is O(n). Once a vertex receives all the edges of the graph, it constructs the
graph in its local memory. All vertices construct the same graph, and perform a
local computation of the H-partition. This does not require any communication
whatsoever, but since all vertices hold the same graph, the resulting H-partition
is consistent in all vertices. This completes the description of the procedure.

Next, we provide a general procedure to compute an H-partition in graphs
with any number of edges in the Congested Clique model. The procedure is
called Procedure H-Partition-CC. The computation is done by first reducing the
number of edges to O(n) within O(log a) rounds, and then invoking Procedure

Algorithm 1. H-partition of an input graph G with arboricity a and O(n)
edges
1: procedure Sparse-Partition(G, a, ε)
2: Each node u in G broadcasts its degree to every other node v in G
3: Using Lenzen’s scheme, send all information about all edges to all vertices of G
4: Each vertex v ∈ V perfomrs locally the following operations:
5: Initially, all vertices of G are marked as active.
6: i =

⌈
2
ε

log a + 1
⌉

7: while i ≤ 2
ε

log n do
8: if v is active and has at most (2 + ε) · a active neighbors then
9: make v inactive

10: add v to Hi

11: i = i + 1
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Sparse-Partition on the remaining subgraph. The reduction phase (lines 3–13 of
the algorithm below) operates similarly to Procedure Sparse-Partition, but the
partition into H-sets is performed in a distributed manner, rather than locally,
and the number of iterations is just O(log a), rather than O(log n). In the next
lemmas we show that this is sufficient to reduce the number of edges to O(n).

Algorithm 2. Computing an H-partitions of a general graph G with arboricity
a in the Congested Clique model
1: procedure H-Partition-CC(a, ε)
2: An algorithm for each vertex v V :
3: i = 1
4: while i ≤ ⌈

2
ε

· log a
⌉
do

5: if v is active and has at most (2 + ε) · a active neighbors then
6: make v inactive
7: add v to Hi

8: send the messages “inactive” and “v joined Hi” to all the neighbors

9: for each received “inactive” message do
10: mark the sender neighbor as inactive
11: end for
12: i = i + 1

13: end while
14: Hi, Hi+1 . . . , HO(log n) = invoke Procedure Sparse-Partition on the subgraph

induced by remaining active vertices

Lemma 1. After
⌈
2
ε log a

⌉
rounds (lines 4–13 in Algorithm2), the number of

edges whose both endpoints are incident to nodes that are still active is O(n).

Proof. Consider the ith iteration. By [1], the graph Gi induced by the remaining
active vertices in the round i has ( 2

2+ε )i · |V | vertices. Recall that a graph with
arboricity a has no more than n · a edges. The number of edges in the graph
Gi is at most: ( 2

2+ε )i · n · a. Then in the round i =
⌈
2
ε log a

⌉
, the graph Gi has

( 2
2+ε )� 2

ε log a� · n · a = O(n) edges. �
The next lemma states the correctness of Algorithm 2, and analyzes its run-

ning time.

Lemma 2. Algorithm2 computes an H-partion in O(log a) rounds.

Proof. The correctness of Algorithm 1 follows from the correctness of H-partition
of [1] in conjunction with Lenzen’s routing scheme. Specifically, within O(log a)
rounds the algorithm properly computes the H-sets H1, H2, . . . , HO(log a), and
within an additional round the remaining subgraph is learnt by all vertices using
Lenzen’s scheme, and all H-sets of this subgraph, up to HO(log n), are computed
locally by each vertex. Thus, each vertex can deduce the index of its H-set within
O(log a) rounds from the beginning of the algorithm. �
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We summarize the properties of Procedure H-Partition-CC below.

Theorem 1. Procedure H-Partition-CC invoked on a graph G with arboric-
itya(G) and a parameter ε, 0 < ε ≤2 computes an H-partition of size l =
O(log n) with degree at most O(a). The running time of the procedure is O(log a).

We next devise a forest-decomposition algorithm for the Congested Clique
model, called Procedure Forest-Decomposition-CC. It accepts as input the param-
eters a and ε. In the first step, it computes an H-Partition-CC, with degree at
most (2 + ε) · a. In the next step, it invokes a procedure called Procedure Orien-
tation [2] as follows.

Procedure Orientation: For each edge e = (u, v), if the endpoints u, v are in
different sets Hi,Hj , i �= j, then the edge is oriented towards the vertex in the set
with a greater index. Otherwise, if i = j, the edge e is oriented towards the vertex
with a greater ID among the two vertices u and v. The orientation μ produced by
this step is acyclic. Each vertex has out-degree at most (2 + ε)·a. The correctness
of the procedure follows from the correctness of Procedure Orientation from [1].

The last step of the algorithm is partitioning the edge set of the graph into
forests as follows: each vertex is in charge of its outgoing edges, and it assigns each
outgoing edge a distinct label from the set {1, 2, . . . , (2 + ε) · a}. This completes
the description of the algorithm. Its pseudocode and analysis are provided below.

Algorithm 3. Partitioning of the edge set of G into (�(2+ ε) · a�) forests in the
Congested-Clique model
1: procedure Forests-Decomposition-CC(a, ε)
2: invoke Procedure H-Partition-CC(a, ε)
3: μ = Orientation()
4: assign a distinct label to each μ-outgoing edge of v from the set [�(2 + ε) · a�]

Lemma 3. The time complexity of Procedure Forests-Decomposition-CC is
O(log a).

Proof. Procedure H-Partition-CC takes O(log a) time, and steps (2) and (3) of
Forests-Decomposition-CC require O(1) rounds each. Therefore, the overall time
of Procedure Forests-Decomposition-CC is O(log a). �
Theorem 2. For a graph G with arboricity a = a(G), and a parameter ε, 0 <
ε ≤ 2, in Congested Clique, Procedure Forests-Decomposition-CC (a, ε) parti-
tions the edge set of G into (�(2 + ε) · a�) forests in O(log a) rounds. Moreover,
as a result of its execution each vertex v knows the label and the orientation of
every edge (v, u) adjacent to v.
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4 A General Solution with O(a) Time in Congested
Clique

In this section we describe how to solve any computable problem in O(a) time
in the Congested Clique. We note that since any graph with arboricity a has
O(a · n) edges, this is possible to achieve by directly applying O(a) rounds of
Lenzen’s scheme [14]. However, in this section we present an alternative solution
that employs forest-decompositions. Given a forest-decomposition in which the
number of parents (i.e. outgoing edges) of each vertex is bounded by O(a), we
can solve any computable problem within this number of rounds. Specifically,
once Procedure Forests-Decomposition-CC is invoked, it partitions the edge set
of G into (�(2 + ε) · a�) forests in O(log a) rounds. As a result of its execution,
each vertex v knows the label and the orientation of every edge (v, u) adjacent
to u. An outgoing edge from a vertex v to a vertex u labeled with a label i means
that u is the parent of v in a tree of the ith forest Fi. Therefore, by transmitting
the information of a distinct parent in a round, each vertex can inform all other
vertices of the graph about all its parents. This will require an overall of O(a)
rounds - one round per parent. Then, each vertex knows all parents of all vertices
in the graph G. But this information is sufficient to construct the graph G locally.
Indeed, for each edge e of the graph G, one of its endpoints is a parent of the
other in some forest i, and thus this edge is announced to all vertices in round i.
Within O(a) rounds, all edges are announced, and so the entire graph is known
to all vertices. Therefore, we can solve any computable problem on G locally
(without any additional communication), by executing the same deterministic
algorithm on the same graph that is known to all. This guarantees a consistent
solution in all vertices. Thus, we obtain a general solution with O(a) time to
any computable problem in the Congested Clique. (Note that this is true either
if the input graph G is unweighted or if G has weights on edges that require
O(log n) bits per edge. In the latter case, the information about weights can be
transmitted together with the information about parents without affecting the
running time bound O(a). Recall, however, that all our algorithms in this paper
are for unweighted graphs.) Therefore, it would be more interesting to find faster
than Θ(a) algorithms for various problems. We obtain such algorithms in the
next sections.

5 O(a2)-Coloring in O(log a + log∗ n) Time

Note that in the synchronous message-passing model of distributed computing a
proper O(a2)-coloring requires Θ(log n) time [15]. However, in Congested Clique
we can improve the running time and reach even better result of O(log a) +
log ∗n.

In this section we employ Procedure Forests-Decomposition-CC to provide
an efficient algorithm that colors the input graph G of arboricity a=a(G) in
O(a2) colors. The running time of the algorithm is O(log a) + log ∗n. For com-
puting an O(a2)-coloring we will use Procedure Arb-Linial described in [1].
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Procedure Arb-Linial accepts a graph G with arboricity a(G). Given an O(a)-
forests-decomposition of G, the procedure computes a proper coloring ϕ of the
graph using O(a2) colors in O(log ∗n) running time. During the execution of this
procedure, each vertex transmits at most O(log n) bits over each edge in each
round.

Procedure Forest-Decomposition-CC has better running time than the
respective procedure on general graphs, which allows us to compute a proper
O(a2)-coloring of the graph very quickly. We devise a procedure called Procedure
Arb-Coloring-CC that works in the following way. The procedure starts by exe-
cuting Procedure Forest-Decomposition-CC with the input parameter a = a(G).
This invocation returns an H -partition of G of size l ≤ � 2

ε log n�, and degree at
most A = (2 + ε) · a. Then, we invoke Procedure Arb-Linial on the forest-
decomposition. Since the procedure requires each vertex to send only its current
color to its neighbors (which is of size O(log n)), Procedure Arb-Linial can be
invoked as-is in the congested clique. In our case we execute Procedure Arb-
Linial with an input parameter A = (2 + ε) · a. In Procedure Arb-Linial each
vertex considers only the colors of its parents in forests F1, F2, . . . , FA. By [1,15],
the algorithm computes O(((2 + ε) · a)2) = O(a2)-coloring. This completes the
description of Procedure Arb-Coloring-CC. Its pseudocode and running time
analysis are provided below.

Algorithm 4. O(a2)-coloring in the Congested Clique
1: procedure Arb-Coloring-CC(a, ε)
2: H = (H1, H2, . . . , Hl) = invoke Procedure Forest-Decomposition-CC
3: invoke Procedure Arb-Linial (H, A = (2 + ε) · a)

Theorem 3. Procedure Arb-Coloring-CC computes a proper O(a2)-coloring in
the Congested Clique in O(log a + log ∗n) rounds.

Proof. The correctness of the procedure follows from the above discussion. The
running time of step (1) is O(log a) rounds, by Lemma 3. Step (2) requires
O(log ∗n) rounds, by [1,15]. Thus, the overall running time of the procedure
is O(log a) + log ∗n. �

6 O(a2+ε)-Coloring in O(log∗ n) Time

In this section we show that the factor of log a can be eliminated from the
running time of Theorem3 in the expense of slightly increasing the number
of colors to O(a2+ε), for an arbitrarily small positive constant ε. To this end,
we invoke Procedure H-Partition-CC with second parameter set as aε, rather
than ε. (And the number of iterations of line 4 is now set to a sufficiently large
constant, instead of

⌈
2
ε log a

⌉
.) We show below that this way the running time

of forests-decompositions becomes just O(1). However, the number of forests
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produced is now O(a(1+ε)), rather than O(a). Moreover, once Procedure Forest-
Decomposition-CC terminates, we invoke Arb-Linial-CC algorithm on the result
of the forest decomposition to compute O((a(1+ε))2)-Coloring.

Lemma 4. Invoking Procedure H-Partition-CC with the second parameter set
as q = aε requires O(1) rounds.

Proof. In each round the number of active vertices is reduced by a factor of
Θ(aε). For i = 1, 2, . . ., the number of edges in the subgraph induced by active
vertices in round i is at most O( (a·n)

(aε)i ). Thus, after i = O(1ε ) rounds, the number
of remaining edges will be O(n). Then we can employ Lenzen’s scheme, broadcast
these edges to all vertices within O(1) rounds, and compute the remaining H-sets
locally. Therefore, the overall running time is O(1ε ) = O(1). �
Lemma 5. For graphs G with a(G) = a, and a parameter, q = aε, for an arbi-
trarily small positive constant ε, Procedure Forest-Decomposition-CC partitions
the edge set of G into A = O(a1+ε) oriented forests in O(1) rounds in Congested
Clique.

Proof. By Lemma 4, Procedure H-Partitions-CC executes in O(1) rounds, the
second stage is an orientation that is computed in O(1) rounds, and assigning
labels to outgoing edges is computed in O(1) rounds as well. Therefore, the
overall time of is O(1). �

The next theorem follows directly from Lemmas 4–5.

Theorem 4. For graphs G with a(G) = a and with a parameter q = aε, for
a positive constant ε, Procedure Arb-Coloring-CC computes O(a(2+ε))-coloring
within O(log∗ n) time in Congested Clique.

7 O(a1+ε)-Coloring in O(log2 a) Time, O(a)-Coloring
in O(aε) Time and MIS in O(

√
a) Time

Due to space limitations, we provide here the statements of our results for
O(a1+ε)-coloring, O(a)-coloring and MIS. The coloring and MIS algorithms and
their proofs appear in the full version of this paper [3].

Theorem 5. The running time of the Procedure Proper-Coloring-CC on a
graphs G with arboricity a(G) = a is O(log 2a). The procedure colors an input
graph G with O(a1+ε) colors, for an arbitrarily small positive constant ε.

Theorem 6. Invoking Procedure Proper-Coloring-CC on a graph G with
arboricity a with the parameter p = �aε/3�, produces a proper O(a)-coloring
of G within O(aε) time.

Theorem 7. Procedure MIS-CC computes a proper MIS of the input graph G.
The running time of Procedure MIS-CC is O(

√
a).
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Abstract. We investigate a variant of the so-called Internet Shopping
problem introduced by Blazewicz et al. (2010), where a customer wants
to buy a list of products at the lowest possible total cost from shops which
offer discounts when purchases exceed a certain threshold. Although the
problem is NP-hard, we provide exact algorithms for several cases, e.g.
when each shop sells only two items, and an FPT algorithm for the num-
ber of items, or for the number of shops when all prices are equal. We
complement each result with hardness proofs in order to draw a tight
boundary between tractable and intractable cases. Finally, we give an
approximation algorithm and hardness results for the problem of max-
imising the sum of discounts.

1 Introduction

Blazewicz et al. [3] introduced and described the Internet Shopping problem
as follows: given a set of shops offering products at various prices and the delivery
costs for each set of items bought from each shop, find where to buy each product
from a shopping list at a minimum total cost. The problem is known to be NP-
hard in the strong sense even when all products are free and all delivery costs
are equal to one, and admits no polynomial (c ln n)-approximation algorithm
(for any 0 < c < 1) unless P = NP.

A more realistic variant takes into account discounts offered by shops in some
cases. These could be offered, for instance, when the shopper’s purchases exceed
a certain amount, or in the case of special promotions where buying several items
together costs less than buying them separately. Blazewicz et al. [4] investigated
such a variant, which features a concave increasing discount function on the
products’ prices. They showed that the problem is NP-complete in the strong
sense even if each product appears in at most three shops and each shop sells
exactly three products, as well as in the case where each product is available
at three different prices and each shop has all products but sells exactly three
of them at the same value. A variant where two separate discount functions
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are taken into account (one for the deliveries, the other for the prices) was also
recently introduced and studied by Blazewicz et al. [5].

In this work, we investigate the case where a shopper aims to buy n books
from m shops with free shipping; additionally, each shop offers a discount when
purchases exceed a certain threshold (discounts and thresholds are specific to
each shop). We show that the associated decision problem, which we call the
Clever Shopper problem, is already NP-complete when only two shops are
available, or when all books are available from two shops and each shop sells
exactly three books. We also obtain parameterised hardness results: namely,
that Clever Shopper is W[1]-hard when the parameter is m or the number of
shops in a solution, and that it admits no polynomial-size kernel. On the positive
side, we give a polynomial-time algorithm for the case where every shop sells at
most two books, an XP algorithm for the case where few shops sell books at
small prices, an FPT algorithm with parameter n, and another FPT algorithm
with parameter m.

Let us now formally define Clever Shopper. For n ∈ N, let [n] =
{1, 2, . . . , n}. Let B be a set of books to buy, S be a set of shops; E ⊆ B × S
encodes the availability of the books in the shops, and w : E → N encodes the
prices. A subset E′ ⊆ E describes from which shop each book should be bought;
each book is covered exactly once (i.e., any b ∈ B has degree 1 in E′). A discount
ds ∈ R

+ is associated to each shop s and offered when a threshold ts ∈ R
+ is

reached, which is formally defined using the following threshold function:

δ(s,E′, ds, ts) =
{

ds if
∑

(b,s)∈E′ w(e) ≥ ts,

0 otherwise.

We refer to the function D that maps each shop s to the pair (ds, ts) as the
discount function. The problem we study is formally stated below, and gener-
alises well-studied problems such as bin covering [1] and H-index manipu-
lation [12].

Clever Shopper

Input: an edge-weighted bipartite graph G = (B ∪ S,E,w); a discount func-
tion D ; a bound K ∈ N.

Question: is there a subset E′ ⊆ E that covers each element of B exactly once
and such that

∑
e∈E′ w(e) − ∑

s∈S δ(s,E′, ds, ts) ≤ K?

2 Hardness Results

We prove in this section several hardness results under various restrictions, both
with regards to classical complexity theory and parameterised complexity theory.
We show that Clever Shopper is NP-complete even if there are only two shops
to choose from. For this first hardness result, we need book prices to be encoded
in binary (i.e. they can be exponentially high compared to the input size).

Proposition 1. Clever Shopper is NP-complete in the weak sense ( i.e.,
prices are encoded in binary), even when |S| = 2.
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Proof (reduction from Partition). Recall the well-known NP-complete
Partition problem [11]: given a finite set A and a size ω(a) ∈ N for each ele-
ment in A, decide whether there exists a subset A′ ⊆ A such that

∑
a∈A′ ω(a) =∑

a∈A\A′ ω(a).
Let I = (A,ω) be an instance of Partition, and T =

∑
a∈A ω(a). We obtain

an instance I ′ of Clever Shopper as follows: introduce two shops s1 and s2
with (ds1 , ts1) = (ds2 , ts2) = (1, T/2). Each item a ∈ A is a book that shops s1
and s2 sell at the same price — namely, ω(a). It is now clear that there exists
a subset A′ ⊆ A such that

∑
a∈A′ ω(a) =

∑
a∈A\A′ ω(a) if and only if all books

can be purchased for a total cost of T − 2. �	
This NP-hardness result allows arbitrarily high prices (the reduction from

Partition requires prices of the order of 2|B|). In a more realistic setting, we
might assume a polynomial bound on prices, i.e., they can be encoded in unary.
As we show below, the problem remains hard for a few shops in the sense of W[1]-
hardness. We complement this result with an XP algorithm in Proposition 7.

Proposition 2. Clever Shopper is W[1]-hard for m = |S| in the strong sense
( i.e., even when prices are encoded in unary).

Proof (reduction from Bin Packing). Recall the well-known Bin Packing prob-
lem: given n items with weights w1, w2, . . . , wn and m bins with the same given
capacity W , decide whether each item can be assigned to a bin so that the total
weight of the items in any bin does not exceed W . Bin Packing is NP-complete
in the strong sense and W[1]-hard for parameter m, even when

∑n
i=1 wi = mW

and all weights are encoded in unary [10].
We build an instance I of Clever Shopper from an instance of Bin

Packing with the aforementioned restrictions as follows. Create m identical
shops, each with ts = W and ds = 1. Create n books, where book i is available
in every shop at price wi. The budget is m(W − 1). In other words, any solution
requires to obtain the discount from every shop, which is only possible if pur-
chases amount to a total of exactly W per shop before discount. Therefore, the
solutions to I correspond exactly to the solutions of the original instance of Bin
Packing. �	

We can obtain another hardness result under the assumption that all books
are sold at a unit price. Here we cannot bound the total number of shops (we give
an FPT algorithm for parameter m in Proposition 8 in that setting), but only
the number of chosen shops (i.e., shops where at least one book is purchased).

Proposition 3. Clever Shopper with unit prices is W[1]-hard for the param-
eter “ number of chosen shops”.

Proof (reduction from Perfect Code). Given a graph G = (V,E) and a pos-
itive integer k, Perfect Code asks for a size-k subset V ′ ⊆ V such that for
each vertex u ∈ V there is precisely one vertex in N [v] ∩ V ′ (where N [v] is the
closed neighbourhood of v, i.e., v and its adjacent vertices, as opposed to the
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Fig. 1. Reducing Perfect Code to Clever Shopper. Left: the input graph with a
size-2 perfect code (bold). Right: the corresponding bipartite graph and a solution with
total cost 5 − 2 = 3 (bold).

open neighbourhood N(v) = N [v]\{v}). This problem is known to be W[1]-hard
for parameter k [7].

Let I = (G = (V,E), k) be an instance of Perfect Code. Write V =
{u1, u2, . . . , un}. We obtain an instance I ′ of Clever Shopper as follows. Let
us first define a bipartite graph G′ = (B ∪ S,E′) where B = {bi : ui ∈ V },
S = {si : ui ∈ V } and E′ = {{bj , si} : uj ∈ NG[ui]}. All shops sell books
at a unit price. As for the discount function, for each shop si ∈ S we have
D(si) = (1, dG(ui) + 1) (i.e., a unit discount will be applied, from dG(ui) + 1 of
purchase). Figure 1 illustrates the construction.

We claim that there exists a size-k perfect code for G if and only if all books
can be bought for a total cost of n − k.

⇒ Let V ′ ⊆ V be a size-k perfect code in G. For every ui ∈ V , let upc(i) be the
unique vertex in N [v] ∩ V ′ (pc is well-defined since V ′ is a perfect code). Then
buying each book bi ∈ B at shop bpc(i) yields a solution for I ′, and it is simple
to check that its cost is n − k.
⇐ Suppose that all books can be bought for a total cost of n − k. Since n

books must be bought at unit price and shops only offer a unit discount, k
shops must be chosen in the solution. Let S′ ⊆ S denote these k shops. Since
D(si) = (1, dG(ui) + 1) for each shop si ∈ S, we conclude that for each book
bi ∈ B there is precisely one shop in N [bi] ∩ S′. Then {ui : si ∈ S′} is a size-k
perfect code in G.

Note that the number of visited shops corresponds exactly to the total dis-
count received (i.e. to parameter k in the reduction). �	

We now prove1 the non-existence of polynomial kernels (under standard com-
plexity assumptions) for Clever Shopper parameterised by the number of
books. To this end, we use the or-composition technique [6]: given a problem
P and a parameterised problem Q, an or-composition is a reduction taking t
instances (I1, . . . , It) of P, and building an instance (J, k) of Q, with k bounded

1 Details will appear in the full version.
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by a polynomial on maxt′≤t |It′ | + log t, such that (J, k) is a yes-instance if and
only if there exists t′ ≤ t such that It′ is a yes-instance. If P is NP-hard, then
Q does not admit a polynomial kernel unless NP ⊆ coNP/poly [6].

Proposition 4. Clever Shopper admits no polynomial kernel unless NP ⊆
coNP/poly.

3 Positive Results

We now give exact algorithms for Clever Shopper: a polynomial-time algo-
rithm for the case where every shop sells at most two books, and three param-
eterised algorithms based respectively on the number of books, the number of
shops, and a bound on the prices.

We give a polynomial time algorithm for the case where each shop sells at
most two books. As we shall see in Sect. 4, this bound is best possible. Its running
time is dominated by the time required to find a maximum matching in a graph
with |B ∪ S| vertices.

Proposition 5. Clever Shopper is in P if every shop sells at most two books.

Proof. Let I be an instance of Clever Shopper given by an edge-weighted
bipartite graph G = (B ∪ S,E,w) and a pair (ds, ts) for each s ∈ S, where
ds, ts ∈ R

+. Vertices in S (resp. in B) have degree at most 2 (resp. at least
1). Note that vertices in S can be made to have degree exactly 2, by adding
dummy edges with arbitrarily high costs, with no impact on the solution. For
b ∈ B, let p(b) be the cheapest available price for book b (discount excluded),
i.e., p(b) = min{w({b, s}) | s ∈ S}.

Construct a new (non-bipartite) graph G′ = (B ∪ S,E′, w′), as follows: for
every shop s ∈ S, let {b1, b2} = NG(s) (i.e., the two books available at shop s).

– For each i ∈ {1, 2}, if w({bi, s}) ≥ ts, then add an edge {bi, s} to E′ with
weight w′({bi, s}) = ds + p(bi) − w({bi, s}).

– If w({b1, s}) + w({b2, s}) ≥ ts, add an edge {b1, b2} to E′ with weight
w′({b1, b2}) = ds + p(b1) − w({b1, s}) + p(b2) − w({b2, s}). If edge {b1, b2}
existed already, keep only the one with maximum weight.

Note that edges with negative weights may remain: they may be safely
ignored, but we keep them to avoid case distinctions in the rest of this proof.
Figure 2 illustrates the construction. Since a maximum weight matching for G′

can be found in polynomial time [8], it is now enough to prove the following
claim: G′ admits a matching of weight at least W if and only if instance I of
Clever Shopper admits a solution of total cost at most

∑
b∈B p(b) − W .

⇐ Assume that instance I admits a solution E∗ ⊆ E of total cost
∑

b∈B p(b)−
W . Note that W ≥ 0 (the sum of the minimum prices of the books is an upper
bound of the optimal solution). We build a matching M of G′ as follows. Let
s ∈ S be any discount shop, i.e., a shop whose discount is claimed, and let b1
and b2 be its neighbours. Then at least one of them has to be bought from s to
get the discount.
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Fig. 2. Each shop offers a discount of 3 on a purchase of value ≥10. Bold edges indicate
how to obtain optimal discounts: buy book b1 from shop s1, book b2 from shop s3, and
books b3 and b4 from shop s4. The remaining books are bought at their cheapest
available price (so here we buy b5 from s5). Our clever customer used the discounts to
buy all books for 6 less than if she had bought each book at its lowest price: 3 for b1,
1 for b2, 2 for b3 and b4 together.

– If {b1, s} ∈ E∗ and {b2, s} /∈ E∗, add {b1, s} to M . The amount spent at this
shop is w({b1, s}) − ds = p(b1) − w′({b1, s}).

– Similarly, if {b2, s} ∈ E∗ and {b1, s} /∈ E∗, add {b2, s} to M . The amount
spent at this shop is w({b2, s}) − ds = p(b2) − w′({b2, s}).

– Finally, if {b1, s} ∈ E∗ and {b2, s} ∈ E∗, then add {b1, b2} to M . The amount
spent at this shop is w({b1, s})+w({b2, s})−ds ≥ p(b1)+p(b2)−w′({b1, b2}).

Note that edges added to M are indeed present in E′, since in order to obtain the
discount from s, the book prices must satisfy the same condition as for creating
the corresponding edges. Note also that M is a matching, since each book can be
bought from at most one shop. Let B∗ be the set of books bought from discount
shops. Summing over all these shops, the total price paid for the books in B∗ is
at least

∑
b∈B∗ p(b) − ∑

e∈M w′(e).
The books in B \ B∗ do not yield any discount, so the total price paid

for them is at least
∑

b∈B\B∗ p(b). Overall, the cost of the books is at least∑
b∈B pb − ∑

e∈M w′(e), therefore
∑

e∈M w′(e) ≥ W .

⇒ Let M be a maximum weight matching of G′ of weight W . For each edge e ∈
M , let se be the shop for which e was introduced. For an edge e = {b, se} ∈ M ,
buy book b from shop se. The price is high enough to reach the threshold for the
discount, so we pay w({b, se})−de = p(b)−w′(e). For an edge e = {b1, b2} ∈ M ,
buy books b1 and b2 together from shop se. We again get the discount, and pay
w({b1, se}) + w({b2, se}) − de = p(b1) + p(b2) − w′(e). Note that for e = f ∈ M ,
se = sf , so we never count the same discount twice. For every other book, buy
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them at the cheapest possible price p(b), without expecting to get any discount.
The total price paid is at most

∑
b∈B p(b) − ∑

e∈M w′(e) =
∑

b∈B p(b) − W . �	
We now give a dynamic programming FPT algorithm with the number of

books as parameter.

Proposition 6. Clever Shopper admits an FPT algorithm for parameter n
with running time O(m3n).

Proof. Given j ∈ [m] and B′ ⊆ B, let pj(B′) be the price for buying all books
in B′ together from shop sj (discount included), and p≤j(B′) be the lowest
price that can be obtained when purchasing all books in B′ from a subset of
{s1, . . . , sj}. Our goal is to compute p≤m(B).

For j = 1, clearly p≤1(B′) = p1(B′) for every B′. For any other j, consider
an optimal way of buying the books in B′ from shops s1, . . . , sj . This way the
customer buys some (possibly empty) subset B′′ of books in sj , and the rest,
i.e., B′ \ B′′, at the lowest price from shops s1, . . . , sj−1. Therefore:

p≤j(B′) =
{

pj(B′) if j = 1,
minB′′⊆B′{pj(B′′) + p≤j−1(B′ \ B′′)} otherwise.

The values of pj(B′) for all j and B′ can be computed in O(m2n) time. Then
the dynamic programming table requires to enumerate, for all j, all subsets B′

and B′′ such that B′′ ⊆ B′ ⊆ B. Any such pair B′′, B′ can be interpreted as a
vector v ∈ {0, 1, 2}n, where i ∈ B′′ ⇔ vi = 2 and i ∈ B′ ⇔ vi ≥ 1. Therefore,
filling the dynamic table takes m3n steps, each requiring constant time. �	

As usual with dynamic programming, this algorithm yields the optimal price
that can be obtained. One gets the actual solution (i.e., where to buy each book)
with classic backtracing techniques.

The NP-hardness of Clever Shopper for two shops (using large prices,
encoded in binary) and its W[1]-hardness when the parameter is the number of
shops leave a very small opening for positive results: we can only consider small
prices (encoded in unary) for a constant number of shops. The following result
proves the tractability of this case.

Proposition 7. Clever Shopper admits an XP algorithm running in time
O(nmWm), where W is the sum of all the prices of the instance, n is the number
of books, and m is the number of shops.

Proof. We propose the following dynamic programming algorithm, which gener-
alises the classical pseudo-polynomial algorithm for Partition. Let i ∈ [n] and
ps ∈ [W] for s ∈ S. Define T [i, ps1 , . . . , psm ] as 1 if it is possible to buy books
1 to i by paying exactly ps (discount excluded) in shop s; and 0 otherwise. For
i = 0, T [0, ps1 , . . . , psm ] = 1 if and only if ps = 0 for all s ∈ S. The following
formula allows to fill the table recursively for i ≥ 1:

T [i, ps1 , . . . , psm ] = max
e∈E,i∈e

T [i − 1, p′
s1 , . . . , p

′
sm ] where p′

s =

{
ps − w(e) if s ∈ e,
ps otherwise.
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It remains to be checked whether the table contains a valid solution,
which requires us to take the discounts into account. Clearly, an entry
T [n, ps1 , . . . , psm ] = 1 leads to a solution if the following holds:

∑
s∈S

ps −
∑

s∈S,ps≥ts

ds ≤ K.

The running time corresponds exactly to the time needed to fill the table:
any of the nWm cells requires at most m look-ups, which yields the claimed
running time. �	
Proposition 8. Clever Shopper admits an FPT algorithm for parameter m
when all prices are equal.

Proof. We assume without loss of generality that all prices are equal to 1. Let
S′ ⊆ S. We write fS′ : B ∪ S → N for the following function:

fS′(b) = 1 for b ∈ B,

fS′(s) = ts for s ∈ S′,
fS′(s) = 0 for s /∈ S′.

We write dS′ =
∑

s∈S′ ds and tS′ =
∑

s∈S′ ts. An f-star subgraph of G =
(B ∪ S,E) is a subgraph G′ such that the degree of each vertex u ∈ B ∪ S is at
most f(u) in G′, and every connected component of G′ is isomorphic to K1,p for
some integer p.

Let I = (B∪S,E,w,D ,K) be an instance of Clever Shopper with w(e) =
1 for all e ∈ E. We show that I is a yes-instance if and only if there exists S′ ⊆ S
with |B| − dS′ ≤ K such that (B ∪ S,E) admits an fS′-star subgraph with tS′

edges. An FPT algorithm follows easily from this characterisation: enumerate all
subsets S′ of S in time 2|S|, and for each subset, compute a maximum fS′ -star
subgraph in time O(|E| log |B ∪ S|) [9].

⇒ Let E′ ⊆ E be a solution and S′ be the set of shops whose threshold ts is
reached. Since the total price is |B| − dS′ , we have |B| − dS′ ≤ K. Since every
weight equals 1, all vertices of S′ have degree at most ts in E′. Let E′′ ⊆ E′ be a
subset obtained by keeping exactly ts edges incident to each s ∈ S′ and no edge
incident to s /∈ S. Then E′′ is an fS′ -star subgraph of size tS′ .
⇐ Let G′ = (B ∪ S,E′) be an fS′ -star factor of G of size tS′ with S′ ⊆ S, and

|B| − dS′ ≤ K. The degree and size constraints force all vertices in S′ to have
degree exactly ts in G′. We build a solution as follows: for each book b ∈ B, if
E′ contains an edge (b, s) incident to b, then buy b from shop s, otherwise buy b
from any other shop. Overall, at least ts books are purchased from a shop s ∈ S′,
so the total price is at most |B| − dS′ . �	

4 Approximations

Since variants of Clever Shopper are, by and large, hard to solve exactly, it
is natural to look for approximation algorithms. However, our hardness proofs
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can be modified to imply the NP-hardness of deciding whether the total price
(including discounts) is 0 or more. For instance, in Proposition 1, we can set the
discounts to T/2 instead of 1, so the Partition instance reduces to checking
whether the optimal solution has cost 0. Therefore, we start with the following
bad news:

Corollary 1. Clever Shopper admits no approximation unless P=NP.

Since this result seems resilient to most natural restrictions on the input
structure (bounded prices, bounded degree, etc.), our proposed angle is to max-
imise the total discount rather than minimise the total cost. However, maximis-
ing the total discount is only relevant when the base price of the books is the
same in all solutions (otherwise the optimal solution might not be the one with
maximum discount), i.e., each book b has a fixed price wb, and w({b, s}) = wb

for every {b, s} ∈ E. We call this variant Max-Discount Clever Shopper.
This “fixed price” constraint is not strong (all reductions from Sect. 2 satisfy
it). In this setting, Proposition 1 shows that it is NP-hard to decide whether the
optimal discount is 1 or 2. This yields the following corollary:

Corollary 2. Max-Discount Clever Shopper is APX-hard: it does not
admit a (2 − ε)-approximation unless P=NP.

Whether or not Max-Discount Clever Shopper admits a fixed-ratio
approximation remains open.

Proposition 9. Max-Discount Clever Shopper is APX-hard even when
each shop sells at most 3 books, and each book is available in at most 2 shops.

Proof. We reduce from Max 3-Sat (the problem of satisfying the maximum
number of clauses in a 3-sat instance), known to be APX-hard when each literal
occurs exactly twice [2]. Let ϕ = C1 ∧ C2 ∧ · · · ∧ Cm be such a 3-CNF formula
over a set X = {x1, x2, . . . , xn} of boolean variables. For every 1 ≤ i ≤ m and
1 ≤ j ≤ 3, let �i,j be the j-th literal of clause Ci. We obtain an instance I of Max-
Discount Clever Shopper by first building a bipartite graph G = (B ∪S,E)
as follows (for ease of presentation, Ci, xi and �i,j will be used both to denote
respectively clauses, variables and literals in 3-CNF formula context, and the
corresponding vertices in G):

B = {�i,j : 1 ≤ i ≤ m and 1 ≤ j ≤ 3} ∪ {xi : 1 ≤ i ≤ n}
S = {Ci : 1 ≤ i ≤ m} ∪ {ti, fi : 1 ≤ i ≤ n}
E = E1 ∪ E2,p ∪ E2,n ∪ E3

where

E1 = {{�i,j , Ci} : 1 ≤ i ≤ m and 1 ≤ j ≤ 3}
E2,p = {{�i,j , ti} : 1 ≤ i ≤ m and �i,j is the positive literal xi}
E2,n = {{�i,j , fi} : 1 ≤ i ≤ m and �i,j is the negative literal xi}

E3 = {{xi, ti}, {xi, fi} : 1 ≤ i ≤ n}.



62 L. Bulteau et al.

Observe that each shop sells exactly 3 books and that each book is sold in exactly
2 shops. We now turn to defining the prices, the thresholds and the discounts.
All shops sell books at a unit price. For the shops Ci, 1 ≤ i ≤ m, a purchase
of value 1 yields a discount of 1. For the shops ti and fi, 1 ≤ i ≤ n, a purchase
of value 3 yields a discount of 2. This discount policy implies that, for every
1 ≤ i ≤ n, a customer cannot obtain a 2 discount both in shop ti and in shop fi
(this follows from the fact that the book xi is sold by both shops ti and fi).

First, it is easy to see that the largest discount that can be obtained is
2n + m (the upper bound is achieved by obtaining a discount in every shop Ci

for 1 ≤ i ≤ m, and in either the shop ti or the shop fi for 1 ≤ i ≤ n). On
the other side, for any truth assignment τ for ϕ satisfying k clauses, a 2n + k
discount can be obtained as follows.

– For any variable xi, 1 ≤ i ≤ n, if τ(xi) = false, then buy 3 books from
shop ti, and if τ(xi) = true then buy 3 books from shop fi. Intuitively, if a
variable is true, then all negative literals are “removed” by fi, and all positive
literals remain available for the corresponding clauses.

– For any clause Ci = �i,1 ∨ �i,2 ∨ �i,3 satisfied by the truth assignment τ , buy
book �i,j from shop Ci, where �i,j is a literal satisfying the clause Ci.

Then it follows that

opt(I) = 2n + opt(ϕ) = 3m/2 + opt(ϕ) (since 4n = 3m)
≤ 3 opt(ϕ) + opt(ϕ) (since 2 opt(ϕ) ≥ m)
≤ 4 opt(ϕ).

Suppose now that we buy all books in B for a total discount of k′. First, we
may clearly assume that k′ ≥ 2n since a total 2n discount can always be achieved
by buying 3 books either from shop ti or from shop fi, for every 1 ≤ i ≤ n.
Second, we may also assume that, for every 1 ≤ i ≤ n, we buy either exactly 3
books from shop ti or exactly 3 books from shop fi. Indeed, if there exists an
index 1 ≤ i ≤ n for which this is false, then buying either exactly 3 books from
shop ti or exactly 3 books from shop fi instead results in a total k′′ discount
with k′′ ≥ k′ (this follows from the fact that we can get a 2 discount from ti or
fi but only a 1 discount from any shop Cj , 1 ≤ j ≤ m). We now obtain a truth
assignment τ for ϕ as follows: for any variable xi, 1 ≤ i ≤ n, set τ(xi) = false
if we buy 3 books from shop ti, and set τ(xi) = true if we buy 3 books from
shop fi (the truth assignment τ is well-defined since, for 1 ≤ i ≤ n, we cannot
simultaneously buy 3 books from shop ti and 3 books from shop fi because of
book xi). Therefore, a clause Ci is satisfied by τ if and only if the corresponding
shop Ci contains at least one book li,j which is not bought from some other shop
ti or fi. If we let k stand for the number of clauses satisfied by τ , then we obtain
k ≥ k′ − 2n. It then follows that

opt(ϕ) − k = opt(I) − 2n − k ≤ opt(I) − 2n − k′ + 2n = opt(I) − k′.

Therefore, our reduction is an L-reduction (i.e., opt(I) ≤ α1 opt(ϕ) and opt(ϕ)−
k ≤ α2 (opt(I) − k′)) with α1 = 4 and α2 = 1. �	
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Proposition 10. Max-Discount Clever Shopper where each shop sells at
most k books admits a k-approximation.

Proof. Let Bs be the set of books sold by shop s. Our approximation algorithm
proceeds as follows: start with a set of selected shops S′ = ∅, a set of available
books B′ = B and sort the shops by decreasing value of ds. Then for each shop s,
let B′

s = Bs∩B′. If the books in B′
s are enough to get the discount (

∑
b∈B′

s
≥ ts),

then assign all books of B′
s to shop s, add s to S′ and set B′ = B′ \ B′

s. Finally,
assign the remaining books to arbitrary shops that sell them.

We now prove the approximation ratio. For any b ∈ B, if b ∈ B′
s for some

s ∈ S′ then let δ(b) = ds, and δ(b) = 0 otherwise. Thus, for any shop s ∈ S′,
ds = 1

|B′
s|

∑
b∈B′

s
δ(b) ≥ 1

k

∑
b∈B′

s
δ(b) due to the degree-k constraint. Note that

for each shop of S′, the amount spent at s is at least ts, so the total discount
obtained with this algorithm is D ≥ ∑

s∈S′ ds ≥ 1
k

∑
b∈B δ(b).

We now compare the result of the algorithm with any optimal solution. For
such a solution, let D∗ be its total discount, S∗ be the set of shops where pur-
chases reach the threshold, and, for any s ∈ S∗, let B∗

s be the (non-empty) set
of books purchased in shop s. Note that D∗ =

∑
s∈S∗ ds.

Consider a shop s ∈ S∗. We show that there exists a book b∗(s) ∈ B∗
s with

δ(b∗(s)) ≥ ds. If s ∈ S∗ ∩ S′, then we take b∗(s) to be any book in B∗
s . Either

b∗(s) ∈ B′
s, in which case δ(b∗(s)) = ds, or b∗(s) /∈ B′

s, in which case b∗(s) was
assigned by the algorithm to a shop with a larger discount, i.e., δ(b∗(s)) ≥ ds. If
s ∈ S∗ \ S′, since s /∈ S′, at least one book in B∗

s is not available at the time the
algorithm considers shop s; let b∗(s) be such a book. Since it is not available, it
has been selected as part of B′

s′ for some earlier shop s′ (i.e., ds ≤ ds′). Therefore,
b∗(s) ∈ B∗

s ∩ B′
s′ and δ(b∗(s)) = ds′ ≥ ds. Since the sets B∗

s are pairwise disjoint
for s ∈ S∗, we have

∑
s∈S∗ δ(b∗(s)) ≤ ∑

b∈B δ(b). Putting it all together, we
obtain:

D∗ =
∑
s∈S∗

ds ≤
∑
s∈S∗

δ(b∗(s)) ≤
∑
b∈B

δ(b) ≤ kD.

�	

5 Conclusion

We introduced the Clever Shopper problem, a variant of Internet Shopping
with free deliveries and shop-specific discounts based on shop-specific thresholds.
We proved a number of hardness results, both in the classical complexity set-
ting and from a parameterised complexity point of view. We also gave efficient
algorithms for particular cases where restrictions apply to the number of books,
the number of shops, or the nature of prices.

An interesting angle for future work is that of designing efficient exact algo-
rithms for the general cases in which our FPT algorithms are not sufficient. Fur-
thermore, it would be of interest to determine whether the Clever Shopper
problem is FPT for parameter maximum price + number of shops.
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Abstract. In the Steiner Orientation problem, the input is a mixed
graph G (it has both directed and undirected edges) and a set of k termi-
nal pairs T . The question is whether we can orient the undirected edges
in a way such that there is a directed s � t path for each terminal pair
(s, t) ∈ T . Arkin and Hassin [DAM’02] showed that the Steiner Ori-
entation problem is NP-complete. They also gave a polynomial time
algorithm for the special case when k = 2.

From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov
[ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for
all k ≥ 1. Pilipczuk and Wahlström [SODA ’16] showed that the Steiner
Orientation problem is W[1]-hard parameterized by k. As a byproduct
of their reduction, they were able to show that under the Exponential
Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS’01] the
Steiner Orientation problem does not admit an f(k) ·no(k/ log k) algo-
rithm for any computable function f . That is, the nO(k) algorithm of
Cygan et al. is almost optimal.

In this paper, we give a short and easy proof that the nO(k) algo-
rithm of Cygan et al. is asymptotically optimal, even if the input graph
has genus 1. Formally, we show that the Steiner Orientation prob-
lem is W[1]-hard parameterized by the number k of terminal pairs, and,
under ETH, cannot be solved in f(k) · no(k) time for any function f
even if the underlying undirected graph has genus 1. We give a reduc-
tion from the Grid Tiling problem which has turned out to be very
useful in proving W[1]-hardness of several problems on planar graphs.
As a result of our work, the main remaining open question is whether
Steiner Orientation admits the “square-root phenomenon” on planar
graphs (graphs with genus 0): can one obtain an algorithm running in

time f(k) ·nO(
√

k) for Planar Steiner Orientation, or does the lower
bound of f(k) · no(k) also translate to planar graphs?
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1 Introduction

In the Steiner Orientation problem, the input is a mixed graph G = (V,E) (it
has both directed and undirected edges) and a set of terminal pairs T ⊆ V ×V .
The question is whether we can orient the undirected edges in a way such that
there is a directed s � t path for each terminal pair (s, t) ∈ T .

STEINER ORIENTATION

Input: A mixed graph G, and a set T of k terminal pairs
Question: Is there an orientation of the undirected egdes of G such that the
resulting graph has an s � t path for each (s, t) ∈ T
Parameter: k

Hassin and Megiddo [8] showed that Steiner Orientation is polynomial
time solvable if the input graph G is completely undirected, i.e., has no directed
edges. If the input graph G is actually mixed then Arkin and Hassin [1] showed
that Steiner Orientation is NP-complete. They also gave a polynomial time
algorithm for the special case when k = 2. Cygan et al. [7] generalized this
by giving an nO(k) algorithm for all k ≥ 1, i.e., Steiner Orientation is in
XP parameterized by k. Although the algorithm of Cygan et al. is polynomial
time for fixed k, the degree of the polynomial changes as k changes. This left
open the question of whether one could design an FPT algorithm for Steiner
Orientation parameterized by k, i.e., an algorithm which runs in time f(k) ·
nO(1) for some computable function f independent of n.

Pilipczuk and Wahlström [17] answered this question negatively by showing
that Steiner Orientation is W[1]-hard parameterized by k. As a byproduct
of their reduction, they were able to show that under the Exponential Time
Hypothesis (ETH) of Impagliazzo and Paturi [9,10] the Steiner Orientation
problem does not admit a f(k) · no(k/ log k) time algorithm for any computable
function f . That is, the nO(k) algorithm of Cygan et al. is almost asymptotically
optimal. This left open the following two questions:

– Can we close the gap between the nO(k) algorithm and the f(k) · no(k/ log k)

hardness for Steiner Orientation on general graphs?
– Is Steiner Orientation FPT on planar graphs, or can we obtain an

improved runtime such as f(k) · nO(
√

k)?

In this paper, we answer the first question completely and make partial
progress towards the second question. Formally, we show that:

Theorem 1. The Steiner Orientation problem is W[1]-hard parameterized
by the number k of terminal pairs, even if the underlying undirected graph of
the input graph has genus 1. Moreover, under ETH, Steiner Orientation (on
graphs of genus 1) cannot be solved in f(k) · no(k) time for any function f .

Note that Theorem 1 only leaves open the case of graphs with genus 0, i.e.,
planar graphs. The open question is whether Steiner Orientation admits the
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“square-root phenomenon” on planar graphs, i.e., can one obtain a f(k) ·nO(
√

k)

time algorithm1 for Planar Steiner Orientation, or does the lower bound
of f(k) ·no(k) also translate to planar graphs? To the best of our knowledge, even
the NP-hardness of Planar Steiner Orientation is not known.

Our reduction uses some ideas given by Pilipczuk and Wahlström [17], who
obtained a lower bound of f(k) · no(

√
k) via a rather involved reduction from

Multicolored Clique. This was later [16] improved to f(k) · no(k/ log k) via
the standard trick of reducing from the Colored Subgraph Isomorphism
problem [12] instead. To obtain our tight lower bound in Theorem1 for genus 1
graphs, we use some of the gadgets provided by Pilipczuk and Wahlström [17],
but instead give a reduction from the Grid Tiling problem introduced by
Marx [11]. This way we obtain a cleaner and arguably simpler proof than the
one given in [17]. The Grid Tiling problem is defined as follows, where we use
the standard notation [n] = {1, 2, . . . , n}.

k × k GRID TILING

Input : Integers k, n, and k2 non-empty sets Si,j ⊆ [n]× [n] where i, j ∈ [k].
Question: For each 1 ≤ i, j ≤ k does there exist a value si,j ∈ Si,j such that

– if si,j = (x, y) and si,j+1 = (x′, y′) then x = x′, and
– if si,j = (x, y) and si+1,j = (x′, y′) then y = y′.

We denote an instance of Grid Tiling by (k, n, {Si,j}1≤i,j≤k). The Grid
Tiling problem has turned out to be a convenient starting point for parame-
terized reductions for problems on planar graphs, and has been used recently
in several W[1]-hardness proofs [3–5,13–15]. Under ETH, it was shown by Chen
et al. [2] that k-Clique2 does not admit an algorithm running in time f(k)·no(k)

for any function f . There is a simple reduction (see Theorem 14.28 from [6]) from
k-Clique to k×k Grid Tiling implying the same runtime lower bound for the
latter problem.

2 The Reduction

We begin with describing the reduction from an instance of k × k Grid Tiling
to an instance of Steiner Orientation with O(k) terminal pairs. We will then
prove that a solution to the Grid Tiling instance implies a solution to Steiner
Orientation in the constructed instance. To finalize the proof of Theorem1 we
then prove the reverse implication as well.

2.1 Construction

Consider an instance I = (k, n, {Si,j}1≤i,j≤k) of Grid Tiling. We now build
an instance (G,T ) of Steiner Orientation as follows (refer to Fig. 1).
1 Or even an FPT algorithm.
2 The k-Clique problem asks whether there is a clique of size ≥ k.
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Fig. 1. The instance of Steiner Orientation created from an instance of Grid
Tiling (before the splitting operation). At this point, the only undirected edges are
the green edges. For clarity, we do not show the (directed) perfect matching (which we
denote by yellow edges) given by dj

i → aj
i and hj

i → ej
i for each i ∈ [k], j ∈ [n]. The

gadget Gi,j is highlighted by a dotted rectangle. (Color figure online)

– We first fix the Origin as marked in black3.
– The “horizontal right” direction is viewed as the positive X axis and the

“vertical upward” is viewed as the positive Y axis.
– Black Grid Edges: For each 1 ≤ i, j ≤ k we introduce the n×n grid Gi,j to

correspond to the set Si,j of the Grid Tiling instance. In Fig. 1 we highlight
the gadget Gi,j by a dotted rectangle.

• The bottom left vertex of gadget Gi,j is denoted by v1,1
i,j .

3 This is the unique vertex which has incoming edge from b11 and an outgoing edge
to g1

1 .
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• Each row of Gi,j is horizontal and the number of the row increases as
we go vertically upwards. Similarly, each column of Gi,j is vertical and
the number of the column increases as we go horizontally rightwards. For
each 1 ≤ h, � ≤ n the unique vertex which is the intersection of the hth

column and �th row is denoted by vh,�
i,j .

Orient each horizontal edge of the grid Gi,j to the right, and each vertical
edge to the bottom.

– We now define four special sets of vertices for the gadget Gi,j given by
• Left(Gi,j) = {v1,�

i,j : � ∈ [n]}
• Right(Gi,j) = {vn,�

i,j : � ∈ [n]}
• Top(Gi,j) = {v�,n

i,j : � ∈ [n]}
• Bottom(Gi,j) = {v�,1

i,j : � ∈ [n]}
– Horizontal Orange Inter-Grid Edges: For each 1 ≤ i ≤ k − 1, 1 ≤ j ≤ k

• Add the directed perfect matching from vertices of Right(Gi,j) to
Left(Gi+1,j) given by the set of edges {vn,�

i,j → v1,�
i+1,j : � ∈ [n]}.

– Vertical Orange Inter-Grid Edges: For each 2 ≤ j ≤ k, 1 ≤ i ≤ k
• Add the directed perfect matching from vertices of Bottom(Gi,j) to

Top(Gi,j−1) given by the set of edges {v�,1
i,j → v�,n

i,j−1 : � ∈ [n]}.
– We introduce 8k · n red vertices given by

• A := {aj
i | i ∈ [k], j ∈ [n]}

• B := {bj
i | i ∈ [k], j ∈ [n]}

• C := {cj
i | i ∈ [k], j ∈ [n]}

• D := {dj
i | i ∈ [k], j ∈ [n]}

• E := {ej
i | i ∈ [k], j ∈ [n]}

• F := {f j
i | i ∈ [k], j ∈ [n]}

• G := {gj
i | i ∈ [k], j ∈ [n]}

• H := {hj
i | i ∈ [k], j ∈ [n]}

– Blue Edges:
• For each i ∈ [k], j ∈ [n]

∗ add the directed edge hj
i → gj

i ,
∗ add the directed edge vj,1

i,1 → gj
i ,

∗ add the directed edge f j
i → ej

i ,
∗ add the directed edge f j

i → vj,n
i,k .

• For each i ∈ [k], j ∈ [n]
∗ add the directed edge dj

i → cj
i ,

∗ add the directed edge vn,j
k,i → cj

i ,
∗ add the directed edge bj

i → aj
i ,

∗ add the directed edge bj
i → v1,j

1,i .
– Yellow Edges (these are left out in Fig. 1): For each i ∈ [k], j ∈ [n]

• Category I: add the directed edge dj
i → aj

i ,
• Category II: add the directed edge hj

i → ej
i .

– Green Edges: For each i ∈ [k]
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• add the undirected path a1
i − a2

i − a3
i − . . . . . . − an−1

i − an
i , and denote

this path4 by Ai,
• add the undirected path b1i − b2i − b3i − . . . . . .− bn−1

i − bn
i , and denote this

path by Bi,
• add the undirected path c1i − c2i − c3i − . . . . . .− cn−1

i − cn
i , and denote this

path by Ci,
• add the undirected path d1i − d2i − d3i − . . . . . . − dn−1

i − dn
i , and denote

this path by Di,
• add the undirected path e1i − e2i − e3i − . . . . . .− en−1

i − en
i , and denote this

path by Ei,
• add the undirected path f1

i − f2
i − f3

i − . . . . . . − fn−1
i − fn

i , and denote
this path by Fi,

• add the undirected path g1i − g2i − g3i − . . . . . . − gn−1
i − gn

i , and denote
this path by Gi,

• add the undirected path h1
i − h2

i − h3
i − . . . . . . − hn−1

i − hn
i , and denote

this path by Hi.
– For each 1 ≤ i, j ≤ k and each 1 ≤ x, y ≤ n we perform the following

operation on the vertex vx,y
i,j :

• If (x, y) ∈ Si,j then we keep the vertex vx,y
i,j as is.

• Otherwise we split the vertex vx,y
i,j into two vertices vx,y

i,j,LB and vx,y
i,j,TR.

Note that vx,y
i,j had 4 incident edges: two incoming (one each from the left

and the top) and two outgoing (one each to the right and the bottom).
We change the edges as follows (see Fig. 2):

∗ Make the left incoming edge and bottom outgoing edge incident on
vs,t

i,j,LB (denoted by red color in Fig. 2).
∗ Make the top incoming edge and right outgoing edge incident on
vs,t

i,j,TR (denoted by blue color in Fig. 2).
∗ Add an undirected edge between vs,t

i,j,LB and vs,t
i,j,TR (denoted by

the dotted edge in Fig. 2).
– The set T of terminal pairs are given by

• Type I: (bn
j , a1

j ), (b
1
j , a

n
j ), (dn

j , c1j ) and (d1j , c
n
j ) for each j ∈ [k]

• Type II: (fn
j , e1j ), (f

1
j , en

j ), (hn
j , g1j ) and (h1

j , g
n
j ) for each j ∈ [k]

• Type III: (dn
j , a1

j ) and (d1j , a
n
j ) for each j ∈ [k]

• Type IV: (hn
j , e1j ) and (h1

j , e
n
j ) for each j ∈ [k]

• Type V: (b1j , c
n
j ) and (bn

j , c1j ) for each j ∈ [k]
• Type VI: (f1

j , gn
j ) and (fn

j , g1j ) for each j ∈ [k]

Note that the total number of terminal pairs is 16k.

Remark 1. Note that the graph G constructed above can be drawn on the sur-
face of a torus without any two edges crossing: removing the yellow edges, the
graph is clearly planar (as depicted in Fig. 1) and can be drawn on a square
polygon. Identifying the right edge R and left edge L of the square such that
the lower left corner equals the lower right corner, and also the square’s top T

4 Sometimes we also abuse notation slightly and use Ai to denote this set of vertices.
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Fig. 2. The splitting operation for vertex vh,�
i,j when (h, �) /∈ Si,j . The idea behind this

splitting is that no matter which way we orient the undirected dotted edge we cannot
go both from left to right and from top to bottom. However, if we just want to go
from left to right (top to bottom) then it is possible by orienting the dotted edge to
the right (left), respectively. (Color figure online)

and bottom B edges such that the upper left corner equals the lower left cor-
ner, gives an orientable surface of genus 1 (i.e. a torus). The horizontal yellow
edges of Category I can connect through L = R, and the vertical yellow edges
of Category II can connect through T = B, without any edges crossing.

Remark 2. For simplicity, we add two “dummy” indices 1 and n which do not
belong to any of the sets in the Grid Tiling instance. Hence no vertices on the
boundary of the grids Gi,j (for any 1 ≤ i, j ≤ k) are split.

Before proving the correctness of the reduction, we first introduce some nota-
tion concerning orientations of the green edges (i.e. potential solutions) of the
instance.

Definition 1. For any i ∈ [n], a path on n vertices a1 − a2 − . . . . . .− an is said
to be oriented towards (away from) i if every edge aj−1 − aj is oriented towards
(away from) aj for every j ≤ i and every edge aj − aj+1 is oriented towards
(away from) aj for every j ≥ i, respectively.

2.2 GRID TILING has a Solution ⇒ STEINER ORIENTATION

has a Solution

Suppose that the instance I = (k, n, {Si,j}1≤i,j≤k) of Grid Tiling has a solu-
tion, i.e., for each 1 ≤ i, j ≤ k there exists an element si,j ∈ Si,j such that

– if si,j = (xi,j , yi,j) and si,j+1 = (xi,j+1, yi,j+1) then xi,j = xi,j+1,
– if si,j = (xi,j , yi,j) and si+1,j = (xi+1,j , yi+1,j) then yi,j = yi+1,j .

That is, there exist elements α1, α2, . . . , αk and β1, β2, . . . , βk such that for each
1 ≤ i, j ≤ k we have (αi, βj) = si,j ∈ Si,j . We now show that the instance
(G,T ) of Steiner Orientation has a solution as well. Orient the undirected
green edges as follows (note that αi and βi are elements from [n] and therefore
represent row and column indices in the gadget Gi,j). For each i ∈ [k]
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– orient Ai and Ci away from βi,
– orient Bi and Di towards βi,
– orient Ei and Gi away from αi,
– orient Fi and Hi towards αi.

It is easy to see that the above orientations ensure that all terminal pairs of
Types I-IV are satisfied. We now show that terminal pairs of Type V and
Type VI are also satisfied. First we need some definitions:

Definition 2 (horizontal canonical paths). Fix j ∈ [k]. For 1 ≤ � ≤ n, we
denote by Q�

j the unique (horizontal) directed b�
j → c�

j path whose second vertex
is v1,�

1,j and second-last vertex is vn,�
k,j . This path starts with the blue edge (b�

j , v
1,�
1,j)

and ends with the blue edge (vn,�
k,j , c

�
j). The intermediate edges are obtained by

selecting the paths of black edges given by the �th rows of each gadget Gi,j for
i ∈ [k], and connecting these small paths by horizontal orange edges.

However, we need to address what to do when we encounter a split vertex on
this path. Consider the vertex vr,�

i,j for some i ∈ [k] and r ∈ [n]. If vr,�
i,j is not

split, then we don’t have to do anything. Otherwise, if vr,�
i,j is split then we add

the edge vr,�
i,j,LB → vr,�

i,j,TR to Q�
j.

Note that the orientation of G which orients all dotted edges rightwards, i.e.,
LB → TR, contains each of the horizontal canonical paths defined above.

Definition 3 (vertical canonical paths). Fix i ∈ [k]. For 1 ≤ � ≤ n, we
denote by P �

i the unique (vertical) f �
i → g�

i path whose second vertex is v�,n
i,k and

second-last vertex is v�,1
i,1 . This path starts with the blue edge (f �

i , v�,n
i,k ) and ends

with the blue edge (v�,1
i,1 , g�

i ). The intermediate edges are obtained by selecting the
paths of black edges given by the �th columns of each gadget Gi,j for j ∈ [k], and
connecting these small paths by vertical orange edges.

However, we need to address what to do when we encounter a split vertex on
this path. Consider the vertex v�,r

i,j for some j ∈ [k] and r ∈ [n]. If v�,r
i,j is not

split, then we don’t have to do anything. Otherwise, if v�,r
i,j is split then we add

the edge v�,r
i,j,LB ← v�,r

i,j,TR to P �
i .

Note that the orientation of G which orients all dotted edges leftwards, i.e.,
LB ← TR, contains each of the vertical canonical paths defined above. Observe
that both the horizontal canonical paths and vertical canonical paths assign
orientations to the dotted edges arising from splitting vertices. Hence, one needs
to be careful because the splitting operation (see Fig. 2) is designed to ensure that
the existence of a horizontal canonical path implies that some vertical canonical
path cannot exist (recall that we are allowed to orient each undirected edge in
exactly one direction).

Definition 4 (realizable set of paths). A set of directed paths P in a mixed
graph G is realizable if there is a orientation G∗ of G such that each path P ∈ P
appears in G∗.
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Lemma 1. The set of vertical canonical paths {Pαi
i : i ∈ [k]} together with

the set of horizontal canonical paths {Q
βj

j : j ∈ [k]} are realizable in G.

Proof. Suppose to the contrary that this set of directed paths is not realizable
in G. The only undirected edges which get oriented on horizontal canonical
paths or vertical canonical paths are dotted edges which are created from the
splitting operation. This implies that there is an undirected dotted edge, say
v

αi,βj

i,j,LB − v
αi,βj

i,j,TR which gets different orientations by the vertical canonical path

Pαi
i and the horizontal canonical path Q

βj

j , respectively. This means that the

black vertex v
αi,βj

i,j was split. However, by the property of the Grid Tiling

solution, we have that (αi, βj) ∈ Si,j which contradicts the fact that v
αi,βj

i,j was
split. 	


Observe that for each j ∈ [k], the horizontal path Q
βj

j satisfies the two
terminal pairs (b1j , c

n
j ) and (bn

j , c1j ) for each j ∈ [k] of Type V. Similarly, for
each i ∈ [k], the path P

αj

i satisfies the two terminal pairs (f1
j , gn

j ) and (fn
j , g1j )

of Type VI. Lemma 1 guarantees that these families of canonical vertical and
horizontal paths can be realized by some orientation (note that the canonical
paths only orient black edges, and not green edges whose orientation was already
fixed at the start of this subsection) of G. This implies that the instance (G,T )
of Steiner Orientation answers YES, and concludes this direction of the
proof.

2.3 STEINER ORIENTATION has a Solution ⇒ GRID TILING

has a Solution

Since the instance (G,T ) of Steiner Orientation has a solution, let G∗ be
the orientation which satisfies all pairs from T . Note that the set of vertices
B ∪D∪F ∪H has no incoming edges. Similarly, the set of vertices A∪C ∪E ∪G
has no outgoing edges.

Lemma 2. No yellow edge can be on a path in G∗ which satisfies any terminal
pair of Type I or II.

Proof. Fix j ∈ [k]. We just prove the lemma for the terminal pair (bn
j , a1

j ) since
the proof for other terminal pairs is similar. Suppose there is a yellow edge on
some path P satisfying the terminal pair (bn

j , a1
j ). This yellow edge cannot be of

Category I since D has no incoming edges, and hence we could not have reached
D in the first place starting from bn

j . However, this yellow edge also cannot be of
Category II since H has no incoming edges and hence we could not have reached
H in the first place starting from bn

j . 	

The next lemma restricts the orientations of the undirected paths of green

edges.
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Lemma 3. In the orientation G∗, for each i ∈ [k] we have that

– there exists an integer λi ∈ [n] such that the paths Ai, Bi are oriented away
from, and towards λi, respectively,

– there exists an integer μi ∈ [n] such that the paths Ci,Di are oriented away
from, and towards μi, respectively,

– there exists an integer δi ∈ [n] such that the paths Ei, Fi are oriented away
from, and towards δi, respectively,

– there exists an integer εi ∈ [n] such that the paths Gi,Hi are oriented away
from, and towards εi, respectively.

Proof. Fix i ∈ [k]. We just prove the lemma for the paths Ai, Bi since the
proof for other cases is similar. By Lemma 2, we know that the paths satisfying
the terminal pairs (bn

i , a1
i ) and (b1i , a

n
i ) cannot contain any yellow edges. Since

the only non-yellow edges incoming to A are blue edges from B (and B has
no incoming edges), it follows that the terminal pairs (bn

i , a1
i ) and (b1i , a

n
i ) of

Type I are satisfied by edges from the graph G∗[Ai ∪ Bi]. The path satisfying
the terminal pair (bn

i , a1
i ) has to travel downwards along Bi, use a blue edge

and then finally travel downwards along Ai. Similarly, the path satisfying the
terminal pair (b1i , a

n
i ) has to travel upwards along Bi, use a blue edge and then

finally travel upwards along Ai. Since we can only orient each green edge in
exactly one direction, it follows that both these paths must use the same blue
edge, i.e., there exists an integer λi ∈ [n] such that the paths Ai, Bi are oriented
away from, and towards λi, respectively. 	

Lemma 4. For each i ∈ [k] and integers λi, μi, δi, εi as given by Lemma 3 we
have that

– λi = μi,
– δi = εi.

Proof. Fix i ∈ [k]. We just prove that λi = μi since the proof for the other case
is similar. Consider the terminal pairs (dn

i , a1
i ) and (d1i , a

n
i ) of Type III. The only

outgoing edges from D are to A ∪ C. However, A ∪ C has not outgoing edges.
Hence, the aforementioned terminal pairs are satisfied by edges from G∗[D ∪A].
By Lemma 3, we know that Ai is oriented away from λi and Di is oriented
towards μi. Hence, if μi > λi then the pair (dn

i , a1
i ) is not satisfied, and if

μi < λi then the pair (d1i , a
n
i ) is not satisfied. Thus we have λi = μi. 	


Lemma 5. No yellow edge can be on a path satisfying any terminal pair of Type
V or VI.

Proof. Fix j ∈ [k]. We just prove the lemma for the terminal pair (b1j , c
n
j ) since

the proof for other terminal pairs is similar. Suppose there is a yellow edge on
some path P satisfying the terminal pair (b1j , c

n
j ). This yellow edge cannot be of

Category I since D has no incoming edges, and hence we could not have reached
D in the first place starting from b1j . However, this yellow edge also cannot be of
Category II since H has no incoming edges and hence we could not have reached
H in the first place starting from b1j . 	
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Lemma 6. For each 1 ≤ i, j ≤ k, we have that

– any path which satisfies the terminal pair (b1j , c
n
j ) must contain the horizontal

canonical path Q
λj

j ,
– any path which satisfies the terminal pair (fn

i , g1i ) must contain the vertical
canonical path P δi

i .

Proof. Fix j ∈ [k]. Consider the terminal pair (b1j , c
n
j ), and let P be any path

satisfying it. By Lemma 5, we know that P cannot have any yellow edges. By
Lemmas 3 and 4, we know that Bj , Cj are oriented towards, and away from λj ,
respectively. We claim that the first edge on P which leaves Bj is b

λj

j → v
1,λj

1,j .
Clearly, P cannot have any edge from Bj to Aj , since Aj has no outgoing edges.
Hence, the path P is of the following type: the vertical upwards path b1j → b2j →
. . . bτ

j followed by the blue edge bτ
j → v1,τ

1,j . Since Bj is oriented towards λj it
follows that λj ≥ τ . If λj > τ then by orientation of the black grid edges and
orange edges (note that the splitting doesn’t really change the rows/columns
level) it follows that P reaches Cj at a vertex cψ

j where λj > τ ≥ ψ. However,
Cj is oriented away from λj which contradicts that P is a path from b1j to cn

j .
Hence, we have that λj = τ = ψ. Therefore, P contains a subpath which starts
at b

λj

j and ends at c
λj

j and all edges of this subpath (except the first and last

blue edges) are contained in the graph G∗
[ ⋃k

i=1 V (Gi,j)
]
, i.e., P contains the

canonical horizontal path Q
λj

j .
The proof of the second part of the lemma is similar, and we omit the details

here. 	

Lemma 7. The instance (k, n, {Si,j}1≤i,j≤k) of Grid Tiling has a solution.

Proof. We show that (δi, λj) ∈ Si,j for each 1 ≤ i, j ≤ k. This will imply that
Grid Tiling has a solution.

Fix any 1 ≤ i, j ≤ k. By Lemma 6, we know that the orientation G∗ must
contain the horizontal canonical path Q

λj

j (to satisfy the pair (b1j , c
n
j )) and also

the vertical canonical path P δi
i (to satisfy the pair (fn

i , g1i )). We now claim
that the vertex v

δi,λj

i,j cannot be split: suppose to the contrary that it is split.

By Definition 3, the path P δi
i orients the edge v

δi,λj

i,j,LB − v
δi,λj

i,j,TR as v
δi,λj

i,j,LB ←
v

δi,λj

i,j,TR. However, by Definition 2, the path Q
λj

j orients the edge v
δi,λj

i,j,LB − v
δi,λj

i,j,TR

as v
δi,λj

i,j,LB → v
δi,λj

i,j,TR, which is a contradiction. Hence, the vertex v
δi,λj

i,j is not
split, i.e., (δi, λj) ∈ Si,j for each 1 ≤ i, j ≤ k. 	


2.4 Obtaining the f(k) · No(k) Lower Bound

It is easy to see that the graph G has O(n2k2) vertices and can be constructed in
poly(n+k) time. Combining the two directions from Subsects. 2.2 and 2.3, we get
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a paramterized reduction from Grid Tiling to Steiner Orientation. Hence,
the W[1]-hardness of Steiner Orientation follows from the W[1]-hardness of
Grid Tiling [11]. Chen et al. [2] showed that, for any function f , the existence of
an f(k) ·no(k) algorithm for k-Clique violates ETH. There is a simple reduction
(see Theorem 14.28 from [6]) from k-Clique to k×k Grid Tiling implying the
same runtime lower bound for the latter problem. Our reduction transforms the
problem of k × k Grid Tiling into an instance of Steiner Orientation with
O(k) demand pairs. Composing the two reductions, we obtain that under ETH
there is no f(k) · no(k) time algorithm for Steiner Orientation. Recall from
Remark 1 that the graph G constructed in the Steiner Orientation instance
has genus 1, and hence the f(k) ·no(k) lower bound holds for genus 1 graphs too.
This concludes the proof of Theorem1.
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Abstract. The notion of a k-core, defined by Seidman [’83], has turned
out to be useful in analyzing network structures. The k-core of a given
simple and undirected graph is the maximal induced subgraph such that
each vertex in it has degree at least k. Hence, finding a k-core helps
to identify a (core) community where each entity is related to at least
k other entities. One can find the k-core of a given graph in polyno-
mial time, by iteratively deleting each vertex of degree less than k.
Unfortunately, this iterative dropping out of vertices can sometimes lead
to unraveling of the entire network; e.g., Schelling [’78] considered the
extreme example of a path with k = 2, where indeed the whole network
unravels.

In order to avoid this unraveling, we would like to edit the network
in order to maximize the size of its k-core. Formally, we introduce the
Edge k-Core problem (EKC): given a graph G, a budget b, and a goal
p, can at most b edges be added to G to obtain a k-core containing at
least p vertices? First we show the following dichotomy: EKC is polytime
solvable for k ≤ 2 and NP-hard for k ≥ 3. Then, we show that EKC is
W[1]-hard even when parameterized by b + k + p. In searching for an
FPT algorithm, we consider the parameter “treewidth”, and design an
FPT algorithm for EKC which runs in time (k + tw)O(tw+b) · poly(n),
where tw is the treewidth of the input graph. Even though an extension
of Courcelle’s theorem [Arnborg et al., J. Algorithms ’91] can be used
to show FPT for EKC parameterized by tw + k + b, we obtain a much
faster running time as compared to Courcelle’s theorem (which needs
a tower of exponents) by designing a dynamic programming algorithm
which needs to take into account the fact that newly added edges might
have endpoints in different bags which cross the separator.
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1 Introduction

Graphs are very useful for modeling networks which describe relationships and
interactions between sets of people or entities, in various disciplines, such as
social sciences [17], life sciences [10], medicine [20], etc. Usually, we assign a ver-
tex to each entity, and there is an edge between two entities if they are related
or affect each other in some way. Analyzing graph structure has found applica-
tions in several important real-world problems such as targeted advertising [24],
fraud detection [18], missing link prediction [16], locating functional modules of
interacting proteins [14], etc.

An important problem in analyzing the structure of big networks is to detect
large communities of vertices that are “related” to one another. This problem
has been widely considered in various sub-areas of computer science [12,13,19].
A reasonable and well-studied notion for a vertex to be “related” within a com-
munity is to have a large number of neighbors within the community. Bhawalkar
et al. [4] considered the following model of user engagement within a network:
there is a single product and each individual has two options of “engaged” or
“drop out”. We assume that all individuals are initially engaged, and there is
some given threshold parameter k such that a person finds it worthwhile to
remain engaged if that person has at least k engaged friends.

In this model of user engagement all individuals with less than k friends
will drop out immediately. Unfortunately, this can propagate and even those
individuals who initially had more than k friends in the network may end up
dropping out. An extreme example of this was given by Schelling [22, p. 214]:
consider a path on n vertices and let k = 2. Note that, while n−2 vertices initially
have degree two in the network, there will be a cascade of iterated withdrawals
since each endpoint has degree one, thus it drops out and now its neighbor in the
path has only one friend in the network and it drops out as well; eventually, the
whole network drops out. Indeed, at the end of the iterated withdrawals process
the remaining engaged individuals form a unique maximal induced subgraph
whose minimum degree is at least k. This subgraph is called the k-core and is a
well-known concept in the theory of networks; it was introduced by Seidman [23]
and also been studied in various social sciences literature [8,9]. The concept of
k-core decompositions (where for each vertex v we find the max k such that v
belongs to the k-core in G) has been used in the analysis and visualization of
large scale networks [1–3].

A Game-Theoretic Model for k-Core: Consider the following game-
theoretical model from [4]: each user in a graph G = (V,E) pays a cost of
k to remain engaged, and she receives a profit of 1 from every neighbor who
is engaged. If an individual is not engaged, then she receives a payoff of zero.
Hence, she remains engaged if she has non-negative payoff, i.e., she has at least
k neighbors who are engaged. Then the k-core can be viewed as the unique max-
imal equilibrium in this setting. Assuming that all the players make decisions
simultaneously the model can be viewed as a simultaneous-move game where
each individual has two strategies viz. remaining engaged or dropping out. For
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every strategy profile δ ∈ {0, 1}|V | let Sδ = {i : δi = 1} denote the set of
players who remain engaged. We can easily characterize the set of pure Nash
equilibria for this game: a strategy profile δ is a Nash equilibrium if and only if
the following two conditions hold:

– No engaged player wants to drop out, i.e., minimum degree of the induced
graph G[Sδ] is ≥ k

– No player who has dropped out wants to become engaged, i.e., no v ∈ V (G)\
Sδ has ≥ k neighbors in Sδ

In general there can be many Nash equilibria. For example, if G itself has mini-
mum degree ≥ k then Sδ = ∅ and Sδ = V (G) are two equilibria (and there may
be more). Owing to the fact that it is a maximal equilibrium, the k-core has
the special property that it is beneficial to both parties: it maximizes the pay-
off of every user, while also maximizing the size of the network. Chwe [8,9] and
Sääskilahti [21] suggest that one can reasonably expect this maximal equilibrium
even in real-life implementations of this game.

The Anchored k-Core Problem (AKC): The unraveling described above
in Schelling’s example of a path might be highly undesirable if the goal is to
keep as many people engaged as possible. One possibility of preventing this is
by “buying” the two end-point players into being engaged. This ensures that the
whole path remains engaged. Correspondingly, Bhawalkar et al. [4] formalized
this notion and defined the Anchored k-Core problem (AKC). In AKC, they
overcome the issue of unraveling by allowing some “anchors”: these are vertices
that remain engaged irrespective of their degree. This can be achieved by giving
them extra incentives or discounts. The question in AKC is the following: given
three integers b, k, and p, can one use at most b anchors and ensure that there
is an anchored k-core of size at least p?

Besides defining the AKC problem, Bhawalkar et al. [4] showed that AKC
is solvable in polynomial time for k ≤ 2 but NP-hard for k ≥ 3. Also it is NP-
hard to approximate the approximate the size of the optimal k-core to within an
O(n1−ε) factor1 for any ε > 0. From the viewpoint of parameterized complexity,
they showed that for every fixed k ≥ 3 the p-AKC problem is W[2]-hard with
respect to b, and, on the positive side, they gave a polynomial-time algorithm for
graphs of bounded treewidth. In a follow-up work, Chitnis et al. [7] showed that
it remains NP-hard on planar graphs for all k ≥ 3, even if the maximum degree
of the graph is k + 2; that it becomes FPT on planar graphs (unlike on general
graphs) parameterized by b for all k ≥ 7; and, strengthening the intractability
result of Bhawalkar et al. [4], they showed W[1]-hardness of it with respect to p
(which is always greater than or equal to b).

The Edge k-Core Problem (EKC): In this paper we consider an alternative
way to maximize the size of the k-core. For example, in Schelling’s example,
instead of anchoring the two end-point players, one could also add an edge
between these two vertices; this again ensures that the whole path remains

1 That is, distinguishing whether the size of the optimal k-core is O(b) or Ω(n).
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engaged. While this changes the structure of the network, it has the desirable
property of ensuring a “pure” k-core, i.e., where each vertex has degree at least
k. Correspondingly, we ask the following question: can we add “few” edges to
the given network and obtain a “large” k-core? Formally, the problem we study
in this paper is as follows.

The Edge k-Core Problem (EKC)
Input : A simple, undirected graph G = (V,E) and integers b, k, and p.
Question: Is there a set of vertices H ⊆ V of size ≥ p such that there is a set
B ⊆ (

(
V
2

) \ E) with |B| ≤ b and every v ∈ H satisfies degG′[H](v) ≥ k, where
G′ = (V,E ∪ B)?

EKC arises naturally in several scenarios concerning network resiliency such as:

– Peer-to-Peer (P2P) networks: In P2P networks, users share common
resources (bandwidth, disk storage, etc.). For any user to benefit from the
network they should be connected to at least a certain threshold k number of
other users. EKC then tells the parent company which connections shall be
added between the users so that a large number of users can successfully use
the P2P network.

– Distributed networks: Suppose there is an existing network of computers,
connected by some topology. Over time the complexity of the tasks to be
executed increases, and one may need more computers to perform the task
in a distributed fashion. The Edge k-Core problem then guides us on how
to edit the network (which connections to add between computers) assuming
that we know the threshold k number of computers needed for any task.

Our Results. Besides introducing EKC, we first, in Sect. 2, describe a
polynomial-time algorithm for k ≤ 2 and show NP-hardness for k ≥ 3, thus
providing a complexity dichotomy. Then, in Sect. 3, we begin by showing that
EKC is W[1]-hard parameterized by b + p even when k = 3. This tells us that
we need to consider more parameters if we seek fixed-parameter tractability.
As a natural network parameter, we consider the treewidth tw and design a
dynamic program to show that EKC is fixed-parameter tractable with respect
to tw + k + b. In our view, this is the most technical part of the paper.

Comparing Anchored k-Core and Edge k-Core. While AKC has been
studied before [4,6,7], in this paper we introduce and study the EKC problem.
Below we briefly show that these two problems are unrelated in the following
sense: there are examples of graphs where for the same values of p and k we need
very different number of anchored vertices or edge additions to achieve a k-core
of size at least p.

– Edge Additions > Anchored Vertices: Let G be a disjoint union of two
components G1 and G2, where G1 = Kz1 (i.e., a clique on z1 vertices) and
G2 is a z2-regular graph on n2 vertices. Choose z1 � z2 � n2. If k = z2
and p = z1 + n2, then the number of vertices which need to be anchored
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for an anchored k-core of size p is bv = z1. However, to get a pure k-core of
size p we need to add z2 − (z1 − 1) edges on each vertex of G1, and hence

be ≥ z1 · (z2 − z1 + 1)
2

	 z1 = bv. This example is asymptotically tight since

adding (k − deg) new edges to a vertex of degree k simulates anchoring the
vertex.

– Edge Additions < Anchored Vertices: We build a graph G as follows:
let G1 = K2n, let G2 be K2n with a perfect matching removed, and add a
matching of size 2n between G1 and G2. If k = 2n and p = 4n, then the
number of vertices which need to be anchored to obtain an anchored k-core
of size p is bv = 2n. However, to get a pure k-core of size p it is enough
to add the n edges of the perfect matching which were removed from G2.
Hence be = n < 2n = bv. This example is strictly tight since anchoring two
endpoints of an edge simulates adding the edge.

2 Classical Complexity: Polytime Algorithms
and NP-hardness

In this section we first describe a polynomial-time algorithm which solves
Edge k-Core whenever k ≤ 2 (Theorem 1). Then, we show that this result
is tight with respect to k, by showing that Edge k-Core is NP-hard whenever
k ≥ 3 (Theorem 2).

Theorem 1. [�]2 Edge k-Core is polynomial-time solvable for k ≤ 2.

Theorem 2 (�). Edge k-Core is NP-hard for k ≥ 3.

3 Parameterized Complexity: W[1]-Hardness and FPT
Algorithms

In this section, we analyze EKC via the framework of parameterized complexity.
EKC is para-NP-hard parameterized by k since Theorem 2 shows that EKC is
NP-hard for k = 3. In fact, taking a closer look at the proof of Theorem2, we
observe the following.

Corollary 1. EKC is NP-hard for k = 3, even on planar graphs of max
degree 5.

Now we show that EKC admits a simple XP algorithm parameterized
by b.

Observation 3. The EKC problem admits an XP algorithm parameterized by b.

2 Proofs of results marked with [�] are deferred to the full version of the paper due to
lack of space.



Can We Create Large k-Cores by Adding Few Edges? 83

Proof. Since any graph on n vertices can have at most
(
n
2

)
edges (recall that we

do not allow parallel edges or self-loops), we can try all possible subsets of non-

edges (which are not already present) to be added. This gives an
((n2)

b

)
= nO(b)

algorithm.

Consider a yes-instance I of EKC for which p ≤ k. Since the minimum degree
of any subgraph containing at most k vertices is at most k − 1, it follows that
the size of the k-core created in the solution of I is at least k + 1 (recall the
definition of EKC, which asks for a k-core containing at least p vertices). Thus,
we assume henceforth that instances of EKC satisfy p > k. Next, we show that
Theorem 3 translates to an XP algorithm for EKC parameterized by p.

Proposition 1. The EKC problem has an XP algorithm parameterized by p.

Proof. We can convert any set of p vertices (assuming w.l.o.g. that p > k) into a
k-core by adding at most

(
p
2

)
edges. Hence, if b ≥ (

p
2

)
, then we can answer YES;

otherwise, i.e., if b <
(
p
2

)
, then the nO(b) algorithm from Theorem3 is also an

nO(p2) algorithm for the EKC problem. 
�
Next we show that if one wants to design an FPT algorithm for the EKC

problem, then even combining the three parameters p, k, and b is not enough.

Theorem 4. The Edge k-Core problem is W[1]-hard parameterized by p + b,
for k = 3.

Proof. We reduce from the W[1]-hard Clique problem [11] which, given a graph
G and an integer �, asks for the existence of � pairwise adjacent vertices in G.
Consider an instance (G = (V,E), �) of Clique where V = (v1, v2, . . . , vn) and
construct a new graph G′ = (V ′, E′) as follows.

For each 1 ≤ i �= j ≤ � make a copy Gij of the vertex set V (do not add any
edges). Each of these vertices is black. Let the vertex vr in the copy Gij be labeled
vr

ij . Add the following edges to G′ (we use the notation [n] = {1, 2, . . . , n}):

– For each 1 ≤ i �= j ≤ � and r, s ∈ [n] we add an edge between vr
ij and vs

ji if and
only if vrvs ∈ E. Subdivide each such edge twice by adding two new green
vertices xrs

ij and xsr
ji . We refer to xrs

ij as a brother of xsr
ji and vice-versa.

– For each i ∈ [�], r ∈ [n] add the cycle vr
i1−vr

i2−. . . vr
i,i−1−vr

i,i+1−. . .−vr
i�−vr

i1.
Let us denote this cycle by Cr

i .

This completes the construction of G′. Let k = 3, b =
(

�
2

)
and p = 4b. In the

full version of the paper, we show the correctness of the reduction.

3.1 FPT Algorithm Parameterized by tw + k + b

Next we sketch the proof of our main technical result, namely that EKC is fixed-
parameter tractable for tw+k+b. Notice that Theorem 4, which shows that EKC
is W[1]-hard even for k + p + b, indeed motivates studying further parameters.
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Let T be a tree and B : V (T ) → 2V (G). The pair (T,B) is called as a valid
tree decomposition of an undirected graph G, if T is a tree in which every vertex
x ∈ V (T ) has an assigned set of vertices Bx ⊆ V (G) (called a bag) such that
the following properties are satisfied:

– (P1):
⋃

x∈V (T ) Bx = V (G).
– (P2): For each u − v ∈ E(G), there exists an x ∈ V (T ) such that u, v ∈ Bx.
– (P3): For each v ∈ V (G), the set of vertices of T whose bags contain v

induces a connected subtree of T .

The width of the tree decomposition (T,B) is maxx∈V (T ) |Bx|−1. The treewidth
of a graph G, usually denoted by tw(G), is the minimum width over all valid
tree decompositions of G.

We will use a special type of tree decompositions called nice tree decompo-
sitions.

Definition 1. A tree-decomposition (T,B) of G is said to be nice if T is a rooted
binary tree such that each vertex t ∈ T is one of the following four types:

– Leaf Node: t is a leaf in T and Bt = {v} for some v ∈ G.
– Introduce Node: t has exactly one child t′ and Bt = Bt′ ∪ {v} for some

v /∈ Bt′ .
– Forget Node: t has exactly one child t′ and Bt = Bt′ \ {v} for some vertex

v ∈ Bt′ .
– Join Node: t has exactly two children t′, t′′ such that Bt′ = Bt = Bt′′ .

The advantage of nice tree-decompositions is that when writing a dynamic
program we only need to handle four types of nodes. It is known [5,15] that a
general tree decomposition (T,B) (of treewidth tw) can be converted, in linear
time, into a nice tree decomposition (T ′, B′) of the same width such that |T ′| =
O(tw · n).

Our main result in this section, and what we believe is the most technically-
involved result in this paper, is a dynamic programming based FPT algorithm
for EKC parameterized by tw+ k + b. We remark here that the fixed-parameter
tractability of EKC parameterized by tw + k + b can be shown to follow from
Courcelle’s theorem, albeit with much worse running time (i.e., tower of exponen-
tials); further, we argue that our dynamic programming is interesting because
the operation of adding edges is an “inter-bag” operation: given a bag which
separates the graph into two parts, a new edge might have one endpoint in each
part. Usually, FPT algorithms parameterized by treewidth are for “inter-bag”
operations, where each recursive call in the dynamic program is confined to its
subtree, while in our case the structure is more involved. In the interest of space,
we provide here a description with some intuition for the proof of Theorem5.
The complete formal proof of correctness and the analysis of the running time
is deferred to the full version.

Theorem 5. The Edge k-Core problem can be solved in (k + tw)O(tw+b) ·
poly(n)) time.
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Proof (Sketch). Given a nice tree decomposition of a given graph (notice that
finding a tree decomposition, or at least an approximation of it, can be done
in FPT time) we design a dynamic program for solving EKC on it. First we
fix an (arbitrary) ordering on the vertices of V , say φ = (v1, v2, . . . , vn). We
will view the vertices in this order when we consider them in a bag of the tree-
decomposition; to this end, for a node t in the tree decomposition which is a
bag containing x vertices, let us arbitrarily order those x vertices (while fixing
this ordering) and denote them by [v1, . . . , vx]. For a node t ∈ T let Tt denote
the subtree of T which is rooted at t. Also let Vt denote the union of vertices
in all bags of the nodes in the subtree of T rooted at t, i.e., Vt = ∪t∈Tt

Bt. For
i ∈ N let 0i,1i denote the multiset which has i zeroes and i ones respectively. For
q ≥ s let H(q, s) = {z ∈ {0, 1}q : z has Hamming weight exactly s}. Similarly,
H∗(q, s) = {z ∈ {0, 1, . . . , k}q : z has at most s non-zero entries}. Finally, for
z ∈ H(q, s) we define the set H∗

z(q, s) = {y ∈ H∗(q, s) : y[i] �= 0 ⇒ z[i] �= 0}.
For a node t ∈ T in the tree decomposition, we define the following boolean

quantity
BOOL[t, bin, bout, pin, pout,y, z, q0, Q]

for each choice of

– bin, bout, pin, pout ≥ 0
– bin + bout ≤ b
– pin ≤ |Bt| and pout ≤ |Vt \ Bt|
– y ∈ H(|Bt|, pin) and z ∈ H∗

y(|Bt|, pin)
– 0 ≤ q0 ≤ pout (actually, pout − b ≤ q0 ≤ |Q|)
– Q = {q1, q2, . . . , qpout−q0} is a (multi)set of size pout−q0 such that each element

in Q is positive and at most k, i.e., 1 ≤ qi ≤ k for each i ∈ [pout − q0]

We set BOOL[t, bin, bout, pin, pout,y, z, q0, Q] = 1 if and only if there exist sets
Ht ⊆ Vt and Et ⊆ Ht × Ht such that the following conditions hold:

– |Ht ∩ Bt| = pin
– |Ht ∩ (Vt \ Bt)| = pout
– Number of edges of Et which have both endpoints in Bt is bin
– Number of edges of Et which have at most one endpoint in Bt is bout
– |Et| ≤ bin + bout

– y[v] = 1 if and only if v ∈ Bt ∩ Ht

– If v ∈ Bt ∩ Ht then the degree of v in the graph G∗[Ht] = G[Ht] ∪ Et is
≥ z[v]

– There is a bijection φt : ((Vt \ Bt) ∩ Ht) → (Q ∪ 0q0) such that for every
w ∈ (Vt \ Bt) ∩ Ht we have degG∗[Ht](w) + φt(w) ≥ k

We say that (Ht, Et, φt) is a witness for BOOL[t, bin, bout, pin, pout,y, z, q0, Q]=1.

Intuition: Instead of solving the Edge k-Core problem in recursion, we design
a dynamic program which solves a more general problem. Specifically, this gen-
eral problem is such that (1) we specify more concretely how this given budget
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is to be used and which structure the k-core shall have; and (2) we allow some
“help” from the “outside world”. Let us mention that, for (1), we specify how
the budget b shall be split into bin (budget to be used solely in the bag vertices)
and bout (budget to be used not solely in the bag vertices); how the p vertices of
the k-core shall be split between pin (k-core vertices in the bag vertices) and pout

(k-core vertices not in the bag vertices); where we even specify, by the 1-entries
of the vector y, exactly which vertices of the bag shall be k-core vertices. Now,
recall that in the Edge k-Core problem, each vertex in the k-core must have
degree at least k; for (2), we allow some “help” from the “outside world”, by
relaxing this “at least k” requirement for some of the vertices; specifically, we
specify the needed degrees for the vertices of the k-core in the bag vertices (those
pin vertices whose corresponding y values are 1), since we require for them to
have only degrees as specified by the z vector; and, for the vertices of the k-core
which are not in the bag vertices, we use two multisets Q and 0q0 (which are
together of size pout). We view this as some “degree help” that we allow those
vertices to use (in order to make their degree ≥ k): the exact way by which we
specify the amount of “degree help” that the vertices of the k-core could use is
defined by the bijection φ. The multiset Q corresponds to those vertices which
actually need some “degree help” (and we maintain all such numbers), while the
number q0 corresponds to the number of vertices of Ht ∩ (Vt \ Bt) which do not
need any help at all.

The crucial idea is that although pout can be as large as n, we have that |Q| ≤ b
since we only have b edges in the budget to help. (In fact, even

∑
x∈Q x ≤ b

holds.)

Let r be the root of T . Next, we will show how to recursively compute the
values of the boolean quantity BOOL; for now, let us mention that we will decide
that the given instance (G, b, k, p) of Edge k-Core is a yes-instance if and only
if the following holds:

∨

bin+bout≤b
0≤pin≤|Br|

0≤pout≤|Vr\Br|
pin+pout≥p

y∈H(|Br|,pin)

BOOL[r, bin, bout, pin, pout,y, z = k|Br|, q0 = pout, Q = ∅] = 1

Below we briefly give some intuition on how to recursively compute the values of
BOOL for each type of node in the nice tree decomposition. We defer the formal
recurrence, proof of correctness, and analysis of the running time to the full
version.

3.1.1 Leaf Node
Intuition: For leaf nodes, there are no further recursive calls; thus, it is enough
to check the “sanity” of the given values.
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Fig. 1. Recursion on a forget node (left) and on an introduce node (right).

3.1.2 Forget Node
Intuition: Refer to Fig. 1. There are two possibilities for forget node, namely
whether the forgotten vertex v is part of the k-core or not. If it is not, then
we can call the child with almost exactly the same values; if it is in the k-core,
then we guess the exact connections that the forgotten node will have to other
vertices in the bag. Given those guesses, we can issue a recursive call almost
without worrying about the forgotten node; notice that we guess whether or not
v receives non-zero “help” from the outside, since, in the child, v is a bag vertex,
and thus does not have a corresponding Q-value or is counted in q0.

3.1.3 Introduce Node
Intuition: Refer to Fig. 1. Let t′ be the child of t such that Bt = Bt′ ∪{v}. There
are two cases to consider, namely whether v is in the k-core or not. If v is not
in the k-core then we can safely issue a recursive call to the child t′. Otherwise,
we can fully guess the “new” connections between v to the other vertices in the
bag Bt, and then call the child with different z-values, since their degrees will
be increased by v. By the definition of a tree-decomposition there cannot be
any edges already present between v and any vertex of Vt′ \ Bt′ . However, while
staying within FPT time we cannot guess the exact set of vertices from Vt′ \ Bt′

which get a “help” edge from v. Instead we just guess the number of such edges,
and issue the recursive call for t′ with the appropriate changes in some Q-values.

3.1.4 Join Node
Intuition: Refer to Fig. 2. First we can guess how the bin edges that will be
introduced in the bag of t so we can then call t and t′ with bin=0. Then we guess
the partition of bout into three parts: two parts correspond to the bout edges for
t′, t′′ respectively and the third part corresponds to edges between Vt′ \ Bt′ and
Vt′′ \ Bt′′ . Note that by the properties of tree decompositions, it follows that
there are no edges already present between Vt′ \ Bt′ and Vt′′ \ Bt′′ .
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Fig. 2. Recursion on a join node.

4 Conclusions and Future Directions

In this paper, we introduced the Edge k-Core problem (EKC), where the
goal is to create a “large” k-core by adding only “few” edges, and provided
several hardness and algorithmic results. Specifically, we showed that EKC is
polynomial-time solvable for k ≤ 2 but NP-hard for k ≥ 3; further, we showed
that EKC is W[1]-hard for k+p+b, but fixed-parameter tractable for tw+k+b.

For future research, one might look at EKC for directed graphs: similar work
was done by Chitnis et al. [6] for the AKC problem. Another direction is to
study the (in)approximability of EKC. Finally, one can consider a version which
combines AKC with EKC: in it, a “large” anchored k-core would be created by
anchoring at most bv vertices and adding at most be edges.

Acknowledgments. The authors would like to thank Fedor Fomin, Petr Golovach,
and Bart M.P. Jansen for helpful discussions.

References

1. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale net-
works fingerprinting and visualization using the k-core decomposition. In: NIPS
2005, pp. 41–50 (2005)
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Abstract. We investigate the problem of detecting periodic trends
within a string S of length n, arriving in the streaming model, containing
at most k wildcard characters, where k = o(n). A wildcard character is
a special character that can be assigned any other character. We say S
has wildcard-period p if there exists an assignment to each of the wild-
card characters so that in the resulting stream the length n − p prefix
equals the length n−p suffix. We present a two-pass streaming algorithm
that computes wildcard-periods of S using O

(
k3 polylog n

)
bits of space,

while we also show that this problem cannot be solved in sublinear space
in one pass. We then give a one-pass randomized streaming algorithm
that computes all wildcard-periods p of S with p < n

2
and no wildcard

characters appearing in the last p symbols of S, using O
(
k3 log9 n

)
space.

1 Introduction

We study the problem of detecting repetitive structure in a data stream S con-
taining a small number of wildcard characters. Given an alphabet Σ and a special
wildcard character ‘⊥’1, let S ∈ (Σ ∪ {⊥})n be a stream that contains at most k
wildcards. We can assign a value from Σ to each wildcard character in S result-
ing in many possible values of S. Then we informally say S has wildcard-period
p if there exists an assignment to each of the wildcard characters in S so that
the resulting string consists of the repetition of a block of p characters.

Example 1. The string S = abcab⊥a⊥c⊥bc has wildcard-period 3, since assign-
ing ‘c’ to the first wildcard character, ‘b’ to the second wildcard character, and
‘a’ to the third results in the string ‘abcabcabcabc’, which consists of repetitions
of the substring ‘abc’ of length 3.

The identification of repetitive structure in data has applications to bioinfor-
matics, natural language processing, and time series data mining. Specifically,
finding the smallest period of a string is necessary preprocessing for many algo-
rithms, such as the classic Knuth-Morriss-Pratt [KMP77] algorithm in pattern
1 Although wildcard characters are usually denoted with ‘?’, we use ⊥ to differentiate

from compilation errors - the LATEX equivalent of wildcard characters.
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matching, or the basic local alignment search tool (BLAST) [AGM+90] in com-
putational biology.

We consider our problem in the streaming model, where we process the
input in sequential order and sublinear space. However in practice, some of
the data may be erased or corrupted beyond repair, resulting in symbols
that we cannot read, ‘⊥’. As a consequence, we attempt to perform pattern
matching with optimistic assignments to these values. This motivation has
resulted in a number of literature on string algorithms with wildcard charac-
ters [MR95,Ind98,CH02,Kal02,CC07,HR14,LNV14,GKP16].

One possible approach to our problem is to generalize the exact periodicity
problem, for which [EJS10] give a two-pass streaming algorithm for finding the
smallest exact period of a string of length n that uses O

(
log2 n

)
-space and

O (log n) time per arriving symbol. Their results can be easily generalized to an
algorithm for finding the wildcard-period of strings using O

(
log2 n

)
-space, but at

a cost of O
(
|Σ|k

)
post-processing time, which is often undesirable. More recently,

[EGSZ17] study the problem of k-periodicity, where a string is permitted to have
up to k permanent changes. The authors give a two-pass streaming algorithm
that uses O

(
k4 log9 n

)
bits of space and runs in O

(
k2 polylog n

)
amortized time

per arriving symbol. This algorithm can be modified to recover the wildcard-
period. We show how to do this more efficiently in Theorem 6.

1.1 Our Contributions

The challenge of determining periodicity in the presence of wildcard characters
can first be approached by working toward an understanding of specific structural
properties of strings with wildcard characters. We show in Lemma2 that the
number of possible assignments to the wildcard characters over all periods is
“small”. This allows us to compress our data into sublinear space. In this paper,
given a string S with at most k wildcard characters, we show:

(1) a two-pass randomized streaming algorithm that computes all wildcard-
periods of S using O

(
k3 polylog n

)
space, regardless of period length, running

in O
(
k2 polylog n

)
amortized time per arriving symbol,

(2) a one-pass randomized streaming algorithm that computes all wildcard-
periods p of S with p < n

2 and no wildcard characters appearing in the
last p symbols of S, using O

(
k3 polylog n

)
space, running in O

(
k2 polylog n

)

amortized time per arriving symbol (see the full version of the paper in
[EGSZ18]),

(3) a lower bound that any one-pass streaming algorithm that computes all
wildcard-periods of S requires Ω(n) space even when randomization is
allowed,

(4) a lower bound that, for k = o(
√

n) with k > 2, any one-pass randomized
streaming algorithm that computes all wildcard-periods of S with probabil-
ity at least 1− 1

n requires Ω(k log n) space, even under the promise that the
wildcard-periods are at most n/2.
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We remark that our algorithm can be easily modified to return the smallest,
largest, or any desired wildcard-period of S. Finally, we note in the full version
of the paper in [EGSZ18] several results in the related problem of determining
distance to p-periodicity. We give an overview of our techniques in Sect. 2.

1.2 Related Work

The study of periodicity in data streams was initiated in [EJS10], in which the
authors give an algorithm that detlects the period of a string, using polylog n
bits of space. Independently, [BG11] gives a similar result with improved running
time. Also, [EAE06] studies mining periodic patterns in streams, and [CM11]
studies periodicity via linear sketches, [IKM00] studies periodicity in time-series
databases and online data. [EMS10,LN11] study the problem of distinguishing
periodic strings from aperiodic ones in the property testing model of sublinear-
time computation. Furthermore, [AEL10] studies approximate periodicity in the
RAM model under the Hamming and swap distance metrics.

The pattern matching literature is a vast area (see [AG97] for a survey)
with many variants. In the data stream model, [PP09,CFP+16] study exact and
approximate variants in offline and online settings. We use the sketches from
[CFP+16] though there are some other works [AGMP13,CEPR09,RS17,PL07]
with different sketches for strings. [CJPS13] also show several lower bounds for
online pattern matching problem.

Strings with wildcard characters have been extensively studied in the offline
model, usually called “partial words”. Blanchet-Sadri [Bla08] presents a number
of combinatorial properties on partial words, including a large section devoted
to periodicity. Notably, [BMRW12] gives algorithms for determining the period-
icity for partial words. Manea et al. [MMT14] improves these results, presenting
efficient time offline algorithms for determining periodicity on partial words,
minimizing either total time or update time per symbol.

Golan et al. [GKP16] study the pattern matching problem with a small
number of wildcards in the streaming model. Prior to this work, several
works had studied other aspects of pattern matching under wildcards (See
[CH02,CC07,HR14,LNV14]).

Many ideas used in these sublinear algorithms stem from related work in the
classical offline model. The well-known KMP algorithm [KMP77] initially used
periodic structures to search for patterns within a text. Galil et al. [GS83] later
improved the space performance of this pattern matching algorithm. Recently,
[Gaw13] also used the properties of periodic strings for pattern matching when
the strings are compressed. These interesting properties have allowed several
algorithms to satisfy some non-trivial requirements of respective models (see
[GKP16,CFP+15] for example).

1.3 Preliminaries

Given an input stream S[1, . . . , n] of length |S| = n over some alphabet Σ, we
denote the ith character of S by S[i], and the substring between locations i and
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j (inclusive) S[i, j]. We say that two strings S, T ∈ Σn have a mismatch at index
i if S[i] �= T [i]. Then the Hamming distance is the number of such mismatches,
denoted Δ (S, T ) =

∣
∣
∣{i | S[i] �= T [i]}

∣
∣
∣. We denote the concatenation of S and

T by S ◦ T . We denote the greatest common divisor of two integers x and y by
gcd (x, y).

Multiple standard and equivalent definitions of periodicity are often used
interchangeably. We say S has period p if S = B�B′ where B is a block of length
p that appears � ≥ 1 times in a row, and B′ is a prefix of B. For instance,
abcdabcdab has period 4 where B = abcd, and B′ = ab. Equivalently, S[x] =
S[x + p] for all 1 ≤ x ≤ n − p. Similarly, the following definition is also used for
periodicity.

Definition 1. We say string S has period p if the length n − p prefix of S is
identical to its length n − p suffix, S[1, n − p] = S[p + 1, n].

More generally, we say S has k-period p (i.e., S has period p with k mis-
matches) if S[x] = S[x + p] for all but at most k (valid) indices x. Equivalently,
the following definition is also used for k-periodicity.

Definition 2. We say string S has k-period p if Δ (S[1, n − p], S[p + 1, n]) ≤ k.

The definition of k-periodicity lends itself to the following observation.

Observation 1. If p is a k-period of S, then at most k substrings in the sequence
of substrings S[1, p], S[p + 1, 2p], S[2p + 1, 3p], . . . can differ from the preceding
substring in the sequence.

Finally, we use the following definition of wildcard-periodicity:

Definition 3. We say that a string S has wildcard-period p if there exists an
assignment to the wildcard characters, so that S[1, n − p] = S[p + 1, n] (i.e., the
resulting string has period p. See Example 1).

Note that the determinism of the assignments of the characters is very important,
as evidenced by Example 2.

Example 2. Consider the string S = aaa⊥bbb. To check whether S has wildcard-
period 1, we must compare S[1, n − 1] = aaa⊥bb and S[2, n] = aa⊥bbb. At first
glance, one might think assigning the character ‘b’ to the wildcard in the prefix
S[1, n − 1] and an ‘a’ in the suffix S[2, n] will make the prefix and the suffix
identical. However, this is not a legal move; there is not a single character that
the wildcard can be replaced with that makes the above prefix and the suffix the
same. Thus, S does not have a wildcard-period of 1.

The following example emphasizes the difference between k-periodicity and
wildcard-periodicity:

Example 3. For k = 1, the string S = aaaaabbbbb has k-period p = 1. However,
to obtain wildcard-period p = 1, at least five characters in S must be changed
to wildcards (for example, all of the characters ‘a’ or ‘b’).
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Therefore, k-periodicity is a good notion for capturing periodicity with respect
to long-term, persistent changes, while wildcard-periodicity is a good notion for
capturing periodicity against a number of symbols that are errors or erasures.

We shall require data structures and subroutines that allow comparing of
strings with mismatches. The below useful fingerprinting algorithm utilizes Karp-
Rabin fingerprints [KR87] to obtain general and important properties:

Theorem 2 [KR87]. Given two strings S and T of length n, there exists a
polynomial encoding that uses O (log n) bits of space, and outputs whether S = T
or S �= T . Moreover, this encoding supports concatenation of strings and can be
done in the streaming setting.

From here, we use the term fingerprint to refer to this data structure. We will
also need use an algorithm for pattern matching with mismatches, which we call
the k-mismatch algorithm.

Theorem 3 [CFP+16]. Given a string S and an index x, there exists
an algorithm which, with probability 1 − 1

n2 , outputs all indices i where
Δ (S[1, x], S[i + 1, i + x]) ≤ k using O

(
k2 log8 n

)
bits of space. Moreover, the

algorithm runs in O
(
k2 polylog n

)
amortized time per arriving symbol.

Concurrent with our work, Clifford et al. [CKP17] provide a nearly-optimal
solution to the k-mismatch algorithm, which can potentially be used in the
framework of [EGSZ17] to immediately improve over the existing k-periodicity
algorithms.

2 Our Approach

To find all the wildcard-periods of S, during our first pass we determine a set T of
candidate wildcard-periods, similar to the approach in [EGSZ17], that includes
all the true wildcard-periods. We also determine a set W of positions of the
wildcard characters. By a structural result (Lemma 2), we can then use the
second pass to verify the candidates and identify the true wildcard-periods.

Pattern matching and periodicity seem to have a symbiotic relationship (for
example, exact pattern matching and exact periodicity use each other as sub-
routines [KMP77,EJS10], as do k-mismatch pattern matching [CFP+16] and
k-periodicity [EGSZ17]). It feels tempting and natural to try to apply the algo-
rithm from [GKP16] for pattern matching with wildcards. Unfortunately, there
does not seem to be an immediate way of doing this: the [GKP16] algorithm
searches for a wildcard-free pattern in text containing up to k wildcards, while
we would like to allow wildcards in the pattern and the text. We instead choose
to use the k-mismatch algorithm from [CFP+16] in the first pass and obtain
new structural results about possible assignments to the wildcard characters in
the second pass.

In the first pass, we treat wildcards simply as an additional character. We
let T be the set of indices (candidate periods) π that satisfy

Δ (S[1, x], S[π + 1, π + x]) ≤ 2k,
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for some appropriate value of x that we specify later. Note that each wildcard
character can cause up to two mismatches; thus, all true wildcard-periods must
satisfy the above inequality. We show that T can be easily compressed, even
though it may contain a linear number of candidates. Specifically, we can suc-
cinctly represent T by adding a few additional “false candidates” into T .

If the correct assignments of the wildcards were known a priori, then the
problem would reduce to determining exact periodicity. Unfortunately, we do not
know the correct assignments to the wildcard characters prior to the data stream,
so most of the difficulty lies in the guessing of assignments, bounding the total
number of assignments, and storing these assignments. Thus, the main differ-
ence between wildcard-periodicity and both exact periodicity and k-periodicity
is the process of verifying candidates. Whereas exact and k-periodicity can be
verified by comparing the number of mismatches between the prefix and suf-
fix of length n − p, wildcard-periodicity is sensitive to the correct assignments
of the wildcards. We address this challenge by noting W, the positions of the
wildcard characters in the first pass. Since we also have the list of candidate
wildcard-periods following the first pass, we can guess the assignments of the
wildcard characters in the second pass by looking at the characters in a few
select locations, as in Example 4.

Example 4. The string S = ababa⊥ab has wildcard-period p = 2. The assign-
ment of the wildcard at position i = 6 must be the characters at positions i ± p.
Note that S[i + p] = S[8] = b and S[i − p] = S[4] = b.

From Example 4, we observe the following:

Observation 4. If S has wildcard-period p and a wildcard character is known
to be at position i, then the assignment of the wildcard must be the character
S[i ± ap], for some integer a, that is not a wildcard.

We show how to use Observation 4 and the compressed version of T in the second
pass to verify the candidates and output the true wildcard-periods of S.

We note that recent algorithmic improvements to the k-mismatch problem
[CKP17] use O

(
k log2 n

)
space. Using this algorithm in place of Theorem3 as

a subroutine in our algorithms improves the space usage to O
(
k3 log3 n

)
bits in

the two-pass algorithm.

3 Two-Pass Algorithm to Compute Wildcard-Periods

In this section, we provide a two-pass, O
(
k3 log9 n

)
-space algorithm to output

all wildcard-periods of some string S containing at most k wildcard characters.
At a high level, we first identify a list of candidates of the periods of S, detected
via the k-mismatch algorithm of [CFP+16] as a black box. Although the number
of candidates could be linear, it turns out the string has enough structure that
the list of candidates can be succinctly expressed as the union of k arithmetic
progressions.
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However, this list of candidates is insufficient in identifying the possible
assignments to the wildcard characters. To address this issue, we explore the
structure of periods with wildcards in order to limit the possible assignments for
each wildcard character. Thus, the first pass also records W, the positions of all
wildcard characters so that during the second pass, we go over S as well as the
compressed data to verify the candidate periods.

We present two algorithms in parallel to find the periods, based on their
lengths. The first algorithm identifies all periods p with p ≤ n

2 , while the second
algorithm identifies all periods p with p > n

2 .

3.1 Computing Small Wildcard-Periods

In this section, we describe a two-pass algorithm for finding wildcard-periods
of length at most n/2. The first pass of the algorithm identifies a set T of
candidate wildcard-periods in terms of indices of S, and maintains its succinct
representation T C , which includes a number of additional indices. It also records
W, the positions of all wildcard characters. The second pass of the algorithm
recovers each index of T from T C and verifies whether or not the index is a
wildcard-period. We can find the assignments of the wildcard characters in the
second pass, by looking at the characters in a few locations that we determine
via W. We emphasize the following properties of T and T C :

(1) All wildcard-periods (possibly as well as additional candidate wildcard-
periods that are false positives) are in T .

(2) T C can be stored in sublinear space and T can be fully recovered from T C .
(3) In the second pass, we can verify and eliminate in sublinear space candidates

that are not true periods.

In the first pass, we treat the wildcard characters as a regular, additional
alphabet symbol. We observe that if string S with such wildcards has wildcard-
period p, there are at most 2k indices i such that S[i] �= S[i + p], caused by
the wildcard characters (the converse is not necessarily true). It follows that any
wildcard-period p must satisfy

Δ (S[1, x], S[p + 1, p + x]) ≤ 2k

for all x ≤ n−p, and specifically for x = n
2 . Thus, we set x = n

2 and refer to any
index p that satisfies Δ (S[1, x], S[p + 1, p + x]) ≤ 2k as a candidate wildcard-
period. The set of all candidate wildcard-periods forms the set T . Because
Δ (S[1, x], S[p + 1, p + x]) ≤ 2k is a necessary but not sufficient condition for
a wildcard-period p, Property 1 follows.

We give the first pass of the algorithm in full in Algorithm1.



Periodicity in Data Streams with Wildcards 97

Algorithm 1. (To determine any wildcard-period p with p ≤ n
2 ) First pass

Input: A stream S of n symbols si ∈ Σ ∪ {⊥} with at most k wildcard characters ⊥.
Output: A succinct representation of all candidate wildcard periods and the positions
of the wildcard characters.

1: initialize πj = −1 for each 0 ≤ j < 4k log n + 2.
2: initialize T C = ∅.
3: for each index i (found using the k-mismatch algorithm) such that

Δ
(
S

[
1,

n

2

]
, S

[
i + 1,

n

2
+ i

])
≤ 2k

do
4: consider j for which i is in the interval Hj =

[
jn

4(2k logn+1)
+ 1, (j+1)n

4(2k logn+1)

)
:

5: if there exists no candidate t ∈ T C in the interval Hj then
6: add i to T C .
7: else
8: let t be the smallest candidate in T C ∩ Hj and either πj = −1 or πj > 0.
9: if πj = −1 then

10: set πj = i − t.
11: else
12: set πj = gcd (πj , i − t).

13: record the positions W of all wildcard characters.

Here, we show why the remaining properties for T and T C are satisfied. Our
algorithm divides the candidates into O (k log n) ranges H1,H2, . . . , HO(k log n)

and stores the candidates in each range Hj =
[

jn
4(2k log n+1) + 1, (j+1)n

4(2k log n+1)

)
in

compressed form as an arithmetic series.
Since we use the k-mismatch algorithm in the first pass, we describe a struc-

tural property of the resulting list of candidates:

Theorem 5 [EGSZ17]. Let pi be a candidate k-period for a string S, with p1 <
p2 < . . . < pm all contained within Hj. Given the fingerprints of S[1, n − p1]
and S[p1 +1, n], we can determine whether or not S has k-period pi for any 1 ≤
i ≤ m by storing at most O

(
k2 log n

)
additional fingerprints. These fingerprints

represent substrings of the form S[p1 + aπj , p1 + (a + 1)πj − 1], where a > 0 is
an integer and πj = gcd (p2 − p1, p3 − p2, . . . , pm − pm−1).

The structural property can be visualized in Fig. 1. Even though the list of
candidates could be linear in size, Theorem 5 enforces a structure upon the list
of candidates, so that an arithmetic sequence with first term p1 and common
difference d includes all of p1, p2, . . . , pm. Thus, we can succinctly represent a
superset T C that contains T and Property 2 follows.

We now show that any wildcard period p is included among the list of can-
didates stored by Algorithm 1 during the first pass, and can be recovered from
the list.
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H1 H2

H3 H4

π1

π3

Fig. 1. The dots represent candidate wildcard-periods. For any interval that has more
than two dots, it follows that all dots are equally spaced after the first. The black dots
represent T while white dots are artificially inserted to form T , dots that follow an
arithmetic sequence.

Lemma 1. If p < n
2 is a period and p ∈ Hj, then p can be recovered from T C

and πj.

Proof. Suppose p ∈ Hj is a wildcard period. Then there exists an assignment
to the wildcard characters such that S[1, n − p] = S[p + 1, n]. It follows that for
i = p,

Δ
(
S

[
1,

n

2

]
, S

[
i + 1,

n

2
+ i

])
≤ 2k,

so the index i = p will be reported by the k-mismatch algorithm in the first pass.
If at that time during Pass 1 there is no other index in T C ∩ Hj , then p will

be inserted into T C , so p can clearly be recovered from T C . If there is another
index q in T C ∩Hj , then πj will be updated to be a divisor of p−q. Hence, p−q
is a multiple of πj . Furthermore, any future update to πj will result in a value
that divides the current value of πj , due to a greatest common divisor operation.
Thus, p − q will remain a multiple of the final value of πj , and so the set T at
the end of the first pass will contain p.

It remains to show that the list of candidate wildcard-periods can be verified in
sublinear space in the second pass (Property 3). To do this, we need a combina-
torial property for periodicity on strings with wildcard characters.

3.2 Verifying Candidates

Recall that after the first pass, the algorithm maintains O (k log n) succinctly
represented arithmetic progressions Hj , corresponding to the candidate wild-
card periods. The algorithm also maintains W, the list of positions of wildcard
characters in S. In the second pass, the algorithm must check, for each t ∈ Hj ,
0 ≤ j < 2k log n + 2, whether S[1, n − t] = S[t + 1, n] for an appropriate setting
of the wildcard characters. The challenge is computing the fingerprints of both
S[1, n−t] and S[t+1, n] in sublinear space, especially if the number of candidates
t is linear.

We first set a specific j and note that for the smallest candidate t ∈ Hj , there
are at most O

(
k2 log n

)
unique substrings S[t + 1, t + πj ], S[t + πj + 1, t + 2πj ],
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S[t + 2πj + 1, t + 3πj ], . . .. Since any other candidate r ∈ Hj satisfies r = t + aπj

for some integer a > 0, then S[t + 1, n] is the concatenation

S[t+1, t+πj ]◦S[t+πj +1, t+2πj ]◦ · · · ◦S[t+(a−1)πj +1, t+aπj ]◦S[r+1, n].

Thus, by storing O
(
k2 log n

)
fingerprints and positions, we can recover the fin-

gerprint of the substring S[r + 1, n] for each r ∈ Hj .
The second obstacle is handling wildcard characters in the computation of

the fingerprints of S[1, n − t] and S[t + 1, n]. To address this challenge, our
algorithm delays the calculation of the contribution of wildcard characters to
the fingerprints until we know the assignment of the wildcard character with
respect to a candidate period. We show that for a specific j, then there are at
most O

(
k2 log n

)
possible assignments for the wildcard character S[w] = S[w±t]

with respect to all candidates t ∈ Hj , across all w ∈ W, where W is the positions
of all wildcard characters recorded by Algorithm1. Therefore, we can compute
the assignment for each wildcard character with respect to a candidate period in
the second pass, and then compute the fingerprint of S[1, n − t] and S[t + 1, n].

Lemma 2. For a given j, t ∈ Hj and w ∈ W, let σt(w) denote the assignment
of S[w]. Then |{σt(w)}| = O

(
k2 log n

)
.

Proof. Let t be the smallest candidate in Hj and z be the largest candidate in
Hj so that z = t + aπj for some integer a > 0. We partition W into W1, the set
of indices greater than z, and W2, the set of indices no more than z. We consider
the wildcard characters wi ∈ W1, and note that the proof for W2 is symmetric.
Consider the O (k) sequences

S[w1 − t] S[w1 − t − πj ] · · · S[w1 − t − aπj ]
S[w2 − t] S[w2 − t − πj ] · · · S[w2 − t − aπj ]

...
...

. . .
...

S[w|W1| − t] S[w|W1| − t − πj ] · · · S[w|W1| − t − aπj ]

Each term in a sequence that differs from the previous term corresponds to a
mismatch between S[wi − t − πj + 1, wi − t], S[wi − t − 2πj + 1, wi − t − πj ],
S[w − t − 3πj + 1, w − t − 2πj ], . . .. For each j, there are at most O

(
k2 log n

)

unique chains of substrings with length πj beginning at index t + 1. Hence,
across all O (k) sequences S[wi − t], S[wi − t − πj ], S[wi − t − 2πj ], . . ., there
are at most O

(
k2 log n

)
unique characters. Since the assignment of S[wi] with

respect to any candidate r ∈ Hj is S[wi − r] = S[wi − t − bπj ] for some integer
b > 0, then it follows that there are at most O

(
k2 log n

)
assignments of S[w]

across all w ∈ W1. As the symmetric proof holds for W2, then there are at most
O

(
k2 log n

)
assignments of S[w] across all w ∈ W.
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Thus, deciding the assignment of S[wi] with respect to a candidate t ∈ Hj is
simple:

For each j such that 0 ≤ j < 4k log n + 2:
(1) Let t be the smallest candidate in Hj and z be the largest candidate in

Hj so that z = t + aπj for some a > 0.
(2) For each w ∈ W:

(a) If w > z, succinctly record the values of S[w − t], S[w − t − πj ], . . .,
S[w − t − aπj ].

(b) If w ≤ z, succinctly record the values of S[w + t], S[w + t + πj ], . . .,
S[w + t + aπj ].

Let r ∈ Hj so that r = t + bπj for some b > 0.
(3) The assignment of S[w] with respect to r is any S[w ± cr] that is not a

wildcard character (where c is an integer).

We describe the second pass in Algorithm 2, recalling that at the end of the
first pass, the algorithm records O (k log n) arithmetic progressions, succinctly
represented, as well as the positions of all wildcard characters.

Algorithm 2. (To determine any wildcard-period p with p ≤ n
2 ) Second pass

Input: A stream S of symbols si ∈ Σ with at most k wildcard characters, a succinct
representation of all candidate wildcard periods and the position of the wildcard char-
acters.
Output: All wildcard-periods p ≤ n

2
.

1: for each t such that t ∈ T C do
2: for each w such that w ∈ W, implicitly determine the value of S[w] with respect

to t.
3: let j be the integer for which t is in the interval Hj =[

jn
4(2k logn+1)

+ 1, (j+1)n
4(2k logn+1)

)

4: if πj > 0 then � Hj has multiple values in T C

5: record up to 128k2 log n + 1 unique fingerprints of length πj , starting from
t.

6: else � Hj has one value in T C

7: record up to 128k2 log n + 1 unique fingerprints of length t, starting from t.

8: check if S[1, n − t] = S[t + 1, n] and return t if this is true.

9: for each t which is in interval Hj =
[

jn
4(2k logn+1)

+ 1, (j+1)n
4(2k logn+1)

)
for some integer

j do
10: if there exists an index in T C ∩ Hj whose distance from t is a multiple of πj

then
11: check if S[1, n − t] = S[t + 1, n] and return t if this is true.

For each arithmetic progression, there are O
(
k2 log n

)
total possibilities for

all of the wildcard characters. Thus, the algorithm maintains the O
(
k3 log2 n

)

characters corresponding to the value of all wildcard characters across all can-
didate positions.
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We now show the ability to construct the fingerprints of S[1, n − p] for any
candidate period p.

Lemma 3. Let pi be a candidate k-period for a string S, with p1 < p2 < . . . <
pm all contained within Hj. Given the fingerprints of S[1, n−p1] and S[p1+1, n],
we can determine whether or not S has wildcard-period pi for any 1 ≤ i ≤ m by
storing at most O

(
k2 log n

)
additional fingerprints.

Proof. Consider a decomposition of S into substrings uj of length pi, so that
S = u1 ◦u2 ◦u3 ◦ . . .. Even though the algorithm does not record a fingerprint for
each uj , each index j for which uj �= uj+1 corresponds to at least one mismatch.
Since the first pass searched for positions that contained at most k mismatches,
then it follows from Observation 1 that there are O (k) indices j for which uj �=
uj+1. Thus, recording the fingerprints and locations of these indices j suffices
to build fingerprints for S, ignoring the wildcard characters. Then we can verify
whether or not pi is a wildcard-period of S if the assignment of the wildcard
characters with respect to pi is also known.

By Theorem 5, the greatest common divisor πj of the difference between
each pi in Hj is a O

(
k2 log n

)
-period. That is, S can be decomposed S = v ◦

v1 ◦ v2 ◦ v3 ◦ . . . so that v has length p1, and each subsequent substring vi

has length πj . Then there exist at most O
(
k2 log n

)
indices i for which vi �=

vi+1, by Observation 1. Ignoring wildcard characters, storing the fingerprints and
positions of these indices i allows the recovery of the fingerprint of S[1, n − pi]
from the fingerprint of S[1, n − pi−1], since pi − pi−1 is a multiple of πj . By
Lemma 2, we know the values of the wildcard characters with respect to pi.
Therefore, we can confirm whether or not pi is a wildcard-period.

We now show correctness of the algorithm.

Lemma 4. For any period p ≤ n
2 , the algorithm outputs p.

Proof. Since the intervals {Hj} cover
[
1, n

2

]
, then p ∈ Hj for some j. It follows

from Lemma 1 that after the first pass, p can be recovered from T and πj . Thus,
the second pass tests whether or not p is a wildcard-period. By Lemma 3, the
algorithm outputs p, as desired.

3.3 Computing Large Wildcard-Periods

As in Algorithm 1, we would like to identify candidate periods during the first
pass of the algorithm, while treating the wildcard characters as an additional
symbol in the alphabet. Unfortunately, if a wildcard-period p is greater than n

2 ,
then it no longer satisfies

Δ
(
S

[
1,

n

2

]
, S

[
p + 1, p +

n

2

])
≤ 2k,

since p + n
2 > n, and S

[
p + n

2

]
is undefined. However, by treating the wildcard

characters as an additional symbol, recall that Δ (S[1, x], S[p + 1, p + x]) ≤ 2k
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for all x ≤ n − p. Then we would like to use as large an x as possible while
still satisfying x ≤ n − p when choosing candidate wildcard periods p. To this
effect, the observation in [EJS10] states that we can try exponentially decreasing
values of x. Specifically, we run log n instances of the algorithm in succession,
with x = n

2 , n
4 , . . .. Note that one of these values of x is the largest value as

possible while still satisfying x ≤ n−p. As a result, the corresponding algorithm
instance outputs p, while the other instances do not output anything. We detail
the first pass in full in the full version of the paper in [EGSZ18].

This partition of [1, n] into the disjoint intervals
[
1, n

2

]
,
[

n
2 + 1, n

2 + n
4

]
, . . .

guarantees that any k-period p is contained in one of these intervals. Moreover,
the intervals {H

(r)
j } partition

[n

2
+

n

4
+ . . . +

n

2r−1
,
n

2
+ . . . +

n

2r

]
,

and so p can be recovered from T C
r and {π

(r)
j }. We present the second pass in

the full version of the paper in [EGSZ18].
Since correctness follows from the same arguments as the case where p ≤ n

2 ,
it remains to analyze the space complexity of our algorithm.

Theorem 6. There exists a two-pass randomized algorithm using O
(
k3 log9 n

)

bits of space that finds the wildcard-period and runs in O
(
k2 polylog n

)
amortized

time per arriving symbol.

Proof. In the first pass, for each Tm, we maintain a k-mismatch algorithm which
requires O

(
k2 log8 n

)
bits of space, as in Theorem 3. Since 1 ≤ m ≤ log n, we

use O
(
k2 log9 n

)
bits of space in total in the first pass.

In the second pass, we maintain O
(
k2 log n

)
fingerprints for any set of indices

in Tm, and there are O (k log n) indices in Tm for each 1 ≤ m ≤ log n, for a total
of O

(
k3 log3 n

)
bits of space. In addition, we store the O

(
k2 log n

)
assignments

for all the wildcard positions in each interval H
(r)
j , where 1 ≤ r ≤ log n and

0 ≤ j < 2k log n + 2. Thus, O
(
k3 log9 n

)
bits of space suffice for both passes.

The running time of the algorithm is dominated by the time spent for log n
parallel copies of k-mismatch algorithm in the first pass. From Theorem3, the k-
mismatch algorithm runs in O

(
k2 polylog n

)
amortized time per arriving symbol.

The rest of the algorithm consists of simple tasks like computing gcd and can
be performed very quickly. In the second pass, in total at most O

(
k3 polylog n

)

assignments are determined and stored. Thus, the second pass runs in O (1)
amortized time per arriving symbol.

4 Lower Bounds

We first note that [EJS10] shows computing the period of a string in one-pass
requires Ω(n) space. Since the problem of periodicity for strings containing wild-
cards is a generalization of exact periodicity, the same lower bound applies.
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Theorem 7 (Implied from Theorem 3 from [EJS10] and Theorem 16
from [EGSZ17]). Given a string S with at most k wildcard characters, any
one-pass streaming algorithm that computes the smallest wildcard-period requires
Ω(n) space.

To show a lower bound that randomized streaming algorithm that computes
all wildcard-periods of S with probability at least 1− 1

n , even under the promise
that the wildcard-periods are at most n/2, consider the following construction.
Define an infinite string 110112021303 . . ., as in [GMSU16], and let ν be the prefix
of length n

4 . Define X to be the set of binary strings of length n
4 with Hamming

distance k
2 from ν. For x ∈ X, let Yx be the set of binary strings of length n

4

with either Δ (x, y) = k
2 or Δ (x, y) = k

2 + 1. Pick (x, y) uniformly at random
from (X,Yx). Then Theorem 17 in [EGSZ17] shows a lower bound on the size of
the sketches necessary to determine whether Δ (x, y) = k

2 or Δ (x, y) = k
2 + 1.

Theorem 8 [EGSZ17]. Any sketching function S that determines whether
Δ (x, y) = k

2 or Δ (x, y) > k
2 from S(x) and S(y), with probability at least 1 − 1

n
for k = o(

√
n), uses Ω(k log n) space.

Suppose Alice has y, along with the locations of the first k
2 positions i in which

y[i] �= x[i]. Alice replaces these locations with wildcard characters ⊥, runs the
wildcard-period algorithm, and forwards the state of the algorithm to Bob, who
has x. Bob then continues running the algorithm on x ◦ x ◦ x to determine the
wildcard-period of the string S(x, y) = y ◦ x ◦ x ◦ x. Observe that:

Lemma 5. If Δ (x, y) = k
2 , then the string S(x, y) = y ◦ x ◦ x ◦ x has period n

4 .
On the other hand, if Δ (x, y) = k

2 + 1, then S(x, y) has period greater than n
4 .

Combining Theorem 8 and Lemma 5:

Theorem 9. For k = o(
√

n) with k > 2, any one-pass randomized streaming
algorithm that computes all wildcard-periods of an input string S with probability
at least 1− 1

n requires Ω(k log n) space, even under the promise that the wildcard-
periods are at most n

2 .
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Abstract. In this paper, we study the problem of finding a maximum
colorful cycle a vertex-colored graph. Specifically, given a graph with
colored vertices, the goal is to find a cycle containing the maximum
number of colors. We aim to give a dichotomy overview on the complexity
of the problem. We first show that the problem is NP-hard even for
simple graphs such as split graphs, biconnected graphs, interval graphs.
Then we provide polynomial-time algorithms for classes of vertex-colored
threshold graphs and vertex-colored bipartite chain graphs, which are our
main contributions.

1 Introduction

In this paper we deal with vertex-colored graphs, which are useful in various
situations. For instance, the Web graph may be considered as a vertex-colored
graph where the color of a vertex represents the content of the corresponding
page (red for mathematics, yellow for physics, etc.) [4]. In a biological population,
vertex-colored graphs can be used to represent the connections and interactions
between species where different species have different colors. Other applications
of vertex-colored graphs can also be found in bioinformatics (Multiple Sequence
Alignment Pipeline or for multiple Protein-Protein Interaction networks) [7], or
in a number of scheduling problems [15].

Given a vertex-colored graph, a tropical subgraph is a subgraph where each
color of the initial graph appears at least once. Many graph properties, such as
the domination number, the vertex cover number, independent sets, connected
components, paths, matchings etc. can be studied in their tropical version. Find-
ing a tropical subgraph in a (biological) population is to look for a subgraph
which fully represents the (bio-)diversity of the population. In this paper, we
consider a more general question of finding a maximum colorful subgraph which
is a subgraph with maximum number of colors. Given a vertex-colored graph and
some property of a subgraph (for example, paths, cycles, connected components),
it could be that the tropical subgraph with the given property does not exist.
Hence, one can ask the question of finding a subgraph with the most diverse
c© Springer International Publishing AG, part of Springer Nature 2018
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population. Clearly, a maximum colorful subgraph is tropical if it contains all
colors.

This notion of colorful subgraph is close to, but somewhat different from
the colorful concept considered in [1,12,13], where neighbor vertices must have
different colors. It is also related to the concepts of color patterns or colorful
used in bio-informatics [8]. Note that in a colorful subgraph considered in our
paper, two adjacent vertices may have the same color. In this paper, we study
maximum colorful cycles in vertex-colored graphs.

Throughout the paper, we let G = (V,E) denote a simple undirected graph.
Given a set of colors C, Gc = (V,E) denotes a vertex-colored graph whose vertices
are (not necessarily properly) colored by one of the colors in C. The number of
colors of Gc is |C|. Given a subset of vertices U ⊂ V , the set of colors of vertices
in U is denoted by C(U). Moreover, we denote the color of the vertex v by c(v)
and denote the number of vertices of U whose colors is c by v(U, c). The set of
neighbors of v is denoted by N(v). In this paper, we study the following problem:

Maximum Colorful Cycle Problem (MCCP). Given a vertex-colored graph Gc =
(V,E), find a simple cycle with the maximum number of colors of Gc.

Related work. In the special case where each vertex has a distinct color, MCCP
reduces to the Hamiltonian cycle problem. The Hamiltonian cycle problem has
been widely studied in the literature and it is well known that this problem is
NP-complete even for specific classes of graphs such as for undirected planar
graphs of maximum degree three [10], for 3-connected 3-regular bipartite graphs
[2], etc. However, the Hamiltonian cycle problem can be solved in time O(m + n)
for proper interval graphs [3,11].

If a graph Gc is Hamiltonian then it must contain a tropical cycle (which is
a maximum colorful cycle) since the set of vertices must contain all colors. The
problem of finding a longest cycle has been also studied and this problem can be
used to solve the Hamiltonian cycle problem (and thus it is NP-hard). However,
for some classes of graphs, there exist polynomial time algorithms for finding the
longest cycle in threshold graphs [14], and in bipartite chain graphs [17]. Note
that a longest cycle does not necessarily contain the maximum number of colors.
However, in our paper, we take advantage of those algorithms to construct a
Hamiltonian cycle for a given set of candidate vertices of a maximum colorful
cycle.

The tropical subgraph and maximum colorful subgraph problems in vertex-
colored graphs have been studied recently. The tropical subgraph problems in
vertex-colored graphs such as tropical connected subgraphs, tropical independent
sets have been investigated in [9]. Recently, the maximum colorful matching
problem [5] and the maximum colorful path problem [6] have been studied, and
several hardness results and polynomial-time algorithms were shown for different
classes of graphs.

Our contributions. In this paper, we aim to give dichotomy overview on the
complexity of MCCP. First, we prove that MCCP is NP-hard even for split
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graphs, interval graphs and biconnected graphs. Next, we present polynomial-
time algorithms for several classes of graphs. First, we show that the MCCP
is polynomial for proper interval graphs and split complete graphs. Although
those algorithms are not complicated, they provide a sharp separation in term
of complexity for interval and split graphs.

Our main contributions are polynomial-time algorithms for threshold graphs
and bipartite chain graphs. A graph G is a threshold graph if it is constructed
from the repetition of two operations: (1) adding an isolated vertex to the current
graph, or (2) adding a dominating vertex to the current graph, i.e.,. one vertex
connected to all vertices added earlier. A bipartite chain graph G(X ∪ Y,E)
is a bipartite graph in which vertices in X can be linearly ordered such that
N(x1) ⊇ N(x2) ⊇ . . . ⊇ N(x|X|). In our approach for both threshold and bipar-
tite chain graphs, we develop connections between maximum colorful cycles and
maximum colorful matchings and derive structural properties of maximum col-
orful cycles. Those properties enable us to identify a small set of candidate
vertices for maximum tropical cycles. Subsequently, using longest cycle algo-
rithms [14,17], on these vertices, we can efficiently compute the corresponding
maximum tropical cycles for MCCP. The running times of our algorithms are
O(max{|C| · M(m,n)), n(n + m)}) and O(|C| · max{M(m,n), n3}) for threshold
graphs and for bipartite graphs respectively, where |C| is the total number of col-
ors and M(m,n) is the running time for finding a maximum matching in a general
graph with m edges and n vertices. (It is known that M(m,n) = O(

√
nm) [16].)

Due to space limit, some results are put in the appendix.

2 Hardness Results for MCCP

Theorem 1. MCCP is NP-hard for interval graphs and biconnected graphs.

Proof. We reduce from the SAT problem. Consider a boolean CNF formula B
with variables X = {x1, . . . , xs} and clauses B = {b1, . . . , bt}. We construct the
following graph. Suppose that ∀1 ≤ i ≤ s, the variable xi appears in clauses
bi1, bi2, . . . , biαi

and xi appears in clauses b′
i1, b

′
i2, . . . , b

′
iβi

in which bij ∈ B and
b′
ik ∈ B. An intersection model for our graph is constructed as follows. On the

real line, we create (s + 1) intervals v1, v2, . . . , vs+1 such that vi intersects only
vi−1 and vi+1 (1 ≤ i ≤ s − 1). Next for each variable xi of X (1 ≤ i ≤ s),
we create αi same intervals bi1, bi2, . . . , biαi

such that these intervals intersect
pairwise each other and intersect only vi and vi+1 among other vertices vj .
Similarly, for each xi, βi same intervals b′

i1, b
′
i2, . . . , b

′
iβi

are drawn such that
they intersect pairwise each other and intersect only vi and vi+1. Additionally,
we create one special interval v0 such that v0 intersects with all other intervals,
except for the intervals b1j and b′

1j(0 ≤ j ≤ b1α1 , b
′
1β1

). Note that this graph is
both interval and biconnected.

From this intersection model, we obtain the corresponding interval graph and
give colors as follows. Every vertex corresponding to the clause bl has the same
color cl. Observe that vertices bi1, bi2, . . . , biαi

make a clique in Gc, similarly for
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vertices b′
i1, b

′
i2, . . . , b

′
iβi

. For the vertex vi, we use the color c′
i such that all colors

c′
i are distinct and different from the colors cl. See an illustration in Fig. 1.

Now we claim that there exists a truth assignment to the variables of B
satisfying all clauses if and only if Gc contains a cycle with all colors.

v1

v2

v3

v4
b12

b13

b1α1

x1 x1

b′
11

b′
12

b′
1β1

b21

b22

b2α2

x2 x2

b′
21

b′
22

b′
2β2

b11

v0

vs+1

v2 v3 vs vs+1v1

x1

x1 x2 xs

x2 xs

v0

Fig. 1. Reduction of the SAT problem to MCCP for interval graphs. (Color figure
online)

Now from a truth assignment B with all satisfied clauses, it is possible to
obtain a cycle with all colors as follows. We start with the edge (v0, v1). Then,
to go from vi to vi+1, 1 ≤ i ≤ s, in the case that the variable xi is assigned
true then we select the sub-path (vi → bi1 → bi2 → . . . → biαi

→ vi+1) into the
final path. Otherwise, i.e., xi is assigned as false, then the sub-path (vi → b′

i1 →
b′
i2 → . . . → b′

iβi
→ vi+1) is selected. Finally, the edge (vs+1, v0) is added. It is

clear that we obtain a cycle with all colors of Gc.
Conversely, from a cycle K containing all colors Gc, we obtain an assignment

with all satisfied clauses as follows. Observe first that all vertices vi must be in
K since their colors are distinct. Since v0, v1, v2 are in K and v0 is not connected
to any b1j or b′

1j(0 ≤ j ≤ b1α1 , b
′
1β1

), so we must have that the edge (v0, v1) must
be in K (otherwise, both v0 and v1 can not be in K together). Note that in the
case that v0 is directly connected to any vi or bij or b′

ik (2 ≤ i ≤ s) then both
v1 and vs+1 can not be in K together. Thus v0 must be connected to v1 and
vs+1 in K. Now, for each 1 ≤ i ≤ s, K must go from vi to vi+1. In the case K
goes from vi to vi+1 through one path at the side of xi then we assign the value
true for xi, if the side of xi is used then false is assigned for xi, otherwise (the
edge (vi, vi+1) is in K) we assign arbitrarily true or false for xi. Clearly this
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assignment is consistent for each xi . Since except for all the colors of vi then all
colors of clauses of B must be in K, we obtain that this assignment satisfies all
clauses of B. This completes our proof. 
�

3 An Algorithm for MCCP in Threshold Graphs

Recall that a graph G is a threshold graph if it is constructed from the repetition
of two operations: (1) adding an isolated vertex to the current graph, or (2)
adding a dominating vertex to the current graph, i.e., one vertex connected to
all vertices added earlier. In the following, we denote vertices of type (1) as
isolated vertices and vertices of type (2) as dominating vertices. Let Gc be a
vertex-colored threshold graph. Without loss of generality, we can assume that
the last added vertex v to Gc is a dominating vertex (otherwise v would be an
isolated vertex and it would not appear in a maximum colorful cycle, unless
we are in the trivial case where the maximum colorful cycle has size one). By
this assumption, Gc is connected. It follows from the construction of threshold
graphs that any edge must contain at least one dominating vertex and any two
dominating vertices must be connected to each other.

We denote by X the set of dominating vertices of Gc, and by Y the set of
isolated vertices of Gc. The set of vertices V (Gc) is denoted by {v1, v2, . . . , vm},
in the order in which they were added to Gc. We also denote the number of
colors of any maximum colorful cycle and of any maximum colorful matching
in a vertex-colored threshold graph Gc respectively by Cc and by Cm. Recall
that Cm can be computed by the algorithm in [5]. In this section we first study
the structural properties of maximum colorful cycles and develop connections
between maximum colorful cycles and maximum colorful matchings. Next, we
will use those properties to design an efficient algorithm for finding a maximum
colorful cycle.

Lemma 1. Let Gc be a vertex-colored threshold graph. Then Cm − 1 ≤ Cc ≤
Cm + 1.

Proof. We first show that Cc ≥ Cm −1. Let M be a maximum colorful matching
in Gc with Cm different colors. Note that |M | is at least Cm. Since each edge must
contain at least one dominating vertex, choose one dominating vertex from each
edge of M : denote those vertices by x1, x2, . . . , x|M |, such that xj was added
earlier than xj+1, for 1 ≤ j ≤ |M | − 1. Let zj be the neighbor of xj in the
matching M , for 1 ≤ j ≤ |M |. Note that zj can be an isolated vertex or a
dominating vertex. By the order of x-vertices, N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(x|M |).
Thus, (xj , zj−1) must be an edge in E(Gc), for 1 ≤ j ≤ |M |. As a result,
C ′ = (x1, z1, x2, z2, . . . , x|M |−1, z|M |−1, x|M |, x1) is a cycle containing all vertices
in M , except for z|M |. The number of colors in the cycle C ′ is at least Cm − 1
since we remove z|M |, and thus Cc ≥ Cm − 1.

Next, suppose by contradiction that Cc ≥ Cm + 2. Let K = (vi1 , vi2 , . . . ,
vik

, vi1) be a cycle with Cc colors. Let k = 2t if k is even and k = 2t + 1
if k is odd. Now, the matching M = {(vi1 , vi2), (vi3 , vi4), . . . , (vi2t−1 , vi2t

)} has
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|C(M)| ≥ Cm + 1 colors, a contradiction. Thus Cc ≤ Cm + 1 and this completes
our proof. 
�

The following observation allows us to reduce the search space for isolated
vertices of maximum colorful cycles:

Lemma 2. Any maximum colorful cycle can be reduced to another maximum
colorful cycle in which any isolated vertex has a color different from the colors
of other vertices.

By Lemma 2, we can restrict our attention only to maximum colorful cycles
where each isolated vertex has a distinct color. We now introduce some new
terminology. Let C1 := C(Y )\C(X) = {c11, c12, . . . , c1k1} be the colors in Y
but not in X. Denote C2 := C(X) = {c21, c22, . . . , c2k2} the set of colors in
X. By these definitions, the numbers of colors in C1 and C2 are k1 and k2,
respectively. For each color c1i in C1, let min[c1i] be the index of the first vertex
in Y with color ci, i.e., c(vmin[c1i]) = c1i and c(vj) �= c1i for every vj ∈ Y
with j < min[c1i]. Without loss of generality, suppose that 1 < min[c11] <
min[c12] < . . . < min[c1k1 ]. Similarly, for each color c2i in C2, let max[c2i] be
the index of the last vertex in X such that c(vmax[c2i]) = c2i and c(vj) �= c2i

for every vj ∈ X with j > max[c2i]. Without loss of generality, suppose that
max[c21] > max[c22] > . . . > max[c2k2 ]. Moreover, for each maximum colorful
cycle K, let XK and YK be the sets of dominating vertices and isolated vertices
in K, respectively, and let us denote their sets of colors by C(XK) and C(YK).

We now consider three different cases, depending on whether Cc = Cm + 1,
Cc = Cm or Cc = Cm − 1.

3.1 Case 1: Cc = Cm + 1

Lemma 3. Suppose that Cc = Cm + 1, then any maximum colorful cycle must
contain all colors of the given graph Gc.

Case 1.1: There exists a maximum colorful cycle K with some edge connecting
two dominating vertices.

Lemma 4. There exists another maximum colorful cycle K ′ whose set of ver-
tices V (K ′) = V (X) ∪ {vmin[c11], vmin[c12], . . . , vmin[c1k1 ]

}.
Proof. Let (u, v) be an edge of K such that both u and v are dominating vertices.
Recall that any two dominating vertices are connected to each other. There-
fore in the case that there exists some dominating vertices which are not in
K then we can include them into K by adding into K a path from u to v
containing all these dominating vertices and remove the edge (u, v) from K.
By doing so it is possible to obtain another maximum colorful cycle K ′ con-
taining the set V (X). Now since K ′ contains all colors of the original graph
(by Lemma 3) and each isolated vertex of K ′ (also K) has distinct color (by
Lemma 2), we obtain that all colors of C1 must appears exactly once in K ′
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and the number of isolated vertices of K ′ is equal to k1. Now observe that
for any two isolated vertices w and t such that w was added earlier than t in
Gc then N(w) ⊇ N(t). This allows to replace all isolated vertices of K ′ with
distinct colors by the set of vertices {vmin[c11], vmin[c12], . . . , vmin[c1k1 ]

}. So it is
possible to obtain another maximum colorful cycle K ′ with its set of vertices as
V (X) ∪ {vmin[c11], vmin[c12], . . . , vmin[c1k1 ]

}. 
�
Case 1.2: For any maximum colorful cycle, there is no edge of this cycle that
connects two dominating vertices.

For each isolated vertex v, let X+(v) and X−(v) be the sets of dominating
vertices added to Gc after and before v, respectively. Similarly, let Y +(v) and
Y −(v) be the sets of isolated vertices added after and before v, respectively. Our
maximum colorful cycle in this case will use a special vertex to reduce.

Lemma 5. There exists exactly one isolated vertex v∗ such that

|X+(v∗)| + |C(X+(v∗))| = Cm + 1

Moreover, the set of dominating vertices XK = X+(v∗) and the number of iso-
lated vertices |YK | = |X+(v∗)|.
Proof. If we consider isolated vertices v in the order of the construction of the
threshold graph Gc then the value of the sum |X+(v)| + |C(X+(v))| will strictly
decrease. Thus there exists at most one isolated vertex v∗ satisfying the lemma
equality.

In the remainder of the proof, we will show the existence of such vertex v∗.
Let v be the first isolated vertex in K (in the order of the construction of the
threshold graph Gc). We will prove that v is v∗.

We claim that all vertices of X+(v) are in K and no vertex of X−(v) is in K.

X+(v) ⊂ K. Assume that there exists a dominating vertex u ∈ X+(v) and u is
not in K. As u was added after v, u is connected with v by an edge. Let w be
a neighbor of v on K. Since v is an isolated vertex we must have that w is a
dominating vertex. Now we remove the edge (v, w) from K and add two edges
(v, u) and (u,w) on K then one obtains another maximum colorful cycle in
which the edge (u,w) connects two dominating vertices (contradiction to the
assumption of Case 1.2). Thus u must be in K.

X−(v) ∩ K = ∅. Assume that there exists a dominating vertex t ∈ X−(v) and t
is also in K. Let z be a neighbor of t in K then z must be an isolated vertex.
Therefore, z must be added earlier than t (by the construction of threshold
graphs). Thus z must be added earlier than v, a contradiction since v is the
first isolated vertex in K. So t must not be in K.

Hence, the claim follows.
By the claim, we have XK = X+(v). As there is no edge of K connecting

two dominating vertices, each edge must have an endpoint as dominating vertex
and another endpoint as isolated vertex. So |XK | = |YK |. From that the number
of isolated vertices of K (i.e. |YK |) is equal to |X+(v)|.
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By Lemma 2, each isolated vertex in this cycle has a distinct color, so the
number of colors of all isolated vertices in K is |X+(v)|. Moreover, the number
of colors of all dominating vertices of K is |C(X+(v))|. Therefore we obtain
that |X+(v)| + |C(X+(v))| equals the number of colors in K, which is Cc =
Cm + 1 by the case assumption. Hence, the lemma equality holds at v, i.e.,
|X+(v)| + |C(X+(v))| = Cm + 1. 
�

Note that one can detect this vertex v∗ efficiently by computing Cm and by
checking the above identity over all vertices.

Let {c′
11, c

′
12, . . . , c

′
1k′} = C(Y )\C(X+(v∗)) be the set of colors in Y but not

in X+(v∗). As we did before, let us define by vmin[c′
1i]

the first isolated vertex
in Gc with color c′

1i. Again, without loss of generality, assume that min[c′
11] <

min[c′
12] < . . . < min[c′

1k′ ]. Now we are ready to show the main structural
property of a maximum colorful cycle in this case.

Lemma 6. Let v∗ be the unique vertex such that |X+(v∗)| + |C(X+(v∗))| =
Cm + 1 and let K be a maximum colorful cycle. Then, there exists another
maximum colorful cycle K ′ where V (K ′) = X+(v∗) ∪ {vmin[c′

11]
, vmin[c′

12]
, . . . ,

vmin[c′
1|X+(v∗)|]

}.
Proof. By Lemma 5, the number of isolated vertices of K (i.e. |YK |) equals
|X+(v∗)| and each vertex in YK has a distinct color. Observe that C(YK) ⊆
C(Y )\C(X+(v∗)). This follows from the fact that if C(YK)∩C(X+(v∗)) �= ∅ then
the total number of colors in K is

|C(YK) ∪ C(XK)| = |C(YK) ∪ C(X+(v∗))| < |C(YK)| + |C(X+(v∗))|
≤ |X+(v∗)| + |C(X+(v∗))| = Cm + 1 = Cc

where the equalities are due to Lemma 5. This contradicts the fact that K
is a maximum colorful cycle. Therefore, the observation holds true and so
|X+(v∗)| ≤ k′.

Recall that for any two isolated vertices w and t such that w was added
earlier than t in Gc then N(w) ⊇ N(t). Hence, by replacing |X+(v∗)| isolated
vertices in K by vertices {vmin[c′

11]
, vmin[c′

12]
, . . . , vmin[c′

1|X+(v∗)|]
}, one gets another

cycle K ′ with the same number of colors as K. This vertex replacing procedure
can be done since |X+(v∗)| ≤ k′. Note that K ′ and K may have different sets
of colors but their cardinals are the same. Thus, we have a maximum colorful
cycle K ′ where V (K ′) = X+(v∗) ∪ {vmin[c′

11]
, vmin[c′

12]
, . . . , vmin[c′

1|X+(v∗)|]
}. 
�

Since v∗ and the sets of vertices X+(v∗) and {vmin[c′
11]

, vmin[c′
12]

, . . . ,
vmin[c′

1|X+(v∗)|]
} can be immediately identified, in the case that there exists a

maximum colorful cycle then we can use the algorithm in [14] to construct a
Hamiltonian cycle consisting of all these vertices.

3.2 Case 2: Cc = Cm

The following lemma helps to limit the search space of the set of colors of dom-
inating vertices of a maximum colorful cycle.
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Lemma 7. For any maximum colorful cycle K, there exists at most one domi-
nating vertex v such that v /∈ K and c(v) /∈ C(K).

By this lemma, the set of colors C(XK) is either C(X) or C(X)\c for some
color c. We distinguish two corresponding sub-cases.

Case 2.1: There exists a maximum colorful cycle K such that there exists exactly
one dominating vertex v∗∗ such that v∗∗ /∈ K and c(v∗∗) /∈ C(K).

Denote {c′
11, c

′
12, . . . , c

′
1k′} = (C(Y )\C(X))∪{c(v∗∗)}. Similarly as previously,

let vmin[c′
1i]

be the first isolated vertex with the color c′
1i in Gc. Without loss of

generality, suppose that min[c′
11] < min[c′

12] < . . . < min[c′
1k′ ]. Note that, in

contrast to the previous case, the vertex v∗∗ can not be immediately identified.
However, our algorithm will loop over all vertices by considering each as v∗∗. The
following lemma helps to replace vertices to obtain another maximum colorful
cycle from a maximum colorful cycle in this situation.

Lemma 8. Let K be a maximum colorful cycle of Gc and v∗∗ be a dom-
inating vertex such that v∗∗ /∈ K and c(v∗∗) /∈ C(K). Then, there exists
another colorful cycle K ′ such that the set of vertices V (K ′) = V (X)\{v∗∗} ∪
{vmin[c′

11]
, vmin[c′

12]
, . . . , vmin[c′

1�]
} where � = Cm − |C(X)| + 1.

Proof. By the case assumption, |C(XK)| = |C(X)| − 1. Since |C(K)| = Cm, we
obtain that |C(YK)| = Cm −|C(X)|+1. Moreover, by Lemma 2, the color of any
isolated vertex of K is different to other vertex’s color. So C(YK) ⊆ C(Y )\C(XK).
Therefore, Cm −|C(X)|+1 ≤ |C(Y )\C(X)∪{c(v∗∗)| = k′. Recall the observation
that for any two isolated vertices w and t, if w was added earlier than t in Gc

then N(w) ⊇ N(t). Denote � = Cm −|C(X)|+1. By replacing � vertices of K by
vertices {vmin[c′

11]
, vmin[c′

12]
, . . . , vmin[c′

1�]
}, one obtains another maximum colorful

cycle K ′ with the same number of colors. Note that � < k′ so the replacing
procedure can always be done. Now the set of vertices V (K ′) = V (X)\{v∗∗} ∪
{vmin[c′

11]
, vmin[c′

12]
, . . . , vmin[c′

1�]
} as required by the lemma. 
�

Case 2.2: For any maximum colorful cycle K, there does not exist any domi-
nating vertex v such that v /∈ K and c(v) /∈ C(K).

Recall that C2 := {c21, c22, . . . , c2k2} is the set of colors in X. Let max[c2i]
be the index of the last vertex in X such that c(vmax[c2i]) = c2i and c(vj) �=
c1i for every vj ∈ X with j > max[c2i]. Without loss of generality, suppose
that max[c21] > max[c22] > . . . > max[c2k2 ]. Let Xt(Gc) be the set of t last
dominating vertices of the set V (X)\{vmax[c21], vmax[c22], . . . , vmax[c2k2 ]

}. Now the
following lemma helps to reduce a maximum colorful cycle to another maximum
colorful cycle which is easier to find.

Lemma 9. Let K be a maximum colorful cycle of Gc. Then, there exists another
colorful cycle K ′ where V (K ′) = Xt(Gc) ∪ {vmax[c21], vmax[c22], . . . , vmax[c2k2 ]

}
∪{vmin[c11], vmin[c12], . . . , vmin[c1�]} where � = Cm −|C(X)| and t = |V (K)|−k2 −
Cm + |C(X)|.
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By Lemma 9, given the value |V (K)|, all elements in the cycle K ′ are immedi-
ately identified. Therefore in our final algorithm we will vary the value of |V (K)|
to find the maximum colorful cycle if this case holds.

3.3 Case 3: Cc = Cm − 1

In this case, it is possible to obtain easily a cycle with Cm − 1 colors from any
colorful matching, based on the first part of the proof of Lemma 1.

3.4 Algorithm for Threshold Graphs

Based on the structural properties of maximum colorful cycles according to dif-
ferent cases, we derive the following algorithm for finding a maximum colorful
cycle. The algorithm makes use of the algorithm computing a maximum color-
ful matching [5] and the algorithm computing a Hamiltonian cycle in threshold
graphs [14].

Algorithm 1. Maximum colorful cycle in vertex-colored threshold graphs.
1: Cm ← the number of colors of a maximum colorful matching (using algorithm [5])
2: C1 := C(Y )\C(X) = {c11, c12, . . . , c1k1} and C2 := C(X) = {c21, c22, . . . , c2k2}
3: if ∃ a Hamiltonian cycle K of V (X) ∪ {vmin[c11], . . . , vmin[c1k1 ]} then # Case 1.1

4: return K as the maximum colorful cycle # Lemma 4

5: else # Case 1.2

6: v∗ ← the unique vertex satisfying |X+(v∗)| + |C(X+(v∗))| = Cm + 1
7: X+(v∗) ← set of dominating vertices added to the graph after v∗

8: {c′
11, c

′
12, . . . , c

′
1k′} ← C(Y )\C(X+(v∗))

9: if ∃ a Hamiltonian cycle K of X+(v∗)∪{vmin[c11], vmin[c12], . . . , vmin[c1k1 ]} then
10: return K as the maximum colorful cycle # Lemma 6

11: end if
12: end if
13: for v∗∗ ∈ V (Gc) do # Case 2.1

14: {c′
11, c

′
12, . . . , c

′
1k′} ← C(Y )\C(X) ∪ {c(v∗∗)} and � ← Cm − |C(X)| + 1

15: if ∃ a Hamiltonian cycle K of V (X)\{v∗∗} ∪ {vmin[c′
11]

, vmin[c′
12]

, . . . , vmin[c′
1�

]}
then

16: return K as the maximum colorful cycle # Lemma 8

17: end if
18: end for
19: for 0 ≤ t ≤ |V (X)\{vmax[c21], vmax[c22], . . . , vmax[c2k2 ]}| do # Case 2.2

20: Xt(G
c) ← t last vertices in V (X)\{vmax[c21], vmax[c22], . . . , vmax[c2k2 ]}

21: if ∃ a Hamiltonian cycle K of Xt(G
c) ∪ {vmax[c21], vmax[c22], . . . , vmax[c2k2 ]}

∪{vmin[c11], vmin[c12], . . . , vmin[c1�]} where � = Cm − |C(X)| then
22: return K as the maximum colorful cycle # Lemma 9

23: end if
24: end for
25: return K as a maximum colorful cycle constructed from any maximum colorful

matching based on Lemma 1 # Case 3
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Theorem 2. Algorithm 1 computes a maximum colorful cycle of Gc in time
O(max{|C| · M(m,n), n(n + m)}) where |C| is the number of colors in Gc and
M(m,n) is the time for finding a maximum matching in a general graph with m
edges and n vertices.

4 An Algorithm for Bipartite Chain Graphs

A bipartite graph G = (X,Y,E) is said to be a bipartite chain graph if its
vertices can be linearly ordered such that N(x1) ⊇ N(x2) ⊇ . . . ⊇ N(x|X|). As
a consequence, we also immediately obtain a linear ordering over Y such that
N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(y|Y |). It is known that these orderings over X and Y
can be computed in O(n) time. Here we will look for a maximum colorful cycle
in a vertex-colored bipartite chain graph Gc = (X,Y,E).

Algorithm 2. Maximum colorful cycle in vertex-colored bipartite chain graphs.
1: Cm ← the number of colors of a maximum colorful matching (using algorithm [5])
2: for Cm ≥ Cc ≥ Cm − 2 do
3: for 1 ≤ m ≤ |X|, 1 ≤ n ≤ |Y | do
4: Xm,n ← {xi ∈ X|c(xi) /∈ C({x1, x2, . . . , xm}) ∪ C({y1, y2, . . . , yn})}
5: Ym,n ← {yj ∈ Y |c(yj) /∈ C({x1, x2, . . . , xm}) ∪ C({y1, y2, . . . , yn})}
6: Denote C(Xm,n) := {c11, c12, . . . , c1k1} and C(Ym,n) := {c21, c22, . . . , c2k2}.
7: for 0 ≤ � ≤ Cc do
8: �′ ← max{Cc − � − |C(x1, x2, . . . , xm)| − |C(y1, y2, . . . , yn)|, 0}
9: X�

m,n ← {xmin[c11], xmin[c12], . . . , xmin[c1�]} the set of � first vertices (in the
ordering of x-vertices) with distinct colors in Xm,n.

10: Y �′
m,n ← {ymin[c21], ymin[c22], . . . , ymin[c2�′ ]} the set of �′ first vertices (in the

ordering of y-vertices) with distinct colors in Ym,n

11: if ∃ a Hamiltonian cycle K of {x1, x2, . . . , xm} ∪ X�
m,n∪ {y1, y2, . . . , yn} ∪

Y �′
m,n then

12: return K as the maximum colorful cycle
13: end if
14: end for
15: end for
16: end for

Theorem 3. Algorithm 2 computes a maximum colorful cycle of Gc in O(|C| ·
max{M(m,n), n3}) where M(m,n) is the best known complexity for finding a
maximum matching in a general graph with m edges and n vertices.
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Abstract. We introduce forest straight-line programs (FSLPs) as a com-
pressed representation of unranked ordered node-labelled trees. FSLPs
are based on the operations of forest algebra and generalize tree straight-
line programs. We compare the succinctness of FSLPs with two other
compression schemes for unranked trees: top dags and tree straight-
line programs of first-child/next sibling encodings. Efficient translations
between these formalisms are provided. Finally, we show that equality
of unranked trees in the setting where certain symbols are associative or
commutative can be tested in polynomial time. This generalizes previous
results for testing isomorphism of compressed unordered ranked trees.

1 Introduction

Generally speaking, grammar-based compression represents an object succinctly
by means of a small context-free grammar. In many grammar-based compres-
sion formalisms such a grammar can be exponentially smaller than the object.
Henceforth, there is a great interest in problems that can be solved in polynomial
time on the grammar, while requiring at least linear time on the original uncom-
pressed object. One of the most well-known and fundamental such problems is
testing equality of the strings produced by two context-free string grammars,
each producing exactly one string (such grammars are also known as straight-
line programs — in this paper we use the term string straight-line program,
SSLP for short). Polynomial time solutions to this problem were discovered, in
different contexts by different groups of people, see the survey [14] for references.

Grammar-based compression has been generalized from strings to ordered
ranked node-labelled trees, by means of linear context-free tree grammars gen-
erating exactly one tree [6]. Such grammars are also known as tree straight-line
programs, TSLPs for short. Equality of the trees produced by two TSLPs can also
be checked in polynomial time: one constructs SSLPs for the pre-order traversals
of the trees, and then applies the above mentioned result for SSLPs, see [6]. The
tree case becomes more complex when unordered ranked trees are considered.
Such trees can be represented using TSLPs, by simply ignoring the order of
c© Springer International Publishing AG, part of Springer Nature 2018
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children in the produced tree. Checking isomorphism of unordered ranked trees
generated by TSLPs was recently shown to be solvable in polynomial time [16].
The solution transforms the TSLPs so that they generate canonical representa-
tions of the original trees and then checks equality of these canonical forms.

The aforementioned result for ranked trees cannot be applied to unranked
trees (where the number of children of a node is not bounded), which arise for
instance in XML document trees. This is unfortunate, because (i) grammar-
based compression is particularly effective for XML document trees (see [15]),
and (ii) XML document trees can often be considered unordered (one speaks of
“data-centric XML”, see e.g. [1,3,5,20]), allowing even stronger grammar-based
compressions [17].

In this paper we introduce a generalization of TSLPs and SSLPs that
allows to produce ordered unranked node-labelled trees and forests (i.e., ordered
sequences of trees) that we call forest straight-line programs, FSLPs for short. In
contrast to TSLPs, FSLPs can compress very wide and flat trees. For instance,
the tree f(a, a, . . . , a) with n many a’s is not compressible with TSLPs but can
be produced by an FSLP of size O(log n). FSLPs are based on the operations
of horizontal and vertical forest composition from forest algebras [4]. The main
contributions of this paper are the following:

Comparison with Other Formalisms. We compare the succinctness of
FSLPs with two other grammar-based formalisms for compressing unranked
node-labelled ordered trees: TSLPs for “first-child/next-sibling” (fcns) encodings
and top dags. The fcns-encoding is the standard way of transforming an unranked
tree into a binary tree. Then the resulting binary tree can be succinctly repre-
sented by a TSLP. This approach was used to apply the TreeRePair-compressor
from [15] to unranked trees. We prove that FSLPs and TSLPs for fcns-encodings
are equally succinct up to constant multiplicative factors and that one can change
between both representations in linear time (Propositions 9 and 10).

Top dags are another formalism for compressing unranked trees [2]. Top dags
use horizontal and vertical merge operations for tree construction, which are
very similar to the horizontal and vertical concatenation operations from FSLPs.
Whereas a top dag can be transformed in linear time into an equivalent FSLP
with a constant multiplicative blow-up (Proposition 6), the reverse transforma-
tion (from an FSLP to a top dag) needs time O(σ·n) and involves a multiplicative
blow-up of size O(σ) where σ is the number of node labels of the tree (Propo-
sition 7). A simple example (Example 8) shows that this σ-factor is unavoidable.
The reason for the σ-factor is a technical restriction in the definition of top dags:
In contrast to FSLPs, top dags only allow sharing of common subtrees but not
of common subforests. Hence, sharing between (large) subtrees which only dif-
fer in their root labels may be impossible at all (as illustrated by Example 8),
and this leads to the σ-blow-up in comparison to FSLPs. The impossibility of
sharing subforests would also complicate the technical details of our main algo-
rithmic results for FSLPs (in particular Proposition 10 and Theorem 13 which is
discussed below) for which we make heavy use of a particular normal form for
FSLPs that exploits the sharing of proper subforests. We therefore believe that
at least for our purposes, FSLPs are a more adequate formalism than top dags.
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Testing Equality Modulo Associativity and Commutativity. Our main
algorithmic result for FSLPs can be formulated as follows: Fix a set Σ of node
labels and take a subset C ⊆ Σ of “commutative” node labels and a subset
A ⊆ Σ of “associative” node labels. This means that for all a ∈ A, c ∈ C and all
trees t1, t2, . . . , tn (i) we do not distinguish between the trees c(t1, . . . , tn) and
c(tσ(1), . . . , tσ(n)), where σ is any permutation (commutativity), and (ii) we do
not distinguish the trees a(t1, . . . , tn) and a(t1, . . . , ti−1, a(ti, . . . , tj−1), tj , . . . , tn)
for 1 ≤ i ≤ j ≤ n + 1 (associativity). We then show that for two given FSLPs
F1 and F2 that produce trees t1 and t2 (of possible exponential size), one can
check in polynomial time whether t1 and t2 are equal modulo commutativity and
associativity (Theorem 13). Note that unordered tree isomorphism corresponds
to the case C = Σ and A = ∅ (in particular we generalize the result from [16] for
ranked unordered trees). Theorem13 also holds if the trees t1 and t2 are given
by top dags or TSLPs for the fcns-encodings, since these formalisms can be
transformed efficiently into FSLPs. Theorem13 also shows the utility of FSLPs
even if one is only interested in say binary trees, which are represented by TSLPs.
The law of associativity will yield very wide and flat trees that are no longer
compressible with TSLPs but are still compressible with FSLPs.

Missing proofs can be found in the arXiv version of this paper [11].

2 Straight-Line Programs over Algebras

We will produce strings, trees and forests by algebraic expressions over certain
algebras. These expressions will be compressed by directed acyclic graphs. In
this section, we introduce the general framework, which will be reused several
times in this paper.

An algebraic structure is a tuple A = (A, f1, . . . , fk) where A is the universe
and every fi : Ani → A is an operation of a certain arity ni. In this paper,
the arity of all operations will be at most two. If ni = 0, then fi is called
a constant. Moreover, it will be convenient to allow partial operations for the
fi. Algebraic expressions over A are defined in the usual way: if e1, . . . , eni

are
algebraic expressions over A, then also fi(e1, . . . , eni

) is an algebraic expressions
over A. For an algebraic expression e, �e� ∈ A denotes the element to which e
evaluates (it can be undefined).

A straight-line program (SLP for short) over A is a tuple P = (V, S, ρ), where
V is a set of variables, S ∈ V is the start variable, and ρ maps every variable
A ∈ V to an expression of the form fi(A1, . . . , Ani

) (the so called right-hand
side of A) such that A1, . . . , Ani

∈ V and the edge relation E(P ) = {(A,B) ∈
V × V |B occurs in ρ(A)} is acyclic. This allows to define for every variable
A ∈ V its value �A�P inductively by �A�P = fi(�A1�P , . . . , �Ani

�P ) if ρ(A) =
fi(A1, . . . , Ani

). Since the fi can be partially defined, the value of a variable can
be undefined. The SLP P will be called valid if all values �A�P (A ∈ V ) are
defined. In our concrete setting, validity of an SLP can be tested by a simple
syntax check. The value of P is �P � = �S�P . Usually, we prove properties of
SLPs by induction along the partial order E(P )∗.
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It will be convenient to allow for the right-hand sides ρ(A) algebraic expres-
sions over A, where the variables from V can appear as atomic expressions.
By introducing additional variables, we can transform such an SLP into an
equivalent SLP of the original form. We define the size |P | of an SLP P as
the total number of occurrences of operations f1, . . . , fk in all right-hand sides
(which is the number of variables if all right-hand sides have the standard form
fi(A1, . . . , Ani

)).
Sometimes it is useful to view an SLP P = (V, S, ρ) as a directed acyclic

graph (dag) (V,E(P )), together with the distinguished output node S, and the
node labelling that associates the label fi with the node A ∈ V if ρ(A) =
fi(A1, . . . , Ani

). Note that the outgoing edges (A,A1), . . . , (A,Ani
) have to be

ordered since fi is in general not commutative and that multi-edges have to be
allowed. Such dags are also known as algebraic circuits in the literature.

String Straight-Line Programs. A widely studied type of SLPs are SLPs over
a free monoid (Σ∗, ·, ε, (a)a∈Σ), where · is the concatenation operator (which, as
usual, is not written explicitly in expressions) and the empty string ε and every
alphabet symbol a ∈ Σ are added as constants. We use the term string straight-
line programs (SSLPs for short) for these SLPs. If we want to emphasize the
alphabet Σ, we speak of an SSLP over Σ. In many papers, SSLPs are just called
straight-line programs; see [14] for a survey. Occasionally we consider SSLPs
without a start variable S and then write (V, ρ).

Example 1. Consider the SSLP G = ({S,A,B,C}, S, ρ) over the alphabet {a, b}
with ρ(S) = AAB, ρ(A) = CBB, ρ(B) = CaC, ρ(C) = b. We have �B�G =
bab, �A�G = bbabbab, and �G� = bbabbabbbabbabbab. The size of G is 8 (six
concatenation operators are used in the right-hand sides, and there are two
occurrences of constants).

In the next two sections, we introduce two types of algebras for trees and forests.

3 Forest Algebras and Forest Straight-Line Programs

Trees and Forests. Let us fix a finite set Σ of node labels for the rest of the
paper. We consider Σ-labelled rooted ordered trees, where “ordered” means that
the children of a node are totally ordered. Every node has a label from Σ. Note
that we make no rank assumption: the number of children of a node (also called
its degree) is not determined by its node label. The set of nodes (resp. edges)
of t is denoted by V (t) (resp., E(t)). A forest is a (possibly empty) sequence
of trees. The size |f | of a forest is the total number of nodes in f . The set of
all Σ-labelled forests is denoted by F0(Σ) and the set of all Σ-labelled trees is
denoted by T0(Σ). As usual, we can identify trees with expressions built up from
symbols in Σ and parentheses. Formally, F0(Σ) and T0(Σ) can be inductively
defined as the following sets of strings over the alphabet Σ ∪ {(, )}.

– If t1, . . . , tn are Σ-labelled trees with n ≥ 0, then the string t1t2 · · · tn is a
Σ-labelled forest (in particular, the empty string ε is a Σ-labelled forest).
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– If f is a Σ-labelled forest and a ∈ Σ, then a(f) is a Σ-labelled tree (where
the singleton tree a() is usually written as a).

Let us fix a distinguished symbol x 	∈ Σ for the rest of the paper (called the
parameter). The set of forests f ∈ F0(Σ ∪ {x}) such that x has a unique occur-
rence in f and this occurrence is at a leaf node is denoted by F1(Σ). Let
T1(Σ) = F1(Σ) ∩ T0(Σ ∪ {x}). Elements of T1(Σ) (resp., F1(Σ)) are called
tree contexts (resp., forest contexts). We finally define F(Σ) = F0(Σ) ∪ F1(Σ)
and T (Σ) = T0(Σ) ∪ T1(Σ). Following [4], we define the forest algebra FA(Σ) =
(F(Σ),�,�, (a)a∈Σ , ε, x) as follows:

– � is the horizontal concatenation operator: for forests f1, f2 ∈ F(Σ), f1 � f2
is defined if f1 ∈ F0(Σ) or f2 ∈ F0(Σ) and in this case we set f1 � f2 = f1f2
(i.e., we concatenate the corresponding sequences of trees).

– � is the vertical concatenation operator: for forests f1, f2 ∈ F(Σ), f1 � f2 is
defined if f1 ∈ F1(Σ) and in this case f1 � f2 is obtained by replacing in f1
the unique occurrence of the parameter x by the forest f2.

– Every a ∈ Σ is identified with the unary function a : F(Σ) → T (Σ) that
produces a(f) when applied to f ∈ F(Σ).

– ε ∈ F0(Σ) and x ∈ F1(Σ) are constants of the forest algebra.

For better readability, we also write f〈g〉 instead of f � g, fg instead of f � g,
and a instead of a(ε). Note that a forest f ∈ F(Σ) can be also viewed as an
algebraic expression over FA(Σ), which evaluates to f itself (analogously to the
free term algebra).

First-Child/Next-Sibling Encoding. The first-child/next-sibling encoding
transforms a forest over some alphabet Σ into a binary tree over Σ  {⊥}.
We define fcns: F0(Σ) → T0(Σ  {⊥}) inductively by: (i) fcns(ε) = ⊥ and
(ii) fcns(a(f)g) = a(fcns(f)fcns(g)) for f, g ∈ F0(Σ), a ∈ Σ. Thus, the left
(resp., right) child of a node in fcns(f) is the first child (resp., right sibling) of
the node in f or a ⊥-labelled leaf if it does not exist.

Example 2. If f = a(bc)d(e) then

fcns(f) = fcns(a(bc)d(e)) = a(fcns(bc)fcns(d(e)))
= a(b(⊥fcns(c))d(fcns(e)⊥)) = a(b(⊥c(⊥⊥))d(e(⊥⊥)⊥)).

Forest Straight-Line Programs. A forest straight-line program over Σ, FSLP
for short, is a valid straight-line program over the algebra FA(Σ) such that
�F � ∈ F0(Σ). Iterated vertical and horizontal concatenations allow to generate
forests, whose depth and width is exponential in the FSLP size. For an FSLP
F = (V, S, ρ) and i ∈ {0, 1} we define Vi = {A ∈ V | �A�F ∈ Fi(Σ)}.

Example 3. Consider the FSLP F = ({S,A0, A1, . . . , An, B0, B1, . . . , Bn}, S, ρ)
over {a, b, c} with ρ defined by ρ(A0) = a, ρ(Ai) = Ai−1Ai−1 for 1 ≤ i ≤ n,
ρ(B0) = b(AnxAn), ρ(Bi) = Bi−1〈Bi−1〉 for 1 ≤ i ≤ n, and ρ(S) = Bn〈c〉. We
have �F � = b(a2nb(a2n · · · b(a2nc a2n) · · · a2n)a2n), where b occurs 2n many times.
A more involved example can be found in the arXiv version of this paper [11].
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FSLPs generalize tree straight-line programs (TSLPs for short) that have been
used for the compression of ranked trees before, see e.g. [6,15]. We only need
TSLPs for binary trees. A TSLP over Σ can then be defined as an FSLP T =
(V, S, ρ) such that for every A ∈ V, ρ(A) has the form a, a(BC), a(xB), a(Bx),
or B〈C〉 with a ∈ Σ, B,C ∈ V . TSLPs can be used in order to compress the
fcns-encoding of an unranked tree; see also [15]. It is not hard to see that an
FSLP F that produces a binary tree can be transformed into a TSLP T such
that �F � = �T � and |T | ∈ O(|F |). This is an easy corollary of our normal form
for FSLPs that we introduce next (see also the proof of Proposition 9).

Normal Form FSLPs. In this paragraph, we introduce a normal form for
FSLPs that turns out to be crucial in the rest of the paper. An FSLP F = (V, S, ρ)
is in normal form if V0 = V �

0  V ⊥
0 and all right-hand sides have one of the

following forms:

– ρ(A) = ε, where A ∈ V �
0 ,

– ρ(A) = BC, where A ∈ V �
0 , B,C ∈ V0,

– ρ(A) = B〈C〉, where B ∈ V1 and either A,C ∈ V ⊥
0 or A,C ∈ V1,

– ρ(A) = a(B), where A ∈ V ⊥
0 , a ∈ Σ and B ∈ V0,

– ρ(A) = a(BxC), where A ∈ V1, a ∈ Σ and B,C ∈ V0.

Note that the partition V0 = V �
0  V ⊥

0 is uniquely determined by ρ. Also note
that variables from V1 produce tree contexts and variables from V ⊥

0 produce
trees, whereas variables from V �

0 produce forests with arbitrarily many trees.
Let F = (V, S, ρ) be a normal form FSLP. Every variable A ∈ V1 produces

a vertical concatenation of (possibly exponentially many) variables, whose right-
hand sides have the form a(BxC). This vertical concatenation is called the spine
of A. Formally, we split V1 into V �

1 = {A ∈ V1 | ∃B,C ∈ V1 : ρ(A) = B〈C〉} and
V ⊥
1 = V1 \ V �

1 . We then define the vertical SSLP F� = (V �
1 , ρ1) over V ⊥

1 with
ρ1(A) = BC whenever ρ(A) = B〈C〉. For every A ∈ V1 the string �A�F � ∈ (V ⊥

1 )∗

is called the spine of A (in F ), denoted by spineF (A) or just spine(A) if F is
clear from the context. We also define the horizontal SSLP F� = (V �

0 , ρ0) over
V ⊥
0 , where ρ0 is the restriction of ρ to V �

0 . For every A ∈ V0 we use hor(A) to
denote the string �A�F � ∈ (V ⊥

0 )∗. Note that spine(A) = A (resp., hor(A) = A)
for every A ∈ V ⊥

1 (resp., A ∈ V ⊥
0 ).

The intuition behind the normal form can be explained as follows: Consider
a tree context t ∈ T1(Σ) \ {x}. By decomposing t along the nodes on the unique
path from the root to the x-labelled leaf, we can write t as a vertical concate-
nation of tree contexts a1(f1xg1), . . . , an(fnxgn) for forests f1, g1, . . . , fn, gn and
symbols a1, . . . , an. In a normal form FSLP one would produce t by first deriving
a vertical concatenation A1〈· · · 〈An〉 · · ·〉. Every Ai is then derived to ai(BixCi),
where Bi (resp., Ci) produces the forest fi (resp., gi). Computing an FSLP for
this decomposition for a tree context that is already given by an FSLP is the
main step in the proof of the normal form theorem below. Another insight is that
proper forest contexts from F1(Σ) \T1(Σ) can be eliminated without significant
size blow-up.
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Theorem 4. From a given FSLP F one can construct in linear time an FSLP
F ′ in normal form such that �F ′� = �F � and |F ′| ∈ O(|F |).

4 Cluster Algebras and Top Dags

In this section we introduce top dags [2,12] as an alternative grammar-based
formalism for the compression of unranked trees. A cluster of rank 0 is a tree
t ∈ T0(Σ) of size at least two. A cluster of rank 1 is a tree t ∈ T0(Σ) of size
at least two together with a distinguished leaf node that we call the bottom
boundary node of t. In both cases, the root of t is called the top boundary node
of t. Note that in contrast to forest contexts there is no parameter x. Instead,
one of the Σ-labelled leaf nodes may be declared as the bottom boundary node.
When writing a cluster of rank 1 in term representation, we underline the bottom
boundary node. For instance a(b c(a b)) is a cluster of rank 1. An atomic cluster
is of the form a(b) or a(b) for a, b ∈ Σ. Let Ci(Σ) be the set of all clusters of rank
i ∈ {0, 1} and let C(Σ) = C0(Σ) ∪ C1(Σ). We write rank(s) = i if s ∈ Ci(Σ) for
i ∈ {0, 1}. We define the cluster algebra CA(Σ) = (C(Σ),�,�, (a(b), a(b))a,b∈Σ)
as follows:

– � is the horizontal merge operator: s� t is only defined if rank(s) + rank(t) ≤
1 and s, t are of the form s = a(f), t = a(g), i.e., the root labels coincide. Then
s� t = a(fg). Note that at most one symbol in the forest fg is underlined.
The rank of s� t is rank(s) + rank(t). For instance, a(b c(a b))� a(b c) =
a(b c(a b)b c).

– � is the vertical merge operator: s� t is only defined if s ∈ C1(Σ) and the
label of the root of t (say a) is equal to the label of the bottom boundary node
of s. We then obtain s� t by replacing the unique occurrence of a in s by t.
The rank of s� t is rank(t). For instance, a(b c(a b))� a(bc) = a(b c(a(bc) b)).

– The atomic clusters a(b) and a(b) are constants of the cluster algebra.

A top tree for a tree t ∈ T0 is an algebraic expression e over the algebra CA(Σ)
such that �e� = t. A top dag over Σ is a straight-line program D over the algebra
CA(Σ) such that �D� ∈ T0(Σ). In our terminology, cluster straight-line program
would be a more appropriate name, but we prefer to call them top dags.

Example 5. Consider the top dag D = ({S,A0, . . . , An, B0, . . . , Bn}, S, ρ), where
ρ(A0) = b(a), ρ(Ai) = Ai−1 � Ai−1 for 1 ≤ i ≤ n, ρ(B0) = An � b(b)� An,
ρ(Bi) = Bi−1 �Bi−1 for 1 ≤ i ≤ n, and ρ(S) = Bn � b(c). We have �D� =
b(a2nb(a2n · · · b(a2nb(c) a2n) · · · a2n)a2n), where b occurs 2n + 1 many times.

5 Relative Succinctness

We have now three grammar-based formalisms for the compression of unranked
trees: FSLPs, top dags, and TSLPs for fcns-encodings. In this section we study
their relative succinctness. It turns out that up to multiplicative factors of size
|Σ| (number of node labels) all three formalisms are equally succinct. Moreover,
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the transformations between the formalisms can be computed very efficiently.
This allows us to transfer algorithmic results for FSLPs to top dags and TSLPs
for fcns encodings, and vice versa. We start with top dags:

Proposition 6. For a given top dag D one can compute in linear time an FSLP
F such that �F � = �D� and |F | ∈ O(|D|).

Proposition 7. For a given FSLP F with �F � ∈ T0(Σ) and |�F �| ≥ 2 one
can compute in time O(|Σ| · |F |) a top dag D such that �D� = �F � and |D| ∈
O(|Σ| · |F |).

The following example shows that the size bound in Proposition 7 is sharp:

Example 8. Let Σ = {a, a1, . . . , aσ} and for n ≥ 1 let tn = a(a1(am) · · · aσ(am))
with m = 2n. For every n > σ the tree tn can be produced by an FSLP of size
O(n): using n = log m many variables we can produce the forest am and then
O(n) many additional variables suffice to produce tn. On the other hand, every
top dag for tn has size Ω(σ ·n): consider a top tree e that evaluates to tn. Then e
must contain a subexpression ei that evaluates to the subtree ai(am) (1 ≤ i ≤ σ)
of tn. The subexpression ei has to produce ai(am) using the �-operation from
copies of ai(a). Hence, the expression for ai(am) has size n = log2 m and different
ei contain no identical subexpressions. Therefore every top dag for tn has size
at least σ · n.

In contrast, FSLPs and TSLPs for fcns-encodings turn out to be equally succinct
up to constant factors:

Proposition 9. Let f ∈ F(Σ) be a forest and let F be an FSLP (or TSLP)
over Σ  {⊥} with �F � = fcns(f). Then we can transform F in linear time into
an FSLP F ′ over Σ with �F ′� = f and |F ′| ∈ O(|F |).

Proposition 10. For every FSLP F over Σ, we can construct in linear time a
TSLP T over Σ ∪ {⊥} with �T � = fcns(�F �) and |T | ∈ O(|F |).

Proposition 10 and the construction from [7, Proposition 8.3.2] allow to reduce
the evaluation of forest automata on FSLPs (for a definition of forest and tree
automata, see [7]) to the evaluation of ordinary tree automata on binary trees.
The latter problem can be solved in polynomial time [18], which yields:

Corollary 11. Given a forest automaton A and an FSLP (or top dag) F we
can check in polynomial time whether A accepts �F �.

In [2], a linear time algorithm is presented that constructs from a tree of size
n with σ many node labels a top dag of size O(n/ log0.19

σ n). In [12] this bound
was improved to O(n log log n/ logσ n) (for the same algorithm as in [2]). In [19]
we recently presented an alternative construction that achieves the information-
theoretic optimum of O(n/ logσ n) (another optimal construction was presented
in [9]). Moreover, as in [2], the constructed top dag satisfies the additional size
bound O(d·log n), where d is the size of the minimal dag of t. With Propositions 6
and 10 we get:
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Corollary 12. Given a tree t of size n with σ many node labels, one can
construct in linear time an FSLP for t (or an TSLP for fcns(t)) of size
O(n/ logσ n) ∩ O(d · log n), where d is the size of the minimal dag of t.

6 Testing Equality Modulo Associativity
and Commutativity

In this section we will give an algorithmic application which proves the utility
of FSLPs (even if we deal with binary trees). We fix two subsets A ⊆ Σ (the set
of associative symbols) and C ⊆ Σ (the set of commutative symbols). This means
that we impose the following identities for all a ∈ A, c ∈ C, all trees t1, . . . , tn ∈
T0(Σ), all permutations σ : {1, . . . , n} → {1, . . . , n}, and all 1 ≤ i ≤ j ≤ n + 1:

a(t1 · · · tn) = a(t1 · · · ti−1a(ti · · · tj−1)tj · · · tn) (1)
c(t1 · · · tn) = c(tσ(1) · · · tσ(n)). (2)

Note that the standard law of associativity for a binary symbol ◦ (i.e., x◦(y◦z) =
(x◦y)◦ z) can be captured by making ◦ an (unranked) associative symbol in the
sense of (1). Our main result is:

Theorem 13. For trees s, t we can test in polynomial time whether s and t are
equal modulo the identities in (1) and (2), if s and t are given succinctly by one
of the following three formalisms: (i) FSLPs, (ii) top dags, (iii) TSLPs for the
fcns-encodings of s, t.

6.1 Associative Symbols

Below, we define the associative normal form nfA(f) of a forest f and show
that from an FSLP F we can compute in linear time an FSLP F ′ with
�F ′� = nfA(�F �). For trees s, t ∈ T0(Σ) we have that s = t modulo the identities
in (1) if and only if nfA(s) = nfA(t). The generalization to forests is needed
for the induction, where a slight technical problem arises. Whether the forests
t1 · · · ti−1a(ti · · · tj−1)tj · · · tn and t1 · · · tn are equal modulo the identities in (1)
actually depends on the symbol on top of these two forests. If it is an a, and
a ∈ A, then the two forests are equal modulo associativity, otherwise not. To
cope with this problem, we use for every associative symbol a ∈ A a function
φa: F0(Σ) → F0(Σ) that pulls up occurrences of a whenever possible.

Let • /∈ Σ be a new symbol. For every a ∈ Σ ∪ {•} let φa: F0(Σ) → F0(Σ)
be defined as follows, where f ∈ F0(Σ) and t1, . . . , tn ∈ T0(Σ):

φa(b(f)) =

{
φa(f) if a ∈ A and a = b,

b(φb(f)) otherwise,
φa(t1 · · · tn) = φa(t1) · · · φa(tn).

In particular, φa(ε) = ε. Moreover, define nfA: F0(Σ) → F0(Σ) by nfA(f) =
φ•(f).
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Example 14. Let t = a(a(cd)b(cd)a(e)) and A = {a}. We obtain

φa(t) = φa(a(cd)b(cd)a(e)) = φa(a(cd))φa(b(cd))φa(a(e))
= φa(cd)b(φb(cd))φa(e) = cdb(cd)e,

φb(t) = a(φa(a(cd)b(cd)a(e))) = a(cdb(cd)e).

To show the following simple lemma one considers the terminating and confluent
rewriting system obtained by directing the Eq. (1) from right to left.

Lemma 15. For two forests f1, f2 ∈ F0(Σ), nfA(f1) = nfA(f2) if and only if
f1 and f2 are equal modulo the identities in (1) for all a ∈ A.

Lemma 16. From a given FSLP F = (V, S, ρ) over Σ one can construct in
time O(|F | · |Σ|) an FSLP F ′ with �F ′� = nfA(�F �).

For the proof of Lemma 16 one introduces new variables Aa for all a ∈ Σ ∪ {•}
and defines the right-hand sides of F ′ such that �Aa�F ′ = φa(�A�F ) for all
A ∈ V0 and �Ba〈φb(f)〉�F ′ = φa(�B〈f〉�F ) for all B ∈ V1, f ∈ F0(Σ), where b is
the label of the parent node of the parameter x in �B�F . This parent node exists
if we assume the FSLP F to be in normal form.

6.2 Commutative Symbols

To test whether two trees over Σ are equivalent with respect to commutativity,
we define a commutative normal form nfC(t) of a tree t ∈ T0(Σ) such that
nfC(t1) = nfC(t2) if and only if t1 and t2 are equivalent with respect to the
identities in (2) for all c ∈ C.

We start with a general definition: Let Δ be a possibly infinite alphabet
together with a total order <. Let ≤ be the reflexive closure of <. Define the
function sort<: Δ∗ → Δ∗ by sort<(a1 · · · an) = ai1 · · · ain with {i1, . . . , in} =
{1, . . . , n} and ai1 ≤ · · · ≤ ain .

Lemma 17. Let G be an SSLP over Δ and let < be some total order on Δ. We
can construct in time O(|Δ| · |G|) an SSLP G′ such that �G′� = sort<(�G�).

In order to define the commutative normal form, we need a total order on F0(Σ).
Recall that elements of F0(Σ) are particular strings over the alphabet Γ := Σ ∪
{(, )}. Fix an arbitrary total order on Γ and let <llex be the length-lexicographic
order on Γ ∗ induced by <: for x, y ∈ Γ ∗ we have x <llex y if |x| < |y| or (|x| = |y|,
x = uav, y = ubv′, and a < b for u, v, v′ ∈ Γ ∗ and a, b ∈ Γ ). We now consider
the restriction of <llex to F0(Σ) ⊆ Γ ∗. For the proof of the following lemma
one first constructs SSLPs for the strings �F1�, �F2� ∈ Γ ∗ (the construction is
similar to the case of TSLPs, see [6]) and then uses [16, Lemma 3] according to
which SSLP-encoded strings can be compared in polynomial time with respect
to <llex.

Lemma 18. For two FSLPs F1 and F2 we can check in polynomial time whether
�F1� = �F2�, �F1� <llex �F2� or �F2� <llex �F1�.
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From the restriction of <llex to T0(Σ) ⊆ Γ ∗ we obtain the function sort<llex on
T0(Σ)∗ = F0(Σ). We define nfC : F0(Σ) → F0(Σ) by

nfC(a(f)) =

{
a(sort<llex(nfC(f))) if a ∈ C
a(nfC(f)) otherwise,

nfC(t1 · · · tn) = nfC(t1) · · · nfC(tn).

Obviously, f1, f2 ∈ F(Σ) are equal modulo the identities in (2) for all c ∈ C if
and only if nfC(f1) = nfC(f2). Using this fact and Lemma 15 it is not hard to
show:

Lemma 19. For f1, f2 ∈ F0(Σ) we have nfC(nfA(f1)) = nfC(nfA(f2)) if and
only if f1 and f2 are equal modulo the identities in (1) and (2) for all a ∈ A,
c ∈ C.
For our main technical result (Theorem 21) we need a strengthening of our FSLP
normal form. Recall the notion of the spine from Sect. 3. We say that an FSLP
F = (V, S, ρ) is in strong normal form if it is in normal form and for every
A ∈ V ⊥

0 with ρ(A) = B〈C〉 either B ∈ V ⊥
1 or |�C�F | ≥ |�D�F | − 1 for every

D ∈ V ⊥
1 which occurs in spine(B) (note that |�D�F | − 1 is the number of nodes

in �D�F except for the parameter x).

Lemma 20. From a given FSLP F = (V, S, ρ) in normal form we can construct
in polynomial time an FSLP F ′ = (V ′, S, ρ′) in strong normal form with �F � =
�F ′�.

For the proof of Lemma 20 we modify the right-hand sides of variables A ∈ V ⊥
0

with ρ(A) = B〈C〉 and |spine(B)| ≥ 2. Basically, we replace the vertical con-
catenations B〈C〉 by polynomially many vertical concatenations Bi〈Ci〉 which
satisfy the condition of the strong normal form. We can now prove the main
technical result of this section:

Theorem 21. From a given FSLP F we can construct in polynomial time an
FSLP F ′ with �F ′� = nfC(�F �).

Proof. Let F = (V, S, ρ). By Theorem 4 and Lemma 20 we may assume that F
is in strong normal form. For every A ∈ V1 let

args(A) = {t ∈ T0(Σ) | |t| ≥ |�D�F | − 1for each symbol D in spine(A)}
We want to construct an FSLP F ′ = (V ′, S, ρ′) with V0 ⊆ V ′

0 and V1 = V ′
1 such

that

(1) �A�F ′ = nfC(�A�F ) for all A ∈ V0,
(2) �A�F ′〈nfC(t)〉 = nfC(�A�F 〈t〉) for all A ∈ V1, t ∈ args(A).

From (1) we obtain �F ′� = �S�F ′ = nfC(�S�F ) = nfC(�F �) which concludes the
proof.

To define ρ′, let V c = V c
0 ∪V c

1 with V c
1 = {A ∈ V1 | ρ(A) = a(BxC) with a ∈

C} and V c
0 = {A ∈ V0 | ρ(A) = a(B) with a ∈ C or ρ(A) = D〈C〉 with D ∈ V c

1 }
be the set of commutative variables. We set ρ′(A) = ρ(A) for A ∈ V \ V c. For
A ∈ V c we define ρ′(A) by induction along the partial order of the dag:
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1. ρ(A) = a(B): Let MA be the set of all C ∈ V ⊥
0 which are below A in the

dag, and let w = hor(B) = �B�F � ∈ M∗
A. By induction, ρ′ is already defined

on MA, and thus �C�F ′ is defined for every C ∈ MA. By Lemma 18, we can
compute in polynomial time a total order < on MA such that C < D implies
�C�F ′ ≤llex �D�F ′ for all C,D ∈ MA. By Lemma 17, we can construct in linear
time an SSLP Gw = (Vw, Sw, ρw) with �Gw� = sort<(w), and we may assume
that all variables D ∈ Vw are new. We add these variables to V ′

0 together
with their right hand sides ρ′(D) = ρw(D), and we finally set ρ′(A) = a(Sw).

2. ρ(A) = B〈C〉: Let ρ(B) = a(DxE). We define Gw = (Vw, Sw, ρw) as before,
but with w = �DCE�F � instead of w = �B�F � , and we set ρ′(A) = a(Sw).

3. ρ(A) = a(BxC): We define Gw = (Vw, Sw, ρw) as before, this time with
w = �BC�F � , and we set ρ′(B) = a(Swx).

The main idea is that the strong normal form ensures that in right-hand sides of
the form a(DxE) with a ∈ C one can move the parameter x to the last position
(see point 3 above), since only trees that are larger than all trees produced from
D and E are substituted for x. ��

Proof of Theorem 13. By Propositions 6 and 9 it suffices to show Theorem 13
for the case that t1 and t2 are given by FSLPs F1 and F2, respectively. By
Lemma 19 and Lemma 18 it suffices to compute in polynomial time FSLPs F ′

1

and F ′
2 for nfC(nfA(t1)) and nfC(nfA(t2)). This can be achieved using Lemma 16

and Theorem 21. ��

7 Future Work

We have shown that simple algebraic manipulations (laws of associativity and
commutativity) can be carried out efficiently on grammar-compressed trees. In
the future, we plan to investigate other algebraic laws. We are optimistic that
our approach can be extended by idempotent symbols (meaning that a(fttg) =
a(ftg) for forests f, g and a tree t).

Another interesting open problem concerns context unification modulo asso-
ciative and commutative symbols. The decidability of (plain) context-unification
was a long standing open problem that was finally solved by Jeż [13], who showed
the existence of a polynomial space algorithm. Jeż’s algorithm uses his recom-
pression technique for TSLPs. One might try to extend this technique to FSLPs
with the goal of proving decidability of context unification for terms that also
contain associative and commutative symbols. For first-order unification and
matching [10], context matching [10], and one-context unification [8] there exist
algorithms for TSLP-compressed trees that match the complexity of their uncom-
pressed counterparts. One might also try to extend these results to the associative
and commutative setting.
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Abstract. We consider the problem of converting a two-way alternat-
ing finite automaton (2AFA) with n states to a 2AFA accepting the com-
plement of the original language. Complementing is trivial for halting
2AFAs, by inverting the roles of existential and universal decisions and
the roles of accepting and rejecting states. However, since 2AFAs do not
have resources to detect infinite loops by counting executed steps, the
best construction known so far required Ω(4n) states. Here we shall show
that the cost of complementing is polynomial in n. This complementary
simulation does not eliminate infinite loops.

Keywords: Finite automata · Alternation · Descriptional complexity

1 Introduction

Complement is one of the most familiar language operations, both in compu-
tational complexity and in theory of formal languages and automata. Once
we are given a device A accepting a language L by the use of some compu-
tational resources, it is quite natural to ask what resources are necessary to
decide whether the given input is rejected. Despite its familiarity, complement-
ing is a difficult operation—the most important open problem of this kind is
NP

?= co-NP.
Complementing is trivial for a one-way deterministic finite automaton (1DFA)

and for complexity1 classes DSpace(s(m)) with s(m) ≥ log m. This can be done
by inverting the roles of accepting and rejecting states. The trivial argument
does not work for a two-way deterministic finite automaton (2DFA) because such
machine may reject by getting into an infinite loop and we do not have resources
to detect such loops by counting executed steps. For 2DFAs with n states, the
known construction for the complement uses 4 · n states. This construction first
makes the given automaton A halt on every input [8] or, to be precise, it converts
A into a reversible 2DFA [13].
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Complementing a one-way nondeterministic finite automaton (1NFA)
requires 2n states in the worst case [3], that is, it requires to make the machine
deterministic. The problem of complementing a two-way nondeterministic finite
automaton (2NFA) by the use of a polynomial number of states is open; this is
related to the 2NFA-2DFA trade-off and to NSpace(log m) versus DSpace(log m)
problem, of which very little is known.

Consider now a two-way alternating finite automaton (2AFA) [6,9,12,14]. It
is trivial to invert the roles of existential and universal decisions and the roles
of accepting and rejecting states, which gives a 2AFA for the complement, if
the original machine never gets into an infinite loop. But, since 2AFAs do not
have resources to count executed steps, the trivial construction does not work
for 2AFAs with infinite loops. Moreover, we know from [9] that complementing
2AFAs does cost something, namely, at least Ω(n·log n) states are required in the
worst case. So far, it was an open problem whether the cost of complementing
a 2AFA is polynomial. The best known construction uses (2n−1)2 + 1 ≥ Ω(4n)
states, by transforming the given 2AFA to a 1NFA for the complement [9].

However, quite recently [7], it was shown that sublogarithmic ASpace(s(m))
is closed under complement. This complementary simulation does not require
elimination of infinite loops in the original alternating machine, but the comple-
mented machine itself gets to infinite loops along some computation paths. This
raises a natural question, namely, whether 2AFAs cannot also be complemented
state-efficiently without trying to eliminate infinite loops.

Using the above result as a starting point, we shall show that each
2AFA A with n states can be replaced by a 2AFA A′′ accepting the comple-
ment of the original language with the number of states polynomial in n. This
solves an open problem. We shall proceed as follows. First, we fix some basic
definitions. Then, as an intermediate step, we convert A to A′, (a modified ver-
sion of) a deterministic Turing machine using a worktape of linear size and
accepting a carefully chosen homomorphic image of the language L(A). This
machine model is actually far stronger than finite automata, it corresponds to
DSpace(m). Nevertheless, the constructed A′ shall have some special properties
so that we shall be able to convert it back to a 2AFA A′′, this time for the com-
plement of L(A), state-efficiently. A′′ is not loop-free, but the loops in A′′ do not
correspond to the loops in the original A.

2 Two-Way Alternating Automata, Preliminaries

We assume the reader is familiar with the standard models of finite state
automata and regular languages, see [10,11], as well as with the notion of alter-
nation [5]. For more details, see e.g. [2,15–17]. Here we only recall some basic
definitions and fix some elementary notation and terminology.

A two-way alternating finite state automaton (2AFA, for short) is defined as
a sextuplet A = (Q∃, Q∀, Σ,H, q0, F ), in which Q∃ and Q∀ are two finite disjoint
sets of existential and universal states, respectively, Σ is a finite input alphabet,
H ⊆ Q × (Σ ∪ {�,�}) × D × Q is a set of transitions, where Q = Q∃ ∪ Q∀ is
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the set of all states, �,� /∈ Σ are two special symbols, called the left and right
endmarkers, respectively, D = {−1, 0,+1} represents three possible input head
moves (to the left, no move, to the right), q0 ∈ Q is an initial state, and F ⊆ Q
is a set of accepting states. The states in the set Q\F will be called rejecting.

The input tape contains �a1 · · · am�, with the respective endmarkers at the
positions 0 and m + 1. The machine starts with the head at the left endmarker.

A transition from the set H will be presented in the form 〈q, a〉 → 〈d, q′〉,
with the following meaning. If A is in the finite control state q ∈ Q with the input
head at a position k ∈ {0, . . . , m + 1} scanning the symbol ak = a ∈ Σ ∪ {�,�},
it moves its head to the position k′ = k + d, where d ∈ D = {−1, 0,+1}, and
then it switches to the state q′ ∈ Q. The machine halts, if there are no executable
transitions for the given pair 〈q, a〉. Such pair will be called a halting condition.
Transitions moving to the left of � or to the right of � are not allowed.

A configuration is an ordered pair 〈q, k〉 ∈ Q×{0, . . . ,m+1}. Configurations
inherit the status of the finite control states included, so they are partitioned into
existential and universal. Depending on the finite control state and the symbol
under the head, they are also partitioned into halting and non-halting.

The acceptance is witnessed as follows. For the given input, consider the tree
of all computation paths starting in the initial configuration 〈q0, 0〉. In this tree,
each son has exactly one parent, but there may exist several (possibly infinitely
many) copies of the same configuration. Then:

– The subtree of all computation paths rooted in a non-halting existential con-
figuration is accepting, if at least one subtree rooted in a son of this configu-
ration is accepting.

– The subtree of all computation paths rooted in a non-halting universal con-
figuration is accepting, if all subtrees rooted in the sons of this configuration
are accepting.

– The subtree rooted in a halting configuration is accepting, if the finite control
state in this configuration is accepting.2

– The subtree rooted in a configuration is rejecting, if it cannot be determined
as accepting by application of the rules above.

The given input is accepted, if the tree rooted in the initial configuration is
accepting. Clearly, rejection may arise not only because of halting in rejecting
states, but also due to infinite loops. The language consisting of all input strings
that are accepted by A will be denoted by L(A).

In the subsequent sections, we shall need a fixed linear order on the state
set Q. This is obtained by a straightforward enumeration of all states, beginning
with the initial state q0. That is, Q = {q0, q1, . . . , qn−1}, with n = ‖Q‖.

Independently of that, we shall also need a fixed linear order on executable
transitions, for each 〈q, a〉 ∈ Q × (Σ ∪ {�,�}). So, for this condition 〈q, a〉, let
{〈q, a〉→〈d1, r1〉, 〈q, a〉→〈d2, r2〉, . . . , 〈q, a〉→〈dnq,a

, rnq,a
〉} be the set of all exe-

cutable transitions, with d1r1, d2r2, . . . , dnq,a
rnq,a

∈ D · Q listed in some fixed
lexicographically increasing order. It is obvious that nq,a ≤ ‖D‖ · ‖Q‖ = 3n.
2 Such configuration has no sons and the entire subtree degenerates into a single node.
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Now, for i ∈ {1, . . . , 3n + 1}, define

δi,q,a =
{

diri, if i ≤ nq,a,
undefined, if i > nq,a.

In particular, if 〈q, a〉 is a halting condition, δ1,q,a = undefined. Now, let

αq,a =

⎧⎨
⎩

unknown, if A does not halt on condition 〈q, a〉,
accept, if A halts and accepts on 〈q, a〉,
reject, if A halts and rejects on 〈q, a〉.

(1)

For any given input w = a1· · ·am, the evaluation of the computation tree is
completely determined by the fixed table of values δi,q,a and αq,a.

From now on, we can assume that αq0,� = unknown, for, if αq0,� were different
from unknown, that is, if A halts at the very beginning without executing a single
step, then either L(A) = Σ∗ or L(A) = Ø. But then the complement of L(A) can
be accepted by a single-state 2AFA with the empty set of transitions.

3 Deterministic Machines with Linear Space

As an intermediate step before complementing the given 2AFA A, we shall convert
it to A′, a special kind of deterministic Turing machine using a worktape of linear
size. This new machine model actually corresponds to DSpace(m).

Our new machine model is almost the same as the standard deterministic
Turing machine equipped with a finite state control and a single two-way read-
write worktape, containing initially the given input. The main difference is that
the worktape is composed of two tracks. The first track can be used in a read-
only way, the second track in the standard read-write way. Thus, a worktape cell
is of the form 〈L,C〉 and it can be changed to some 〈L,C ′〉, preserving L in the
read-only track. Moreover, there are no special worktape endmarkers.

Formally, (a modified version of) a deterministic linear bounded automaton
is A′ = (P,L,C,H, PINI, PACC), where P is a finite set of states, L and C are two
finite sets of read-only and read-write symbols, called also labels and contents,
respectively, H ⊆ P × L × C × C × D × P is a set of transitions, where D =
{−1, 0,+1} represents head moves, and PINI, PACC ∈ P are two special states, called
initial and accepting, respectively.

A′ starts in PINI with the head at the leftmost worktape cell. A transition in H

is in the form 〈P,L,C〉 → 〈C ′, d, P ′〉, interpreted as follows. If A′ is in the state P
with the head scanning a worktape cell labeled by the read-only symbol L and
containing the read-write symbol C, the machine replaces C by C ′, moves its
head in the direction d ∈ {−1, 0,+1}, and then it switches to the state P ′. For
each condition 〈P,L,C〉 ∈ P×L×C, there is at most one executable transition
in H. The machine halts, if it tries to execute a transition moving the head to
the left of the leftmost worktape cell or to the right of the rightmost cell.

A configuration of A′ is an ordered triple 〈P, ω, h〉, consisting of P ∈ P, the
current state, ω ∈ (L × C)∗, the current contents of the entire worktape, and
h ∈ {1, . . . , |ω|}, the current position of the worktape head.
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Now we are ready to convert the given 2AFA A to A′. To be more precise,
the new machine accepts H(a0a1· · ·amam+1) if and only if A accepts a1· · ·am,
where a0 = �, am+1 = �, and H is a homomorphism mapping the input string
of A into the worktape string of A′—to be defined below.

The machine A′ evaluates the computation tree of A by the use of the classic
depth-first search (see, e.g. [1,4]) in the directed graph the nodes of which are
configurations and the edges are transitions of A on the given input tape con-
taining � w � = a0a1· · ·amam+1. The graph does not have multiple copies of the
same configuration, but a configuration can have several “parents”. A′ keeps this
graph on the linear worktape as a data structure in which edges are determined
implicitly, by the relative positions of the graph nodes along this tape.

More precisely, the worktape consists of blocks corresponding to the m+2 =
|w| + 2 input tape positions and each block consists of cells corresponding to
the n = ‖Q‖ different configurations at the given position. Finally, a worktape
cell corresponding to a configuration 〈qj , k〉 ∈ Q × {0, . . . , m + 1} will contain
〈qjak, C〉, with the read-only label representing the corresponding pair 〈qj , ak〉 ∈
Q × (Σ ∪ {�,�}). The read-write component C in the cell will be utilized for
storing navigation data in the course of the depth-first search. Initially, C is
equal to unknown for non-halting configurations, but to accept and reject for
configurations that halt in accepting and rejecting states, respectively. Formally,
using (1), the initial value is C = αqj ,ak

. During the depth-first search, the read-
write contents C in the cell can also save two links d′r′, d′′r′′ ∈ D ·Q, pointing to
one of the parents and to one of the sons of the configuration 〈qj , k〉. For these
reasons, we fix the following worktape alphabets:

L = Q · (Σ ∪ {�,�}),
C = D · Q × D · Q ∪ {unknown, accept, reject}.

The initial contents on the worktape for A′ is H(� w �), defined as follows:

H(� w �) = A0A1 · · · Ak · · · AmAm+1, where
Ak = Bk,0 · · · Bk,j · · · Bk,n−1, (2)

Bk,j = 〈qjak, αqj ,ak
〉 ∈ L × C.

Let us now fix the states. During the depth-first search, A′ traverses the
computation graph of A, starting from B0,0 = 〈q0�, αq0,�〉 = 〈q0�, unknown〉
that corresponds to the initial configuration of A. For each explored configuration
〈qj , k〉 in the graph, represented by a cell Bk,j labeled by qjak on the worktape,
A′ evaluates whether the subtree of all computation paths rooted in 〈qj , k〉 is
accepting or rejecting, and saves this information in the corresponding read-
write component of the cell. The finite control state depends on from where
A′ has arrived to 〈qj , k〉:

If A′ has arrived to 〈qj , k〉 from one of its “parents” by following a single-
step edge from some 〈r, k′〉, where k−k′ = d ∈ D = {−1, 0,+1} and r ∈ Q,
the machine A′ is in the state 〈dr, 0〉, keeping this way a backup link to the
current parent. When required, this link can be used to get back to the original
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configuration 〈r, k′〉, by backing up against the direction of the edge connecting
〈r, k′〉 with the current configuration 〈qj , k〉.

Conversely, if A′ has arrived to 〈qj , k〉 from one of its “sons” by backing
up against the direction of an edge connecting 〈qj , k〉 with some 〈ri, k + di〉,
the machine A′ is in the state 〈res accept, 0〉 or 〈res reject, 0〉, depending on
whether the subtree of all computation paths rooted in 〈ri, k + di〉 is accepting
or rejecting.

The second component of the finite control state will be utilized to implement
moves of A′ in the graph, i.e., to implement (i) moving along an edge that
connects two configurations, and (ii) backing up against the direction of such
edge. We are now ready to define the state set for A′:

P = PS × PM, where
PS = D · Q ∪ {res accept, res reject},

PM = {−2,−1,+1,+2} · Q ∪ {0}.

Before passing further, let us show how to navigate the machine A′ through
the graph. If we want to move the worktape head placed at a cell corresponding
to a configuration 〈qi, k〉 (labeled by qia, where a = ak) to a cell that corresponds
to some 〈qj , k + d〉 (labeled by qja

′, for some a′), and reach the target worktape
position in some state 〈PS, 0〉, for any given qi, qj ∈ Q, d ∈ {−1, 0,+1}, and
PS ∈ PS, we switch the machine A′ to the state 〈PS, μd,qi,qj

〉, where

μd,qi,qj
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+2qj , if d = +1 and i ≤ j,

+1qj , if d = +1 and i > j, or d = 0 and i < j,
0, if d = 0 and i = j,

−1qj , if d = −1 and i < j, or d = 0 and i > j,

−2qj , if d = −1 and i ≥ j.

As an example, by switching A′ to 〈PS, μ+1,q5,q7〉 = 〈PS, +2q7〉 when the work-
tape head is placed at a cell corresponding to a configuration 〈q5, k〉, we activate
a routine searching for the second occurrence of a worktape cell containing q7 in
its label, starting the search from the current worktape position and moving to
the right. When such cell has been found—which corresponds to the configura-
tion 〈q7, k + 1〉—the machine A′ will switch to 〈PS, 0〉.

Now we are ready to present transitions for the depth-first search. There are
the following cases:

(a) A′ arrives to a worktape cell corresponding to a configuration 〈q, k〉 from
one of its parents, in a state 〈dr, 0〉, keeping this way a backup link to the
current parent. Recall that the current cell under the worktape head is labeled
by qa ∈ L, with a = ak, and it contains a read-write symbol C ∈ C =
D · Q × D · Q ∪ {unknown, accept, reject}. This gives the following subcases:

(a.1) C = unknown, that is, 〈q, k〉 has not been explored yet. In this case,
A′ replaces C = unknown by C ′ = 〈dr, d1r1〉, where d1r1 = δ1,q,a. This
saves the links to the current parent and to the first son of the configura-
tion 〈q, k〉 on the worktape. Next, A′ switches its state to 〈d1q, μd1,q,r1〉,
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which activates the routine moving along the edge that connects 〈q, k〉
with its first son 〈r1, k + d1〉, reaching this son with a new backup link,
in the state 〈d1q, 0〉.
(a.2) C ∈ {accept, reject}, that is, 〈q, k〉 has been explored already (we are
just visiting 〈q, k〉 from another parent) or 〈q, k〉 is a halting configuration.
In either case, the subtree of all computation paths rooted in 〈q, k〉 is
accepting or rejecting, in accordance with C. Without making any changes
on the worktape, A′ switches to the respective state 〈res accept, μ−d,q,r〉
or 〈res reject, μ−d,q,r〉. This activates the routine backing up against the
direction of the edge that connects the current parent 〈r, k−d〉 with 〈q, k〉,
reaching this parent with the result of evaluation, in the respective state
〈res accept, 0〉 or 〈res reject, 0〉.
(a.3) C = 〈d′r′, d′′r′′〉, for some d′r′, d′′r′′ ∈ D ·Q. This means that, in the
course of exploring the subtree of all computation paths rooted in 〈q, k〉,
the machine A′ visits 〈q, k〉 again, having followed a computation path
of A that enters a loop. A′ proceeds therefore in the same way as if,
in (a.2), the read-write symbol C were equal to reject. That is, without
making any changes on the worktape, A′ switches to 〈res reject, μ−d,q,r〉.

(b) A′ arrives to a worktape cell corresponding to 〈q, k〉 from one of its sons,
in the state 〈res accept, 0〉. This means that the subtree rooted in the latest
visited son is accepting. At this moment, the current cell under the head
is labeled by qa ∈ L, with a = ak, and it contains the read-write symbol
C = 〈dr, diri〉, representing the backup link for the current parent and the
forward link to the latest visited son. This gives the following subcases:

(b.1) If q is universal and δi+1,q,a = undefined, that is, δi+1,q,a =
di+1ri+1 ∈ D · Q, the machine A′ has to evaluate the next son. A′ there-
fore replaces C = 〈dr, diri〉 by C ′ = 〈dr, di+1ri+1〉, which saves the
link to the next son on the worktape. Next, A′ switches to the state
〈di+1q, μdi+1,q,ri+1〉, which activates the routine moving along the edge
that connects 〈q, k〉 with 〈ri+1, k+di+1〉, reaching this son with the proper
backup link, in the state 〈di+1q, 0〉.
(b.2) Conversely, if q is existential or δi+1,q,a = undefined (that is,
〈q, k〉 has no more sons), the subtree rooted in 〈q, k〉 is accepting. Thus,
A′ replaces C = 〈dr, diri〉 on the worktape by C ′ = accept and, using the
backup link saved in C, it switches to the state 〈res accept, μ−d,q,r〉. This
activates the routine backing up against the direction of the edge that
connects the current parent 〈r, k−d〉 with 〈q, k〉, reaching 〈r, k−d〉 in the
state 〈res accept, 0〉.

(c) A′ arrives to a worktape cell corresponding to 〈q, k〉 from one of its sons, in
the state 〈res reject, 0〉. This means that the subtree rooted in the latest visited
son is rejecting. This case is very similar to (b): either (c.1) q is existential and
δi+1,q,a = undefined, or (c.2) q is universal or δi+1,q,a = undefined. Depending
on this, A′ either evaluates the next son or, respectively, it rewrites the symbol
on worktape to C ′ = reject and returns to the current parent in the state
〈res reject, 0〉.
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A′ starts in the state PINI = 〈+1q0, 0〉 with the head at the leftmost cell,
labeled by q0a0 = q0� and containing the read-write symbol C = αq0,� =
unknown. This starts the evaluation of the computation tree of A, rooted
in 〈q0, 0〉. When this evaluation is over, the outcome is written as the final
value C ′ ∈ {accept, reject} in the leftmost cell. Next, A′ switches to the
respective state PACC = 〈res accept, μ−1,q0,q0〉 = 〈res accept, −2q0〉 or PREJ =
〈res reject, μ−1,q0,q0〉 = 〈res reject, −2q0〉, trying to back up with the result to
a nonexistent parent 〈q0, 0−1〉 to the left of the leftmost cell. At this moment,
the computation is halted.

As the finishing touch, we can eliminate transitions in which A′ does not move
its head (see, e.g., [10, p. 319]). The idea is quite simple: each chain of transitions
〈P1, L, C1〉→〈C2, 0, P2〉, . . . , 〈Pg−1, L, Cg−1〉→〈Cg, 0, Pg〉, 〈Pg, L, Cg〉→〈C, d, P 〉,
with d ∈ {−1,+1}, is replaced by 〈P1, L, C1〉→〈C, d, P 〉.

It is trivial to see that the size of the read-only worktape alphabet can be
bounded by ‖L‖ = ‖Q‖ · (‖Σ‖ + 2) ≤ O(n · ‖Σ‖), the size of the read-write
worktape alphabet by ‖C‖ = (3 · ‖Q‖) · (3 · ‖Q‖) + 3 = 9n2 + 3 ≤ O(n2), while
for the number of finite control states we get ‖P‖ = (3 · ‖Q‖+2) · (4 · ‖Q‖+1) =
12n2 + 11n + 2 ≤ O(n2). Another important complexity measure for A′ is the
number of visits at any worktape cell during the computation, bounded by

T = 5 · n2 − 4n + 1. (3)

To sum it up, we have derived the following:

Lemma 1. For each two-way alternating finite state automaton A with n states
accepting a language L ⊆ Σ∗, there exists a deterministic linear bounded automa-
ton A′ and a homomorphism H such that, for each w ∈ Σ∗, the machine
A′ accepts H(� w �) if and only if A accepts w. The machine A′ starts in the
initial state PINI at the leftmost worktape cell and returns the outcome by trying
to leave the worktape to the left, in the respective state PACC or PREJ.

The machine A′ uses a linear worktape with two tracks; the first track is
read-only; the second track is used in the standard read-write way. The read-
write alphabet is of size O(n2) and the number of finite control states is bounded
by O(n2). Moreover, A′ does not visit any cell along the worktape more than
O(n2) times in the course of the entire computation.

4 Two-Way Alternating Automata, Complemented

The deterministic two-way machine A′ constructed in the previous section uses
linear worktape space. However, A′ does not visit any cell along the worktape
more than T ≤ O(n2) times, which is a value depending on n, the number of
states in the original two-way alternating finite automaton A, but not increas-
ing in the length of the input. Here we shall convert A′ back into a two-way
alternating finite automaton again, this time accepting the complement of L(A).

Recall that w ∈ Σ∗ is rejected by A if and only if the string H(� w �) is
rejected by A′, where H is the homomorphism introduced by (2). The machine
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A′ starts in the initial state PINI with the worktape head at the leftmost symbol
and rejects by trying to leave the worktape to the left in the unique state PREJ.
Thus, to verify that A′ rejects, the alternating automaton A′′ verifies whether
there exists a backward path starting from PREJ and ending in PINI. A′′ guesses the
trajectory of this unique backward path existentially. Along this path, A′′ keeps
track of the current local configuration S = 〈k, qja, t, P, C〉, consisting of:

k, an auxiliary value, represented by the position of the head of A′′ along the input
tape containing �w� = �a1· · ·am� (on the worktape of A′, this corresponds
to a block of n cells, labeled by q0ak, q1ak, . . . , qn−1ak),

qja, the label in the current cell under the head of A′ along its worktape, satisfy-
ing a = ak (the current worktape position of A′ is thus completely determined
by 〈qj , k〉),

t, the current number of visits at the current worktape position, made by A′ along
the computation path by which it gets from the initial configuration to the
current configuration,

P, the current finite control state of A′, and
C, the current read-write contents in the worktape cell under the head.

The local configuration S is correct, if all values in S agree with some real
configuration along the computation path of A′ starting in the initial configura-
tion on H(� w �). This real configuration is unique, since A′ is deterministic and
loop-free, and hence each reachable configuration is completely determined by
the worktape head position and by the number of visits at this position. Along
the backward path, the current local configuration S is obtained by existential
guessing. Now, the machine A′′ has to verify whether S is correct. Before present-
ing the verification procedure, consider how the correctness of S can be derived
from other local configurations in a “near neighborhood”.

If S represents the initial configuration, then S = 〈0, q0�, 1, PINI, unknown〉.
Otherwise, there must exist S′ = 〈k′, qj′a′, t′, P ′, C ′〉, a correct local configura-
tion describing the previous configuration, one step of A′ back in time. S′ must
be consistent with S, which means that: (i) S′, S must agree with d′ ∈ {−1,+1},
the direction of the latest move of A′ along the worktape—the structure of this
worktape was presented by (2). Namely, if d′ = +1, then j′ = (j−1) mod n.
Now, if j > 0, then k′ = k, otherwise k′ = k−1. The case of d′ = −1 is sym-
metric: j′ = (j + 1) mod n and, if j < n−1, then k′ = k, otherwise k′ = k + 1.
(ii) Moreover, all data must agree with H, the set of transitions of A′. Namely,
if 〈P ′, qj′a′, C ′〉 → 〈C̃, d̃, P̃ 〉 is a transition in H, then d′ = d̃ and P = P̃ .

Second, if t > 1, the current worktape position had to be visited in the
past. Thus, there must exist S′

� = 〈k′
�, qj′

�
a′

�, t′�, P ′
�, C ′

�〉, a correct local con-
figuration describing the previous visit of A′ at the same worktape position,
i.e., with k′

� = k, qj′
�
a′

� = qja, and t′� = t−1. But then there must also exist
S� = 〈k�, qj�a�, t�, P�, C�〉, a correct local configuration describing the next
configuration, one step of A′ forward in time from S′

�. The local configuration
S′

� must be consistent with S� in the same way as S′ with S, that is, they
agree with d′

�, the direction of the head movement from S′
� to S�, and with H,
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the set of transitions. Moreover, d′
� = −d′, since A′ cannot leave the current

worktape cell to the right and then return back from the left, or vice versa. For
these reasons, k� = k′ and qj�

a� = qj′a′. In addition, t� ≤ t′, since A′ cannot
reach S′ earlier than S�, not excluding the possibility that S� = S′, with t� = t′.
Finally, if 〈P ′

�, qja,C ′
�〉 → 〈C̃, d̃, P̃ 〉 is a transition in H, then C̃ = C, since the

contents in the current worktape cell did not change along the path connecting
S′

� with S, not visiting the current worktape position in the meantime. This also
gives d̃ = d′

� = −d′.
Third, for each τ ∈ {t�, . . . , t′−1}, the computation path connecting S�

with S′ must pass through a configuration visiting the same worktape position
for the τ -th time. Thus, there must exist Sτ = 〈kτ , qjτ

aτ , τ, Pτ , Cτ 〉, a correct
local configuration with the head placed at the same position as in S′, with
kτ = k′ and qjτ

aτ = qj′a′. (If t� = t′, the set {t�, . . . , t′−1} is empty.) In
addition, A′ must move the head from Sτ in the direction −d′, since the path
connecting S′

� with S does not visit the same worktape position in the meantime.
Thus, if 〈Pτ , qj′a′, Cτ 〉 → 〈C̃, d̃, P̃ 〉 is a transition in H, then d̃ = −d′.

The situation is different for S with t = 1. That is, the current worktape
position has not been visited before. Also here there must exist S′ as specified
above, but here the latest executed step, from S′ to S, must move the head
of A′ in the direction d′ = +1, since the first visit to any cell must arrive from
the left. Moreover, C must be equal to αqj ,ak

= αqj ,a, the initial read-write
contents for the current cell.

Next, for each τ ∈ {1, . . . , t′−1}, the computation path connecting the initial
configuration with S′ must pass through a configuration visiting the same work-
tape position for the τ -th time. Thus, there must exist Sτ = 〈kτ , qjτ

aτ , τ, Pτ , Cτ 〉,
a correct local configuration with the head placed at the same position as in S′,
which gives kτ = k′ and qjτ

aτ = qj′a′. (If t′ = 1, the set {1, . . . , t′−1} is empty.)
In addition, A′ must move the head from Sτ in the direction −d′ = −1, since
A′ does not visit the worktape segment on the right of S′ before it reaches S′.

Summing up, a local configuration S with t > 1 is correct if and
only if there exist correct local configurations S′, S′

�, S� such that, for each
τ ∈ {t�, . . . , t′−1}, there exists a correct local configuration Sτ such that
S′, S′

�, S�, Sτ satisfy all requirements specified above. Thus, verifying the cor-
rectness of S can be reduced to the same kind of verification for S′, S′

�, S� and
St�

, . . . , St′−1, all of them backward in time along the path of A′. An analogous
reduction works for S with t = 1, using S′ and S1, . . . , St′−1 instead of S′, S′

�, S�

and St�
, . . . , St′−1.

By implementation of these ideas, we can construct a 2AFA A′′ representing
the local configuration S = 〈k, qja, t, P, C〉 by k, the head position along the
input, and by qja, t, P, C, kept in the finite state control. Since ‖Q‖ = n, T ≤
O(n2) by (3), and ‖P‖, ‖C‖ are bounded by O(n2), a local configuration can be
represented by the use of O(‖Σ‖ · n7) finite control states. For the given S, the
machine A′′ verifies whether S is correct.

This is done as follows. First, branching existentially, A′′ generates the local
configurations S′, S′

�, S�. Next, branching universally, A′′ generates a value
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τ ∈ {t�, . . . , t′−1}. After that, in each branch of the computation tree running in
parallel, A′′ branches existentially again and generates the local configuration Sτ .
Next, A′′ checks whether S′, S′

�, S�, and Sτ are consistent, i.e., whether they sat-
isfy all requirements, as specified above. Then, in parallel, the correctness of each
of them is verified in the same way, i.e., it becomes a new current local configu-
ration S, after “forgetting” all data that are no longer required and, if necessary,
updating the position of the head along the input tape. Even though these paral-
lel branches make existential guesses about the computation of A′ independently
of each other, the global consistency of all correct guesses is ensured by the fact
that A′ is deterministic, and hence the computation of A′ is unique. Any wrong
existential guess that contradicts this unique computation is overridden; such
guess leads to an alternating subtree that is rejecting. Now, along each branch
running in parallel and guessing correctly, A′′ traces the unique computation
of A′ backward in time to the initial local configuration, where the correctness
is decided deterministically, by comparing S with 〈0, q0�, 1, PINI, unknown〉. (We
skip narration for the case of t = 1, handled analogically.) Starting from a local
configuration that represents a moment when A′ is going to reject, A′′ can verify
whether the given input is rejected by the original machine A.

Recall that the local configuration S is represented by using O(‖Σ‖·n7) finite
control states, except for k, represented by the head position along the input.
All values in S′, S′

�, S� and in Sτ , where τ ∈ {t�, . . . , t′−1}, are also kept in the
finite state control, except for k′, k′

�, k�, kτ . However, since k′ ∈ {k−1, k, k + 1},
k′

� = k, and k� = kτ = k′, also these values can be kept in the finite state
control, relative to k. Moreover, utilizing qj′

�
a′

� = qja, qj�
a� = qjτ

aτ = qj′a′,
and t′� = t−1, we can bound the total number of states by O(‖Σ‖2 · n30).

Theorem 2. For each two-way alternating finite state automaton A with n
states accepting a language L ⊆ Σ∗, there exists a two-way alternating finite
state automaton A′′ with O(‖Σ‖2 · n30) states accepting the complement of the
original language.

5 Concluding Remarks

The contribution of the paper is a technique of handling infinite loops in two-
way alternating automata without the necessity of counting simulated steps.
This gives a polynomial complementing for 2AFAs independently of whether
they are halting, which solves a long-standing open problem. The cost of this
complementing is O(‖Σ‖2 · n30) states. This basic version can be improved,
which reduces the number of states, down to O(n7). Because of the page limit,
the improved version will appear in a full version of the paper only. The known
lower bound is Ω(n · log n) states [9]. This raises another open problem, namely,
the exact cost. At present, we have only a better cost for halting 2AFAs, by
trivially inverting the roles of existential and universal decisions and the roles of
accepting and rejecting states, using n states and preserving halting properties.

It would also be nice to obtain the complementary machine A′′ by a direct
construction, without taking a detour via DSpace(m).
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Despite Theorem 2, it is still open whether we can transform each n-state
2AFA to a halting 2AFA with a polynomial number of states. The lower bound
Ω(n·log n), derived in [9] for complementing, applies also to making the machine
loop-free, because of the linear cost of complementing for loop-free machines.

Several other problems are still open, if the number of alternations is
restricted. For a 2AFA making at most k−1 alternations between existential and
universal states, starting in an existential or universal state (2ΣkFA or 2ΠkFA,
respectively), the cost of complementing is exponential [6]: for each k ≥ 2, at
least 2Ω(n)−O(log k) states are required. But we still do not know whether, keep-
ing the number of states polynomial, we can convert a 2ΣkFA into a 2ΠkFA for
the complement. The same problem is open the other way round, from 2ΠkFA to
2ΣkFA. The most important is the case of k = 1, i.e., the cost of complementing
a two-way automaton making only existential choices by a two-way automaton
making only universal choices, or vice versa.

References

1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Boston (1976)

2. Berman, L., Chang, J., Ibarra, O., Ravikumar, B.: Some observations concerning
alternating Turing machines using small space. Inf. Process. Lett. 25, 1–9 (1987).
Corr. ibid. 27, p. 53 (1988)

3. Birget, J.: Partial orders on words, minimal elements of regular languages, and
state complexity. Theor. Comput. Sci. 119, 267–291 (1993)

4. Brassard, G., Bratley, P.: Fundamentals of Algorithmics. Prentice Hall, Upper
Saddle River (1996)

5. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. Assoc. Comput. Mach.
28, 114–133 (1981)

6. Geffert, V.: An alternating hierarchy for finite automata. Theor. Comput. Sci. 445,
1–24 (2012)

7. Geffert, V.: Alternating space is closed under complement and other simulations
for sublogarithmic space. Inf. Comput. 253, 163–178 (2017)

8. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite
automata. Inf. Comput. 205, 1173–1187 (2007)

9. Geffert, V., Okhotin, A.: Transforming two-way alternating finite automata to one-
way nondeterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z.
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Abstract. It is shown that languages definable by weak pebble
automata are not closed under reversal. For the proof, we establish a
kind of periodicity of an automaton’s computation over a specific set of
words. The periodicity is partly due to the finiteness of the automaton
description and partly due to the word’s structure. Using such a period-
icity we can find a word such that during the automaton’s run on it there
are two different, yet indistinguishable, configurations. This enables us
to remove a part of that word without affecting acceptance. Choosing an
appropriate language leads us to the desired result.

Keywords: Infinite alphabets · Weak pebble automata
Closure properties · Reversal

1 Introduction

While automata for words over finite alphabets are well-understood, a broad
research activity began very recently on automata for words over infinite alpha-
bets. Note, that for infinite alphabets, states alone are not sufficient, because
an automaton should be able to check equality of input symbols. This can be
done by (dynamically) marking a set of symbols of a fixed finite cardinality and
allowing equality tests with these symbols.

Finite-Memory Automata (FMA) [2,3] keep marked symbols in a finite num-
ber of registers and Pebble Automata (PA) [5,6] keep marked symbols under a
finite number of pebbles. Both are very restrictive models intended for recogniz-
ing an analog of regular languages over finite alphabets. The class of languages
recognizable by FMA and PA enjoys many of the properties of regular languages.
Languages recognizable by FMA are closed under standard language opera-
tions: intersection, union, concatenation, and iteration (Kleene star), whereas
languages recognizable by PA are closed under all boolean operations (i.e., union,
intersection and complementation), but are not closed under iteration. However,
the emptiness problem for FMA is decidable, whereas it is decidable for weak
2-PA only.
c© Springer International Publishing AG, part of Springer Nature 2018
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This paper deals with weak PA which, as mentioned above, are finite state
automata equipped with a finite number k of pebbles, numbered from 1 to k.
Each pebble can serve as the head of the automaton or point at a position in the
input word. The pebbles are placed on the input word in the stack discipline:
the first pebble placed is the last to be lifted. The first pebble placed is pebble 1.
One pebble can only point at one position and the most recently placed pebble
serves as the head of the automaton. The automaton moves from one state
to another depending on the symbol under the head pebble, the equality tests
among symbols under the pebbles, and the equality tests among the pebbles’
positions.

There are two main variants of PA, weak and strong and we focus on weak
PA (wPA). We show that, unlike languages accepted by strong PA, languages
accepted by wPA are not closed under reversal. In this paper we deal with
two languages - L⊆ and L⊇. Both languages consist of words of a special form
u$v, where $ is a special symbol (the separator) not occurring in u or v and
the symbols in each of these words are pairwise different. In L⊆, each symbol
occurring in u also occurs in v and, in L⊇, each symbol occurring in v also
occurs in u. Thus, L⊆ and L⊇ are the reversals of each other. We show that
the language L⊆ is accepted by wPA, whereas L⊇ is not. For this, for each
automaton accepting all words of L⊇, we construct a special word u$v �∈ L⊇,
yet still accepted by the automaton. In that word a prefix of u is “properly”
spread in v and its construction is based on a kind of periodicity of the sequence
of the states in the run of PA. In particular, the head pebble behaves periodically
when it sees symbols different from those under the other pebbles.

The paper is organized as follows. In Sect. 2 we present the definition of
wPA and state the separation theorem whose proof, for the case of 2-wPA, is
presented in Sect. 3.1 In Sect. 4 we show how to modify the languages L⊆ and
L⊇ to languages whose words do not contain a distinguished separator symbol.
We conclude the paper with a short remark that concerns the technique applied
for the proof of the separation theorem.

2 Weak Pebble Automata

As introduced in [5,6], Pebble Automata over infinite alphabets are finite state
machines equipped with a finite set of numbered pebbles. The computation of an
automaton on an input word starts when the lowest numbered pebble is located
at the leftmost position of the input and acts as the head of the automaton.
During the computation, an automaton can place (respectively, lift) a pebble on
(respectively, from) the input. It can also move the pebble that acts as the head
of the automaton. That pebble is the highest numbered pebble present on the
input, whereas the other pebbles serve as pointers at the input symbols. The use
of the pebbles is restricted by the stack discipline (pebble i can only be placed

1 The proof of the general case can be found in [7], and, hopefully, will also appear
elsewhere.
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when pebble i − 1 is present on the input word and pebble i can only be lifted
when pebble i + 1 is not present on the input word).

A transition depends on the current state, equality type of the symbols
under the placed pebbles and equality among the pebbles’ positions. The tran-
sition relation specifies change of state, the movement of the head and, possibly,
whether the head pebble is lifted or a new pebble is placed.

Definition 1. A deterministic one-way2 k-wPA over an infinite alphabet Σ, is
a tuple A = 〈S, s0, F, T 〉 whose components are as follows.

– S is a finite set of states,
– s0 ∈ S is the initial state,
– F ⊆ S is a set of accepting states,
– T is a finite set of transitions of the form α → β, where

• α is of the form (i, σ, P, V, s) or (i, P, V, s), i ∈ {1, . . . , k}, σ ∈ Σ, P, V ⊆
{1, . . . , i − 1}, and s ∈ S, and

• β is of the form (p, action), where p ∈ S and action ∈ {move, place,
lift},

such that α → β and α → β′ imply β = β′.

For a word w ∈ Σ∗, a configuration of A on w is of the form γ = [i, s, θ],
where i ∈ {1, . . . , k}, s ∈ S, and θ : {1, . . . , i} → {1, . . . , |w|} indicates the
pebble’s positions on the input word w. That is, θ(j) is the position of pebble j.
In what follows, we identify θ with the i-tuple (θ(1), . . . , θ(i)). Thus, i can be
recovered from θ, but it is convenient to include it into a configuration explicitly.

The initial configuration is γ0 = [1, s0, (1)]. That is, the run starts in the
initial state s0 with pebble 1 placed at the beginning of the input word. An
accepting configuration is of the form [i, s, θ], where s ∈ F .

Let w = w1 · · · wn ∈ Σ+. A transition (i, σ, P, V, s) → β applies to a config-
uration γ = [j, s′, θ] if

(1) i = j and s′ = s,
(2) P = {h < i : θ(h) = θ(i)},
(3) V = {h < i : wθ(h) = wθ(i)}, and
(4) wθ(i) = σ.

In the above definition, P is the set of pebbles placed at the same position
as the head pebble, V is the set of pebbles placed above the same symbol as the
head pebble, and the current symbol under the head pebble is σ.

A transition (i, P, V, s) → β applies to a configuration γ = [j, s′, θ],
if the above conditions (1)–(3) are satisfied and no transition of the form
(i, σ, P, V, s) → β applies to γ.

The transition relation �w on the set of all configurations is defined as fol-
lows:3 [i, s, θ] � [i′, s′, θ′] if and only if there is a transition α → (p, action) that
applies to [i, s, θ] such that s′ = p and the following holds.
2 It has been shown in [8] that alternating non-deterministic and deterministic one-way

wPA have the same expressive power.
3 We omit the subscript w of �, if it is clear from the context.
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– For all j < i, θ′(j) = θ(j),
– if action is move, then i′ = i and θ′(i) = θ(i) + 1,
– if action is place, then i′ = i + 1 and θ′(i + 1) = θ′(i) = θ(i),4 and
– if action is lift, then i′ = i−1 and θ′ is the restriction of θ on {1, . . . , i−1}.

The language L(A) of A consists of all words w such that γ0 �∗
w γ for an

accepting configuration γ.

Remark 1. Note that the accepted languages are quite symmetric: they contain
only finitely many “distinguished” symbols explicitly mentioned in the automa-
ton transitions and are invariant under any permutation of all other symbols of
the infinite alphabet Σ, cf. [3, Proposition 2].

Remark 2. It follows from the definition that wPA languages do not contain the
empty word ε, but the languages we deal with in this paper do not contain ε
either.

Next, we observe the following. To each configuration γ = [i, s, θ] of a deter-
ministic one-way wPA corresponds the vector ϕγ = (P1, . . . , Pi), where

Pj = {h < j : θ(h) = θ(j)}.

That is, Pj is the set of pebbles placed before pebble j which are at the same
position as pebble j in configuration γ.5

If γ � γ′, then ϕγ′
can be computed from ϕγ , according to the automaton

transitions. Namely, if ϕγ = (P1, . . . , Pi) and the transition applied to γ is α →
(p, action), then

– if action is move, then ϕγ′
= (P1, . . . , Pi−1, ∅),

– if action is lift, then ϕγ′
= (P1, . . . , Pi−1), and

– if action is place, then ϕγ′
= (P1, . . . , Pi, Pi ∪ {i}).

We can extend the set of states from S to

S ×
k⋃

i=1

{(P1, . . . , Pi) : Pj ⊆ {1, . . . , j − 1}, j = 1, . . . , i}

capturing in such a way the pebbles’ positions by the state. This allows us to
remove the P component from the left hand side of transitions. That is, we may
assume that the left hand side of a transition is of the form (i, σ, V, s) or (i, V, s).

Finally, by adding some extra states and modifying the transitions appropri-
ately, we can normalize the k-wPA behavior such that for each i ∈ {2, . . . , k} it
acts as follows, cf. [6].

4 That is, pebble i + 1 is placed at the position of pebble i, whereas in the strong PA
model this pebble is placed at the beginning of the input word, i.e., at the leftmost
position.

5 By definition, P1 = ∅ and, therefore, is redundant.
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– A pebble is never lifted, but falls down when moving from the right end of
the input. Thus, action lift is redundant.

– Only pebble 1 can enter a final state and only after it falls down from the
right end of the input. In such a case, the accepting configuration consists of
the corresponding accepting state only.

– Immediately after pebble i moves without falling down, pebble i+1 is placed.
– Immediately after pebble i falls down, pebble i − 1 moves.

In what follows, we denote the set of letters occurring in a word u by [u].
That is, if u = u1 · · · un, then [u] = {u1, . . . , un}.

Example 1 (Cf. [4, Example 3.1]). This example deals with the language Ldiff

consisting of all words in which every symbol from Σ occurs at most one time:

Ldiff = {σ1 · · · σn : n ≥ 1, σi �= $, for each i = 1, . . . , n, and
σi �= σj , whenever i �= j}.

This language is accepted by a 2-wPA that acts as follows. Pebble 1 advances
through the input from left to right. At each step it verifies that the symbol under
it is not $, and then pebble 2 scans the suffix to the right of the position of pebble
1 to verify that the input symbol under pebble 1 differs from all symbols in that
suffix.

Example 2. The language

Ldiff$diff = {u$v : u,v ∈ Ldiff}
is accepted by a 2-wPA that first, using the automaton from Example 1 scans u
and then, using the same automaton, scans v.

Example 3. The language

L⊆ = {u$v : u,v ∈ Ldiff and [u] ⊆ [v]}
is accepted by a 2-wPA that acts as follows. Pebble 1 advances through the input
to the separator $. After each move of pebble 1 on u, pebble 2 moves to $ and
then scans the suffix v of the input to find the symbol under pebble 1. Verifying
that both u and v are in Ldiff can be done by the automaton from Example 2.

Theorem 1. The language

L⊇ = {u$v : u,v ∈ Ldiff and [v] ⊆ [u]}
is not accepted by wPA.

The proof of Theorem1 for the case of 2-wPA (see footnote 1) is presented
in the next section.

Since L⊇ is the reversal of L⊆, by Example 3 and Theorem 1, the languages
accepted by wPA are not closed under reversal.
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3 Proof of Theorem1

As we have already mentioned above, the proof is restricted to the case of 2-wPA
only. For the proof of the general case, see [7, Sects. 6 and 7].6

For the rest of this paper, A = 〈S, s0, F, T 〉 is a 2-wPA and the positions of
pebble 1 in runs of A will be denoted by p1, possibly primed.

We construct a word w ∈ L⊇ such that the run of A on its prefix is periodic.
That is, the sequence of states in the run on the prefix is periodic. Using the
periodicity we can shrink this prefix without affecting acceptance. It should be
emphasized that periodicity alone is not sufficient for deleting a pattern from
the input. This is because each move of pebble 1 depends not only on the prefix
up to its position, but on the whole input word, see also the note in the end of
this section.

We start with examining the run of pebble 2.

Proposition 1. There exists a positive integer 
2 such that for all w ∈ Σ+,
w = w1 · · · wn, the following holds. If

[2, sj1 , (p1, j1)] � [2, sj1+1, (p1, j1 + 1)] � · · · � [2, sj2 , (p1, j2)], (1)

where wj �= wp1 for all j1 ≤ j ≤ j2, then the sequence of states sj1+�2 , . . . , sj2 ,
is periodic with period 
2.7

Proof. Let j1 and j2 satisfy the prerequisites of the proposition. The transitions
applied to the configurations in (1) are of the form (2, ∅, s) → (move, s′) for some
s, s′ ∈ S, because the moves of pebble 2 do not depend on wp1 .

Since A is deterministic, for some positive integers msj1
, 
sj1

≤ |S|, after
msj1

steps from wj1, pebble 2 becomes periodic with a period 
sj1
. Thus, the

proposition holds for 
2 = |S|!, because msj1
≤ |S| ≤ |S|! and 
sj1

≤ |S| implies
that 
sj1

divides |S|!.
Corollary 1. Let z′ = xy′ and z′′ = xy′′, x = x1 · · · xn, where

[x] ∩ ([y′] ∪ [y′′]) = ∅,

|y′|, |y′′| ≥ 
2,

and

|y′′| ≡�2 |y′|.8
If

[2, s, (p, |x|)] �z ′ [2, t, (p, |xy′|)], (2)

then
[2, s, (p, |x|)] �z ′′ [2, t, (p, |xy′′|)]. (3)

6 Note that in [7] the pebbles are placed in the reversed order, i.e., the computation
start with pebble k and pebble i is placed after pebble i + 1, i = 1, . . . , k − 1.

7 Recall that we identify θ with the tuple of its values and, by the observation in the
previous section, we omit the P -component of transitions.

8 As usual, ≡�2 is the congruence modulo l2.
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Proof. Let y′ = y′
1y

′
2 and y′′ = y′′

1y
′′
2 , where

y′
1 = y′′

1 = 
2. (4)

It follows from (2) that for some state s1

[2, s, (p, |x|)] �z ′ [2, s1, (p, |xy′
1|)] (5)

and
[2, s1, (p, |xy′

1|)] �z ′ [2, t, (p, |xy′
1y

′
2|)] = [2, t, (p, |xy′|)]. (6)

It follows from (5) that

[2, s, (p, |x|)] �z ′′ [2, s1, (p, |xy′′
1 |)], (7)

because the moves of the automaton do not depend on xp – the symbol under
pebble 1, and it follows from (6) that

[2, s1, (p, |xy′′
1 |)] �z ′′ [2, t, (p, |xy′′

1y
′′
2 |)] = [2, t, (p, |xy′′|)], (8)

because, by Proposition 1, (4) implies that the automaton is periodic with period

2 from state s1 and

|y′
2| = |y′| − |y′

1| ≡�2 |y′′| − |y′′
1 | = |y′′

2 |.

Combining (7) and (8), we obtain (3).

Corollary 2. Let w,w′ ∈ Ldiff$diff, w = u′v$x and w′ = u′u′′v$x be such
that |u′′| ≡�2 0 and |v| ≥ 
2. If

[1, s0, (1)] �∗
w [1, t, (|u′|)],

then
[1, s0, (1)] �∗

w ′ [1, t, (|u′|)].
Proof. It suffices to show that for any i < |u′|

[1, s, (i)] �∗
w [1, t, (i + 1)] (9)

implies
[1, s, (i)] �∗

w ′ [1, t, (i + 1)] (10)

from which the corollary follows by a straightforward induction on the length
of u′.

We break the automaton run (9) into three parts:

[1, s, (i)] �w [2, s1, (i, i)] �∗
w [2, s2, (i, |u′|)], (11)

[2, s2, (i, |u′|)] �∗
w [2, s3, (i, |u′v$|)], (12)
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and

[2, s3, (i, |u′v$|)] �∗
w [2, s4, (i, |w|)] �w [1, s5, (i)] �w [1, t, (i + 1)], (13)

where the automaton enters configuration [1, s5, (i)] after pebble 2 falls down
from the right end of the input entering state s5.

From (11), by the same moves of the automaton,

[1, s, (i)] �w ′ [2, s1, (i, i)] �∗
w ′ [2, s2, (i, |u′|)] (14)

and from (12), by Corollary 1 with p, x, y′, and y′′ being i, u′, v, and u′′v,
respectively,

[2, s2, (i, |u′|)] �∗
w ′ [2, s3, (i, |u′u′′v$|)]. (15)

Finally, from (13), by the same moves of the automaton,

[2, s3, (i, |u′u′′v$|)] �∗
w ′ [2, s4, (i, |w|)] �w ′ [1, s5, (i)] �w ′ [1, t, (i + 1)], (16)

because both w and w′ have the same suffix x and in both runs pebble 1 is
placed above the same symbol.

Combining (14)–(16), we obtain (10).

Definition 2. Let 
 be a positive integer and let u,v ∈ Ldiff, u = u1 · · · um and
v = v1 · · · vn, be such that [u] ⊆ [v]: ui = vji , i = 1, . . . ,m. We say that u is

-spread in v, if for all i = 1, . . . ,m, ji > ji−1 and ji ≡� ji−1, where j0 = 0.

Proposition 2. Let w = uv$x ∈ Ldiff$diff, where u is 
2-spread in x, and let
1 < p′

1 < p′′
1 ≤ |u|. If

[2, s, (p′
1, |uv$|)] �∗ [1, t, (p′

1)], (17)

then

[2, s, (p′′
1 , |uv$|)] �∗ [1, t, (p′′

1)].9 (18)

Proof. Let

– u = u1 · · · um and x = x1 · · · xn, and
– up′

1
= xj′ and up′′

1
= xj′′ .

Then j′ < j′′ and it follows from (17) that for some states t′ and t′′,

[2, s, (p′
1, |uv$|)] �∗ [2, t′, (p′

1, |uv$| + j′)] � [2, t′′, (p′
1, |uv$| + j′ + 1)] (19)

and
[2, t′′, (p′

1, |uv$| + j′ + 1)] �∗ [1, t, (p′
1)]. (20)

9 The automaton enters configurations [1, t, (p′
1)] and [1, t, (p′′

1 )] after pebble 2 falls
down from the right end of the input entering state t.
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Since u is 
2-spread in x, both j′ and j′′ are divisible by 
2. Thus, it follows
from (19), by Proposition 1, that

[2, s, (p′′
1 , |uv$|)] �∗ [2, t′, (p′′

1 , |uv$| + j′′)] � [2, t′′, (p′′
1 , |uv$| + j′′ + 1)], (21)

because xj′ = up′
1

and xj′′ = up′′
1
.

Finally, since

(|w| − (|uv$| + j′ + 1)) − (|w| − (|uv$| + j′′ + 1)) = j′′ − j′ ≡�2 0,

it follows from (20), by Proposition 1, that

[2, t′′, (p′′
1 , |uv$| + j′′ + 1)] �∗ [1, t, (p′′

1)]. (22)

Combining (21) and (22), we obtain (18).

Corollary 3. Let w = uv$x ∈ Ldiff$diff be such that u is 
2-spread in x and
|v| ≥ 
2, and let p′

1 < p′′
1 ≤ |u| be equivalent modulo 
2. If

[2, s, (p′
1, p

′
1)] �∗ [2, t, (p′

1 + 1, p′
1 + 1)],

then
[2, s, (p′′

1 , p′′
1)] �∗ [2, t, (p′′

1 + 1, p′′
1 + 1)].

Proof. Let s1, s2, and s3 be the states such that

[2, s, (p′
1, p

′
1)] �∗ [2, s1, (p′

1, |uv$|)] �∗ [1, s2, (p′
1)]

� [1, s3, (p′
1 + 1)] � [2, t, (p′

1 + 1, p′
1 + 1)].

Then, by Propositions 1 and 2,

[2, s, (p′′
1 , p′′

1)] �∗ [2, s1, (p′′
1 , |uv$|)] �∗ [1, s2, (p′′

1)]
� [1, s3, (p′′

1 + 1)] � [2, t, (p′′
1 + 1, p′′

1 + 1)].

Proposition 3 below shows that the behavior of pebble 1 on words uv$x ∈
Ldiff$diff such that u is 
2-spread in x is also periodic.

Proposition 3. For each w = uv$x ∈ Ldiff$diff such that u is 
2-spread in
x and |v| ≥ 
2, there exist positive integers mw and 
w for which the following
holds. If

[2, sj1 , (p1, p1)] �∗ [2, sj2 , (p1 + 1, p1 + 1)] �∗ · · · �∗ [2, sj|u |−p1
, (|u|, |u|)],

then the sequence of states sp1+mw
, . . . , s|u |−p1 is periodic with period 
w .

Proof. Let ti, i = 1, . . . , |u| − p1, be such that

[2, sji , (p1 + i, p1 + i)] �∗ [2, ti, (p1 + i, |uv$|)].
That is, ti is the state in which pebble 2 arrives at $, when pebble 1 is placed
above the (p1 + i)th symbol of u.
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Let mw = 
2|S| + 1. Since there are 
2 equivalence classes modulo 
2 and
the number of different states in the sequence is bounded by |S|, there are two
indices j1 and j2,

p1 ≤ j1 < j2 ≤ p1 + mw

such that j1 ≡�2 j2 and tj1 = tj2 .
We put 
w = j2 − j1. It follows from Corollary 3 by a straightforward induc-

tion on i = 0, 1, . . . (with s = tj1+i, t = tj1+i+1, p′
1 = j1 + i and p′′

1 = j2 + i)
that

[2, tj1+i, (j1 + i, j1 + i)] �∗ [2, tj1+i+1, (j1 + i + 1, j1 + i + 1)]

implies

[2, tj2+i, (j2 + i, j2 + i)] �∗ [2, tj2+i+1, (j2 + i + 1, j2 + i + 1)].

Thus, the proposition follows from the equality tj1 = tj2 .

Corollary 4. There exist a positive integer 
1 such that the following holds. Let
w = uv$x ∈ Ldiff$diff, where u is 
2-spread in x and |v| ≥ 
2. If

[2, sj1 , (p1, p1)] �∗ [2, sj2 , (p1 + 1, p1 + 1)] �∗ · · · �∗ [2, sj|u |−p1
, (|u|, |u|)],

then the sequence of states sp1+�1 , . . . , s|u |−p1 is periodic with period 
1.

Proof. It follows from the proof of Proposition 3 that for each w = uv$x ∈
Ldiff$diff such that u is 
2-spread in x, mw , 
w ≤ 
2|S| + 1. Thus, we can put

1 = (
2|S| + 1)!, because the latter is divisible by both mw and 
w for all
above w.

At last, we have arrived at the proof of Theorem1.

Proof (of Theorem 1). Assume to the contrary that L(A) = L⊇. Let

w′ = u′u′′v$x ∈ L⊇ ∩ L⊆,10

where u′ is 
2-spread in x, |v| ≥ 
2, and |u′| = |u′′| = 
1; and let w = u′v$x.
Since 
1 ≡�2 0, by Corollary 2,

[1, s0, (1)] �∗
w [1, t, (|u′|)]

implies
[1, s0, (1)] �∗

w ′ [1, t, (|u′|)]
and, since |u′| = |u′′| = 
1, by Corollary 4 with p1 = 1,

[1, s0, (1)] �∗
w ′ [1, t, (|u′u′′|)].

In addition, the runs of A from state t on the (same) suffix v$x of w and
w′ are the same. In particular, they terminate in the same state. However, w′

belongs to L⊇, whereas w does not.

Note that periodicity of pebble 1 alone (Corollary 4) without periodicity of
pebble 2 (Corollary 2) is not sufficient for deleting the pattern u′′ from w′. This
is because pebble 1 has to arrive at position |u′| in the same state in the runs
of A on w and w′ and these runs depend on the whole inputs.
10 Thus, both u′u′′v and x are in Ldiff and [u′u′′v] = [x].
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4 Removing the Distinguished Separator Symbol $

In this section we show how to modify the languages L⊆ and L⊇ to languages
whose words do not contain a distinguished separator symbol.

Let
L′

⊆ = {σuσv : σu, σv ∈ Ldiff and [u] ⊆ [v]}
and

L′
⊇ = {σuσv : σu, σv ∈ Ldiff and [v] ⊆ [u]}.

Then L′
⊇ is the reversal of L′

⊆.
The language L′

⊆ is accepted by a 3-wPA that acts as follows. Pebble 1 at the
leftmost position is used to distinguish the second σ of the input word. Pebble
2 advances through the input to the second σ. After each move of pebble 2 on
u, pebble 3 moves to the second σ and then scans the suffix v of the input to
find the symbol under pebble 2. At the end of the computation, pebble 1 moves
to the end of the input to accept. Verifying that both u and v are in Ldiff can
be done by the automaton from Example 2, cf. Example 3.

It can be readily seen that each automaton accepting L′
⊇ modifies to an

automaton accepting L⊇. Thus, it follows from Theorem 1 that L′
⊇ is not

accepted by wPA.
Alternatively, similarly to the proof of Theorem1, one can show that L′

⊇ is
not accepted by wPA that is normalized as follows.

– A pebble is never lifted, but falls down when moving from the right end of
the input.

– Pebble 1 never leaves the leftmost position.
– Only pebble 2 can enter a final state and only after it falls down from the

right end of the input.
– Immediately after pebble i moves without falling down, pebble i + 1 is placed.
– Immediately after pebble i falls down, pebble i − 1 moves.

In such a way, transitions of the form

(i, $, V, s) → β

in the proof of Theorem1 are replaced with transitions of the form

(i + 1, {1} ∪ {j + 1 : j ∈ V }, s) → β.

5 Concluding Remark

It seems that the “shrinking” technique applied for the proof of Theorem1 is
quite appropriate for dealing with computations over infinite alphabets. For
example, shrinking the input (by totally different tools) was used in [1] for prov-
ing decidability of languages accepted by certain variants of FMA.
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Abstract. We consider structural parameterizations of the fundamen-
tal dominating set problem and its variants in the parameter ecology
program. We give improved fixed-parameter tractable (FPT) algorithms
and lower bounds under well-known conjectures for dominating set in
graphs that are k vertices away from a cluster graph or a split graph.
These are graphs in which there is a set of k vertices (called the mod-
ulator) whose deletion results in a cluster graph or a split graph. We
also call k as the deletion distance (to the appropriate class of graphs).
Specifically, we show the following results. When parameterized by the
deletion distance k to cluster graphs,

– we can find a minimum dominating set in O∗(3k) time (O∗ notation
ignores polynomial factors of input). Within the same time, we can
also find a minimum independent dominating set (IDS) or a mini-
mum efficient dominating set (EDS) or a minimum total dominating
set. These algorithms are obtained through a dynamic programming
approach for an interesting generalization of set cover which may be
of independent interest.

– We complement our upper bound results by showing that at least for
dominating set and total dominating set, O∗((2−ε)k) time algorithm
is not possible for any ε > 0 under, what is known as, Set Cover
Conjecture. We also show that most of these variants of dominating
set do not have polynomial sized kernel.

The standard dominating set and most of its variants are NP-hard or
W[2]-hard in split graphs. For the two variants IDS and EDS that are
polynomial time solvable in split graphs, we show that when parameter-
ized by the deletion distance k to split graphs,

– IDS can be solved in O∗(2k) time and we provide an Ω(2k) lower
bound under the strong exponential time hypothesis (SETH);

– the 2k barrier can be broken for EDS by designing an O∗(3k/2) algo-
rithm. This is one of the very few problems with a runtime better
than O∗(2k) in the realm of structural parameterization. We also
show that no 2o(k) algorithm is possible unless the exponential time
hypothesis (ETH) is false.
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1 Introduction

1.1 Motivation

The Dominating Set problem is one of the classical NP-Complete graph theo-
retic problems. It asks for a minimum set of vertices in a graph such that every
vertex is either in that set or has a neighbor in that set. It, along with several
variations including independent domination, total domination, efficient dom-
ination, connected domination, total perfect domination, threshold domination
are well-studied in all algorithmic paradigms including parameterized complex-
ity and approximation and in structural points of view. All of these versions
are hard for the parameterized complexity class W[1] in general graphs when
parameterized by solution size [12] and hence is unlikely to be fixed-parameter
tractable (See [8] for more details).

One of the goals in parameterized complexity is to identify parameters under
which (even hard) problems are fixed-parameter tractable. This is also of practi-
cal interest as often there are some small parameters (other than solution size)
that capture important practical inputs. This has resulted in the parameter ecol-
ogy program where one studies problems under a plethora of parameters and
recently there has been a lot of active research [4,13,18] in this area. In par-
ticular, identifying a parameter as small as possible, under which a problem is
fixed-parameter tractable or has a polynomial sized kernel is an interesting direc-
tion of research. We continue this line of research and consider parameterizations
of Dominating Set variants that are more natural and functions of the input
graph. Structural parameterization of a problem is where the parameter is a
function of the input structure rather than the standard output size. To the best
of our knowledge, this is the first serious study of structural parameterization of
any version of the dominating set problem.

Our parameter of interest is the ‘distance’ of the graph from a natural class of
graphs. Here by distance we mean the number of vertices whose deletion results
in the class of graphs. Note that if dominating set is NP-hard in a graph class,
then it will continue to be NP-hard even on graphs that are k away from the
class, even for constant k (in particular for k = 0) and hence is unlikely to be
fixed-parameter tractable. Hence it is natural to consider graphs that are not
far from a class of graphs where Dominating Set is polynomial time solvable.
Our case study considers two such special graphs: cluster graphs where each
connected component is a clique and split graphs where the vertex set can be
partitioned into a clique and an independent set. In the former, all the variants
of dominating set we consider are polynomial time solvable, while in the latter
class of split graphs, we consider independent and efficient dominating set that
are polynomial time solvable. We call the set of vertices whose deletion results
in a cluster graph and split graph as cluster vertex deletion set (CVD) and split
vertex deletion set (SVD) respectively.

Finally, we remark that the size of minimum CVD and minimum SVD are
at most the size of a minimum vertex cover in a graph, which is a well-studied
parameterization in the parameter-ecology program [13].
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1.2 Definitions, Our Results and Organization of the Paper

We start with describing the variants of dominating set we consider in the paper.
A subset S ⊆ V (G) is a dominating set if N [S] = V (G). If S is an independent
set, then S is an independent dominating set. It is called an efficient dominating
set if for every vertex v ∈ V , |N [v] ∩ S| = 1. Note that an efficient dominating
set may not exist for a graph (for example, for a 4-cycle). If for every vertex v,
|N(v)∩S| ≥ r, S is a threshold dominating set with threshold r. When r = 1, S
is a total dominating set. Note that for dominating set, the vertices in S do not
need other vertices to dominate them, but they do in a total dominating set. For
more on these dominating set variants, see [15]. We will often denote dominating
set, efficient dominating set, independent dominating set, total dominating set
and threshold dominating set by DS, EDS, IDS, TDS and ThDS respectively in
the rest of the article. When we say that a graph G is k-away from a graph in a
graph class, what we mean is that there is a subset S of k vertices in the graph
such that G\S belongs to the class.

Now we describe the main results in the paper (See Table 1 for a summary).
When parameterized by the deletion distance k to cluster graphs,

– we can find a minimum dominating set in O∗(3k) time. Within the same
time, we can also find a minimum independent dominating set (IDS) or a
minimum efficient dominating set (EDS) or a minimum total dominating set.
We also give an O∗((r + 2)k) algorithm for minimum threshold dominating
set with threshold r. These algorithms are obtained through a dynamic pro-
gramming approach for interesting generalizations of set cover which may be
of independent interest. These results are discussed in Sect. 4.1.

– We complement our upper bound results by showing that for dominating
set and total dominating set, O∗((2 − ε)k) algorithm is not possible for any
ε > 0 under what is known as Set Cover Conjecture. We also show that
for IDS, O∗((2 − ε)k) algorithm is not possible for any ε > 0 under the
Strong Exponential Time Hypothesis (SETH) and for EDS no 2o(k) algorithm
is possible unless the Exponential Time Hypothesis (ETH) is false. It also
follows from our reductions that dominating set, TDS and IDS do not have
polynomial sized kernels unless NP ⊆ coNP/poly. These results are discussed
in Sect. 4.2.

The standard dominating set and most of its variants are NP-hard or W[2]-hard
in split graphs [20]. For the two variants IDS and EDS that are polynomial
time solvable in split graphs, we show that when parameterized by the deletion
distance k to split graphs,

– IDS can be solved in O∗(2k) time and provide an O∗((2−ε)k) lower bound for
any ε > 0 assuming SETH. We also show that IDS-SVD has no polynomial
kernel unless NP ⊆ coNP/poly.

– The 2k barrier can be broken for EDS by designing an O∗(3k/2) algorithm.
This is one of the very few problems with a runtime better than O∗(2k) in the
realm of structural parameterization. We also show that no 2o(k) algorithm
is possible unless the ETH is false. These results are discussed in Sect. 5.
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Table 1. Summary of results. Results marked � indicate our results.

Cluster deletion set Split deletion set

Algorithms Lower bounds Algorithms Lower bounds

DS, TDS O∗(3k) � O∗((2 − ε)k) and
No polynomial kernel �

para-NP-hard

IDS O∗(3k) � O∗((2 − ε)k) and
No polynomial kernel

O(2k) � O∗((2 − ε)k) and
No polynomial kernel

EDS O∗(3k) � O∗(2o(k)) � O∗(3k/2) � O∗(2o(k)) �

ThDS O∗((r + 2)k) � No polynomial kernel � para-NP-hard

2 Preliminaries and Notations

We use [n] to denote the set {1, . . . , n}. We use standard terminologies of graph
theory book by Diestel [10]. For a graph G = (V,E) we denote n as the number
of vertices and m as the number of edges. For a vertex v ∈ V (G), we denote
NG(v) = {(u ∈ V (G)|(u, v) ∈ E(G)} as the open neighborhood of v. When
there is no confusion, we drop the subscript G. By N [v] we denote the close
neighborhood of v, i.e. N [v] = N(v) ∪ {v}. For S ⊆ V (G), we denote N(S) =
{v ∈ V (G)|∃u ∈ S such that (u, v) ∈ E(G)}\S. And we denote N [S] = N(S)∪S.
By N=2(v) we denote the set of vertices that are at minimum distance exactly
two from v. For S ⊆ V (G), we denote G[S] to be the subgraph induced on S.
We say that for vertices u, v ∈ V , u dominates v if v ∈ N(u).

We give a general template of formal definition of problems as follows:

P-Q Parameter: |S|
Input: An undirected graph G = (V,E), S ⊆ V (G) which is a Q and an
integer �.
Question: Is there a P in G of size atmost �?

where P represents an acronym of a dominating set variant among DS, EDS,
IDS, TDS and ThDS and Q that of a modulator among CVD and SVD. For
example, in the EDS-SVD problem we are interested in finding an EDS of size
atmost � given a k sized SVD where k is the parameter.
We use the following conjectures and theorems to prove some of our lower
bounds.

Conjecture 1 (Strong Exponential Time Hypothesis (SETH)) ([17]). There is no
ε > 0 such that ∀q ≥ 3, q-CNFSAT can be solved in O∗((2 − ε)n) time where n
is the number of variables in input formula.

Conjecture 2 (Exponential Time Hypothesis (ETH)) ([16,17]). 3-CNF-SAT can-
not be solved in O∗(2o(n)) time where the input formula has n variables and m
clauses.
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Conjecture 3 (Set Cover Conjecture (SCC)) ([7]). There is no ε > 0 such that
SET COVER can be solved in O∗((2 − ε)n) time where n is the size of the
universe.

Theorem 1 ([11]). SET-COVER parameterized by the universe size does not
admit any polynomial kernel unless NP ⊆ coNP/poly.

Theorem 2 ([14]). CNF-SAT parameterized by the number of variables
admits no polynomial kernel unless NP ⊆ coNP/poly.

3 Related Work

Clique-width [6] of a graph is a parameter that measures how close to a clique
the graph is. Courcelle et al. [5] showed that for a graph with clique-width at
most k, any problem expressible in MSO1 (monadic second order logic of the
first kind) has an FPT algorithm with k as the parameter if a k-expression for
the graph (a certificate showing that the clique-width of the graph is at most k)
is also given as input. The clique-width of a graph that is k away from a cluster
graph can be shown to be k + 1 (with a k-expression) and all the dominating
set variants discussed in the paper can be expressed in MSO1 and hence can
be solved in FPT time in such graphs. But the running time function f(k) in
Courcelle’s theorem is huge (more than doubly exponential). Oum et al. [19]
gave an O∗(kO(k)) algorithm to solve the minimum dominating set for clique-
width k graphs without assuming that the k-expression is given. There is a
O∗(4k) algorithm by Bodlaender et al. [2] for finding minimum dominating set
in graphs with clique-width k when the k-expression is given as input. It is easy
to construct the k-expression for graphs k away from a cluster graph and hence
we have a O∗(4k) algorithm. The algorithms we give in Sect. 4, not only improve
the running time but also are applicable for other variants of dominating set.

4 Dominating Set Variants Parameterized by CVD Size

4.1 Upper Bounds

In cluster graphs, a dominating set simply picks an arbitrary vertex from each
clique. This dominating set is also efficient and independent. For threshold dom-
inating set with threshold r, we arbitrarily pick r + 1 vertices from every clique
if possible so that every vertex has r neighbors excluding itself.

We can assume that the CVD set S of size k is given with the input. If not,
we can use the algorithm by Boral et al. [3] that runs in O∗(1.92k) time and
either outputs a CVD set of size at most k or says that no such set exists.

We first look at the problem DS-CVD which is NP-hard as any graph having
an edge has a CVD set of at most n − 2.

Theorem 3. DS-CVD can be solved in O∗(3k) time.
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Proof. Our FPT algorithm starts with making a guess S′ for the solution’s inter-
section with S. We delete vertices in N [S′] ∩ S as they have been already domi-
nated. We will keep the vertices of N [S′] ∩ (V \S) as they can be used to cover
the remaining vertices of S.

Let us denote the cliques in G′ = G\S as C1, C2, . . . , Cq where q ≤ n − k.
We label the vertices of G′ as v1, v2, . . . , v|V \S| such that the first l1 of them
belong to the clique C1, the next l2 of them belong to clique C2 and so on for
integers l1, l2, . . . , lq. Note that for some cliques, all the vertices of the clique gets
dominated by S′. We are left with the problem of picking the minimum number
of vertices from the cliques to dominate, the vertices of the cliques that are not
yet dominated (by S′), and S\N [S′]. We abstract out the problem below.

DS-disjointcluster Parameter: |S|
Input: An undirected graph G = (V,E), S ⊆ V such that every connected
component of G\S is a clique, a (0, 1) vector (f1, f2, . . . , fq) corresponding
for the cliques (C1, . . . , Cq) and an integer �.
Question: Does there exist a subset T ⊆ V \S of size �, that dominates all
vertices of S and all vertices of all cliques Ci with flags fi = 1?

For the problem we started off with, the set S in this new formulation is the
remaining vertices of S after deleting N [S′] ∩ S. Also fi is set to 1 if the clique
Ci has not been dominated by S′ and is set to 0 otherwise.

Lemma 1. DS-disjointcluster can be solved in O∗(2|S|) time.

Proof. We formulate this problem instance as a variant of SET-COVER
instance. Define the universe U as the set S. For each vertex v ∈ V \S, we define
a set Sv = N(v) ∩ S. Define the family of sets F = {Sv|v ∈ V \S}. We say that
a subfamily F ′ ⊆ F covers a subset W ⊆ U if for every element w ∈ W , there
exist some set in F ′ containing w. Now a SET-COVER solution F ′ ⊆ F for
(U,F) will cover all the elements of S. In the graph, the vertices corresponding to
the sets in F ′ will dominate all the vertices in S. But DS-disjointcluster has
the additional requirement of dominating the vertices of every clique Ci with
fi = 1 as well. This means from every such clique at least one vertex has to
be picked. With this in mind, we define for each clique Ci a collection of sets
Bi = {Sv : v ∈ Ci}. We call these sets as blocks. Hence the number of blocks
and the number of cliques in G\S are the same. We order the sets in the block
in the order of the vertices v1, . . . , v|V \S|. We have the following problem which
is a slight generalization of SET-COVER.

Set-Cover with Partition Parameter: |U | = k
Input: A universe U , a family of sets F = {S1, . . . , Sm}, a partition B =
(B1,B2, . . . ,Bq) of F , a (0, 1) vector (f1, f2, . . . , fq) corresponding to each
block in the partition (B1,B2, . . . ,Bq) and an integer �.
Question: Does there exist a subset F ′ ⊆ F of size � covering U and from
each block Bi with flags fi = 1 at least one set is picked?
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Lemma 2 (�).1 Set-Cover with Partition can be solved in O∗(2|U |) time.

We construct the Set-Cover with Partition instance from the DS-
disjointcluster instance as discussed above. It can be easily seen that there
exists a solution of size � in DS-disjointcluster instance if and only if
there exists a solution of size � in Set-Cover with Partition instance. In
Lemma 2, we solve Set-Cover with Partition via dynamic programming.
And |S| = |U |. This completes the proof. 
�

Now for each guess S′ ⊆ S with |S′| = i, we construct the Set-Cover with
Partition instance with |U | ≤ k − i and solve it with running time O∗(2k−i).

Hence the total running time is
k∑

i=1

(
k
i

)O∗(2k−i) which is O(3knO(1)). 
�
We show that with some careful modifications to the above dynamic pro-

gramming algorithm, efficient FPT algorithms for minimum EDS, IDS, TDS and
ThDS when parameterized by the size of cluster deletion set can be obtained.

Theorem 4 (�). EDS-CVD, TDS-CVD and IDS-CVD can be solved in
O∗(3k) time. ThDS-CVD can be solved in O∗((r + 2)k) time.

4.2 Lower Bounds

Lemma 3 (�). There is a polynomial time algorithm that takes an instance
(U,F , �) of SET-COVER and outputs an instance (G, �) of DS-CVD (or TDS-
CVD) such that G has a cluster vertex deletion set with exactly |U | vertices, such
that (U,F , �) has a set cover of size � if and only if G has a (total) dominating
set of size �.

The following theorem follows from the above lemma and Conjecture 3.

Theorem 5 (�). DS-CVD and TDS-CVD cannot be solved in O∗((2 − ε)k)
running time for any ε > 0 unless Set Cover Conjecture fails.

The following theorem follows from Theorem 1 and Lemma 3.

Theorem 6 (�). DS-CVD, TDS-CVD and ThDS-CVD do not have polyno-
mial sized kernels unless NP ⊆ coNP/poly.

Note that the proof idea of Theorem 6 does not work for IDS-CVD. To
show O∗((2− ε)k) lower bound for IDS-CVD under SETH, we use the following
theorem and an observation. Here MMVC-VC problem refers to the problem
of finding a maximum sized minimal vertex cover (MMVC) in a graph parame-
terized by the size of a given vertex cover (VC). Recall that a vertex cover in a
graph is a subset of vertices that covers all edges.

1 Due to lack of space, the proofs of Theorems, Lemmas, Observations, Safeness of
Reduction Rules marked � and some omitted details will appear in the full version.
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Theorem 7 ([21]).2 Unless SETH fails, MMVC-VC cannot be solved in
O∗((2−ε)k) time. Moreover, MMVC-VC does not admit polynomial sized kernel
unless NP ⊆ coNP/poly.

Observation 1 (�). If T is a minimal vertex cover of the graph G, then
V (G)\T is an independent dominating set in G. Furthermore, if T is a maxi-
mum minimal vertex cover, then V (G)\T is a minimum independent dominating
set.

From Observation 1, we know that the complement of a maximum minimal
vertex cover is a minimum independent dominating set. Also, any vertex cover is
a cluster vertex deletion set. So, from Theorem 7, we have the following result.

Corollary 1 (�). IDS-CVD cannot be solved in O∗((2−ε)k) time for any ε > 0
unless SETH fails. Moreover, IDS-CVD does not have any polynomial kernel
unless NP ⊆ coNP/poly.

For EDS-CVD, we can only prove a weaker lower bound of 2o(k) time assuming
ETH, but we give the lower bound for EDS parameterized by even a larger
parameter, i.e. the size of a vertex cover. We have the following results.

Theorem 8 (�). EDS-VC cannot be solved in 2o(|S|) time unless ETH fails.

Corollary 2. EDS-CVD cannot be solved in 2o(|S|) time unless ETH fails.

5 Dominating Set Variants Parameterized by SVD Size

In this section, we address the parameterized complexity of dominating set vari-
ants when parameterized by the size of a given SVD set S. Note that DS and
TDS are NP-hard on split graphs [20]. Hence we focus only on EDS and IDS.

We assume that S is given with the input. Otherwise given (G, k), we use an
O∗(1.27k+o(k)) algorithm due to Cygan and Pilipczuk [9] to find a set of vertices
of size at most k whose removal makes G into a split graph.

5.1 EDS and IDS Parameterized by SVD Size

First, we provide a simple algorithm for IDS-SVD. The idea is to make a guess
for the solution within the SVD and solve the resulting disjoint problem in
polynomial time. It turns out that it works for EDS-SVD too.

Theorem 9 (�). EDS-SVD and IDS-SVD can be solved in O∗(2k) time.

2 Note that the SETH based lower bound result and the result ruling out the existence
of polynomial kernel in this paper use different constructions.
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5.2 Lower Bounds for IDS and EDS

We know that any vertex cover is a split vertex deletion set. So, we have the
following corollary as a consequence of Theorem 7.

Corollary 3 (�).3 IDS-SVD cannot be solved in O∗((2 − ε)k) time unless
SETH fails and it does not admit polynomial kernels unless NP ⊆ coNP/poly.

For EDS, as the size of the SVD set is always smaller than the size of the vertex
cover, we have the following corollary of Theorem 8.

Corollary 4. EDS-SVD cannot be solved in 2o(|S|) time unless ETH fails.

5.3 Improved Algorithm for EDS-SVD

In this section, we give an improved algorithm for EDS-SVD parameterized by
the size of a given split vertex deletion set S breaking the barrier of O∗(2k).
Let F = G\S. As F is a split graph, V (F ) = C � I where C induces a clique
and I induces an independent set. The algorithm uses the standard branching
technique. Consider any efficient dominating set D of a graph. Any two vertices
u, v ∈ D must have distance at least three. At any intermediate stage of the
algorithm, we make a choice of not picking a vertex and we mark such vertices
by coloring them red. Other vertices are colored blue. Hence all vertices of G
are blue initially. We initialize D = ∅ which is the solution set we seek. Consider
any pair of blue vertices x, y ∈ S. If the distance between x and y is at most two
in G, then we use the following branching rule. And we measure the progress
of the algorithm by μ(G) which is the number of blue vertices in S, which is k
initially.

Branching Rule 1. Consider a pair of blue vertices x, y ∈ S such that the
distance between x and y is at most two in G. In the first branch, we add x into
D, delete N [x] from G, color the vertices in N=2(x) by red. In the second branch,
we add y into D, delete N [y] from G, color the vertices in N=2(y) by red. In the
third branch, we color x, y by red.

Clearly the branches are exhaustive as both x and y cannot be in the EDS
solution we seek. Furthermore, in the first branch, x is deleted from S and y
is colored red. Symmetrically in the second branch, y is deleted from S and
x is colored red. In the third branch, x and y are colored red. So in all the
branches, μ(G) drops by at least two resulting in a (2, 2, 2) branching rule. When
this branching rule is not applicable, for every pair of blue vertices x, y ∈ S,
N [x] ∩ N [y] = ∅. Now, as C is a clique, we can have at most one vertex from
C in the solution. When we decide to pick some vertex v ∈ C into the solution,
then we delete N [v] and color N=2(v) as red. So all vertices of C get deleted.
There are at most |C| vertices in C. When we decide not to pick any vertex from
C into the solution, then we color all vertices of C as red. So we have (|C| + 1)
3 We provide an alternate proof in the full version.
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choices from the vertices of C. Measure μ(G) does not increase in any of these
choices. A multiplicative factor of (|C| + 1) would come in the running time
because of this one-time branching. Now, we are left with only the vertices of I.
Now, we apply the following reduction rule to rule out some simple boundary
conditions.

Reduction Rule 1. If there exists a red vertex x ∈ V (G) such that NG(x) has
only one blue vertex y, then add y into D, delete N [y] from G and color N=2(y)
as red. Also if there exists a blue vertex x ∈ V (G) such that NG(x) contains no
blue vertex, then add x into D, delete N [x] from G and color N=2(x) as red.

It is easy to see that the above reduction rule is safe. Note that we have some blue
vertices in I. Such vertices can only be dominated by themselves or a unique
blue vertex in S, as otherwise Branching Rule 1 would have been applicable.
Now, suppose that there exists a blue vertex x ∈ S that has at least two blue
neighbors u, v ∈ I. If we decide to pick u (or symmetrically v) into D, then we
are not allowed to pick x or v (symmetrically u) in D but then u or v cannot be
dominated. This forces x into D. We have the following reduction rule.

Reduction Rule 2 (�). If there exists a blue vertex x ∈ S such that NG(x)
contains at least two blue neighbors in I, then add x into D, delete N [x] from
G and color vertices in N=2(x) red.

Lemma 4 (�). Reduction Rules 1 and 2 do not increase μ(G).

Now if there are red vertices in I having no blue neighbor in S, then we move
to the next branch as such a vertex cannot be dominated. Thus any blue vertex
in I has only one blue neighbor in S and any blue vertex in S has only one blue
neighbor in I. As Reduction Rule 1 is not applicable, any red vertex x ∈ S ∪ C
has at least two blue neighbors in u, v ∈ NG(x). Clearly both {u, v} �⊂ S as
otherwise Branching Rule 1 would have been applicable. So, now we are left
with the case that u, v ∈ I or u ∈ I, v ∈ S but (u, v) may or may not be an edge.
Now we apply the following branching rule.

Branching Rule 2. Let x be a red vertex in S with two blue neighbors u, v.

1. If u, v ∈ I, then we branch as follows. In one branch we add u into D, delete
N [u] from G , color N=2(u) as red. As v ∈ N=2(u) and v has only one blue
neighbor z ∈ S, we add z also into D, delete N [z] from G and color N=2(z) by
red. In the second branch, we add v into D, delete N [v] from G, color N=2(v)
as red. As u ∈ N=2(v) and u has only one blue neighbor y ∈ S, we add y also
into D, delete N=2(y) from G and color N=2(z) by red. In the third branch,
color both u and v by red. Add the only blue neighbor y of u and z of v into
D. Delete N [y], N [z] from G and color the vertices in N=2(y) ∪ N=2(z) by
red.

2. u ∈ I, v ∈ S, (u, v) /∈ E(G), then we branch as follows. In the first branch,
we add u to D, color v as red. This forces us to pick the only blue neighbor
z of v where z ∈ I. So, we add z to D. Delete N [u], N [z] from G and color
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N=2(u), N=2(z) as red. In the second branch, e color u as red. This forces us
to pick the only neighbor y of u where y ∈ S. And we pick v into D as well
as y into D. We delete N [v], N [y] from G and color N=2(v), N=2(y) by red.
In the third branch, we color both u and v by red. This forces us to pick the
only blue neighbor z ∈ NG(v) ∩ I, y ∈ NG(u) ∩ S into D. So, we pick z into
D, delete N [z], N [y] from G and color N=2(y), N=2(z) by red.

It is easy to see that μ(G) drops by at least two in all three branches as eventually
two blue vertices of S get deleted in all the branches.

When none of the above rules are applicable, then we have u ∈ S, v ∈ I and
(u, v) ∈ E(G). We know that either u ∈ D or v ∈ D. Consider the red vertices
in N(u) and red vertices in N(v). As Branching Rule 1, Reduction Rule 1 and
Branching Rule 2 are not applicable, by the following lemma using which we can
pick u or v arbitrarily.

Lemma 5 (�). If Branching Rule 1, Reduction Rule 1 and Branching Rule 2
are not applicable, then N(u)\{v} = N(v)\{u}.

This completes the description of our algorithm that consists of a sequence of
reduction rules and branching rules. The measure is k initially and the branching
continues as long as k drops to 0. So, we have the following recurrence.

T (k) ≤ 3T (k − 2) + α · (n + k)c

Solving this recurrence, we get O(1.732k ·nO(1)) implying the following theorem.

Theorem 10. EDS-SVD can be solved in O∗(3k/2) time.

6 Concluding Remarks

We have initiated a study of structural parameterizations of some dominating set
variants and complemented with lower bounds based on ETH and SETH. One
immediate open problem is to narrow the gap between upper and lower bounds,
especially for the dominating set variants parameterized by the size of CVD set.

We know that IDS is the complementary version of Maximum Minimal
Vertex Cover problem. So a natural approach for an O∗(2k) algorithm for
IDS-CVD is to apply the ideas used in [21] to get O∗(2k) algorithm for MMVC-
VC. But this seems to require more work as there may not exist a minimal vertex
cover that intersects the CVD set S in a particular subset.

Recently Bergougnoux and Kanté [1] have given an O∗(2O(k)) algorithm for
connected dominating set (the dominating set induces a connected graph) for
clique-width k graphs when the k-expression is given as input. An interesting
open problem is whether connected dominating set has a simpler FPT algorithm
as in the FPT algorithms in this paper, when parameterized by the CVD set
size.
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Abstract. We study Parallel Task Scheduling Pm|sizej |Cmax with a
constant number of machines. This problem is known to be strongly NP-
complete for each m ≥ 5, while it is solvable in pseudo-polynomial time
for each m ≤ 3. We give a positive answer to the long-standing open
question whether this problem is strongly NP -complete for m = 4. As
a second result, we improve the lower bound of 12

11
for approximating

pseudo-polynomial Strip Packing to 5
4
. Since the best known approxima-

tion algorithm for this problem has a ratio of 4
3

+ ε, this result narrows
the gap between approximation ratio and inapproximability result by a
significant step. Both results are proven by a reduction from the strongly
NP -complete problem 3-Partition.

1 Introduction

In the Parallel Task Scheduling problem denoted as P |sizej |Cmax in the three-
field-notation, a set of jobs J has to be scheduled on m machines minimizing
the makespan T . Each job j ∈ J has a processing time p(j) ∈ N and requires
q(j) ∈ N machines. A schedule S is given by two functions σ : J → N and
ρ : J → 2{1,...,m}. The function σ maps each job to a start point in the schedule,
while ρ maps each job to the set of machines it is processed on. We say a machine
i contains a job j ∈ J if i ∈ ρ(j). A schedule is feasible if each machine processes
at most one job at a time and each job is processed on the required number
of machines (i.e. |ρ(j)| = q(j)). The objective is to find a feasible schedule S
minimizing the makespan T := maxj∈J(σ(j) + p(j)).

In 1989, Du and Leung [1] proved the Parallel Task Scheduling problem
P |sizej |Cmax to be strongly NP-complete for all m ≥ 5, while P |sizej |Cmax

is solvable by a pseudo-polynomial algorithm for all m ≤ 3. In this paper, we
address the case of m = 4, which has been open since and prove:

Theorem 1. Parallel Task Scheduling on 4 machines is strongly NP-complete.

Building on this result, we can prove a lower bound for the absolute approx-
imation ratio of pseudo polynomial algorithms for the Strip Packing problem.
In the Strip Packing problem a set of rectangular items I has to be placed into
c© Springer International Publishing AG, part of Springer Nature 2018
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a strip with width W ∈ N and infinite height. Each item i ∈ I has a width
wi ∈ N≤W and a height hi ∈ N. A packing of the items I into the strip is a
function ρ : I → Q0 × Q0, which assigns the left bottom corner of an item to a
position in the strip, such that for each item i ∈ I with ρ(i) = (xi, yi) we have
xi + wi ≤ W . We say two items i, j ∈ I overlap if they share an inner point. A
packing is feasible if no two items overlap. The height of a packing is defined as
H := maxi∈I yi + hi. The objective is to find a feasible packing of the items I
into the strip, that minimizes the packing height. If all item sizes are integral,
we can transform feasible packings to packings where all positions are integral,
without enlarging the packing height [2]. Therefore, we can assume that we have
packings of the form ρ : I → N0 × N0.

1

[3]

12/11 5/4, [4]

this result, 5/4 + ε

[5],[6]

4/3 + ε

[7]

7/5 + ε

[8]

3/2 + ε

improvement

Fig. 1. The upper and lower bounds for the best possible approximation for pseudo-
polynomial Strip Packing achieved so far

Lately, pseudo-polynomial algorithms for Strip Packing, where the width
of the strip is allowed to appear polynomially in the input size gained high
interest, see Fig. 1. In a series of papers [4–8], the best approximation ratio was
improved to 5

4 + ε. On the other hand, it is not possible to find an algorithm
with approximation ratio better than 12

11 , except P = NP [3]. In this paper, we
improve this lower bound to 5

4 , which almost closes the gap between lower bound
and best algorithm.

Theorem 2. For each ε > 0 it is NP-Hard to approximate Strip Packing with
a ratio of 5

4 − ε in pseudo-polynomial time.

Related Work

Parallel Task Scheduling. In 1989, Du and Leung [1] proved Parallel Task
Scheduling Pm|sizej |Cmax to be strongly NP-complete for all m ≥ 5, while
it is solvable by a pseudo-polynomial algorithm for all m ≤ 3. Amoura et al. [9],
as well as Jansen and Porkolab [10], presented a polynomial time approximation
scheme (in short PTAS) for the case that m is a constant. A PTAS is a family of
algorithms that finds a solution with an approximation ratio of (1 + ε) for any
given value ε > 0. If m is polynomially bounded by the number of jobs, a PTAS
still exists [8]. Nevertheless, if m is arbitrarily large, the problem gets harder.
By a simple reduction from the Partition problem, one can see that there is no
polynomial algorithm with approximation ratio smaller than 3

2 . Parallel Task
Scheduling with arbitrarily large m has been widely studied [11–14]. The algo-
rithm with the best known absolute approximation ratio of 3

2 + ε was presented
by Jansen [15].
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Strip Packing. The Strip Packing problem was first studied in 1980 by Baker
et al. [16]. They presented an algorithm with an absolute approximation ratio of
3. This ratio was improved by a series of papers [17–21]. The algorithm with the
best known absolute approximation ratio by Harren et al. [22] achieves a ratio
of 5

3 +ε. By a simple reduction from the Partition problem, one can see that it is
impossible to find an algorithm with better approximation ratio than 3

2 , unless
P = NP.

The lower bound of 3
2 does not hold for asymptotic approximation ratios

and they have been studied in various papers [17,23,24]. Kenyon and Rémila
[25] presented an asymptotic fully polynomial approximation scheme (in short
AFPTAS) with additive term O(hmax/ε2), where hmax is the largest occurring
item height. An approximation scheme is fully polynomial if its running time
is polynomial in 1/ε as well. This algorithm was simultaneously improved by
Sviridenko [26] and Bougeret et al. [27] to an algorithm with an additive term
of O(hmax log(1/ε)/ε). Furthermore, at the expense of the running time, Jansen
and Solis-Oba [28] presented an asymptotic PTAS with an additive term of hmax.

Recently, the focus shifted to pseudo-polynomial algorithms. Jansen and
Thöle [8] presented an pseudo-polynomial algorithm with approximation ratio
of 3

2 + ε. Later Nadiradze and Wiese [7] presented an algorithm with ratio 7
5 + ε.

Its approximation ratio was independently improved to 4
3 + ε by Gálvez et al.

[6] and by Jansen and Rau [5]. 5/4 + ε is the best approximation ratio so far,
achieved by an algorithm by Jansen and Rau [4]. All these algorithms have a
polynomial running time if the width of the strip W is bounded by a polynomial
in the number of items.

In contrast to Parallel Task Scheduling, Strip Packing cannot be approxi-
mated arbitrarily close to 1, if we allow pseudo-polynomial running time. This
was proved by Adamaszek et al. [3] by presenting a lower bound of 12

11 . As a conse-
quence, Strip Packing admits no quasi-polynomial time approximation scheme,
unless NP ⊆ DTIME(2polylog(n)). For an overview on 2-dimensional packing
problems and open questions regarding these problems, we refer to the survey
by Christensen et al. [29].

2 Hardness of Scheduling Parallel Tasks

First, we introduce some notations. Let j ∈ J and J ′ ⊆ J . We define the work
of j as w(j) := p(j) · q(j) and the total work of J ′ as w(J ′) :=

∑
j∈J ′ w(j). We

denote by nj(J ′) the number of jobs from the set J ′, which are finished before
the start of the job j, i.e., nj(J ′) = |{i ∈ J ′ : σ(i) + p(i) ≤ σ(j)}|. Furthermore,
we will use a notation defined in [1] for swapping a part of the content of two
machines; let j ∈ J be a job, that is processed by at least two machines M̃
and M̃ ′ with start point σ(j). We can swap the content of the machines M̃ and
M̃ ′ after time σ(j) without violating any scheduling constraint. We define this
swapping operation as SWAP (σ(j), M̃ , M̃ ′).

We will prove Theorem 1 by a reduction from the 3-Partition problem. In
this problem, we are given a list I = (ι1, . . . , ι3z) of 3z positive integers, with
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∑3z
i=1 ιi = zD and D/4 < ιi < D/2 for each 1 ≤ i ≤ 3z. The problem is to decide

whether there exists a partition of the set I = {1, . . . , 3z} into sets I1, . . . Iz, such
that

∑
i∈Ij

ιi = D for each 1 ≤ j ≤ z. 3-Partition is strongly NP-complete [30].
Hence, it cannot be solved in pseudo-polynomial time, unless P = NP.

The main idea of our reduction is to construct a set of structure jobs. These
structure jobs have the property that each possible way to schedule them with
the optimal makespan leaves z gaps each with processing time D, i.e., it happens
exactly at z distinct times that a machine is idle, and the duration of each idle
time is exactly D, see Fig. 2 at the hatched areas. As a consequence, partition
jobs which have processing times equating the 3-Partition numbers can only be
scheduled with the desired makespan if the 3-Partition instance is a Yes-instance.

appears z times total rotatable

D2 D3 D4 D5 D6 D7 D2 D3 D4 D5 D6 D7 D2 D3 D4 D5 D6 D7 D2 D3 D4

λ1

B c
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γ

α
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λ2

M1

M2

M3

M4

Fig. 2. Packing of structure jobs with gaps (hatched area) for 3-Partition items. The
items in the green area (left) are repeated z times. With the current choice of processing
times, the items in the red area (right) can be rotated by 180◦ such that α is scheduled
on M4 after the job in B and β is scheduled on M1 before the job in A. (Color figure
online)

Construction. Given a 3-Partition instance, we construct ten disjoint sets of jobs
A, B, a, b, c, α, β, γ, δ, and λ, which will be forced to be scheduled as in
Fig. 2 by choosing suitable processing times. First, we add a unique token to the
processing time of each set of jobs processed simultaneous to ensure that these
jobs have to be processed at the same time in every schedule. As this token, we
choose Dx, where x ∈ {2, . . . , 7} and D is the required sum of the items in each
partition set, see Fig. 2. For example jobs in B have processing time D2, while
jobs in α have processing time D7 + D2 + D3.

Given a set of jobs, their total processing time has the form
∑7

i=2 xiD
i, with

xi ∈ N for i = 2, . . . , 7. We want the tokens Di to be unique in the way that
xiD

i < Di+1 for each possible occurring sum of processing times of structure
jobs and each i = 2, . . . , 7. Let kmax be the larges occurring coefficient in the
sum of processing times of any given subset of the generated structure jobs, i.e.,
kmax = 3(z+1) with the current choice of processing times. We scale each number
in the 3-Partition instance with kmax if D ≤ kmax, resulting in kmaxD

i < Di+1.
If kmax depends polynomially on z, the input size of the scaled instance will still
depend polynomially on the input size of the original instance.

Unfortunately, the tokens D2 to D7 are not enough to ensure that the sched-
ule in Fig. 2 is the only possible one. Consider the jobs contained in the red area
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Fig. 3. A reordering we have to prohibit, since it fuses the areas for 3-partition items
into two areas, one area on M2 and one area on M3 if z is even, and into three areas
if z is odd.

(right) in Fig. 2. With the current choice of processing times, it is possible to
rotate the red area by 180◦, such that α is scheduled on M4 and β is scheduled
on M1. After rotating every second of these set of jobs, it is possible to reorder
the jobs, and fusing the areas for the 3-Partition items into two or three areas,
see Fig. 3. To prohibit this possibility to rotate, we introduce one further token
D8. This token is added to the processing time of some jobs such that the com-
bined processing time of the jobs in the red area on M1 differs from the one
on M4. To ensure this, we have to give up the property that in each of the sets
A,B, a, b, c, α, β, γ, δ all jobs have the same processing time. More precisely, each
job in the sets c, δ, and γ receives a unique processing time.

In the following, we describe the jobs constructed for the reduction. We
introduce two sets A and B of 3-processor jobs, three sets a, b and c of 2-processor
jobs, and five sets α, β, γ, δ, and λ of 1-processor jobs. The description of the
jobs inside these sets and their processing times can be found in Table 1. We call
these jobs structure jobs. Additionally, we generate for each i ∈ {1, . . . , 3z} one
1-processor job, called partition job, with processing time ιi and define P as the
set containing all partition jobs. Last, we define W := (z + 1)(D2 + D3 + D4) +
z(D5 +D6 +D7)+ z(7z +1)D8. Note that the total work of the introduced jobs
adds up to 4W , i.e., a schedule without idle times has makespan W .

Table 1. Overview of the structure jobs

p(j) = D4 if j ∈ A := {A0, . . . , Az}
p(j) = D2 if j ∈ B := {B0, . . . , Bz}
p(j) = D5 + D6 + 3zD8 if j ∈ a := {a1, . . . , az}
p(j) = D6 + D7 + 3zD8 if j ∈ b := {b1, . . . , bz}
p(j) = D3 + (z + i)D8 if j = ci ∈ c := {c0, . . . , cz}
p(j) = D2 + D3 + D7 + 4zD8 if j ∈ α := {α1, . . . , αz}
p(j) = D3 + D4 + D5 + (4z − 1)D8 if j ∈ β := {β1, . . . , βz}
p(j) = D7 + (3z − i)D8 − D if j = γi ∈ γ := {γ1, . . . , γz}
p(j) = D5 + (3z − i)D8 if j = δi ∈ δ := {δ1, . . . , δz}
p(j) = D2 + D3 + zD8 if j = λ1

p(j) = D3 + D4 + 2zD8 if j = λ2
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If we add the processing times of all generated jobs, the largest coefficient
is bounded by 4z(7z + 1). Let us assume that D > 4z(7z + 1) in the given 3-
Partition instance. Otherwise we scale each 3-Partition number with 4z(7z +1),
to assure this property. Note that in a schedule with out idle times, a machine
cannot contain a set of jobs, with processing times that add up to a value where
one of the coefficients is larger than the corresponding one in W .

Partition to Schedule. Let I be a Yes-instance with partition I1, . . . , Iz. One
can easily verify that the structure jobs can be scheduled as shown in Fig. 4.
After each job γj , for each 1 ≤ j ≤ z, we have a gap with processing time D.
We schedule the partition jobs with indices out of Ij directly after γj . Their
processing times add up to D, and therefore they fit into the gap. The resulting
schedule has a makespan of W .
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Fig. 4. An optimal schedule, for a Yes-instance.

Schedule to Partition. Let a schedule S = (σ, ρ) with makespan W be given.
We will now step by step describe why I has to be a Yes-instance. In the first
step, we will show that we can transform the schedule, such that each machine
contains a certain set of jobs.

Lemma 1. We can transform the schedule S into a schedule, where M1 contains
the jobs A ∪ a ∪ α ∪ λ1, M2 contains the jobs A ∪ B ∪ c ∪ ǎ ∪ b̌ ∪ γ̌ ∪ δ̌,
M3 contains the jobs A ∪ B ∪ c ∪ â ∪ b̂ ∪ γ̂ ∪ δ̂ and M4 contains the jobs
B ∪ b ∪ β ∪ λ2, with ǎ ⊆ a, â = a\ǎ, b̌ ⊆ b, b̂ = b\b̌, γ̌ ⊆ γ, γ̂ = γ\γ̌, and
δ̌ ⊆ δ, δ̂ = δ\δ̌. Furthermore, if the jobs are scheduled in this way, it holds that
|ǎ| = |γ̌| and |b̌| = |δ̌|.
Proof. First, we will show that the content of the machines can be swapped
without enlarging the makespan, such that M2 and M3 each contain all the jobs
in A ∪ B. Let x ∈ A ∪ B be the job with the smallest starting point in this
set. We can swap the complete content of the machines such that M2 and M3

contain x. Let us suppose that, after some swapping operations, M2 and M3

contain the first i jobs in A ∪ B but not the i + 1th job. Let M̃ ∈ {M1,M4} be
the third machine containing the i-th job xi ∈ A ∪ B and M̃ ′ ∈ {M2,M3} be
the machine not containing the (i + 1)-th job. We transform the schedule such
that M2 and M3 contain the (i + 1)-th job, by performing one more swapping
operation SWAP (σ(xi), M̃ , M̃ ′). Therefore, we can transform the given schedule
such that M2 and M3 each contain all the jobs in A ∪ B.

In the next step, we will determine the set of jobs contained by the machines
M1 and M4 using the token D8. Besides the jobs in A ∪ B, M2 and M3 contain



Complexity and Inapproximability Results for Parallel Task Scheduling 175

jobs with total processing time of (z + 1)D3 + zD5 + zD6 + zD7 + z(7z + 1)D8.
Hence, M2 and M3 cannot contain jobs in α∪β ∪λ, since their processing times
contain D2 or D4. Therefore, each job in A ∪ B ∪ α ∪ β ∪ λ is either processed
on M1 or on M4. In addition to these jobs, M1 and M4 together contain further
jobs with a total processing time of zD5 + 2zD6 + zD7 + 6z2D8. Exclusively
jobs from the set a ∪ b have a processing time containing D6. Therefore, each
machine processes z of them. Hence corresponding to D8, a total processing
time of 3z2D8 is used by jobs in the set a ∪ b on each machine. This leaves a
processing time of (4z2 + z)D8 for the jobs in α ∪ β ∪ λ on M1 and M4. All
the 2(z + 1) jobs in α ∪ β ∪ λ contain D3 in their processing time. Therefore,
each machine M1 and M4 processes exactly z + 1 of them. We will swap the
content of M1 and M4 such that λ1 is scheduled on M1. As a consequence, M1

processes z jobs from the set α ∪ β ∪ {λ2}, with processing times, which sum
up to 4z2D8 in the D8 component. The jobs in α have with 4zD8 the largest
amount of D8 in their processing time. Therefore, M1 has to process all of them
since z · 4zD8 = 4z2D8, while M4 contains the jobs in β ∪ {λ2}. Since we have
p(α ∪ {λ1}) = (z + 1)D2 + (z + 1)D3 + zD7 + z(4z + 1)D8, jobs from the set
A∪B∪a∪b with total processing time of (z+1)D4+zD5+zD6+3z2D8 have to
be scheduled on M1. In this set, the jobs in A are the only jobs with processing
times containing D4, while the jobs in a are the only jobs with a processing
time containing D5. As a consequence, M1 processes the jobs A ∪ a ∪ α ∪ {λ1}.
Analogously we can deduce that M4 processes the jobs B ∪ b ∪ β ∪ {λ2}.

In the last step, we will determine which jobs are scheduled on M2 and M3.
As shown before, each of them contains the jobs A∪B. Furthermore, since no job
in c is scheduled on M1 or M4, and they require two machines to be processed,
machines M2 and M3 both contain the set c. Additionally, each job in γ ∪ δ has
to be scheduled on M2 or M3 since they are not scheduled on M1 or M4. Each
job in a ∪ b occupies one of the machines M1 and M4. The second machine they
occupy is either M2 or M3. Let ǎ ⊆ a be the set of jobs, which is scheduled on
M2 and â ⊆ a be the set which is scheduled on M3. Clearly ǎ = a\â. We define
the sets b̂, b̌, δ̂, δ̌, γ̂, and γ̌ analogously. By this definition, M2 contains the jobs
A ∪ B ∪ ǎ ∪ b̌ ∪ δ̌ ∪ γ̌ ∪ c and M3 contains the jobs A ∪ B ∪ â ∪ b̂ ∪ δ̂ ∪ γ̂ ∪ c.

We still have to prove that |ǎ| = |γ̌| and |b̌| = |δ̌|. First, we notice that |ǎ| +
|b̌| = z since these jobs are the only jobs with a processing time containing D6.
So besides the jobs in A∪B∪c∪ǎ∪b̌, M2 contains jobs with total processing time
of (z−|ǎ|)D5 + (z−|b̌|)D7 +

∑z
i=1(3z−i)D8 = |b̌|D5 + |ǎ|D7 +

∑z
i=1(3z−i)D8.

Since the jobs in δ are the only jobs in δ ∪γ having a processing time containing
D5, we have |δ̌| = |b̌| and analogously |γ̌| = |ǎ|. �	

In the next steps, we will prove that it is possible to transform the order in
which the jobs appear on the machines to the one in Fig. 4. Notice that, since
there is no idle time in the schedule, each start point of a job i is given by the
sum of processing times of the jobs on the same machine scheduled before i. So
the start position σ(i) of a job i has the form

σ(i) = x0 + x2D
2 + x3D

3 + x4D
4 + x5D

5 + x6kD6 + x7D
7 + x8D

8
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for −zD ≤ x0 ≤ zD < D2 and 0 ≤ xj ≤ 4z(7z+1) ≤ D for each 2 ≤ j ≤ 8. This
allows us to make implications about the correlation between the number of jobs
scheduled on different machines when a job from the set A ∪ B ∪ a ∪ b ∪ c starts.
For example, let us look at the coefficient x4. This value is just influenced by
jobs with processing times containing D4. The only jobs with these processing
times are the jobs in the set A∪β ∪{λ2}. The jobs in β ∪{λ2} are just processed
on M4, while the jobs in A each are processed on the three machines M1, M2,
and M3. Therefore, we know that at the starting point σ(i) of a job i scheduled
on machines M1, M2 or M3 we have that x4 = ni(A). Furthermore, if i is
scheduled on M4 we know that x4 = ni(β) + ni({λ2}). In Table 2, we present
which sets influences which coefficients in which way when job i is started on
the corresponding machine.

Table 2. Overview of the values of the coefficients at the start point of a job i, if i is
scheduled on machine Mj .

M1 M2 M3 M4

x2 ni(α) + ni({λ1}) ni(B) ni(B) ni(B)

x3 ni(α) + ni({λ1}) ni(c) ni(c) ni(β) + ni({λ2})

x4 ni(A) ni(A) ni(A) ni(β) + ni({λ2})

x5 ni(a) ni(ǎ) + ni(δ̌) ni(â) + ni(δ̂) ni(β)

x6 ni(a) ni(ǎ) + ni(b̌) ni(â) + ni(b̂) ni(b)

x7 ni(α) ni(b̌) + ni(γ̌) ni(b̂) + ni(γ̂) ni(b)

Let us consider the start point σ(i) of a job i, which uses more than one
machine. We know that σ(i) is the same on all the used machines and therefore
the coefficients are the same as well. In the following, we will study for each of
the sets A, B, a, b, c what we can conclude for the starting times of these jobs.
For each of the sets, we will present an equation, which holds at the start of
each item in this set. These equations give us a strong set of tools for our further
arguing.

First, we will consider the start points of the jobs in A. Each job A′ ∈ A is
scheduled on machines M1, M2 and M3. Therefore, we know that at σ(A′) we
have nA′(B) =x2 nA′(α) + nA′({λ1}) =x3 nA′(c). Furthermore, we know that
nA′(a) =x6 nA′(ǎ)+nA′(b̌) =x6 nA′(â)+nA′(b̂). Since nA′(a) = nA′(ǎ)+nA′(â)
and nA′(b) = nA′(b̌)+nA′(b̂), we can deduce that nA′(â) = nA′(b̌) and nA′(ǎ) =
nA′(b̂) and therefore nA′(a) = nA′(b). Additionally, we know that nA′(α) =x7

nA′(b̌) + nA′(γ̌) =x7 nA′(b̂) + nA′(γ̂). Thanks to this equality, we can show that
nA′(α) = nA′(b): First, we show nA′(α) ≥ nA′(b). Let b′ ∈ b be the last job in
b scheduled before A′ if there is any. Let us w.l.o.g assume that b′ ∈ b̂. It holds
that nA′(b) = nb′(b)+1 =x7 nb′(b̂)+nb′(γ̂)+1 ≤ nA′(b̂)+nA′(γ̂) =x7 nA′(α). If
there is no such b′ we have nA′(b) = 0 ≤ nA′(α). Next, we show nA′(α) ≤ nA′(b).
Let b′′ ∈ b be the first job in b scheduled after A if there is any. Let us w.l.o.g
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assume that b′′ ∈ b̌. It holds that nA′(b) = nb′′(b) =x7 nb′′(b̌)+nb′′(γ̌) ≥ nA′(b̌)+
nA′(γ̌) =x7 nA′(α). If there is no such b′′, we have nA′(b) = z ≥ nA′(α). As a
consequence, we have nA′(α) = nA′(b). In summary, we can deduce that

nA′(c) − nA′({λ1}) = nA′(B) − nA′({λ1}) = nA′(α) = nA′(b) = nA′(a). (1)

Analogously, we can deduce that at the start of each B′ ∈ B we have that

nB′(c) − nB′({λ2}) = nB′(A) − nB′({λ2}) = nB′(β) = nB′(a) = nB′(b). (2)

Each item a′ ∈ a is scheduled on machine M1 and on one of the machines M2

or M3. For each possibility a ∈ â or a ∈ ǎ, we can deduce the equation

na′(B) =x2 na′(α) + na′({λ1}) =x3 na′(c). (3)

Analogously, we deduce for each b′ ∈ b that

nb′(A) =x4 nb′(β) + nb′({λ2}) =x3 nb′(c). (4)

Last, each item c′ ∈ c is scheduled on M2 and M3. Let a′ ∈ a be the job
with the smallest σ(a′) ≥ σ(c′). Let us w.l.o.g assume that a′ ∈ â. It holds that
nc′(ǎ)+nc′(b̌) =x6 nc′(â)+nc′(b̂) ≤ na′(â)+na′(b̂) =x6 na′(a) = na′(â)+na′(ǎ) =
nc′(â) + nc′(ǎ). As a consequence, we have nc′(b̌) ≤ nc′(â) and nc′(b̂) ≤ nc′(ǎ).
Analogously, let b′ ∈ b be the job with the smallest σ(b′) ≥ σ(c′). Let us w.l.o.g
assume that b′ ∈ b̌. It holds that nc′(â) + nc′(b̂) =x6 nc′(ǎ) + nc′(b̌) ≤ nb′(ǎ) +
nb′(b̌) =x6 nb′(b) = nb′(b̂) + nb′(ǎ) = nc′(b̂) + nc′(b̌). Therefore, nc′(ǎ) ≤ nc′(b̂)
and nc′(â) ≤ nc′(b̌). As a consequence, we can deduce that

nc′(b) = nc′(a) (5)

These equations give us the tools to analyze the given schedule with makespan
W . First, we will show that in this schedule the first and last jobs have to be
elements from the set A ∪ B, (see Lemma 2). After that, we will prove that the
jobs in A and jobs in B have to be scheduled alternating, (see Lemma 3). With
the knowledge gathered in the proofs of Lemmas 2 and 3, we can prove that the
given schedule can be transformed such that all jobs are scheduled contiguously,
and that I has to be a Yes-instance (see Lemma 4).

Lemma 2. The first and the last job on M2 and M3 are elements of A ∪ B.

Proof. Let i := arg mini∈A∪B σi be the job with the smallest start point in
A ∪ B, (i.e. ni(A) = 0 = ni(B)). If i ∈ A it holds that 0 = ni(B) =(1) ni(α) +
ni({λ1}) =(1) ni(a)+ni({λ1}) and therefore ni(a) = ni(α) = 0 = ni({λ1}). The
jobs a ∪ α ∪ {λ1} ∪ A are the only jobs, which are contained on machine M1.
Since ni(A) = 0 as well, it has to be that σi = 0, and therefore i is the first job
on M2 and M3. If i ∈ B we can prove σi = 0 analogously using equality (2).

Since the schedule stays valid, if we mirror the schedule such that the new
start points are s′(i) = W − σ(i) − p(i) for each job i, the last job has to be in
the set A ∪ B as well. �	
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Next, we will show that the items in the sets A and B have to be scheduled
alternating. Due to space limitations, the proofs of Lemmas 3 and 4 are not
included in this extended abstract, but can be found in [31]. Let (A0, . . . , Az) be
the set A and (B0, . . . , Bz) be the set B each ordered by increasing size of the
starting points. Simply swap the jobs if they do not have this order.

Lemma 3. If the first job on M2 is the job B0 ∈ B it holds for each item
i ∈ {0, . . . , z} that

nAi
(B) − nAi

({λ1}) = nAi
(A) (6)

and nAi
({λ1}) = 1.

A direct consequence of Lemma 3 is that the last job on M2 is a job in A.
Since the Eqs. (1) and (2), as well as (3) and (4), are symmetric, we can deduce
an analogue statement if the first job on M2 is in A. More precisely, we can show
that nBi

(A) − nBi
({λ2}) = nBi

(B) and nBi
({λ2}) = 1 for each Bi ∈ B in this

case. This would imply that the last job on M2 is a job in B. Since we can mirror
the schedule such that the last job is the first job, we can suppose that the first
job on M2 is a job in B. In this case a further direct consequence of Lemma 3
and Eq. (1) is the equation

i =nAi
(A) = nAi

(B) − 1 = nAi
(c) − 1 = nAi

(α) = nAi
(b) = nAi

(a) (7)

Lemma 4. I is a Yes-instance and we can transform the schedule such that all
jobs are scheduled on continuous machines.

3 Hardness of Strip Packing

In the transformed schedule, all jobs are scheduled on contiguous machines. As
a consequence, we have proven that this problem is strongly NP-complete even
if we restrict the set of feasible solutions to those where all jobs are scheduled
on continuous machines. We will now describe how this insight delivers a lower
bound of 5

4 for the best possible approximation ratio for pseudo-polynomial Strip
Packing and in this way prove Theorem 2.

To show our hardness result for Strip Packing, let us consider the following
instance. We define W := (z+1)(D2+D3+D4)+z(D5+D6+D7)+z(7z+1)D8 as
the width of the considered strip, so it is the same as the considered makespan
in the scheduling problem. For each job j defined in the reduction above, we
define an item i with w(i) = p(j) and height h(i) = q(j). Now, we can show
analogously that if the 3-Partition instance is a Yes-instance, there is a packing
of height 4 (one example is the packing in Fig. 4); and on the other hand if there
is a packing with height 4, the 3-Partition instance has to be a Yes-instance. If
the 3-Partition instance is a No-instance, the optimal packing has a height of at
least 5 since the optimal height for this instance is integral. Therefore, we cannot
approximate Strip Packing in pseudo-polynomial time better than 5

4 .
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Abstract. We investigate the descriptional complexity of basic regular
operations on languages represented by Boolean and alternating finite
automata. In particular, we consider the operations of difference, sym-
metric difference, star, reversal, left quotient, and right quotient, and
get tight upper bounds m + n, m + n, 2n, 2n, m, and 2m, respectively,
for Boolean automata, and m + n + 1, m + n, 2n, 2n, m + 1, and 2m + 1,
respectively, for alternating finite automata. To describe witnesses for
symmetric difference, we use a ternary alphabet. All the remaining wit-
nesses are defined over binary or unary alphabets that are shown to be
optimal.

1 Introduction

The Boolean finite automata (BFAs) are generalization of nondeterministic finite
automata (NFAs). In an NFA, the transition function maps any pair of state and
input symbol to a subset of states. This subset can be viewed as disjunction of
its states. We obtain a BFA by considering other Boolean functions on states
as a result of the transition function. Alternating finite automata (AFAs) start
from the only one initial state, wheares Boolean automata may start their com-
putation in any Boolean function designated as the initial function.

Boolean automata recognize the class of regular languages [2,4]. Every n-state
Boolean automaton can be simulated by 22

n

-state deterministic finite automaton
(DFA), or by (2n + 1)-state NFA, and both upper bounds are tight already in
the binary case [2,10].

Some of the constructions and upper bounds for elementary operations on
alternating automata were introduced in [5]. The upper bound 2m + n + 1 for
concatenation from [5] has been shown to be tight in [8]. Detailed results for the
square on alternating and Boolean automata can be found in [12]. Tight upper
bounds for union and intersection were shown in [10]. For star and reversal, the
upper and lower bound provided in [10] differed by one.
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In this paper we continue the study of the operational complexity on Boolean
and alternating finite automata. We improve the results on star and reversal from
[10] and provide exact complexity of these two operations. We also examine
other regular operations: complementation, difference, symmetric difference, left
and right quotient on both Boolean and alternating automata. We get the exact
complexity for each operation on both BFAs and AFAs. All our witness languages
are defined over a small fixed alphabet which is optimal in most of the cases.

2 Preliminaries

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of words over Σ
including the empty word ε. A language is any subset of Σ∗. The cardinality of
a finite set A is denoted by |A|, and its power-set by 2A. The reader may refer
to [7,17,18] for details.

A nondeterministic finite automaton (NFA) is a quintuple A =
(Q,Σ, ◦ , I, F ), where Q is a finite set of states, Σ is a finite non-empty alphabet,
◦ : Q × Σ → 2Q is the transition function which is naturally extended to the
domain 2Q × Σ∗, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. The language accepted by A is the set L(A) = {w ∈ Σ∗ | I ◦ w ∩ F �= ∅}.
For a symbol a, we say that (p, a, q) is a transition in NFA A if q ∈ p ◦ a, and
the state q has an in-transition on a. For a word w, we write p

w−→ q if q ∈ p ◦ w.
An NFA A is deterministic (DFA) if |I| = 1 and |q ◦ a| = 1 for each q in Q

and each a in Σ; so all DFAs in this paper are assumed to be complete. We write
p · a = q instead of p ◦ a = {q} in such a case. The state complexity of a regular
language L, sc(L), is the smallest number of states in any DFA for L. A state q
of a DFA is called sink state if q · a = q for each a in Σ.

For unary DFAs we use the Nicaud’s notation [15]. For two integers � and n
such that 0 ≤ � ≤ n − 1 and a subset F of {0, . . . , n − 1}, A = (n, �, F ) is the
unary automaton whose set of states is Q = {0, . . . , n − 1} and the transition
function is given by q · a = q + 1 if 0 ≤ q ≤ n − 2 and (n − 1) · a = �. The initial
state of this automaton is 0 and its set of final states is F .

Every NFA A = (Q,Σ, ◦, I, F ) can be converted to an equivalent DFA
D(A) = (2Q, Σ, · , I, F ′), where S · a = S ◦ a for each S in 2Q and a in Σ
and F ′ = {R ∈ 2Q | R∩F �= ∅}. We call the DFA D(A) the subset automaton of
the NFA A. The subset automaton may not be minimal since some of its states
may be unreachable or equivalent to other states.

To prove distinguishability of the states of the subset automaton, the follow-
ing notions and observations are useful. A state q of an NFA A is called uniquely
distinguishable if there is a word w which is accepted by A from and only from
the state q, that is p ◦ w ∩ F �= ∅ if and only if p = q. A transition (p, a, q) is
called a unique in-transition if there is no state r such that r �= p and (r, a, q) is
a transition in A. A state q is uniquely reachable from a state p if there exists a
sequence of unique in-transitions (qi, a, qi+1) for i = 0, 1, . . . , k such that q0 = p
and qk+1 = q.
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Proposition 1 [1, Propositions 14 and 15]. Let A be an NFA and D(A) be the
corresponding subset automaton.

(a) If two subsets of D(A) differ in a uniquely distinguishable state of A, then
they are distinguishable.

(b) If a state q of A is uniquely distinguishable and uniquely reachable from a
state p, then the state p is uniquely distinguishable as well.

(c) If there is a uniquely distinguishable state of A which is uniquely reachable
from any other state of A, then every state of A is uniquely distinguishable.

(d) If every state of A is uniquely distinguishable, then the subset automaton
D(A) does not have equivalent states.

�

Let K and L be languages over an alphabet Σ. The difference and symmet-
ric difference of K and L are the languages K\L = {w ∈ K | w /∈ L} and
K ⊕ L = {w ∈ K | w /∈ L} ∪ {w ∈ L | w /∈ K}, respectively. If languages K and
L are accepted by DFAs A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB),
then the language K ∩ L is accepted by the product automaton A × B =
(QA×QB , Σ, ·, (sA, sB), FA×FB) where (p, q)·a = (p·Aa, q ·B a). For the remain-
ing Boolean operations we only need to change the set of final states in the prod-
uct automaton. For union, difference, symmetric difference the set of final states
is (FA ×QB)∪ (QA ×FB), FA × (QB\FB), (FA × (QB\FB))∪ ((QA\FA)×FB),
respectively.

The reverse of a word is defined as εR = ε and (wa)R = awR for each symbol
a and word w. The reverse of a language L is the language LR = {wR | w ∈ L}.
The reverse of an NFA A is an NFA AR obtained from A by reversing all the
transitions and by swapping the roles of initial and final states. The NFA AR

recognizes the reverse of L(A).
The concatenation of K and L is the language KL = {uv | u ∈K and v ∈L}.

The square of a language L is the language L2 = LL. The right quotient of K by
L is the language KL−1 = {x ∈ Σ∗ | xy ∈ K for some y ∈ L}. The left quotient
of K by L is the language L−1K = {x ∈ Σ∗ | yx ∈ K for some y ∈ L}.

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, δ, gs, F ), where
Q is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet,
δ is the transition function that maps Q×Σ into the set Bn of Boolean functions
with variables {q1, . . . , qn}, gs ∈ Bn is the initial Boolean function, and F ⊆ Q is
the set of final states. The transition function δ can be extended to the domain
Bn × Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗, we have δ(g, ε) = g; if
g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a)); δ(g, wa) = δ(δ(g, w), a).
Next, let f = (f1, . . . , fn) be the Boolean vector with fi = 1 iff qi ∈ F . The lan-
guage accepted by the BFA A is the set L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}.

A Boolean finite automaton is called alternating (AFA) if the initial function
is a projection g(q1, . . . , qn) = qi. For details, we refer to [2,5,10,13,17,18].

The Boolean (alternating) state complexity of L, bsc(L)(asc(L)), is the small-
est number of states in any BFA (AFA) for L. It is known that a language L is
accepted by an n-state BFA (AFA) if and only if the language LR is accepted
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by an 2n-state DFA (with 2n−1 final states). Since this is the crucial observation
used later in the paper, we state it in the next two lemmas and provide proof
ideas here.

Lemma 2 (cf. [5, Theorem 4.1, Corollary 4.2] and [10, Lemma 1]). Let
L be a language accepted by an n-state BFA (AFA). Then the reversal LR is
accepted by a DFA of 2n states (of which 2n−1 are final).

Proof (Proof Idea). Let A = ({q1, q2, . . . , qn}, Σ, δ, gs, F ) be an n-state BFA for
L. Construct a 2n-state NFA A′ = ({0, 1}n, Σ, δ′, S, {f}), where

– for every u = (u1 . . . , un) ∈ {0, 1}n and every a ∈ Σ,
δ′(u, a) = {u′ ∈ {0, 1}n | δ(qi,a)(u′) = ui for i = 1, . . . , n};

– S = {(b1, . . . , bn) ∈ {0, 1}n | gs(b1, . . . , bn) = 1};
– f = (f1, . . . , fn) ∈ {0, 1}n with fi = 1 iff qi ∈ F .

Then L(A) = L(A′) and (A′)R is deterministic. Moreover if A is an AFA
then A′ has 2n−1 initial states. It follows that LR is accepted by a DFA with 2n

states, of which 2n−1 are final if A is an AFA. �

Lemma 3 (cf. [10, Lemma 2]). Let LR be accepted by a DFA A of 2n states
(of which 2n−1 are final). Then L is accepted by an n-state BFA (AFA).

Proof (Proof Idea). Consider 2n-state NFA AR for L which has exactly one final
state and the set of initial states S (and |S| = 2n−1). Let the state set Q of AR be
{0, 1, . . . , 2n −1} with final state k and the initial set S (S = {2n−1, . . . , 2n −1}).
Let δ be the transition function of AR. Moreover, for every a ∈ Σ and for every
i ∈ Q, there is exactly one state j such that j goes to i on a in AR. For a state
i ∈ Q, let bin(i) = (b1, . . . , bn) be the binary n-tuple such that b1b2 · · · bn is the
binary notation of i on n digits with leading zeros if necessary.

Let us define an n-state BFA A′ = (Q′, Σ, δ′, gs, F
′), where Q′ = {q1, . . . , qn},

F ′ = {q� | bin(k)� = 1}, and gs(bin(i)) = 1 iff i ∈ S (gs = q1). We define δ′ to
suffice the condition: for each i in Q and a in Σ, (δ′(q1, a), . . . , δ′(qn, a))(bin(i)) =
bin(j) where i ∈ δ(j, a). Then L(A′) = L(AR). �

As a corollary of the previous two lemmas, we get the following results.

Corollary 4. If L is a regular language, then bsc(L) ≥ log(sc(LR))� and
asc(L) ≥ log(sc(LR))�. �

Corollary 5. Let L be a unary language. Then L is accepted by an n-state BFA
(AFA) if and only if L is accepted by a 2n-state DFA (with 2n−1 final states). �

Now we prove several propositions which we use later in our paper.

Proposition 6. If L is accepted by an n-state BFA, then L is accepted by an
(n + 1)-state AFA.
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Proof. Let a language L be accepted by an n-state BFA (Q,Σ, δ, g, F ). Let A =
(Q∪{s}, Σ, δ′, s, F ′) where s /∈ Q, δ′(q, a) = δ(q, a) if q ∈ Q and δ′(q, a) = δ(g, a)
if q = s; F ′ = F if ε /∈ L and F ′ = F ∪ {s} if ε ∈ L. Then A is an (n + 1)-state
AFA for L. �
Proposition 7. Let K and L be languages over Σ. Then

(a) (KL−1)R = (LR)−1KR;
(b) (L−1K)R = KR(LR)−1.

�
Proposition 8. Let a non-empty language L be accepted by an n-state DFA.
Then L∗ is accepted by a 2n-state DFA with half of the states final.

Proof. Let L be accepted by an n-state DFA A = (Q,Σ, ·, s, F ). If the initial
state is the only final state in A, then L∗ = L, and we may add final and non-
final unreachable sink states to get the desired automaton. Otherwise there is a
final state qF such that qF �= s. Construct an NFA N for L∗ from A as follows:

(a) add the transition (q, a, s) whenever q · a ∈ F ;
(b) add a new initial and final state q0;
(c) the initial states of N are s and q0 and the set of final states is F ∪ {q0}.

In the corresponding subset automaton D(N) the initial subset is {q0, s} and
any other reachable subset S is a non-empty subset of Q such that S ∩ F �= ∅
implies s ∈ S. By the construction above every set S such that qF ∈ S and
s /∈ S is unreachable. That means that there are at most 1+2n −1−2n−2 = 3

42n

reachable sets in D(N). Let us show that in the minimal DFA for L∗ the number
of non-final states as well as the number of final states is at most 2n−1. The non-
final subsets in D(N) must not contain the state qF , so there are at most 2n−1

of them. Next the initial subset {q0, s} is final and any other final subset must
contain the state s. This gives at most 1 + 2n−1 subsets. However, if s ∈ F then
{q0, s} and {s} are equivalent, and if s /∈ F then {s} is non-final. Therefore the
minimal DFA for L∗ has at most 2n−1 final states. To obtain 2n-state DFA we
may add some unreachable sink states. Since the number of final and non-final
states are at most 2n−1 it is possible to achieve that exactly half of the states
would be final and the other half non-final in the resulting 2n-state DFA. �
Proposition 9. Let m,n ≥ 2 and gcd(m,n) = 1. Let K and L be unary regular
languages accepted by deterministic finite automata A = (m, 0, {0}) and B =
(n, 0, {1, 2, . . . , n − 1}), respectively. Then sc(K ⊕ L) = mn.

Proof. Since symmetric difference is a commutative operation, we may assume
that m < n. Denote QA = {0, 1, . . . ,m − 1}, QB = {0, 1, . . . , n − 1}. Consider
the product automaton A×B = (QA ×QB , {a}, ·, (0, 0), F ) where the set of final
states is F = {(0, 0)}∪{1, 2, . . . ,m− 1}×{1, 2, . . . , n− 1}. Since gcd(m,n) = 1,
every state of the product automaton is reachable. To prove distinguishability,
let p and q be two distinct states of the product automaton. Then there is an
integer k ≥ 0 such that p · ak = (m − 1, 0) and q · ak = q′ where q′ �= (m − 1, 0).
We have three cases:
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(a) q′ ∈ F . Then ak distinguishes p and q since (m − 1, 0) /∈ F .
(b) q′ = (0, n − 1). Then akam distinguishes p and q since

p
ak

−→ (m − 1, 0) am

−−→ (m − 1,m) ∈ F ,

q
ak

−→ (0, n − 1) a−→ (1, 0) am−1

−−−→ (0,m − 1) /∈ F ; recall that m < n.
(c) q′ is a non-final state different from (0, n− 1). Then aka distinguishes p and

q since (m − 1, 0) · a /∈ F and q′ · a ∈ F .

Hence all the states of the product automaton are reachable and pairwise
distinguishable. This means that sc(K ⊕ L) = mn. �

3 Operations on Boolean and Alternating Automata

In this section we investigate the descriptional complexity of basic regular oper-
ations on languages represented by Boolean and alternating automata. We start
with the complementation operation and we show that a language and its com-
plement have the same complexity.

Theorem 10 (Complementation). Let L be a regular language. Then we
have asc(L) = asc(Lc) and bsc(L) = bsc(Lc).

Proof. Let L be accepted by a minimal n-state BFA (AFA). Then the lan-
guage LR is accepted by a 2n-state DFA (with half of the states final) by
Lemma 2. This means that (LR)c is accepted by a 2n state DFA (with half of
the states final) since we only interchange final and non-final states in the DFA
for LR. Next (LR)c = (Lc)R. Therefore Lc is accepted by an n-state BFA (AFA)
by Lemma 3. Hence asc(Lc) ≤ n and bsc(Lc) ≤ n. Moreover we cannot have
asc(Lc) < n because after another complementation we would get asc(L) < n.
The argument for bsc(Lc) is the same. �

We continue with the star operation. We improve the results from [10, The-
orems 8, 9] where upper and lower bounds differed by one. We get tight upper
bound 2n for both BFAs and AFAs as a corollary of the next theorem.

Theorem 11 (Star). Let n ≥ 2.

(a) If L is accepted by an n-state BFA, then L∗ is accepted by a 2n-state AFA.
(b) There exists a language L accepted by an n-state AFA such that every BFA

for L∗ has at least 2n states.

Proof
(a) Let L be accepted by an n-state BFA. Then LR is accepted by a 2n-state

DFA by Lemma 2. By Propostion 8, (LR)∗ is accepted by a 22
n

-state DFA with
half of the states final. Next (LR)∗ = (L∗)R. This means that L∗ is accepted by
a 2n-state AFA by Lemma 3.

(b) Let LR be the Palmovský’s witness language for star [16] with 2n states
and 2n−1 final states shown in Fig. 1. By Lemma 3 the language L is accepted by
an n-state AFA. By [16, Proof of Theorem 4.4] sc((LR)∗) = 22

n−1+22
n−1−2n−1

=
22

n−1(1+2−2n−1
). Since (LR)∗ = (L∗)R we get bsc(L∗) ≥ log(sc((L∗)R))� = 2n

by Corollary 4. �
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0 1 . . . 2n−1 . . . 2n − 2 2n − 1

b

a a, b a, b a, b a, b a, b a

b

a b

Fig. 1. The reverse of a binary witness for star on BFAs and AFAs.

In what follows we use Lemmas 2, 3 and Corollary 4 without citing them
again and again. The next theorem provides tight upper bounds on the com-
plexity of difference, symmetric difference, reversal, and right and left quotient
on languages represented by Boolean finite automata.

Theorem 12 (Operations on BFAs). Let K and L be (regular) languages
over an alphabet Σ accepted by an m-state and n-state BFA, respectively. Then

(a) bsc(K \ L) ≤ m + n, and the bound is tight if |Σ| ≥ 2;
(b) bsc(K ⊕ L) ≤ m + n, and the bound is tight if |Σ| ≥ 3;
(c) bsc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2;
(d) bsc(KL−1) ≤ 2m, and the bound is tight if |Σ| ≥ 2;
(e) bsc(L−1K) ≤ m, and the bound is tight if |Σ| ≥ 1.

Proof. Let A = (QA, Σ, δA, gA, FA) be an m-state BFA for the language K and
B = (QB , Σ, δB , gB , FB) be an n-state BFA for L with QA ∩ QB = ∅.

(a) The language K \L is accepted by BFA (QA∪QB , Σ, δ, gA∧gB , FA∪FB),
where δ = δA on QA and δ = δB on QB . Thus bsc(K \L) ≤ m+n. For tightness,
let K and L be binary witness languages for intersection on BFAs described in
[10, Proof of Theorem 2]. Then K and Lc are witnesses for difference since
K \ Lc = K ∩ L.

(b) The symmetric difference K ⊕ L is accepted by BFA
(QA ∪ QB , Σ, δ, (gA ∧ gB) ∨ (gA ∧ gB), FA ∪ FB)

where δ = δA on QA and δ = δB on QB . Thus bsc(K⊕L) ≤ m+n. For tightness,
let KR and LR be the languages accepted by 2m-state and 2n-state DFAs with
half of states final shown in Fig. 2. Then K and L are accepted by m-state and
n-state BFAs. In the product automaton, each state (i, j) is reached by aibj .
Two (non-)final states are distinguished by c if they are in different quadrants
and by a word in a∗ + b∗ otherwise. So we get sc(KR ⊕ LR) = 2m+n. Next
KR ⊕ LR = (K ⊕ L)R. Therefore bsc(K ⊕ L) ≥ m + n.

(c) The language LR is accepted by 2n-state DFA, the special case of BFA.
For tightness, let LR be the Šebej’s binary witness language for reversal [11]
accepted by a DFA with 2n states. Then L is accepted by an n-state BFA. By
[11, Proof of Theorem 5] sc((LR)R) = 22

n

and therefore bsc(LR) ≥ 2n.
(d) If K and L are accepted by an m-state and n-state BFA, respectively,

then KR and LR are accepted by a 2m-state and 2n-state DFA, respectively. By
Proposition 7 (KL−1)R = (LR)−1KR and by [19, Theorem 4.1] sc((LR)−1KR) ≤
22

m − 1. It follows that bsc(KL−1) ≤ 2m. For tightness, let L = Σ∗ and K be
the language accepted by the DFA shown in Fig. 3. Then bsc(K) ≤ m and
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0 1 . . . 2m−1 . . . 2m − 2 2m − 1a a a a a a a

a

b, c b, c b, c b, c b, c b, c

0 1 . . . 2n−1 . . . 2n − 2 2n − 1b b b b b b b

b, c

a, c a, c a, c a a a

c c

Fig. 2. The reverses of ternary witnesses for symmetric difference on BFAs.

0 1 . . . 2m − 2 2m − 1

b

a a, b a, b a, b

a, b

Fig. 3. The reverse of a binary witness for right quotient (by Σ∗) on BFAs.

bsc(L) ≤ n. Next (KL−1)R = (Σ∗)−1KR and by [19, Proof of Theorem 4.1]
sc((Σ∗)−1KR) = 22

m − 1. Therefore bsc(KL−1) ≥ 2m.
(e) Since (L−1K)R = KR(LR)−1 and sc(KR(LR)−1) ≤ 2m [19, p. 323], we get

bsc(L−1K) ≤ m. For tightness, let K = {ai | 2m−1−1 ≤ i ≤ 2m−2} and L = a∗.
Then bsc(K) ≤ m and bsc(L) ≤ n. Next KR(a∗)−1 = {ai | 0 ≤ i ≤ 2m − 2}, so
sc(KR(a∗)) = 2m. Therefore bsc(L−1K) ≥ m.

In the next theorem we study the complexities of same operations on lan-
guages represented by alternating finite automata. Note that while the complex-
ities of intersection, union, and difference on AFAs exceed those on BFAs by
one, the complexity of symmetric difference on AFAs and BFAs is the same.

Theorem 13 (Operations on AFAs). Let K and L be (regular) languages
over an alphabet Σ accepted by an m-state and n-state AFA, respectively. Then

(a) asc(K \ L) ≤ m + n + 1, and the bound is tight if |Σ| ≥ 2;
(b) asc(K ⊕ L) ≤ m + n, and the bound is tight if |Σ| ≥ 3;
(c) asc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2;
(d) asc(KL−1) ≤ 2m + 1, and the bound is tight if |Σ| ≥ 2;
(e) asc(L−1K) ≤ m + 1, and the bound is tight if |Σ| ≥ 1.

Proof
(a) Since every AFA is BFA we get bsc(K \ L) ≤ m + n by Theorem 12(a).

Therefore asc(K\L) ≤ m+n+1. For tightness, let K and L be the binary witness
languages for intersection on AFAs described in [10, Proof of Theorem 3]. Then
K and Lc are witnesses for difference since asc(K\Lc) = asc(K∩L) = m + n + 1.
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(b) If K and L are accepted by m-state and n-state AFAs, then KR and
LR are accepted by 2m-state and 2n-state DFAs with half of the states final.
It follows that KR ⊕LR is accepted by a product automaton of 2m+n states and
half of them are final. Therefore K ⊕ L is accepted by (m + n)-state AFA. For
tightness, let KR and LR be the languages accepted by 2m-state and 2n-state
DFAs with half of the states final shown in Fig. 2. Then K and L are accepted
by m-state and n-state AFAs. As shown in Theorem 12(b) every BFA for K ⊕L
has at least m + n states. Therefore asc(K ⊕ L) ≥ m + n.

(c) If L is accepted by an n-state AFA, then LR is accepted by 2n-state
DFA. Every DFA is a special case of AFA. Therefore AFA for language LR has
2n states. For tightness, let LR be the language accepted by 2n-state Šebej’s
automaton in which half of the states are final shown in Fig. 4. By [11, Proof of
Theorem 5] we have sc((LR)R) = 22

n

; notice that any nontrivial number of final
states does not matter since the subset automaton of NFA for (LR)R does never
have equivalent states [11, Proposition 3]. Hence asc(LR) ≥ 2n by Corollary 4.

0 1 2 3 4 . . . 2n−1 . . . 2n − 1
a a

a

a a a a a a

a

b

b

b

b

b b b b

Fig. 4. The reverse of a binary witness for reversal on AFAs.

(d) By Propostion 6 and Theorem 12(d) we get asc(KL−1) ≤ bsc(KL−1) +
1 ≤ 2m + 1. To prove tightness, let L = Σ∗ and KR be the language accepted
by the DFA A shown in Fig. 5 in which half of the states are final. Then
asc(K) ≤ m and asc(L) ≤ n. Next (KL−1)R = (Σ∗)−1KR. Let us show that
sc((Σ∗)−1KR) = 22

m − 1. Construct an NFA N for (Σ∗)−1KR from the DFA A
by making all the states initial. Every non-empty subset in the corresponding
subset automaton is reachable as it was shown in [19, Proof of Theorem 4.1].
To prove distinguishability, notice that the state 1 is uniquely distinguishable by
the word b2

m−2, and it is uniquely reachable in N from any other state through
the unique in-transitions 2 a−→ 3 a−→ · · · a−→ 2m−1 a−→ 0 a−→ 1. By Proposition 1,
all states of the subset automaton are pairwise distinguishable. The number of
final states in the subset automaton is 22

m −22
m−1

, which is greater than 22
m−1.

Therefore by Lemma 2 we get asc(KL−1) ≥ 2m + 1.

0 1 . . . 2m−1 . . . 2m − 2 2m − 1

b

a a, b a, b a, b a, b a, b a, b

a, b

Fig. 5. The reverse of a binary witness for right quotient (by Σ∗) on AFAs.
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(e) By Proposition 6 and Theorem 12(e) asc(L−1K) ≤ bsc(L−1K) + 1 ≤
m + 1. To get tightness, consider the same two languages as in Theorem 12(e).
Notice that the minimal DFA for KR(a∗)−1 has more than 2m−1 final states. �

In the next theorem we study the complexity of basic regular operations on
unary languages represented by Boolean finite automata.

Theorem 14 (Unary BFAs). Let n ≥ 2 and K and L be unary languages
accepted by an m-state and n-state BFA, respectively. Then

(a) bsc(K ∩ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(b) bsc(K ∪ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(c) bsc(K\L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(d) bsc(K ⊕ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(e) bsc(LR) = bsc(L);
(f) bsc(L∗) ≤ 2n and the bound is tight;
(g) bsc(KL−1) ≤ m, and the bound is tight.

Proof. Let unary languages K and L be accepted by m-state and n-state BFA,
respectively. Then K and L are accepted by 2m-state and 2n-state DFA, respec-
tively, by Corollary 5, and the languages K ∩L, K ∪L, K\L, K ⊕L are accepted
by a 2m2n-state product automaton. This gives upper bounds m + n in cases
(a)–(d). To prove tightness for intersection, let K = (a2m)∗ and L = (a2n−1)∗.
Then K and L are accepted by a 2m-state and 2n-state DFA, respectively, so by
an m-state and n-state BFA, respectively. Since gcd(2m, 2n − 1) = 1, we have
sc(K∩L) = 2m(2n−1). This means that bsc(K∩L) ≥ log(2m(2n−1))� = m+n.
For union, we may use the languages Kc and Lc, since Kc ∪Lc = (K ∩L)c and a
language and its complement have the same Boolean state complexity. Similarly,
for difference we use the languages K and Lc. For symmetric difference, let us
consider unary languages K and L accepted by automata A = (2m, 0, {0}) and
B = (2n − 1, 0, {1, 2, . . . , 2n − 2}). By Proposition 9 sc(K ⊕ L) = 2m(2n − 1). It
follows that bsc(K ⊕ L) ≥ log(2m(2n − 1))� = m + n.

(e) The equality follows from the fact that L = LR in the unary case.
(f) The state complexity of the star operation in the unary case is (n−1)2+1

[3,19]. If a unary language L is accepted by an n-state BFA then L is accepted by
a 2n-state DFA. This means that L∗ is accepted by a DFA of at most (2n−1)2+1
states, so by a DFA of at most 22n states. Therefore bsc(L∗) ≤ 2n. For tightness,
let L be the unary language accepted by the DFA (2n, 0, {2n − 1}) meeting the
upper bound for star [19, Theorem 5.3]. Then L is accepted by an n-state BFA
and bsc(L∗) ≥ log(sc(L∗))� = log((2n − 1)2 + 1)� = 2n.

(g) In the unary case, KL−1 = L−1K. In Theorem 12(e) we proved that
bsc(L−1K) ≤ m and we provided a unary witness. �

Recall that by Proposition 6 asc(L) ≤ bsc(L)+1. Therefore as a corollary of
the previous theorem we get the following upper bounds.

Corollary 15 (Unary AFAs). Let n ≥ 2 and K and L be unary languages
accepted by an m-state and n-state AFA, respectively. Then
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(a) asc(K ∩ L) ≤ m + n + 1;
(b) asc(K ∪ L) ≤ m + n + 1;
(c) asc(K \ L) ≤ m + n + 1;
(d) asc(LR) = asc(L);
(e) asc(L∗) ≤ 2n + 1;
(f) asc(KL−1) ≤ m + 1.

We are not able to prove the tightness since the complexity of operations on
unary DFAs with half of the states final is not known. The previous theorem
and its corollary imply that a binary alphabet for some of our witness languages
is optimal in the sense that it cannot be reduced to a unary alphabet.

4 Conclusions

We investigated the descriptional complexity of basic regular operations on lan-
guages represented by Boolean and alternating finite automata. We considered
the operations of complementation, star, difference, symmetric difference, rever-
sal, and left and right quotient. For each operation we obtained the tight upper
bound on its complexity on both Boolean and alternating automata.

Our results are summarized in Table 1. The table also shows the size of
alphabet used for describing witness languages, and compares our results to the
known results for deterministic [11,14,19] and nondeterministic finite automata
from [6,9]. The results for intersection and union on Boolean and alternating
automata are from [10]. Notice that the complexity of intersection, union, and
difference on alternating automata is m+n+1 while the complexity of symmet-
ric difference is m + n. Except for ternary witnesses for symmetric difference,
all the other provided witnesses are defined over a binary or unary alphabets
and, moreover, a binary alphabet for the witness languages for star, reversal,
and right quotient on BFAs and AFAs is optimal in the sense that it cannot be
reduced to a unary alphabet.

Table 1. The complexity of operations on languages represented by BFAs, AFAs,
DFAs, NFAs. The results for DFAs are from [11,14,19], the results for NFAs are from
[6,9], and the results for intersection and union on BFAs and AFAs are from [10].

BFA |Σ| AFA |Σ| DFA |Σ| NFA |Σ|
Complement n 1 n 1 n 1 2n 2

Intersection m + n 2 m + n + 1 2 mn 2 mn 2

Union m + n 2 m + n + 1 2 mn 2 m + n + 1 2

Difference m + n 2 m + n + 1 2 mn 2 ≤ m2n

Symmetric difference m + n 3 m + n 3 mn 2 ≤ 2m+n

Reversal 2n 2 2n 2 2n 2 n + 1 2

Star 2n 2 2n 2 3
4
2n 2 n + 1 1

Left quotient m 1 m + 1 1 2m − 1 2 m + 1 2

Right quotient 2m 2 2m + 1 2 m 1 m 1
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Abstract. Let Π be a family of graphs. In the classical Π-Vertex
Deletion problem, given a graph G and a positive integer k, the objec-
tive is to check whether there exists a subset S of at most k vertices
such that G − S is in Π. In this paper, we introduce the conflict free
version of this classical problem, namely Conflict Free Π-Vertex
Deletion (CF-Π-VD), and study these problems from the viewpoint of
classical and parameterized complexity. In the CF-Π-VD problem, given
two graphs G and H on the same vertex set and a positive integer k,
the objective is to determine whether there exists a set S ⊆ V (G), of
size at most k, such that G−S is in Π and H[S] is edgeless. Initiating a
systematic study of these problems is one of the main conceptual contri-
bution of this work. We obtain several results on the conflict free version
of several classical problems. Our first result shows that if Π is charac-
terized by a finite family of forbidden induced subgraphs then CF-Π-VD
is Fixed Parameter Tractable (FPT). Furthermore, we obtain improved
algorithms for conflict free version of several well studied problems. Next,
we show that if Π is characterized by a “well-behaved” infinite family of
forbidden induced subgraphs, then CF-Π-VD is W[1]-hard. Motivated by
this hardness result, we consider the parameterized complexity of CF-Π-
VD when H is restricted to well studied families of graphs. In particular,
we show that the conflict free versions of several well-known problems
such as Feedback Vertex Set, Odd Cycle Transversal, Chordal
Vertex Deletion and Interval Vertex Deletion are FPT when H
belongs to the families of d-degenerate graphs and nowhere dense graphs.

Keywords: Hereditary properties · Parameterized algorithms
Kernelization · Vertex cover · Conflict free

1 Introduction

Graph-modification by either deleting vertices, or deleting edges, or adding
edges such that the resulting graph satisfies certain properties or becomes a
member of some well-understood graph class is one of the basic problems in
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graph theory and computer science. However, most of these problems are NP-
complete [18,29], and therefore they have been extensively studied in various
algorithmic paradigms that are meant to cope with NP-completeness [13,14,20],
such as restricted classes of inputs, approximation algorithms and parameter-
ized complexity. This paper introduces a new variant of these classical problems,
called the conflict free version, and studies them from viewpoint of classical and
parameterized complexity.

In the past, the conflict free versions of some classical problems have been
studied, e.g. for Shortest Path [16], Maximum Flow [24,25], Knapsack
[26], Bin Packing [11], Scheduling [12], Maximum Matching and Mini-
mum Weight Spanning Tree [9,10]. It is interesting to note that some of
these problems are NP-hard even when their non-conflicting version is polyno-
mial time solvable. The study of conflict free problems has also been recently
initiated in computational geometry motivated by various applications (see [2–
4]). Motivated by these works, we initiate the study of the conflict free versions
of several well studied vertex deletion problems in parameterized complexity.
This is the main conceptual contribution of this paper. A typical parameterized
vertex deletion problem on graphs is of the following form. Let Π be a family of
graphs (or property) – such as edgeless graphs, forests, cluster graphs, chordal
graphs, interval graphs, bipartite graphs, split graphs or planar graphs. The
vertex deletion problem corresponding to Π is formally stated as follows.

Π-Vertex Deletion Parameter: k
Input: An undirected graph G and a non-negative integer k.
Question: Does there exist S ⊆ V (G), such that |S| ≤ k and G − S is in Π?

That is, given a graph G, can we delete at most k vertices such that the resulting
graph belongs to Π? The set S is called Π-deletion set . An algorithm for Π-
Vertex Deletion that runs in time f(k) · |V (G)|O(1) is called fixed-parameter
tractable (FPT) algorithm and the problem itself is said to be FPT. We refer to [8]
for more details on parameterized complexity. The study of parameterized graph
deletion problems together with their various restrictions and generalizations has
been an active area of research recently.

To formulate the conflict free version of these classical problems, let us begin
with an example. Consider Set Cover, that has the following conflict free
version. We are given a universe U and a family S of subsets of U , a positive
integer k and a graph H (with V (H) = S). The objective is to check whether
there exists a S ′ ⊂ S of size at most k whose union is U and H[S ′] is edge-
less. Now, we may similarly combine the classical vertex deletion problems on
graphs, with the conflict free model described in [2–4] and arrive at the fol-
lowing generic conflict free problem. Let Π be a family of graphs. The conflict
free vertex deletion problem corresponding to Π is formally stated as follows.



196 P. Jain et al.

Conflict Free Π-Vertex Deletion (CF-Π-VD) Parameter: k
Input: An undirected graph G, a conflict graph H on vertex set V (G) and
a non-negative integer k.
Question: Does there exist a set S ⊆ V (G), such that |S| ≤ k, G − S is in
Π and S is an independent set in H?

We define CF-Π-VD for hypergraphs and directed graphs, appropriately. In
this paper, we focus on CF-Π-VD problems corresponding to several well stud-
ied problems in parameterized complexity, namely Vertex Cover, d-Hitting
Set, Split Vertex Deletion, Feedback Vertex Set in Tournaments
(FVST) and Feedback Vertex Set (FVS). Observe that when H is an edge-
less graph, CF-Π-VD is same as Π-Vertex Deletion and thus it generalizes
the non-conflict free version of the problem. Furthermore, when H is same as G
it corresponds to independent version of these problems which are also well stud-
ied, such as Independent Feedback Vertex Set [19,23]. Thus, CF-Π-VD
is a generalization of well studied problems in algorithms and complexity.

Our Results. Apart from introducing an interesting family of problems, we
obtain the following results in the realm of parameterized and classical complex-
ity. We note that several of these results are in sharp contrast to the non-conflict
version of the same problem.

A graph property Π is a set of graphs, and a graph in Π is called a Π-graph.
We say that Π is hereditary if for any graph G in Π, every induced subgraph of G
is also in Π. A graph property Π has a forbidden set characterization if there is a
set F of graphs such that a graph is a Π-graph if and only if it does not contain
any graph in F as an induced subgraph, and further, it has a finite forbidden
characterization if F is a finite set. We study the complexity of CF-Π-VD based
on the forbidden set of the property Π.

Graph properties with finite forbidden characterization. The starting point of
our results is a generic result by Cai [5] about graph properties which have a
finite forbidden characterization. We show an analogous result for CF-Π-VD. In
particular we show that CF-Π-VD is FPT whenever Π has a finite forbidden set
characterization. Indeed, we show that this problem admits an algorithm with
running time O(αk · n · T (m,n)), where T (m,n) is time to recognize a graph in
Π and α is the size of largest graph in the finite forbidden set F . Furthermore,
it also admits a kernel with O(α2α!kα) vertices.

Next, we study the conflict free version of several well-studied cases of Π-
Vertex Deletion, where Π is characterized by the finite family of forbidden
induced subgraphs. These results improve upon the generic result stated above.

1. Conflict Free Vertex Cover (CF-VC) admits a 2k-vertex kernel, a
factor 2-approximation algorithm, an O�(1.2738k) FPT algorithm1 and a
O�(1.1996n) exact algorithm. Further, CF-VC is NP-complete even when
graph G is of degree at most 2. This holds even when G is disjoint union
of P3 (P� denotes path on � vertices). Furthermore, CF-VC is polynomial

1 O� suppresses the polynomial factor in the running time.
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time solvable when G has degree at most one, or when both G and H have a
perfect matching.

2. The Conflict Free d-Hitting Set (d-CF-HS) problem can be solved in
O�(((d − 1) + .2738)k) = O�((d − 0.7262)k) time.

3. Conflict Free Split Vertex Deletion (CF-SVD) can be solved in
O�(1.2738kkO(log k)) time and polynomial space.

4. Conflict Free Feedback Vertex Set in Tournaments (CF-FVST)
can be solved in O�(2k) time.

Let us note that given an instance (G,H) of CF-VC, we can test whether there
exists a conflict free vertex cover (of any size) in polynomial time. However, one
can show that testing whether there exists a conflict free feedback vertex set is
NP-complete.

Graph properties without finite forbidden characterization. Next, we consider
those graph properties that are not characterized by a finite family of forbid-
den induced subgraphs. We show that if Π is characterized by a “well-behaved”
infinite family of forbidden induced subgraphs, then CF-Π-VD is W[1]-hard.
In particular, we show that Conflict Free Feedback Vertex Set (CF-
FVS) is W[1]-hard even when G is disjoint union of cycles. A similar result
holds for Conflict Free Odd Cycle Transversal (CF-OCT), Conflict
Free Chordal Vertex Deletion (CF-CVD) and Conflict Free Inter-
val Vertex Deletion (CF-IVD).

This motivates us to restrict the families of conflict graphs. We show that
conflict free versions of several well-known problems such as Feedback Vertex
Set, Odd Cycle Transversal, Chordal Vertex Deletion and Inter-
val Vertex Deletion are FPT when H belongs to the family of d-degenerate
graphs, or nowhere dense graphs. It is worth noting that the families of d-
degenerate graphs and nowhere dense graphs include trees, graphs of bounded
degree, planar graphs, graphs that exclude a fixed graph H as a minor (or a topo-
logical minor) and graphs of bounded expansion. These algorithms are based on
the notion of “k-independence covering family” introduced in [19].

Due to space constraints, basic graph theoretic preliminaries and proofs of
results marked (�) have been omitted. These will appear in the full version of
the paper.

2 Conflict Free Version of Properties with Forbidden Set
Characterizations

2.1 Properties with Finite Forbidden Set Characterizations

In this subsection, we study the CF-Finite Π-VD problem when Π is hereditary
and admits a finite forbidden set characterization.

FPT Algorithm for CF-Finite Π-VD. Let F be the finite forbidden set
corresponding to the property Π. Cai [5] showed that the Finite Π-D is FPT.
That is, given a graph G, testing whether there exists a set S ⊆ V (G) of size at
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most k such that G − S is a Π-graph is FPT. The algorithm works as follows.
It starts by finding a forbidden vertex set X in G; among which we know that
at least one vertex must go in the solution set S. Therefore, we branch on
this collection of vertices, and for each vertex v ∈ X, we recursively apply the
algorithm to solve the instance (G − v, k − 1). If one of these branches returns a
Π-deletion set S, then clearly S∪{v} is of size at most k and it is a Π-deletion set
in G. Else, we return that the given instance is a no instance. At every recursive
call we decrease the parameter by 1, and thus the height of the search tree does
not exceed k. At every step, we branch in at most α subproblems; where α is the
size of largest graph in F . Hence the number of nodes in the search tree does
not exceed αk. Observe that, the algorithm actually enumerates all the minimal
Π-deletion sets of size at most k. Thus for CF-Finite Π-VD, all we need to do
in addition, is to check whether H[S] is edgeless or not. We will also need the
following result for the above algorithm.

Proposition 1 [5, Theorem 1]. For any hereditary property Π, if Π is recogniz-
able in time T (m,n), then for any graph G that is not a Π-graph, a minimal
forbidden induced subgraph of Π in G can be found in O(n · T (m,n)) time.

With the above theorem in hand, we obtain the following theorem.

Theorem 1. CF-Finite Π-VD is FPT and admits an algorithm with running
time O(αk ·n ·T (m,n)), where T (m,n) is the time to recognize a graph in Π and
α is the size of largest graph in the finite forbidden set F .

We also obtain a polynomial kernel with at most O(α2α!kα) vertices for CF-
Finite Π-VD. The details will appear in the full version of the paper.

2.2 Properties that Do Not Admit Finite Forbidden
Characterization

It is well know that a property Π is hereditary if and only if Π admits a forbidden
set characterization [5]. Let F denote the forbidden set corresponding to Π. Fol-
lowing the previous section, a natural question that arises is what happens when
F is infinite. We call the corresponding vertex deletion problem as Conflict
Free Π-Vertex Deletion (CF-Π-VD). For example, suppose that Π is a fam-
ily of forests, or chordal graphs, or interval graphs, or bipartite graphs. Then
the corresponding classical problems of Π-Vertex Deletion (Π-VD) problems
are known as Feedback Vertex Set (FVS), Chordal Vertex Deletion
(CVD), Interval Vertex Deletion (IVD) and Odd Cycle Transversal
(OCT) and these problems are known to be FPT [6,17,21,27]. However, we will
show now that conflict free version of these problems is W[1]-hard. Indeed, Con-
flict Free Feedback Vertex Set (CF-FVS) is W[1]-hard even when G is
disjoint union of cycles.

Towards this, we present a parameter preserving reduction from the W[1]-
hard Multicolored Independent Set (MCIS) problem to CF-FVS. See [8]
for further details on the notion of W[1]-hardness and for the fact that MCIS
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is W[1]-hard. In MCIS, given a graph G, an integer k, and a partition of V (G)
into k sets, say V1, . . . , Vk, the objective is to check whether there exists a set
X ⊆ V (G) such that it contains exactly one element from every set Vi and
is an independent set in G. We call such an independent set as multicolored
independent set.

Theorem 2 (�). CF-FVS is W[1]-hard.

Proof (Sketch). Let (G, (V1, . . . , Vk), k) be an instance of MCIS. Given this, we
construct an instance (G′,H, k) of CF-FVS as follows. The vertices of G′ and H
are same as V (G). For each set Vi, we construct a cycle C|Vi| in G′ (C� denotes
cycle on � vertices) on vertex set Vi in G′. The graph H is identical to graph G.
Now we can show that G has a multicolored independent set of size k, if and
only if, (G′,H) has a conflict free feedback vertex set of size k. ��

The proof of Theorem2 requires nothing specific about CF-FVS, except that
G is a disjoint union of forbidden sets where each forbidden set is identified with
a color class Vi. If F is infinite and well behaved in the following sense: given
an integer n we can output a forbidden set F of size polynomial in n (in fact
size f(k) · nO(1) will also work for our purpose) in time τ(k) · nO(1), then we
can mimic the proof of Theorem 2 and show that the corresponding CF-Π-VD
is W[1]-hard. Let us note that in certain cases, e.g. for bipartite graphs where
the family of forbidden subgraphs are odd cycles, we may need to augment a
color class Vi with additional vertices to obtain a forbidden set in F in the
graph G. This is easily handled by making the additional vertices adjacent to
all vertices in the conflict graph H, which ensures that they cannot be selected
in any solution of cardinality greater than one. In particular, this holds for Π
being the family of chordal graphs, or interval graphs, or bipartite graphs. Here,
f and τ are computable functions.

2.3 Results on Properties Without Finite Forbidden
Characterization

In Sect. 2.2, we have shown that if F is infinite, CF-Π-VD is W[1]-hard in
general, even though the corresponding classical problem is FPT, e.g. CF-FVS,
CF-OCT, CF-CVD etc. In light of this, a natural question that arises is what
happens if H is restricted to certain graph classes. In this section, we show that
CF-Π-VD is FPT when H is restricted to the class of d-degenerate graphs or
no-where dense graphs.

The degeneracy of an n-vertex graph G� is defined as the minimum integer
d such that there exists an ordering σ : V (G�) → {1 , · · · , n} where every vertex
v has at most d neighbors u for which σ(u) > σ(v). Such an ordering σ is called
a d-degeneracy sequence of graph G�. We fix one such sequence, and then for
any vertex v ∈ V (G∗), we define its forward and backward neighbors in G∗

with respect to this ordering. Our algorithm is based on the construction of a
k-independence covering family of a graph, using the Independence Covering
Lemma of [19]. For a graph H� and an integer k, a k-independence covering
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family, denoted by F (H�, k), is a family of independent sets of graph H� such
that for any independent set X in H� of size at most k there exists a set Y in
F (H�, k) such that X ⊆ Y . We will use the following propositions to construct
a k-independence covering family for H.

Proposition 2 [19, Lemma 1.1]. There exists a linear time randomized algo-
rithm, that given as input a d-degenerate graph H� and k ∈ N, outputs an
independent set Y , such that for every independent set X in H� of size at most
k the probability that X is a subset of Y is at least (

(
k(d+1)

k

)
k(d + 1))−1.

Proposition 3 [19, Lemmas 3.2 and 3.3]. There are two deterministic algo-
rithms, that given a d-degenerate graph H� and k ∈ N, outputs independence cov-
ering families F1(H�, k) of size at most

(
k(d+1)

k

)
2o(k(d+1)) log n and F2(H�, k)

of size at most
(
k2(d+1)2

k

)
(k(d + 1))O(1) log n respectively. These algorithms run

in time O(|F1(H�, k)|(n + m)) and O(|F1(H�, k)|(n + m)), respectively.

Now we present our algorithm for CF-Π-VD problems, when the conflict
graph is d-degenerate. The algorithm is based on the observation that, given a
independence covering family of conflict graph, the conflict free solution of the
problem lies inside one of the sets in this family. By construction, each set in
this family is an independent set in H, and therefore the problem of finding a
solution to the given instance of CF-Π-VD boils down to finding a solution of
Π-VD in the graph G that also lies in a chosen set in the family. In particular,
it reduces to solving the following annotated version of CF-Π-VD.

Annotated-Π-VD (A-Π-VD) Parameter: k
Input: A graph G, Y ⊆ V (G) and an integer k.
Question: Does there exist S ⊆ Y of size at most k such that G − S is a
Π-graph?

Theorem 3 (�). Let Π be a property such that A-Π-VD admits an algo-
rithm with running time τ(k)nO(1). Then CF-Π-VD admits a randomized
algorithm with running time

(
k(d+1)

k

)
k(d + 1)τ(k)nO(1), and a determinis-

tic algorithm with running time min
{(

k(d+1)
k

)
2o(k(d+1)) log n,

(
k2(d+1)2

k

)
(k(d +

1))O(1) log n
}

τ(k)nO(1), on the family of conflict graphs that are d-degenerate.

Proof (Sketch). Given an instance (G,H, k) of CF-Π-VD we do as follows. Run
the following two step procedure (

(
k(1+d)

k

)
k(d + 1)) times.

1. Run the algorithm in Proposition 2 on (H, k), and obtain the set Y .
2. Solve A-Π-VD on the instance (G,H, Y, k) using the algorithm running in

time τ(k)nO(1).

The algorithm will output yes if, Step 2 returns yes at least once, else algo-
rithm returns no. Now we prove the correctness of algorithm. Since in Step
1, the output set Y is an independent set in conflict graph H, if the algorithm
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returns yes then the input instance is a yes instance. Now suppose that the input
instance is a yes instance and X be its solution. By Proposition 2, probability
that X ⊆ Y is at least p = (

(
k(d+1)

k

)
k(d + 1))−1. We repeat the procedure 1/p

times, so the probability that in all executions X � Y is at most (1−p)1/p ≤ 1/e.
Therefore algorithm returns yes with probability at least 1 − 1/e. Running time
follows from Proposition 2 and the assumed running time of the algorithm for
A-Π-VD.

Now we give the deterministic algorithm. Given an instance (G,H, k) of CF-
Π-VD the algorithm works as follows. Algorithm first constructs k-independence
covering family F (H, k) of conflict graph H, using Proposition 3. Now for all
sets Y ∈ F (H, k), algorithm solve A-Π-VD on instance (G,H, Y, k) using the
algorithm assumed in the statement of the theorem. The algorithm outputs yes
if for some set Y ∈ F (H, k), the A-Π-VD returns yes, otherwise returns no. The
correctness of algorithm follows from the definition of k-independence covering
family. The running time follows from Proposition 3, and the assumed running
time of the algorithm for A-Π-VD. This completes the proof. ��

The above theorem naturally leads to the question that when can A-Π-VD be
FPT. We give an affirmative answer for several cases when the integer weighted
version (W-Π-VD) of the corresponding Π-VD is FPT.

Lemma 1. Let Π be a property such that W-Π-VD admits an algorithm with
running time γ(k)nO(1). Then A-Π-VD also admits an algorithm with running
time γ(k)nO(1).

Proof. We give a polynomial time reduction from A-Π-VD to W-Π-VD.
Towards this given an instance (G,Y, k) of A-Π-VD we construct an instance
(G′, w, k) of W-Π-VD as follows. We take graph G′ identical to graph G. We
define weight function w as follows. We assign w(v) = k + 1 if v ∈ V (G) \ Y ,
otherwise w(v) = 1. We now show that (G,Y, k) is a yes instance of A-Π-VD
if and only if (G′, w, k) is a yes instance of W-Π-VD. Let S ⊆ Y be a minimal
vertex subset of size at most k such that G−S is a Π-graph, then we claim that
S is also solution G′. Since S ⊆ Y , we have that w(v) = 1 for all vertices in S.
Therefore, the weight of S is at most k. Since G′ is same as G, G′ − S is also a
Π-graph.

Conversely, let S′ be a set of weight at most k such that G′ −S′ is a Π-graph.
We claim that S′ is a solution of G. Note that all the vertices in V (G′) \ Y have
weight k + 1, therefore S′ ⊆ Y . Since each vertex in S′ has weight one, |S′| ≤ k.
Furthermore, since graph G is identical to graph G′, we have that G − S′ is a
Π-graph. This completes the proof. ��

It is known that Weighted Feedback Vertex Set (WFVS) can be solved
in time O(3.618knO(1)) [1] and thus by Lemma 1 we have that A-FVS can be
solved in time O(3.618knO(1)). Now by applying Theorem 3 we get the following.

Corollary 1. CF-FVS either admits a randomized algorithm with running
time

(
k(d+1)

k

)
k(d + 1)τ(k)nO(1) or a deterministic algorithm with running
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time min
{(

k(d+1)
k

)
2o(k(d+1)) log n,

(
k2(d+1)2

k

)
(k(d + 1))O(1) log n

}
τ(k)nO(1), on

the family of conflict graphs that are d-degenerate. Here, τ(k) = 3.618k.

We may similarly obtain the results for Conflict Free Odd Cycle
Transversal, Conflict Free Chordal Vertex Deletion and Conflict
Free Interval Vertex Deletion.

Corollary 2 (�). CF-OCT, CF-CVD and CF-IVD admit a randomized algo-
rithm with running time

(
k(d+1)

k

)
k(d+1)τ(k)nO(1), and a deterministic algorithm

with running
time min

{(
k(d+1)

k

)
2o(k(d+1)) log n,

(
k2(d+1)2

k

)
(k(d + 1))O(1) log n

}
τ(k)nO(1), on

the family of conflict graphs that are d-degenerate. Here, τ(k) is 4kk6, 2O(k log k)

and 8k for each of these problems respectively.

The above results can be also extended to the class of nowhere dense graphs.
The details will appear in the full version of the paper.

3 Well Studied Special Cases of CF-FINITE Π-VD

We can obtain improved algorithms for the conflict free version of several well-
studied cases of Π-Vertex Deletion whenever Π is characterized by the finite
family of forbidden induced subgraphs. In this section, we give improved algo-
rithms for Conflict Free Vertex Cover, Conflict Free d-Hitting Set,
Conflict Free Split Vertex Deletion and Conflict Free Feedback
Vertex Set in Tournaments.

3.1 CONFLICT FREE VERTEX COVER

In this section, we study the conflict free version of the classical Vertex Cover,
namely Conflict Free Vertex Cover (CF-VC). In particular, we study the
following problem.

Conflict Free Vertex Cover (CF-VC) Parameter: k
Input: A graph G = (V,E), a conflict graph H and an integer k.
Question: Does there exist X ⊆ V (G) of size at most k such that X is a
vertex cover of G and an independent set of H ?

We call the set X a conflict free vertex cover. Next, we show that CF-VC
can be solved as fast as the classical Vertex Cover problem. Towards this, we
present a polynomial time reduction from CF-VC to Min Ones 2-SAT which
preserves both parameter k and number of variables n. In Min Ones 2-SAT, we
are given a formula Φ such that every clause consists of at most two literals and
an integer k, and the aim is to check whether there exists a satisfying assignment
τ of Φ where at most k variables are set to 1. Given a formula Φ, let V (Φ) and
C(Φ) denote the set of variables and clauses of Φ, respectively.
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Lemma 2. There is a polynomial time parameter preserving reduction from
CF-VC to Min Ones 2-SAT. That is, given an instance (G,H, k) of CF-VC,
in polynomial time, we can construct an instance (Φ, k) of Min Ones 2-SAT,
such that (G,H, k) is a yes instance of CF-VC if and only if (Φ, k) is a yes
instance of Min Ones 2-SAT. Furthermore, |V (Φ)| = |V (G)| = |V (H)|.
Proof. We begin with the construction of the formula. Let (G,H, k) be an
instance of CF-VC. Given this instance, we construct an instance (Φ, k) of Min
Ones 2-SAT as follows. For every edge uv ∈ E(G), introduce a clause (u ∨ v)
and for every edge uv ∈ E(H), introduce a clause (ū ∨ v̄) in Φ. More precisely,
given the graphs G and H, the CF-VC is formulated as the following instance
Min Ones 2-SAT.

Φ =
∧

uv∈E(G)

(u ∨ v)
∧

uv∈E(H)

(ū ∨ v̄).

Now, let X be a conflict free vertex cover of G of size at most k. We construct
a truth assignment τ of Φ as follows. If x ∈ X then τ(x) = 1, otherwise it is 0.
Clearly this satisfies the formula Φ and it is of weight at most k. Conversely, let
τ be a satisfying assignment of Φ of weight at most k. We construct a set X as
follows. If τ(u) = 1, add the vertex u to X. For the clause (u ∨ v), at least one
of τ(u) or τ(v) is 1. This ensures that every edge of G is incident to some vertex
u ∈ X. For the clause (ū∨ v̄), at least one of τ(u) or τ(v) is 0. This ensures that
H[X] is edgeless. Clearly, the size of X is at most k. ��

Lemma 2 implies the following result.

Lemma 3 (�). Let G be a graph and H be a conflict graph of G. Then in
polynomial time we can test whether there exists a conflict free vertex cover of
the instance (G,H, k).

Misra et al. [22] have shown that Min Ones 2-SAT can be solved as fast as
Vertex Cover. This implies that CF-VC can also be solved as fast as Vertex
Cover. Further, using results from [7,15,28], we obtain the following.

Theorem 4. CF-VC admits a 2k-vertex kernel, a factor 2-approximation algo-
rithm, an O�(1.2738k) FPT algorithm and a O�(1.1996n) exact algorithm.

Next, we consider some special cases of CF-VC. It is well known that Ver-
tex Cover is NP-complete in general and polynomial time solvable for graphs
with maximum degree at most two. We can prove that CF-VC is NP-complete
even when graph G is of degree at most 2. In fact, it is true even when G is
disjoint union of P3 (P� denotes path on � vertices).

Theorem 5 (�). CF-VC is NP-complete when G is of degree at most 2.

However, certain special cases of CF-VC are polynomial time solvable.

Theorem 6 (�). CF-VC is solvable in polynomial time in the following cases:
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(a) The graph G has degree at most one.
(b) Both the graphs G and H have a perfect matching.

Further Results. Due to space constraints, detailed description of the following
results of Conflict Free d-Hitting Set, Conflict Free Split Vertex
Deletion and Conflict Free Feedback Vertex Set in Tournaments
have been deferred to the full version of the paper.

Theorem 7

(a) The Conflict Free d-Hitting Set problem can be solved in O�(((d −
1) + .2738)k) = O�((d − 0.7262)k) time.

(b) Conflict Free Split Vertex Deletion can be solved in
O�(1.2738kkO(log k)) time and polynomial space.

(c) Conflict Free Feedback Vertex Set in Tournaments can be solved
in O�(2k) time.

4 Conclusion

In this paper, we introduced a new variant, called the conflict free version, of
classical vertex deletion problems that are studied in graph algorithms. We stud-
ied these problems in the realm of parameterized complexity and obtain several
results that classify the complexity of these problems in various graph classes.
Our work opens up a whole new area of research in obtaining dichotomy results.
For every property Π, where Conflict Free Π-Vertex Deletion is W[1]-
hard, it is a natural question to ask for which family of graphs H does the
problem becomes FPT. As a concrete question in this direction, for which family
of graphs H does Conflict Free FVS and Conflict Free OCT admit FPT
algorithms and polynomial kernels.
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Abstract. In this work we investigate the problem of quadratically
tightly approximating the randomized query complexity of Boolean func-
tions R(f). The certificate complexity C(f) is such a complexity measure
for the zero-error randomized query complexity R0(f): C(f) ≤ R0(f) ≤
C(f)2. In the first part of the paper we introduce a new complex-
ity measure, expectational certificate complexity EC(f), which is also
a quadratically tight bound on R0(f): EC(f) ≤ R0(f) = O(EC(f)2).
For R(f), we prove that EC2/3 ≤ R(f). We then prove that EC(f) ≤
C(f) ≤ EC(f)2 and show that there is a quadratic separation between
the two, thus EC(f) gives a tighter upper bound for R0(f). The measure
is also related to the fractional certificate complexity FC(f) as follows:
FC(f) ≤ EC(f) = O(FC(f)3/2). This also connects to an open question
by Aaronson whether FC(f) is a quadratically tight bound for R0(f), as
EC(f) is in fact a relaxation of FC(f).

In the second part of the work, we investigate whether the corruption
bound corrε(f) quadratically approximates R(f). By Yao’s theorem, it is
enough to prove that the square of the corruption bound upper bounds
the distributed query complexity Dμ

ε (f) for all input distributions µ.
Here, we show that this statement holds for input distributions in which
the various bits of the input are distributed independently. This is a nat-
ural and interesting subclass of distributions, and is also in the spirit of
the input distributions studied in communication complexity in which
the inputs to the two communicating parties are statistically indepen-
dent. Our result also improves upon a result of Harsha et al. [2015], who
proved a similar weaker statement. We also note that a similar statement
in the communication complexity is open.
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1 Introduction

The query model is arguably the simplest model for computation of Boolean
functions. Its simplicity is convenient for showing lower bounds for the amount
of time required to accomplish a computational task. In this model, an algorithm
computing a function f : {0, 1}n → {0, 1} on n bits is given query access to
the input x ∈ {0, 1}n. The algorithm can query different bits of x, possibly
in an adaptive fashion, and finally produces an output. The complexity of the
algorithm is the number of queries made; in particular, the algorithm does not
incur additional cost for any computation other than the queries.

Unlike the more general models of computation (e.g. Boolean circuits, Turing
machines), it is often possible to completely determine the query complexity of
explicit functions using existing tools and techniques. The study of query algo-
rithms can thus be a natural first step towards understanding the computational
power and limitations of more general and complex models. Query complexity
has seen a long line of research by computational complexity theorists. We refer
the reader to the survey by Buhrman and de Wolf [6] for a comprehensive intro-
duction to this line of work.

To understand query algorithms, researchers have defined many complex-
ity measures of Boolean functions and investigated their relationship to query
complexity, and to one another. For a summary of the current state of knowl-
edge about these measures, see [2]. In this work, we focus on characterizing the
bounded-error and zero-error randomized query complexity measures, denoted
by R(f) and R0(f), respectively. More specifically, we study measures that could
quadratically approximate the randomized query complexity for all Boolean
functions.

The following measures are known to lower bound R0(f): block sensitivity
bs(f), fractional certificate complexity FC(f) (also known as fractional block
sensitivity fbs(f), [14]), and certificate complexity C(f) (see Fig. 1). They are
related as follows:

bs(f) ≤ fbs(f) = FC(f) ≤ C(f).

Let D(f) denote the deterministic query complexity of f . It is known that
R0(f) ≤ D(f) ≤ C(f)2, and the Tribes function (an And of

√
n Ors on√

n bits) demonstrates that this relation is tight [11]. It is also known that
R0(f) = O(bs(f)3) = O(FC(f)3) [4,13]. A quadratic separation between R0(f)
and FC(f) is also achieved by Tribes. Aaronson posed a question whether
R0(f) = O(FC2(f)) holds [1] (stated in terms of the randomized certificate com-
plexity RC(f), which later has been shown to be equivalent to FC(f) [8]). A pos-
itive answer to this question would imply that R0(f) = O(˜deg(f)4) = O(Q(f)4)
[2], where ˜deg(·) and Q(·) stand for approximate polynomial degree and quantum
query complexity respectively.

One approach to showing R0(f) ≤ FC(f)2 is to consider the natural gen-
eralization of the proof D(f) ≤ C(f)2 to the randomized case; the analysis of
this algorithm, however, has met some unresolved obstacles [12]. We define a new
complexity measure expectational certificate complexity EC(f) that is specifically
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designed to avert these problems and is of a similar form to FC(f). We show that
EC gives a quadratically tight bound for R0:

Theorem 1. For all total Boolean functions f ,

EC(f) ≤ R0(f) ≤ O(EC(f)2).

In fact, FC(f) is a relaxation of EC(f), and we show that FC(f) ≤ EC(f) ≤ C(f).
Moreover, we show that EC(f) lies closer to FC(f) than C(f) does: FC(f) ≤
EC(f) ≤ FC(f)3/2. While we don’t know whether EC(f) is a lower bound on
R(f), the last property gives EC(f)2/3 ≤ R(f).

As mentioned earlier, C(f)2 bounds R0(f) from above. But for specific func-
tions, EC(f)2 can be an asymptotically tighter upper bound than C(f)2. We
demonstrate that by showing that the same example that provides a quadratic
separation between C(f) and FC(f) [8] also gives C(f) = Ω(EC(f)2). This is the
widest separation possible between EC(f) and C(f), because C(f) ≤ R0(f) =
O(EC(f)2).

In the second part of the paper, we investigate whether the query corruption
bound corrε(f) quadratically approximates R(f). By Yao’s Minimax Principle
(see Fact 2), it is sufficient to show that the distributional query complexity
Dμ

ε (f) is upper bounded by the product of corrε(f) for all distributions μ. We
show that this holds for the bitwise product distributions, where the distribu-
tional query complexity can be upper bounded by the product of the minimum
product query corruption bound corr×min,ε(f) and the block sensitivity bs(f) (see
Definition 10 and Sect. 2).

Theorem 2. Let ε ∈ [0, 1/2) and μ a product distribution over the inputs. Then

Dμ
4ε(f) = O(corr×min,ε(f) · bs(f)).

R0

C

EC

fbs = FC

bs

R

prt corr

corr×min

Fig. 1. Lower bounds on R0(f)
and R(f).

We then show that bs(f) ≤ corrε(f), thus
Dμ

4ε(f) = O(corrε(f)2), as we have corr×min,ε(f) ≤
corrε(f).

We contrast Theorem 2 with the past work by
Harsha et al. [9], who showed that for product
distributions, the distributional query complex-
ity is bounded above by the square of the smooth
corruption bound corresponding to inverse poly-
nomial error. Theorem 2 improves upon their
result, firstly by upper bounding the distribu-
tional complexity by minimum query corruption
bound, which is an asymptotically smaller mea-
sure than the smooth corruption bound, and sec-
ondly by losing a constant factor in the error as
opposed to a polynomial worsening in their work.
Theorem 7, a consequence of Theorem 2, shows

that for product distribution over the inputs, the distributional query complexity
is asymptotically bounded above by the square of the query corruption bound.
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Thus Theorem 7 resolves a question that was open after the work of Harsha et al.
The analogous question in communication complexity is still open.

Theorem 2 also bounds distributional query complexity in terms of the par-
tition bound prt(·) of Jain and Klauck [11]. The following theorem follows from
Theorems 2 and 4 .

Theorem 3. Let ε ∈ [

0, 1
8

]

and μ a product distribution over the inputs. Then

Dμ
8ε(f) = O(prtε(f)2).

Jain and Klauck showed that prt(f) is a powerful lower bound on R(f). In
the same work, prt(f) was used to give a tight Ω(n) lower bound on R(f) for
the Tribes function on n bits. The authors proved that prt(f) is asymptotically
larger than FC(f). This implies that R(f) = O(prt(f)3), since R(f) = O(bs(f)3).
While a quadratic separation between R(f) and prt(f) is known [3], it is open
whether R(f) = O(prt(f)2). Theorem 3 proves a distributional version of this
quadratic relation, for the special case in which the input is sampled from
a product distribution, i.e., a distribution where the input bits are indepen-
dently distributed. We remark here that Harsha et al. [9] proved in their work
that Dμ

1/3(f) = O(prt1/3(f)2 · (log prt1/3(f))2); Theorem 3 achieves polyloga-
rithmic improvement over this bound. Once again, an analogous statement for
an arbitrary distribution together with the Minimax Principle will imply that
R(f) = O(prt(f)2).

The paper is organized as follows. In Sect. 2, we give the definitions for some
of the complexity measures. In Sect. 3, we define the expectational certificate
complexity and prove the results concerning this measure, starting with The-
orem 1. In Sect. 4, we define the minimum query corruption bound and prove
Theorems 2 and 3. In Sect. 5, we list some open problems concerning our mea-
sures.

2 Preliminaries

In this section we recall the definitions of some known complexity measures. For
detailed introduction on the query model, see the survey [6]. For the rest of this
paper, f is any total Boolean function on n bits, f : {0, 1}n → {0, 1}.

Definition 1 (Randomized Query Complexity). Let A be a randomized
algorithm that as an input takes x ∈ {0, 1}n and returns a Boolean value A(x, r),
where r is any random string used by A. With one query A can ask the value
of any input variable xi, for i ∈ [n]. The complexity C(A, x, r) of A on x is
the number of queries the algorithm performs under randomness r, given x. The
worst-case complexity of A is C(A) = maxr,x∈{0,1}n C(A, x, r).

The zero-error randomized query complexity R0(f) is defined as

min
A

max
x

Er[C(A, x, r)],
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where A is any randomized algorithm such that for all x ∈ {0, 1}n, we have
Prr[A(x, r) = f(x)] = 1.

The one-sided error randomized query complexity R0
ε(f) is defined as

minA C(A), where A is any randomized algorithm such that for every x such
that f(x) = 0, we have Prr[A(x, r) = 1] ≤ ε, and for all x such that f(x) = 1,
we have Prr[A(x, r) = 1] = 1. Similarly we define R1

ε(f).
The two-sided error randomized query complexity Rε(f) is defined as

minA C(A), where A is any randomized algorithm such that for every x ∈
{0, 1}n, we have Prr[A(x, r) �= f(x)] ≤ ε. We denote R1/3(f) simply by R(f).

Definition 2 (Distributional Query Complexity). Let μ be a probability
distribution over {0, 1}n, and ε ∈ [0, 1/2). The distributional query complexity
Dμ

ε (f) is the minimum number of queries made in the worst case (over inputs)
by a deterministic query algorithm A for which Prx∼μ[A(x) = f(x)] ≥ 1 − ε.

The Minimax Principle relates the randomized query complexity and distri-
butional query complexity measures of Boolean functions.

Fact 4 (Minimax Principle). For any Boolean function f,Rε(f) =
maxμ Dμ

ε (f).

Definition 3 (Product Distribution). A probability distribution μ over
{0, 1}n is a product distribution if there exist n functions μ1, . . . , μn : {0, 1} →
[0, 1] such that μi(0) + μi(1) = 1 for all i and for all x ∈ {0, 1}n,

μ(x) =
∏

i∈[n]

μi(xi).

Definition 4 (Assignment). An assignment is a map A : {1, . . . , n} →
{0, 1, ∗}. All inputs consistent with A form a subcube {x ∈ {0, 1}n | ∀i ∈
[n] : xi = A(i) or A(i) = ∗}. The length or size of an assignment A, denoted
by |A|, is defined to be the co-dimension of the subcube it corresponds to. Let
QA := {j : A(j) �= ∗} be the set of variables fixed by A.

Definition 5 (Certificate Complexity). For b ∈ {0, 1}, a b-certificate for f
is an assignment A such that x ∈ A ⇒ f(x) = b. The certificate complexity
C(f, x) of f on x is the size of the shortest f(x)-certificate that is consistent
with x. The certificate complexity of f is defined as C(f) = maxx∈{0,1}n C(f, x).
The b-certificate complexity of f is defined as Cb(f) = maxx:f−1(b) C(f, x).

Definition 6 (Sensitivity and Block Sensitivity). For x ∈ {0, 1}n and S ⊆
[n], let xS be x flipped on locations in S. The sensitivity s(f, x) of f on x is
the number of different i ∈ [n] such that f(x) �= f(x{i}). The sensitivity of f is
defined as s(f) = maxx∈{0,1}n s(f, x).

The block sensitivity bs(f, x) of f on x is the maximum number k of disjoint
subsets B1, . . . , Bk ⊆ [n] such that f(x) �= f(xBi) for each i ∈ [k]. The block
sensitivity of f is defined as bs(f) = maxx∈{0,1}n bs(f, x).
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Definition 7 (Fractional Certificate Complexity). The fractional certifi-
cate complexity FC(f, x) of f on x ∈ {0, 1}n is defined as the optimal value of
the following linear program:

minimize
∑

i∈[n]

vx(i) subject to ∀y s.t. f(x) �= f(y) :
∑

i:xi �=yi

vx(i) ≥ 1.

Here vx ∈ R
n and vx(i) ≥ 0 for each x ∈ {0, 1}n and i ∈ [n]. The fractional

certificate complexity of f is defined as FC(f) = maxx∈{0,1}n FC(f, x).

Definition 8 (Fractional Block Sensitivity). Let B = {B | f(x) �= f(xB)}
be the set of sensitive blocks of x. The fractional block sensitivity fbs(f, x) of f
on x is defined as the optimal value of the following linear program:

maximize
∑

B∈B
ux(B) subject to ∀i ∈ [n] :

∑

B∈B
i∈B

ux(B) ≤ 1.

Here ux ∈ R
|B| and ux(B) ≤ 1 for each x ∈ {0, 1}n and B ∈ B. The fractional

block sensitivity of f is defined as fbs(f) = maxx∈{0,1}n fbs(f, x).

Fractional certificate complexity and fractional block sensitivity were dis-
covered independently by Tal [14] and Gilmer et al. [8]. The linear programs
FC(f, x) and fbs(f, x) are duals of each other, hence their optimal solutions are
equal and FC(f) = fbs(f).

3 Expectational Certificate Complexity

In this section, we give the results for the expectational certificate complexity.
The measure is motivated by the well-known D(f) ≤ C0(f)C1(f) deterministic
query algorithm which was independently discovered several times [5,10,15]. In
each iteration, the algorithm queries the set of variables fixed by some consis-
tent 1-certificate. Either the query answers agree with the fixed values of the
1-certificate, in which case the input must evaluate to 1, or the algorithm makes
progress as the 0-certificate complexity of all 0-inputs still consistent with the
query answers is decreased by at least 1. The latter property is due to the cru-
cial fact that the set of fixed values of any 0-certificate and 1-certificate must
intersect.

In hopes of proving R(f) ≤ FC0(f)FC1(f), a straightforward generalization to
a randomized algorithm would be to pick a consistent 1-input x and query each
variable independently with probability vx(i), where vx is a fractional certificate
for x. To show that such an algorithm makes progress, one needs a property
analogous to the fact that 0-certificates and 1-certificates overlap. Kulkarni and
Tal give a similar intersection property for the fractional certificates:

Lemma 1 ([12], Lemma 6.2). Let f : {0, 1}n → {0, 1} be a total Boolean
function and {vx}x∈{0,1}n be a feasible solution for the FC(f) linear program.
Then for any two inputs x, y ∈ {0, 1}n such that f(x) �= f(y), we have

∑

i:xi �=yi

min{vx(i), vy(i)} ≥ 1.
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However, it is not clear whether the algorithm makes progress in terms of reduc-
ing the fractional certificates of the 0-inputs. We get around this problem by
replacing min{vx(i), vy(i)} with the product vx(i)vy(i) and putting that the
sum of these terms over i where xi �= yi is at least 1 as a constraint:

Definition 9 (Expectational Certificate Complexity). The expectational
certificate complexity EC(f) of f is defined as the optimal value of the following
program:

minimizemax
x

n
∑

i=1

wx(i) s.t.
∑

i:xi �=yi

wx(i)wy(i) ≥ 1 ∀x, y s.t.f(x) �= f(y),

0 ≤ wx(i) ≤ 1 for all x ∈ {0, 1}n, i ∈ [n].

We use the term “expectational” because the described algorithm on expecta-
tion queries at least weight 1 in total from input y, when querying the variables
with probabilities being the weights of x. While the informally described algo-
rithm shows a quadratic upper bound on the worst-case expected complexity, in
the next section we show a slight modification that directly makes a quadratic
number of queries in the worst case.

3.1 Quadratic Upper Bound on Randomized Query Complexity

In this section we prove Theorem 1 (restated below).

Theorem 1. EC(f) ≤ R0(f) ≤ O(EC(f)2).

Proof. The first inequality follows from Lemma4 and C(f) ≤ R0(f).
To prove the second inequality, we give randomized query algorithms for f

with 1-sided error ε.

Proposition 1. For any b ∈ {0, 1}, we have Rb
ε(f) ≤ �EC(f)2/ε.

The second inequality of Theorem1 follows from Proposition 1 by standard
arguments of ZPP = RP ∩ coRP.
Proof of Proposition 1. We prove the proposition for b = 0. The case b = 1 is
similar.

Let {wx}x∈{0,1}n be an optimal solution to the EC(f) program. We say that
an input y is consistent with the queries made by A on x if yi = xi for all queries
i ∈ [n] that have been made. Also define a probability distribution μy(i) =
wy(i)/

∑

i∈[n] wy(i) for each input y ∈ {0, 1}n.

Algorithm 1. The randomized query algorithm A.
Input: x ∈ {0, 1}n

1. Repeat �EC(f)2/ε many times:
(a) Pick the lexicographically first consistent 1-input y.

If there is no such y, return 0.
(b) Sample a position i from μy and query xi.
(c) If the queried values form a c-certificate, return c.

2. Return 1.
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The complexity bound is clear as A always performs at most �EC(f)2/ε
queries. We prove the correctness of the algorithm in Sect. 3.1 of the full version
of the paper [7]. ��

��

3.2 Relation with the Fractional Certificate Complexity

Lemma 2. FC(f) ≤ EC(f).

Proof. We show that a feasible solution {wx}x for EC(f) is also feasible for FC(f).
Since 0 ≤ wx(i) ≤ 1 for any x, i,

∑

i:xi �=yi
wx(i) ≥ ∑

i:xi �=yi
wx(i)wy(i) ≥ 1, and

we are done. ��
Lemma 3. EC(f) = O(FC(f)

√

s(f)).

Proof. Let {vx}x be an optimal solution to the fractional certificate linear pro-
gram for f . We first modify each vx to a new feasible solution v′

x by eliminating
the entries vx(i) that are very small, and boosting the large entries by a constant
factor. Namely, let

v′
x(i) =

{

min
{

3
2vx(i), 1

}

, if vx(i) ≥ 1
3s(f) ,

0, otherwise.

We first claim that {v′
x}x is still a feasible solution. Fix any x ∈ {0, 1}n, and let

B be a minimal sensitive block for x. As vx is part of a feasible solution, we have

1 ≤
∑

i∈B

vx(i) =
∑

i∈B,
vx(i)<1/3s(f)

vx(i) +
∑

i∈B,
vx(i)≥1/3s(f)

vx(i) ≤ 1
3

+
∑

i∈B,
vx(i)≥1/3s(f)

vx(i).

The second line follows because |B| ≤ s(f), as B is a minimal sensitive block
and therefore every index in B is sensitive. Rearranging the last inequality, we
have

∑

i∈B
vx(i)≥1/3s(f)

vx(i) ≥ 2
3 , and therefore,

∑

i∈B v′
x(i) ≥ 1.

Next, wx(i) :=
√

v′
x(i) is a feasible solution to the expectational certificate

program, as
∑

i:xi �=yi

wx(i)wy(i) =
∑

i:xi �=yi

√

v′
x(i)v′

y(i) ≥
∑

i:xi �=yi

min{v′
x(i), v′

y(i)} ≥ 1.

The second inequality holds by Lemma 1.
Now that we have shown that {wx}x forms a feasible solution to the expec-

tation certificate program, it remains to bound its objective value:
∑

i∈[n]

wx(i)=
∑

i∈[n]

√

v′
x(i)=

∑

i:v′
x(i) �=0

v′
x(i)

√

v′
x(i)

≤
√

3s(f)
∑

i∈[n]

v′
x(i)≤

√

3s(f)
3
2
FC(f),

where the first inequality follows from v′
x(i) ≥ vx(i) ≥ 1/3s(f) for v′

x(i) �= 0.

��
Since s(f) ≤ FC(f) and FC(f) ≤ R(f), we immediately get

Corollary 1. EC(f) = O(FC(f)3/2) = O(R(f)3/2).
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3.3 Relation with the Certificate Complexity

Lemma 4. EC(f) ≤ C(f).

Proof. We construct a feasible solution {wx}x for EC(f) from C(f). Let Ax be
the shortest certificate for x. Assign wx(i) = 1 iff i ∈ Ax, otherwise let wx(i) = 0.
Let x, y be any two inputs such that f(x) �= f(y). There is a position i where
Ax(i) �= Ay(i), otherwise there would be an input consistent with both Ax and
Ay, which would give a contradiction. Therefore, wx(i)wy(i) ≥ 1. The value of
this solution is maxx

∑

i∈[n] wx(i) = maxx C(f, x) = C(f). ��

As FC(f) ≤ EC(f) ≤ C(f) ≤ FC(f)2, there can be at most quadratic separa-
tion between EC(f) and C(f). We show that this is achieved by the example of
Gilmer et al. that separates FC(f) and C(f) quadratically:

Theorem 4 ([8], Theorem 32). For every n ∈ N sufficiently large, there is a
function f : {0, 1}n2 → {0, 1} such that FC(f) = O(n) and C(f) = Ω(n2).

Their construction for f is as follows. First a function g : {0, 1}n →
{0, 1} is exhibited such that FC0(g) = Θ(1), C0(g) = Θ(n) and FC1(g) =
C1(f) = n. The function f : {0, 1}n2 → {0, 1} is defined as a composition
Or(g(x(1)), . . . , g(x(n))). This gives FC(f) = max{nFC0(g),FC1(g)} = Θ(n) and
C(f) ≥ nC0(g) = Θ(n2) (both properties follow by Proposition 31 in their paper).

Let us construct a feasible solution w for EC(f). For any x = x(1) . . . x(n)

such that f(x) = 1, let j be the first index such that g(x(j)) = 1. Let S ⊆ [n2]
be the set of positions that correspond to x(j). Let wx(i) = 1 for each position i

in S, and wx(i) = 0 for all other positions. Then
∑n2

i=1 wx(i) = n.
On the other hand, let {vx}x∈{0,1}n be an optimal solution to FC(f). For

any x ∈ {0, 1}n2
such that f(x) = 0, let wx(i) = vx(i) for all i ∈ [n2]. Then

∑n2

i=1 wx(i) = FC(f, x) = O(n).
Now, for any two inputs x, y such that f(x) = 1 and f(y) = 0, let j be the

smallest index such that g(x(j)) = 1, then we have g(y(j)) = 0. By construction,
∑

i:xi �=yi

wx(i)wy(i) =
∑

i:xi �=yi

wy(i) ≥ 1.

Hence {wx}x is a feasible solution to the expectational certificate and EC(f) = n.

4 Minimum Query Corruption Bound and Partition
Bound

In this section, we prove upper bounds on the distributional query complexity
Dμ

ε , where μ is bitwise product distribution on the inputs. We first consider the
query corruption bound and minimum query corruption bound.
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Definition 10 (Query Corruption Bound and Minimum Query Cor-
ruption Bound for product distributions). Let ε ∈ [0, 1/2) and μ :
{0, 1}n → [0, 1] be a probability distribution over the inputs. For a b ∈ {0, 1}, let
an assignment A be an ε-error b-certificate under μ, if

Pr
x∼μ

[f(x) �= b | x ∈ A] ≤ ε.

Define the query corruption bound for b, distribution μ and error ε as

corrb,μ
ε (f) = min{|A| | A is an ε − error b − certificate under μ}.

The query corruption bound of f is defined as corrε(f) = maxμ maxb corr
b,μ
ε (f),

where μ ranges over all distributions on {0, 1}n. Define the minimum
query corruption bound of f for product distributions by corr×min,ε(f) =
maxμ minb corr

b,μ
ε (f), where μ ranges over all product distributions on {0, 1}n.

4.1 Upper Bound in Terms of the Corruption Bound and Block
Sensitivity

In this subsection, we give a deterministic algorithm that achieves the bound of
Theorem 2 (restated below).

Theorem 2. Let ε ∈ [0, 1/2) and μ a product distribution over the inputs. Then

Dμ
4ε(f) = O(corr×min,ε(f) · bs(f)).

In the algorithm, we will work with restrictions of probability distributions.
Let η be a probability distribution over {0, 1}n, x ∈ {0, 1}n be an n-bit string,
and Q ⊆ {1, . . . , n} be a set of indices. The restriction of x to the indices of
Q, (xj : j ∈ Q), will be denoted by xQ. Then the distribution η |xQ

is the
distribution obtained by conditioning η on the event that the bits in the locations
in Q agree with x. Formally, for each y ∈ {0, 1}n

η |xQ
(y) =

{

η(y)∑
z:∀i∈Q,zi=xi

η(z) if ∀i ∈ Q, yi = xi,

0 otherwise.

Algorithm 2. The deterministic query algorithm B.
Input: x ∈ {0, 1}n

1. Set t0, t1 ← 0, i ← 1, η(1) ← μ.
2. Repeat:

(a) Pick a shortest ε-error certificate A under η(i).
(b) Query all the variables in QA that are still unknown.
(c) Let A be an ε-error b-certificate for some b ∈ {0, 1}. Set tb ← tb + 1.
(d) If the results of the queries are consistent with A, return b.
(e) If tb = 2bs(f), return b.
(f) η(i+1) ← η(i) |xQA

.
(g) i ← i + 1.
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We analyze the correctness and performance of the algorithm in Sect. 4 of
the full version of the paper [7].

4.2 Quadratic Upper Bound in Terms of the Partition Bound

In this subsection, we show that the partition bound is a quadratic upper bound
on the distributional query complexity. We prove Theorem3 (restated below).

Theorem 3. Let ε ∈ [

0, 1
8

]

and μ a product distribution over the inputs. Then

Dμ
8ε(f) = O(prtε(f)2).

We reproduce the definition of the partition bound by Jain and Klauck [11].
Here, ε is an error parameter between 0 and 1, A stands for subcubes, or equiv-
alently, partial assignments, z stands for a bit, i.e., a 0 or a 1, and x stands for
an input to f from {0, 1}n.

Definition 11 (Partition Bound). The ε-partition bound bound of f , denoted
prtε(f), is given by the logarithm to base 2 of the optimal value of the following
linear program1:

minimize
∑

z,A

wz,A · 2|A| subject to ∀x :
∑

A�x

wf(x),A ≥ 1 − ε,

∀x :
∑

z,A�x

wz,A = 1,

∀z,A : wz,A ≥ 0.

Jain and Klauck showed that the partition bound bounds randomized query-
complexity from below. They also showed that randomized query complexity is
bounded above by the third power of the partition bound.

Theorem 5 ([11] Theorem 3).

1. Rε(f) ≥ 1
2prtε(f).

2. R1/3(f) ≤ D(f) = O(prt1/3(f)3).

The best known separation between D(f) and prt(f) is quadratic [3]. The-
orem 3 proves that this is tight for product distributions. As stated in Sect. 1,
Theorem 3 improves upon the result of Jain et al. by a polylogarithmic factor.

Jain and Klauck showed that the partition bound is bounded below by the
block sensitivity.

Theorem 6 ([11],Theorem 3). For any error parameter ε ∈ [0, 1/2),

prtε/4(f) ≥ ε · bs(f) + log ε − 2.

1 Jain and Klauck in their paper defined prtε(f) to be the value of the linear program,
instead of the logarithm of the value of the program.
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We show that the minimum query corruption bound lower-bounds the par-
tition bound (for the proof, see Appendix A of the full version of the paper [7]).
Our proof closely follows the proof that the corruption bound is asymptotically
bounded above by square of the partition bound shown in [11].

Lemma 5. For any error parameter ε ∈ [0, 1/2),

corr×min,2ε(f) ≤ prtε(f) + log(1/ε).

Theorem 3 now follows, combining Theorems 2, 6 and Lemma 5 together.

4.3 Quadratic Upper Bound in Terms of the Corruption Bound

We conclude by showing that the query corruption bound is a quadratic upper
bound on the distributional query complexity.

Theorem 7. Let ε ∈ [0, 1/2) and μ a product distribution over the inputs. Then

Dμ
4ε(f) = O

(

corrε(f)2
)

.

The result follows by combining Theorem 2 with the following lemma (for
the proof, see Appendix B of the full version of the paper [7]).

Lemma 6. For any ε ∈ [0, 1), fbs(f) ≤ corrε(f).

5 Open Problems

Expectational vs. Fractional Certificate. What is the largest separation between
the two measures? Is the upper bound EC(f) ≤ FC(f)3/2 tight? Any smaller
upper bound would improve the R(f) ≤ FC(f)3 upper bound. Our attempts in
finding a function where EC(f) is asymptotically larger than FC(f) so far have
been unsuccessful. As evident by the proof of the quadratic separation between
EC(f) and C(f), such an example would need to have FCz(f) = o(Cz(f)) for
both z ∈ {0, 1}. Examples of separations between FC(f) and C(f) given in [1]
and [8] do not satisfy these properties.

Corruption and Partition Bounds. Can the proof of Theorem 2 be extended to
non-product distributions? The definition of the corruption bound is in some
sense a relaxation of the certificate complexity. Can the argument of D(f) ≤
C(f)2 be extended to the randomized setting in terms of the corruption bound?
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Abstract. We study a certain relaxation of the classic vertex coloring
problem, namely, a coloring of vertices of undirected, simple graphs, such
that there are no monochromatic triangles. We give the first classification
of the problem in terms of classic and parametrized algorithms. Several
computational complexity results are also presented, which improve on
the previous results found in the literature. We propose the new struc-
tural parameter for undirected, simple graphs – the triangle-free chro-
matic number χ3. We bound χ3 by other known structural parameters.
We also present two classes of graphs with interesting coloring properties,
that play pivotal role in proving useful observations about our problem.

1 Introduction

Graph coloring is probably the most popular subject in graph theory. It is an
interesting topic from both algorithmic and combinatoric points of view. The
coloring problems have many practical applications in areas such as operations
research, scheduling and computational biology. For a recent survey one can turn
to [10]. In this paper we study a variation of the classic coloring – we call it the
triangle-free coloring problem, in which we ask for an assignment of colors to
the vertices of a given graph, such that the number of colors used is minimum
and that each cycle of length 3 has at least two vertices colored differently. We
show that our problem has interesting graph-theoretical properties and we also
present some evidence that this problem might be easier than the classic vertex
coloring. This suggests that studying our variation, new results can be achieved
in the field of classic vertex coloring, which is known to be one of the hardest
known optimization problems. Apart from theoretical motivation, there is also
a practical one – vertex coloring without monochromatic cycles can be used in
the study of consumption behavior [6].

1.1 Related Work

Some researchers have already considered coloring problems that are similar
to our variation. The class of planar graphs has been of particular interest,
for example, Angelini and Frati [2] study planar graphs that admit an acyclic
c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 220–231, 2018.
https://doi.org/10.1007/978-3-319-90530-3_19
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3-coloring – a proper coloring in which every 2-chromatic subgraph is acyclic.
Algorithms for acyclic coloring can be used to solve/approximate a triangle-free
coloring, although we do not explore this possibility in this paper. Another result
is of Kaiser and Škrekovski [12], where they prove that every planar graph has a
2-coloring such that no cycle of length 3 or 4 is monochromatic. Thomassen [20],
on the other hand, considers list-coloring of planar graphs without monochro-
matic triangles. Few hardness results for our problem are known – Karpiński [13]
showed that verifying whether a graph admits a 2-coloring without monochro-
matic cycles of fixed length is NP-complete. His proof was then simplified by
Shitov [18], who also proposed and proved the hardness of an extension of our
problem, where additional restriction is imposed on the coloring in the form of
the set of polar edges – edges that must not be monochromatic in the result-
ing coloring. Another result is by Jain [11] who also consider a triangle-free
2-coloring problem. He shows that the problem is NP-complete, even on clas-
sically 5-colorable graphs with maximum degree 8. It is also worth noting that
our problem is a special case of 3-uniform hypergraph coloring problem, which
was studied in the past (see, for example, [7]).

1.2 Our Contribution

Several novel results are presented in this paper. First, we explore the graph-
theoretical side of our problem. We propose the new structural parameter χ3(G)
which is the minimum number of colors needed to label the vertices of an undi-
rected, simple graph G, such that there are no monochromatic triangles. We then
bound this new parameter by ω(G), χ(G) and Δ(G), which are clique number,
chromatic number and the largest vertex degree of G, respectively. We also show
that χ3(G) cannot be upper-bounded by any function of ω(G). Additionally we
present two gadgets that have interesting coloring properties and are also used
in proving hardness results later in the paper.

For the positive side, several known graph classes are presented, for which
our problem can be solved efficiently, for example, we can find χ3 on planar
graphs in polynomial time, whereas finding χ is NP-complete, even on planar
graphs with maximum degree 4 [5]. We use the fact that when χ is small (less
than 5), then we can reduce our problem to the problem of deciding if a given
graph is triangle-free. In general, the time needed for listing all triangles of a
graph is O(m

√
m) [1], but in the presented graphs, we can find if a graph is

triangle-free in time O(n). We also prove that our problem is fixed-parameter
tractable, when the parameter is the vertex cover number.

We present several hardness results, which improve on the work of Karpiński
[13] and Shitov [18]. We show that given any fixed number q ≥ 2, determining if
graph is triangle-free q-colorable is NP-hard. This improves on the result given
in [13], where the author shows hardness only for q = 2. Another improvement to
Karpiński’s result [13] is NP-hardness proof of triangle-free 2-coloring problem
for the graphs that do not contain clique of size 4 as a subgraph. In [18], author
formulates and proves the NP-hardness of triangle-free 2-coloring problem where
additional set of polar edges – edges that must not be monochromatic – are given
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on input. We show that this variation of our problem remains NP-hard, even
on graphs with maximum degree 3 – the sub-cubic graphs.

1.3 Structure of the Paper

In Sect. 2 we give formulation of all considered problems. We give several bounds
on χ3 in Sect. 3 and we construct gadgets used later in the paper. In Sect. 4
we present efficient algorithms for the triangle-free coloring problem for certain
classes of graphs. A single FPT result is also shown there. Hardness results are
presented in Sect. 5. We finish the paper with some concluding remarks in Sect. 6,
where we also present the reader several open problems. Standard notation and
properties from graph theory are used throughout this paper, therefore we moved
them to the extended version of the paper due to space restriction (see [14]).

2 Problems

In this paper we study coloring of vertices, and to avoid confusion, we distinguish
two types of coloring. A classic k-coloring of a graph is a function c : V →
{1, . . . , k}, such that there are no two adjacent vertices u and v, for which c(u) =
c(v). Given G, the smallest k for which there exists a classic k-coloring for G is
called the chromatic number and is denoted as χ(G). A triangle-free k-coloring
of a graph is a function c : V → {1, . . . , k}, such that there are no three mutually
adjacent vertices u, v and w, for which c(u) = c(v) = c(w). If such vertices exist,
then the induced subgraph (K3) is called a monochromatic triangle. Given G,
the smallest k for which there exists a triangle-free k-coloring for G we call the
triangle-free chromatic number and we denote it as χ3(G).

We now formulate the decision problems investigated in this paper, for any
fixed integer q > 0:

TriangleFree-q-Coloring
Input: A finite, undirected, simple graph G.
Question: Is there a triangle-free q-coloring of G?

TriangleFreePolar-q-Coloring
Input: A finite, undirected, simple graph G = (V,E) and a subset S ⊆ E.
Question: Is there a triangle-free q-coloring of G, such that no edge in S is
monochromatic?

We denote �x� to be the smallest integer not less than x. Let r ∈ N, we
define a binary operator +r on the set Zr = {0, 1, 2, . . . , r−1}, which is addition
modulo r, i.e., for every n,m ∈ Zr, n +r m = n + m (mod r). The operator −r

can be defined in a similar way.

3 Bounds on the Triangle-Free Chromatic Number

We first give simple bounds on χ3(G) in terms of ω(G) and χ(G):

Theorem 1. For any graph G:
⌈

ω(G)
2

⌉
≤ χ3(G) ≤

⌈
χ(G)
2

⌉
.
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Proof. To see that the lower bound holds, take any clique in G of maximum
cardinality. We can use one color for at most two vertices of that clique, otherwise
we would create a monochromatic triangle. Therefore we need at least �ω(G)/2�
colors in order to make the coloring triangle-free in this clique, and therefore at
least �ω(G)/2� colors are needed to triangle-free color the entire graph.

The upper bound can be justified by the following argument. Let k = χ(G)
and take any classic k-coloring of G. Let Vi be the set of vertices colored i, where
1 ≤ i ≤ k. For each 0 ≤ j ≤ �k/2� − 1 recolor sets V2j+1 ∪ V2j+2 with j (we may
need to add empty set Vk+1, if k is odd). Since every Vi is an independent set,
then after recoloring, any monochromatic cycle is of even length. Therefore the
resulting coloring is triangle-free. ��

We call the recoloring procedure from the above proof the standard recoloring
strategy. It will be used in the construction of algorithms in the next section.
The fundamental question we ask is how tight are the bounds in Theorem1 and
what kind of algorithmic consequences are implied by these observations. The
following theorem shows that the upper bound can be arbitrarily large, which
means that we should not expect to find an algorithm for general graphs that
would acceptably approximate χ3(G) based on a chromatic number alone.

Theorem 2. For any k ≥ 1, there exists a graph G for which χ3(G) = 1 and
χ(G) = k.

Proof. The class of graphs called Mycielski graphs [16] meet this property, as
they are triangle-free and can have arbitrarily large chromatic number. ��

Moreover, we cannot bound χ3(G) from above by any function of ω(G).

Theorem 3. For every k, there exist a graph G without K4, such that χ3(G)>k.

Proof. It is well known [8] that for every k, t and g there exists t-uniform hyper-
graph with girth at least g that cannot be colored using only k colors. Let’s
take such a hypergraph H = (V,E) with t = 3 and g = 4. Let’s create graph
G = (V,E′) in such a way that {u, v} ∈ E′ if and only if {u, v} ⊂ e and e ∈ E.
We have χ3(G) > k because for every k-coloring of hypergraph H there exists an
edge e = {u, v, w} ∈ E that is monochromatic. Since {u, v}, {u,w}, {v, w} ∈ E′

there exists monochromatic triangle in graph G. Now we need proof that G is
K4-free. Proof by contradiction. Let’s say that v1, v2, v3 and v4 form a K4. It
means there need to be at least 3 edges from E that were involved in creating
this clique. Moreover there need to be a triangle in this clique such that each
edge was from different edges in hypergraph H. This means there was a cycle of
size 3 in hypergraph H, but hypergraph H should have girth at least 4. ��

From the positive side, we can give upper bound on χ3(G) using Δ(G). We
recall the well-known Brook’s Theorem [3] which states that for any graph G,
we have χ(G) ≤ Δ(G), unless G is a complete graph or an odd cycle. Using this
theorem we can prove the following.
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Theorem 4. Let G = (V,E) be any graph where |V | > 3, where G is not a
complete graph of odd number of vertices. Then χ3(G) ≤

⌈
Δ(G)

2

⌉
.

Proof. If G is an odd cycle of length at least 5, then χ3(G) = 1 and
⌈

Δ
2

⌉
= 1,

so the inequality holds. If G is a complete graph (a clique) of n vertices, then
χ3(G) =

⌈
n
2

⌉
and Δ = n − 1. The inequality

⌈
n
2

⌉
≤

⌈
n−1
2

⌉
holds iff n is even.

If the above cases do not occur, then the application of the Brook’s Theorem
combined with the upper bound of Theorem1 completes the proof. ��

3.1 Gadgets

We now present two auxiliary graphs with useful coloring properties. First one
we call a cycle-clique.

Definition 1 (cycle-clique). Let k ∈ N. The k-cycle-clique is a graph with
exactly 5 · k vertices vi,j for i ∈ {0, . . . , 4} and j ∈ {0, . . . , k − 1} and there is an
edge between vi,j and vi′,j′ if and only if |i −5 i′| ≤ 1. Each set Ji = {vi,j : j ∈
{0, . . . , k − 1}} is called a joint.

Observation 1. For any k-cycle-clique it holds that Ji ∼ Kk and Ji ∪ Ji+51 ∼
K2k, for i ∈ {0, . . . , 4}.

Example 1. In Fig. 1a and b we present k-cycle-cliques for k ∈ {1, 2}. In both
graphs joints are marked with dashed lines. The 1-cycle-clique is simply a cycle
of length 5. Notice how Ji ∪ Ji+51 forms a clique of size 2k, for i ∈ {0, . . . , 4},
whereas each Ji is a clique of size k.

Observation 2. Let k ≥ 1. In every triangle-free k-coloring of graph K2k every
color is used exactly twice.

Lemma 1. Let k ≥ 1. In every triangle-free k-coloring of k-cycle-clique all color
are met on the vertices of Ji, for i ∈ {0, . . . , 4}.

J0

J1

J2J3

J4

(a) 1-cycle-clique

J0

J1

J2J3

J4

(b) 2-cycle-clique

Fig. 1. Examples of cycle-cliques.
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v

u

w1

w2

w3

w4

z1

y1

z2

z3

y3

y2

Fig. 2. The K4-free polar gadget. It consists of 12 vertices, 30 edges and 20 triangles.

Proof. Proof by contradiction. Let’s say that there is a triangle-free k-coloring
of k-cycle-clique and i ∈ {0, . . . , 4} such that there exists two vertices in Ji that
have the same color. Using Observation 2 we know that this color cannot appear
in Ji+51 or Ji−51. Using Observation 2 again, this color need to be used twice
in each of Ji+52 and Ji−52. Since Ji+52 ∪ Ji−52 ∼ K2k from the definition and
that four vertices of Ji+52 ∪ Ji−52 are colored with the same color, we reach a
contradiction with the assumption that the initial coloring was triangle-free. ��

Second gadget is presented below.

Definition 2. The K4-free polar gadget is the graph G = (V,E) with V =
{u, v, w1, w2, w3, w4, z1, z2, z3, y1, y2, y3}, and edge set defined as in Fig. 2.

We say that egde xy is polar, if in every triangle-free 2-coloring c, c(x) �= c(y).

Lemma 2. Let G be a K4-free polar gadget. Then the following are true: (i) G
is triangle-free 2-colorable, (ii) uv is a polar edge, (iii) G is K4-free.

Proof. Ad. (i): Let S = {u, z1, y1}. Set c(S) = 1 and c(V \ S) = 2.
Ad. (ii): Assume by contradiction, that c(u) = c(v) = 1 and G is triangle-free

2-colorable. Then c({w1, w2, w3, w4}) = 2, which is forced. Since c(v) = 1, then
either c(z1) = 2, or c(y1) = 2. Assume the former, without loss of generality.
Then c(z2) = 1, otherwise {w1, z1, z2} would be monochromatic. But this means
that we cannot color z3, because if c(z3) = 1, then {u, z2, z3} is monochromatic,
and if c(z3) = 2, then {w2, z1, z3} is monochromatic – a contradiction.

Ad. (iii): Let V1 = {u, v}, V2 = {w1, w2, w3, w4}, V3 = {z1, z2, z3, y1, y2, y3}.
If there exists H ⊂ G that is isomorphic to K4, then we can observe that:

– H contains at most one vertex from V2, since V2 is an independent set, and
– H contains at most one vertex from V1, because otherwise H would contain

at least one vertex from V3, and there is no vertex (or pair of vertices) in V3

that is connected to both vertices in V1.
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Therefore we are left with the following four cases:

– H uses only vertices from V3. But in G(V3) only z1 and y1 have degree at
most 3.

– H uses 3 vertices from V3 and one vertex from V2. But each vertex from V2

is adjacent to exactly two vertices from V3.
– H uses 3 vertices from V3 and one vertex from V1. Then v �∈ H because it is

adjacent to only z1 and y1. Thus u ∈ H, but it easy to verify that N(u) does
not contain a triangle.

– H uses 2 vertices from V3, one vertex from V2 and one vertex from V1. But
for each {s, t} ⊂ V3, there exists exactly one triangle {s, t, r}, such that
r ∈ V1 ∪ V2.

We have reached contradictions in all possible cases, thus we conclude that G is
K4-free. ��

We believe that the gadgets that we presented in this section are interesting
from the graph-theoretic point of view. It would be instructive to find answers
to the following questions.

Question 1. For any k ≥ 2, what is the smallest graph (in terms of vertices
and/or edges) for which the following are true: (i) χ3(G) = k, and (ii) for any
triangle-free k-coloring of G, there exists a polar clique of size k in G, i.e., a
clique of size k where each vertex has a unique color?

Question 2. Is K4-free polar gadget the smallest (in terms of vertices, edges or
triangles) graph that satisfies the properties of Lemma2?

4 Tractable Classes of Graphs

Here we present several classes of graphs for which efficient algorithms for
triangle-free coloring problem exist. We use the bounds derived in the previ-
ous section to show that for small values of structural parameters polynomial
time complexity can be achieved in many cases.

Given graph G = (V,E), we distinguish between two optimization variants of
the triangle-free coloring problem: (i) finding the number χ3(G), and (ii) finding
the triangle-free coloring that uses exactly χ3(G) colors, i.e., the mapping from
V to {1, . . . , χ3(G)} is the required output. As we will soon see, complexities
for these two variants can be different. To this end we propose the following
notion of time complexity for our problem. For convenience, we say that n is the
number of vertices of graph G and m is the number of edges of G, unless stated
otherwise.

Definition 3. Let G be a class of graphs. We say that the triangle-free coloring
problem is solvable in time O(f(n,m), g(n,m)) on G, iff there exist algorithms
A and B, such that for every input G ∈ G, (i) algorithm A outputs χ3(G) in
O(f(n,m)) time, and (ii) algorithm B outputs the triangle-free coloring that uses
exactly χ3(G) colors, in O(g(n,m)) time.
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4.1 Graphs with Bounded Chromatic Number

Here we present a single theorem that presents the complexity of triangle-free
coloring problem on several popular classes of graphs. We exploit the fact that if
we know in advance that χ(G) ≤ 4 – and therefore χ3(G) ≤ 2, by Theorem 1 –
then χ3(G) can be found easily and is one of the following: (a) χ3(G) = 0 iff G is
empty, (b) χ3(G) = 1 iff G is triangle-free (K3-free), (c) χ3(G) = 2 iff the above
two cases do not hold. Checking the first case is trivial. Therefore the challenge
of finding χ3(G) lies in checking whether G contains a triangle.

For finding the actual coloring, we use the fact that in the given graphs we
can find “good-enough” classic coloring, and then recolor vertices so that there
are no monochromatic triangles using the standard recoloring strategy.

Theorem 5. The triangle-free coloring problem is solvable:

– in time O(n, n2) on planar graphs,
– in time O(n, n) on: outerplanar graphs, chordal graphs, graphs with bounded

maximum degree Δ, with Δ ≤ 4.

Proof. See extended paper [14]. ��

We do not know if there exists a sub-quadratic algorithm for finding a
triangle-free coloring in planar graphs, so we leave it as an open problem. It
is worth noting that the situation would not improve even if we knew that the
the input graph is classically 3-colorable, as the best known algorithm for clas-
sically 4-coloring planar graphs with this property still runs in O(n2) time [15].
Theorem 5 serves as an evidence, that the triangle-free coloring problem is easier
than the classic coloring problem. We have efficient algorithms for finding χ3 on
planar graphs and graphs with Δ = 4, but it is NP-hard to find the χ even on
4-regular planar graphs [5]. This suggests that the above open problem might
have a positive answer.

4.2 FPT Results

In this subsection we look at our problem from the parametrized complexity
point of view. We prove that TriangleFree-q-Coloring problem is fixed-
parameter tractable when parametrized by vertex cover number. We can also
prove the stronger result with treewidth as a parameter (since treewidth is at
most vertex cover number) by using the celebrated Courcelle’s Theorem [4],
which states that all graph properties definable in Monadic Second Order logic
can be decided in linear time on graphs of bounded treewidth. Since the proof
is elementary and the corresponding time complexity of the algorithm is big, we
decided to move the proof to the extended version of the paper [14] and give an
algorithm with vertex cover number as a parameter.

In the article by Fiala, Golovach and Kratochv́ıl [9], authors explore dif-
ferences in the complexity of several coloring problems when parametrized by
either vertex cover number or treewidth. We use techniques similar to theirs in
the proof of the following theorem.
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Theorem 6. The TriangleFree-q-Coloring problem is FPT when para-
metrized by the vertex cover number.

Proof. Let W be a minimum vertex cover of G, and let |W | = k. Then I =
V \ W is an independent set. The goal is to find a triangle-free coloring c : V →
{1, . . . , q}.

The algorithm works in two steps: first, we find the triangle-free q-coloring of
W by exhaustive search. Then, since I is an independent set, we can use greedy
strategy to color its vertices, once we know the coloring of W . By greedy strategy
we mean taking each v ∈ I, checking its colored neighborhood N(v) (notice that
N(v) ⊆ W ), and coloring v in a way which does not create a monochromatic
triangle in G. Clearly this procedure will find a triangle-free q-coloring iff such
coloring exists. The analysis of running time now follows.

Since χ3(W ) ≤ �χ(W )/2� ≤ �k/2�, it is natural to consider the following
two cases:

(i) If q ≤ �k/2�, then we consider all q-colorings of W and their extensions to I
by the greedy algorithm. Since W has at most k�k/2� colorings, the running
time is O(k�k/2�+1n).

(ii) If q > �k/2�, then assuming that W = {w0, . . . , wk−1}, we can set c(w2i) =
c(w2i+1) = i + 1, for each 0 ≤ i < �k/2�, which clearly uses �k/2� colors,
then set c(I) = �k/2� + 1. Thus, in this case, the triangle-free q-coloring
always exists, and we can find it in O(n) time.

We conclude that the total running time of the algorithm is O(k�k/2�+1n),
which proves the claim. ��

5 Hardness Results

Here we improve the results of Karpiński [13] and Shitov [18]. In their papers
they show that the generalized version of TriangleFree-2-Coloring prob-
lem is NP-complete – they not only consider monochromatic triangles, but
monochromatic cycles of arbitrary (fixed) length. Karpiński first presented the
proof, which was then simplified by Shitov, by introducing an auxiliary prob-
lem, which we call the TriangleFreePolar-2-Coloring problem. In Shitov’s
proof, this new problem serves as a connection between NotAllEqual 3-SAT
and TriangleFree-2-Coloring.

Our contribution is as follows: we first prove that the triangle-free coloring
remains NP-hard even if we can use any fixed number of colors. Then we show
that the TriangleFree-2-Coloring problem is NP-hard in the restricted class
of graphs, which do not contain K4 as a subgraph. These improve the results
of Karpiński [13]. Lastly, we show that the TriangleFreePolar-2-Coloring
remains NP-hard even in graphs of maximum degree 3, which improves the
result of Shitov [18].

Theorem 7. For any fixed q ≥ 2, the TriangleFree-q-Coloring problem is
NP-hard.
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Proof. We prove the theorem by induction on q. For q = 2 the hardness has
already been proved by Karpiński [13]. What remains is to show the polynomial
reduction from the TriangleFree-q-Coloring problem to TriangleFree-
(q + 1)-Coloring problem, for any fixed q ≥ 2. Take any graph G = (V,E),
where |V | = n and |E| = m, and assume that the vertices are arbitrarily ordered,
i.e., V = {v1, . . . , vn}. We construct the graph G′ = (V ′, E′) in the following way:

1. Let V ′ = V ∪ (
⋃n

i=1 Vi) and E′ = E ∪ (
⋃n

i=1 Ei), where Vi = V 0
i ∪ V 1

i ∪ V 2
i ∪

V 3
i ∪V 4

i and (Vi, Ei) is a (q+1)-cycle-clique with the set {V 0
i , V 1

i , V 2
i , V 3

i , V 4
i }

being its joints.
2. For every 1 ≤ i ≤ n, pick arbitrary vertex from V 0

i and call it ui. Identify the
pairs of vertices in order: 〈u1, u2〉, . . . , 〈u1, un〉. Rename u1 to u.

3. For every 1 ≤ i ≤ n, take any s ∈ V 0
i such that s �= u and identify vertices

〈vi, s〉.

Observe that viu is an edge in V 0
i (for 1 ≤ i ≤ n) and therefore in any

triangle-free (q + 1)-coloring of G′, vi has a different color than u, by Lemma 1.
It is now easy to verify that G is triangle-free q-colorable iff G′ is triangle-free
(q +1)-colorable. Also, since q is part of the problem (and therefore a constant),
the reduction is polynomial w.r.t. n and m. ��

Theorem 8. The TriangleFree-2-Coloring problem is NP-hard on K4-free
graphs.

Proof. We create a polynomial reduction from the following problem, which is
known to be NP-complete [17]:

NotAllEqual 3-Sat
Input: Boolean formula φ in conjunctive normal form, where each clause consists
of exactly three literals.
Question: Does φ have a nae-satisfying assignment, i.e., in each clause at least
one literal is true and at least one literal is false?

Let φ be a Boolean formula as described above, with n variables X and
m clauses C1, . . . , Cm. We assume, without loss of generality, that each clause
consists of at least two unique literals, otherwise the instance is trivially false. We
show a construction of K4-free graph G = (V,E), such that φ is nea-satisfiable
iff there exist a triangle-free 2-coloring of G.

1. For every clause Ci ≡ (li1 ∨ li2 ∨ li3), 1 ≤ i ≤ m, add vertices li1, li2, and li3 to
V , and add edges {li1, l

i
2}, {li2, l

i
3} and {li3, l

i
1} to E.

2. For every variable x ∈ X, add vertices tx and fx to V , and edge {tx, fx} to E.
3. For every variable x and every occurrence of literal l ≡ ¬x in φ, add edge

{tx, l} to E. For every variable x and every occurrence of literal l′ ≡ x in φ,
add edge {fx, l′} to E.

4. For every edge e ∈ E, except for edges added in step 1, create K4-free polar
gadget (Definition 2), with e as the polar edge.
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Observe that introducing polar gadgets in step 4 forces every vertex corre-
sponding to the literal l to have the same color, and also every vertex corre-
sponding to literal ¬l to have the same color, but different than the color of l’s.
Therefore the nae-satisfying assignment of each clause can be obtained from the
coloring of each triangle introduced in step 1. Note that K4-free polar gadget is
2-colorable, by Lemma 2. From the above observations, we can conclude that φ
has a nae-satisfying assignment iff G is triangle-free 2-colorable. Also, the reduc-
tion is polynomial w.r.t. n and m, and G is K4-free, since every polar gadget
used is K4-free, by Lemma 2. ��

Theorem 9. The TriangleFreePolar-2-Coloring problem is NP-hard on
graphs with maximum degree at most 3, but it is linear-time solvable on graphs
with maximum degree at most 2.

Proof. See extended paper [14]. ��

6 Conclusions and Future Work

In this paper we have shown several results regarding vertex coloring without
monochromatic triangles. Many new interesting problems can be derived from
this new coloring variant. We have already asked a few questions throughout this
paper. Apart from that, we propose a handful of ways to extend our research:

– For positive results one can look for an algorithm that finds χ3(G) in graphs
with Δ(G) ≥ 5. Using an algorithm from [19] when Δ(G) = 5 can only get
us classic 5-coloring of G, and therefore standard recoloring strategy may not
produce an optimal solution. This issue requires more complicated algorithmic
approach.

– For negative side, one can look for the smallest Δ(G), for which the
TriangleFree-q-Coloring problem is NP-hard.

– In the context of parametrized complexity we have shown two results. Con-
structing algorithms for other choices of parameters is a fine research direc-
tion. It would also be good to know where the problems proved to be NP-hard
in Sect. 5 reside in W -hierarchy.

Finally, we note that it is possible to further generalize the notion of χ3 to
get the parameter χr, for any r ≥ 3 (notice that χ2 = χ). This new parameter
can restrict the coloring in two ways: either not allow monochromatic Kr, or
not allow monochromatic Cr′ (cycle of length r′), for any 3 ≤ r′ ≤ r. Both
extensions are interesting.
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Abstract. Consider the following decision problem: for a given mono-
tone Boolean function f decide, whether f is read-once. For this prob-
lem, it is essential how the input function f is represented. On a negative
side we have the following results. Elbassioni et al. [1] proved that this
problem is coNP-complete when f is given by a depth-4 read-2 mono-
tone Boolean formula. Gurvich [2] proved that this problem is coNP-
complete even when the input is the following expression: C ∨Dn, where
Dn = x1y1 ∨ . . . ∨ xnyn and C is a monotone CNF over the variables
x1, y1, . . . , xn, yn (note that this expression is a monotone Boolean for-
mula of depth 3; in [2] nothing is said about the readability of C, but the
proof is valid even if C is read-2 and thus the entire formula is read-3).

On a positive side, from [3] we know that there is a polynomial time
algorithm to recognize read-once functions when the input is a monotone
depth-2 formula (that is, a DNF or a CNF). There are even very fast
algorithms for this problem [4].

Our contribution consists of the following two results. We show that
we can test in polynomial-time whether a given expression C ∨ D com-
putes a read-once function, provided that C is a read-once monotone
CNF andD is a read-once monotone DNF and all the variables of C occur
also in D (recall that due to Gurvich, the problem is coNP-complete
when C is read-2). The second result states that this is a coNP-complete
problem to decide whether the expression A∧Dn computes a read-once
function, where Dn is as above and A is the

∧ − ∨ − ∧
depth-3 read-

once monotone Boolean formula (so that the entire expression A∧Dn is
depth-3 read-2). This result improves the result of [1] in the depth and
the result of [2] in the readability of the input formula.

Keywords: Read-once functions · Monotone Boolean functions
coNP-completeness

1 Introduction

In this paper we study the following decision problem: decide, for a given mono-
tone Boolean function f , whether f is a read-once function (the latter means
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that the function can be computed by a monotone formula in which every vari-
able occurs only once). Of course, to specify the problem, we need to specify
the representation of f . For some representations this problem turns out to be
tractable. For example, it is known (see [3]) that if f is given by a monotone
DNF (or, equivalently, CNF), then the corresponding problem can be solved in
polynomial time. Golumbic et al. [4] gave quite fast algorithm for this problem
which works in time O(nm), where m is the length of the given DNF and n is
the number of variables. In [4] they also asked how hard is this problem when f
is represented in some other way, for example, when f is given by an arbitrary
Boolean formula.

First of all, let us note that if the input is a monotone Boolean formula,
then the problem belongs to coNP. This follows from the following theorem by
Gurvich:

Theorem 1 ([5]). A monotone Boolean function f is read-once iff every
minterm S of f and every maxterm T of f intersect in exactly one point.

Thus to show that f is not read-once it is enough to demonstrate a minterm
S and a maxterm T with |S ∩ T | > 1 (it is not hard to show that given a
formula S, T , we can decide in polynomial time whether S is a minterm and T
is a maxterm).

Soon after Golumbic, Mintz and Rotics raised their question, Elbassioni et
al. [1] proved that the read-once recognition problem is coNP-complete when the
input function f is given by a depth-4 read-2 monotone Boolean formula. The
same authors also proved that it is NP-hard to approximate the readability of the
monotone Boolean function f : {0, 1}n → {0, 1}, given by a depth-4 monotone
Boolean formula, within a factor of O(n).

Later, Gurvich [2] proved, that the problem of recognizing read-once func-
tions is coNP-complete even when the input is the following expression: C ∨Dn,
where Dn = x1y1 ∨ . . . ∨ xnyn and C is a monotone CNF over the variables
x1, y1, . . . , xn, yn. Note that the entire formula C ∨ Dn is the depth-3 formula.
The paper [2] says nothing about the readability of C, but the proof is valid
even if C is read-21 (so that the whole expression is read-3).

Our first result shows that this problem becomes tractable, if C is read-once
even when Dn is any monotone read-once DNF:

Theorem 2. There is a polynomial-time algorithm which decides, whether a
given expression C ∨ D computes a read-once function, provided that C is a
monotone read-once CNF, D is a monotone read-once DNF, and every variable
of C occurs also in D.

We don’t know whether the last restriction can be removed. However, we
find this theorem interesting due to its connection to the result of Gurvich.

Our second result shows that the problem of recognizing read-once functions
is coNP-complete when the input formula is depth-3 read-2 (note that [1] requires

1 This is due to the fact that the SAT-problem is NP-complete even for read-3 (non-
monotone) CNFs.
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depth at least 4 and [2] requires readability at least 3 for the input formula).
Moreover, we may consider only formulas which are conjunctions of two read-
once formulas:

Theorem 3. The problem to decide whether a given expression A ∧ Dn com-
putes a read-once function is coNP-complete. Here Dn = x1y1 ∨ . . . ∨ xnyn
and A is a

∧ −∨ −∧
depth-3 read-once monotone Boolean formula over

{x1, y1, . . . , xn, yn}.
The reduction we establish for the Theorem 3 is from the clique-problem

(while the reductions from [1,2] are from the SAT-problem).

Remark. Theorem 3 can be used to show that inapproximability result of Elbas-
sioni, Makino and Raur is also true for depth-3 formulas. This is, however, can
be done with the use of the result of Gurvich as well.

2 Preliminaries

A monotone Boolean formula (i.e., a ∧,∨-formula) Φ is called a read-k formula
if every variable occurs at most k times in Φ. A monotone Boolean function
f is called a read-k function if there is a monotone read-k formula, computing
f . Readability of a Boolean function f (formula Φ) is the minimal k such that
function f (formula Φ) is read-k.

Assume that f is a monotone Boolean function over the variables x1, . . . , xn

and S is a subset of {x1, . . . , xn}. To simplify notation below let f(S → i) (here
i ∈ {0, 1}) denote the value of f when all the variables from S are set to i and
all the variables from {x1, . . . , xn}\S are set to 1 − i.

A subset S ⊂ {x1, . . . , xn} is called a minterm of f if f(S → 1) = 1 but
for every proper subset S′ of S it holds that f(S′ → 1) = 0. Similarly, a subset
T ⊂ {x1, . . . , xn} is called a maxterm of f if f(T → 0) = 0 but for every proper
subset T ′ of T it holds that f(T ′ → 0) = 1.

Obviously, every minterm of f intersects every f ’s maxterm.

3 Proof of Theorem2

Our algorithm uses the following lemma:

Lemma 1. There exists a polynomial-time algorithm which for any given read-
once monotone CNF C and for any given read-once monotone DNF D decides,
whether C → D is a tautology.

Proof. It is known (see, e.g., [6]) that there is a polynomial-time algorithm to
decide, whether a given read-2 CNF is satisfiable. Apply this algorithm to ¬(C →
D) = C ∧¬D (the latter can be re-written as a read-2 CNF in polynomial time).

�	
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Let {x1, . . . , xn} be variables occurring in D. Let C1, . . . , Cm denote the
clauses of C. Since C is read-once, we may identify C1, . . . , Cm with m disjoint
subsets of {x1, . . . , xn}. The same thing can be done for D. Let

D = D1 ∨ D2 ∨ . . . ∨ Dl,

where D1, . . . , Dl ⊂ {x1, . . . , xn} are disjoint conjunctions. Note also that D1 ∪
. . . ∪ Dl = {x1, . . . , xn}.

We provide first a description of minterms of C ∨ D. Let S be a subset of
{x1, . . . , xn}. We say that S is a right set if for some j ∈ {1, . . . , l} we have S =
Dj . We say that S is a left set if S ⊂ C1 ∪ . . . ∪ Cm and for every i ∈ {1, . . . , m}
it holds that |Ci ∩ S| = 1. The following lemma is straightforward.

Lemma 2. A set S is a minterm of C ∨ D if and only if S is a left set that
does not properly include any right set or S is a right set that does not properly
include any left set.

A minterm S of C ∨D is called a left minterm if S is a left set. Similarly, we
call S a right minterm if S is a right set.

Now we are ready to present the algorithm for Theorem 2. In the description
of the algorithm we will state several auxiliary lemmas whose proofs are deferred
to Appendix (with exception of Lemma6; its proof is omitted due to space
constraints).

Algorithm. The algorithm works in four steps.
Step 1. Check, using Lemma 1, whether C → D is a tautology. If it is, then

C ∨ D is equivalent to D and hence C ∨ D computes a read-once function and
the algorithm halts. Otherwise proceed to Step 2.

Step 2. Obviously every maxterm T includes at least one clause of C. For
every pair of distinct clauses Cu, Cv check whether there is a maxterm T of C∨D
such that Cu, Cv ⊂ T . This can be done in polynomial time by the following

Lemma 3. Let Cu, Cv be two distinct clauses of C. Then there exists a maxterm
T of C ∨ D such that Cu, Cv ⊂ T if and only if for every j ∈ {1, . . . , l} it holds
that |(Cu ∪ Cv) ∩ Dj | ≤ 1.

If there is such T , then C ∨D is not read-once. Indeed, consider any minimal
S0 ⊂ {x1, . . . , xn} such that C(S0 → 1) = 1 and D(S0 → 1) = 0. Such a
set exists, since C → D is not a tautology. As D(S0 → 1) = 0, the set S0

does not include any right set, and hence is a left minterm of C ∨ D. As,
C(S0 → 1) = 1, the set S0 intersects both Cu and Cv. Recall that Cu, Cv ⊂ T
and hence |T ∩ S0| ≥ 2. By Theorem 1, C ∨ D does not compute a read-once
function.

Otherwise (if there is no maxterm T of C ∨ D that includes distinct clauses
of C) we proceed to Step 3.

Step 3. For every clause Cu and for every pair of distinct variables p and q
from Cu we check:
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– whether there is a right minterm S such that {p, q} ⊂ S (this can be done in
polynomial time since there are only polynomially many right minterms);

– whether there is a maxterm T containing Cu.

The second check can be done in polynomial time using the following

Lemma 4. Assume that C → D is not a tautology and no maxterm of C ∨ D
contains two distinct clauses of C. Then for any clause Ci we can decide in
polynomial-time whether there exists a maxterm T of C ∨ D such that Ci ⊂ T .

If for some Cu, p, q both questions answer in positive, then C ∨ D is not a
read-once function. Indeed, in this case both the minterm S and the maxterm T
include distinct variables p and q, and by Theorem1, C ∨ D does not compute
a read-once function. Otherwise we proceed to Step 4.

Step 4. For all u ∈ {1, . . . , m} and v ∈ {1, . . . , l} with Cu ∩ Dv = ∅, and for
all p ∈ Dv and q ∈ Cu we check:

– whether there is a left minterm S such that {p, q} ⊂ S,
– whether there is a maxterm T such that Cu ∪ {p} ⊂ T .

Both checks can be performed in polynomial time by the following lemmas.

Lemma 5. There exists a polynomial-time algorithm which for any given pair
of distinct variables a, b ∈ {x1, . . . , xn} decides, whether there is a left minterm
S of C ∨ D such that {a, b} ⊂ S.

Lemma 6. Assume that there is no maxterm of C ∨ D which contains two
distinct clauses of C. Then for any given Cu,Dv with Cu ∩ Dv = ∅ and for any
given p ∈ Dv we can decide in polynomial time whether there exists a maxterm
T of C such that Cu ∪ {p} ⊂ T .2

If for some Cu,Dv, p, q both questions answer in positive, then C ∨ D does
not compute a read-once function. Indeed, in this case both the maxterm T and
the minterm S include distinct variables p, q and by Theorem 1, C ∨ D does not
compute a read-once function.

Otherwise the algorithm outputs the positive answer and halts. We have to
show that in this case C ∨D indeed computes a read-once function. For the sake
of contradiction, assume that C ∨ D is not read-once. By Theorem 1 there is a
maxterm T of C ∨ D and a minterm S of C ∨ D that have distinct common
variables p, q. By Lemma 2 S is either a left or a right minterm. We will consider
these two cases separately.

Case 1: S is a right set, say S = Dj . Then T contains some clause Cu of C.
We claim that S ∩ T ⊂ Cu. Indeed, otherwise S ∩ T would include a variable
y /∈ Cu. Then C(T\{y} → 0) = 0, as Cu ⊂ T\{y}. And D(T\{y} → 0) = 0,

2 The proof of this lemma is almost identical to the proof of Lemma 4. Actually, it
is possible to formulate a single lemma which implies both of them, but then the
formulation of the lemma becomes immense.
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since D is read-once and T ∩Dj has at least 2 variables. We obtain contradiction,
as T is a maxterm of C ∨ D.

Thus T ∩ S ⊂ Cu. Hence there are two distinct variables p and q from
Cu such that {p, q} ⊂ S. Hence the algorithm must have halted on Step 3, a
contradiction.

Case 2: S is a left set. Again there is a clause Cu ⊂ T . Since S is a left set, S
and Cu have exactly one common variable q. By our assumption T ∩ S includes
another variable p = q. Note that p /∈ Cu because otherwise S ∩ Cu has more
than one variable.

Let Dv be the (unique) right set that includes p (here we use the assumption
that every variable is in some right set). We claim that Dv and Cu are disjoint.
For the sake of contradiction assume that there is a variable y ∈ Cu ∩ Dv. Then
(C ∨ D)(T\{p} → 0) = 0. Indeed, C(T\{p} → 0) = 0, as p /∈ Cu and hence
Cu ⊂ T\{p}. And D(T\{p} → 0) = 0, as y = p (since y is in Cu and p is not)
and hence T\{p} still intersects Dv.

Thus T is not a maxterm, and the contradiction shows that Dv and Cu

are disjoint. Therefore, we have found Cu, p, q,Dv such that q ∈ Cu, p ∈ Dv,
Cu and Dv are disjoint and there is a left minterm S and a maxterm T with
{p, q} ⊂ S,Cu ∩ {p} ⊂ T . Hence the algorithm just have halted on Step 4, a
contradiction. (End of Algorithm.)

4 Proof of Theorem3

Let G = (V,E) be undirected graph and k ≤ |V | a positive integer. Let us define
two auxiliary sets A(G, k) and B(G, k). Namely, let A(G, k) be the set of all
quadruples (i, u, j, v) such that i, j ∈ {1, . . . , k}, u, v ∈ V and i = j, {u, v} /∈ E.
Further, let B(G, k) be the set of all unordered pairs {(i, u), (j, v)} such that
(i, u, j, v) ∈ A(G, k). Note that A(G, k) is two times larger than B(G, k). Note
also that sizes of A(G, k) and B(G, k) are polynomial in size of G.

For each (i, u, j, v) ∈ A(G, k) introduce a variable xi,u
j,v. Consider the following

two formulas over variables xi,u
j,v:

A(G, k) =
k∧

i=1

∨

u∈V

∧

(j,v):
(i,u,j,v)∈A(G,k)

xi,u
j,v,

B(G, k) =
∨

{(i,u),(j,v)}∈B(G,k)

(xi,u
j,v ∧ xj,v

i,u).

Observe that A(G, k) is
∧ −∨ −∧

depth-3 read-once monotone Boolean
formula and B(G, k) is equal to Dn for n = |B(G, k)|. Note also that these
formulas can be obtained from G, k in polynomial time.

The following Lemma motivates this construction.

Lemma 7. There is no clique of size k in G iff A(G, k) → B(G, k) is a
tautology.
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Proof. Denote for brevity A = A(G, k), B = B(G, k).
Assume that w1, . . . , wk ∈ V form a clique in G. Let us define an assignment

of variables for which A is true and B is false. Namely, set xi,u
j,v to 1 iff u = wi.

Clearly, A is true, since for every i from 1 to k there is a vertex wi such that all
variables with superscript i, wi are set to 1. On the other hand, B is false, since
(xi,u

j,v ∧ xj,v
i,u) = 1 implies that u = wi, v = wj , and this contradicts either i = j

or {u, v} /∈ E.
Now assume that A → B is not a tautology. Hence there is an assignment of

variables on which A is true and B is false. Since A is true, this means that for
every i from 1 to k there exists wi ∈ V such that all the variables with superscript
i, wi are set to 1. Let us show that w1, . . . , wk form a clique in G. Assume for
contradiction that there are i = j such that wi and wj are not connected by
an edge in G, that is, {(i, wi), (j, wj)} belongs to B(G, k). This contradicts the
assumption that B is false, because both xi,wi

j,wj
and x

j,wj

i,wi
are set to 1. �	

To show Theorem 3 we reduce from coNP-complete language CO-CLIQUE,
consisting of all pairs (G, k) such that G is an undirected graph, k is an integer
and there is no clique of size k in G. It is enough to show the following

Lemma 8. Assume that 3 ≤ k < |V |. Then there is no clique of size k in G iff
A(G, k) ∧ B(G, k) computes a read-once function.

A technical restriction 3 ≤ k < |V | is not essential; if we a have a pair (G, k)
and k is either less than 3 or bigger than |V | − 1, then we can solve a clique
problem for (G, k) without any reduction in polynomial time.

Proof (of Lemma 8).
Once again, denote for brevity A = A(G, k), B = B(G, k).
Indeed, if there is no clique of size k in G, then by Lemma 7 implication

A → B is a tautology. The latter implies that A∧B = A. Since A is a read-once
formula, we are done.

Now assume that w1, . . . , wk form a clique in G. It is enough to show that in
this case A ∧ B is not read-once. To do this we will use Theorem 1.

Define the following maxterm T of A ∧ B. Add a variable xi,u
j,v to T iff it

satisfies at least one of the following two conditions:

– v = wj ;
– u = wi, v = wj , and i < j.

Let us verify that T is a maxterm. Note that B(T → 0) = 0. Indeed, assume
for contradiction that B(T → 0) = 1. Then there is {(i, u), (j, v)} ∈ B(G, k) such
that xi,u

j,v and xj,v
i,u are both set to 1, that is, xi,u

j,v and xj,v
i,u are both not from T .

On the other hand, if u = wi, then xj,v
i,u falls into T . Similarly, if v = wj , then

xi,u
j,v falls into T . This means that u = wi, v = wj . By definition of B(G, k) it

holds that i = j. This leads us to a contradiction: either xi,u
j,v ∈ T (if i < j) or

xj,v
i,u ∈ T (if j < i).
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We have shown that (A ∧ B)(T → 0) = B(T → 0) = 0. It remains to show
that (A ∧ B)(T ′ → 0) = 1 for any proper subset T ′ of T . Consider any variable
xi′,u′
j′,v′ from T\T ′. Note that for every i all the variables with superscript i, wi

are not from T (if xi,wi

j,v ∈ T , then by definition of T it holds that v = wj , but
this either contradicts i = j or {wi, v} /∈ E). This shows that A(T → 0) = 1 and
hence A(T ′ → 0) = 1. On the other hand, xi′,u′

j′,v′ ∧xj′,v′
i′,u′ is true on the assignment

T ′ → 0 and so is B. To see this note that xj′,v′
i′,u′ is not from T . Indeed, if xj′,v′

i′,u′ is
from T , then there are two cases:

– the first case: u′ = wi′ . Since (i′, u′, j′, v′) is a quadriple from A(G, k), then
i′ = j′ and u′ = wi′ and v′ are not connected by an edge. In particular, this
means that v′ = wj′ and hence xi′,u′

j′,v′ is not an element of T .
– the second case: v′ = wj′ , u′ = wi′ and j′ < i′. The first and the third

inequalities again make it impossible for xi′,u′
j′,v′ to be an element of T .

Thus we have showed that T is a maxterm. Let us define a minterm S which
intersects with T in more than one point. Take any vertex y from V \{w1, . . . , wk}
(it is possible since by assumption k < |V |). Include in S all variables xi,u

j,v with
u = y. First of all, let us show that |S ∩T | > 1. Consider variables x1,y

2,y and x2,y
3,y.

There are such variables since {y, y} /∈ E and by assumption k ≥ 3. These two
variables are clearly from S. Moreover, they are from T (since y /∈ {w1, w2, w3},
they satisfy the second condition from the definition of T ).

It only remains to verify that S is a minterm. Set all the variables from S to
1 and set all the other variables to 0. Note that B is true on such assignment
(because {{1, y}, {2, y}} ∈ B(G, k) and x1,y

2,y∧x2,y
1,y is true). Clearly, A is also true,

since for every i every variable with superscript i, y is set to 1.
On the other hand, consider any variable xi,y

j′,v′ from S. Set all the variables
from S, except xi,y

j′,v′ , to 1 and set all the other variables (including xi,y
j′,v′) to

0. Observe that A is false on such assignment. Indeed, for every u ∈ V the
conjunction ∧

(j,v):
(i,u,j,v)∈A(G,k)

xi,u
j,v

is false. For u = y this conjunction is false since xi,y
j′,v′ is set to 0; if u = y, then

every variable in this conjunction is set to 0). �	
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Appendix

A Proof of Lemma3

Let T be a maxterm of C ∨ D and Cu, Cv ⊂ T . For the sake of contradiction
assume that there is j ∈ {1, . . . , l} such that |(Cu ∪ Cv) ∩ Dj | ≥ 2. Pick any two
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distinct p, q ∈ (Cu ∪ Cv) ∩ Dj . Let us show that (C ∨ D)(T\{q} → 0) = 0. To
show that C(T\{q} → 0) = 0 observe that Cu or Cv does not contain q and
hence Cu ⊂ T\{q} or Cv ⊂ T\{q}. To show that D(T\{q} → 0) = 0 observe
that D(T → 0) = 0 and hence T intersects all sets D1, . . . , Dl. Since q ∈ Dj and
hence q /∈ Di for all i = j, the set T\{q} still intersects Di for all i = j. And it
intersects Dj since p ∈ Cu ∪ Cv ⊂ T and p was not removed from T . Since T is
a maxterm, this is a contradiction.

On the other hand, assume that for every j ∈ {1, . . . , l} it holds that |(Cu ∪
Cv) ∩ Dj | ≤ 1. We have to find a maxterm T that includes both Cu, Cv. Start
with T = Cu ∪ Cv. Then for all j such that Dj does not intersect Cu ∪ Cv pick
a variable from Dj and include it in T . In this way we make T intersect every
Dj in exactly one point. In particular, D(T → 0) = 0 and C(T → 0) = 0. On
the other hand, every proper subset T ′ of T is disjoint with at least one Dj and
hence D(T ′ → 0) = 1. This shows that T is a maxterm.

B Proof of Lemma4

Since C → D is not a tautology, Ci is non-empty and intersects with some Dj .
Further, without loss of generality we may assume that:

– i = 1;
– C1 intersects with D1, . . . Dr and C1 is disjoint with Dr+1, . . . Dl for some

1 ≤ r ≤ l;
– C2, . . . , Cs all intersect with D1 ∪ D2 ∪ . . . ∪ Dr and Cs+1, . . . , Cm are all

disjoint with D1 ∪ D2 ∪ . . . ∪ Dr for some 1 ≤ s ≤ m.

From the fact that D1 ∪ D2 ∪ . . . ∪ Dl = {x1, . . . , xn} we may derive that:

Cs+1, . . . , Cm ⊂ Dr+1 ∪ . . . ∪ Dl. (1)

Define an auxiliary CNF Ĉ = Cs+1 ∧ . . . ∧ Cm and an auxiliary DNF D̂ =
Dr+1 ∨ . . .∨Dl. Note that Ĉ and D̂ are over variables from Dr+1 ∪ . . .∪Dl (this
follows from (1)).

We claim that there exists T such that T is a maxterm of C ∨D and C1 ⊂ T
if and only if Ĉ → D̂ is not a tautology (the latter by Lemma1 can be verified
in polynomial time).

(⇐) Assume that Ĉ → D̂ is not a tautology. Then there exists T̂ ⊂ Dr+1 ∪
. . . ∪ Dl such that

Cs+1 ⊂ T̂ , . . . , Cm ⊂ T̂ ; (2)

|Dr+1 ∩ T̂ | = 1, . . . , |Dl ∩ T̂ | = 1; (3)

(take minimal T̂ ⊂ Dr+1 ∪ . . .∪Dl such that Ĉ(T̂ → 0) = 1 and D̂(T̂ → 0) = 0).
Let us show that T = T̂ ∪ C1 is the maxterm of C ∨ D. First of all, let us

verify that (C ∨ D)(T → 0) = 0. Indeed,
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– C(T → 0) = 0 because C1 ⊂ T ;
– D(T → 0) = 0 because every D1, . . . , Dl intersects with T ; namely, D1, . . . Dr

intersect C1 and Dr+1, . . . , Dl intersect T̂ .

Now, assume that T ′ ⊂ T and (C ∨ D)(T ′ → 0) = 0. Let us show that this
is possible only when T ′ = T .

Since D(T ′ → 0) = 0, we have that T ′ intersects with every D1, . . . , Dl.
From the fact that C1 is disjoint with Dr+1, . . . , Dl and from (3) it follows that
T̂ ⊂ T ′.

It remains to show that C1 ⊂ T ′. This follows from the assumption that
C(T ′ → 0) = 0. Indeed, then at least one clause of C should be the subset of T ′.
Assume that this clause is Cu. If Cu = C1, then Cu ⊂ T̂ . There are two cases:

– The first case. Assume that Cu ∈ {C2, . . . , Cs}. Then Cu ⊂ T̂ ⊂ Dr+1 ∪ . . . ∪
Dl intersects with D1 ∪ D2 ∪ . . . ∪ Dr, but the latter is impossible.

– The second case. Assume that Cu ∈ {Cs+1, . . . , Cm}. This case contradicts
(2).

(⇒) Assume that T is the maxterm of C ∨ D such that C1 ⊂ T . Define
T̂ = T\C1. Later we will show that Ĉ(T̂ → 0) = 1, D̂(T̂ → 0) = 0 and hence
Ĉ → D̂ is not a tautology. But at first we should verify that T̂ ⊂ Dr+1 ∪ . . .∪Dl

(recall that Ĉ, D̂ are over variables from Dr+1 ∪ . . . ∪ Dl).
To show that T̂ ⊂ Dr+1 ∪ . . .∪Dl assume for contradiction that T̂ intersects

D1 ∪D2 ∪ . . .∪Dr and let q be the variable which lies in their intersection. Note
that q /∈ C1 (this is because q ∈ T̂ = T\C1). Let us demonstrate that for such q
we have that (C ∨D)(T\{q} → 0) = 0 (this is already a contradiction since T is
a maxterm). Indeed, C(T\{q} → 0) = 0 since C1 ⊂ T\{q}. Further, we should
show that T\{q} intersects every D1, . . . Dl and hence D(T\{q} → 0) = 0.
Indeed:

– T\{q} intersects D1, . . . , Dr because of C1;
– T\{q} intersects Dr+1, . . . , Dl because of the following two reasons: (a)

D(T → 0) = 0 and hence T intersects every Dr+1, . . . , Dl; (b) q is not in
Dr+1 ∪ . . . ∪ Dl.

Thus it remains to show that Ĉ(T̂ → 0) = 1 and D̂(T̂ → 0) = 0. To
show that the first equality is true assume for contradiction that there is Cu ∈
{Cs+1, . . . , Cm} such that Cu ⊂ T̂ = T\C1. But then Cu ⊂ T . This contradicts
the assumption that there is no maxterm of C ∨ D which contains two distinct
clauses of C.

To show that the second equality (D̂(T̂ → 0) = 0) is true, observe that T̂

intersects every Dr+1, . . . , Dl. This is true because D(T̂ → 0) = 0 and hence T
intersects Dr+1, . . . , Dl; but C1 by assumption is disjoint with Dr+1, . . . , Dl and
hence T\C1 still intersects them.
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C Proof of Lemma5

If there is Ci such that a, b ∈ Ci or {a, b} ⊂ C1 ∪ . . . ∪ Cm, then no left minterm
S can contain both a and b. From now we assume that this is not the case, i.e.
there is no Ci which contains both a and b and a, b ∈ C1∪ . . .∪Cm. Let Ĉ ∨D̂ be
obtained from C∨D by setting a, b to 1. In other words, Ĉ is obtained from C by
erasing all clauses containing a or b and D̂ is obtained from D by erasing a and b.
Assume without loss of generality that C1, C2 are erased clauses, a ∈ C1, b ∈ C2

and D1, . . . , Dr are conjunctions containing a or b (note that r is either 1 or 2).
Then Ĉ and D̂ can be written as

Ĉ = C3 ∧ . . . ∧ Cm,

D̂ = (D1\{a, b}) ∨ . . . ∨ (Dr\{a, b}) ∨ Dr+1 ∨ . . . ∨ Dl.

We assert that there is a left minterm S containing a and b iff Ĉ → D̂ is not
a tautology. The latter by Lemma1 can be verified in polynomial times.

(⇐) Assume that Ĉ → D̂ is not a tautology. Take minimal Ŝ ⊂
{x1, . . . , xn}\{a, b} such that Ĉ(Ŝ → 1) = 1, D̂(Ŝ → 1) = 0. Obviously, such Ŝ
satisfies the following two conditions:

Ŝ ⊂ C3 ∪ . . . ∪ Cm, |Ŝ ∩ C3| = 1, . . . , |Ŝ ∩ Cm| = 1, (4)

D1\{a, b} ⊂ Ŝ, . . . , Dr\{a, b} ⊂ Ŝ, Dr+1 ⊂ Ŝ, . . . , Dl ⊂ Ŝ. (5)

Now, define S = Ŝ ∪ {a, b}. Let us show that S is a left minterm of C ∨ D.
From (5) it follows that there is no j ∈ {1, . . . , l} such that Dj ⊂ S. Hence S
contains no right set as a proper subset. Thus it remains to show by Lemma 2
that S is a left set. Since a, b are from C1 ∪ . . . ∪ Cm, we have that

S ⊂ ({a, b} ∪ C3 ∪ . . . ∪ Cm) ⊂ C1 ∪ . . . ∪ Cm.

Moreover, S intersects every clause of C in exactly one point. For C3, . . . , Cm

this follows from (4) and from the fact that C3, . . . , Cm contain neither a nor b.
For C1, C2 this is true because: (a) Ŝ is disjoint with C1, C2; (b) a ∈ C1, b ∈ C2.

(⇒) Assume that there is a left minterm S of C ∨ D containing a and b.
Define Ŝ = S\{a, b}. Let us show that Ŝ intersects every C3, . . . Cm. Indeed, this
is true for S and a, b are not from C3 ∪ . . . ∪ Cm. Hence Ĉ(Ŝ → 1) = 1. On the
other hand, D̂(Ŝ → 1) = 0, since:

– D1\{a, b} ⊂ Ŝ, . . . Dr\{a, b} ⊂ Ŝ because otherwise at least one D1, . . . , Dr

is the subset of S = Ŝ ∪ {a, b};
– Dr+1 ⊂ Ŝ, . . . , Dl ⊂ Ŝ because it is true even for S.

Thus Ĉ → D̂ is not a tautology.
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Abstract. Every connected graph on n vertices has a cut of size at
least n − 1. We call this bound the ‘spanning tree bound’. In the Max-
Cut Above Spanning Tree (Max-Cut-AST) problem, we are given
a connected n-vertex graph G and a non-negative integer k, and the task
is to decide whether G has a cut of size at least n− 1+ k. We show that
Max-Cut-AST admits an algorithm that runs in time O(8knO(1)), and
hence it is fixed parameter tractable with respect to k. Furthermore, we
show that Max-Cut-AST has a polynomial kernel of size O(k5).

1 Introduction

The classic Max-Cut is one of Karp’s original 21 NP-complete problems [8].
Since the 1960s, this problem has been studied extensively in the areas of graph
theory, combinatorics and graph algorithms (see, e.g., the well-known survey
[11]). A cut in a graph G is defined by a bipartition of the vertex-set of G.
Specifically, the cut corresponding to a bipartition (A,B) is the set of edges
with one endpoint in A and the other endpoint in B. The input for Max-Cut
consists of a graph G and a non-negative integer k, and the task is to determine
whether G has a cut of size at least k. It is now textbook knowledge that every
graph with n vertices and m edges has a cut of size at least m/2, and that such
a cut can be found in polynomial time. This result was first shown by Erdős in
1965 [6]. Edwards [4,5] showed that this lower bound of m/2 can be improved to
m/2 + (n − 1)/4 if the graph is connected. Nowadays, this famous lower bound
is called the Erdős-Edwards bound. Furthermore, it is known that this bound is
tight for infinitely many graphs.

In the area of parameterized complexity, the most obvious parameterization
for Max-Cut is by the cut size k. More precisely, we would like to determine in
time f(k)nO(1) whether the input graph G has a cut of size at least k. In light
of the lower bound m/2, if k ≤ m/2, then we can immediately conclude that
G has a cut of size at least k, and otherwise m < 2k, i.e., the total number of
edges in the graph is bounded by a function of k, and we can by brute force
find the maximum sized cut in G. The entire problem, thus, becomes trivial.
c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 244–256, 2018.
https://doi.org/10.1007/978-3-319-90530-3_21
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In order to address this triviality, Mahajan and Raman [9] introduced the idea
of parameterizing “above guaranteed” lower bounds. Instead of asking if G has
a cut of size at least k, they considered the question whether G has a cut of
size at least m/2 + k. In particular, they showed that the latter question can
be decided in time 2O(k)nO(1). In light of this result as well as the higher lower
bound above, Crowston et al. [3] further asked the natural question of Max-
Cut Above Erdős-Edwards. This paper, originally published in 2012 [2], has
already become one of the most well known results in Parameterized Complexity
concerning above guarantee parameterization. Specifically, Crowston et al. [3]
showed that we can determine whether a given connected graph G has a cut
of size at least m/2 + (n − 1)/4 + k in time 2O(k)nO(1), and furthermore, this
problem admits a kernel of size O(k5). These bounds were improved by Etscheid
and Mnich [7], as well as extended by Mnich et al. [10].

While the important results above received significant attention, another
central natural bound has so far been overlooked from the perspective of param-
eterized complexity: every connected graph on n vertices has a cut of size at least
n − 1. To see this, first note that every connected graph G has a spanning tree
T (containing n − 1 edges). Second, note that a tree is 2-colorable. Hence, it is
simple to partition the vertex set of G into two sets in such a way that all edges
of T fall into the cut. We refer to this folklore lower bound as the spanning tree
bound. We stress that this bound is incomparable to the Erdős-Edwards bound.
Specifically, whenever the average degree of the input graph is smaller than 3,
it holds that n − 1 > m/2 + (n − 1)/4, i.e., spanning tree bound gives a better
guarantee on the cut size.

In this paper, we show that Max-Cut Above Spanning Tree (Max-Cut-
AST) is also fixed parameter tractable and admits a polynomial sized kernel.
Formally, our problem is stated as follows.

Max-Cut Above Spanning Tree (Max-Cut-AST) Parameter: k
Input: A connected graph G and a non-negative integer k.
Question: Does G have a cut of size at least n − 1 + k?

Specifically, our contribution is twofold. First, we prove that Max-Cut-AST
admits a parameterized algorithm that runs in time 8knO(1). Second, we prove
that Max-Cut-AST admits a kernel of size O(k5). We remark that our algo-
rithm is essentially optimal, since unless the Exponential Time Hypothesis
(ETH) fails, Max-Cut-AST cannot be solved in time 2o(k)nO(1). Indeed, as
observed in [3] (from a reduction by [1]), unless the ETH fails, Max-Cut on
Connected Graphs, where the input consists of a connected graph G on n
vertices a non-negative integer t and the question is to decide whether G has a
cut of size at least t, cannot be solved in time 2o(t)nO(1). Note that an instance
(G, t) Max-Cut on Connected Graphs is equivalent to the instance (G, k)
of Max-Cut-AST, where k = t − (n − 1). Therefore, if Max-Cut-AST were
to have an algorithm with running time 2o(k)nO(1), then Max-Cut on Con-
nected Graphs would admit an algorithm with running time 2o(t)nO(1).
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Due to lack of space, proofs of statements marked by stars (�) are deferred
to the full version of this paper.

Overview of Our Technique. On a high-level, our technique adapts the strat-
egy of [3]. However, our arguments significantly differ in several basic aspects
stemming from the fact that the spanning tree bound is high (in comparison to
the maximum size of a cut) when the graph is sparse but low when the graph
is dense, while the behavior of Erdős-Edwards bound is the complete opposite.
We thus believe that our results and those of [3] complement each other in the
sense that together they present a more complete picture of the complexity of
Max-Cut parameterized above a guarantee. We start our analysis with new
structural results, which are particularly relevant to our kernel. In particular, we
introduce the notion of an even sunflower. This notion is a curious modification
of a classic sunflower (with a core of size at most 2) where every petal is of
even length and an additional restriction concerning the interaction between the
core and the petal is satisfied. The rationale behind the introduction of such a
notion is that even cycles are more advantageous than odd cycles. As a simple
illustrative example, say we only have one even cycle. Then, it is easy to see
that we can choose a spanning tree that excludes exactly one edge of that even
cycle, and then “win 1 over” the spanning tree bound as the excluded edge will
necessarily lie across the cut. Delicate differentiation of the analysis of even and
odd cycles is present throughout our paper. We remark that in [3], cycles do not
play any such role.

For our algorithm, we begin by applying a set of one-way reduction rules,
so that in polynomial time we can either conclude that G has a cut of size at
least n − 1 + k or find a set S ⊆ V (G) such that |S| ≤ 3k and every 2-connected
component of G−S is a clique or a cycle. In comparison to [3], we introduce one
new rule as well as modify those that we do adapt, and present a new analysis.
In particular, we can only guarantee that every 2-connected component of G−S
is either a clique or a cycle, while Crowston et al. [3] could guarantee that every
such component is simply a clique. We proceed by “guessing” to which side each
vertex in S should belong in some bipartition defining a solution (if one exists).
This step is captured by the definition of a weighted variant of Max-Cut as in
[3]. In our case, we need to solve the weighted problem in polynomial time on a
broader class of graphs, as some blocks can be cycles.

For our kernelization algorithm, almost all of the reduction rules to bound
G−S are completely new. In comparison to [3], we face the following difficulties.
First, while [3] can easily get rid of vertices of degree 2, for us, the analysis of
such vertices is non-trivial. To see an example of the kind of “trouble” degree-2
vertices cause, we remark that we are able to devise a reduction rule (Rule 10)
that gets rid of some degree-2 vertices if three such vertices appear consecutively
on a path on five vertices in G−S, but if we only demanded that two such vertices
appear consecutively on a path on four vertices in G − S, the argument would
already fail. This particular situation is related to parity arguments. The second
difficulty in comparison to [3] that we would like to highlight is rooted in the
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following fact: the measure of [3] consists of both m and n. Thus, Crowston et al.
[3] have freedom in their analysis to, say, add edges to the graph, an operation
that ensures that their measure would not increase when applying a reduction
rule. We do not have this freedom—say, if we delete one vertex, then we must
directly ensure that k would be decreased by at least 1 without being able to
compensate for a further decrease in k by modifying m appropriately.

2 Preliminaries and Structural Results

Given A′ ⊆ A and a function f : A → B, f |A′ denotes the restriction of f to A′.

Graph Notation. All graphs in this paper are simple and undirected. For a
graph G, we denote by V (G) and E(G) the vertex set and the edge set of G,
respectively. A cut of G is a function f : V (G) → {0, 1}. An edge uv ∈ E(G) is
satisfied by a cut f if f(u) �= f(v). The size of a cut f , denoted by ||f ||, is the
number of edges satisfied by f , i.e., ||f || = |{uv ∈ E(G)|f(u) �= f(v)}|. A block
of G is a 2-connected component of G. Note that if v ∈ V (G) is contained in
two different blocks, then v is a cut vertex of G. For a graph G and x, y ∈ V (G),
dG(x) denotes the degree of x in G, and distG(x, y) denotes the distance (i.e.,
number of edges on a shortest path) between x and y in G.

We define a class of graphs called clique-cycle-forest as follows.

Definition 1. The class of clique-cycle-forests is defined as follows. A clique is
a clique-cycle-forest, and so is a cycle. The disjoint union of two clique-cycle-
forests is a clique-cycle-forest. In addition, a graph formed from a clique-cycle-
forest by identifying two vertices, each from a different (connected) component,
is also a clique-cycle-forest.

Note that clique-cycle-forests are exactly the graphs in which every block is a
clique or a cycle.

Simple Bound. Recall that a connected graph G on n vertices has a cut of
size at least n − 1. We now claim that if G contains an even cycle, then G has a
cut of size (n− 1)+1 = n. To see this, let C be an even cycle in G and uv be an
edge of C. Consider a spanning tree T of G that contains all edges of C except
uv. Let f be a cut of G that satisfies all edges of T . Since C − uv is an odd
length path, and since f satisfies all edges of C − uv, it must be the case that
f(u) �= f(v). This means, in addition to the n − 1 edges of T , f satisfies uv as
well. Therefore, ||f || ≥ n − 1+1 = n. The key point here is that “one even cycle
means one additional edge in the cut.” This modest combinatorial observation
immediately leads to the following lemma.

Lemma 1. Let G be a connected graph and k be a non-negative integer. If G
contains k vertex disjoint even cycles, then (G, k) is a yes-instance of Max-
Cut-AST.
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Proof. Take a spanning tree T of G that contains all but one edge of each of the
k even cycles. Such a spanning tree exists because the cycles are vertex disjoint.
Then any cut of G that satisfies all edges of T will satisfy all edges of each of
the k even cycles. �	

The proof of Lemma 1 relies only on the existence of k even cycles and a
spanning tree T with the property that a cut of G that satisfies all edges of T
should automatically satisfy all edges of each of the k cycles. This observation
leads us to the definition below.

Sunflower-Based Bound. We define a family of even cycles, which we call an
even sunflower, that can guarantee a spanning tree with the property above.

Definition 2. Let C be a family of cycles in a graph G and let X ⊆ V (G) be
of size at most 2. The family C is a sunflower with core X if for every distinct
C,C ′ ∈ C, V (C) ∩ V (C ′) = X. The size of the sunflower C is the number of
cycles in C.

We further need a special kind of a sunflower, defined as follows.

Definition 3. A sunflower C with core X is said to be an even sunflower if

(i) every cycle in C is of even length, and
(ii) if x, y ∈ X, then in every cycle in C, the distance between x and y is even

(i.e., distC(x, y) is even for every C ∈ C).

Let C be an even sunflower with core X. First, note that if x, y ∈ X, then
condition (ii) in the above definition implies that x and y are not adjacent in
any of the cycles in C (i.e., xy /∈ E(C) for every C ∈ C). Moreover, if X = ∅,
then C is a collection of vertex disjoint even cycles, and if |X| = 1, then x = y,
and C is a collection of even cycles that intersect only at x. Second, note that
every C ∈ C can be partitioned into two internally vertex disjoint x − y paths,
and distC(x, y) is the length of the shorter of those two paths. Since C is an even
sunflower, distC(x, y) is even (i.e., the length of the shorter x − y path is even),
and since C is of even length, the length of the longer x− y path in C must also
be even.

Lemma 2. Let G be a connected graph and let C be an even sunflower in G with
core X. Then, G has a spanning tree T with the following property: any cut of
G that satisfies all edges of T , also satisfies all edges of all the cycles in C.

Proof. If X = ∅, then the cycles in C are vertex disjoint, and the lemma follows
from Lemma 1. Next, assume that X �= ∅. Let x ∈ X. Grow a spanning tree T
as follows. Start with E(T ) = ∅. Fix one cycle, say ˜C ∈ C. Add to T all edges
of ˜C, except exactly one of the two edges incident on x. Now, for each C ∈ C,
C �= ˜C, do the following: if |X| = 1, then add to T all edges of C, except exactly
one of the two edges incident on x; if |X| = 2, say X = {x, y}, then add to T all
edges of C except the two edges incident on x. Finally, extend T to a spanning
tree of G.
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To see that T has the required property, consider a cut f of G that satisfies
all edges of T . Assume f(x) = 1. For C ∈ C, let uC and vC be the neighbors of x
in C. Suppose |X| = 1. Then, for every C ∈ C, exactly one of the two edges xuC

and xvC is missing from T . Suppose xuC is the missing edge. Then, T contains
C − xuC , and hence f satisfies all the edges of the odd length path C − xuC .
Therefore, it must be the case that f(x) �= f(uC), i.e., f satisfies the edge xuC .
Using similar arguments, because of the discussion before the lemma, we can
also show that f satisfies all edges of the cycles in C when |X| = 2. �	

Consequently, we have the following result.

Lemma 3. Let G be a connected graph and k be a non-negative integer. If G
contains an even-sunflower of size at least k, then (G, k) is a yes-instance of
Max-Cut-AST.

We can further generalize the above lemma. It is not necessary that all the k
cycles should come from the same even sunflower. It is not difficult to see that
the k cycles may belong to different even sunflowers, and (G, k) will still be a
yes-instance, provided no two cycles belonging to different even sunflowers share
a vertex. We will use this observation in Sect. 4 to bound the kernel size. For
future reference, we summarize this discussion in the following proposition.

Proposition 1. Let G be a connected graph and k be a non-negative integer.

1. If G has even sunflowers C1, C2, . . . , Cr such that for all distinct i, j ∈ [r],
∑r

i=1 |Ci| ≥ k and
(
⋃

C∈Ci
V (C)

)
⋂

(

⋃

C′∈Cj
V (C ′)

)

= ∅, then (G, k) is a
yes-instance of Max-Cut-AST.

2. If G contains k even cycles (not necessarily disjoint) and a spanning tree
that contains all but one edge of each of the k even cycles, then (G, k) is a
yes-instance of Max-Cut-AST.

Structural Results for Kernelization. We conclude this section with the
following two lemmas that will be used in Sect. 4 to bound the kernel size.

Lemma 4 (�). Let ˜G be a connected graph and let s ∈ V ( ˜G) be such that s is
not a cut vertex of ˜G. Let x, y, z ∈ V ( ˜G) be three distinct neighbors of s. Then
there exists an even cycle containing s in ˜G.

Lemma 5 (�). Let ˜G be a connected graph on n vertices and let k be a non-
negative integer. Let s ∈ V ( ˜G) be a vertex that is not a cut vertex of ˜G. If
d

˜G(s) ≥ 2k + 1, then ˜G has a cut of size at least n − 1 + k.

3 FPT Algorithm for Max-Cut Above Spanning Tree

In this section, we show that Max-Cut Above Spanning Tree admits an
algorithm that runs in time 23knO(1). The following lemma is the first building
block of our algorithm.
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Lemma 6. Given an instance (G, k) of Max-Cut-AST, in polynomial time we
can either conclude that (G, k) is a yes-instance or find a set S ⊆ V (G) such
that |S| ≤ 3k and G − S is a clique-cycle-forest.

In order to prove the lemma, we apply a set of one-way reduction rules (Rules 1–
5) to (G, k). By a one-way reduction rule, we mean a rule that, when applied to
(G, k), produces an instance (G′, k′) of Max-Cut-AST such that if (G′, k′) is a
yes-instance, then (G, k) is a yes-instance. However, the converse need not hold,
i.e., if (G′, k′) is a no-instance, then (G, k) may or may not be a no-instance.
While applying these rules, we ensure that G′ is connected and k′ ≤ k. We then
show that after an exhaustive application of these rules, we will have G′ = K1,
(where K1 is the clique on one vertex). Moreover, if we also have k′ ≤ 0, then
(G′, k′) is yes-instance, and because the rules we applied were one-way safe, we
can conclude that (G, k) is a yes-instance as well. Otherwise, the rules will have
marked a set of vertices S such that |S| ≤ 3k and G − S is a clique-cycle-forest,
i.e., every block of G − S is a clique or a cycle.

Let (G, k) be an instance of Max-Cut-AST. Then G is a connected graph. If
a, b, c ∈ V (G) are such that (i) ab, bc ∈ E(G) and ac /∈ E(G), and (ii) G−{a, b, c}
is connected, then the path abc is called a connected P3. Let abc be a connected
P3 in G. If degree of at least one of a, b or c is at least 3, then we call abc a
good P3; otherwise we call abc a bad P3. In the rules below, as X is a connected
component, it is implicitly assumed to be non-empty.

Exhaustively apply the following reduction rules to (G, k).
Rule 1: Apply to a connected graph G with v ∈ V (G), and X ⊆ V (G) such

that X is a connected component of G−{v} and X ∪{v} is a clique.
Remove: All vertices in X.
Mark: Nothing.
Parameter: Reduce k by |X|2/4−|X|/2+1/4 if |X| is odd, and by |X|2/4−|X|/2

if |X| is even.
Rule 2: Apply to a connected graph G with v ∈ V (G), and X ⊆ V (G) such

that X is a connected component of G − {v}, and G[X ∪ {v}] is an
induced cycle.

Remove: All vertices in X.
Mark: Nothing.
Parameter: Reduce k by 1 if |X| is odd, and leave k the same if |X| is even.
Rule 3: Apply to a connected graph G reduced by Rules 1 and 2 with v ∈

V (G), and X ⊆ V (G) such that X is a connected component of
G − {v}, and X is a clique.

Remove: All vertices in X.
Mark: The vertex v.
Parameter: Reduce k by |X|2/4� + min

{

dG[X∪{v}](v), �|X|/2�} − |X|.
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Rule 4: Apply to a connected graph G reduced by Rules 1 and 2 with a, b, c ∈
V (G) such that abc is a good P3. Let x ∈ {a, b, c} be such that
d(x) = max {d(a), d(b), d(c)}.

Remove: The vertices a, b, c.
Mark: The vertices a, b, c.
Parameter: Reduce k by �(d(x) − 2)/2�.
Rule 5: Apply to a connected graph G reduced by Rules 1 and 2 with a, c ∈

V (G) such that ac /∈ E(G), G − {a, c} has exactly two connected
components, X and Y , where |Y | ≥ 2, and Y ∪{a} and Y ∪{c} are
cliques.

Remove: All vertices in Y ∪ {a, c}.
Mark: The vertices a, c.
Parameter: Reduce k by �|Y |/2�·|Y |/2�+⌈

dG[X∪{a}](a)/2
⌉

+
⌈

dG[X∪{c}](c)/2
⌉−

2.

Lemma 7 (�). Rules 1–5 are one-way safe.

Proof (Proof Sketch). Here we consider only Rule 1. The proofs of the other
rules can be found in the full version. Let (G′, k′) be the instance obtained from
(G, k) by a single application of Rule 1. Observe first that G′ is connected. In G,
v is a cut vertex, removal of which disconnects G − X from X. Hence for every
pair of vertices s, t ∈ V (G) − X, no s − t path passes through X. So G − X
remains connected even after the removal of X. Now we show that if (G′, k′) is
a yes-instance, then so is (G, k).

Suppose |X| is odd. (The case when |X| is even is similar.) Then G′ is a graph
on n − |X| vertices and k′ = k − |X|2/4 + |X|/2 − 1/4. Note that since |X| is
odd, |X|2/4− |X|/2+1/4 is an integer, and hence k′ is also an integer. Suppose
(G′, k′) is a yes-instance, and let f ′ : V (G′) → {0, 1} be a cut of size at least
n−|X|−1+k′. Assume without loss of generality that f ′(v) = 1, where v is the
vertex referred to in Rule 1. Since G[X] is a clique, its vertices can be partitioned
into two parts, say X0 and X1 of sizes (|X| + 1)/2 and (|X| − 1)/2, respectively,
so that the resulting cut will have size ((|X| + 1)(|X| − 1))/4. Extend f ′ to a
cut f of G by defining f(u) = f ′(u), if u ∈ V (G)\X; f(u) = 0 if u ∈ X0; and
f(u) = 1, if u ∈ X1. Then,

||f || ≥ n − |X| − 1 + k′
︸ ︷︷ ︸

from the cut f ′

+ (|X| + 1)/2
︸ ︷︷ ︸

edges between v and X0

+ ((|X| + 1)(|X| − 1))/4
︸ ︷︷ ︸

edges between X0 and X1

= n − |X| − 1 + k − |X|2/4 + |X|/2 − 1/4 + |X|/2 + 1/2 + |X|2/4 − 1/4
= n − 1 + k.

�	
After an exhaustive application of these rules, we are left with a reduced

instance, say (G′, k′), where G′ is a connected graph and k′ ≤ k. Let S be the
set of the marked vertices. Each application of Rules 3, 4 and 5 marks at most
three vertices, and reduces the parameter k by at least 1. Therefore, if |S| > 3k



252 J. Madathil et al.

then k′ ≤ 0, and since G′ is connected, we can conclude that (G′, k′) is a yes-
instance, which in turn implies (G, k) is a yes-instance. So assume |S| ≤ 3k.

Lemma 8 (�). Let G be a connected graph. If G �= K1, then at least one of
Rules 1–5 is applicable to G.

Lemma 9. Let (G′, k′) be the instance obtained from (G, k) by exhaustively
applying Rules 1–5, and let S be the set of vertices marked during the con-
struction of (G′, k′). Then every block of G − S is either a clique or a cycle.

Proof. Let � be the length of the reduction from G to G′. Proof is by induction
on �. If � = 0, then G = G′ = K1 and S = ∅, and hence the statement of the
lemma holds. Let G′′ be a graph obtained from G by a single application of Rule
1, 2, 3, 4 or 5. It is enough to show that if every block of G′′ − S is a clique or a
cycle, then so is every block of G − S.

If G′′ is obtained by an application of Rule 1 or 2, then G−S can be formed
from G′′ − S by adding either (i) a disjoint clique or cycle, and identifying one
of its vertices with the vertex v in G′′ if v /∈ S, where v is vertex referred to in
Rules 1 and 2; or (ii) a disjoint clique or a path if v ∈ S. For Rule 4, observe
that G − S = G′′ − S. For Rule 3 and 5, observe that G − (G′′ ∪ S) is a clique,
and that S disconnects G − (G′′ ∪ S) from G′. Therefore G − S can be formed
from G′′ − S by adding a disjoint clique. �	

Our goal is to show that any given cut of G[S] can be optimally extended
to a cut of G. Towards that end, consider the following problem, introduced by
Crowston et al. in [2].

Max-Cut-With-Weighted-Vertices
Input: A graph G with weight functions w0 : V (G) → N ∪ {0} and
w1 : V (G) → N ∪ {0}, and an integer t ∈ N.
Question: Does there exist an assignment f : V (G) → {0, 1} such that
∑

xy∈E(G) |f(x) − f(y)| +
∑

f(x)=0 w0(x) +
∑

f(x)=1 w1(x) ≥ t?

Crowston et al. [2] showed that Max-Cut-With-Weighted-Vertices is
polynomial time solvable when the input graph is a clique-forest (a graph in
which every 2-connected component is a clique). For the sake of completeness
and better understanding, we copy their result in its entirety.

Lemma 10 ([2]). Max-Cut-With-Weighted-Vertices is solvable in poly-
nomial time if the input graph is a clique-forest.

Proof. The algorithm consists of a polynomial time transformation that replaces
an instance (G,w0, w1, t) with an equivalent instance (G′, w′

0, w
′
1, t

′) such that
G′ has fewer vertices than G. By applying this transformation at most |V (G)|
times, we reach a trivial instance, and thus have a polynomial time algorithm
to decide Max-Cut-With-Weighted-Vertices on (G,w0, w1, t). We may
assume that G is connected, as otherwise we can handle each component of G
separately. Let X ∪{r} be the vertices of a leaf-block in G, with r a cut-vertex of
G (unless G consists of a single block, in which case let r be an arbitrary vertex
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and X = V (G)\ {r}.) Recall that by definition of a clique-forest, X ∪ {r} is a
clique. For each possible assignment to r, we will in polynomial time calculate
the optimal extension to the vertices in X. (This optimal extension depends
only on the assignment to r, since no other vertices are adjacent to vertices in
X.) We can then remove all the vertices in X, and change the values of w0(r)
and w1(r) to reflect the optimal extension for each assignment. Suppose we
assign r the value 1. Let ε(x) = w1(x) − w0(x) for each x ∈ X. Now arrange
the vertices of X in order x1, x2, . . . , xn′ , where n′ = |X|, such that if i < j
then ε(xi) ≥ ε(xj). Observe that there is an optimal assignment for which xi

is assigned 1 for every i ≤ t, and xi is assigned 0 for every i > t, for some
0 ≤ t ≤ n′. (Consider an assignment for which f(xi) = 1 and f(xj) = 0, for
i < j, and observe that switching the assignments of xi and xj will increase
∑

f(x)=0 w0(x)+
∑

f(x)=1 w1(x) by ε(xi)− ε(xj).) Therefore we only need to try
n′ + 1 different assignments to the vertices in X in order to find the optimal cut
when f(r) = 1. Let A be the value of this optimal assignment (over X ∪ {r}.)
By a similar method we can find the optimal assignment when r is assigned 0.
Let the number of satisfied edges in this cut be B. Now remove the vertices in
X and incident edges, and let w1(r) = A, and let w0(r) = B. �	
We now extend this result to clique-cycle-forests.

Lemma 11. Max-Cut-With-Weighted-Vertices is solvable in polynomial
time if the input graph is a clique-cycle-forest.

Proof. Let (G,w0, w1, t) be the given instance of Max-Cut-With-Weighted-
Vertices. Assume G is connected. We shall show that by repeated applica-
tions of Lemma 10, the given instance can be reduced to an equivalent instance
(G′, w′

0, w
′
1, t

′) such that |V (G′)| ≤ |V (G)|. The algorithm is as follows. Let
X∪{r} be the vertices of a leaf-block of G with cut vertex r. Let H = G[X∪{r}].
If H is a clique, then follow the steps in Lemma 10.

Suppose H is an odd cycle. Then at least one of the edges of H cannot be
part of any (optimal) cut. For each edge e of H, note that H − e is a path,
and hence is a clique-forest. For each of the two values of f(r), proceed as in
Lemma 10 on H−e. Let Ae and Be be the sizes of the optimal cuts of H, obtained
by setting f(r) = 1 and f(r) = 0, respectively. Take A = max {Ae|e ∈ E(H)}
and B = max {Be|e ∈ E(H)}. Now delete X and update w1(r) = A, and let
w0(r) = B.

Suppose H is an even cycle. There are two possibilities. (i) All edges of H
are in an optimal cut. There are only two such cuts, and they are determined by
setting f(r) = 1 or f(r) = 0. Let A1 and B1 be their corresponding sizes. (ii) At
least one edge of H is missing from an optimal cut. For each edge e of H, proceed
as we did in the case when H was an odd cycle. Take A = max {A1, Ae|e ∈ E(H)}
and B = max {B1, Be|e ∈ E(H)}. Delete X and update w1(r) = A, and let
w0(r) = B. �	
Theorem 1. Max-Cut Above Spanning Tree is fixed parameter tractable.
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Proof. Let (G, k) be an instance of Max-Cut-AST, where n = |V (G)|. Apply
Lemma 6. Then, in polynomial time we have either concluded that (G, k) is a
yes-instance or found a set S ⊆ V (G) of size at most 3k such that G − S is
a clique-cycle-forest. Assume we have found such a set S. We shall show that
every possible cut of G[S] can be optimally extended to cut of G, in polynomial
time. Corresponding to every one of the 2|S| ≤ 23k cuts f : S → {0, 1} of G[S],
we create an instance of Max-Cut-With-Weighted-Vertices on G−S such
that the original instance (G, k) of Max-Cut-AST is a yes-instance if and only if
at least one of the 2|S| instances of Max-Cut-With-Weighted-Vertices is a
yes-instance. By Lemma 11, each such instance of Max-Cut-With-Weighted-
Vertices can be solved in polynomial time, and thus we have an algorithm for
Max-Cut-AST that runs in time O(23knO(1)).

For each f : S → {0, 1}, construct an instance of Max-Cut-With-
Weighted-Vertices as follows. Let � be the number of edges of G[S] that
are satisfied by f . For every x ∈ V (G) − S, let w0(x) = |{s ∈ S|sx ∈ E(G),}|
and f(s) = 1, and let w1(x) = |{s ∈ S|sx ∈ E(G), and f(s) = 0}|. Let t =

n − 1 + k − �. G − S is a clique-cycle-forest; apply Lemma 11 to solve the
instance (G−S,w0, w1, t) of Max-Cut-With-Weighted-Vertices in polyno-
mial time. And let f ′ : V (G − S) → {0, 1} be the optimal solution thus obtained.
Define a cut g : V (G) → {0, 1} of G by setting g(x) = f(x) if x ∈ S and
g(x) = f ′(x) if x ∈ V (G − S). Then,

||g|| = � +
∑

xy∈E(G−S)

|g(x) − g(y)| +
∑

x ∈ V (G − S)
g(x) = 0

w0(x) +
∑

x ∈ V (G − S)
g(x) = 1

w1(x).

Note that ||g|| = � + ||f ′||. Therefore, ||g|| ≥ n − 1 + k if and only if ||f ′|| ≥
n − 1 + k − � = t. �	

4 Polynomial Kernel for Max-Cut-AST

In this section, we show that Max-Cut-AST admits a polynomial kernel. Specif-
ically, we prove the following result.

Theorem 2 (�). Given an instance (G, k) of Max-Cut-AST, in polynomial
time, either we can conclude that (G, k) is a yes-instance or construct an equiv-
alent instance (G′, k′) such that k′ ≤ k and |V (G′)| ≤ 12528k5−6696k4−63k3+
198k2 − 3k − 13 = O(k5).

Due to space constraints, we defer all technical details of the proof of Theo-
rem 2 to the full version of the paper. Here we briefly outline our proof strategy.
Let (G, k) be an instance of Max-Cut-AST. By Lemma 6, in polynomial time
we can either conclude that (G, k) is a yes-instance or find a set S ⊆ V (G) such
that |S| ≤ 3k and G − S is a clique-cycle-forest, i.e., every block of G − S is
either a clique or a cycle. For the rest of this section, assume that we have found
such a set S. The graph G − S need not be connected.
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First, we apply a set of two-way safe reduction rules (Rules 6–13) on (G, k)
to obtain an equivalent instance (G′, k′). While applying these rules we ensure
that the set S remains untouched, the reduced graph G′ is connected and G′ −S
is a clique-cycle-forest. Thus each block C of G′ − S will be exactly one of the
following: (i) a clique of size at least 4 (and thus contains at least one even cycle,)
or (ii) an even cycle, or (iii) an odd cycle, or (iv) a K2, or (v) a K1.

Then we show that either (G′, k′) is a yes-instance or |V (G′)| = O(k5). To
achieve this, we bound the number of blocks of G′ − S as well as the size of
each block. In order to bound the number of blocks in G − S, we exploit the
structural property of G − S’s being a clique-cycle-forest. Thus, G − S is a
“forest of blocks,” in which every block is a clique or a cycle. First, we classify
the components of G − S into different types, and bound the number of each
type of components separately. Then we bound the number of leaf-blocks (blocks
that contain at most one cut vertex) in each type of components. This in turn
bounds the number of blocks of G − S that contain at least three cut vertices.
(The number of vertices of degree at least 3 in a forest is upper bounded by the
number of leaves; and G−S is a forest of blocks.) Finally, we bound the number
of blocks that contain exactly two cut vertices. We also bound the number of
cut vertices in each type of components, which, then will be used to bound the
size of each block.
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Abstract. In this paper we study the directions of periodicity of three-
dimensional subshifts of finite type (SFTs) and in particular their slopes.
A configuration of a subshift has a slope of periodicity if it is periodic
in exactly one direction, the slope being the angles of the periodicity
vector. In this paper, we prove that any Σ0

2 set may be realized as a a
set of slopes of an SFT.

A d-dimensional subshift of finite type (SFT for short) is a set of colorings of Zd

by a finite number of colors containing no pattern from a finite family of forbid-
den patterns. Subshifts may be seen as discretizations of continuous dynamical
systems: if X is a compact space and there are d commuting continuous actions
φ1, . . . , φd on X, one can partition X in a finite number of parts indexed by an
alphabet Σ. The orbit of a point x ∈ X maps to a coloring y of Zd where y(v)
corresponds to the partition where φv(x) lies.

In dimension 1, most problems on SFTs are easy in a computational sense,
since SFTs correspond to bi-infinite walks on finite automata. For instance,
in dimension 1, detecting whether an SFT is non-empty is decidable since it
suffices to detect if there exists a cycle in the corresponding automaton [13],
which corresponds to the existence of a periodic configuration.

In higher dimensions however, the situation becomes more involved, and
knowing whether an SFT is non-empty becomes undecidable [2,3]. The proof
uses two key results on SFTs: the existence of an aperiodic SFT and an encoding
of Turing machine’s space time diagrams. The fact that there exists aperiodic
SFTs is not straightforward, and the converse was first conjectured by Wang
[20]. Had this conjecture been true, it would have meant the decidability of the
emptiness problem for SFTs. Berger [2,3] proved however that there does exist
SFTs containing only aperiodic configurations. Subsequently, many other aperi-
odic SFTs were constructed [4,8,12,16–18]. Note that the existence in itself of
aperiodic SFTs does not suffice to prove that the emptiness problem is undecid-
able, one needs in addition to encode some computation in them, usually in the
form of Turing machines.
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Periodicity has thus been central in the study of SFTs from the begin-
ning, and it has been proved very early that knowing whether an SFT is ape-
riodic is undecidable [6]. In fact, sets of periods constitute a classical conju-
gacy/isomorphism invariant for subshifts in any dimension. As such, they have
been studied extensively and even characterized: algebraically in dimension 1,
see [13] for more details, and computationally in dimension 2. In fact it seems
that computability theory is the right tool to study dynamical aspects of higher
dimensional symbolic dynamical systems [1,5,7,14].

In dimensions d ≥ 2, one may investigate periodicity from different angles.
Denote Γx = {v ∈ Z

d | x(z + v) = x(z),∀z ∈ Z
d} the lattice of vectors of

periodicity of configuration x: Γx may be of any dimension below d and some
cases are particularly interesting:

– When it is of dimension 0, then x does not have any vector of periodicity and
is hence aperiodic.

– When it is of dimension d, then x is somehow finite, this case has been studied
and partly characterized in terms of complexity classes by Jeandel and Vanier
[10].

– When d = 1, then there exists some vector v such that Γx = vZ. In this case,
one may talk about the direction or slope of the configuration.

In this paper, we are interested in this last case. In [9], this case was studied
and characterized for 2-dimensional SFTs through the arithmetical hierarchy:

Theorem (Jeandel and Vanier). The sets of slopes of 2-dimensional SFTs are
exactly the Σ0

1 subsets of Q ∪ {∞}.
In the end of [9] it was conjectured that slopes of higher dimensional SFTs are

the Σ0
2 subsets of (Q∪{∞})d−1. This gap between dimension 2 and dimension 3

for decidability of periodicity questions is similar to the gap between dimension
1 and 2 for decidability of emptiness questions: the subset of periodic configura-
tions of a d-dimensional subshift along some periodicity vector may be seen as
a (d − 1)-dimensional subshift (see e.g. [9]), hence the jump in complexity. This
is the idea that led to the conjecture. However, in dimension higher than 2, the
construction of [9] cannot be reused.

In this article, we prove one direction of the aforementioned conjecture: we
show how to realize any Σ0

2 subset of (Q ∪ {∞})2 as a set of slopes of a 3D
subshift:

Theorem 1. Any Σ0
2 subset of (Q ∪ {∞})2 may be realized as the set of slopes

of some 3D SFT.

In order to do this, we introduce a new way to synchronize computations between
different dimensions, inspired partly by what is done by Durand et al. [5]. Note
that our construction can be easily generalized to realize any Σ0

2 subset of (Q∪
{∞})d−1 as a set of slopes of a d-dimensional subshift for d ≥ 3.

However, we did not manage to prove the other part of the conjecture, that
is the fact that the sets of slopes of d-dimensional SFTs are in Σ0

2 (for d ≥ 3).
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The paper is organized as follows: in Sect. 1 we recall the useful defini-
tions about subshifts and the arithmetical hierarchy, and in Sect. 2 we prove
Theorem 1.

1 Definitions and Properties

1.1 Subshifts and Tilesets

We give here some standard definitions and facts about subshifts, one may con-
sult [13] for more details.

Let Σ be a finite alphabet, a configuration (or tiling) is a function c : Zd −→
Σ. A pattern is a function p : N −→ Σ, where N ⊆ Z

d is a finite set, called the
support of p. A pattern p appears in another pattern p′ if there exists v ∈ Z

d such
that ∀x ∈ N, p(x) = p′(x + v). We write then p 	 p′. Informally, a configuration
(or tiling) is a coloring of Zd with elements of Σ. A subshift is a closed, shift-
invariant subset of ΣZ

d

, the d-dimensional full shift. For a subshift X we will
sometimes note ΣX its alphabet. The full shift is a compact metric space when
equipped with the distance d(x, y) = 2−min{‖v‖∞ | v∈Z

d,x(v) �=y(v)} with ‖v‖∞ =
maxi |vi|.

It is well known that subshifts may also be defined via collections of forbidden
patterns. Let F be a collection of forbidden patterns, the subset XF of ΣZ

d

defined by
XF =

{
x ∈ ΣZ

d | ∀p ∈ F, p �	 x
}

is a subshift. Any subshift may be defined via an adequate collection of forbidden
patterns. A subshift of finite type (SFT) is a subshift which may be defined via
a finite collection of forbidden patterns. A configuration of a subshift is also
called a point of this subshift and is said to be valid with respect to the family
of forbidden patterns F . Remark that F being finite, we can define a subshift of
finite type either by a set of forbidden or authorized patterns.

Wang tiles are unit squares with colored edges which may not be flipped or
rotated, a tileset is a finite set of Wang tiles. Tiles of a tileset maybe placed
side by side on the Z

2 plane only when the matching borders have the same
color, thus forming a tiling of the plane. The set of all tilings by some tileset is
an SFT, and conversely, any SFT may be converted into an isomorphic tileset.
From a computability point of view, both models are equivalent and we will use
both indiscriminately. In 3D, Wang tiles can be straightforwardly generalized to
Wang cubes.

A subshift is North-West-deterministic if, for any position, and for any
two colors placed above it and to its left (Fig. 1), there exists at most one valid
color at this position. Likewise, we call a subshift West-deterministic if it is
the case with the colors to its left and top-left (Fig. 2).
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Fig. 1. NW-determinism. Fig. 2. W-determinism.

1.2 Periodicity and Aperiodicity

The notion of periodicity being central in this paper, we will define it in this
section.

Definition 1 (Periodicity). A configuration c is periodic of period v if there
exists v ∈ Z

d\{(0, 0)} such that ∀x ∈ Z
d, c(x) = c(x+v). If c has no period, then

it is said to be aperiodic. A subshift is aperiodic if all its points are aperiodic.

From now on, we will focus on dimension 3 in this paper. As seen in the intro-
duction, the lattice of vectors of periodicity may be of any dimension between
0 and d and we are interested here in the case where it is 1-dimensional. In this
case we can define the slope periodicity:

Definition 2 (Slope of periodicity). Let c be a configuration periodic along
v = (p, q, r). We call slope of v the pair θ = (θ1, θ2) with θ1 = p

r and θ2 = p
q . If all

vectors of periodicity of c have slope θ, we say that θ is the slope of periodicity or
slope of c. We write Sl(X) = {θ | ∃x ∈ X, θ is the slope of x} the set of slopes
of X.

1.3 Arithmetical Hierarchy

We give now some basic definitions used in computability theory and in partic-
ular about the arithmetical hierarchy. More details may be found in [19].

Usually the arithmetical hierarchy is seen as a classification of sets according
to their logical characterization. For our purpose we use an equivalent definition
in terms of computability classes and Turing machines with oracles:

– Δ0
0 = Σ0

0 = Π0
0 is the class of recursive (or computable) problems.

– Σ0
n is the class of recursively enumerable (RE) problems with an oracle Π0

n−1.
– Π0

n the complementary of Σ0
n, or the class of co-recursively enumerable

(coRE) problems with an oracle Σ0
n−1.

– Δ0
n = Σ0

n ∩ Π0
n is the class of recursive (R) problems with an oracle Π0

n−1.

In particular, Σ0
1 is the class of recursively enumerable problems and Π0

1 is
the class of co-recursively enumerable problems.

2 Proof of Theorem 1

Theorem 1. Let R ∈ Σ0
2 ∩ P((Q ∪ {∞})2), there exists a 3D SFT X such that

Sl(X) = R.
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Proof. Let M be a Turing machine accepting R with an oracle O ∈ Π0
1 . One

can suppose that this machine takes as input 3 integers (p, q, r) ∈ N
3 and that

its output depends only on θ1 = p
r and θ2 = p

q .

We only explain the case 0 < r < q < p, the others are symmetric or quite
similar and it suffices to take the disjoint union of the obtained SFTs to get the
full characterization.

Let us construct a 3D SFT XM that has a periodic configuration along θ if
and only if θ ∈ R. To do so, XM will be such that “good” configurations (i.e.
valid and 1-periodic) are formed of large cubes, shifted with an offset to allow
periodicity along some slope. Then we encode M inside all the cubes, and give
to it the slope as input. The machine halts (i.e the slope is in R) implies that the
cubes are of finite size. Which means that the configuration is 1-periodic only
when the slope actually corresponds to some element of R.

For that, we separate the construction in different layers, in order to make it
clearer. We define XM = B × B′ × B′′ × C × W × P × S × TO × TM × A, with
the following layers:

– B creates (yz) black planes, separated by an aperiodic tiling.
– B′ and B′′ create planes orthogonal to the ones of B, forming rectangular

parallelepipeds.
– C forces the parallelepipeds to become cubes.
– W forces the aperiodicity vector to appear between cubes, and writes the

input of the Turing machine in the cubes.
– P reduces the size of the input.
– S synchronizes the aperiodic backgrounds of the cubes.
– TM encodes the “Σ0

2” Turing machine M in the cubes.
– TO encodes the Π0

1 oracle O that is used by M .
– A ensures the existence of configurations with a unique direction of

periodicity.

x

z y

T1
T2

E

E

Fig. 3. T1, T2 are tiles of the 2D ape-
riodic tileset and form a Wang cube of
the 3D aperiodic tileset. The “E” shows
the east direction of the two planes.

T1
T2

T1

T ′
2

Fig. 4. Duplication of parallel back-
grounds.

Aperiodic background. We first need an aperiodic background in order to
ensure that there is no other directions of periodicity that the one we create
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later on. We even make a 3D West-deterministic aperiodic background since
some layers will need that deterministic property to work. For that we cross
two 2D West-deterministic aperiodic backgrounds: the set of aperiodic cubes
are the sets of cubes of the form shown in Fig. 3. We also impose that all
parallel planes are identical (Fig. 4). The 2D aperiodic tiling is from Kari
[11], which is a NW-aperiodic tiling, and can be easily transformed into a
West-deterministic SFT. With such a superposition, one can easily show that
the resulting 3D tiling is aperiodic.

Layer B. The first layer is made with two types of cubes: a white cube ( ),
which is a meta-cube that corresponds to any cube of the aperiodic back-
ground and a black cube ( ) which will serve to break the aperiodicity
brought by the white cubes. The rules of this layer are:

– In coordinates z + 1 and z − 1 of , only a can appear.
– In coordinates y + 1 and y − 1 of , only can appear.
– In coordinates x + 1 and x − 1 of , only can appear.

With only this layer, the valid periodic configurations are thick aperiodic (yz)
planes separated by infinite black (yz) planes. At this stage, there may be
several aperiodic planes “inside” a period.

Layer B′. For every Wang cube of this layer, we impose that the cube
at y + 1 is the same. So we can describe the layer B′ by a set of 2D
Wang tiles in the (xz) plane, duplicated on the y axis. The tiles are:

The first four can only be superimposed with black tiles of layer B and the
last two only with white ones.
With layers B and B′ the periodic configurations are formed of infinite planes
along (yz) linked by infinite (xy) strips infinite along y, see Fig. 5.

Layer B′′. This layer is identical to B′ but tiles are duplicated along the z axis.
It creates portions of infinite planes along the z axis, also delimited by the
black planes the layer B.
With these three layers, periodic configurations are formed of parallelepipeds
delimited by black cubes and with portions of aperiodic background inside
them.

Layer C. This layer forces the parallelepipeds to be cubes, by forcing rectangles
of (xz) to be squares, and same for rectangles of (xy).
Like the B layer this layer is created by duplicating 2D Wang tiles
along y axis for rectangles of (xz) and z axis for rectangles of (xy):

These tiles are superimposed once on the B′ tiles with rules on the (xz) plane
and on the B′′ tiles with rules on the (xy) plane. The superimpositions allowed
are the following:

– can only be on and .
– can only be on .
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– can only be on and only on .
– , and can only be on white tiles .

Figure 6 shows how this layer forces squares to appear.
Layer W . This layer uses signals to synchronize the offsets of different cubes,

and to force cubes to have the same size. In order to visualize the different
offsets you can refer to Fig. 7. The construction is done in several parts.
The first one forces the offsets along y (denoted by r) to be the same in
each cube. Here again, everything is duplicated along z. It creates signals
(see Fig. 8), that have to correspond with the extension of the neighboring
cubes. This also writes the number r in unary in the border of each cube. This
number will be used by the Turing machine encoded later in the tiling. The
second part is identical to the first one, but on the (xz) plane and rotated
90◦. It forces the offset along z (denoted by q) to be the same everywhere.
Finally, the cubes are forced to be of same size. For that we add the two
signals shown on Fig. 9, which have to link a corner to the extension of a
square. It has the effect to force each square (and hence each cube) to be of
same size as its neighbors.

Layer P . This layer reduces the size of the input, in order to allow us to construct
valid configurations as large as we want for the same input (p′, q′, r′). Starting
from an unary input (p, q, r), this layer writes into cubes what the input
of the Turing machine will be: (p′, q′, r′), with (p, q, r) = 2k(p′, q′, r′), and
gcd(p′, q′, r′) not divisible by 2.
For that, we use a transducer to convert numbers in binary. Such a transducer
can be easily encoded into tilings (see for example [12] or [8]). Then it only
remains to remove the final 0’s they have in common, which can easily be
done through local rules.

Layer S. Aperiodic backgrounds of different “slices” may be different (“slices”
are the thick planes in the (yz) plane). They must be synchronized in order
to ensure the existence of a periodic configuration along (p, q, r). To do this
synchronization in 2D, we use the following arrow tiles:

with the following rules:
– To the left of (layer B′) there is and bottom left neighbor of is

or a .
– Bottom left tile of a square is . On the right of there is only or .
– On the right, left and bottom of there is only or .
– The breaking lines can only have on them.

We obtain the tiling shown on Fig. 10. If we impose that the background is
the same at the beginning and at the end of the arrow with gray background,
its West-periodicity ensures that it is repeated along the global periodicity
vector.
We now use this 2D construction to build the 3D transmission of the back-
ground inXM .We create two layers of 2Darrows.One in the (xy) plane, that are
repeated along z (front arrows) and the other in (xz) and repeated along y (top
arrow). We then create our real layer using these two 2D layers, with 3D arrows:
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The superimposition of two 2D arrows gives directly which 3D arrow is on
each tile (see Fig. 11). Like in 2D we impose that the background is the same
at the beginning and at the end of the gray arrow. Thanks to the double
West-periodicity of the background, this ensures that the background has a
periodicity vector of (p, q, r) in valid configurations.

Layer TM . This layer encodes the Turing machine M in the tiling. In our defini-
tion of the arithmetical hierarchy, the machine M being in Σ0

2 , it has access
to a Π0

1 oracle. This oracle will be represented by a tape RO filled with zeros
and ones, such that position i of RO is a 1 if and only if the oracle O accepts
i (i.e. the Turing machine of index i runs indefinitely). For the moment, we
will encode M with an additional read-only arbitrary tape, and the next layer
will ensure that the content of the tape is valid for O. This additional tape is
supposed to be infinite, but since M has to halt in the periodic configurations,
we can restrict the construction to a finite but arbitrarily large portion of it.
The tape is a line along axis y duplicated along axes x and z (see Fig. 12).
We add the two rules:
1. Inside a cube, a number at position x is the same as the number at

position x − 1 and a number at position z must be equal to the number
at position z − 1.

2. The first line of the tape is transmitted through black cubes like the
aperiodic background.

The first rule duplicates the first line everywhere inside a cube, and the sec-
ond one ensures that the same RO tape is duplicated along the direction of
periodicity.
Then, we encode M in the (xz) plane using the usual encoding of Turing
machines in tilings. Let us say that the time is along the z axis and the work-
ing tape along x. In order to access the entire RO tape, we add the spacial
dimension y to the TM encoding: while doing a transition, the machine can
move its head along the y axis and read the value of the RO tape in it; rule 1
above prevents M to modify this extra tape.
Note that because O is a Π0

1 oracle, it can only ensure that the 1s of RO

are correct. M has to check that the 0s are correct. But checking the 0s, i.e.
checking if a TM halts in a computation does not add any complexity to the
problem, because we are only interested in the periodic configurations, where
M actually halts (and so do all its checks).

Layer TO. This layer is the core of this proof, and it is where 3D actually comes
to play: in the thick aperiodic (yz) planes we will compute the Π0

1 oracle
by encoding an infinite computation that checks simultaneously all possible
inputs of MO, the Turing machine checking the Π0

1 oracle O (MO halts if
and only if there is a wrong 1 in the portion of RO written in all the cubes).
The key idea of this layer is the use of the previously constructed cubes as
macro-tiles in order to encode computations of MO. Each cube will thus
represent one tile and the thick aperiodic planes will contain, more sparsely,
another 2D tiling. See Fig. 14 to see how the cubes store this macro-tileset.



Slopes of 3-Dimensional Subshifts of Finite Type 265

For this macro-tileset, we may use a construction of Myers [15] which modifies
Robinson’s aperiodic tileset in order to synchronize the input tapes on all of
the partial computations. So each of our cubes contains/represents one tile of
Myer’s tileset, and the thick aperiodic planes thus also contain a Myers tiling
checking some input that for the moment is not synchronized with the oracle
written inside these cubes.
We now have a valid macro-tiling for the cubes if and only if the machine MO

never halts on RO.
The one remaining thing to do is to explain the RO tape that MO accesses is
synchronized with the RO which is stored inside the large cubes. We add to
the set of numbered tiles the same tiles, but in red, representing the head of
the MO Turing machine on the tape RO. We impose that there is only one
red number in every large cube (see Fig. 13).
The red tile of a cube must be synchronized with the cell of the oracle RO

currently contained in the Myers tile. Every time a new partial computation
is started in the macro-tiles, the red tile must be placed at the beginning of
RO, whenever the macro-tile moves the head to the right/left, the red tile
must also be moved, if the red tile reaches the border of the cube, in which
case it reaches a special state of non-synchronization, since the beginning has
already been synchronized.
To do that, we must allow two new transitions. These new transitions do
not change the state of the working tape, thus we only move to the next
time along z. But in the new position, the red-marked cell in the large cube
must have changed. To do this, we again use signals between the bottom-
cube (previous state), the cell doing the transition and the upper-cube (next
state), see Fig. 15.

Layer A. This last layer forces the apparition of 1-periodic configurations. Using
two cubes ( and ), superimposed only with and borders of big cubes. We
impose that blue/red neighbors have the same color. It is easy to see that the
color is uniform inside a cube and spread to two opposite corners of cubes.
Thus all the cubes along (p, q, r) have the same color and there exists at least
one 1-periodic configuration.

z

x

Fig. 5. Projection on the (xz) plane of
a valid configuration with layers B and
B′.

Fig. 6. Valid tiling with rules of layer
C.

Now we prove that this construction does what we claim, finishing the proof
of Theorem 1.
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Fig. 7. Names of the
offsets.

Fig. 8. Signals making
the offsets identical.

Fig. 9. Signals making
the cubes of same size.

Fig. 10. Transmission of a 2D back-
ground.

Fig. 11. Rules for layer S (transmission
in 3D).
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online)

2.1 Every Slope θ of XM Is Accepted by M

Let θ = (pr , q
r ) be a slope, by construction every periodic configuration along

this slope is formed with cubes of the same size p, shifted with the same offset
(q, r). Every cube has the same content, which corresponds to an execution of
M . Cubes being of finite size, every execution is a halting execution of M . Let’s
take (p, q, r) = 2k(p′, q′, r′), with p′, q′, r′ odds. Thanks to the layer P, the input
of M is (p′, q′, r′), then M accepts (p

′

r′ ,
q′

r′ ) = (pr , q
r ) = θ.
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Fig. 15. Moving the red cube when the
head of RO moves. (Color figure online)

2.2 Accepting Inputs of M Are Slopes of XM

If M accepts the input (p, q, r), there exists a time t and a space a on the
working tape, b on the oracle tape, in which the machine M halts. Then, the
cube of size m = 2	log t
p ≥ a, b, t can contain the computation of M . The
configuration formed by cubes of size m and of offset (n, o) = 2	log t
(q, r) is of
slope (mo , n

o ) = (pr , q
r ). ��

3 Open Problems

The problem of deciding if all configurations of a 2D SFT are aperiodic is well-
known to be Π0

1 . Proving the other direction of the conjecture would require the
study of a very similar problem: deciding if there exists a periodic configuration
in a given SFT. Four our purpose, one needs to prove that the problem of the
existence of an aperiodic configuration is Π0

1 or Σ0
2 . However, we aren’t aware

of any study of this problem, not even a simpler bound like Π0
2 . Our quick look

at it suggests that this could be a very challenging problem to tackle. Yet, it
seems interesting by itself, as it would likely lead to a better understanding of
periodicity and aperiodicity in SFTs.
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Abstract. Hassin et al. [9] consider the Max-Exp-Cover-R problem
to study the facility location problem on a graph in the presence of unre-
liable links when the link failure is according to the Linear Reliability
Order (LRO) model. They showed that for unbounded R the problem
is polynomial time solvable and for R = 1 and planar graphs the prob-
lem is NP-Complete. In this paper, we study the Max-Exp-Cover-1
problem under the LRO edge failure model. We obtain a fixed param-
eter tractable algorithm for Max-Exp-Cover-1 problem for bounded
treewidth graphs, parameterized by the treewidth. We extend the Baker’s
technique (Baker, J. ACM 1994) to obtain PTAS for Max-Exp-Cover-1
problem under the LRO model on planar graphs. We observe that the
coverage function of theMax-Exp-Cover-R problem is submodular and
the problem admits a (1 − 1/e)-approximation for any failure model in
which the expected coverage of a set by another set can be computed in
polynomial time.

1 Introduction

We consider the facility location problem on a graph in the presence of unreliable
links (edges). The input to our problem is an undirected graph G = (V,E), a
survival probability p(e) is associated with each edge e ∈ E, a positive valued
demand function w associated with each vertex, a budget B on the number
of facilities that can be opened to service demand, and a positive integer R.
The survival probability function models the probability with which the edge
survives if a disaster occurs. Each vertex is also a potential location for opening
a facility which can serve the demands and we can open at most B facilities.
The value R is a radius of coverage of a facility located at a vertex, that is,
a facility located at a vertex v can cover any vertex which is reachable by a
path of length at most R. The goal is to identify a B sized vertex set F ⊆ V
where facilities can be located such that the expected demand that is satisfied
by F is maximized. The expectation is over all possible graphs (realizations)
that can arise due to the failure of an edge set in the event of disaster. The
way in which edges fail are represented in a failure model. A natural failure
model is the random failure model (RFM) in which the failure of any edge is
independent of the failure of other edges in the graph. It is easy to note that due
c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 269–281, 2018.
https://doi.org/10.1007/978-3-319-90530-3_23
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to the independence assumption, there are 2m many realizations of the network
that are possible under the RFM model. In some cases, failures on edges may
not be independent. To study such scenarios, the linear reliability order (LRO)
failure model was introduced by Daskin [5] and later studied by Hassin et al. [9].
The LRO model is defined as follows: if an edge e with a particular survival
probability fails then all edges with smaller survival probability than e surely
fail. That is, for any two edges ei and ej with survival probabilities p(ei) < p(ej),
the Pr(ei fails | ej fails) = 1. Clearly, the number of different realizations that
are possible under the LRO model is exactly m + 1.

We now formally define the Max-Exp-Cover-R problem. Let G = (V,E) be
the input graph with a demand function on vertices w : V → R≥0 and a survival
probability function on the edges p : E → [0, 1]. Let D be the failure model that
associates a probability to each realization, R be the radius of coverage, and B
be the budget on the number of facilities. Let Q be the set of all realizations
that can have a non-zero probability of occurrence in the failure model D. Let
P : Q → [0, 1] be a function denotes the probability of a realization in the
failure model D. For any realization Gi ∈ Q, the coverage of a set F ⊆ V is
the sum of demands of the nodes in the Rth closed neighborhood of F in Gi.
For any v ∈ V , let I(Gi, F, v,R) be an indicator variable which is set to 1 if v
is within a radius of R from some node in F in the realization Gi. Otherwise
I(Gi, F, v,R) = 0. Given a graph G, and an integer R, for any two sets T, F ⊆ V ,
define CR(G,T, F ) =

∑

Gi∈Q
P (Gi) ·

∑

v∈T

wv · I(Gi, F, v,R) is the R-hop coverage of

the target set T by the source F in the graph G. We always write C(T, F ) instead
of CR(G,T, F ) as R and G will be unambiguous from the context. Further, if
T or F is a singleton set, we just write the element of the set instead of the
set notation. The Max-Exp-Cover-R problem is the following maximization
problem:

max
F⊆V,|F |≤B

∑

Gi∈Q
P (Gi)

∑

v∈V

I(Gi, F, v,R) · w(v) = max
F⊆V,|F |≤B

C(V, F )

For any two sets T, F ⊆ V , the coverage function C(T, F ) =
∑

u∈T C(u, F ).

Our Results: We present the following new results in the paper:

– We present a fixed parameter tractable (FPT) algorithm for the Max-Exp-
Cover-1 problem with the LRO failure model on bounded treewidth graphs.
Our algorithm runs in time O∗(8tw). The notation O∗ hides the poly(n) in
the running time.

– Using the FPT algorithm on bounded treewidth graphs, we obtain a PTAS
for the same on planar graphs by applying Baker’s technique [1].

– We conclude by observing that the objective function of the Max-Exp-
Cover-R problem is monotone submodular. As a consequence, for all distri-
butions where for any two sets T, F ⊆ V , the expected coverage of set T by F
is computable in polynomial time, the Max-Exp-Cover-R problem admits
a (1 − 1

e )-approximation.
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At the high level, our FPT algorithm resembles the standard dynamic program-
ming (DP) algorithm on the tree decomposition of the graph. However, we cru-
cially make use of the fact that the failure model is an LRO model. We show that
under the LRO model, the expected coverage of a vertex by any set F depends
only on a single vertex in F . This allows us to use the tree-decomposition mean-
ingfully and obtain an efficient algorithm parameterized by the treewidth.

Related Work. Daskin [5] formulated the maximum expected coverage prob-
lem where nodes have a survival probability (unlike our case where edges have
survival probability). For a fixed network G with demands on vertices, a surviv-
ing probability p > 0 common for all the vertices and the radius of coverage R,
Daskin introduced the problem and LP-based heuristic algorithms. He also con-
sidered the dependencies in the vertex failure in the generalized version, which
has been subsequently studied as the LRO failure model [9,10].

The Max-Exp-Cover-R problem is studied as most reliable source prob-
lem when restricted to the budget B = 1 and R = ∞ and the RFM failure
model. Melachrinoudis and Helander [13] considered the most reliable source
problem on trees, and gave a polynomial time algorithm for the same. Later,
Ding and Xue [8] gave a linear time algorithm for most reliable source problem
on trees. Colbourn and Xue [4] gave an O(n2)-time algorithm for most reliable
source problem on series-parallel graphs. Ding [6] gave an O(n2)-time algorithm
for most reliable source problem on ring graphs. Later, he generalized the result
for most reliable source on general graphs and gave an O(mn + n2 log n)-time
algorithm [7].

Hassin et al. [9] studied the Max-Exp-Cover-R problem with assumption
that the edge failure follows the LRO model. They proved that the Max-Exp-
Cover-R problem is NP-hard even under the LRO failure model. The Max-
Exp-Cover problem is a distance relaxed version of Max-Exp-Cover-R prob-
lem in which R = ∞. Hassin et al. [9] showed that Max-Exp-Cover problem
is linear time solvable.

2 An FPT Algorithm for R = 1 Under LRO Model

In this section we present our FPT algorithm for the Max-Exp-Cover-1 prob-
lem under the LRO failure model for bounded tree-width graphs. We start by
recalling the LRO model and the preliminaries and then present our dynamic
programming algorithm.

LRO model [9,10]: We assume that the input given to us is a graph G = (V,E),
a budget B, the weight function on the vertices and the survival probability on
the edges. For an edge e = (u, v) ∈ E, the survival probability is denoted by p(e)
or p(uv). Throughout the paper we assume that the failure model is the LRO
model. In the LRO model the failure of an edge ei fails implies that all the edges
of lower survival probability also fail. We assume that the survival probability
of the edges are distinct.
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We visualize the model as a set of all edge subgraphs that could survive
in the event of a failure. Each graph in this set is referred to as a realization.
For the LRO model there are exactly m + 1 realizations of the graph G. Each
realization also has an associated probability of survival that can be calculated
for the LRO model as follows: Let us order the edges E = {e0, e1 . . . em, em+1}
in descending order of the surviving probability from the most reliable edge to
the least reliable edge. The edges e0 and em+1 are dummy edges added in the
ordering with survival probabilities p(e0) = 0 and p(em+1) = 1, respectively. We
consider the linear ordering � on the m+1 realizations of G due to LRO failure
model: for 0 ≤ i < j ≤ m, Gi � Gj . For 0 ≤ i ≤ m let Gi be a realization in
which ei is the weakest edge that survives. The probability of the realization is
P (Gi) = p(ei) − p(ei+1).

Preliminaries: For every non empty vertex subset U ⊆ V , the subgraph
induced by U is denoted by G[U ]. For a vertex v let NG(v) denote the closed
neighborhood of v. For any subset U ⊆ V , closed neighborhood of the set U
in G is denoted by NG[U ], that is, NG[U ] = ∪u∈UNG(u). Suppose the graph
parameter is not given to the neighborhood function, then the input graph G is
the default parameter.

A tree decomposition [3,11] of a graph G is a pair (X,H) such that H is a
tree and X = {Xi ⊆ V : i ∈ H}. For each node i ∈ H, Xi is referred as bag of i.
In addition, the following three conditions hold:

(a) For each vertex v ∈ V , there is a node i ∈ H such that v ∈ Xi.
(b) For each edge (u, v) ∈ E, there is a node i ∈ H such that u, v ∈ Xi.
(c) For each vertex v ∈ V , the induced subtree of the nodes in H that contains

v is connected.

The width of a tree decomposition is the maxi∈H(|Xi| − 1). The tree-width of a
graph, denoted by tw, is the minimum width over all possible tree decompositions
of G. For our algorithm, we require a special kind of decomposition, called the
nice tree decomposition which we define below.

Definition 1 (Nice tree decomposition [11]). A nice tree decomposition is
a tree decomposition, rooted by a special node r with Xr = {} and each node in
the tree decomposition is one of the following four type of nodes.

1. Leaf node. A node i ∈ H with no child and Xi = {}.
2. Introduce node. A node i ∈ H with one child j such that Xi = Xj ∪ {v}

for some v /∈ Xj.
3. Forget node. A node i ∈ H with one child j such that Xi = Xj\{v} for

some v ∈ Xj.
4. Join node. A node i ∈ H with two children j and k such that Xi = Xj = Xk.

Given a tree decomposition (X,H) of a graph G with width k, a nice tree
decomposition (X ′,H ′) with same width and O(nk) nodes can be computed in
time O(nk2) [11]. Hereafter we will assume the tree decomposition is nice. For
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each node i ∈ H, Hi denotes the subtree rooted at i. Let Vi be the set of all
vertices in the bag of nodes in the subtree Hi.

Vi =

{
Xi if i is a leaf node
Xi ∪ ⋃

j∈ch(i) Vj if i is a non-leaf node

where ch(i) is the set of all children of i in H. For a join node i, we denote by j
and k its left and right children respectively. In case i has only one child, as in
the case of introduce and forget nodes, only the left child j is well-defined and
k does not exist. In this case, Vk is assumed to be the empty set.

2.1 Dynamic Programming Formulation for Bounded Treewidth

We now present an FPT algorithm for the Max-Exp-Cover-1 problem under
LRO model on bounded treewidth graphs. Our main observation is that the
expected coverage of a vertex u by a set S ⊆ V is dependent on a single vertex
v ∈ S in case of LRO model. We refer to v as the best neighbour of u in S. This
LRO specific intuition is the key idea in our dynamic programming algorithm
when G is represented by a nice tree decomposition of a fixed treewidth.

Definition 2 [Best Neighbour]. For a vertex u ∈ V and a set S ⊆ V , the
best neighbor of u in S, bn(u, S) is defined as follows:

bn(u, S) =

⎧
⎪⎪⎨

⎪⎪⎩

u if u ∈ S

arg max
v∈S∩N(u)

p(uv) if u /∈ S and S ∩ N(u) 
= ∅

undefined if S ∩ N [u] = ∅

We know that for any two sets S, T ⊆ V , C(T, S) =
∑

u∈T

C(u, S).

Lemma 1. For u ∈ V and S ⊆ V , if the coverage C(u, S) > 0, then there is a
vertex v ∈ S such that C(u, S) = C(u, v).

Proof. The value of C(u, S) is same as C(u, S ∩ N [u]). Let S′ = S ∩ N [u]. If
u ∈ S′ then the coverage of u depends on itself and we are done. Hence assume
u /∈ S′. Consider S′ = {v1, v2, . . . , vl} ordered according to the decreasing order
of p(uvi), that is, p(uvi) > p(uvi+1) for 1 ≤ i < l. In the LRO model, if the
edge (u, v1) fails then all the edges (u, vi), i ≥ 2 would also fail. Now consider
the ordering of the realizations G0, G1, . . . , Gm according to the LRO model. We
note that C(u, S′) can be written as:

C(u, S′) = w(u) ·
∑

Gi∈Q
P (Gi) · I(Gi, S

′, u, 1)

In the linear ordering of the graph let Gk be the first graph such that the
edge (u, v1) survives. Note that for all realizations G′

k where k′ < k, we have
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I(Gk′ , S′, u, 1) = 0, implying that the coverage of u by S′ in Gk′ is zero. On the
other hand, for all realizations Gk′ where k′ ≥ k, we have I(G′

k, S′, u, 1) = 1,
implying that the coverage of u by S′ in Gk′ is w(u). Thus, we have

C(u, S′) = w(u) ·
∑

Gk′ :k′≥k

P (Gk′)

Now we note that,
∑

Gk′ :k′≥k P (Gk′) = p(uv1). Therefore, the expected coverage
of u by S is dependent only on v1, that is C(u, S) = C(u, S′) = C(u, v1) =
w(u) · p(uv1). �

As a consequence of Lemma 1, we write the following equation for C(u, S)
for any u ∈ V and S ⊆ V .

Observation 1. The expected coverage of a vertex u ∈ V by a set S ⊆ V is
given by:

C(u, S) =

⎧
⎪⎨

⎪⎩

w(u) if u ∈ S

w(u) · p(uv) if v 
∈ S and v = bn(u, S)
0 if bn(u, S) is undefined

Structure of a solutionS forVi: We now present a recursive formulation of
C(Vi, S) for a node i in the tree decomposition H. For any S ⊆ Vi of size at most
B, we define the following partition of Xi:

– A = S ∩ Xi and Z = S\A.
– Let YA be the set of vertices in Xi\A whose best neighbour in S is from A.
– Let YZ be the set of vertices in Xi\A whose best neighbour in S is from Z.
– Let U be the vertices in Xi\A whose best neighbour in S is undefined.

We refer to P = (A, YA, YZ , U) as the S-compatible partition of Xi which is
unique for S. Note that for any set S and the S-compatible partition P we can
rewrite the coverage of Vi by S as follows:

C(Vi, S) = C(Vi\Xi, S) +
∑

v∈Xi

C(v, S)

= C(Vi\Xi, S) +
∑

v∈A

C(v, v) +
∑

v∈YA

C(v,A) +
∑

v∈YZ

C(v, Z) +
∑

v∈U

C(v, S)

= C(Vi\Xi, S) + C(A,A) + C(YA, A) + C(YZ , Z) + C(U, S)
= C(Vi\Xi, S) + C(A ∪ YA, A) + C(YZ , Z)

Dynamic programming formulation based onH: Let i be a node in H.
For each S ⊆ Vi and 0 ≤ |S| ≤ B, there is a unique S-compatible partition
P = (A,CA, CZ , U) of Xi. While we do not know the set S ⊆ Vi that maximizes
C(Vi, S), we know that each S gives a unique 4-way partition of Xi. Therefore,
our DP formulation seeks to finds the optimal set S for each budget value b. In
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order to find the set S, our algorithm maintains at each node i ∈ H a table Ti.
Each row in Ti corresponds to a 2-tuple consisting of an integer 0 ≤ b ≤ B and
a four way partition P = (A,CA, CZ , U) of the set Xi. We compute two entries
for each row (b, P) which are denoted by Ti[b, P].solution and Ti[b, P].value. Let
Ti[b, P].solution be a set A ∪ Z satisfying the following conditions:

1. Z ⊆ Vi\Xi and |A ∪ Z| = b
2. A ∪ Z is such that C(Vi\Xi, A ∪ Z) + C(A ∪ CA, A) + C(CZ , Z) is maximized.

For Z defined above, let

Ti[b, P].value = C(Vi\Xi, A ∪ Z) + C(A ∪ CA, A) + C(CZ , Z)

Since we consider all possible values of b, it may be the case that, b > |Vi|. In
such cases, the table entry Ti[b, P].solution = invalid and Ti[b, P].value = −∞
for all possible partitions P of Xi. Our DP algorithm will compute the set Z
efficiently assuming that the table entries for the children of the node i have
been correctly computed.

Table at the root ofH: The root of the nice tree decomposition H a node
with the empty bag. Let r be the root node with Xr = {}. From the struc-
ture of the nice tree decomposition it is clear that r is a forget node. The only
valid four-way partition of Xr is P = ({}, {}, {}, {}). We will prove that the set
Tr[B, P].solution attains the optimum value Tr[B, P].value for the MAX-EXP-
COVER-1 problem on G.

2.2 Recursive Formulation at the Nodes of H

We now formally state the table entries for all the four types of nodes in the nice
tree decomposition H, show how they are computed in a bottom-up approach
(from leaf to the root), and prove the structure of an optimum solution for each
type of node.

Leaf node. Let i be a leaf node with bag Xi = {}. Since the bag of the leaf
node is an empty set, the Ti has only one valid entry in which the partition of
Xi is P = ({}, {}, {}, {}) and b = 0.

Ti[b, P] =

{
solution = {},value = 0 if b = 0
solution = invalid,value = −∞ 1 ≤ b ≤ B

It is clear that the empty set is the set that achieves the maximum for the Max-
Exp-Cover-1 problem on the empty graph with budget b = 0. Therefore, at
the leaf nodes in H, the table Ti maintains the optimum solution for each row.

Introduce node. Let i be an introduce node with child j such that Xi =
Xj ∪ {v} for some v 
∈ Xj . Let P = (A,CA, CZ , U) be a four way partitioning of
Xi. There are two cases in the recurrence at an introduce node, depending on
whether v belongs to A.
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1. Let v /∈ A. Then v belongs to exactly one of CA, CZ or U . Let Pj =
(A,CA\v, CZ\v, U\v) be the partition of Xj obtained by removing v from
the corresponding set in the partition P. In this case

Ti[b, P].solution = Tj [b, Pj ].solution

Ti[b, P].value =

{
Tj [b, Pj ].value if v /∈ CA

Tj [b, Pj ].value + C(v,A) if v ∈ CA

2. Let v ∈ A. Then, there may exist some vertices u ∈ CA such that the “best
neighbour” of u in the set A is the vertex v, bn(u,A) = v. Let CAv be the
set of such vertices, that is, CAv = {u ∈ CA | bn(u,A) = v}. Let Pj =
(A\v, (CA\CAv), CZ , U ∪ CAv) be a partitioning of Xj = Xi\v. In this case

Ti[b, P].solution = Tj [b − 1, Pj ].solution ∪ {v}
Ti[b, P].value = Tj [b − 1, Pj ].value + C({v} ∪ CAv, v)

In both the cases, we spent O(n) time to find compatible partition and O(m+n)
time to find the additional coverage. Then time to update an entry is O(m+n).

Forget node. Let i be a forget node with child j such that Xi = Xj\{v} for
some vertex v ∈ Xj . Let P = (A,CA, CZ , U) be a four way partitioning of Xi.
Given P we consider the following four partitions of Xj .

– P1 = (A ∪ {v}, CA, CZ , U)
– P2 = (A,CA ∪ {v}, CZ , U)
– P3 = (A,CA, CZ ∪ {v}, U)
– P4 = (A,CA, CZ , U ∪ {v})

Define Pj = arg max
P′∈{P1,P2,P3,P4}

Tj [b, P′].value. Then Ti[b, P] is updated as follows:

Ti[b, P].solution = Tj [b, Pj ].solution
Ti[b, P].value = Tj [b, Pj ].value

In case of forget node, we spend O(1) time to find the four compatible partitions
and update a table entry.

Join node. Let i be a join node with children j and k. We know that Xi =
Xj = Xk. Let P = (A,CA, CZ , U) be a partition of Xi. The recurrence for Ti[b, P]
is based on the observation that if a vertex u in CZ contributes a non-zero value
to the expected coverage by Ti[b, P].solution, then it is adjacent to a vertex v
which is exclusively in one of Vj\Xj or Vk\Xk. If such a v ∈ Ti[b, P].solution was
to be in both Vj\Xj and Vk\Xk, then it would also be in Xi by the definition
of a tree decomposition. This would mean v ∈ A and would then imply that
u ∈ CA. However, this contradicts the premise that u ∈ CZ . Therefore, the
value of Ti[b, P] is computed by considering all partitions of CZ into CZ1 ∪ CZ2
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as follows: For any partition CZ1 ∪ CZ2 of CZ , we define the partitions on Xj

and Xk as P′
1 = (A,CA, CZ1, U ∪ CZ2) and P′

2 = (A,CA, CZ2, U ∪ CZ1). We
consider the following triple:

(b′, CZj , CZk) = arg max
0≤b1≤b−|A|,

CZ1∪CZ2=CZ

Tj [b1 + |A|, P′
j ].value + Tk[b − b1, P

′
k].value

Based on the triple (b′, CZj , CZk) we consider the partitions Pj =
(A,CA, CZj , U ∪ CZk) and Pk = (A,CA, CZk, U ∪ CZj) of Xj and Xk, respec-
tively. Then the Ti[b, P] is defined recursively as follows:

Ti[b, P].solution = Tj [b′ + |A|, Pj ].solution ∪ Tk[b − b′, Pk].solution
Ti[b, P].value = Tj [b′ + |A|, Pj ].value + Tk[b − b′, Pk].value − C(A ∪ CA, A)

Since we consider all possible partitions of the set CZ and all possible budget
values, each table entry for a join node is computed in O(B · 2|Xi|) time.

Correctness of the update rules. We now show that the update rules cor-
rectly compute Ti at each node i in H.

Theorem 1. Let i be a node in H. For a non-negative integer b and a partition
P = (A,CA, CZ , U) of Xi, the update step for Ti[b, P] described in the equations
given above is correct. In other words, Ti[b, P].solution is the set A ∪ Z such
that (A ∪ Z) ∩ Xi = A, Ti[b, P].value = C(Vi\Xi, Z) + C(A ∪ YA, A) + C(YZ , Z),
and this value is the maximum over all A ∪ Z ′ such that (A ∪ Z ′) ∩ Xi = A.

Proof. The proof is by induction on the height of a node in H. The height of a
node i in a rooted tree H is the distance to the farthest leaf in the subtree rooted
at i. The base case is when i is a leaf node in H, and clearly its height is 0. For a
leaf node i with Xi = {}, the row with b = 0, and P = ({}, {}, {}, {}) is the only
valid row entry and its value is 0. This completes the proof of the base case. Let
us assume that the claim is true for all nodes of height at most h − 1 ≥ 0. We
prove that if the claim is true at all nodes of height at most h−1, then it is true
for a node of height h. Let b be a budget and P = (A,CA, CZ , U) be a partition
of Xi. Let Ti[b, P] = S = A∪Z. We prove that the table entry updated at Ti[b, P]
is correct by contradiction. Let S′ = A ∪ Z ′ be the solution optimal than S for
Ti[b, P]. That is, Ti[b, P].value < C(Vi \ Xi, S

′) + C(A ∪ CA, A) + C(CZ , Z ′). The
proof is by considering the 3 cases for the type of node i. In the interest of space
we give the proof for the introduce node only.

Introduce node. Let i be an introduce node with child j such that Xi =
Xj ∪ {v} for some v /∈ Xj . We now consider two cases depending on whether v
belongs to S.
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1. Let v /∈ S. The table entry Ti[b, P] is computed from the table entry Tj [b, Pj ]
of j where Pj = (A,CA

′, CZ
′, U ′) is a partition of Xj corresponding to P. In

other words, the partition Pj is obtained by removing v from some set in the
partition P. Since v is introduced at i, the neighbours of v in G[Vi] are in Xi

only. Then the coverage of v by S depends on A. We consider the coverage
of Vj by S corresponding to the partition Pj .

Tj [b, Pj ].value = C(Vj\Xj , S) + C(A ∪ CA
′, A) + C(CZ

′, Z)
= Ti[b, P].value − C(v,A)
= C(Vi\Xi, S) + C(A ∪ CA, A) + C(CZ , Z) − C(v,A)
< C(Vi\Xi, S

′) + C(A ∪ CA, A) + C(CZ , Z ′) − C(v,A)

This shows that the set S′ is optimal than S for the entry Tj [b, Pj ]. This
contradicts the optimality of table constructed in j which is at height h′ < h.

2. Let v ∈ S. The entry Tj [b, P] is computed using the entry Tj [b − 1, Pj ] in j
where Pj = (A\{v}, CA\CAv, CZ , U ∪CAv) is the partition of Xj correspond-
ing to P. Let CAv be the set of vertices in CA such that their best neighbour
in A is v. The coverage of CAv by S is depends on v. We consider the coverage
of Vj by S\{v} corresponding to the partition Pj .

Tj [b, Pj ].value = C(Vj\Xj , S\{v}) + C((A ∪ CA)\({v} ∪ CAv), A\{v})
+ C(CZ , Z)

= Ti[b, P].value − C({v} ∪ CAv, v)
< C(Vi\Xi, S

′) + C(A ∪ CA, A) + C(CZ , Z ′) − C({v} ∪ CAv, v)

This shows that the set S′\{v} is optimal than S\{v} for the table entry
Tj [b − 1, Pj ]. This contradicts the optimality of table constructed in node j
which is at height h′ < h.

The proofs for the forget and the join node use similar arguments to show that
if the table entry of Ti is not optimal then there exists a table entry in one of
the child node Tj which is sub-optimal. �

Running time. At each node i ∈ H, the table Ti consists of (B +1) · 4Xi rows.
The time to compute the table entries depends on the type of node. Among the
four type of nodes, the join node requires O(B ·2|Xi|) time to update each entry.
Then, the update operation on each node i requires O(B2 ·8|Xi|). For a graph G
with width tw, the nice tree-decomposition has O(n · tw) many nodes. For any
node i ∈ H, |Xi| ≤ tw. Therefore, the time to complete the update operation on
H requires O(B2 · tw · n · 8tw).

We conclude the following theorem.

Theorem 2. Given an instance G of the Max-Exp-Cover-1 problem where
the graph is input as a nice tree decomposition of width at most tw, the Dynamic
Programming based algorithm described above solves Max-Exp-Cover-1 in
time O(B2 · tw · n · 8tw). By hiding the polynomial factors, the running time
is O∗(8tw).
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3 A PTAS for MAX-EXP-COVER-1 on planar graphs

In this section, we design a PTAS for Max-Exp-Cover-1 for planar graphs
using the O∗(8tw)-time algorithm in Sect. 2.1 to solve the Max-Exp-Cover-1
problem on bounded treewidth graphs.

A planar graph is a graph that can be drawn in the plane without edge cross-
ings, such a drawing is called an planar embedding. An embedding of a planar
graph divides the plane into regions, called faces. A face is called exterior or
outer, if the region is outside the graph embedding on the plane. An outerplanar
or 1-outerplanar graph is a planar graph, such that all vertices lie in the exterior
face. Given a planar embedding of G, the vertices on the exterior face are level
1 vertices. The level i vertices of G is the set of vertices lie that on the exterior
face of the G after removing the vertices of levels 1, . . . , i − 1. A graph G is
k-outerplanar if there exists a planar embedding of G, such that all the vertices
of G are level i vertices for some i ≤ k. Given a planar graph G, a k-outerplanar
embedding of G for which k is minimal can be found in polynomial time using
the algorithm in [2].

Our approach is similar to the Baker’s technique – each planar graph is a
k-outerplanar graph for some k, and each k-outerplanar graphs has a treewidth
of at most 3k + 1. The Baker’s technique uses dynamic programming on a tree
decomposition of treewidth 3k + 1 to design PTASs for different optimization
problems [1]. Additionally, we use the property that a k-outerplanar graph has
a nice tree decomposition with a treewidth of at most 3k + 1.

For an input 0 < ε < 1 to the PTAS, Let k = � 1
ε �. As mentioned earlier,

in an l-outerplanar embedding of a planar graph for each vertex v ∈ V there is
a unique i, 1 ≤ i ≤ l such that v belongs to level i. Therefore, for each vertex
there is a corresponding level number given an l-outerplanar embedding. For
1 ≤ i ≤ k, let Gi be an edge subgraph of G obtained by deleting all the edges
(u, v) for which u has a level number congruent to ((i − 1) mod k) and v has a
level number congruent to (i mod k). Clearly, for each 1 ≤ i ≤ k, each connected
component of Gi is a k-outerplanar graphs. The nice tree decomposition of each
such k-outerplanar graph Gi can be computed in polynomial time with treewidth
3k + 1 using the algorithm in [15]. Let Si be an optimum solution for the Max-
Exp-Cover-1 problem in Gi = (V,Ei) where Si is obtained in time O∗(8O(k))
using the exact algorithm in Sect. 2.1. Let S be the set amongst {S1, . . . , Sk}
which achieves the maximum expected coverage in G. In other words, let S =
arg max

Si∈{S1...Sk}
C(G,V, Si). We use the input graph as a parameter to the coverage

function.

Lemma 2. Let G be an instance of Max-Exp-Cover-1. Let S ⊆ V be the set
identified by the procedure described above. The solution S is a (1 − 1

k ) approxi-
mation for Max-Exp-Cover-1 problem on input G.

The procedure described in the proof and Lemma 2 together complete the proof
of the main theorem of our paper which is as follows.
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Theorem 3. Given an instance G of Max-Exp-Cover-1 and an 0 < ε < 1
there is an algorithm running in time O∗(8O( 1

ε )) that outputs a set S ⊆ V which
is a (1 − ε) approximation to the optimum, that is C(V, S) ≥ (1 − ε)C(V,OPT ).

Submodularity of C(V, F )and the greedy approximation. It is also well-
known from [12] that the R-neighbourhood function defined on the set of all sub-
sets of vertices in a graph is a monotone submodular function for each R ≥ 0.
It is well known, for example from [14], that a positive linear combination of
submodular functions f1 . . . fk using k non-negative constant c = {c1 . . . ck} is
a submodular function. In other words, f ′(X) =

∑k
i=1 ci · fi(X) is a submod-

ular function. Since C(V, F ) is the expectation of the size (or weighted size)
of the R-neighbourhood of F in the graph in Q, it follows that C(V, F ) is
a convex combination (a special type of positive linear combination) of sub-
modular functions. Therefore C(V, F ) is a submodular function. Consequently,
due to Nemhauser et al. [14] the Max-Exp-Cover-R problem has a (1 − 1

e )-
approximation algorithm and it runs in polynomial time for all those distribu-
tions D for which C(V, F ) can be computed in polynomial time. In particular,
for the LRO failure model Max-Exp-Cover-R has a polynomial time greedy
(1 − 1

e )-approximation algorithm as has been mentioned by Hassin et al. in [10].
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Abstract. We introduce a propositional proof system based on deci-
sion trees utilizing symmetries of formulas. We refer to this proof sys-
tem as decision trees with symmetries (SDT). SDT can be polynomi-
ally simulated by the proof system SR-I introduced by Krishnamurthy
[7]; SR-I extends Resolution with the symmetry rule. We show that
there are polynomial-size proofs of the functional pigeonhole princi-
ple (FPHPn+1

n ) and of an encoding of the clique coloring principle
(CLIQUE-COLORINGn,k). On the other hand we show that any SDT

for the pigeonhole principle (PHPn+1
n ) has size 2Ω(n1/3−o(1)) despite that

PHPn+1
n has a lot of symmetries. In 1999 Urquhart [11] showed that

PHPn+1
n has a polynomial-size SR-I refutation. Thus SDT is strictly

weaker than SR-I. The smallest decision tree for PHPn+1
n has size

2Ω(n log n); we show that there exists an SDT for PHPn+1
n of size 2O(

√
n).

1 Introduction

Symmetry is widely used in informal proofs, we use symmetry arguments every
time we say “without losing of generality” or just “analogously”. In this paper,
we will consider the use of symmetries in formal propositional proof systems.

The first application of symmetry in a propositional proof system was intro-
duced by Krishnamurthy in [7] who extended the Resolution by the symmetry
rule (we denote the resulting proof system by SR-I). Let ϕ be the formula which
is being refuted. Then symmetry rule allows deriving π(C) from C, where C is
a clause and π is a permutation of the variables of ϕ such that the set of the
clauses of ϕ is not changed after the application of the permutation π to its
variables. In 1999 Urquhart [11] proved that the pigeonhole principle PHPn+1

n

has polynomial-size proof in SR-I which implies that SR-I is strictly stronger
than Resolution since PHPn+1

n is hard for Resolution [4]. On the other hand
Urquhart proved an exponential lower-bound on the size of SR-I refutation of
Tseitin Formulas.

There are also several stronger symmetry based proof systems that were
studied. The proof system SR-II was studied by Arai and Urquhart in [1]; this
system allows the application of local symmetry rule which allows deriving the
clause π(C) from a clause C where π is a symmetry of a subset Γ ⊆ ϕ (where ϕ
is the refuted formula) and C is derived from Γ . In 2005 Szeider [10] suggested
c© Springer International Publishing AG, part of Springer Nature 2018
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proof systems HR-I and HR-II that differ from SR-I and SR-II by using homo-
morphisms instead of permutations. Szeider proved exponential lower bounds
for complexity HR-I and HR-II as well as exponential separation between HR-I
and HR-II.

All mentioned lower bounds were obtained as follows: we take a formula
that is hard for resolution and then artificially make it asymmetrical. Thus all
known lower bounds for SR-I are proved for formulas that have a small number
of symmetries. It is more interesting to have an example of a hard formula that
has many “essential” symmetries.

In this paper, we introduce a new kind of symmetry based proof system,
decision trees with symmetries (SDT). A decision tree for a CNF formula ϕ
is a binary tree with vertices labeled with variables of ϕ such that all inner
vertices have two outgoing edges one labeled with 0 and another labeled with 1
and for each leaf there exists a clause of ϕ which is falsified by the assignment
corresponding to the path from the root to the leaf. Also, any variable appears
only once on every path from the root to a leaf. A decision tree with symmetries
has two types of leaves. Leaves of the first type are the same as in a plain decision
tree: for each of these leaves, there exists a clause of ϕ falsified by the assignment
corresponding to the path from the root to this leaf. Leaves of the second type
do not falsify any clauses but for each such leaf there exists an inner vertex v
of the SDT such that the assignment corresponding to the leaf is isomorphic
to the assignment corresponding to v i.e. the assignments are the same up to
the renaming of the variables according to a symmetry of ϕ. Similar notions
were studied in the context of CSP-solvers. Symmetry Excluding Search Trees
were introduced by Backofen and Will in [2]; so-called Group Equivalence trees
were defined by Roney-Dugal et al. in [9]. In the mentioned papers symmetries
are used in order to reduce the search space for satisfiable formulas, while SDT
uses symmetries for unsatisfiable formulas in order to cut off the cases that are
symmetric to the already explored ones.

We show that SR-I polynomially simulates SDT. It is well-known that tree-
like Resolution is equivalent to decision trees. But it is easy to see that tree-like
SR-I is equivalent to tree-like Resolution. And it follows from our result that
SDT are strictly stronger than tree-like Resolution. In this paper we prove the
following upper bounds for SDT:

– We show that there exists an SDT of size O(n3) for the functional pigeonhole
principle FPHPn+1

n which is known to be hard for the Resolution [3].
– We show that there exists an SDT of size O(k2n) for the appropriate encoding

of the clique coloring principle CLIQUE-COLORINGk,n. It follows from this
and [8], that SDT is not p-simulated by Cutting Planes. This enhances the
similar result of Urquhart that separates SR-I from Cutting Planes [11].

SDT has advantages over decision trees only for formulas with a huge number
of symmetries. Namely, we show that an SDT for a formula with s symmetries
is at most s times smaller than the smallest decision tree for the same formula.

The main result of the paper is a lower bound on the size of an SDT for
the pigeonhole principle. We show that the size of any SDT for PHPn+1

n is
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2Ω(n1/3−o(1)). As a corollary, we get that SR-I is strictly stronger than SDT. This
result is also interesting since PHPn+1

n has a lot of essential symmetries (these
symmetries help in case of SR-I but do not help in the case of SDT). In order to
prove this result, we develop a game that can be used for proving lower bounds
on SDT.

Due to constraints on the volume of the paper, we omit some of the proofs.

2 Preliminaries

Propositional Formulas. We consider only formulas in conjunctive normal
form (CNF). We identify a clause with the set of its literals, i.e. z ∈ C means
that the clause C contains the literal z. If the corresponding clause is empty, we
denote it as �. We identify a CNF formula with the set of its clauses. If ϕ is
the conjunction of the empty set of clauses then we assume that ϕ is identically
true. We denote the set of variables of ϕ by Var(ϕ).

A partial assignment is a mapping α : X → {0, 1, ∗}, where X is a set
of propositional variables. Let ϕ

∣
∣
α

be the result of substitution of a partial
assignment α : Var(ϕ) → {0, 1, ∗} to a formula ϕ. Let Aϕ denote the set of partial
assignments to variables of a formula ϕ. A formula ϕ is said to be satisfiable if
there exists a full assignment α such that ϕ

∣
∣
α

= 1 and unsatisfiable otherwise.

The Pigeonhole Principle. PHPm
n is a CNF formula with variables Pij , i ∈

[m], j ∈ [n]. Pij states whether the i’th pigeon flies to the j’th hole or not. The
formula consists of the following clauses:

∨n
j=1 Pij for all i ∈ [m] (every pigeon

flies to some hole); ¬Pi,k ∨ ¬Pj,k for all i �= j; i, j ∈ [m]; k ∈ [n] (no two pigeons
fly to the same hole).

We refer to the first type of clauses as pigeon axioms and for the second type
as hole axioms. Note that PHPm

n does not say that a pigeon fly to exactly one
hole as well as it doesn’t say that for every hole some pigeon flies to it.

We define a formula for the pigeonhole principle with the requirement that
every pigeon flies exactly into one hole as the conjunction of PHPm

n add clauses
¬Pij ∨ ¬Pik for all i ∈ [m]; j, k ∈ [n]; j < k and call it the functional pigeonhole
principle (FPHPm

n ).

Clique-Coloring Tautology. For n and k such that k < n define
unsatisfiable formula CLIQUE-COLORINGk,n(x, y, z) = CLIQUEk,n(x, z) ∧
COLORINGk−1,n(y, z), which says that the graph encoded by variables
{zij}i<j∈[n] has a k-vertex clique and a vertex coloring in k − 1 colors such
that no two vertices with the same color are connected by an edge. zij = 1 iff
(i, j) is the edge of the graph. We identify zij and zji for convenience. A clique
is encoded by nk variables {xij}i∈[k]; j∈[n]. xij = 1, iff j is the i’th vertex of the
clique. A coloring is encoded by (k − 1)n variables {yij}i∈[k−1]; j∈[n]. yij = 1, iff
the color i is assigned to the vertex j. The formula has the following clauses:

CL1 ¬xiu ∨ ¬xjv ∨ zuv for all i, j ∈ [k]; i �= j; u, v ∈ [n]; u �= v (if both vertices
are in the set then they are connected by an edge);
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CL2 ¬xiu ∨ ¬xiv for all i ∈ [k]; u, v ∈ [n]; u �= v (there is no more than one
vertex with number i);

CL3
∨n

j=1 xij for all i ∈ [k] (there is at least one vertex with number i);
CL4 ¬xiu ∨ ¬xju for all u ∈ [n]; i, j ∈ [k]; i �= j (each vertex should have a

unique number in the clique).
COL1

∨k−1
j=1 yji for all i ∈ [n] (vertex i has to be assigned with a color);

COL2 ¬yai ∨ ¬ybi for all a �= b ∈ [k − 1], (vertex can have at most one color);
COL3 ¬zij ∨ ¬yai ∨ ¬yaj for all i, j ∈ [n]; i �= j and a ∈ [k − 1] (if two vertices

are assigned with the same color, they can not be connected by an edge).

Usually the formula is stated without constraints CL2 and COL2 because it’s
unsatisfiable without them, but we need these constraints for our construction.

Pudlak proved that the formula CLIQUE-COLORINGk,n is hard for Reso-
lution and Cutting Planes [8].

Decision Trees. Informally a decision tree is a protocol of (unsuccessful) back-
tracking search for the satisfying assignment for an unsatisfiable formula ϕ. Each
vertex of a tree corresponds to a splitting based on the value of some variable,
thus each vertex corresponds to a partial assignment. For each leaf, an assign-
ment associated with it falsifies some clause of ϕ.

Formally, a decision tree for a formula ϕ is a binary tree T with root r, such
that all its inner vertices have two outgoing edges and the following conditions
hold. Each inner vertex v is labeled with a variable var(v) ∈ Var(ϕ) and the
edges going out of v are labeled with 0 and 1. We refer to var(v) as the splitting
variable for v. Let’s denote the end of the edge from v labeled with b as son(v, b).
Each vertex v of T is associated with a partial assignment Sv : Var(ϕ) → {0, 1, ∗}
corresponding to the path from the root to v. Each variable can appear at most
once on every path from the root to a leaf of a decision tree. For the root all
variables are left unassigned: Sr ≡ ∗. If we reason about several decision trees
we write ST

c instead of Sc in order to clarify the tree where c belongs.
For each leaf v there exists a clause C ∈ ϕ, such that C

∣
∣
Sv

= 0. If this
condition doesn’t hold for some of the leaves we call such tree a partial decision
tree.

We denote the set of all vertices of T as V(T ). The size of a tree is the number
of vertices in it. A subtree of a vertex c is the set of its descendants, we denote
it by subtree(c).

It is easy to see that there is a decision tree for an unsatisfiable formula (see
for example [6]) i.e. decision trees is a complete proof system.

Symmetries of Formulas and SR-I. Let ϕ be a CNF formula: ϕ =
∧m

i=1 Ci.
Let π : Var(ϕ) → Var(ϕ) be a permutation. We extend π to the set of literals as
π(¬x) = ¬π(x) for x ∈ Var(ϕ). We denote the clause obtained by the application
of π to all literals of a clause C by π(C). Similarly for a CNF formula ϕ denote
π(ϕ) =

∧

C∈ϕ π(C). π is called a symmetry of ϕ if ϕ = π(ϕ) as sets of clauses,
i.e. application of ϕ permutes clauses of ϕ. We denote the set of symmetries of
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ϕ as Sym(ϕ). Let π(α) be the result of the application of symmetry π to an
assignment α : Var(ϕ) → {0, 1, ∗}, namely π(α)(x) = α(π(x)).

Let A and B be some clauses and let x be a propositional variable. The
resolution rule allows to derive A ∨ B from A ∨ x and A ∨ ¬x.

If ϕ is a CNF formula then a derivation of a clause R from ϕ in the system
SR-I [7] is a sequence of clauses C1, . . . , Ck such that Ck = R and each of the
clauses in the sequence satisfies one of the conditions:

1. Ci ∈ ϕ.
2. Ci is derived from clauses Cj , Ck (where j, k < i) by the resolution rule.
3. There exists j < i and π ∈ Sym(ϕ) such that Ci = π(Cj).

A refutation of ϕ in SR-I is a derivation of � from ϕ.

Decision Trees with Symmetries. A partial decision tree T for a formula ϕ
is a decision tree with symmetries (SDT) of ϕ if each of its leaves is labeled with
an element of the set V(T ) ∪ {⊥} and the following conditions hold: (i) If a leaf
l is labeled with ⊥ then there exists C ∈ ϕ such that C

∣
∣
Sl

= 0. (ii) If a leaf l is
labeled with inner vertex u then there exists π ∈ Sym(ϕ) such that Sl = π(Su).
We refer to these leaves as symmetry-derived. If for some of the leaves neither
(i) nor (ii) is true, we call the corresponding partial decision tree a partial SDT
and call these leaves uncovered.

Lemma 1. Let T be an SDT for some formula. Then there exists an order
of vertices v1, . . . , vn such that each symmetry-derived leaf vi is labeled with a
vertex vj such that j < i; and if an inner vertex vk has two sons vk0 and vk1

then k0, k1 < k.

Remark 1. Every decision tree is an SDT by definition and thus SDT is the
complete proof system, i.e. there is an SDT for any unsatisfiable formula.

Proposition 1. If T is an SDT for ϕ of size S then there exists a refutation of
ϕ in SR-I of size at most S.

Thus SDT is a sound proof system (i.e. if there is an SDT for a formula then
it is unsatisfiable) and all lower bounds for SR-I yield lower bounds for SDT.

Lemma 2 [hanging lemma]. Let T1 be a partial SDT for ϕ with one uncovered
leaf c. Let T2 be an SDT for ϕ

∣
∣
ST1
c

such that for every symmetry π used in T2, π′

the extension of π to Var(ϕ) preserving the variables fixed by ST1
c is a symmetry

of ϕ. Then T is obtained by hanging T2 to c is an SDT for ϕ.

3 Polynomial Upper Bounds on SDT

SDT for the Functional Pigeonhole Principle. The first thing we need to
show is that PHPm

n (as well as FPHPm
n ) has a lot of symmetries.
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Lemma 3. Let π1 ∈ Sn and π2 ∈ Sm be two permutations. Then σ :
Var (PHPm

n ) → Var (PHPm
n ) defined by the rule σ (Pij) = Pπ1(i),π2(j) is a sym-

metry of PHPm
n . For n,m ≥ 3 there are no other symmetries.

Theorem 1. There is an SDT of size O(n3) for FPHPn+1
n .

Lemma 4. Let ϕ = FPHPm
n with variables Pij. Then for any k ≤ min{n,m}

there exists a partial SDT T of size O(k max{n,m}2) with at most one uncovered
leaf c such that for each Pij ∈ Var (FPHPm

n ):

Sc(Pij) =

⎧

⎪⎨

⎪⎩

∗ i > k ∧ j > k

1 i = j ≤ k

0 (i ≤ k ∨ j ≤ k) ∧ i �= j

The assignment Sc corresponds to the distribution where for every i ∈ [k]
the i’th pigeon flies to the i’th hole, no other pigeons fly to this hole and the
i’th pigeon does not fly anywhere else.

The idea of the proof of Lemma 4 is straightforward: we give the explicit
construction of the SDT for k = 1 and after that hang the tree for FPHPm−1

n−1

by the leaf c using Lemma 2.

Proof (of Theorem 1). We use Lemma 4 for FPHPn+1
n and k = n and hang a

constant-size full-search tree by the leaf c. ��

SDT for CLIQUE-COLORING. We define α ∈ ACOLORINGk−1,n as α(zij) =
1 for i, j ∈ [k] and α(zij) = ∗ otherwise. α corresponds to the fact that [k] is a
clique in the graph encoded by z.

Lemma 5. For any permutations π1 ∈ Sn, π2 ∈ Sk, π3 ∈ Sk−1 a permutation
defined as xij �→ xπ2(i),π1(j), yij �→ yπ3(i),π1(j), zij �→ zπ1(i),π1(j) is a symmetry
of CLIQUE-COLORINGk,n.

Using Lemma 4 we prove the following lemma:

Lemma 6. There exists a partial SDT T of size O(nk2) for CLIQUEk,n with
exactly one uncovered leaf c such that ∀i, j ∈ [k]Sc(zij) = 1.

Lemma 7. COLORINGk−1,n

∣
∣
α
contains ψ(FPHPk

k−1) as a subformula, where
ψ is the renaming of the variables by the rule ψ(Pij) = yji.

Theorem 2. There exists an SDT of size O(nk2) for CLIQUE-COLORINGk,n.

Proof. Let T1 be the partial SDT obtained using Lemma6, let c be the uncovered
leaf of T1. Note that α(zij) = 1 implies that Sc(zij) = 1.

Let T2 be an SDT for FPHPk
k−1 using Theorem 1, after the renaming of the

variables according to ψ (see Lemma 7).
We consider the tree T obtained by hanging T2 to the leaf c of the tree T1.
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The trees T1 and T2 satisfy the prerequisites of Lemma 2, indeed all symme-
tries of the formula FPHPk

k−1 used in the Theorem 1 after the renaming accord-
ing to ψ are symmetries of CLIQUE-COLORINGk,n involving only variables
{yij}, since the symmetries used in Theorem 1 only rearrange holes which cor-
respond to colors in the formula COLORINGk−1,n. Therefore T is an SDT for
CLIQUE-COLORINGk,n. ��
Corollary 1. Cutting Plane does not polynomially simulates SDT.

4 Symmetries in a Plain Decision Tree

In this section, we establish a connection between decision trees and SDTs for
formulas. Although we call SDT “a tree” it is, in fact, a DAG. The following
simple result helps us to extract a decision tree from an SDT and analyze it,
instead of analyzing an SDT itself.

Let ϕ be a CNF formula and let T be a decision tree for it. We define a
binary relation ∼ on the set of assignments Aϕ. If α1, α2 ∈ Aϕ then α1 ∼ α2 iff
there exists π ∈ Sym(ϕ), such that π(α1) = α2. We refer to assignments related
by ∼ as isomorphic. We define ∼ on V(T ) by the rule u ∼ v iff Su ∼ Sv. We
denote the set of equivalence classes of a set A with respect to ∼ as A/∼.

It is clear that ∼ is an equivalence relation. The following lemma provides a
way to prove lower bounds on the size of SDT using the number of equivalence
classes with respect to this relation.

Lemma 8. Let T be an SDT for ϕ =
∧m

i=1 Ci. Then there exists a decision tree
T1 for ϕ such that |V(T1)/∼| = |V(T )/∼|.

The idea of the proof is to expand all symmetry derivations i.e. substitute
each symmetry-derived leaf with a subtree of its label with the corresponding
symmetry applied to all vertices of the subtree. It is straightforward that the
number of equivalence classes remains the same after this operation.

Corollary 2. If the number of equivalence classes with respect to ∼ on the set
of vertices of any decision tree for ϕ is at least k, then any SDT for ϕ has size
at least k.

Proposition 2. If ϕ has L symmetries and there exists an SDT T for ϕ such
that |T | = k, then there exists a decision tree T ′ for ϕ such that |T ′| ≤ Lk.

The similar proposition holds for SR-I: if ϕ has L symmetries and an SR-I
refutation of size k then it has a resolution refutation of size Lk.

5 Complexity of PHPn+1
n

We have shown that there is a polynomial-size SDT for FPHPm
n . In this section

we give an exponential lower bound on the size of an SDT for PHPn+1
n .



On the Decision Trees with Symmetries 289

The strategy of the proof of a lower bound is as follows: we consider a plain
decision tree for PHPn+1

n and show that there are exponentially many vertices v
such that Sv are not isomorphic to each other. Hence by Corollary 2 any SDT for
PHPn+1

n has exponential size. We implement this strategy using the following
plan:

1. For every set of partial assignments S we define a game of two players Alice
and Bob such that if Bob has a winning strategy then every plain decision
tree for PHPn+1

n contains a vertex v such that Sv ∈ S.
2. We construct exponentially many sets Si such that for every Si Bob has

winning strategy in the game defined in the previous step and for all i �= j,
and for every α ∈ Si and β ∈ Sj , α and β are not isomorphic.

5.1 Game Interpretation

Let ϕ be an unsatisfiable CNF formula and S ⊆ Aϕ be a set of partial assign-
ments. Consider a game of Alice and Bob which proceeds as follows.

In the beginning of the game α ≡ ∗. Then at each round, Alice chooses a
variable v that is unassigned by α. After that Bob chooses a value b ∈ {0, 1}.
Then they assign α(v) := b and continue. The game ends if one of the following
happens: (i) α falsifies a clause C ∈ ϕ. In this case Alice wins; (ii) α does not
falsify a clause of ϕ and α ∈ S. In this case Bob wins. We denote this game as
Γ (ϕ, S).

Lemma 9. If there is a winning strategy for Bob for Γ (ϕ, S), then in every
decision tree T for ϕ there exists a vertex v such that Sv ∈ S.

5.2 Construction of Non-isomorphic Winning Sets

According to our plan, we have to construct exponentially many disjoint sets of
partial assignments such that (1) assignments form different sets are not isomor-
phic and (2) Bob has winning strategy for every such set. We will define such
sets as preimages of a mapping with an image of exponential size. In order to
satisfy property (1) we will consider only specific mappings:

Let ϕ be a CNF formula and Aϕ be the set of its partial assignments. A
function μ : Aϕ → A (where A is an arbitrary set) is an invariant with respect
to the symmetries of ϕ if for any α, β ∈ Aϕ, α ∼ β implies μ(α) = μ(β).

It is easy to see that the sets μ−1(a) for different a ∈ A satisfy property
(1) if μ is an invariant function. Now we need to construct an invariant function
such that Bob has a winning strategy for Γ

(

PHPn+1
n , μ−1(a)

)

for an exponential
number of elements a ∈ A.

5.3 Naive Invariant

Let us start with a simple and natural invariant on APHPn+1
n

. We identify the
variables of PHPn+1

n with the cells of a matrix (n + 1) × n then every partial
assignment is a (n + 1) × n matrix with elements from {0, 1, ∗}.
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1 0 *
0 * 1
* 0 *
0 1 *

0 * 1
0 1 *
1 * 0
* * 0

1 0 0
* 1 0
* * 1
* * *

α1 α2 α3

Fig. 1. Examples of partial assignments of PHP4
3. By Lemma 3, the application of any

symmetry of PHPn+1
n to an assignment α is a permutation of rows and columns of the

corresponding table. Note that α1 ∼ α2 (one can permute columns of α1 according
the permutation (23) and permute rows of α1 according to the permutation (341))
but α1 �∼ α3 since α1 and α3 have different number of zeroes. μ0(α1) = μ0(α2) =
{(1, 1), (1, 0)}; μ0(α3) = {(2, 1), (1, 1), (0, 1), (0, 0)}.

For α ∈ APHPn+1
n

and i ∈ [n + 1] we denote 1α(i) = #{j : α(Pij) = 1}
and 0α(i) = #{j : α(Pij) = 0} where #S stands for the size of the set
S. Consider an invariant μ0 that maps α ∈ APHPn+1

n
to the set μ0(α) =

{(0α(i),1α(i)) : i ∈ [n + 1]}, i.e. the set of pairs (number of zeroes in a row,
number of ones in a row).

Proposition 3. μ0 is an invariant with respect to symmetries of PHPn+1
n .

Proof. The proof is straightforward since permutation of rows and columns of
the matrix of α does not change μ0(α) (Fig. 1). ��

Notice that we can not implement our plan with this μ0 since Alice has
winning strategies for Γ (PHPn+1

n , μ−1
0 (a)) for many distinct a. For exam-

ple, if a ⊇ {(3, 0), (1, 0)}, then Alice can choose variables in the order
P1,1, P2,1, . . . , Pn+1,1, P1,2, . . . , Pn+1,2, . . . , Pn+1,n (i.e. hole by hole) and then in
every moment for every two rows the difference between the number of assigned
values in them does not exceed 1. Hence Bob will never get (3, 0) and (1, 0)
simultaneously.

Thus we construct a strategy using an invariant with a smaller image.

5.4 More Complicated Invariant

Let Tn = {(x, y) ∈ N
2 : x, y ≥ 0; x + y ≤ n}. For any g : Tn → A we define

the function Ig : APHPn+1
n

→ 2A as follows: Ig(α) = {g(x) : x ∈ μ0(α)}. It is
straightforward that Ig is an invariant with respect to symmetries of PHPn+1

n .
Our goal is to find such g : Tn → A that for a large number of x ∈ 2A

Bob has a winning strategy for Γ
(

PHPn+1
n , I−1

g (x)
)

. First of all we define
an auxiliary game that is roughly speaking a one-pigeon variant of the game
Γ

(

PHPn+1
n , I−1

g (S)
)

.

Auxiliary Game. Let g : Tn → A ∪ {$}, d ∈ [n], a ∈ A. Alice and Bob have
one pigeon axiom of PHPn+1

n : P1,1 ∨ P1,2 ∨ . . . ∨ P1,n. At each round Alice has
two options: (i) Assign zero to one of the variables P1,i. (ii) Choose a variable
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Fig. 2. T10 and a trajectory in it. Grey cells corresponds to the same value of the
function. With respect to the depicted trajectory the function is 3-robust (although
it is not necessary 3-robust in general). Hatched cells are the ones restricted by the
condition 2b of robustness. No trajectory can enter these cells.

P1,i and let Bob to assign it. Alice can use the first option at most d times.
For k ∈ [n] let αk be the resulting partial assignment after k rounds. Then
define 	k := g (#{i ∈ [n] : αk(P1,i) = 0},#{i ∈ [n] : αk(P1,i) = 1}) . The game
ends after n rounds and Bob wins if there exists i ∈ [n − 1] such that 	j = $
for j ≤ i and 	j = a for j > i. Otherwise, Alice wins. We denote this game as
γg(d, a).

Let us give some intuition how this auxiliary game helps in the main game
Γ . Assume that we are describing a strategy of Bob in the game Γ

(

PHPn+1
n ,

I−1
g (S ∪ {$})

)

, where S = {s1, . . . , sk} ⊆ A. Roughly speaking, we will imple-
ment Bob’s winning strategies for γg(d, s1), . . . , γg(d, sk) for different pigeons.
Alice’s moves of type (i) correspond to the situations where assigning 1 to a
variable will lead to a conflict with a hole axiom (Fig. 2).

Let g : Tn → A ∪ {$} and let a ∈ A. A trajectory of a is a sequence (x0, y0),
(x1, y1), . . . , (xn, yn) ∈ T such that (i) x0 = y0 = 0, (xi+1, yi+1) ∈ {(xi + 1, yi),
(xi, yi + 1)}; (ii) for each i ∈ [n − 1], yn > 0; (iii) for i ∈ [n] if yi > 0 then
g (xi, yi) = a.

Now we specify requirements to function g that allow us to construct a win-
ning strategy for Bob in the game γg(d, a). A function g : Tn → A∪{$} is called
d-robust if the following conditions hold:

1. g(x, 0) = $ for every x ∈ {0, . . . , n}.
2. For each a ∈ A, there exists a trajectory (x0, y0), . . . , (xn, yn) of a such that

for all i ∈ {0, . . . , n} and δ ∈ {0, . . . , d} (a) if yi > 0 and xi + yi + δ ≤ n then
g (xi + δ, yi) = a (b) if yi = 0 then xi + d < n.

Proposition 4. If g : Tn → A∪{$} is d-robust then Bob has a winning strategy
in γg(d, a) for any a ∈ A.

Proof. Let a sequence (x0, y0), . . . , (xn, yn) be a trajectory of a satisfying
the conditions (2a) and (2b) of robustness. Let m be the number of Bob’s
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moves. A winning strategy for Bob is to make moves according to a trajec-
tory (x0, y0), . . . , (xn, yn) satisfying the properties (2a) and (2b) of robustness
(regardless of Alice’s moves). Suppose Zk is the number of zeroes assigned by
Bob after his k’th move (Alice’s moves of type (i) do not count) and Ok is
the number of ones assigned by Bob after his k’th move. Bob will make moves
such that (Zk, Ok) = (xk, yk). By the definition of a trajectory, it is always
possible. Since Alice can assign zero by herself no more than d times the real
pair of the number assigned zeroes and the number of assigned ones will belong
to the set {(Zk + i, Ok) : i ∈ {0} ∪ [d]}. Using the property (2a) of robust-
ness, if Ok > 0 then g(Zk, Ok) = g(Zk + 1, yk) = . . . = g(Zk + d,Ok) = a.
By the properties (1) and (2b) of the robustness if Ok = 0 then g(Zk, Ok) =
g(Zk + 1, Ok) = . . . = g(Zk + d,Ok) = $ and Zk + d < n thus if Ok = 0 then
Zk + Ok + d < n. Since at the end of the game all variables should be assigned,
Om > 0 where m is the number of Bob’s moves. Since O0 ≤ O1 ≤ . . . ≤ Om

and Om > 0, (	0, . . . , 	n) = ($, . . . , $, a, . . . , a). Notice that without the prop-
erty (2b) the number of zeroes assigned by Alice and Bob can reach n making
	n = $. ��

Winning Strategy in the Main Game. For a function g : Tn → A ∪ {$} we
denote ma(g) = max{y ∈ [n] : ∃x ∈ [n] : (x, y) ∈ g−1(a)} for a ∈ A. Then the
rank of g is defined as follows: r(g) =

∑

a∈A ma(g).
Recall that we plan to describe a strategy of Bob in the game

Γ
(

PHPn+1
n , I−1

g ({s1, . . . , sk, $})
)

that implements Bob’s winning strategies for
γg(d, si) for each of the pigeons. By this moment we did not say what value
of d we use. We will use d = r(g); indeed, all Alice’s moves in the auxiliary
game γg(d, si) of type (i) correspond to conflicts with hole axioms, and hence
the number of such moves does not exceed the number of assigned ones. Since
Bob implements the strategy from Proposition 4 for every i ∈ [k], the number of
the assigned ones does not exceed

∑k
i=1 msi

(g) ≤ r(g).

Theorem 3. If g : Tn → A ∪ {$} is r(g)-robust then for each Q ⊆ A Bob has a
winning strategy in Γ

(

PHPn+1
n , I−1

g (Q ∪ {$})
)

.

Proof. Let Q = {q1, q2, . . . , qm}, let tj be a trajectory for qj for j ∈ [m] that sat-
isfies properties (2a) and (2b) of r(g)-robustness. We denote the current assign-
ment by α. Bob maintains the following invariant: for every i ∈ [n + 1] either
1α(i) = 0 or 1α(i) > 0 and there is k(i) ∈ [m] such that g(0α(i)−dα(i),1α(i)) ∈
tk(i) where dα(i) is the number of Bob’s forced moves for the pigeon i (i.e. Bob
can not assign 1 because of a conflict with a hole axiom). All defined k(i) are
distinct. Initially α is the empty assignment thus the invariant holds. Assume
that Alice asks for a variable Pij . If k(i) is defined then Bob implements a win-
ning strategy for the auxiliary game γg(r(g), qk(i)) where Alice’s moves of type
(i) correspond to the forced moves of Bob in the main game. If k(i) is undefined
Bob assigns Pij = 1 iff the j’th hole is empty and g(0α(i) − dα(i), 1) ∈ ts where
s ∈ [m] and k(i′) �= s for all i′ ∈ [n + 1].
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Let us prove that Bob wins. Assume that Alice wins. Since we never falsify
a hole axiom, in the last move we falsified the i’th pigeon axiom. Notice that
in this case 0α(i) − dα(i) took all values from [n − r(g)] throughout the game.
Then for each j ∈ [n− r(g)−1] if a trajectory ts contains the point (j, 1) then it
was occupied by another pigeon at the moment when 0α(i)−dα(i) = j. Since by
the property (2b) of robustness and by the property (i) of the trajectory, every
trajectory contains a point from the set [n − r(g) − 1] × {1}, all trajectories are
occupied. For each pigeon i that occupies a trajectory Bob implements a winning
strategy for γg(r(g), qk(i)), hence qk(i) ∈ Ig(α) and Ig(α) = Q ∪ {$} before the
last move. Therefore Bob have already won before the considered move. ��
Corollary 3. If g : Tn → A ∪ {$} is a function such that g is r(g)-robust then
any SDT for PHPn+1

n has size at least 2|A|.

Lemma 10. There exists a family of functions gn : Tn → [kn] ∪ {$}, each of
which is r(gn)-robust and kn = Ω(n1/3−o(1)).

Lemma 10 and Corollary 3 imply

Theorem 4. The size of any SDT for PHPn+1
n is 2Ω(n1/3−o(1)).

5.5 An Upper Bound for the Size of SDT for PHPn+1
n

We construct an SDT of size 2O(
√

n) for PHPn+1
n which is significantly smaller

then the smallest decision tree for PHPn+1
n . In the proof we use the asymptotic of

the number of partitions of an integer by Hardy and Ramanujan [5]. This upper
bound is non-trivial but does not match with our lower bound. It is interesting
problem to find matching bounds.

Theorem 5. There exists an SDT for PHPn+1
n of size 2O(

√
n).
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Abstract. We consider a computational model which is known as set
automata.

The set automata are one-way finite automata with an additional
storage—the set. There are two kinds of set automata—the determinis-
tic and the nondeterministic ones. We denote them as DSA and NSA
respectively. The model was introduced by Kutrib et al. in 2014 in [2,3].

In this paper we characterize algorithmic complexity of the emptiness
andmembership problems for set automata.More definitely, we prove that
both problems are PSPACE-complete for both kinds of set automata.

1 Introduction

We consider a computational model which is known as set automata. A set
automaton is a one-way finite automaton equipped with an additional storage—
the set S—which is accessible through the work tape. On processing of a word,
the set automaton can write a word z on the work tape and perform one of
the following operations: the operation in inserts the word z into the set S,
the operation out removes the word z from the set S if S contains z, and the
operation test checks whether z belongs to S. After each operation the work
tape is erased.

There are two kinds of set automata—the deterministic and the nondeter-
ministic ones. We denote them as DSA and NSA respectively.

If determinism or nondeterminism of an automaton is not significant, we use
abbreviation SA, and we refer to the class of languages recognizable by (N)SA
as SA. We denote as DSA the class of languages recognizable by DSA.

Set automata were introduced by Kutrib et al. in 2014 in [2,3]. The results
of these conference papers are covered by the journal paper [4], so in the sequel
we give references to the journal variant.

We recall briefly results from [4] about structural and decidability proper-
ties of DSA. They are presented in the tables, see Fig. 1. In the first table we
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Supported in part by RFBR grants 16–01–00362 and 17–51-10005.

c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 295–307, 2018.
https://doi.org/10.1007/978-3-319-90530-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90530-3_25&domain=pdf
http://orcid.org/0000-0001-8850-9749
http://orcid.org/0000-0001-9822-1060


296 A. Rubtsov and M. Vyalyi

Fig. 1. Structural and decidability properties

list decidability problems: emptiness, regularity, equality to a regular language
and finiteness. In the tables, R denotes an arbitrary regular language. The sec-
ond table describes the structural properties: L,L1 and L2 are languages from
the corresponding classes; we write + in a cell if the class is closed under the
operation, otherwise we write −.

From Fig. 1 one can see that DSA languages look similar to DCFL. This
similarity was extended in [7]. It appears that languages recognizable by NSA
form a rational cone, so as CFL. Also, several algorithmic results were obtained
in [7]:

– DSA ⊂ P and there are P-complete languages in DSA;
– the membership problem is P-complete for DSA without ε-loops;
– SA ⊂ NP and there are NP-complete languages in SA;
– the emptiness problem is PSPACE-hard for DSA.

In this paper we complete the algorithmic characterization of the emptiness
and membership problems for set automata. We prove that the membership
problem is PSPACE-hard for general DSA. We also prove that the emptiness
problem for NSA is in PSPACE. Thus, it is PSPACE-complete. Due to easy
reductions, it implies PSPACE-completeness for the membership problem.

It is worth to mention a quite similar model presented by Lange and Rein-
hardt in [6]. We refer to this model as L-R-SA. In this model there are no in and
out operations; in the case of the negative result of the test, the tested word is
added to the set after the query; also L-R-SA have no ε-moves in contrast to
SA. The results from [6] on computational complexity for L-R-SA are similar
to the results in [7]: the membership problem is P-complete for L-R-DSA, and
NP-complete for L-R-NSA. Note that the proofs for the set automata are more
sophisticated than for the L-R-SA model. It was shown in [6] that the emptiness
problem for L-R-SA is decidable. Actually, the proof can be easily modified to
show that the emptiness problem for L-R-SA is in PSPACE. Again, the proof
presented here for SA is more complicated than for the L-R-SA model.

The rest of the paper is organized as follows. In Sect. 2 we give the definitions
of set automata and auxiliary notions needed to analyze their behavior. In Sect. 3
we give a proof of the inclusion SA ⊂ PSPACE. In Sect. 4 we discuss the
membership problem and prove PSPACE-hardness of the membership problem
for DSA.
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2 The Definitions

We start with formal definitions. A set automaton M is defined by a tuple

M = 〈S,Σ, Γ,�, δ, s0, F 〉,where

– S is the finite set of states;
– Σ is the finite alphabet of the input tape;
– Γ is the finite alphabet of the work tape;
– � �∈ Σ is the right endmarker;
– s0 ∈ S is the initial state;
– F ⊆ S is the set of accepting states;
– δ is the transition relation:

δ ⊆ S × (Σ ∪ {ε,�}) × [(
S × (Γ ∗ ∪ {in,out})

) ∪ (S × {test} × S)
]
.

In the deterministic case δ is the function

δ : S × (Σ ∪ {ε,�}) → [(
S × (Γ ∗ ∪ {in,out})

) ∪ (S × {test} × S)
]
.

As usual, in the deterministic case, if δ(s, ε) is defined, then δ(s, a) is not
defined for every a ∈ Σ.

A configuration of M is a tuple (s, v, z, S) consisting of the state s ∈ S, the
unprocessed part of the input tape v ∈ Σ∗, the content of the work tape z ∈ Γ ∗,
and the content of the set S ⊂ Γ ∗. The transition relation determines the action
of M on configurations. We use 
 notation for this action. It is defined as follows

(s, xv, z, S) 
 (s′, v, zz′, S) if (s, x, (s′, z′)) ∈ δ, z′ ∈ Γ ∗; (1)
(s, xv, z, S) 
 (s′, v, ε, S ∪ {z}) if (s, x, (s′, in)) ∈ δ; (2)
(s, xv, z, S) 
 (s′, v, ε, S \ {z}) if (s, x, (s′,out)) ∈ δ; (3)
(s, xv, z, S) 
 (s+, v, ε, S) if (s, x, (s+, test, s−)) ∈ δ, z ∈ S; (4)
(s, xv, z, S) 
 (s−, v, ε, S) if (s, x, (s+, test, s−)) ∈ δ, z �∈ S. (5)

Operations with the set (transitions (2–5) above) are called query operations.
A word z in a configuration to which a query is applied (the content of the work
tape) is called a query word.

We call a configuration accepting if the state of the configuration is accepting
(belongs to the set F ) and the word is processed till the endmarker. So the
accepting configuration has the form (sf , ε, z, S), where sf ∈ F .

The set automaton accepts a word w if there exists a run from the initial
configuration (q0, w �, ε, ∅) to some accepting one.

Now we introduce the main tool of our analysis: protocols.
A protocol is a word p = #u1#op1#u2#op2# · · · #un#opn, where ui ∈ Γ ∗

and opi ∈ Ops = {in,out, test+, test−}.
We say that p is a correct protocol for SA M on an input w ∈ L(M), if there

exists an accepting run of M on the input w such that M performs the operation
op1 with the query word u1 on the work tape at first, then performs op2 with
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u2 on the work tape, and so on. In the case of a test operation, the symbol opi

indicates the result of the test: test+ or test−.
We call p a correct protocol for SA M if there exists a word w ∈ L(M) such

that p is a correct protocol for SA M on the input w. And finally, we say that
p is a correct protocol if there exists an SA M such that p is a correct protocol
for M .

We define SA-PROT to be the language of all correct protocols over the
alphabet of the work tape Γ = {a, b}.

It is quite clear from the definition that a correct protocol just describes a
sequence of operations with the set. Thus, a correct protocol

p = #u1#op1#u2#op2# · · · #ut#opt (6)

determines the sequence S1, S2, . . . , St of the set contents: Si is the set content
after processing the prefix #u1#op1# · · · #ui#opi, i.e. performing i first opera-
tions with the set.

Query blocks (blocks in short) are the parts of the protocol in the form
#uk#opk, uk ∈ Γ ∗, op ∈ Ops (a query word followed by an operation with the
set). Note that we distinguish different occurrences of the same word #uk#opk

in a protocol.
This convention simplifies the statement of a protocol correctness criterion.

It can be expressed as follows.
We say that a query block pi supports a query block pj if ui = uj and

opi = in, opj = test+ or opi = out, opj = test− and there is no query block
pk such that opk ∈ {in,out}, uk = ui and i < k < j. Note that each test+-
block is supported by some in-block, but blocks with the operation test− may
have no support in a correct protocol. Standalone blocks are blocks in the form
pj = #u#op, where op ∈ {out, test−}, that have no support (if op = test−)
and there is no block pk = #u#in, where k < j.

The following lemma immediately follows from the definitions.

Lemma 1. A protocol p is correct iff each query block #ui#test+ is supported
and each query block #ui#test− is either supported or standalone.

3 Computational Complexity of the Emptiness Problem

An instance of the emptiness problem for SA is a description of an SA M . The
question is to decide whether L(M) = ∅.

Theorem 2 ([7]). The emptiness problem is PSPACE-hard for DSA.

Our main contribution is the matching upper bound of computational com-
plexity of the emptiness problem.

Theorem 3. The emptiness problem for SA is in PSPACE.
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In [7] the emptiness problem was related to so-called the regular realizability
(NRR) problem for the language SA-PROT of protocols.

The problem NRR(F ) for a language F (a parameter of the problem) is to
decide on the input nondeterministic finite automaton (NFA) A whether the
intersection L(A) ∩ F is nonempty.

Lemma 4 (Lemma 12 in [7]). The emptiness problem for SA is equivalent to
NRR(SA-PROT) with respect to log-space reductions.

Thus, to prove Theorem 3 it is sufficient to prove the following fact.

Lemma 5. NRR(SA-PROT) ∈ PSPACE.

An idea of the proof is straightforward. We simulate a successful run of
an automaton on a protocol in nondeterministic polynomially bounded space.
Applying Savitch theorem we get NRR(SA-PROT) ∈ PSPACE.

A possibility of such a simulation is based on a structural result about correct
protocols for SA, see Lemma 10 in the next subsection.

We present the proof of Lemma 5 in Subsect. 3.2.

3.1 Successful Automata Runs on a Protocol

Let A be an NFA with the set of states Q = QA of size n. Suppose that there
exists a successful run of the automaton A on a correct protocol (a word in the
language SA-PROT). It implies the positive answer for the instance A of the
regular realizability problem NRR(SA-PROT).

Our goal in this section is to prove an existence of a successful run of A
on another correct protocol that satisfies specific requirements, see Lemma 10
below.

Let p be a correct protocol accepted by A. Fix some successful run of A on
p. The run is partitioned as follows

s0
#u1#op1−−−−−−→ s1

#u2#op2−−−−−−→ s2
#u3#op3−−−−−−→ · · · #ut#opt−−−−−−→ st, st ∈ F. (7)

Here we assume that A starts from the initial state s0, finishes in the accepting
state st, processes the query block pi = #ui#opi from the state si and comes
to the state si+1 at the end of the processing. We say that (7) is the partition of
the run and two runs have the same partition if they have the same sequences
of states {si} and operations {opi}.

Let α be a triple (q, q′, op), where q, q′ ∈ Q and op is an operation with the
set, i.e. op ∈ Ops. The language R(α) ∈ Γ ∗ consists of all words u ∈ Γ ∗ such
that

q′ ∈ δA(q,#u#op),

where δA is the transition relation of the NFA A.
It is obvious that R(α) is a regular language and the number of states of a

minimal automaton recognizing it does not exceed n (the number of A’s states).
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The total number N of languages R(α) is poly(n) (actually, O(n2)). Each parti-
tion of the run (7) determines the sequence αi = (si, si+1, opi); we say that the
partition has the type α = (αi)ti=1.

Suppose that α is a partition type of a correct protocol. Generally, there
are many partitions of correct protocols having the type α. We are going to
choose among them as simple as possible. More exactly, we are going to minimize
the maximal size of the set contents determined by correct protocols admitting
a partition of the type α.

For this purpose we start from a partition (7) of a correct protocol and change
some query words ui in it to keep the partition type and the correctness of the
protocol and to make the set contents smaller.

Actually, we will analyze a slightly more general settings. We replace the
family of regular languages R(α) indexed by triples α = (q, q′, op) by an arbitrary
finite family R = {R(1), . . . , R(N)} of arbitrary1 languages over the alphabet Γ
indexed by integers 1 ≤ α ≤ N ; we call them query languages.

We extend types from partitions to protocols in a straightforward way: we
say that a protocol p (6) has the type α = (α1, . . . , αt), 1 ≤ αi ≤ N , if ui ∈ R(αi)
for each i.

We transform the protocol (6) in two steps to achieve the desired ‘simple’
protocol.

The first transformation of a correct protocol (6) of a type α gets a correct
protocol

p′ = #u′
1#op1#u′

2 · · · #u′
t#opt (8)

of the same type α such that all set contents S′
k determined by the protocol (8)

are polynomially bounded in the number N of query languages.
This property of a protocol will be used in our PSPACE-algorithm for the

emptiness problem for SA.
The formal definition of the transformation p → p′ is somewhat tricky. So

we explain the intuition behind the construction.
We are going to preserve all operations with the set in the transformed pro-

tocol. Also we are going to make a sequence of the set contents S′
k determined

by the transformed protocol as monotone as possible.
In general, it is impossible to make the whole sequence monotone. Thus we

select a subset of query words (stable words in the sequel) and do not change
these words during the transformation.

The rest of query words are unstable words. We are going to make the
sequence of the set contents monotone on unstable words. It means that an
unstable word added to the set is never deleted from it. To satisfy this condition,
we make the corresponding {out, test−}-query blocks standalone, i.e. we sub-
stitute unstable query words in these blocks by words that are never presented
in the set. To satisfy this requirement, the query language R(i) corresponding
to the block should be large enough. Below we give a formal definition of large
and small languages to satisfy this requirement.
1 The structural Propositions 8 and 9 hold for all query languages. Lemma 10 and the
PSPACE algorithm below are applied to regular query languages only.
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The transformation strategy of in-blocks is to insert into the set the only one
word from any large query language. In the formal construction below we call
these words critical.

Now we present formal definitions to realize informal ideas explained above.
We define the ‘small’ languages by an iterative procedure.

Step 0. All query languages R(i) that contain at most N words are declared
small.

Step j + 1. Let Wj be the union of all query languages that were declared
small on steps 0, . . . , j. All query languages R(i) that contain at most N
words from Γ ∗ \ Wj are declared small.

Query languages that are not small are declared large.
Let s be the last step on which some language was declared small. Thus Ws

is the union of all small languages. The query words from Ws are called stable.
It is clear from the definition that each unstable query word belongs to a large
language.

It is easy to observe that there are relatively few stable query words.

Proposition 6. |Ws| ≤ N2.

Proof. The total number of small languages doesn’t exceed N . Each small lan-
guage contributes to the set Ws at most N words. �

To define critical query words we assume that the protocol (6) is correct and
has the type α = (α1, . . . , αt). Let S1, . . . , St be the sequence of the set contents
determined by the protocol.

An unstable query word u is critical if it is contained in an in-block pk =
#u#in indicating insertion into the set an unstable word u from a large language,
none of whose unstable words have been inserted into the set earlier. Formally
it means that there exists a large language R(i) such that u ∈ R(i) \ Ws and
(R(i) \ Ws) ∩ Sj = ∅ for all j < k.

Proposition 7. There are at most N critical query words in the correct proto-
col p (6).

Proof. The protocol p is correct. Thus the first occurrence of a critical query
word u is in an in-block pk = #u#in. If a large language R(i) contains u, then
Sk ∩ (R(i) \ Ws) �= ∅.

Therefore a large language can certify the critical property for at most one
critical query word. But the number of large languages is at most N . �

Look at a {test+, in}-block pk = #uk#opk containing an unstable noncrit-
ical query word uk. Note that the query language R(αk), which is specified by
an index αk, 1 ≤ αk ≤ N , from the type of the protocol (6), is large (otherwise
the query word uk would be stable). The query word uk is not critical. Thus
(R(αk) \ Ws) ∩ Sj �= ∅ for some j < k. The smallest j satisfying this condition
indicates the query block describing the first insertion of an unstable query word
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uj from the language R(αk) into the set. Note that the query word uj is critical:
(R(αk) \ Ws) ∩ Si = ∅ for i < j. Denote uj as ũk. We assign the query word ũk

to the block pk and use this assignment in the construction below.
We are ready to define formally the transformation p → p′ of protocols

assuming correctness of p.
The type of the transformed protocol is the same: α = (α1, . . . , αt). Opera-

tions do not change: op′
i = opi.

All stable query words do not change. More exactly, if uk ∈ Ws, then u′
k = uk.

An unstable query word in a {test−,out}-block #uk#opk is substituted by
a word u′

k from R(αk) \ (C ∪ Ws), where C is the set of critical query words.
The substitution is possible because there are more than N words in R(αk)\Ws

(the language R(αk) is large) and there are at most N critical query words due
to Proposition 7.

Critical query words in {test+, in}-blocks do not change: if uk is critical and
opk ∈ {test+, in}, then u′

k = uk. (The resulting protocol remains correct due
to the previous rule: critical query words are not removed from the set.)

An unstable noncritical query word in a {test+, in}-block #uk#opk is sub-
stituted by the critical query word ũk assigned to the block. (The choice of ũk

guarantees correctness of the resulting protocol.)

Proposition 8. If the protocol p (6) is correct, then the transformed protocol p′

(8) is correct.
Each set content S′

k determined by the protocol p′ contains at most N2 + N
words.

To bound the sizes of the set contents in the modified protocol, note that
they can contain only two kinds of query words: stable query words (there are
at most N2 of them) and critical query words (there are at most N of them).

The rest of the proof is technical and omitted here due to space limitations.
Query words in a correct protocol may be very long. To operate with them in

polynomial space, we describe them implicitly in the PSPACE-algorithm below.
All relevant information about a word is a list of query languages containing
it. Thus, we divide the whole set of words over the alphabet Γ in the non-
intersecting elementary languages

RI =
⋂

i∈S

R(i) ∩
⋂

i/∈S

R(i), I ⊆ {1, 2, . . . , N}. (9)

We call I a type of a query word u, if u ∈ RI . Words will be represented by their
types in the algorithm below.

Such a representation causes a problem: the set content is represented in this
way by types of words and it is unclear how many different words of the same
type are in the set.

To avoid this problem, we assume that at most one word of each type is in the
set at any moment. To justify the assumption, we need the second transformation
of protocols.
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To define the second transformation of the protocol (6), let choose two query
words uI , vI in each elementary language RI containing at least two words. The
transformed protocol

p′′ = #u′′
1#op1#u′′

2#op2# · · · #u′′
t #opt (10)

is produced as follows.
The type of p′′ equals the type of p. All operations are the same.
If a word ui has a type I and the language RI contains only one word, we do

not change ui. Otherwise we substitute ui by uI in the case of opi ∈ {in, test+}
or by vI in the case of opi ∈ {out, test−}.

Proposition 9. If the initial protocol (6) is correct, then the transformed pro-
tocol (10) is also correct.

Each set content S′′
k determined by the transformed protocol contains at most

one word from any elementary language RI , I ⊆ {1, 2, . . . , N}.
The proof is a straightforward application of Lemma1. It is skipped due to

space limitations.
Now we return to successful runs of an automaton on a correct protocol.

Propositions 8 and 9 immediately imply the following lemma.

Lemma 10. Let A be an NFA with n states. If A accepts a correct protocol,
then it accepts a correct protocol such that |Si| = poly(n) for all i and each set
content contains at most one word from each elementary language.

Proof. Recall that the number N of query languages R(q, q′, op) for the NFA A
is O(n2). So, we just apply the second transformation to the result of the first
transformation. Note that the second transformation does not increase the sizes
of the set contents. �

3.2 Proof of Lemma 5

Let A be an input automaton for the emptiness problem. We measure the size
of the input by the number of states of this automaton.

As it mentioned above, we simulate a successful run of the automaton on a
protocol by a nondeterministic algorithm using polynomially bounded space.

Due to Lemma 10 there exists a correct protocol p and a successful run of
the automaton A on the protocol such that the sizes of set contents during the
protocol are upperbounded and the set contains at most one word from each
elementary language. The upper bound is polynomial in n and can be derived
explicitly from the arguments of the previous subsection. It is easy to verify that
M = 32n4 upperbounds the sizes of set contents determined by the protocol
from Lemma 10.

A word in the set is represented in the algorithm by a description of an elemen-
tary language containing the word. The second condition of Lemma10 implies
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correctness of this representation. An elementary language can be described
by a set I of triples in the form (q1, q2, op), where q1, q2 ∈ Q(A) and op ∈
{in,out, test+, test−}. The language RI is specified by Eq. (9). Such a repre-
sentation has polynomial size, namely, O(n2).

The simulating algorithm stores the description of the set content and the
current state of the automaton A. The algorithm nondeterministically guesses
the change of this data after reading the next query block of the simulated
protocol.

To complete the proof we should devise an algorithm to check correctness
of a simulation step. It is specified by indicating the state of A after reading
a query block, an elementary language RI , containing the query word on this
step, where I is the type of a query block to be read, and the description of the
set content after performing the operation with the set on this step.

It is easy to check that the state of A is changed correctly using the descrip-
tion of A.

The language RI should be nonempty (otherwise the simulation goes wrong).
It is well-known that the intersection problem for regular languages is in
PSPACE [1,5]. Thus, verifying RI �= ∅ can be done in polynomial space. It
guarantees the possibility of the query indicated by the current query block.

Test results are easily verified by the description of the set content before
a query.

If the current query is in, then the set content is changed as follows. Due to
Lemma 10 we assume that there is at most one word of each type I in the set. So,
if the current query word has a type I and there are no words of the type I in
the set, then the type I is included in the set. Otherwise, the set is not changed.

If the current query is out and the set includes the current query type I, then
two outcomes are possible: either a word of the type I is deleted from the set
or the set remains unchanged. The latter is possible iff the elementary language
RI contains at least two words.

Thus, to complete the proof we need the following proposition.

Proposition 11. There exists a polynomial space algorithm to verify
∣
∣
⋂

i

Ri

∣
∣ ≥ 2,

where Ri are regular languages represented by NFA.

The proposition is proved by a reduction of the question to the intersection
problem for regular languages. It is skipped due to space limitations.

4 The Membership Problem for SA

An instance of the membership problem for SA is a word w and a description of
an SA M . The question is to decide whether w ∈ L(M).
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An upper bound of computational complexity of the membership problem
can be easily obtained from the following observation.

Proposition 12. The membership problem for SA is polynomially time reduced
to the non-emptiness problem for SA and the membership problem for DSA is
polynomially time reduced to the non-emptiness problem for DSA.

Proof. Let an SA M and a word w be an instance of the membership problem. It
is easy to construct in polynomial time an SA M ′ such that L(M ′) = L(M)∩{w}.
Thus w ∈ L(M) iff L(M ′) �= ∅. This reduction preserves determinism of SA. �

Due to this proposition and Theorem3 the membership problems for SA and
DSA are in PSPACE (the class is closed under the complement).

In this section we prove the matching lower bound of computational complex-
ity of the membership problem. More exactly, we will prove that the membership
problem for DSA is PSPACE-hard. It is in a striking contrast to the results
for DSA without ε-loops. Recall that it was proved in [7] that the membership
problem for the latter case is in P.

Theorem 13. It is PSPACE-hard to check that ε
?∈ L(M) for DSA M with

the unary alphabet of the work tape.

To prove Theorem 13 we simulate the operation of a deterministic Turing
machine M with the 2-element alphabet {0, 1} in polynomially bounded space
by a DSA AM with the unary alphabet {#} of the work tape. We describe only
ε-transitions of DSA, because the rest of transitions does not affect the answer

to the question ε
?∈ L(M).

Denote by N the number of tape cells available for the operation of M . Let Q
be the state set of M , δ : {0, 1}×Q → {0, 1}×Q×{−1, 0,+1} be the transition
function of M .

Our goal is to construct a DSA AM with poly(N) states simulating the
operation of M . A state of AM carries an information about a position of the
head of M and a current rule of the transition function δ. Information about the
tape content of M is stored in the set S as follows.

Let i be the index of a tape cell of M , 1 ≤ i ≤ N , and xi ∈ {0, 1} be the
value stored in this cell. During the simulation process the DSA AM maintains
the relation: xi = 1 is equivalent to pi ∈ S, where pi = #i.

To insert words pi and delete them from the set, the states of the DSA AM

include a counter to write the appropriate number of # on the work tape. The
value of the counter is at most N .

As it mentioned above, the head position of M and the current rule of the
transition function δ are maintained in the state set of AM . Thus, the set state of
AM has the form {1, 2, . . . , N}×Δ×{0, 1, 2, . . . , N}×C, where Δ = {0, 1}×Q
is the set of the rules of the transition function δ and C is used to control
computation, |C| = O(1) (assuming N → ∞).
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The DSA AM starts a simulation step in the state (k, (a, q), 0, start), where
k is the head position of the simulated TM, q is its state, and xk = a. The last
component start ∈ C indicates the beginning of a simulation step.

Let δ(a, q) = (a′, q′, d) be the corresponding rule of the transition function δ.
A simulation step consists of the actions specified below, each action is

marked in the last state component to avoid ambiguity:

1. write k symbols # on the work tape, in this action the third state component
increased by 1 up to k;

2. update the set, if a′ = 0, then the DSA performs out operation, otherwise it
performs in operation;

3. change the value of k according to the value of d: the new value k′ = k + d;
4. write k′ symbols # on the work tape, the action is similar to the action 1;
5. perform the test operation, if the result is positive, then change the second

component to (1, q′), otherwise change the second component to (0, q′);
6. change the third component to 0 and the last component to start.

Inspecting these actions, it is easy to see that all information about the
configuration of the simulated TM is updated correctly.

Proof (of Theorem 13). The following problem is PSPACE-complete: an input
is a pair (M, 1N ), one should decide whether ε ∈ L(M), here M is an input
TM with the alphabet {0, 1} that uses at most 2N − 1 cells on the tape. The
hardness of this problem can be proved by a direct reduction of any PSPACE
language L to it (hardwire a word into the description of M and determine N
by a polynomial bound of a space used by the algorithm recognizing L).

We reduce the problem to the question ε
?∈ L(AM,N ), where AM,N is the

DSA with the unary alphabet of the work tape simulating the operation of M
on 2N − 1 memory cells as described above.

It is easy to see that the DSA AM,N can be constructed in time polynomial
in the length of description of TM M and N . �
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Abstract. The computational complexity of the partition, 0-1 subset
sum, unbounded subset sum, 0-1 knapsack and unbounded knapsack
problems and their multiple variants were studied in numerous papers in
the past where all the weights and profits were assumed to be integers. We
re-examine here the computational complexity of all these problems in
the setting where the weights and profits are allowed to be any rational
numbers. We show that all of these problems in this setting become
strongly NP-complete and, as a result, no pseudo-polynomial algorithm
can exist for solving them unless P=NP. Despite this result we show
that they all still admit a fully polynomial-time approximation scheme.

1 Introduction

The problem of partitioning a given set of items into two parts with equal total
weights (that we will refer to as Partition) goes back at least to 1897 [14].
A well-known generalisation is the problem of finding a subset with a given
total weight (0-1 Subset Sum) and the same problem where each item can be
picked more than once (Unbounded Subset Sum). Finally, these are commonly
generalised to the setting where each item also has a profit and the aim is to
pick a subset of items with the total profit higher than a given threshold, but at
the same time their total weight smaller than a given capacity (0-1 Knapsack).
A variant of the last problem where each item can be picked more than once is
also studied (Unbounded Knapsack).

The Subset Sum problem has numerous applications: its solutions can be
used for designing better lower bounds for scheduling problems (see, e.g., [7,8])
and it appears as a subproblem in numerous combinatorial problems (see, e.g.,
[18]). At the same time, many industrial problems can be formulated as knapsack
problems: cargo loading, cutting stock, capital budgeting, portfolio selection,
interbank clearing systems, knapsack cryptosystems, and combinatorial auctions
to name a couple of examples (see Chap. 15 in [12] for more details regarding
these problems and their solutions).

The decision problems studied in this paper were among the first ones to be
shown to be NP-complete [11]. At the same they are considered to be the easiest
problems in this class, because they are polynomial time solvable if items’ weights
and profits are represented using the unary notation (in other words, they are
c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 308–320, 2018.
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only weakly NP-complete). In particular, they can be solved in polynomial time
when these numbers are bounded by a fixed constant (and the number of items
is unbounded). Furthermore, the optimisation version of all these decision prob-
lems admit fully polynomial-time approximation schemes (FPTAS), i.e., we can
find a solution with a value at least equal to (1 − ε) times the optimal in time
polynomial in the size of the input and 1/ε for any ε > 0.

To the best of our knowledge, the computational complexity analysis of all
these problems was only studied so far under the simplifying assumption that
all the input values are integers. However, in most settings where these problems
are used, these numbers are likely to be given as rational numbers instead. We
were surprised to discover that the computational complexity in such a rational
setting was not properly studied before. Indeed, as pointed out in [12]:

A rather subtle point is the question of rational coefficients. Indeed, most
textbooks get rid of this case, where some or all input values are non-
integer, by the trivial statement that multiplying with a suitable factor,
e.g. with the smallest common multiple of the denominators, if the values
are given as fractions or by a suitable power of 10, transforms the data
into integers. Clearly, this may transform even a problem of moderate size
into a rather unpleasant problem with huge coefficients.

This clearly looks like a fundamental gap in the understanding of the complexity
of these computational problems. Allowing the input values to be rational makes
a lot of sense in many settings. For example, we encountered this problem when
studying an optimal control in multi-mode systems with discrete costs [15,16]
and looking at the weighted voting games (see, e.g., [4] where the weights are
defined to be rational). An interesting real-life problem is checking whether we
have the exact amount when paying, which is important in a situation when no
change can be given. While we take decimal monetary systems for granted these
days, there were plenty of non-decimal monetary systems in use not so long ago.
For example, in the UK between 1717 and 1816 one pound sterling was worth
twenty shillings, one shilling was worth twelve pence, and one guinea was worth
twenty one shillings.

We show here that allowing the input numbers to be rational makes a signif-
icant difference and in fact all these decision problems in such a setting become
strongly NP-complete [6], i.e., they are NP-complete even when all their numer-
ical values are at most polynomial in the size of the rest of the input or, equiv-
alently, if all these numerical values are represented in unary. To prove this we
will show an NP-completeness of a new variant of the satisfiability problem
and use results regarding distribution of prime numbers. As a direct consequence
of our result, there does not exist any pseudo-polynomial algorithms for solv-
ing these decision problems unless P=NP. At the same time, we will show
that they still all admit a fully polynomial-time approximation scheme (see,
e.g., [12]). This may seem wrong, because the paper that introduced strong NP-
completeness [6] also showed that no strongly NP-hard problem can admit an
FPTAS unless P=NP. However, the crucial assumption made there is that the
objective function is integer valued, which does not hold in our case.
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Related Work. The decision problems studied in this paper are so commonly
used that they have already been thousands of papers published about them and
many of their variants, including multiple algorithms and heuristic for solving
them precisely and approximately. There are also two full-length books, [12,21],
solely dedicated to these problems.

Several extensions of the classic knapsack problem were shown to be strongly
NP-complete. These include partially ordered knapsack [10] (where we need to
pick a set of items closed under predecessor), graph partitioning [10] (where we
need to partition a graph into m disjoint subgraphs under cost constraints), mul-
tiple knapsack problem [2], knapsack problem with conflict graphs [17] (where
we restrict which pairs of items can be picked together), and quadratic knapsack
problem [5,12] (where the profit of packing an item depends on how well it fits
together with the other selected items).

The first FPTAS for the optimisation version of the Knapsack problem
was established in 1975 by Ibarra and Kim [9] and independently by Babat [1].
Multiple other, more efficient, FPTAS for these problems followed (see, e.g., [12]).

Plan of the Paper. In the next section, we introduce all the used notation as
well as formally define all the decision problems that we study in this paper. In
Sect. 3, we analyse the amount of space one needs to write down the first n primes
in the unary notation as well as a unique representation theorem concerning sums
of rational numbers. In Sect. 4, we define a couple of new variants of the well-
known satisfiability problem for Boolean formulae in 3-CNF form and show them
to be NP-complete. Our main result, concerning the strong NP-hardness of all
the decision problems studied in this paper with rational inputs, can be found
in Sect. 5 and it builds on the results from Sects. 3 and 4. We briefly discuss
the existence of FPTAS for the optimisation version of our decision problems in
Sect. 6. Finally, we conclude in Sect. 7.

2 Background

Let Q≥0 be the set of non-negative rational numbers. We assume that a non-
negative rational number is represented as usual as a pair of its numerator and
denominator, both of which are natural numbers that do not have a common
divisor greater than 1. A unary representation of a rational number is simply
a pair of its numerator and denominator represented in unary. For two natural
numbers a and n, let a mod n ∈ {0, . . . , n− 1} denote the remainder of dividing
a by n. For any two numbers a, b ∈ {1, . . . , n}, we define their addition modulo
n, denoted by ⊕n, as follows: a ⊕n b = ((a + b − 1) mod n) + 1. Note that we
subtract and add 1 in this expression so that the result of this operation belongs
to {1, . . . , n}. Similarly we define the subtraction modulo n, denoted by �n, as
follows: a �n b = ((n + a − b − 1) mod n) + 1. We assume that ⊕n and �n

operators have higher precedence than the usual + and − operators.
We now formally define all the decision problems that we study in this paper.
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Definition 1 (Subset Sum problems). Assume we are given a list of n items
with rational non-negative weights A = {w1, . . . , wn} and a target total weight
W ∈ Q≥0.

0-1 Subset Sum: Does there exists a subset B of A such that the total weight
of B is equal to W?

Unbounded Subset Sum: Does there exist a list of non-negative integer
quantities (q1, . . . , qn) such that

n∑

i=1

qi · wi = W?

(Intuitively, qi denotes the number of times the i-th item in A is chosen.)

A natural generalisation of this problem where each item gives us a profit
when picked is the well-known knapsack problem.

Definition 2 (Knapsack problems). Assume there are n items whose
non-negative rational weights and profits are given as a list L =
{(w1, v1), . . . , (wn, vn)}. Let the capacity be W ∈ Q≥0 and the profit threshold be
V ∈ Q≥0.

0-1 Knapsack: Is there a subset of L whose total weight does not exceed W
and total profit is at least V ?

Unbounded Knapsack: Is there a list of non-negative integers (q1, . . . , qn)
such that

n∑

i=1

qi · wi ≤ W and

n∑

i=1

qi · vi ≥ V ?

(Intuitively, qi denotes the number of times the i-th item in A is chosen.)

Finally, a special case of the Subset Sum problem is the Partition problem.

Definition 3 (Partition problem). Assume we are given a list of n items
with non-negative rational weights A = {w1, . . . , wn}.

Can the set A be partitioned into two sets with equal total weights?

Now let us compare the size of a Partition problem instance when repre-
sented in binary and unary notation. Let A = {w1, . . . , wn} be an instance such
that wi = ai

bi
where ai, bi ∈ N for all i = 1, . . . , n. Notice that the size of A is

Θ
( ∑n

i=1 log(ai)+
∑n

i=1 log(bi)
)

when written down in binary and Θ
( ∑n

i=1 ai +∑n
i=1 bi

)
in unary. If we now multiply all weights in A by

∏n
i=1 bi then we would

get an equivalent instance A′ with only integer weights. The size of A′ would be
Θ

( ∑n
i=1 log(ai/bi

∏n
j=1 bj)

)
= Θ

( ∑n
i=1 log ai+(n−1)

∑n
i=1 log bi

)
when written

down in binary and in unary: Θ
( ∑n

i=1(ai/bi
∏n

j=1 bj)
)

= Ω(min ai ·(min bi)n−1).
Notice that the first expression is polynomial in the size of the original instance
while the second one may grow exponentially. A similar analysis shows the same
behaviour for all the other decision problems studied in this paper.
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3 Prime Suspects

In this section we first show that writing down all the first n prime numbers in
the unary notation can be done using space polynomial in n. Let πi denote the
i-th prime number. The following upper bound is known for πi.

Theorem 1 (inequality (3.13) in [19]).

πi < i(log i + log log i) for i ≥ 6

This estimate gives us the following corollary that will be used in the main
result of this paper.

Corollary 1. The total size of the first n prime numbers, when written down in
unary, is O(n2 log n). Furthermore, they can be computed in polynomial time.

Proof. Let n ≥ 6, because otherwise the problem is trivial. Thanks to Theorem1,
it suffices to list all natural numbers smaller than 2n log n (because n(log n +
log log n) ≤ 2n log n) and use the sieve of Eratosthenes to remove all nonprime
numbers from this list. It follows that writing down the first n prime numbers
requires O(n2 log n) space. The sieve can easily be implemented in polynomial
time and, to be precise, in this case O(n2 log2 n) additions and O(n log n) bits
of memory would suffice. ��

Now we prove a result regarding a unique representation of rational numbers
expressed as sums of fractions with prime denominators, which in a way is quite
similar to the Chinese remainder theorem.

Lemma 1. Let (p1, . . . , pn) be a list of n different prime numbers. Let
(a0, a1, . . . , an) and (a0, b1, . . . , bn) be two lists of integers such that |ai −bi| < pi
holds for all i = 1, . . . , n. We then have

a0 +
a1

p1
+ . . . +

an

pn
= b0 +

b1
p1

+ . . . +
bn
pn

if and only if

ai = bi for all i = 0, . . . , n.

Proof. (⇐) If ai = bi for all i = 0, . . . , n holds then obviously

a0 +
a1

p1
+ . . . +

an

pn
= b0 +

b1
p1

+ . . . +
bn
pn

.

(⇒) We need to consider two cases: a0 = b0 and a0 �= b0. In the first case,
suppose that aj �= bj for some j ∈ {1, . . . , n}. If we multiply

a1 − b1
p1

+ . . . +
an − bn

pn
by

n∏

i=1

pi
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then we would get an integer, which is not divisible by pj (because 0 < |aj−bj | <
pj) and so this expression cannot be equal to 0. Therefore, in this case,

a0 +
a1

p1
+ . . . +

an

pn
�= b0 +

b1
p1

+ . . . +
bn
pn

.

In the second case, if ai = bi for all i = 1, . . . , n holds then clearly

a0 +
a1

p1
+ . . . +

an

pn
�= b0 +

b1
p1

+ . . . +
bn
pn

.

Otherwise, again suppose that aj �= bj for some j ∈ {1, . . . , n}. If we multiply

a0 − b0 +
a1 − b1

p1
+ . . . +

an − bn
pn

by
n∏

i=1

pi

then we would get an integer, which is not divisible by pj (because 0 < |aj−bj | <
pj) and so this expression cannot be equal to 0. Therefore, again, in this case,

a0 +
a1

p1
+ . . . +

an

pn
�= b0 +

b1
p1

+ . . . +
bn
pn

.

��

4 In the Pursuit of Satisfaction

The Boolean satisfiability (Satisfiability) problem for formulae was the first
problem to be shown NP-complete by Cook [3] and Levin [13]. Karp [11] showed
that Satisfiability is also NP-complete for formulae in the conjunctive normal
form where each clause has at most three literals. Of course, the same holds for
formulae with exactly three literals in each clause. This is simply because we can
introduce a new fresh variable for every missing literal in each clause of the given
formula without changing its satisfiability. The set of all formulae with exactly
three literals in each clause will denoted by 3-CNF. Tovey [22] showed that
Satisfiability is also NP-complete for 3-CNF formulae in which each variable
occurs at most 4 times. We will denote the set of all such formulae by 3-CNF≤4.
Schaefer defined in [20] the One-in-Three-SAT problem for 3-CNF formulae
in which one asks for an truth assignment that makes exactly one literal in each
clause true, and showed it to be NP-complete. We define here a new All-the-
Same-SAT problem for 3-CNF formulae, which asks for a valuation that makes
exactly the same number of literals true in every clause (this may be zero, i.e.,
such a valuation may not make the formula true). This problem will be a crucial
ingredient in the proof of the main result of this paper.

The first step is to show that One-in-Three-SAT problem is NP-complete
even when restricted to 3-CNF≤4 formulae.

Theorem 2. The One-in-Three-SAT problem for 3-CNF≤4 is NP-complete.
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Proof. Obviously the problem is in NP, because we can simply guess a valuation
and check how many literals are true in each clause in linear time.

To prove NP-hardness, we are going to reduce from the Satisfiability
problem for 3-CNF≤4, which is NP-complete [22]. Assume we are given a 3-
CNF≤4 formula

φ = C1 ∧ C2 ∧ . . . ∧ Cm

with m clauses C1, . . . , Cm and n propositional variables v1, . . . , vn, where Cj =
xj ∨ yj ∨ zj for j = 1, . . . ,m and each xj , yj , zj is a literal equal to vi or ¬vi for
some i. We will construct a 3-CNF≤4 formula φ′ with 3m clauses and n + 4m
propositional variables such that φ is satisfiable iff φ′ is an instance of the One-
in-Three-SAT problem. This will be based on the construction already given
in [20].

The formula φ′ is constructed by replacing each clause in φ with three new
clauses. Specifically, the j-th clause Cj = xj ∨ yj ∨ zj is replaced by C ′

j :=
(¬xj ∨ aj ∨ bj) ∧ (bj ∨ yj ∨ cj) ∧ (cj ∨ dj ∨ ¬zj) where aj , bj , cj , dj are four fresh
propositional variables. It is quite straightforward to check that only a valuation
that makes Cj true can be extended to a valuation that makes exactly one
literal true in each of the clauses in C ′

j . Notice that such a constructed φ′ is a
3-CNF≤4 formula, because this transformation does not increase the number of
occurrences of any of the original variables in φ and each of the new variables is
used at most twice.

Now, if there exists a valuation that makes every clause in φ true, then as
argued above it can be extended to a valuation that makes exactly one literal
true in every clause in φ′.

To show the other direction, let ν be a valuation that makes exactly one
literal true in every clause in φ′. Consider for every j = 1, . . . , m the projection
of ν on the set of variables occurring in the clause Cj . Suppose that such a
valuation makes Cj false. It follows that it would not be possible to extend this
valuation to a valuation that makes exactly one literal true in every clause in
C ′

j . However, we already know that ν is such a valuation, so this leads to a
contradiction. ��

Although Theorem2 is of independent interest, all that we need it for is to
prove our next theorem.

Theorem 3. The All-the-Same-SAT problem for 3-CNF≤4 formulae is NP-
complete.

Proof. The All-the-Same-SAT problem is clearly in NP, because we can sim-
ply guess a valuation and check whether it makes exactly the same number of
literals in every clause true.

To proof NP-hardness, we reduce from the One-in-Three-SAT problem
for 3-CNF≤4 formulae (Theorem 2). Let φ be any 3-CNF≤4 formula and let us
consider a new formula φ′ = φ∧(x∨x∨¬x), where x is a fresh variable that does
not occur in φ. Notice that φ′ is also a 3-CNF≤4 formula. We claim that φ is an
instance of One-in-Three-SAT iff φ′ is an instance of All-the-Same-SAT.
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(⇒) If ν is a valuation that makes exactly one literal in every clause in φ true,
then extending it by setting ν′(x) = ⊥ would make exactly one literal in every
clause in φ′ true.
(⇐) Let ν be a valuation that makes the same number of literals in every clause
in φ′ true. This number cannot possibly be 0 or 3, because there is at least one
true literal and one false literal in the clause (x ∨ x ∨ ¬x).

If ν makes exactly one literal in every clause in φ′ true, then the same holds
for φ.

If ν makes exactly two literals in every clause true, then consider the valua-
tion ν′ such that ν′(y) = ¬ν(y) for every propositional variable y in φ′. Notice
that ν′ makes exactly one literal in every clause in φ′ true, so the same holds
for φ. ��

5 Being Rational Makes You Stronger

In this section, we build on the results obtained in the previous two section and
show strong NP-hardness of all the decision problems defined in Sect. 2. As a
direct consequence, no pseudo-polynomial algorithm can exist for solving any
of these problems unless P=NP. Instead of showing strong NP-hardness for
each of these problems separably, we will show one “master” reduction for the
Unbounded Subset Sum problem instead. This reduction will then be reused
to show strong NP-hardness of the Partition problem, and from these two
results the strong NP-hardness of all the other decision problems studied in this
paper will follow.

Theorem 4. The Unbounded Subset Sum problem with rational weights is
strongly NP-complete.

Proof. For a given instance A = {w1, . . . , wn} and target weight W , we know
that the quantities qi, for all i = 1, . . . , n, have to satisfy qi ≤ W/wi. This
in fact shows that the problem is in NP, because all the quantities qi when
represented in binary can be written down in polynomial space and can be
guessed at the beginning. We can then simply verify whether

∑n
i=1 qi · ai = W

holds in polynomial time by adding the rational numbers inside this sum one by
one (while representing all the numerators and denominators in binary).

To prove strong NP-hardness, we provide a reduction from the All-the-
Same-SAT problem for 3-CNF≤4 formulae (which is NP-complete due to The-
orem 3). Assume we are given a 3-CNF≤4 formula

φ = C1 ∧ C2 ∧ . . . ∧ Cm

with m clauses C1, . . . , Cm and n propositional variables x1, . . . , xn, where Cj =
aj ∨ bj ∨ cj for j = 1, . . . , m and each aj , bj , cj is a literal equal to xi or ¬xi for
some i. For a literal l, we write that l ∈ Cj iff l is equal to aj , bj or cj . We will now
construct a set of items A of size polynomial in n + m and a polynomial weight
W such that A with the total weight W is a positive instance of Unbounded
Subset Sum iff φ is satisfiable.
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We first need to construct a list of n + m different prime numbers
(p1, . . . , pn+m) that are all larger than n + 5. It suffices to pick pi = πi+n+5

for all i, because clearly πj > j for all j. Thanks to Corollary 1, we can list all
these primes numbers in the unary notation in time and space polynomial in
n + m.

The set A will contain one item per each literal. We set the weight of the
item corresponding to the literal xi to

1 +
1
pi

− 1
pi⊕n1

+
∑

{j|xi∈Cj}

(
1

pn+j
− 1

pn+j⊕m1

)

and corresponding to the literal ¬xi to

1 +
1
pi

− 1
pi⊕n1

+
∑

{j|¬xi∈Cj}

(
1

pn+j
− 1

pn+j⊕m1

)
.

Notice that each of these weights is ≥ 1− 5
p1

> 0, because each literal occurs
at most four times in φ, and p1 > 5 is the smallest prime number among pi-s.
At the same time, all of them are also ≤ 1 + 5

p1
< 2. Moreover, they can all be

written in unary using polynomial space, because each literal occurs in at most
four clauses and so this sum will have at most 11 terms in total. We can then
combine all these terms into a single rational number. Its denominator will be
at most equal to p10n+m, because pn+m is the largest prime number among pi-s
and the first of these terms is equal to 1. The numerator of this rational number
has to be smaller than 2p10n+m, because we already showed this number to be
< 2. So both of them will have size O((2n + m)10 log10(2n + m)) when written
down in unary, because pn+m = π2n+m+5 < 2(2n + m + 5) log(2n + m + 5) due
to Theorem 1. Set A has 2n such items and so all its elements’ weights can be
written down in unary using O(n(2n + m)10 log10(2n + m)) space.

Notice that the total weight of A is equal to

2n +
n∑

i=1

(
2
pi

− 2
pi⊕n1

)
+

m∑

j=1

(
3

pn+j
− 3

pn+j⊕m1

)

because there are 2n literals, each variable corresponds to two literals, and each
clause contains exactly three literals. As both of the two sums in this expression
are telescoping, we get that the total weight is in fact equal to 2n. We claim
that the target weight W = n is achievable by picking items from A (each item
possibly multiple times) iff φ is a positive instance of All-the-Same-SAT.
(⇒) Let qi and q′

i be the number of times an item corresponding to, respectively,
literal xi and ¬xi is chosen so that the total weight of all these items is n.

For i = 1, . . . , n, we define ti := qi + q′
i. For j = 1, . . . , m, we define tn+j

to be the number of times an item corresponding to a literal in Cj is chosen.
For example, if Cj = x1 ∨ ¬x2 ∨ x5 then tn+j = q1 + q′

2 + q5. Finally, let T :=∑n
i=1 qi +q′

i be the total number of items chosen. Notice that T ≤ W/(1− 5
p1

) <

W/(1 − 5
n+5 ) = n + 5.
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Now the total weight of the selected items can be expressed using ti-s as
follows:

n∑

i=1

ti +
n∑

i=1

ti − ti�n1

pi
+

m∑

j=1

tn+j − tn+j�m1

pn+j
(�)

Notice that |ti − ti�n1| < n + 5 and pi > n + 5 for all i = 1, . . . , n, and |tn+j −
tn+j�m1| < n + 5 and pn+j > n + 5 for all j = 1, . . . ,m. It now follows from
Lemma 1 that (�) can be equal to n if and only if

∑n
i=1 ti = n, and t1 = t2 =

. . . = tn, and tn+1 = tn+2 = . . . = tn+m. The first two facts imply that for all
i = 1, . . . , n, we have ti = 1 and so exactly one item corresponding to either xi or
¬xi is chosen. The last fact states that in each clause exactly the same number
of items corresponding to its literals is chosen. It is now easy to see that the
All-the-Same-SAT condition is satisfied by φ for the valuation ν such that,
for all i ∈ {1, . . . , n}, we set ν(xi) = � iff qi = 1.
(⇐) Let ν be a valuation for which φ satisfies the All-the-Same-SAT condi-
tion. We set the quantities qi and q′

i, the number of times an item corresponding
to the literal xi and ¬xi is picked, as follows. If ν(xi) = � then we set qi = 1
and q′

i = 0. If ν(xi) = ⊥ then we set qi = 0 and q′
i = 1.

Let us define ti-s as before. Note that we now have ti = 1 for all i = 1, . . . , n
and tn+1 = tn+2 = . . . = tn+m, because the All-the-Same-SAT condition
is satisfied by ν. We can now easily see from the expression (�) that the total
weight of the just picked items is equal to n. ��

Although the strong NP-hardness complexity of the Partition problem does
not follow from the statement of Theorem 4, it follows from its proof as follows.

Theorem 5. The Partition problem with rational weights is strongly NP-
complete.

Proof. Just repeat the proof of Theorem 4 without any change. In this case we
know a priori that qi ∈ {0, 1}, which does not make any difference to the used
reasoning. Notice that the target weight W chosen in the reduction is exactly
equal to half of the total weights of all the items in A, so the Unbounded Sub-
set Sum problem instance constructed can also be considered to be a Partition
problem instance. ��

Now, as the Subset Sum problem is a generalisation of the Partition
problem, we instantly get the following result.

Corollary 2. The Subset Sum problem with rational weights is strongly NP-
complete.

Finally, we observe that the 0-1 Knapsack and Unbounded Knapsack
problems are generalisations of the Subset Sum and Unbounded Subset Sum
problems, respectively. To see this just restrict the weight and profit of each
item to be equal to each other as well as require V = W . Any such instance is a
positive instance of 0-1 Knapsack (Unbounded Knapsack) if and only if it
is a positive instance of Subset Sum (respectively, Unbounded Subset Sum).
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Corollary 3. The 0-1 Knapsack and Unbounded Knapsack problems with
rational weights are strongly NP-complete.

6 Approximability

In this section, we briefly discuss the counter-intuitive fact that the optimisation
version of all the decision problems defined in Sect. 2 admit a fully polynomial-
time approximation scheme (FPTAS) even though we just showed them to be
strongly NP-complete. First, let us restate a well-known result concerning this.

Corollary 4 (Corollary 8.6 in [23]). Let Π be an NP-hard optimisation prob-
lem satisfying the restrictions of Theorem 8.5 in [23] (first shown in [6]). If Π is
strongly NP-hard, then Π does not admit an FPTAS, assuming P �=NP.

The crucial assumption made in Theorem 8.5 of [23] is that the objective function
is integer valued, which does not hold in our case, so there is no contradiction.

First, let us formally define the optimisation version of some of the decision
problems studied. The optimisation version of the 0-1 Knapsack problem with
capacity W asks for a subset of items with the maximum possible total profit
and whose weight does not exceed W . As for the Subset Sum problem, its
optimisation version asks for a subset of items whose total weight is maximal,
but ≤ W . The optimisation version of the other decision problems from Sect. 2
can also be defined (see, e.g., [12]).

Now, let us formally define what we mean by an approximation algorithm
for these problems. We say that an algorithm is a constant factor approximation
algorithm with a relative performance ρ iff, for any problem instance, I, the cost
of the solution that it computes, f(I), satisfies:

– for a maximisation problem: (1 − ρ) · OPT(I) ≤ f(I) ≤ OPT(I)
– for a minimisation problem: OPT(I) ≤ f(I) ≤ (1 + ρ)OPT(I)

where OPT(I) is the optimal cost for the problem instance I. We are partic-
ularly interested in polynomial-time approximation algorithms. A polynomial-
time approximation scheme (PTAS) is an algorithm that, for every ρ > 0, runs
in polynomial-time and has relative performance ρ. Note that the running time
of a PTAS may depend in an arbitrary way on ρ. Therefore, one typically strives
to find a fully polynomial-time approximation scheme (FPTAS), which is an
algorithm that runs in polynomial-time in the size of the input and 1/ρ.

We will focus here on defining an FPTAS for 0-1 Knapsack problem with
rational coefficients. An FPTAS for the other optimisation problems considered
in this paper can be defined in essentially the same way and thus their details
are omitted.

Theorem 6. The 0-1 Knapsack problem with rational coefficients admits an
FPTAS.
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Proof. We claim that we can simply reuse here any FPTAS for the 0-1 Knap-
sack problem with integer coefficients. Let I be a 0-1 Knapsack instance with
rational coefficients. We turn I into an instance with integer coefficients only, I ′,
by the usual trick of multiplying all the rational coefficients by the least com-
mon multiple of the denominators of all the rational coefficients in I. Let us
denote this least common multiple by α. Assuming that all the coefficients in
I are represented in binary, then when multiplying them by α (again in binary
representation), their size, as argued at the end of Sect. 2, will only increase poly-
nomially. Therefore, the size of I ′ is just polynomially larger than I. (We should
not use the unary notation because then these numbers may grow exponentially.)

Notice that α · OPT(I) = OPT(I ′). In fact, the profit of any subset of items
A in I ′, denoted by profit′(A), is α times bigger than the profit of this set of items
in I, denoted by profit(A). Let us now run on I ′ any FPTAS for 0-1 Knapsack
problem with integer coefficients with relative performance ρ (e.g., [9]). This will
return as a solution a subset of items, B, such that profit′(B) ≥ (1− ρ)OPT(I ′).
This implies that profit(B) ≥ (1 − ρ)OPT(I) so the same subset of items B has
also the same relative performance ρ on the original instance I. ��

7 Conclusions

In this paper we studied how the computational complexity of the Partition,
0-1 Subset Sum, Unbounded Subset Sum, 0-1 Knapsack, Unbounded
Knapsack problems changes when items’ weights and profits can be any ratio-
nal numbers. We showed here, as opposed to the setting where all these values
are integers, that all these problems are strongly NP-hard, which means that
there does not exists a pseudo-polynomial algorithm for solving them unless
P=NP. Nevertheless, we also showed that all these problem admit an FPTAS
just like in the integer setting. Finally, we just want to point out that if we restrict
ourselves to only rational weights and profits with a finite representation as dec-
imal numerals, then these problems are no longer strongly NP-complete. This
is because we could then simply multiply all the input numbers by a sufficiently
high power of 10 and get an instance, with all integer coefficients, whose size is
polynomial in the size of the original instance.
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Abstract. Given n vectors x0, x1, . . . , xn−1 in {0, 1}m, how to find two
vectors whose pairwise Hamming distance is minimum? This problem
is known as the Closest Pair Problem. If these vectors are generated
uniformly at random except two of them are correlated with Pearson-
correlation coefficient ρ, then the problem is called the Light Bulb Prob-
lem. In this work, we propose a novel coding-based scheme for the Close
Pair Problem. We design both randomized and deterministic algorithms,
which achieve the best known running time when the minimum distance
is very small compared to the length of input vectors. When applied
to the Light Bulb Problem, our algorithms yields state-of-the-art deter-
ministic running time when the Pearson-correlation coefficient ρ is very
large.

1 Introduction

We consider the following classic Closest Pair Problem: given n vectors
x0, x1, . . . , xn−1 in {0, 1}m, how to find the two vectors with the minimum pair-
wise distance? Here the distance is the usual Hamming distance: dist(xi, xj) =
|{k ∈ [m] : (xi)k �= (xj)k}|, where (xi)k denotes the kth component of vector
xi. Without loss of generality, we assume that dmin = dist(x0, x1) is the unique
minimum distance and all other pairwise distances are greater than dmin.

The Closest Pair Problem is one of the most fundamental and well-studied
problems in many science disciplines, having a wide spectrum of applications
in computational finance, DNA detection, weather prediction, etc. For instance,
the Closest Pair Problem recently finds the following interesting application
in bioinformatics. Scientists wish to find connections between Single Nucleotide
Polymorphisms (SNPs) and phenotypic traits. SNPs are one of the most common
types of genetic differences among people, with each SNP representing a variation
in a single DNA block called nucleotide [19]. Screening for most correlated pairs
of SNPs has been applied to study such connections [9,13,16,30]. As the number
of SNPs in humans is estimated to be around 10 to 11 million, for problem size
n of this size, any improvement in running time for solving the Closest Pair
Problem would have huge impacts on genetics and computational biology [30].

A full version of the paper is available at https://arxiv.org/abs/1802.09104.
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In theoretical computer science, the Closest Pair Problem has a long his-
tory in computational geometry, see e.g. [34] for a survey of many classic algo-
rithms for the problem. The naive algorithm for the Closest Pair Problem takes
O(mn2) time. When the dimension m is a constant, either in the Euclidean space
or �p space, the classic divide-and-conquer based algorithm runs in O(n log n)
time [12]. Rabin [33] combined the floor function with randomization to devise
a linear time algorithm. In 1995, Khuller and Matias [25] simplified Rabin’s
algorithm to achieve the same running time O(n) and space complexity O(n).
Golin et al. [21] used dynamic perfect hashing to implement a dictionary and
obtained the same linear time and space bounds.

When the dimension m is not a constant, the first subquadratic time algo-
rithm for the Closest Pair Problem is due to Alman and Williams [4] for m as
large as log2−o(1) n. The algorithm is built on a recently developed framework
called polynomial method [2,39,40]. In particular, Alman and Williams firstly
constructed a probabilistic polynomial of degree O(

√
n log 1/ε) which can com-

pute the MAJORITY function on n variables with error at most ε, then applied
the polynomial method to design an algorithm which runs in n2−1/O(s(n) log2 s(n))

time where m = s(n) log n, and computed the minimum Hamming distance
among all red-blue vector pairs through polynomial evaluations. In a more recent
work, Alman et al. [3] unified Valiant’s fast matrix multiplication approach [37]
with that of Alman and Williams’ [4]. They constructed probabilistic polynomial
threshold functions (PTFs) to obtain a simpler algorithm which improved to ran-
domized time n2−1/O(

√
s(n) log3/2 s(n)) or deterministic time n2−1/O(s(n) log2 s(n)).

The Light Bulb Problem. A special case of the Closest Pair Problem, the
so-called Light Bulb Problem, was first posed by Valiant in 1988 [38]. In this
problem, we are given a set of n vectors in {0, 1}m chosen uniformly at random
from the Boolean hypercube, except that two of them are non-trivially corre-
lated (specifically, have Pearson-correlation coefficient ρ, which is equivalent to
that the expected Hamming distance between the correlated pair is 1−ρ

2 m), the
problem then is to find the correlated pair.

Paturi et al. [32] gave the first non-trivial algorithm, which runs in
O(n2−log(1+ρ)). The well-known locality sensitive hashing scheme of Indyk and
Motwani [23] performs slightly worse than Paturi et al.’s hash-based algorithm.
More recently, Dubiner [18] proposed a Bucketing Coding algorithm which runs
in time O(n

2
1+ρ ). As ρ gets small, all these three algorithms have running

time O(n2−O(ρ)). Comparing the constants in these three algorithms, Dubiner
achieves the best constants, which is O(n2−2ρ), in the limit of ρ → 0. Asymptot-
ically the same bound was also achieved by May and Ozerov [27], in which the
authors used algorithms that find Hamming closest pairs to improve the running
time of decoding random binary linear codes.

In a recent breakthrough result, Valiant [37] presented a fast matrix mul-
tiplication based algorithm which finds the “planted” closest pair in time

O(n
5−ω
4−ω

+ε

ρ2ω ) < n1.62 ·poly(1/ρ) with high probability for any constant ε, ρ > 0 and

m > n
1

4−ω /ρ2, where ω < 2.373 is the exponent of fast matrix multiplications.
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The most striking feature of Valiant’s algorithm is that ρ does not appear in the
exponent of n in the running time of the algorithm. Karppa et al. [24] further
improved Valiant’s algorithm to n1.582. Both Valiant and Karppa et al. achieved
runtime of n2−Ω(1)(m/ε)O(1) for the Light Bulb Problem, which improved upon
previous algorithms that rely on the Locality Sensitive Hashing (LSH) schemes.
The LSH methods based algorithm only achieved runtime of n2−O(ε) for the
Light Bulb Problem.

We remark that all the above-mentioned algorithms (except May and Oze-
rov’s work) that achieve state-of-the-art running time are based on either
involved probabilistic polynomial constructions or impractical O(nω) fast matrix
multiplications1, or both. Moreover, these algorithms are all randomized in
nature while our approach yields simple and practical randomized as well as
deterministic algorithms.

1.1 Our Approach

We propose a simple, error-correcting code based scheme for the Closest Pair
Problem. Apart from achieving the best running time for certain range of param-
eters, we believe that our new approach has the merit of being simple, and hence
more likely being practical as well. In particular, neither complicated data struc-
ture nor fast matrix multiplication is employed in our algorithms.

Algorithm 1. General Idea of Main Algorithm
input : A set of n vectors x0, . . . , xn−1 in {0, 1}m and dmin

output: Two vectors and their distance

1 generate a binary code C ⊆ {0, 1}m

2 pick a random y ∈ {0, 1}m

3 for j ← 0 to n − 1 do
4 decode y + xj in C, and denote the resulting vector by x̃j

5 end
6 sort x̃0, . . . , x̃n−1

7 for each of the n − 1 pairs of adjacent vectors in the sorted list do
8 compute the distance between the two original vectors.
9 end

10 output the pair of vectors with the minimum distance and their distance

The basic idea of our algorithms is very simple. Suppose for concreteness that
x0 and x1 is the unique pair of vectors that achieve the minimum distance. Our

1 Subqubic fast matrix multiplication algorithms are practical only for Strassen-based
ones [11,22]. Even though the recent breakthrough results [20,35,42] achieve asymp-
totically faster than Strassen’s algorithm [36], however, these algorithms are all based
on Coppersmith-Winograd’s algorithm [15], and to the best of our knowledge, there
are no practical implementations of these trilinear based algorithms.
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scheme is inspired by the extreme case when x0 and x1 are identical vectors. In
this case, a simple sort and check approach solves the problem in O(mn log n)
time: sort all n vectors and then compute only the n − 1 pairwise distances
(instead of all

(
n
2

)
distances) of adjacent vectors in the sorted list. Since the two

closest vectors are identical, they must be adjacent in the sorted list and thus
the algorithm would compute their distance and find them. This motivates us
to view the input vectors as received messages that were encoded by an error
correction code and have been transmitted through a noisy channel. As a result,
the originally identical vectors are no longer the same, nevertheless are still very
close. Directly applying the sort and check approach would fail but a natural
remedy is to decode these received messages into codewords first. Indeed, if the
distance between x0 and x1 is small and we are lucky to have a codeword c that
is very close to both of them, then a unique decoding algorithm would decode
both of these two vectors into c. Now if we “sort” the decoded vectors and then
“check” the corresponding original vectors of each adjacent pair of vectors2, the
algorithm would successfully find the closest pair. How to turn this “good luck”
into a working algorithm? Simply try different shift vectors y and view y + xi

as the input vectors, since the Hamming distances are invariant under any shift.
The basic idea of our approach is summarized in Algorithm1.

Figure 1 illustrates the effects “bad” shift vectors and “good” shift vectors
on the decoding part of our algorithm.

Figure 2 illustrates what happens if we sort the vectors directly and why
sorting decoded vectors works.

ci

cj

ck

cl

y′ + x0
y′ + x1

y′ + x2

y′ + x3

(a) bad shift

ci

cj

ck

cl

y + x0

y + x1

y + x2

y + x3

(b) good shift

Fig. 1. Decoding with good and bad shift vectors

2 Actually, we only need to “check” when the two adjacent decoded vectors are iden-
tical.
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x0

x1

x2

x3

· · · x0 · · · · · · x2 · · · x3 · · · · · · · · · x1 · · ·

(a) Sorting original vectors directly

x̃0=x̃1

x̃2

x̃3

· · · · · · x̃2 · · · · · · x̃0 x̃1 · · · · · · x̃3 · · · · · ·

(b) Sorting decoded vectors

Fig. 2. Difference between sorting input vectors directly and sorting decoded vectors.

Making the idea of decoding work for larger minimum pairwise distance
involves balancing the parameters of the error-correcting code so that it is effi-
ciently decodable as well as having appropriate decoding radius. The decoding
radius r should have the following properties. On one hand, r should be small
to ensure that there is a codeword c such that only x0 and x1 will be decoded
into c (therefore x0 and x1 will be adjacent in the sorted array and hence will be
compared with each other). On the other hand, we would like r to be large so
as to maximize the number of “good” shift vectors which enable both x0 and x1

decoding to the same codeword. As a result, our algorithms generally perform
best when the closest pair distance is very small.

1.2 Our Results

Our simple error-correcting code based algorithm can be applied to solve the
Closest Pair Problem and the Light Bulb Problem.

The Closest Pair Problem. Our main result is the following simple random-
ized algorithm for the Closest Pair Problem.

Theorem 1 (Main). Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors such
that x0 and x1 is the unique pair achieving the minimum pairwise distance dmin

(and the second smallest distance can be as small as dmin + 1). Suppose we are
given the value of dmin and let δ

def= dmin/m. Then there is a randomized algorithm
running in O(n log2 n · 2(1−κZ(δ)−δ)m · poly(m)) which finds the closest pair x0

and x1 with probability at least 1 − 1/n2. The running time can be improved to



326 N. Xie et al.

O(n log2 n · 2(1−κGV (δ)−δ)m · poly(m)), if we are given black-box decoding algo-
rithms for an ensemble of O(log m/ε) binary error-correcting codes that meet the
Gilbert-Varshamov bound.

Here κGV (δ) and κZ(δ) are functions derived from the Gilbert-Varshamov (GV)
bound and the Zyablov bound respectively (see full version for details).

The running time of our algorithm depends on—in addition to the number of
vectors n—both dimension m and δ

def= dmin/m. To illustrate its performance we
choose two typical vector lengths m, namely those corresponding to the Ham-
ming bound3 and the Gilbert-Varshamov (GV) bound4, and list the exponents
γ′ in the running time of the GV-code version of our algorithm as a function
of dmin (in fact δ) in Table 1. Here, we write the running of the algorithm as
Õ(nγ′

), where Õ suppresses any polylogarithmic factor of n. One can see that
our algorithm runs in subquadratic time when δ is small, or equivalently when
the Hamming distance between the closest pair is small.

Table 1. Running time of our algorithm when vector length m meets the Hamming
bound and GV bound

Hamming bound GV bound

δ Length of vector
(m/ log n)

Exponent (γ′) Length of vector
(m/ log n)

Exponent (γ′)

0.01 1.0476 1.0742 1.0879 1.0770

0.025 1.1074 1.1591 1.2029 1.1728

0.05 1.2029 1.2844 1.4013 1.3313

0.075 1.2999 1.4021 1.6242 1.5024

0.1 1.4013 1.5171 1.8832 1.6949

0.125 1.5090 1.6316 2.1909 1.9170

In the setting of m = c log n for some not too large constant c, Alman et
al. [3] gave a randomized algorithm which runs in n2−1/O(

√
c log3/2 c) time for the

Closest Pair Problem. As it is very hard to calculate the hidden constant in the
exponent of their running time, it is impossible to compare our running time
with theirs quantitatively. However, as the running time of Alman et al. is of the
form n2−g(c) for some function g, it is reasonable to believe that our algorithms
run faster when the minimum distance is small enough.

Deterministic algorithm. By checking all shift vectors up to certain Ham-
ming weight, our randomized algorithm can be easily derandomized to yield the
following.
3 The Hamming bound, also known as the sphere packing bound, specifies an upper

bound on the number codewords a code can have given the block length and the
minimum distance of the code.

4 The GV bound is known to be attainable by the random codes.
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Theorem 2. Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors such that x0

and x1 is the unique pair achieving the minimum pairwise distance dmin (and
the second smallest distance can be as small as dmin + 1). Suppose we are given
the value of dmin and let δ

def= dmin/m. Then there is a deterministic algorithm
that finds the closest pair x0 and x1 with running time O(n log n ·2H2(1−κZ(δ))m ·
poly(m)), where H2(·) is the binary entropy function. Moreover, if we are given
as black box the decoding algorithm of a random Varshamov linear code with block
length m and minimum distance dmin + 1, then the running time is O(n log n ·
2H2(1−κGV (δ))m · poly(m)).

Searching for dmin. If we remove the assumption that dmin is given, our algo-
rithm can be modified to search for dmin first without too much slowdown; more
details appear in full version.

Theorem 3. Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors such that
x0 and x1 is the unique pair achieving the minimum pairwise distance dmin.
Then for any ε > 0, there is a randomized algorithm runs in O(ε−1n log2 n ·
2(1−κZ((1+ε)δ)−δH2(

1−ε
2 )m · poly(m)) which finds the dmin (and the pair x0 and

x1) with probability at least 1 − 1/n, The running time can be improved to
O(ε−1n log2 n · 2(1−κGV ((1+ε)δ)−δH2(

1−ε
2 )m · poly(m)), if we are given black-box

decoding algorithms for an ensemble of O(log m/ε) binary error-correcting codes
that meet the Gilbert-Varshamov bound.

Gapped version. Intuitively, if there is a gap between dmin and the second
minimum distance, the Closest Pair Problem should be easier. This is reminis-
cent of the case of the ε-Approximate NNS Problem versus the NNS Problem.
However, as we still need to find the exact solution to the Closest Pair Problem,
the situation here is different.

Theorem 4 (Gapped version). Let x0, x1, . . . , xn−1 in {0, 1}m be n binary
vectors such that x0 and x1 is the unique pair achieving the minimum pair-
wise distance dmin. Suppose we are given the values of dmin as well as the
second minimum distance d2. Let δ

def= dmin/m and δ′def= d2/m. Then there is

a randomized algorithm running in O(n log2 n · 2(1−κZ(δ′)−δ−(1−δ)H2(
δ′−δ

2(1−δ) ))m ·
poly(m)) which finds the closest pair x0 and x1 with probability at least
1 − 1/n2. Moreover, the running time can be further improved to O(n log2 n ·
2(1−κGV (δ′)−δ−(1−δ)H2(

δ′−δ
2(1−δ) ))m ·poly(m)), if we are given the black box access to

the decoding algorithm of an (m,K, d)-code which meets the Gilbert-Varshamov
bound.

Our gapped version algorithm uses d2/2 instead of dmin/2 as the decoding
radius. This, however, does not always give improved running time as illustrated
in Fig. 3. In Fig. 3, we set δ′ = (1+ ε)δ and write the running time as O(n log2 n ·
2γm · poly(m)) for both the gapped version (the blue line) and the non-gapped
version (the green line). One can see that the gapped version performs better
only when ε is small enough.
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Fig. 3. The range of ε in which gapped version outperforms non-gapped version (Color
figure online)

The Light Bulb Problem. Applying our algorithms for the Closest Pair Prob-
lem to the Light Bulb Problem easily yields the following.

Theorem 5. There is a randomized algorithm for the Light Bulb Problem which
runs in time

O(n · poly(log n)) · 2(1−κZ( 1−ρ
2 )− 1−ρ

2 ) 4 ln 2·log n

ρ2 (1+o(1))

and succeeds with probability at least 1 − 1/n2. The running time can be further
improved to

O(n · poly(log n)) · 2(1−κGV ( 1−ρ
2 )− 1−ρ

2 ) 4 ln 2·log n

ρ2 (1+o(1))
,

if we are allowed a one-time preprocessing time of n2.773/ρ2
to generate the decod-

ing lookup table of a random Gilbert’s (m,K, (1 − ρ)m/2)-code. Similar results
can also be abtained for deterministic algorithms.

Our deterministic algorithm for the Light Bulb Problem is, to the best of
our knowledge, the only deterministic algorithm for the problem. Moreover, we
believe that our algorithms are very simple and therefore are likely to outperform
other complicated ones for at least not too large input sizes.

1.3 Related Work

The Nearest Neighbor Search problem. The Closest Pair Problem is a
special case of the more general Nearest Neighbor Search (NNS) problem, defined
as follows. Given a set S of n vectors in {0, 1}m, and a query point q ∈ {0, 1}m as
input, the problem is to find a point in S which is closest to q. The performance
of an NNS algorithm is usually measured by two parameters: the space (which
is usually proportional to the preprocessing time) and the query time. It is easy
to see that any algorithms for NNS can also be used to solve the Closest Pair
problem, as we can try each vector in S as the query vector against the remaining
vectors in S, and output the pair with minimum distance.
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Most early work on this problem is for fixed dimension. Indeed, when m = 1
the problem is easy, as we can just sort the input vectors (which in this case are
numbers), then perform a binary search to find the closest vector to the input
query. For m ≥ 2, Clarkson [14] gave an algorithm with query time polynomial
in m log n, and space complexity O(n�m/2�). Meiser [28] designed an algorithm
which runs in O(m5 log n) time and uses O(nm+ε) space for arbitrary ε > 0.
By far, all efficient data structures for NNS have dimension m appear in the
exponent of the space complexity, a phenomenon commonly known as the curse
of dimensionality.

This motivates people to introduce a relaxed version of Nearest Neighbor
Search called the ε-Approximate Nearest Neighbor Search (ε-Approximate NNS)
Problem in the 1990s. The problem now is, for an input query point q, find a
point p in S such that the Hamming distance is:

dist(p, q) ≤ (1 + ε) min
p′∈S

dist(p′, q).

We call such a p as an ε-approximate nearest neighbor of input query q.
The ε-Approximate NNS Problem has been studied extensively in the last

two decades. In 1998, Indyk and Motwani [23] used a set of hash functions to
store the dataset such that if two points are close enough, they will have a
very high probability to be hashed into the same buckets. As a pair of close
points have higher probability than a pair of far-apart points to fall into the
same bucket, the scheme is called locality sensitive hashing (LSH). The query
time of LSH is O(n

1
1+ε ), which is sublinear, and the space complexity of LSH

is O(n1+ 1
1+ε ), which is subquadratic. After Indyk and Motwani introducing the

locality sensitive hashing, there have been many improvements on the parame-
ters under different metric spaces, such as �p metric [5,17,26,29,31]. Recently,
Andoni et al. [7] gave tight upper and lower bounds of time-space trade-offs
for hashing based algorithms for the ε-Approximate NNS Problem. This is the
first algorithm that achieves sublinear query time and near-linear space, for any
ε > 0. For many results on the Approximate NNS problem in high dimension,
see e.g. [6] for a survey. Some algorithms for the low dimension problem are
surveyed in [8].

Recently, Valiant [37] leveraged fast matrix multiplication to obtain a new
algorithm for the ε-Approximate NNS Problem that is not based on LSH. The
general setting of Valiant’s results is the following. Suppose there is a set of
points S in m-dimensional Euclidean (or Hamming) space, and we are promised
that for any a ∈ S and b ∈ S, 〈a, b〉 < α, except for only one pair which has
〈a, b〉 ≥ β (which corresponds to the closest pair, and β is known as the Pearson-
correlation coefficient), for some 0 < α < β < 1. Valiant’s algorithm finds the
closest pair in n

5−ω
4−ω +ω log β

log α mO(1) time, where ω is the exponent for fast matrix
multiplication (ω < 2.373). Notice that, if the Pearson-correlation coefficient β is
some fixed constant, then when α approaches 0 the running time tends to n

5−ω
4−ω ,
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which is less than n1.62. Valiant applied his algorithms to get improved bounds5

for the Learning Sparse Parities with Noise Problem, the Learning k-Juntas with
Noise Problem, the Learning k-Juntas without Noise Problem, and so on. More
recently, Karppa et al. [24] improved upon Valiant’s algorithm and obtained an
algorithm that runs in n

2ω
3 +O( log β

log α )mO(1) time.
Note that in general algorithms for the ε-Approximate NNS Problem can not

be used to solve the Closest Pair Problem, as the latter requires to find the exact
solution for the closest pair of vectors.

Decoding Random Binary Linear Codes. In 2015, May and Ozerov [27]
observed that algorithms for high dimensional Nearest Neighbor Search Prob-
lem can be used to speedup the approximate matching part of the information
set decoding algorithm. They designed a new algorithm for the Bichromatic
Hamming Closest Pair problem when the two input lists of vectors are pairwise
independent, and consequently obtained a decoding algorithm for random binary
linear codes with time complexity 20.097n. This improved upon the previously
best result of Becker et al. [10] which runs in 20.102n.

The Bichromatic Hamming Closest Pair problem. In fact, the problem
studied in [3,4,27] is the following Bichromatic Hamming Closest Pair Problem:
we are given n red vectors R = {r0, r1, · · · , rn−1} and n blue vectors B =
{b0, b1, · · · , bn−1} from {0, 1}m, and the goal is to find a red-blue pair with
minimum Hamming distance. It is easy to see that the Closest Pair Problem
is reducible to the Bichromatic Hamming Closest Pair Problem via a random
reduction. On the other hand, our algorithm for the Closest Pair Problem can
also be easily adapted to solve the Bichromatic Hamming Closest Pair Problem
as follows. Run the decoding part of our algorithm on both sets R and B to
get R̃ = {r̃0, r̃1, · · · , r̃n−1} and B̃ = {b̃0, b̃1, · · · , b̃n−1}, sort R̃ and B̃ separately
(without comparing the orginal vectors for adjacent pairs in the sorted lists),
then merge the two sorted lists into one, and compute the distance between
the original vectors for each red-blue pair of vectors that are compared during
the merging process. On the other hand, the Bichromatic Closest Pair Problem
is unlikely to have truly subquadratic algorithms under some mild conditions.
Assuming the Strong Exponential Time Hypothesis (SETH), for any ε > 0, there
exists a constant c such that when the dimension m = c log n, then there is no
2o(m) · n2−ε-time algorithm for the Bichromatic Closest Pair Problem [1,4,41].

1.4 Full Version of the Paper

Due to space constraints, we omit the remaining sections from this extended
abstract. A full version of this paper is available at https://arxiv.org/abs/1802.
09104.

5 All these results are due to the fact that Valiant’s algorithms are much more robust
to weak correlations than other algorithms. Our algorithms therefore do not give
improved bounds for these learning problems in the general settings.

https://arxiv.org/abs/1802.09104
https://arxiv.org/abs/1802.09104
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