
Genetic and Evolutionary Computation

Genetic
Programming
Theory and
Practice XV

Wolfgang Banzhaf
Randal S. Olson
William Tozier
Rick Riolo Editors

Genetic and Evolutionary Computation

Series Editors:
David E. Goldberg, ThreeJoy Associates, Inc., Urbana, IL, USA
John R. Koza, Stanford University, Los Altos, CA, USA

More information about this series at http://www.springer.com/series/7373

http://www.springer.com/series/7373

Wolfgang Banzhaf • Randal S. Olson
William Tozier • Rick Riolo
Editors

Genetic Programming
Theory and Practice XV

123

Editors
Wolfgang Banzhaf
BEACON Center for the Study
of Evolution in Action and
Department of Computer Science
Michigan State University
East Lansing, MI, USA

William Tozier
Institute for Biomedical Informatics
University of Pennsylvania
Philadelphia, PA, USA

Randal S. Olson
Institute for Biomedical Informatics
University of Pennsylvania
Philadelphia, PA, USA

Rick Riolo
Center for the Study of Complex Systems
University of Michigan
Ann Arbor, MI, USA

ISSN 1932-0167
Genetic and Evolutionary Computation
ISBN 978-3-319-90511-2 ISBN 978-3-319-90512-9 (eBook)
https://doi.org/10.1007/978-3-319-90512-9

Library of Congress Control Number: 2018941244

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-90512-9

Foreword

It was a great pleasure giving our keynotes at GPTP 2017. We thank the organizers
for inviting us. One of us (Jeff Clune) had always heard of and been interested
in attending GPTP, and the other of us (Ken Stanley) had participated before and
looked forward to returning. We both greatly enjoyed the workshop. The gathering
is unique in its size and format, enabling longer, deeper conversations about the
ideas presented than most conferences or workshops allow for. It was exciting to
both see many senior leaders in the field, including many old friends, and meet the
new researchers who have recently entered the field and are doing great work.

For one of us (Jeff), the setting of this workshop was personally meaningful.
I attended the University of Michigan as an undergraduate and had my first taste of
research working with Carl Simon, who is the founding director of the Center for the
Study of Complex Systems, which is the official host of GPTP. Additionally, when
looking for the best university at which to conduct my PhD research, I met with Rick
Riolo, long-time GPTP organizer, in the very building GPTP was held in this year.
It was great to return to Ann Arbor and that specific building so many years later,
thinking back to my origins as a researcher and my desire to dedicate my career to
exactly the questions we collectively discussed and study. We are all fortunate to be
able to spend our lives researching such fascinating topics. It was especially nice
to have Carl visit with the group and for me to be able to personally thank him for
kick-starting my research career so many years ago. It is unfortunate Rick could not
attend, but it was heartwarming to hear how much of an impact he has had on the
GPTP community and how appreciated he is personally and professionally by all
GPTP attendees.

Many of the ideas that were presented and discussed were exciting and innovative
and have great potential. One that strongly resonated with both of us is Lexicase
selection by Lee Spector and his students. One of us (Jeff), along with his PhD
student Joost Huizinga, independently invented a similar idea in the combinatorial
multi-objective evolutionary algorithm (CMOEA). A great function of conferences
is learning about what others in the field are working on and discussing those ideas.
Here was a perfect example. Prior to GPTP, Joost and I were not aware of Lexicase
selection, but the format of the workshop both allowed us to learn about it during

v

vi Foreword

Lee’s presentation and afforded time for a prolonged discussion of it and how it
relates to, and differs from, CMOEA. Joost and I have since experimented with
Lexicase selection and have added it as a comparison algorithm to our upcoming
paper on CMOEA, showing one immediate impact on research the workshop has
already had. More generally, both Ken and I love the ideas behind Lexicase and
CMOEA and believe they can propel the field toward producing more robust,
generalist solutions that solve not just one problem, but many.

There were a multitude of interesting ideas presented and discussed, and we do
not have space here to list them all. We will instead quickly mention a few more
that particularly resonated with us. One is the work by Randy Olson and Jason
Moore on AutoML. We think it is high time to finally realize the long-standing goal
of automating machine learning pipelines. Doing so will both expand the impact
of machine learning throughout society and catalyze faster progress in machine
learning research. A second idea that resonated with us is the Eco-EA algorithm
that Charles Ofria presented on. Jeff recalls the original version of that algorithm,
which was developed by Sherri Goings, Charles, and collaborators at Michigan State
while he was a PhD student. The idea tries to abstract one driver of natural diversity,
which is having multiple niches, each with limited resources. If too many agents are
currently exploiting one niche (e.g., solving one problem, or solving it in a particular
way), there is a reward for some agents in the population to become different in order
to exploit less depleted resources.

In fact, we believe that inventing open-ended evolution, in which a computational
process endlessly creates an increasingly large set of diverse, high-quality solutions,
is one of the great open scientific challenges. We also believe GPTP and similar
evolutionary algorithm communities have the potential to make major advances
toward this goal. A substantial amount of our own research, including much of
what we both presented on in our keynotes, is dedicated to this quest. The Eco-
EA algorithm has inspired some of this work, and we are delighted to see that it is
continuing to be investigated and enhanced. We would be particularly excited to see
how it can be improved to automatically allow niches to be created in a truly open-
ended way. Furthermore, at GPTP, some of the best parts of the gathering include
the side discussions, and open-endedness was a big topic in those conversations. For
Ken, engaging with attendees about some of the hard questions in open-endedness
genuinely broadened his appreciation for and understanding of the problem, even
after studying it for years. That is the kind of outcome that an intimate and extended
gathering like GPTP can offer that other more conventional venues rarely reproduce.
We both hope that GPTP can become a catalyst for the growth of open-endedness
as a field and community.

One of the discussions at the workshop was how to emulate the success of the
community that trains deep neural networks via deep learning. One of us (Jeff)
suggested then that what caused the world to take notice of, celebrate, and heavily
invest in deep learning is simply that it works extremely well on hard problems. He
quoted Steve Martin, who says “be so good they can’t ignore you.” One example of
that was presented at GPTP by Michael Korns. His hedge fund, Korns Associates,
built software for investing based on genetic programming, and Korns credited

Foreword vii

GPTP as crucial in the development of this software. Korns Associates sold some
rights to use this software to Lantern Credit for cash and shares valued at $4.5
million USD. That is a great success story for the community and an example of
building something that works so well that it cannot be ignored. Many of the ideas
above, and the others presented at the workshop and described in these proceedings,
also have the potential to deliver impressive, impossible-to-ignore results. Now
the hard work begins to show their true potential. That requires hard science,
which inevitably includes work on diagnostic (aka “toy”) problems. However, and
importantly, it also requires that we increasingly shoot for the stars. That means
solving problems so challenging that the world will be forced to take notice of the
wonderful work being done by this small but dedicated community. On that note,
let’s roll up our sleeves, set our ambitions high, and get to work!

Loy and Edith Harris Associate Professor in Computer Science Jeff Clune
Director, Evolving Artificial Intelligence Lab
University of Wyoming
Senior Research Scientist, Uber AI Labs
San Francisco, CA, USA
Professor in Computer Science Kenneth O. Stanley
Director, Evolutionary Complexity (EPlex) Lab
University of Central Florida
Senior Research Scientist, Uber AI Labs
San Francisco, CA, USA
February 2018

Preface

The book you hold in hand is the proceedings of the Fifteenth Workshop on Genetic
Programming Theory and Practice, an invitation-only workshop held from May 18–
20, 2017, at the University of Michigan in Ann Arbor, MI, under the auspices of
the Center for the Study of Complex Systems. Since 2003, this annual workshop
has been a forum for theorists in and practical users of genetic programming to
exchange ideas, share insights, and trade observations. The workshop is intention-
ally organized as an event, where speculation is welcome and where participants are
encouraged to discuss ideas or results that are not necessarily ready for publication
in peer-reviewed publication, or have been published in different places and are
summarized in the contributions provided for presentation here.

In addition to our regular sessions and interspersed with discussion sessions were
three invited keynote talks. While regular talks are usually 40 min to present ideas
and take questions, keynote talks are 60 min presentation time plus 10 min for an
immediate question and answer session. Often, the ideas of keynote talks provide
the start for more in-depth discussions during our discussion sessions.

This year, the first keynote speaker was Jeff Clune, University of Wyoming
and Uber AI Lab, with “A talk in two parts: AI Neuroscience, and Harnessing
Illumination Algorithms.” This talk presented what is at the forefront of what
modern AI has to offer these days, mostly through the deep learning technology:
very efficient pattern recognition algorithms, in neural network type representations,
which are not directly conducive to forming an understanding of what is actually
going on. Jeff and his collaborators have come up with a method to examine these
deep neural networks to tease out what they have learned in a particular domain, so
as to understand and be able to predict what would happen if other patterns were fed
into those networks.

The second keynote talk was by Kenneth Stanley of the University of Central
Florida and Uber AI on “New Directions in Open-Ended Evolution.” Ken, who
presently heads the AI lab of Uber, discussed his work on novelty search, and
how the benefits of moving away from a simple fitness goal could inform genetic
programming and allow it to come up with more creative solutions to problems by
promoting diversity through fostering behavioral novelty. His most recent work on

ix

x Preface

minimal criterion evolution featured prominently in his talk and provided plenty of
fodder for discussions on open-ended evolution.

The third keynote talk was presented by Patrick Shafto from the Department
of Mathematics and Computer Science at Rutgers University. His talk, entitled
“Cooperative Inference in Humans and Machines,” addressed a very important new
development in AI/ML—the collaboration of humans and computers to extract
information and produce knowledge from data. It turns out that in the age of big
data this cooperation is much more efficient in producing valuable insights than
either computer algorithms or human learning.

We hope that the contributions published in this collection provide an exciting
snapshot of what is going on in genetic programming!

Acknowledgements

We would like to thank all of the participants for again making GP Theory and
Practice a successful workshop 2017. As is always the case, it produced a lot of
interesting and high-energy discussions, as well as speculative thoughts and new
ideas for further work. The keynote speakers did an excellent job at raising our
awareness and provided thought-provoking ideas about the potential of genetic
programming and its place in the world.

We would also like to thank our financial supporters for making the existence
of GP Theory and Practice possible for the past 15 years, and counting. For 2017,
these include:

• The Center for the Study of Complex Systems at the University of Michigan,
and especially Carl Simon and Charles Doering, the champions of the workshop
series

• John Koza
• Michael F. Korns, Lantern LLC
• Stuart W. Card
• Thomas Kern

A number of people made key contributions to the organization and assisted our
participants during their stay in Ann Arbor. Foremost among them are Linda Wood
and Mita Gibson who made the workshop run smoothly with their diligent efforts
behind the scene before, during, and after the workshop. Special thanks go to the
Springer Publishing Company, for providing the editorial assistance for producing
this book. We are particularly grateful for contractual assistance by Melissa Fearon
at Springer and all their staff has done to make this book possible.

East Lansing, MI, USA Wolfgang Banzhaf
Philadelphia, PA, USA Randall S. Olson
Ann Arbor, MI, USA William Tozier
Ann Arbor, MI, USA Rick Riolo
February 2018

Contents

1 Exploiting Subprograms in Genetic Programming . 1
Steven B. Fine, Erik Hemberg, Krzysztof Krawiec,
and Una-May O’Reilly

2 Schema Analysis in Tree-Based Genetic Programming 17
Bogdan Burlacu, Michael Affenzeller, Michael Kommenda,
Gabriel Kronberger, and Stephan Winkler

3 Genetic Programming Symbolic Classification: A Study 39
Michael F. Korns

4 Problem Driven Machine Learning by Co-evolving Genetic
Programming Trees and Rules in a Learning Classifier System 55
Ryan J. Urbanowicz, Ben Yang, and Jason H. Moore

5 Applying Ecological Principles to Genetic Programming 73
Emily Dolson, Wolfgang Banzhaf, and Charles Ofria

6 Lexicase Selection with Weighted Shuffle . 89
Sarah Anne Troise and Thomas Helmuth

7 Relaxations of Lexicase Parent Selection . 105
Lee Spector, William La Cava, Saul Shanabrook, Thomas Helmuth,
and Edward Pantridge

8 A System for Accessible Artificial Intelligence . 121
Randal S. Olson, Moshe Sipper, William La Cava, Sharon
Tartarone, Steven Vitale, Weixuan Fu, Patryk Orzechowski,
Ryan J. Urbanowicz, John H. Holmes, and Jason H. Moore

9 Genetic Programming Based on Error Decomposition:
A Big Data Approach . 135
Amirhessam Tahmassebi and Amir H. Gandomi

xi

xii Contents

10 One-Class Classification of Low Volume DoS Attacks
with Genetic Programming . 149
Stjepan Picek, Erik Hemberg, Domagoj Jakobovic,
and Una-May O’Reilly

11 Evolution of Space-Partitioning Forest for Anomaly Detection 169
Zhiruo Zhao, Stuart W. Card, Kishan G. Mehrotra,
and Chilukuri K. Mohan

Index . 185

Contributors

Michael Affenzeller Heuristic and Evolutionary Algorithms Laboratory, Univer-
sity of Applied Sciences Upper Austria, Hagenberg, Austria

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Wolfgang Banzhaf BEACON Center for the Study of Evolution in Action and
Department of Computer Science, Michigan State University, East Lansing, MI,
USA

Bogdan Burlacu Heuristic and Evolutionary Algorithms Laboratory, University of
Applied Sciences Upper Austria, Hagenberg, Austria

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Suart W. Card Syracuse University, Syracuse, NY, USA

Emily Dolson BEACON Center for the Study of Evolution in Action and Depart-
ment of Computer Science and Ecology, Evolutionary Biology, and Behavior
Program, Michigan State University, East Lansing, MI, USA

Steven B. Fine MIT CSAIL, Cambridge, MA, USA

Weixuan Fu Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA, USA

Amir H. Gandomi School of Business, Stevens Institute of Technology, Hoboken,
NJ, USA

BEACON Center for the Study of Evolution in Action, Michigan State University,
East Lansing, MI, USA

Thomas Helmuth Hamilton College, Clinton, NY, USA

Erik Hemberg MIT CSAIL, Cambridge, MA, USA

xiii

xiv Contributors

John H. Holmes Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA, USA

Domagoj Jakobovic University of Zagreb, Faculty of Electrical Engineering and
Computing, Zagreb, Croatia

Michael Kommenda Heuristic and Evolutionary Algorithms Laboratory, Univer-
sity of Applied Sciences Upper Austria, Hagenberg, Austria

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Michael F. Korns Lantern Credit LLC, Henderson, NV, USA

Krzysztof Krawiec Poznan Institute of Technology, Poznań, Poland

Gabriel Kronberger Heuristic and Evolutionary Algorithms Laboratory, Univer-
sity of Applied Sciences Upper Austria, Hagenberg, Austria

William La Cava Institute for Biomedical Informatics, University of Pennsylva-
nia, Philadelphia, PA, USA

Kishan G. Mehrotra Syracuse University, Syracuse, NY, USA

Chilukuri K. Mohan Syracuse University, Syracuse, NY, USA

Jason H. Moore Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA, USA

Charles Ofria BEACON Center for the Study of Evolution in Action and Depart-
ment of Computer Science and Ecology, Evolutionary Biology, and Behavior
Program, Michigan State University, East Lansing, MI, USA

Randal S. Olson Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA, USA

Una-May O’Reilly MIT CSAIL, Cambridge, MA, USA

Patryk Orzechowski Institute for Biomedical Informatics, University of Pennsyl-
vania, Philadelphia, PA, USA

Department of Automatics and Biomedical Engineering, AGH University of Sci-
ence and Technology, Krakow, Poland

Edward Pantridge MassMutual, Amherst, MA, USA

Stjepan Picek MIT CSAIL, Cambridge, MA, USA

Saul Shanabrook University of Massachusetts, Amherst, MA, USA

Moshe Sipper Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA, USA

Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

Contributors xv

Lee Spector Hampshire College, Amherst, MA, USA

Amirhessam Tahmassebi Department of Scientific Computing, Florida State
University, Tallahassee, FL, USA

Sharon Tartarone Institute for Biomedical Informatics, University of Pennsylva-
nia, Philadelphia, PA, USA

Sarah Anne Troise Washington and Lee University, Lexington, VA, USA

Ryan J. Urbanowicz Institute for Biomedical Informatics, University of Pennsyl-
vania, Philadelphia, PA, USA

Steven Vitale Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA, USA

Stephan Winkler Heuristic and Evolutionary Algorithms Laboratory, University
of Applied Sciences Upper Austria, Hagenberg, Austria

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Ben Yang Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA, USA

Zhiruo Zhao Syracuse University, Syracuse, NY, USA

Chapter 1
Exploiting Subprograms in Genetic
Programming

Steven B. Fine, Erik Hemberg, Krzysztof Krawiec, and Una-May O’Reilly

Abstract Compelled by the importance of subprogram behavior, we investigate
how much Behavioral Genetic Programming is sensitive to model bias. We exper-
imentally compare two different decision tree algorithms analyzing whether it is
possible to see significant performance differences given that the model techniques
select different subprograms and differ in how accurately they can regress sub-
program behavior on desired outputs. We find no remarkable difference between
REPTree and CART in this regard, though for a modest fraction of our datasets we
find that one algorithm results in superior error reduction than the other. We also
investigate alternative ways to identify useful subprograms beyond examining those
within one program. We propose a means of identifying subprograms from different
programs that work well together. This method combines behavioral traces from
multiple programs and uses the information derived from modeling the combined
program traces.

1.1 Introduction

Our general goal is to improve the level of program complexity that genetic
programming (GP) can routinely evolve [7]. This is toward fulfilling its potential
to occupy a significant niche in the ever advancing field of program synthesis
[4, 15, 19]. Behavioral genetic programming (BGP) is an extension to GP that
advances toward this compelling goal [8, 9]. The intuition of the BGP paradigm
is that during evolutionary search and optimization, we can identify information
characterizing programs by behavioral properties that extend beyond how accurately

S. B. Fine · E. Hemberg · U.-M. O’Reilly (�)
MIT CSAIL, Cambridge, MA, USA
e-mail: sfine@mit.edu; hembergerik@csail.mit.edu; unamay@csail.mit.edu

K. Krawiec
Poznan Institute of Technology, Poznań, Poland
e-mail: krzysztof.krawiec@cs.put.poznan.pl

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_1&domain=pdf
mailto:sfine@mit.edu
mailto:hembergerik@csail.mit.edu
mailto:unamay@csail.mit.edu
mailto:krzysztof.krawiec@cs.put.poznan.pl
https://doi.org/10.1007/978-3-319-90512-9_1

2 S. B. Fine et al.

they match their target outputs. This information from a program “trace” can be
effectively integrated into extensions of the algorithm’s fundamental mechanisms
of fitness-based selection and genetic variation.

To identify useful subprograms BGP commonly exploits the program trace
information (first introduced in [10] which is a capture of the output of every
subprogram within the program for every test data point during fitness evaluation).

The trace is stored in a matrix where the number of rows is equal to the number of
test suite data points, and the number of columns is equal to the number of subtrees
in a given program. The trace captures a full snapshot of all of the intermediate
states of the program evaluation.

BGP then uses the trace to estimate the merit of each subprogram by treating each
column as a feature (or explanatory variable) in a model regression on the desired
program outputs. The accuracy and complexity of the model reveals how useful
the subprograms are. If the model has feature selection capability, it also reveals
specific subprograms within the tree that are partially contributing to the program’s
fitness. BGP uses this information in two ways. It integrates model error and model
complexity into the program’s fitness . Second, it maintains an archive of the most
useful subtrees identified by modeling each program and uses them in an archive-
based crossover . BGP has a number of variants that collectively yield impressive
results, see [8, 9].

In this work, we explore various extensions to the BGP paradigm that are
motivated by two central topics:

1. The impact of bias from the inference model on useful subprogram identi-
fication and program fitness. Model techniques and even the implementation
of the same technique can differ in inductive bias, i.e. error from assumptions
in the learning algorithm, e.g. implementation of a “decision tree” algorithm.
These differences, in turn, impact which subprograms are inserted/retrieved from
the BGP archive and the model accuracy and model complexity factors that are
integrated into a program’s fitness. Therefore, we investigate how sensitive BGP
is to model bias.

How important is it which subprograms the model technique selects and how
accurate a model is? We answer these questions by comparing BGP competence
under two different implementations of decision tree modeling which we observe
have different biases. Our investigation contrasts feature identification and model
accuracy under the two implementations.

2. “Does it play well with others?”: Alternate ways to identify useful sub-
programs. In BGP, the trace matrix is calculated for each program in the
population. This means that feature selection and subprogram fitness estimation
occur within the program context. Essentially, each subprogram is juxtaposed
with “relatives”—its parent, neighbors and even children in GP tree terms. Does
this context provide the best means of identifying useful subprograms? It may
not. Crossover moves a subprogram into another program so, to work most
effectively, the BGP process should explore recombinations of subprograms that
work well with other subprograms and programs in the population. We examine

1 Exploiting Subprograms in Genetic Programming 3

this idea by concatenating program traces from a set of programs, not solely
one program. We then feed the concatenated trace into a model regression.
This demands a new measure of fitness to reflect how many subprograms each
program contributes to the resulting model. This new measure of fitness can be
integrated into the program’s fitness. We examine concatenation of the entire
population and sub-populations that are selected based on fitness.

Our specific demonstration focus herein is symbolic regression (SR). We choose
SR because it remains a challenge and has good benchmarks [12] so it allows us
to measure progress and extensions. It also has real world application to system
identification and, with modest modification, machine learning regression and
classification. In passing, we replicate BGP logic, making our project software
available with an open source license.

We proceed as follows. We start with related work in Sect. 1.2. In Sect. 1.3 we
provide descriptions of our methods of comparison and investigation. In Sect. 1.4 we
provide implementation and experimental details and results. Section 1.5 concludes
and mentions future work.

1.2 Related Work

BGP is among a number of other approaches to program synthesis where progress
has recently become more empirically driven, rather than driven by formal specifica-
tions and verification [1]. Alternative approaches to evolutionary algorithms include
sketching [16], i.e. communicating insight through a partial program, generalized
program verification [17], as well as hybrid computing with neural network and
external memory [3].

BGP takes inspiration, with respect to its focus on program behavior, from
earlier work on implicit fitness sharing [13], trace consistency analysis and the
use of archives as a form of memory [6]. In its introduction in [10] the preceding
introduction of the trace matrix was noted within a system called Pattern Guided
Genetic Programming, “PANGEA”. In PANGEA minimum description length was
induced from the program execution. Subsequently there have been a variety
of extensions. For example, in the general vein of behaviorally characterizing a
program by more than its accuracy [11] considers discovering search objectives for
test-based problems. Also notable is Memetic Semantic Genetic Programming [2].

BGP was introduced as a broader and more detailed take on Semantic GP. BGP
and Semantic GP share the common goal of characterising program behavior in
more detail and exploiting this information. Whereas BGP looks at subprograms,
semantic GP focuses on program output. Output is scrutinized for every test
individually and a study of the impact of crossover on program semantics and
semantic building blocks [14] was conducted. A survey of semantic models in GP
[18] gives an overview of methods for their operators, as well as different objectives.

4 S. B. Fine et al.

1.3 Exploiting Subprograms

1.3.1 BGP Strategy

What emerges from the details of BGP’s successful examples is a stepwise
strategy:

1. For each program in the population, capture the behavior of each subprograms in
a trace matrix T .

2. Regress T as feature data on the desired program outputs and derive a model M .
3. Assign a value of merit w to each subprogram in M . Use this merit to determine

whether it should be inserted into an archive. Use a modified crossover that draws
subprograms from the archive.

4. Integrate model error e and complexity c into program fitness.

One example of the strategy is realized in [9] where, in Step (2), the fast RepTree
(REPT—Reduced Error Pruning Tree) algorithm of decision tree classification from
the WEKA Data Mining software library [5] is used for regression modeling. REPT
builds a decision/regression tree using information gain/variance. In Step (3) merit
is measured per Eq. (1.1) where |U(p)| is the number of subprograms (equivalently
distinct columns of the trace) used in the model and e is model error.

w = 1

(1 + e)|U(p)| (1.1)

1.3.2 Exploring Model Bias

Following our motivation to understand the impact of model bias on useful subpro-
gram identification and program fitness, we first explore an alternative realization
of BGP’s strategy by using the CART optimized version of the CART decision tree
algorithm.1 CART (Classification and Regression Trees) is very similar to C4.5,
but it differs in that it supports numerical target variables (regression) and does not
compute rule sets. CART constructs binary trees using the feature and threshold that
yield the largest information gain at each node. With the CART implementation we
derive a model in the same manner that we derive a model from REPT. We denote
the model derived for CART by MS and contrast it with the model derived from
REPT, which we now denote by MR .

1http://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart.

http://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart

1 Exploiting Subprograms in Genetic Programming 5

1.3.3 Identifying Useful Subprograms

Next we realize alternative implementations of the BGP strategy. We do this to
investigate alternative ways of identifying useful subprograms, considering that
prior work only considers models that are trained on the trace of a single program.
In Step (1) we first select a set of programs C from the population. We then form a
new kind of trace matrix, Tc, by column-wise concatenating all T ’s of the programs
in C. In a version we call FULL, Tc is then passed through Step (2). We proceed
with Step (3), but it is important to note that the weights given to the subprograms
considered for the archive are identical, because only a single model is built. Step (4)
is altered to incorporate model contribution in place of model error and complexity.
The model is built from the features of many programs, so the model error and
model complexity for each individual program are undefined. Model contribution
measures how many features each program contributes to M . For this we use wc,
which is given by Eq. (1.2), where p′ is the number of features in M from program
p, and |U(M)| is the total number of features from Tc used in M . This method
allows us to experiment with different programs in C, trying C containing all the
programs in the population, for diversity and, conversely trying elitism, holding only
a top fraction of the population by fitness.

wc = 1 − p′

|U(M)| (1.2)

An alternative implementation, that we name DRAW, is to draw random subsets
from Tc, and build a model on each. This would possibly contribute to a more robust
archive, if it can be populated with subtrees that are frequently selected by the
machine learning model. We modify Step (3) to account for the possibility that a
specific subtree was chosen to be in more than one model. In this case, the subtree’s
merit w is set to be the sum of the assigned merit values each time the subtree is
chosen. Step (4) is modified in the same way as it is in FULL.

Implementation details of FULL and of DRAW are provided in the next section.

1.4 Experiments

We start this section by detailing the benchmarks we use, the parameters of our
algorithms and name our algorithm configurations for convenience. Section 1.4.2
then evaluates the impact of different decision tree algorithms. Section 1.4.3
evaluates the performance of FULL and DRAW for different configurations then
compares FULL, DRAW and program-based model techniques.

6 S. B. Fine et al.

1.4.1 Experimental Data, Parameters

Our investigation uses 17 symbolic regression benchmarks from [12]. All of the
benchmarks are defined such that the dependent variable is the output of a particular
mathematical function for a given set of inputs. All of the inputs are taken to form a
grid on some interval. Let E[a, b, c] denote c samples equally spaced in the interval
[a, b]. (Note that McDermott et al. defines E[a, b, c] slightly differently.) Below is
a list of all of the benchmarks that are used:

1. Keijzer1: 0.3x sin(2πx); x ∈ E[−1, 1, 20]
2. Keijzer11: xy + sin((x − 1)(y − 1)); x, y ∈ E[−3, 3, 5]
3. Keijzer12: x4 − x3 + y2

2 − y; x, y ∈ E[−3, 3, 5]
4. Keijzer13: 6 sin(x) cos(y); x, y ∈ E[−3, 3, 5]
5. Keijzer14: 8

2+x2+y2 ; x, y ∈ E[−3, 3, 5]
6. Keijzer15: x3

5 − y3

2 − y − x; x, y ∈ E[−3, 3, 5]
7. Keijzer4: x3e−x cos(x) sin(x)(sin2(x) cos(x) − 1); x ∈ E[0, 10, 20]
8. Keijzer5: 3xz

(x−10)y2 ; x, y ∈ E[−1, 1, 4]; z ∈ E[1, 2, 4]
9. Nguyen10: 2 sin(x) cos(y); x, y ∈ E[0, 1, 5]

10. Nguyen12: x4 − x3 + y2

2 − y; x, y ∈ E[0, 1, 5]
11. Nguyen3: x5 + x4 + x3 + x2 + x; x ∈ E[−1, 1, 20]
12. Nguyen4: x6 + x5 + x4 + x3 + x2 + x; x ∈ E[−1, 1, 20]
13. Nguyen5: sin(x2) cos(x) − 1; x ∈ E[−1, 1, 20]
14. Nguyen6: sin(x) + sin(x + x2); x ∈ E[−1, 1, 20]
15. Nguyen7: ln(x + 1) + ln(x2 + 1); x ∈ E[0, 2, 20]
16. Nguyen9: sin(x) + sin(y2); x, y ∈ E[0, 1, 5]
17. Sext: x6 − 2x4 + x2; x ∈ E[−1, 1, 20]

We use a standard implementation of GP and chose parameters according to
settings documented in [9].

Fixed Parameters

• Tournament size: 4
• Population size: 100
• Number of Generations: 250
• Maximum Program Tree Depth: 17
• Function set2: {+,−, ∗, /, log, exp, sin, cos,−x}
• Terminal set: Only the features in the benchmark.
• Archive Capacity: 50
• Mutation Rate μ: 0.1
• Crossover Rate with Archive configuration χ : 0.0

2Note that for our implementation of /, if the denominator is less than 10−6 we return 1, and for
our implementation of log, if the argument is less than 10−6 we return 0.

1 Exploiting Subprograms in Genetic Programming 7

• Crossover Rate with GP χ : 0.9
• Archive-Based Crossover Rate α: 0.9
• REPTree defaults but no pruning
• CART defaults
• Number of runs 30

We use the same four program fitness functions used in [9] (in addition to model
contribution fitness which is described in Sect. 1.3.3). Program error f , is given
by Eq. (1.3), where ŷ is the output of the program, y is the desired output, and dm

denotes the Manhattan distance between the two arguments. Program size s, is given
by Eq. (1.4), where |p| is the number of nodes in the tree that defines the program.
Model error e, is given by Eq. (1.5), where M is the output of the machine learning
model when it is evaluated on the trace of the program. Model complexity c, is given
by Eq. (1.6), where |M| is the size of the model.

f = 1 − 1

1 + dm(ŷ, y)
(1.3)

s = 1 − 1

|p| (1.4)

e = 1 − 1

1 + dm(M, y)
(1.5)

c = 1 − 1

|M| (1.6)

First we use the 3 BGP algorithm configurations that use REPT to replicate [9]’s
work on the symbolic regression benchmarks. These we call BP2A, BP4, BP4A
following precedent. In the name the digit 2 indicates that model error e and
complexity c were not integrated into program fitness while 4 indicates they were.
The suffix A indicates whether or not subprograms from the model were qualified
for archive insertion and archive retrieval during BGP crossover. When the A is
omitted ordinary crossover is used. We observe results consistent with the prior
work. Our open source software is available on Github.3 This allowed us to proceed
to evaluate feature selection sensitivity to the modeling algorithm.

It is important to note, that for each configuration we report regression, i.e. train-
ing set performance. We are primarily interested in exploring subprogram behavior
and how to assemble subprograms. Reporting generalization would complicate the
discussion without materially affecting our conclusions.

3https://github.com/flexgp/BehavioralGP.

https://github.com/flexgp/BehavioralGP

8 S. B. Fine et al.

Table 1.1 Comparison of
impact of REPT vs CART for
average fitness rank across all
data sets

Configuration Average rank

1 BP2A REPT 1.82

2 BP2A CART 2.94

3 BP4A CART 3.06

4 BP4 CART 3.18

5 BP4A REPT 4.65

6 BP4 REPT 5.35

1.4.2 Sensitivity to Model Bias

Q1. Does the feature selection bias of the model step matter?
Table 1.1 shows the results of running the three different configurations (BP2A,

BP4, BP4A) each with the two decision tree algorithms. Averaging over the rankings
across each benchmark we find that BP2A using REPT is best. For BP2A, REPT
outranks CART but when model error is integrated into the program fitness, (i.e.
BP4A and BP4) regardless of whether or not an archive is used, CART is superior
to REPT.

When we compare the results of using the archive while model error is integrated
into the program fitness (i.e. BP4A to BP4), for both REPT and CART it is better to
use an archive than to forgo one. Comparing BP2A with BP4A, we can measure the
impact of model error and complexity integration. We find that for both CART and
REPT it is not helpful to integrate model error and complexity into program fitness.

For a deeper dive, at the specific benchmark level, Table 1.2 shows the average
best fitness at end of run (of 30 runs), for each benchmark. Averaging all fitness
results, no clear winner is discernible. For certain comparisons CART will be
superior while for others REPT is. We also show one randomly selected run of
Keijzer1 running with REPT modeling and configuration BP4 in Fig. 1.1. We plot
on the first row model error on the left and the fitness of the best program (right).
The plots on the second row show number of features of model and number of
subprograms in the best program (right). The plots on the third row show the ratio
of number of model features to program subtrees (left) and ratio of model error to
program fitness. Since the run is configured for BP4 program fitness integrates both
model error and complexity. No discernible difference arose among this sort of plot.
This is understandable given the stochastic nature of BGP.

We conclude that in this case of different decision tree algorithms perhaps the
subtlety of contrast is not strong enough.

1.4.3 Aggregate Trace Matrices

In this section, we compare various configurations of FULL and DRAW. For the
algorithm configurations of this section, we adopt a clearer notation. We drop

1 Exploiting Subprograms in Genetic Programming 9

Table 1.2 Comparison of different decision tree algorithms: REPT and CART on average
program error for best of run programs (averaged across 30 runs)

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 –

BP2A REPT 0.243 0.776 0.972 0.393 0.723 0.883 0.384 0.975 –

CART 0.327 0.769 0.966 0.481 0.726 0.907 0.468 0.977 –

BP4 REPT 0.359 0.852 0.982 0.817 0.872 0.922 0.522 0.993 –

CART 0.357 0.684 0.968 0.548 0.776 0.887 0.513 0.991 –

BP4A REPT 0.319 0.804 0.981 0.765 0.821 0.919 0.505 0.991 –

CART 0.261 0.811 0.973 0.507 0.691 0.94 0.471 0.981 –

Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext

BP2A REPT 0.11 0.343 0.196 0.265 0.037 0.091 0.122 0.068 0.052
CART 0.199 0.379 0.2 0.285 0.04 0.119 0.127 0.075 0.054

BP4 REPT 0.309 0.388 0.193 0.33 0.103 0.133 0.117 0.165 0.127

CART 0.144 0.36 0.266 0.288 0.126 0.0 0.104 0.04 0.083

BP4A REPT 0.209 0.386 0.22 0.328 0.088 0.117 0.128 0.194 0.1

CART 0.264 0.379 0.219 0.273 0.034 0.088 0.115 0.065 0.056

N.B. program error does NOT include program size. During evolution the fitness of a program
integrates program error and size per [9]

the BGP prefix and use M to denote when program contribution is integrated
into program fitness, and M̂ to denote when it is not. We use A to denote when
subprograms are qualified for archive insertion and archive retrieval during BGP
crossover, and Â to denote when ordinary crossover is used.

More details of the DRAW method are appropriate. Referencing [9] we analyze
the formula for computing the weight of a given subtree (see Eq. (1.1)). We
note that the |U(p)| factor in its denominator indirectly increases the weight of
smaller subprograms. This occurs because smaller programs yield smaller models
(i.e. smaller |U(p)|), and smaller programs have smaller subprograms. Therefore
we designed DRAW to also favor the archiving of smaller subprograms. DRAW
proceeds as follows:

1. The population is sorted best to worst by program fitness (program error and
size) using the NSGA pareto front crowding calculation because BGP is multi-
objective.

2. The sorted population is cut off from below at a threshold λ% to form C. The
trace matrixes of every program in C are concatenated to form TC which we call
the subprogram pool.

3. We next sort the population by size and select the smallest 20% forming a size
sample we call K .

4. Finally we draw from K at random to obtain the number of subprograms that
will be collectively modeled. Then we select the equivalent number of columns
at random from TC and form a model. We repeat this step each time for the
size of the population. This generates multiple smaller collections of diverse
subprograms.

10 S. B. Fine et al.

Fig. 1.1 We take one run of Keijzer1 running with REPT modeling and configuration BP4. We
plot on the first row model error on the left and the fitness of the best program (right). The plots on
the second row show number of features of model and number of subprograms in the best program
(right). The plots on the third row show the ratio of number of model features to program subtrees
(left) and ratio of model error to program fitness. Since the run is configured for BP4 program
fitness integrates both model error and complexity

Q2. Can trace matrix concatenation which pools subprograms among different
programs improve BGP performance?

We first asked what if C is composed of every subprogram in the population,
i.e. |C| = PopSize? While this C using FULL would only support one model
being derived, it would give all subprograms in the population an opportunity to be
used with each other in the model as features. Similarly, by favoring many smaller
combinations drawn from all subprograms, DRAW would, through repetition, give
all subprograms in the population an opportunity to be used with some of the
all the others. If we compare the result of DRAW and FULL we can gauge the
difference between generating many more small models vs one bigger model,
when every subprogram in the population is “eligible” to be selected as a model
feature. This comparison is detailed on the bottom line of Table 1.3. The leftmost
averaged ranking results (by average fitness, across the 17 benchmarks) for different
model and archive options are from DRAW and the rightmost are from FULL.
The data reveal that using all the subprograms, with either FULL or DRAW is

1 Exploiting Subprograms in Genetic Programming 11

Table 1.3 DRAW (lhs) and
FULL (rhs) average rank
varying model fitness signal
(M or M̂) and use of archive
(A or Â) for 17 benchmarks

C M̂A MÂ MA M̂A MÂ MA

25 3.06 2.24 2.35 1.65 2.18 1.41
50 2.29 1.82 1.88 2.41 1.88 2.29

75 2.29 2.0 2.0 3.06 2.12 2.65

100 2.35 3.94 3.76 2.88 3.82 3.65

NOT advantageous. Further empirical investigation to understand this result should
consider two issues: (1) the program size to fitness distribution of the population
each generation could be leading to very large number of subprograms and (2) the
modeling algorithm (REPT) may be overwhelmed, in the case of FULL, by the
number of features, given the much smaller number of training cases for the
regression.

Next we can consider the rankings of each configuration across different
selections for the subprogram pool C. When λ = 25 the model feature options
are from the highest fitness tier of the population. In four of six cases, this appears
to impede the error of the best of run program, as measured by average ranking. In
four of six cases, including all three of DRAW, sizing the subprogram pool to be
slightly less elitist (λ = 50 or λ = 75) was better. But extending λ to 100 appears to
be too diverse. Tables 1.4 and 1.5 provide more detailed average fitness and ranking
information, i.e. results for each individual benchmark.

Finally, we compare these configurations to the three original BGP configura-
tions. We find that the best performing method is highly dependent on the specific
benchmark, and that overall none of the configurations is shown to be the clear
winner.

1.5 Conclusions and Future Work

The paper’s primary contributions are to explore two subprogram value driven
questions. The first question addressed the importance of a choice of modeling
algorithm. The modeling algorithm can impact selective pressure (because model
fitness can be integrated back into program fitness) and genetic variation (because
subprograms used by a model can be inserted into the BGP archive and used in
BGP crossover). We tried two algorithms for decision trees: REPT and CART.
Neither of the algorithms produced significantly better results across all the 17
benchmarks. For some benchmarks the average fitness results were significantly
different but, again, neither of algorithms was consistently superior in each case.
Using a completely different modeling technique, i.e. one different from decision
trees altogether, that also provides feature selection would be an interesting
comparison to using REPT. All feature selection algorithms are stochastic so their
results vary. Perhaps the stochasticity of any algorithm overwhelms the impact of a
particular technique’s bias. We next will consider whether the stronger dissimilarity

12 S. B. Fine et al.

Table 1.4 Sampling subprograms for modeling across the population, not from one program

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 –

Draw 25 0.306 0.704 0.976 0.436 0.768 0.845 0.371 0.975 –

M̂A Draw 50 0.286 0.604 0.969 0.422 0.731 0.866 0.376 0.967 –

Draw 75 0.246 0.716 0.968 0.325 0.736 0.869 0.347 0.974 –

Draw 100 0.253 0.695 0.969 0.382 0.716 0.877 0.33 0.972 –

Full 25 0.278 0.812 0.956 0.621 0.761 0.88 0.457 0.977 –

Full 50 0.279 0.883 0.979 0.564 0.748 0.921 0.411 0.981 –

Full 75 0.302 0.864 0.976 0.604 0.804 0.925 0.453 0.982 –

Full 100 0.272 0.864 0.982 0.565 0.809 0.947 0.397 0.977 –

Draw 25 0.322 0.89 0.979 0.732 0.786 0.889 0.601 0.991 –

MÂ Draw 50 0.314 0.824 0.979 0.697 0.798 0.888 0.55 0.986 –

Draw 75 0.337 0.865 0.979 0.723 0.819 0.886 0.562 0.99 –

Draw 100 0.367 0.908 0.986 0.879 0.846 0.962 0.598 0.993 –

Full 25 0.288 0.875 0.973 0.478 0.783 0.867 0.516 0.987 –

Full 50 0.301 0.851 0.967 0.463 0.834 0.894 0.52 0.984 –

Full 75 0.317 0.824 0.974 0.538 0.781 0.886 0.499 0.986 –

Full 100 0.368 0.833 0.979 0.708 0.838 0.949 0.536 0.991 –

Draw 25 0.301 0.808 0.976 0.625 0.798 0.919 0.385 0.984 –

MA Draw 50 0.295 0.803 0.975 0.54 0.735 0.927 0.404 0.984 –

Draw 75 0.292 0.797 0.975 0.567 0.73 0.937 0.426 0.988 –

Draw 100 0.306 0.866 0.986 0.814 0.751 0.961 0.489 0.991 –

Full 25 0.304 0.847 0.974 0.685 0.767 0.936 0.498 0.985 –

Full 50 0.315 0.872 0.981 0.656 0.763 0.936 0.421 0.988 –

Full 75 0.317 0.902 0.984 0.626 0.78 0.95 0.474 0.986 –

Full 100 0.326 0.903 0.987 0.759 0.81 0.953 0.496 0.989 –

Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext

Draw 25 0.162 0.341 0.172 0.301 0.056 0.074 0.132 0.241 0.058

M̂A Draw 50 0.107 0.353 0.194 0.295 0.045 0.089 0.103 0.159 0.059

Draw 75 0.089 0.351 0.215 0.278 0.06 0.1 0.118 0.206 0.044
Draw 100 0.123 0.356 0.217 0.285 0.03 0.129 0.115 0.165 0.047

Full 25 0.232 0.385 0.297 0.33 0.058 0.159 0.204 0.212 0.062

Full 50 0.294 0.387 0.337 0.37 0.06 0.264 0.195 0.301 0.086

Full 75 0.364 0.395 0.316 0.361 0.059 0.271 0.225 0.306 0.088

Full 100 0.304 0.393 0.376 0.372 0.081 0.277 0.179 0.214 0.129

Draw 25 0.185 0.361 0.233 0.283 0.107 0.103 0.144 0.197 0.076

MÂ Draw 50 0.183 0.393 0.307 0.322 0.081 0.088 0.15 0.165 0.081

Draw 75 0.22 0.356 0.236 0.246 0.064 0.108 0.136 0.242 0.088

Draw 100 0.377 0.43 0.363 0.442 0.156 0.186 0.246 0.267 0.127

Full 25 0.163 0.346 0.23 0.302 0.072 0.069 0.119 0.174 0.093

Full 50 0.121 0.338 0.23 0.274 0.048 0.117 0.144 0.132 0.066

Full 75 0.168 0.353 0.188 0.23 0.067 0.085 0.161 0.172 0.074

Full 100 0.218 0.384 0.321 0.318 0.083 0.198 0.157 0.24 0.129

(continued)

1 Exploiting Subprograms in Genetic Programming 13

Table 1.4 (continued)

Draw 25 0.211 0.361 0.287 0.329 0.082 0.205 0.147 0.336 0.072

MA Draw 50 0.235 0.349 0.303 0.296 0.073 0.204 0.156 0.287 0.074

Draw 75 0.274 0.364 0.257 0.329 0.06 0.171 0.124 0.318 0.074

Draw 100 0.315 0.408 0.393 0.455 0.113 0.255 0.24 0.257 0.093

Full 25 0.282 0.358 0.295 0.384 0.067 0.262 0.188 0.271 0.086

Full 50 0.349 0.369 0.356 0.452 0.072 0.302 0.271 0.289 0.098

Full 75 0.326 0.394 0.397 0.436 0.097 0.351 0.239 0.357 0.13

Full 100 0.428 0.423 0.507 0.449 0.158 0.383 0.268 0.236 0.168

Two methods DRAW and FULL were evaluated. Data shows average fitness of each algorithm
configuration across all benchmarks

Table 1.5 Rank based program error for best of run programs

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 –

Draw 25 4 3 4 4 4 1 3 4 –

M̂A Draw 50 3 1 3 3 2 2 4 1 –

Draw 75 1 4 1 1 3 3 2 3 –

Draw 100 2 2 2 2 1 4 1 2 –

Full 25 2 1 1 4 2 1 4 2 –

Full 50 3 4 3 1 1 2 2 3 –

Full 75 4 2 2 3 3 3 3 4 –

Full 100 1 3 4 2 4 4 1 1 –

Draw 25 2 3 2 3 1 3 4 3 –

MÂ Draw 50 1 1 3 1 2 2 1 1 –

Draw 75 3 2 1 2 3 1 2 2 –

Draw 100 4 4 4 4 4 4 3 4 –

Full 25 1 4 2 2 2 1 2 3 –

Full 50 2 3 1 1 3 3 3 1 –

Full 75 3 1 3 3 1 2 1 2 –

Full 100 4 2 4 4 4 4 4 4 –

Draw 25 3 3 3 3 4 1 1 2 –

MA Draw 50 2 2 1 1 2 2 2 1 –

Draw 75 1 1 2 2 1 3 3 3 –

Draw 100 4 4 4 4 3 4 4 4 –

Full 25 1 1 1 3 2 1 4 1 –

Full 50 2 2 2 2 1 2 1 3 –

Full 75 3 3 3 1 3 3 2 2 –

Full 100 4 4 4 4 4 4 3 4 –

(continued)

14 S. B. Fine et al.

Table 1.5 (continued)

Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext

Draw 25 4 1 1 4 3 1 4 4 3

M̂A Draw 50 2 3 2 3 2 2 1 1 4

Draw 75 1 2 3 1 4 3 3 3 1

Draw 100 3 4 4 2 1 4 2 2 2

Full 25 1 1 1 1 1 1 3 1 1

Full 50 2 2 3 3 3 2 2 3 2

Full 75 4 4 2 2 2 3 4 4 3

Full 100 3 3 4 4 4 4 1 2 4

Draw 25 2 2 1 2 3 2 2 2 1

MÂ Draw 50 1 3 3 3 2 1 3 1 2

Draw 75 3 1 2 1 1 3 1 3 3

Draw 100 4 4 4 4 4 4 4 4 4

Full 25 2 2 2 3 3 1 1 3 3

Full 50 1 1 3 2 1 3 2 1 1

Full 75 3 3 1 1 2 2 4 2 2

Full 100 4 4 4 4 4 4 3 4 4

Draw 25 1 2 2 2 3 3 2 4 1

MA Draw 50 2 1 3 1 2 2 3 2 3

Draw 75 3 3 1 3 1 1 1 3 2

Draw 100 4 4 4 4 4 4 4 1 4

Full 25 1 1 1 1 1 1 1 2 1

Full 50 3 2 2 4 2 2 4 3 2

Full 75 2 3 3 2 3 3 2 4 3

Full 100 4 4 4 3 4 4 3 1 4

between the modeling bias of LASSO and decision trees has significant impact.
LASSO is a linear technique and has a regularization pressure parameter making it
an interesting option.

Our second investigation explored choosing different sets of subprograms for
modeling. Rather than use all the subprograms of one program, it mixed sub-
programs across a subset of programs from the entire population. Our question
was whether identifying useful subprograms in this way and integrating them
into selection (via integration of model fitness for a program) and/or genetic
variation (via archive based crossover) would yield superior error for the best of run
program. Again, we found our results to be equivocal. None of the configurations
emerged consistently superior. Again, however ranking and error differed among
benchmarks.

This work brings to light particular paths that extend the concepts and under-
standing of BGP. There are several avenues that could be explored:

1. It would be interesting to see if using a machine learning model whose purpose
is more in line with what BGP asks for would benefit the evolutionary process.

1 Exploiting Subprograms in Genetic Programming 15

For example, instead of building an entire machine learning model on the trace,
one could use a feature selection technique, or measure the statistical correlation
between the columns. The output would provide material with which to populate
the archive. However, this would not provide additional fitness measures.

2. It is unclear exactly why the BGP model that uses the combined traces of all of
the programs in the population performed less well than running the model on
each program trace independently. It is possible that the idea has merit, but the
particulars were not a good fit for BGP. In particular, in each generation only a
single machine learning model is built. Therefore, all of the selected trees put
into the archive in a single generation have the same weight.

3. In BGP if two subtrees have identical columns in the program trace (i.e. identical
semantics), only the smaller subtree is kept. This introduces a bias that is not
necessarily beneficial to the evolutionary process. It would be interesting to
explore how common subtrees with identical semantics are, and if choosing the
smaller tree is the better choice.

References

1. David Basin, Yves Deville, Pierre Flener, Andreas Hamfelt, and Jürgen Fischer Nilsson.
Synthesis of programs in computational logic. In PROGRAM DEVELOPMENT IN COMPU-
TATIONAL LOGIC, pages 30–65. Springer, 2004.

2. Robyn Ffrancon and Marc Schoenauer. Memetic semantic genetic programming. In Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15,
pages 1023–1030, New York, NY, USA, 2015. ACM.

3. Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John
Agapiou, et al. Hybrid computing using a neural network with dynamic external memory.
Nature, 538(7626):471–476, 2016.

4. Sumit Gulwani. Dimensions in program synthesis. In Proceedings of the 12th international
ACM SIGPLAN symposium on Principles and practice of declarative programming, pages
13–24. ACM, 2010.

5. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18,
November 2009.

6. Thomas Haynes. On-line adaptation of search via knowledge reuse. Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 156–161. Morgan Kaufmann
Publishers Inc., 1997.

7. John R Koza. Genetic programming: on the programming of computers by means of natural
selection, volume 1. MIT press, 1992.

8. Krzysztof Krawiec. Behavioral Program Synthesis with Genetic Programming, volume 618 of
Studies in Computational Intelligence. Springer International Publishing, 2015.

9. Krzysztof Krawiec and Una-May O’Reilly. Behavioral programming: a broader and more
detailed take on semantic gp. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pages 935–942. ACM, 2014.

10. Krzysztof Krawiec and Jerry Swan. Pattern-guided genetic programming. In Proceedings of
the 15th annual conference on Genetic and evolutionary computation, pages 949–956. ACM,
2013.

16 S. B. Fine et al.

11. Paweł Liskowski and Krzysztof Krawiec. Online discovery of search objectives for test-based
problems. Evolutionary Computation, 25:375–406, 2016.

12. James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo
Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong, et al.
Genetic programming needs better benchmarks. In Proceedings of the 14th annual conference
on Genetic and evolutionary computation, pages 791–798. ACM, 2012.

13. Robert I McKay. Fitness sharing in genetic programming. In Proceedings of the 2nd Annual
Conference on Genetic and Evolutionary Computation, pages 435–442. Morgan Kaufmann
Publishers Inc., 2000.

14. Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison. Semantic building blocks in genetic
programming. In European Conference on Genetic Programming, pages 134–145. Springer,
2008.

15. Martin C Rinard. Example-driven program synthesis for end-user programming: technical
perspective. Communications of the ACM, 55(8):96–96, 2012.

16. Armando Solar-Lezama. Program synthesis by sketching. PhD Thesis, University of Califor-
nia, Berkeley, 2008.

17. Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. From program verification to program
synthesis. In ACM Sigplan Notices, volume 45, pages 313–326. ACM, 2010.

18. Leonardo Vanneschi, Mauro Castelli, and Sara Silva. A survey of semantic methods in genetic
programming. Genetic Programming and Evolvable Machines, 15(2):195–214, 2014.

19. Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. Automatic
program repair with evolutionary computation. Communications of the ACM, 53(5):109–116,
2010.

Chapter 2
Schema Analysis in Tree-Based Genetic
Programming

Bogdan Burlacu, Michael Affenzeller, Michael Kommenda,
Gabriel Kronberger, and Stephan Winkler

Abstract In this chapter we adopt the concept of schemata from schema theory
and use it to analyze population dynamics in genetic programming for symbolic
regression. We define schemata as tree-based wildcard patterns and we empirically
measure their frequencies in the population at each generation. Our methodology
consists of two steps: in the first step we generate schemata based on genealogical
information about crossover parents and their offspring, according to several
possible schema definitions inspired from existing literature. In the second step, we
calculate the matching individuals for each schema using a tree pattern matching
algorithm. We test our approach on different problem instances and algorithmic
flavors and we investigate the effects of different selection mechanisms on the
identified schemata and their frequencies.

2.1 Introduction

2.1.1 Diversity and Evolutionary Dynamics

“Evolutionary dynamics” is an often-encountered expression in genetic program-
ming (GP) research. It refers to changes within the population, such as quality
and size distribution [15], genotype-phenotype maps and neutral networks [4, 9],

B. Burlacu (�) · M. Affenzeller · M. Kommenda · S. Winkler
Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper
Austria, Hagenberg, Austria

Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria
e-mail: bogdan.burlacu@fh-hagenberg.at; michael.affenzeller@heuristiclab.com;
michael.kommenda@fh-hagenberg.at; stephan.winkler@fh-hagenberg.at

G. Kronberger
Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper
Austria, Hagenberg, Austria
e-mail: gabriel.kronberger@fh-hagenberg.at

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_2&domain=pdf
mailto:bogdan.burlacu@fh-hagenberg.at
mailto:michael.affenzeller@heuristiclab.com
mailto:michael.kommenda@fh-hagenberg.at
mailto:stephan.winkler@fh-hagenberg.at
mailto:gabriel.kronberger@fh-hagenberg.at
https://doi.org/10.1007/978-3-319-90512-9_2

18 B. Burlacu et al.

diversity [5, 6], modularity and building blocks [11, 25], bloat [18], evolvability [2,
22] or emergent phenomena [3].

The dynamics of the population are uniquely influenced by the interplay between
selection and recombination operators (crossover, mutation), as well as specific
parameterizations and problem instances. As a biologically-inspired process, GP is
able to deal with noisy data, multiple local optima, non-smooth objective functions,
while also critically depending on genetic diversity in order to evolve the solution
candidates towards the given goal. Population diversity at both the genotypic and
phenotypic level remains one of the main focus points for GP research.

In this work we analyze population diversity looking at the distribution of
solution candidates into subsets that belong to the same schema or structural
template. We define such templates as rooted trees containing wildcard node
symbols in their structure. Additionally, we describe population convergence via
schema frequency curves over the evolutionary run.

2.1.2 Genetic Programming Schemata

The study of schema theorems began with John Holland’s work on providing a
mathematical justification for the performance of genetic algorithms. The canonical
version of a genetic algorithm (Holland [8]) used a fixed-length binary string
encoding where each bit took a value from the set {0, 1}. Holland then defined
schemata (or schemata) as binary string templates with symbols from the set
{0, 1, ∗}, where ∗ represents a wildcard symbol that can be matched by either a
0 or a 1.

The fixed length schemata, each equivalent to a hyperplane in the search space,
represented suitable theoretical instruments for the analysis of genetic operators
and their effects on the distribution of solution candidates along the hyperplanes, in
relation with the average fitness of the population. Holland’s schema theory states
that the number of low-order, low defining-length schemata with above average
fitness increases exponentially between successive generations, where:

• A schema’s order is given by the number of fixed positions in the binary string
• The defining length is given by the distance between the first and last fixed

positions in the binary string
• Schema average fitness is the average fitness if its matching individuals

In this context, low-order, low-defining-length schemata are seen as building blocks,
structural patterns increasingly sampled by selection and used by the genetic
algorithm to assemble better and better solutions.

It was later shown by Poli [13] that Holland’s findings are also valid in the context
of GP, with some small provisions: “building blocks in GP and variable-size GAs
with one-point crossover exist, but they are not necessarily all short, low-order or
highly fit”. Schema theorems for GP are complicated by the variable-length tree
encoding, requiring mathematical formulations for the expected schema frequencies
to also account for the size variation of individuals under the action of selection,

2 Schema Analysis 19

Fig. 2.1 Example hyperschema and matching tree individuals [12]

crossover and mutation. Several schema definitions dealing with these issues were
proposed in the literature [24].

Despite significant progress in the last couple of decades, leading to exact
formulations of the expected number of individuals sampling a schema at the next
generation [16, 17], “large gaps remain between GP theory and practice”, due to the
large number of schema equations in typical GP populations, and the “large number
of terms growing proportionally to the square of the number of program shapes
times the square of the number of possible crossover points” [19]. Thus, from a
practical perspective, the application of schema theory on concrete algorithms and
problem instances remains problematic.

In this work we attempt to close the gap between schemata as theoretical
instruments for the analysis of population dynamics and their role in empirical
investigations and we introduce a practical methodology to identify GP schemata
and compute their frequencies. We consider the hyperschema definition by Poli
et al. [12], where a schema is a rooted tree template that may include two types
of wildcard symbols:

• The ‘=’ symbol matches any valid node of the same type and arity
• The ‘#’ symbol matches any valid subtree

Figure 2.1 shows an example of a hyperschema and matching trees. We notice
that the # symbol can match both leaf and function nodes, while the = symbol only
matches nodes of the same type (a function node and a leaf node, respectively, for
the two occurrences below).

Originally, the set of wildcards in Poli’s hyperschema was chosen in such a
way as to make it easier to evaluate the effects of the genetic operators on schema
frequencies and to enable a more concise mathematical representation of the schema
equations. Our proposed methodology is not bound by such considerations and
supports different schema structures, containing either or both wildcard symbols.

The remainder of the chapter is organized as follows: Sect. 2.2 describes our
methodology for schema generation and matching, Sect. 2.3 gives details about our
empirical experiments, Sect. 2.4 shows the obtained results and Sect. 2.5 discusses
some final conclusions.

20 B. Burlacu et al.

2.2 Methodology

We construct relevant schemata using hereditary relationships between crossover
parents and their offspring. The schemata may include wildcard symbols from the
set {=, #} and are matched against the population of solution candidates using a
pattern matching algorithm adapted from the field of XML query matching. Since
GP schemata represent a more restricted instance of wildcard query matching, we
adapt the algorithm’s implementation with additional constraints. The two steps,
schema generation and schema matching, are described in more detail below. The
methodology was implemented in HeuristicLab [23].

2.2.1 Schema Generation

Conceptually, we expand on the idea by Stephens and Waelbroek [20] that “at the
level of the microscopic degrees of freedom, the strings, the action of crossover by
its very nature introduces the notion of a schema.”

The schema generation algorithm tries to exploit the fact that structural similarity
is passed on (to various degrees) from parents to their offspring via the crossover
operation. Additionally, it is assumed that successful individuals selected for
reproduction will participate as root parents1 in multiple crossover operations. In
these circumstances, we can generate schemata from crossover root parents by
considering crossover cutpoints as potential candidates for wildcard placement. We
arrive at the following heuristic:

1. Group individuals based on their common root parent
2. Identify all genetic fragments and their respective positions in the root parent
3. For each fragment f with preorder index fi in the root parent, replace the node

at position fi with a wildcard.

The heuristic is controlled by a minimum schema length parameter which limits
wildcard placement in order to avoid the creation of ‘match-all’ schemata (schemata
that contain wildcards in the tree root or in its close proximity). The method is listed
as pseudocode in Algorithm 2.1.

Since wildcards are inserted at cutpoint locations, the structure of the generated
schemata is influenced indirectly by the selection pressure applied on the population,
which determines the multiplicity of root parent individuals (how many times each
individual participates in crossover as a root parent) and therefore the number of
wildcards. Intuitively, the method will generate more general schemata under high

1The terms root parent and non-root parent refer to the two parents involved in a crossover
operation: the root parent passes on to the child its entire rooted tree structure, with the exception
of the subtree swapped by crossover at an arbitrary location (called a cutpoint) from the non-root
parent.

2 Schema Analysis 21

selection pressure and more specific schemata (containing fewer wildcards) under
lower selection pressure. The algorithm can generate different kinds of schemata
(according to the schema definitions in the literature, for an excellent summary
see [24]), depending on the kind of wildcard symbols used for replacement.

Algorithm 2.1 Schema generation
Method GenerateSchemas(genealogy graph, minimum schema length)

schemas ← new list; // list holding the generated schemas
// use genealogy information to group offspring with common

parents
1 group all children of the current generation based on their common root parent foreach root

parent p do
2 if length(p) < minimum schema length then
3 continue

4 schema ← copy of p replaced ← false indexes ← preorder indices of the
crossover cutpoints in all children sort(indexes); // sort indices by
cutpoint level in descending order

5 foreach index i from indexes do
6 subtree ← the subtree at position i in schema if length(schema) −

length(subtree) +1 < minimum schema length then
7 continue

8 replacement ← new wildcard node; // either = or #
9 ReplaceSubtree(subtree, replacement); // replace the

subtree with the wildcard in the parent’s structure
10 replaced ← true

11 if replaced then if the schema contains at least one wildcard
12 add schema to schemas

13 return schemas

2.2.2 Schema Matching

The schema matching part of our methodology is based on the algorithm for the
tree homeomorphism decision problem by Götz et al. [7], which tries to find a
non-injective mapping between every parent-child pair in a query tree Q (the
schema) and corresponding ancestor-descendant pairs in data tree D (the matched
individual). Such a situation is shown in Fig. 2.2 where, according to the algorithm,
the query tree Q is matched by the data tree D. The algorithm runs in O(|D| · |Q| ·
depth(Q)) time using a stack of depth bounded by O(depth(D) · branch(D)).

We notice that the algorithm in its default implementation does not enforce
strict enough matching rules as required by schema matching, since tree nodes
are matched from the bottom up if they have the same label, without additional
considerations for their depth in the tree (relative to the root node). Therefore we

22 B. Burlacu et al.

Fig. 2.2 Example query matching between query tree Q (left) and data tree D (right) [7]. The
algorithm finds a non-injective mapping between every parent-child pair in Q and a corresponding
ancestor-descendant pair in D. The answer will be yes (there is a matching) if, starting from the
bottom up, the procedure can map the root nodes of the two trees (q5 and d6)

added additional rules in our implementation, to make sure two nodes are only
matched if they are on the same level in the tree and their parent and children
nodes are matched as well. Another important detail is the matching of commutative
symbols, in which case the algorithm does not consider the order of the child
subtrees (internally, a sorting is performed). For example, a schema (+ = x) (in
postfix notation) will be matched by an individual (+ x y) because the + symbol is
commutative, despite the fact that the x symbol is found at different positions in the
argument order.

2.3 Experimental Setup

We compared the evolution of schema frequencies between two algorithmic vari-
ants: standard genetic programming (SGP) [10] and genetic programming with strict
offspring selection (OSGP) [1]. The difference between the two algorithms consists
of an extra selection step enforced by OSGP on the generated offspring, such that
offspring get rejected if they do not fulfil certain performance criteria. In effect,
the extra selection step concentrates the algorithm’s efforts on generating adaptive
changes (that do not decrease fitness), making it possible for less fit individuals to
participate as parents if they can produce children fitter than themselves, while high
fitness individuals might not contribute if they cannot be improved.

Each problem and algorithm configuration was repeated for a number of 20 runs,
from which a single representative run was selected based on best performance on
the training data. This final run selection step was necessary for clarity and space
reasons, as the slight differences between runs (particularly at the genotypic level)
make it impossible for schemata generated from one population genealogy to be
applied to another population genealogy.

2 Schema Analysis 23

Table 2.1 SGP configuration

Population size 500 individuals (SGP), 200 individuals (OSGP)

Termination criteria SGP: 100 generations

OSGP: maximum selection pressure 100

Selection mechanism SGP: Tournament (group size 5) and proportional

OSGP: Gender specific (proportional + random)

Crossover probability 100%, subtree crossover

Mutation probability 25%, evenly divided between single-, multi-point,
or change node type mutation

Function set F = {×,÷,+,−}
Terminal set T = {weighted variables, ephemeral constants}

Maximum tree depth 12

Maximum tree length 25

Table 2.2 OSGP configuration

Population size 200 individuals

Max selection pressure 100 (acting as termination criteria)

Parent selection Gender specific (proportional + random)

Offspring selection Strict (offspring must outperform parents)

2.3.1 Algorithm Parameters

We applied our schema generation and matching methodology at each generation
on the whole population of solution candidates.2 The parameterizations for the two
algorithms are presented in Tables 2.1 and 2.2.

The OSGP algorithm uses the same primitive set, tree depth and size limits
and crossover and mutation operators as SGP, with differences in population size,
stopping criteria and selection mechanism.

2.3.2 Problem Instances

For this experiment, we selected one symbolic regression benchmark problem that
facilitates discernible genotypic representations of solutions, in order to more easily
observe solution fragments or building blocks contained by the schemata. We used
the Poly-10 [14] synthetic symbolic regression benchmark, where the goal is to find
the target function:

f (x) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 (2.1)

2To maintain low computational times, certain compromises had to be made in terms of population
size and number of generations.

24 B. Burlacu et al.

For the second test problem we used the Tower dataset [21], containing real-
world data in the form of gas chromatography measurements of the composition of
a distillation tower.

2.3.3 Analysis Methods

We perform our analysis a posteriori with the help of a complete genealogical record
of the algorithmic run. We generate a set of potential schemata from the population
at each generation, and match it against the whole genealogy in order to determine
the evolution of schema frequencies over time.

As diversity loss in the course of the evolutionary process reflects itself in the set
of schemata obtained each generation (which can contain duplicates or can repeat
structures obtained in previous generations), we additionally perform filtering based
on the schema frequency curves. If two schemata have highly correlated frequency
curves (with a Pearson’s R2 correlation coefficient value >0.99), one of them is
removed from the set of all schemata.

2.4 Empirical Results

We prefix each tested configuration with the name of the algorithm, followed by dis-
tinctive parameters such as the selection mechanism and maximum tree length, and
then followed by the problem name. For example, the name SGP-P-25-Poly10
denotes a standard GP run with proportional selection and a maximum tree length of
25, while SGP-T-25-Poly10 denodes the same configuration with tournament
selection instead.

When discussing schema frequencies, we use the notation S1,P . . . S10,P for
schemata generated by SGP with proportional selection, and S1,T . . . S10,T for SGP
with tournament selection. For OSGP, we use the notation S1,G . . . S10,G to denote
the 10 most common schemata. To keep a concise notation, we repeat the same
notation in each section corresponding to each tested problem.

2.4.1 Standard GP

We first look at the convergence of SGP-P-25-Poly10. At the structural level,
convergence should manifest itself as an increased occurrence count of repeated
patterns in the population. Table 2.3 shows the most frequent schemata found in the

2.4.1.1 Poly-10 Problem

2 Schema Analysis 25

Table 2.3 SGP-P-25-Poly10: most common schemata in the last generation

Prefix representation N (%)

S1,P (= (+ (∗ X3 X4) (= X3 X4)) (= (= X3 X4) (∗ X3 X4))) 0.34

S2,P (= # (+ (∗ X3 X4) (∗ X3 X4))) 0.22

S3,P (= (= X2 #) (∗ X2 X1)) 0.19

S4,P (+ (∗ X2 X1) (= X2 X1)) 0.18

S5,P (+ (= X3 X4) (= # X4)) 0.18

S6,P (+ (+ (∗ X3 X4) (∗ X3 X4)) (+ (∗ X3 X4) (= X3 X4))) 0.15

S7,P (+ (+ (∗ X6 X5) (∗ X6 X5)) (= (∗ X6 X5) (∗ X6 X5))) 0.15

S8,P (= (∗ X6 X5) (= X6 X5)) 0.15

S9,P (= # (+ (∗ X2 X1) (∗ X2 X1))) 0.14

S10,P (+ (+ (∗ X6 X5) (= X6 X5)) (+ (∗ X6 X5) (= X6 X5))) 0.14

last generation, represented in postfix notation. The notation S1,P . . . S10,P in the
first column of the table is used to designate the schemata obtained in the SGP run
with proportional selection.

We notice that some schemata (for example, S1,P and S2,P , as well as S3,P

and S4,P) share a degree of structural similarity. A closer look at their respective
frequency curves (not detailed here for space reasons) reveals that:

• The frequency curves for S1,P and S2,P are highly correlated (R2 = 0.962), how-
ever S2,P represents a more specific template which matches fewer individuals at
each generation.

• The frequency curves for S3,P and S4,P are correlated (R2 = 0.916). In this case
S4,P represents the slightly more specific template, matching fewer individuals
than S3,P .

• The frequency curves for S7,P and S10,P are correlated (R2 = 0.907), with S10
being the slightly more specific schema.

The fact that we obtained similar and frequency-correlated schemata via our
crossover-based generation procedure indicates the presence of similar parent
individuals in the population, suggesting loss of diversity. We focus on the most
relevant schemata (S1,P , S3,P and S7,P) and show their frequency evolution in
Fig. 2.3.

The frequency curves show the moments when the algorithm was able to discover
parts of the formula such as x1x2, x3x4 and x5x6. The schemata sharply increase
their frequency in the population in the beginning of the run and then vary according
to the internal dynamics of the evolutionary search (competition between schemata,
stagnation in the later stages).

From a diversity perspective, the schema frequency approach has the ability to
identify high level similarities in the population (e.g., when 30% of the population
share the same genetic template) that would otherwise be hard to notice with
conventional metrics like tree distances.

26 B. Burlacu et al.

0 10 20 30 40 50 60 70 80 90 100
Generation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R
el
at
iv
e
Fr
eq
ue
nc
y

S1,P S3,P S7,P

Fig. 2.3 SGP-P-25-Poly10: frequency evolution of relevant schemata

0 10 20 30 40 50 60 70 80 90 100
Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve
ra
ge

Q
ua
lit
y

S1,P
S3,P

S7,P
Pop

Fig. 2.4 SGP-P-25-Poly10: average population and schema qualities

The results so far confirm that schemata identified by our method correspond
to what could be considered as building blocks for this problem, including in their
structure the terms of the formula and showing an exponential increase in frequency
from the moment of their occurrence.

We calculate schema average quality (as the average quality of their matching
individuals) and show the results in Fig. 2.4. The quality curves suggest that the
identified schemata are of above-average quality.

2 Schema Analysis 27

Table 2.4 SGP-T-25-Poly10: most common schemata in the last generation

Prefix representation N (%)

S1,T (= (= (∗ (∗ X3 C) X4) (∗ X5 X6))(= (∗ (∗ X3 C) X4) (= (∗ X3 C) X4))) 0.38

S2,T (− (+ (∗ (∗ X3 C) X4)(∗ X5 #)) (∗ # (∗ X2 X1))) 0.27

S3,T (− (+ (∗ (= X3 C) X4) (∗ X5 X6)) (∗ (∗ X2 X1) (= # X1))) 0.25

S4,T (− (= (= (∗ X3 C) X4) (= X5 X6)) (∗ (− (∗ # #) C) (∗ X2 X1))) 0.17

S5,T (− (+ (∗ X5 X6) (∗ X5 X6)) (∗ (− (∗ (∗ X2 X1)(∗ # X1)) C) (∗ X2 X1))) 0.08

S6,T (− (+ (∗ (∗ X3 C) X4) (= X5 #)) (∗ (− (∗ (= X2 X1)(∗ X2 X1)) C) 0.07
(= X2 X1)))

S7,T (− (+ (= (∗ X3 C) X4) (∗ X5 X6)) (= (= (∗ (= X2 X1)(∗ X2 X1)) C) 0.06
(∗ X2 X1)))

S8,T (− (= (= (∗ X3 C) X4) (∗ X5 #)) (= (− (∗ (∗ X2 X1) (∗ X2 X1)) #) 0.06
(= X2 X1)))

S9,T (− (+ (∗ (∗ X3 C) X4) (∗ X5 X6)) (∗ (= X2 X1) (− (∗ (∗ X3 #) #) C))) 0.06

S10,T (− (= (∗ (∗ X3 C) X4) (∗ X5 X6)) (= (− (∗ (∗ X2 X1) (∗ X2 X1)) C) 0.06
(∗ X2 X1)))

A similar situation can be observed for SGP with tournament selection, where
several frequent schemata are present in the last generation and shown in Table 2.4.
We notice that the top four schemata are matching relatively high proportions of the
population and show their detailed frequency evolution in Fig. 2.5.

The generated schemata correspond to solution building blocks, containing terms
of the target formula. Compared to proportional selection, the extra selection
pressure applied on the population by the tournament selection (with a group size
of 5) leads to larger schemata.

The observed schema frequency evolutions for SGP with proportional and
tournament selection support the idea that relevant schemata increase in frequency
over the generations.

Quality measurements in Fig. 2.6 show a significant difference between the aver-
age quality of the population and the average schema qualities. The discontinued
line segments in this figure correspond to generations when the schema frequency
dropped to zero, therefore an average quality could not be calculated. The results
suggest that tournament selection (applying higher pressure on the population)
promotes higher quality schemata.

We compare the two standard GP configurations using proportional and tournament
selection, denoted SGP-P-25-Tower and SGP-T-25-Tower. The most com-
mon schemata for the SGP variant with proportional selection are given in Table 2.5.

2.4.1.2 Tower Problem

28 B. Burlacu et al.

0 10 20 30 40 50 60 70 80 90 100
Generation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R
el
at
iv
e
Fr
eq
ue
nc
y

S1,T
S2,T
S3,T
S4,T

Fig. 2.5 SGP-T-25-Poly10: frequency evolution of relevant schemata

0 10 20 30 40 50 60 70 80 90 100
Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve
ra
ge

Q
ua
lit
y

S1,T
S2,T
S3,T

S4,T
Pop

Fig. 2.6 SGP-T-25-Poly10: average population and schema qualities

The obtained templates have low length and only include 2 out of 25 input
variables, with the most common schema matching 15% of the population in the last
generation. This result suggests that the two variables x1 and x6 are more relevant
(in terms of the implicit variable ranking performed by GP) for the modeling of
the target. In terms of quality, the produced symbolic regression solution achieved
a Pearson’s R2 correlation with the target variable of 0.8. As with the previous
problem, we plot the evolution of schema frequencies, using a correlation-based

2 Schema Analysis 29

Table 2.5 SGP-P-25-Tower: most common schemata in the last generation

Prefix representation N (%)

S1,P (= (= X6 X1) (= # X1)) 0.15

S2,P (= (= X6 C) (= X6 C)) 0.14

S3,P (= (= C #) (= C X6)) 0.12

S4,P (= (= X6 X1) (− X6 X1)) 0.12

S5,P (= (− X6 X1) (= X6 X1)) 0.11

S6,P (= (= X6 C) (= C X6)) 0.11

S7,P (= (= X6 X6) (= X6 X6)) 0.09

S8,P (= (∗ C X6) (= C X6)) 0.07

S9,P (= (= X6 C) (∗ C X6)) 0.07

S10,P (= X1 (= (= X6 #) X6)) 0.06

0 10 20 30 40 50 60 70 80 90 100
Generation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
el
at
iv
e
Fr
eq
ue
nc
y

S1,P
S2,P

S7,P
S8,P

Fig. 2.7 SGP-P-25-Tower: frequency evolution of relevant schemata

filtering step to eliminate similar curves. The Pearson’s R2 correlation values for
S1,P . . . S10,P show that:

• S1,P is highly correlated with S4,P and S5,P

• S2,P is highly correlated with S6,P

• S8,P is highly correlated with S9,P

The frequencies of the remaining schemata are shown in Fig. 2.7, while their
qualities, along with the average quality of the population are shown in Fig. 2.8.
We see that S2,P becomes frequent rather early and is overall more frequent that
S1,P , while the latter has a marginally higher frequency in the last generation.
Quality-wise, S1,P and S2,P are clearly above the average of the population, while
S7,P and S8,P occasionally dip below the average.

30 B. Burlacu et al.

0 10 20 30 40 50 60 70 80 90 100
Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6
A
ve
ra
ge

Q
ua
lit
y

S1,P
S2,P
S7,P

S8,P
Pop

Fig. 2.8 SGP-P-25-Tower: average population and schema qualities

Table 2.6 SGP-T-25-Tower: most common schemata in the last generation

Prefix representation Freq.

S1,T (+ (− (/ (∗ # X23) X1) #) X12) 0.33

S2,T (+ (− (= (∗ X4 X23) X1) (= (= # X23) X1)) X12) 0.28

S3,T (+ (− (/ (∗ # X23) X1) (− (/ (= X6 X23) X1) #)) X12) 0.20

S4,T (+ (− (/ (∗ X4 X23) X1) 0.17
(− (/ (∗ X6 X23) X1) (= (∗ X6 X23) X1))) X12)

S5,T (+ (= (= # X1) (− (/ (∗ X6 X23) X1) 0.12
(/ (∗ # X23) X1))) X12)

S6,T (+ (− # (= (/ (∗ X6 X23) X1) 0.08
((− (= (∗ X6 X23) (∗ X6 X23)) X1))) X12)

S7,T (+ (− (= (∗ # X23) X1) (= (/ (∗ X6 X23) X1) 0.07
(− (/ (∗ X6 X23) (∗ # X23)) X1))) X12)

S8,T (+ (− (/ (= X4 #) X1) (− (= (= X6 #) X1) 0.07
(= (/ (= X6 X23) (∗ X6 X23)) X1))) X12)

S9,T (= (/ (∗ X6 X23) X1) (− (/ (∗ # X23) (= X6 #)) X1))) X12) 0.07
(+ (− (= (∗ X4 X23) X1)

S10,T (+ (= (/ (∗ X4 X23) X1) 0.07
(= (/ (∗ X6 X23) X1) (− (= (= X6 X23) (= # #)) #))) X12)

Tournament selection determines the evolution of more complex schemata. The
ten most frequent schemata in the last generation shown in Table 2.6 are larger in
size, match more individuals and contain more variables from the dataset.

Correlation analysis of the frequency curves reveals that:

• S1,T is highly correlated with S2,T , S3,T and S4,T with an R2 value of 0.96.
• S7,T is highly correlated with S10,T with an R2 value of 0.95

2 Schema Analysis 31

0 10 20 30 40 50 60 70 80 90 100
Generation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R
el
at
iv
e
Fr
eq
ue
nc
y

S1,T
S5,T
S6,T
S7,T

Fig. 2.9 SGP-T-25-Tower: frequency evolution of relevant schemata

0 10 20 30 40 50 60 70 80 90 100
Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve
ra
ge

Q
ua
lit
y

S1,T
S5,T
S6,T

S7,T
Pop

Fig. 2.10 SGP-T-25-Tower: average population and schema qualities

Filtering correlated schemata, we display the remaining schema frequency curves
in Fig. 2.9. Interestingly S1,T , the most common schema in the last generation has a
noticeably lower average quality compared to S5,T , S6,T and S7,T , although it still
manages to rise above the average population quality, as seen in Fig. 2.10.

32 B. Burlacu et al.

Table 2.7 OSGP-25-Poly10: most common schemata in the last generation

Prefix representation N (%)

S1,G (− (− (∗ X3 X4) (∗ (+ X7 #) 1
(∗ X6 (+ (+ (∗ X3 X10) X5) X5)))) (= X1 X2))

S2,G (− (− (∗ X3 X4) (= (+ X7 (+ X1 C)) 1
(∗ X6 (= (= (∗ X3 X10) X5) X5)))) (∗ X1 X2))

2.4.2 Offspring Selection GP

As previously mentioned, OSGP implements an additional selection step which
decides if the offspring produced by mutation and crossover are accepted into the
next generation. We analyze the influence of offspring selection on the generated
schemata and their frequencies.

2.4.2.1 Poly-10 Problem

Surprisingly, schema frequencies in the last generation show that only two out of
all the generated schemata managed to survive. Furthermore, these two schemata
represent a very similar genotypic template which managed to propagate itself to all
of the individuals in the population. The two schemata are displayed in Table 2.7.
This result shows that it is entirely possible under strict offspring selection for the
algorithm to converge to a single genetic template.

Since we only have two schemata in the last generation, we investigate the
evolution of schema frequencies using a different strategy: we rank the schemata
based on their overall frequency, that is, the average of their individual frequencies
in each generation. The new ranking is shown in Table 2.8, where the frequency
represents an average of the schema frequency over all generations.

Several of the schemata from Table 2.8 match the same individuals and have
highly correlated frequency curves. These schemata were filtered from Fig. 2.11
to eliminate clutter. The figure shows multiple schemata (S3,G, S6,G and S8,G)
proliferating in the population in the earlier generations of the run, only to become
extinct later.

After generation 38, the two most frequent schemata in the last generation, S1,G

and S2,G have overlapping frequency curves, suggesting that S2,G has a higher
degree of specificity, presumably due to the lack of ‘#’ wildcard symbols in its
structure.

2.4.2.2 Tower Problem

We notice a similar behavior for the Tower problem, where a single schema denoted
as S1,G matches all the individuals in the last generation:
(/ C (− X1 (∗ C (− X12 (/ (− (/ (+ (∗ X6 X23) (= X22 #)) C) X5) (− X1 C))))))

Like before, we consider in this situation the most frequent schemata overall, shown
in Table 2.9.

2 Schema Analysis 33

Table 2.8 OSGP-25-Poly10: most common schemata overall

Prefix representation O (%)

S1,G (− (− (∗ X3 X4) (∗ (+ X7 #) (∗ X6 (+ (+ (∗ X3 X10) X5) X5)))) (= X1 X2)) 0.46

S2,G (− (− (∗ X3 X4) (= (+ X7 (+ X1 C)) (∗ X6 (= (= (∗ X3 X10) X5) X5)))) 0.45
(∗ X1 X2))

S3,G (− (− (∗ X3 X4) (∗ (+ # C) (∗ X6 (+ (+ (∗ X3 X10) X5) X5)))) (∗ X1 X2)) 0.22

S4,G (− (− (∗ X3 X4) (∗ (+ (= X1 #) C) (∗ X6 (+ (+ (∗ X3 X10) X5) X5)))) 0.15
(∗ X1 X2))

S5,G (− (− (= X3 X4) (∗ (+ (+ X1 X7) C) (∗ X6 (= (= (= X3 X10) X5) X5)))) 0.14
(∗ X1 X2))

S6,G (− (− (∗ X3 X4) (∗ (+ C (= # #)) (∗ X6 (+ (∗ X1 X2) X5)))) (∗ X1 X2)) 0.10

S7,G (− (− (= X3 X4) (∗ (+ X1 C) (∗ X6 (+ (+ (∗ X3 X10) X5) X5)))) 0.05
(= X1 X2))

S8,G (− (− (= X3 X4) (∗ (+ # C) (∗ X6 X5))) (∗ X1 X2)) 0.05

S9,G (− (− (∗ X3 X4) (∗ (+ C (∗ X5 (∗ X2 X2))) (∗ X6 (+ (= X1 X2) X5)))) 0.04
(= # X2))

S10,G (− (− (= X3 X4) (∗ (+ C (= X1 #)) (∗ X6 (+ (∗ X1 X2) X5)))) (= X1 X2)) 0.03

0 10 20 30 40 50 60 70 80 90
Generation

0.0

0.2

0.4

0.6

0.8

1.0

R
el
at
iv
e
Fr
eq
ue
nc
y

S1,G
S2,G
S3,G
S6,G
S8,G

Fig. 2.11 OSGP-25-Poly10: frequency evolution of relevant schemata

Figure 2.12 shows the evolution of schema frequencies for the top three most
frequent schemata from Table 2.9. We see schema S1,G rising in frequency after
generation 20 and driving other schemata to extinction.

Compared to SGP, the schemata obtained by OSGP and their frequency evolution
suggests a more pronounced loss of diversity as the population becomes dominated
by a single schema.

34 B. Burlacu et al.

Table 2.9 OSGP-25-Tower: most common schemata overall

Prefix representation Freq.

S1,G (/ C (− X1 (∗ C (− X12 (/ (− (/ (+ (∗ X6 X23) (= X22 #)) C) X5) 0.70
(− X1 C))))))

S2,G (− X1 (∗ C (− X12 (/ (− (/ (+ (∗ X6 X23) (− (= X22 #) X2)) C) X5) 0.03
(− X1 C)))))

S3.G (− X1 (∗ C (− X12 (/ (/ (+ (∗ X6 X23) (− (− (− X22 #) #) X2)) C) 0.02
(= X1 C)))))

S4,G (− X1 (∗ C (− X12 (/ (/ (+ (∗ X6 X23) (− (− (= X22 #) X2) X2)) C) 0.01
(− X1 C)))))

S5,G (− X1 (∗ C (− X12 (/ (/ (+ (∗ X6 X23) (− (= (− X22 C) #) X2)) C) 0.01
(− X1 C)))))

S6,G (− X1 (∗ C (− X12 (/ (− (/ (+ (= X6 X23) (− (= X22 C) X2)) C) X5) 0.007
(− X1 C)))))

S7,G (− X1 (∗ C (− X12 (/ (/ (= (+ (∗ X6 X23) (− X22 #)) C) C) 0.007
(− X1 C)))))

S8,G (− X1 (∗ C (− X12 (/ (/ (+ (= X6 X23) (− X22 #)) C) 0.006
(− X1 C)))))

S9,G (− X1 (∗ C (− X12 (/ (− (/ (+ (∗ X6 X23) (− (− X22 X2) X2)) C) X5) 0.006
(= X1 C)))))

S10,G (− X1 (∗ C (= X12 (/ (/ (+ (∗ X6 X23) (− (= (− X22 X23) #) X2)) C) 0.006
(− X1 C)))))

0 10 20 30 40 50 60 70 80 90
Generation

0.0

0.2

0.4

0.6

0.8

1.0

R
el
at
iv
e
Fr
eq
ue
nc
y

S1,G
S2,G
S3,G

Fig. 2.12 OSGP-25-Tower: frequency evolution of relevant schemata

2 Schema Analysis 35

2.5 Conclusion

We described in this chapter a practical approach for performing schema analysis on
GP populations, considering a well-known schema definition (Poli’s hyperschema)
that uses two types of wildcard symbols for function and leaf nodes, respectively.
The methodology can be easily extended to include different schema definitions or
stricter matching rules.

Hyperschema are generated algorithmically by taking into account genealogical
information about crossover offspring and their respective parents. A pattern
matching algorithm is then used to match schemata against the GP population at
each generation.

We tested our methodology using two test problems (Poly-10 and Tower) and two
algorithmic variants: Standard GP and Offspring Selection GP. The results validate
our approach: the identified schemata for each test problem are of increasing
frequency in the population and above-average quality. Compared to other methods
for measuring genotypic diversity, our schema-based approach offers a detailed
picture of the propagation of repeated patterns, while also being able to identify
these patterns.

The evolution of schema frequencies suggests that diversity loss starts to occur
early in the evolutionary run and tends to homogenize the genotypic structure of
the population. As expected, this phenomenon is highly influenced by the selection
mechanism. For both problems, the SGP runs using tournament selection displayed
lengthier, more frequent and more specific schemata. Offspring selection determines
even more drastic effects, as the population shares a single (and rather specific)
genetic template.

Future research in this direction will focus on a more detailed analysis of popula-
tion dynamics where we also consider schema disruption events. The approach can
also be employed online to guide the evolutionary process, for example by avoiding
loss of diversity via localized mutation rates within frequent schemata.

Acknowledgements The work described in this paper was done within the COMET Project
Heuristic Optimization in Production and Logistics (HOPL), #843532 funded by the Austrian
Research Promotion Agency (FFG).

References

1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic
Programming: Modern Concepts and Practical Applications. Numerical Insights. CRC Press,
Singapore (2009)

2. Altenberg, L., et al.: The evolution of evolvability in genetic programming. Advances in genetic
programming 3, 47–74 (1994)

3. Banzhaf, W.: Genetic programming and emergence. Genetic Programming and Evolvable
Machines 15(1), 63–73 (2014). https://doi.org/10.1007/s10710-013-9196-7

https://doi.org/10.1007/s10710-013-9196-7

36 B. Burlacu et al.

4. Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming. In: Genetic
programming theory and practice III, pp. 207–221. Springer (2006)

5. Burke, E., Gustafson, S., Kendall, G.: A survey and analysis of diversity measures in genetic
programming. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation, pp. 716–723. Morgan Kaufmann Publishers Inc. (2002)

6. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of
measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1),
47–62 (2004)

7. Götz, M., Koch, C., Martens, W.: Efficient algorithms for descendant-only tree pattern queries.
Inf. Syst. 34(7), 602–623 (2009). https://doi.org/10.1016/j.is.2009.03.010

8. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press
(1975)

9. Hu, T., Banzhaf, W., Moore, J.H.: Population Exploration on Genotype Networks in Genetic
Programming. In: Proceedings of the 13th International Conference on Parallel Problem
Solving from Nature – PPSN XIII, 2014, pp. 424–433. Springer International Publishing,
Cham (2014)

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA (1992)

11. Krawiec, K., Wieloch, B.: Functional modularity for genetic programming. In: Proceedings
of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09, pp.
995–1002. ACM, New York, NY, USA (2009).http://doi.acm.org/10.1145/1569901.1570037

12. Poli, R.: Hyperschema theory for gp with one-point crossover, building blocks, and some new
results in ga theory. In: Genetic Programming, Proceedings of EuroGP 2000, pp. 15–16.
Springer-Verlag (2000)

13. Poli, R.: Exact schema theory for genetic programming and variable-length genetic algorithms
with one-point crossover. Genetic Programming and Evolvable Machines 2(2), 123–163
(2001). https://doi.org/10.1023/A:1011552313821

14. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming.
In: Proceedings of the 6th European Conference on Genetic Programming, EuroGP’03,
pp. 204–217. Springer-Verlag, Berlin, Heidelberg (2003). http://dl.acm.org/citation.cfm?id=
1762668.1762688

15. Poli, R., Langdon, W.B., Dignum, S.: Generalisation of the limiting distribution of program
sizes in tree-based genetic programming and analysis of its effects on bloat. In: in GECCO
2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary, pp. 1588–1595.
ACM Press (2007)

16. Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-
swapping crossover: Part I. Evolutionary Computation 11(1), 53–66 (2003).

17. Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-
swapping crossover: Part II. Evolutionary Computation 11(2), 169–206 (2003). https://doi.
org/10.1162/106365603766646825

18. Poli, R., McPhee, N.F.: Covariant parsimony pressure for genetic programming. In: GECCO
2008: Proceedings of the 10th annual conference on Genetic and Evolutionary Computation,
pp. 1267–1274. ACM Press (2008)

19. Poli, R., Vanneschi, L., Langdon, W.B., McPhee, N.F.: Theoretical results in genetic program-
ming: The next ten years? Genetic Programming and Evolvable Machines 11(3–4), 285–320
(2010). http://dx.doi.org/10.1007/s10710-010-9110-5

20. Stephens, C.R., Waelbroeck, H.: Effective degrees of freedom in genetic algorithms. Physical
Review E 57(3), 3251–3264 (1998)

21. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a complexity measure
for models generated by symbolic regression via pareto genetic programming. Evolutionary
Computation, IEEE Transactions on 13(2), 333–349 (2009)

22. Wagner, G.P., Altenberg, L.: Perspective: complex adaptations and the evolution of evolvabil-
ity. Evolution 50, 967–976 (1996)

https://doi.org/10.1016/j.is.2009.03.010
http://doi.acm.org/10.1145/1569901.1570037
https://doi.org/10.1023/A:1011552313821
http://dl.acm.org/citation.cfm?id=1762668.1762688
http://dl.acm.org/citation.cfm?id=1762668.1762688
https://doi.org/10.1162/106365603766646825
https://doi.org/10.1162/106365603766646825
http://dx.doi.org/10.1007/s10710-010-9110-5

2 Schema Analysis 37

23. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E.,
Vonolfen, S., Kofler, M., Winkler, S.M., Dorfer, V., Affenzeller, M.: Architecture and design
of the heuristiclab optimization environment. Advanced Methods and Applications in
Computational Intelligence, Topics in Intelligent Engineering and Informatics 6, 197–261
(2013)

24. White, D.: An overview of schema theory. Computing Research Repository CoRR
abs/1401.2651 (2014). http://arxiv.org/abs/1401.2651

25. Woodward, J.R.: Modularity in Genetic Programming. Proc. of Genetic Programming: 6th
European Conference, EuroGP 2003 Essex, pp. 254–263. Springer (2003). http://dx.doi.org/
10.1007/3-540-36599-0_23

http://arxiv.org/abs/1401.2651
http://dx.doi.org/10.1007/3-540-36599-0_23
http://dx.doi.org/10.1007/3-540-36599-0_23

Chapter 3
Genetic Programming Symbolic
Classification: A Study

Michael F. Korns

Abstract While Symbolic Regression (SR) is a well-known offshoot of Genetic
Programming, Symbolic Classification (SC), by comparison, has received only
meager attention. Clearly, regression is only half of the solution. Classification
also plays an important role in any well rounded predictive analysis tool kit.
In several recent papers, SR algorithms are developed which move SR into the
ranks of extreme accuracy. In an additional set of papers algorithms are developed
designed to push SC to the level of basic classification accuracy competitive
with existing commercially available classification tools. This paper is a simple
study of four proposed SC algorithms and five well-known commercially available
classification algorithms to determine just where SC now ranks in competitive
comparison. The four SC algorithms are: simple genetic programming using argmax
referred to herein as (AMAXSC); the M2GP algorithm; the MDC algorithm, and
Linear Discriminant Analysis (LDA). The five commercially available classification
algorithms are available in the KNIME system, and are as follows: Decision
Tree Learner (DTL); Gradient Boosted Trees Learner (GBTL); Multiple Layer
Perceptron Learner (MLP); Random Forest Learner (RFL); and Tree Ensemble
Learner (TEL). A set of ten artificial classification problems are constructed with
no noise. The simple formulas for these ten artificial problems are listed herein.
The problems vary from linear to nonlinear multimodal and from 25 to 1000
columns. All problems have 5000 training points and a separate 5000 testing points.
The scores, on the out of sample testing data, for each of the nine classification
algorithms are published herein.

M. F. Korns (�)
Lantern Credit LLC, Henderson, NV, USA

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_3&domain=pdf
https://doi.org/10.1007/978-3-319-90512-9_3

40 M. F. Korns

3.1 Introduction

Symbolic Regression (SR) is a well-known offshoot of Genetic Programming;
however, Symbolic Classification (SC) by comparison, has received relatively little
attention. While regression is important, it is only half of the solution. Classification
also plays an important role in any well rounded predictive analysis tool kit. Several
recent papers develop algorithms which move SR into the ranks of extreme accuracy
[2, 3, 5–8]. Additionally several papers develop algorithms designed to raise SC
accuracy to the level of basically competitive with existing commercially available
classification tools [1, 9, 10, 14].

This paper is a simple study of four proposed SC algorithms and five well-
known commercially available classification algorithms to determine just where SC
now ranks in competitive comparison. The four SC algorithms are: simple genetic
programming using argmax referred to herein as (AMAXSC); the M2GP algorithm
[1]; the MDC algorithm [9], and Linear Discriminant Analysis (LDA) [14]. The
five commercially available classification algorithms are available in the KNIME
system [15], and are as follows: Decision Tree Learner (DTL); Gradient Boosted
Trees Learner (GBTL); Multiple Layer Perceptron Learner (MLP); Random Forest
Learner (RFL); and Tree Ensemble Learner (TEL).

A set of ten artificial classification problems are constructed with no noise such
that absolutely accurate classifications are theoretically possible. The discriminant
formulas for these ten artificial problems are listed herein. The problems vary
from linear to nonlinear multimodal and from 25 to 1000 columns such that each
classification algorithm will be stressed on well understood problems from the
simple to the very difficult. All problems have 5000 training points and a separate
5000 testing points. The scores on the out of sample testing data, for each of the
nine classification algorithms are published herein.

No assertion is made that these four genetic programming SC algorithms are the
best in the literature. In fact we know of an additional enhanced algorithm, which
we have not had time to implement for this study, M3GP [10]. No assertion is made
that the five KNIME classification algorithms are the best commercially available,
only that KNIME is a trusted component of Lantern Credit predictive analytics.
This study is simply meant to provide one reference point for how far genetic
programming symbolic classification has improved relative to a set of reasonable
commercially available classification algorithms.

Each of the four genetic programming SC algorithms is briefly explained further
in this paper as follows.

3.2 AMAXSC in Brief

The simplest naive genetic programming approach to multiclass classification is
arguably a standard genetic programming approach, such as a modification of the
baseline algorithm [4], using the argmax function to classify as follows,

3 Genetic Programming Symbolic Classification: A Study 41

y = argmax(gp1, gp2, . . . , gpK) (3.1)

where K is the number of classes
Each gpk represents a separate discriminant function evolved via standard

genetic programming. The argmax() function chooses the class (1 to K) which
has the highest value, and is strongly related to the Bayesian probability that the
training point belongs to the k-th class. No other enhancements are needed other
than the standard argmax() function and a slightly modified genetic programming
system—modified to evolve one formula for each class instead of the usual single
formula.

3.3 MDC in Brief

The Multilayer Discriminant Classification (MDC) algorithm is an evolutionary
approach to enhancing the simple AMAXSC algorithm.

y = argmax(w10 + (w11 ∗ gp1), w20 + (w21 ∗ gp2), . . . , wC0 + (wC1 ∗ gpK))

(3.2)

where K is the number of classes, the gpk are GP evolved formulas, and the wij are
real weight coefficients (there are 2K weights).

Each gpk represents a separate discriminant function evolved via standard
genetic programming. The argmax() function chooses the class (1 to C) which has
the highest value, and is strongly related to the Bayesian probability that the training
point belongs to the k-th class. Given a set of GP evolved discriminant formulas
{gp1, gp2, . . . , gpK}, the objective of the MDC algorithm is to optimize the choice
of coefficient weights {w10, w11, w20, w21, . . . , wK0, wK1} so that Eq. (3.2) is
optimized for all X and Y .

The first step in the MDC algorithm is to perform a Partial Bipolar Regression
on each discriminant entry i.e. wk0 + (wk1 × gpk) = Yk + e. This produces starting
weights for wk0 and wk1 which are not very good but are much better than random.
The second step in the MDC algorithm is to run a Modified Sequential Minimization
on selected discriminant entries. This produces much better weight candidates for
all discriminant functions, but still not perfect. Finally, the MDC algorithm employs
the Bees Algorithm to fully optimize the coefficient weights.

The MDC algorithm is discussed in much greater detail in [9].

3.4 M2GP in Brief

The M2GP algorithm is described in detail in [1]. Briefly the M2GP algorithm
generates a D-dimensional GP tree instead of a 1-dimensional GP tree. Assuming
that there are K classes, the algorithm attempts to minimize the Mahalanobis

42 M. F. Korns

distance between the n-th training point and the centroid of the k-th class. The basic
training algorithm is as follows.

Algorithm 3.1 (M2GP training)

1. Input: X, Y , D - where X is an M × N real matrix, Y is an N vector, D is a
scalar

2. For g from 1 to G do
3. Generate: F = {f1, f2,. . . ,fD} set of D solutions
4. Evaluate: Zs = Eval(fs(X)) for s from 1 to D – a D-dimensional point
5. Cluster: Zk in Z for all k from 1 to K – group all the Z which belong to each

class
6. For k from 1 to C do
7. Ck = covar(Zk) – a D by D covariance matrix for each class
8. Wk = centroid(Zk) – a 1 by D centroid vector
9. Dk(Xn) = sqrt((Zn − Wk) × (Ck)−1 × (Zn − Wk)T) - for n from 1 to N (the

number of training points)
10. For n from 1 to N do EYn = argmin(D1(Xn),D2(Xn), . . . ,DC(Xn))
11. For n from 1 to N do En = 1 IFF EYn �= Yn, 0 otherwise
12. Minimize average(EY)
13. Return F , C, M

The M2GP algorithm is discussed in much greater detail in [1].

3.5 LDA Background

Linear Discriminant Analysis (LDA) is a generalization of Fischer’s linear discrimi-
nant, which is a method to find a linear combination of features which best separates
K classes of training points [11–13]. LDA is used extensively in Statistics, Machine
Learning, and Pattern Recognition.

Similar to the arguments leading up to the M2GP algorithm [1], we argue that any
symbolic regression system can be converted into a symbolic classification system.
In this paper we start with the baseline algorithm published in [4]. Our baseline SR
system inputs an N by M matrix of independent training points, X, and an N vector
of dependent values, Y . The SR system outputs a predictor function, F(X) ∼ Y

where F is the best least squares estimator for Y which the SR system could find
in the allotted training time. The format of F is important, and consists of one or
more basis functions Bfb with regression constants cb. There are always B basis
functions and B + 1 coefficients. The following is the format of F .

y = c0 + c1 ∗ Bf1 + c2 ∗ Bf2 + · · · + cB ∗ BfB (3.3)

3 Genetic Programming Symbolic Classification: A Study 43

There are from 1 to B basis functions with 2 to B +1 real number coefficients. Each
basis function is an algebraic combination of operators on the M features of X, such
that Bfb(X) is a real number. The following is a typical example of an SR produced
predictor, F(X).

y = 2.3 + .9 ∗ cos(x3) + 7.1 ∗ x6 + 5.34 ∗ (x4/tan(x8)) (3.4)

The coefficients c0 to cB play an important role in minimizing the least squares error
fit of F with Y . The coefficients can be evolved incrementally, but most industrial
strength SR systems identify the optimal coefficients via an assisted fitness training
technique. In the baseline SR algorithm this assisted fitness training technique is
simple linear regression (B = 1) or multiple linear regression (B > 1). In symbolic
classification problems the N by M matrix of independent training points, X, is
unchanged. However, The N vector of dependent values contains only categorical
unordered values between 1 and K . Furthermore the least squares error fitness
measure (LSE) is replaced with classification error percent (CEP) fitness. Therefore
we cannot use regression for assisted fitness training in our new SC system. Instead,
we can use LDA as an assisted fitness training technique in our new SC system.

Our new SC system now outputs not one predictor function, but instead outputs
K predictor functions (one for each class). These functions are called discriminants,
Dk(X) ∼ Yk , and there is one discriminant function for each class. The format of
the SC’s discriminant function output is always as follows.

y = argmax(D1,D2, . . . , DK) (3.5)

The argmax function returns the class index for the largest valued dis-
criminant function. For instance if Di = max(D1,D2, . . . , DK), then i =
argmax(D1,D2, . . . , DK).

A central aspect of LDA is that each discriminant function is a linear variation
of every other discriminant function and reminiscent of the multiple basis function
estimators output by the SR system. For instance if the GP symbolic classification
system produces a candidate with B basis functions, then each discriminant function
has the following format.

D0 = c00 + c01 × Bf1 + c02 × Bf2 + . . . + c0B × BfB

D1 = c10 + c11 × Bf1 + c12 × Bf2 + . . . + c1B × BfB

D2 = c20 + c21 × Bf1 + c22 × Bf2 + . . . + c2B × BfB

(3.6)

The K × (B + 1) coefficients are selected so that the i-th discriminant function
has the highest value when the y = i (i.e. the class is i). The technique for selecting
these optimized coefficients c00 to cKB is called linear discriminant analysis and in
the following section we will present the Bayesian formulas for these discriminant
functions.

44 M. F. Korns

3.6 LDA Matrix Math

We use Bayes rule to minimize the classification error percent (CEP) by assigning
a training point X[n] to the class k if the probability of X[n] belonging to class k,
P(k|X[n]), is higher than the probability for all other classes as follows.

EY[n] = k, iff P(k|X[n]) ≥ P(j |X[n]) for all 1 ≤ j ≥ K (3.7)

The CEP is computed as follows.

CEP =
∑

(EY[n] �= Y[n]| for all n)/N (3.8)

Therefore, each discriminant function Dk acts a Bayesian estimated percent
probability of class membership in the formula.

y = argmax(D1,D2, . . . , DK) (3.9)

The technique of LDA makes three assumptions, (a) that each class has mul-
tivariate Normal distribution, (b) that each class covariance is equal, and (c) that
the class covariance matrix is nonsingular. Once these assumptions are made, the
mathematical formula for the optimal Bayesian discriminant function is as follows.

Dk(Xn) = μk(Ck)
−1(Xn)

T − 0.5μk(Ck)
−1(μk)

T + ln Pk (3.10)

where Xn is the n-th training point, μk is the mean vector for the k-th class, (Ck)
−1

is inverse of the covariance matrix for the k-th class, (Xn)
T is the transpose of the n-

th training point, (μk)
T is the transpose of the mean vector for k-th class, and ln Pk

is the natural logarithm of the naive probability that any training point will belong
to the k-th class.

In the following section we will present step by step implementation guidelines
for LDA assisted fitness training in our new extended baseline SC system, as
indicated by the above Bayesian formula for Dk(Xn).

3.7 LDA Assisted Fitness Implementation

The baseline SR system [4] attempts to score thousands to millions of regression
candidates in a run. These are presented for scoring via the fitness function which
returns the least squares error (LSE) fitness measure.

LSE = f itness(X, Y, Bf1, . . . , BfB, c0, . . . , cB) (3.11)

3 Genetic Programming Symbolic Classification: A Study 45

The coefficients c0, . . . , cB can be taken as is, and the simple LSE returned.
However, most industrial strength SR systems use regression as an assisted fitness
technique to supply optimal values for the coefficients before returning the LSE
fitness measure. This greatly speeds up accuracy and allows the SR to concentrate all
of its algorithmic resources toward the evolution of an optimal set of basis functions
Bf1, . . . , BfB .

Converting to a baseline symbolic classification system will require returning the
classification error percent (CEP) fitness measure, which is defined as the count of
erroneous classifications divided by the size of Y, and extending the coefficients to
allow for linear discriminant analysis as follows.

CEP = f itness(X, Y, Bf1, . . . , BfB, c00, . . . , cKB) (3.12)

Of course the coefficients c00, . . . , cKB can be taken as is, and the simple CEP
returned. However, our new baseline SC system will use LDA as an assisted fitness
technique to supply optimal values for the coefficients before returning the CEP
fitness measure. This greatly speeds up accuracy and allows the SR to concentrate all
of its algorithmic resources toward the evolution of an optimal set of basis functions
Bf1, . . . , BfB .

3.7.1 Converting to Basis Space

The first task of our new SC fitness function must be to convert from N by M feature
space, X, into N by B basis space XB. Basis space is the training matrix created by
assigning basis function conversions to each of the B points in XB as follows.

XB[n][b] = Bfb(X[n]) (3.13)

So for each row n of our N by M input feature space training matrix, (X[n]), we
apply all B basis functions, yielding the B points of our basis space training matrix
for row n, (XB[n][b]). Our new training matrix is the N by B basis space matrix,
XB.

3.7.2 Class Clusters and Centroids

Next we must compute the K class cluster matrices for each of the K classes as
follows: Define

CX[k] where XB[n] ∈ CX[k] iff Y[n] = k (3.14)

46 M. F. Korns

Each matrix CX[k] contains only those training rows of XB which belong to the
class k. We also compute the simple Bayesian probability of membership in each
class cluster matrix as follows.

P[K] = length(CX[k])/N (3.15)

Next we compute the K cluster mean vectors, each of which is a vector of length
B containing the average value in each of the B columns of each of the K class
cluster matrices, CX, as follows.

μ[k][b] = column mean of the b-th column of CX[K] (3.16)

We next compute the class centroid matrices for each of the K classes, which are
simply the mean adjusted class clusters as follows

CXU[k][m][b] = (CX[k][m][b] − μ[k][b]) for all k,m, and b (3.17)

Finally we must compute the B by B class covariance matrices, which are the
class centroid covariance matrices for each class as follows.

COV[k] = covarianceMatrix(transpose(CXU[k])) (3.18)

Each of the K class covariance matrices is a B by B covariance matrix for that
specified class.

In order to support the core LDA assumption that the class covariance matrices
are all equal, we compute the final covariance matrix by combining each class
covariance matrix according to their naive Bayesian probabilities as follows. class
as follows.

C[m][n] =
∑

(COV[k][m][n] × P[k]) for all 1 � k � K (3.19)

The final treatment of the covariance matrix allows the LDA optimal coefficients
to be computed as shown in the following section.

3.7.3 LDA Coefficients

Now we can easily compute the single axis coefficient for each class as follows.

c[k][0] = −0.5μk(Ck)
−1(μk)

T + ln Pk (3.20)

3 Genetic Programming Symbolic Classification: A Study 47

The B basis function coefficients for each class are computed as follows.

c[k][1,...B] = μk(Ck)
−1 (3.21)

All together these coefficients form the discriminants for each class as follows.

y = ck0 + ck1 ∗ Bf1(Xn) + ck2 ∗ Bf2(Xn) + · · · + ckB ∗ BfB(Xn) (3.22)

And the estimated value for Y is defined as follows.

y = argmax(D1(Xn),D2(Xn), . . . ,DK(Xn)) (3.23)

3.8 Artificial Test Problems

A set of ten artificial classification problems are constructed, with no noise, to
compare the four proposed SC algorithms and five well-known commercially
available classification algorithms to determine just where SC now ranks in
competitive comparison. The four SC algorithms are: simple genetic programming
using argmax referred to herein as (AMAXSC); the M2GP algorithm [1]; the MDC
algorithm [9], and Linear Discriminant Analysis (LDA) [14]. The five commercially
available classification algorithms are available in the KNIME system [15], and are
as follows: Decision Tree Learner (DTL); Gradient Boosted Trees Learner (GBTL);
Multiple Layer Perceptron Learner (MLP); Random Forest Learner (RFL); and Tree
Ensemble Learner (TEL).

Each of the artificial test problems is created around an X training matrix filled
with random real numbers in the range [−10.0,+10.0]. The number of rows and
columns in each test problem varies from 5000 × 25 to 5000 × 1000 depending
upon the difficulty of the problem. The number of classes varies from Y = 1, 2 to
Y = 1, 2, 3, 4, 5 depending upon the difficulty of the problem. The test problems
are designed to vary from extremely easy to very difficult. The first test problem
is linearly separable with two classes on 25 columns. The tenth test problem is
nonlinear multimodal with five classes on 1000 columns.

Standard statistical best practices out of sample testing are employed. First
training matric X is filled with random real numbers in the range [−10.0,+10.0],
and the Y class values are computed from the argmax functions specified below.
A champion is trained on the training data. Next a testing matric X is filled
with random real numbers in the range [−10.0,+10.0], and the Y class values
are computed from the argmax functions specified below. The previously trained
champion is run on the testing data and scored against the Y values. Only the out of
sample testing scores are shown in the results in Table 3.1.

The argmax functions used to create each of the ten artificial test problems are as
follows.

48 M. F. Korns

Artificial Test Problems

• T1: y = argmax(D1,D2) where Y = 1, 2, X is 5000 × 25, and each Di is as
follows

{
D1 = sum((1.57 ∗ x0), (−39.34 ∗ x1), (2.13 ∗ x2), (46.59 ∗ x3), (11.54 ∗ x4))

D2 = sum((−1.57 ∗ x0), (39.34 ∗ x1), (−2.13 ∗ x2), (−46.59 ∗ x3), (−11.54 ∗ x4))

• T2: y = argmax(D1,D2) where Y = 1, 2, X is 5000 × 100, and each Di is as
follows

{
D1 = sum((5.16 ∗ x0), (−19.83 ∗ x1), (19.83 ∗ x2), (29.31 ∗ x3), (5.29 ∗ x4))

D2 = sum((−5.16 ∗ x0), (19.83 ∗ x1), (−0.93 ∗ x2), (−29.31 ∗ x3), (5.29 ∗ x4))

• T3: y = argmax(D1,D2) where Y = 1, 2, X is 5000 × 1000, and each Di is as
follows

{
D1 = sum((−34.16 ∗ x0), (2.19 ∗ x1), (−12.73 ∗ x2), (5.62 ∗ x3), (−16.36 ∗ x4))

D2 = sum((34.16 ∗ x0), (−2.19 ∗ x1), (12.73 ∗ x2), (−5.62 ∗ x3), (16.36 ∗ x4))

• T4: y = argmax(D1,D2,D3) where Y = 1, 2, 3, X is 5000 × 25, and each Di

is as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ cos(x0)), (−39.34 ∗ square(x10)), (2.13 ∗ (x2/x3)),

(46.59 ∗ cube(x13)), (−11.54 ∗ log(x4)))

D2 = sum((−0.56 ∗ cos(x0)), (9.34 ∗ square(x10)), (5.28 ∗ (x2/x3)),

(−6.10 ∗ cube(x13)), (1.48 ∗ log(x4)))

D3 = sum((1.37 ∗ cos(x0)), (3.62 ∗ square(x10)), (4.04 ∗ (x2/x3)),

(1.95 ∗ cube(x13)), (9.54 ∗ log(x4)))

• T5: y = argmax(D1,D2,D3) where Y = 1, 2, 3, X is 5000 × 100, and each Di

is as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ sin(x0)), (−39.34 ∗ square(x10)), (2.13 ∗ (x2/x3)),

(46.59 ∗ cube(x13)), (−11.54 ∗ log(x4)))

D2 = sum((−0.56 ∗ sin(x0)), (9.34 ∗ square(x10)), (5.28 ∗ (x2/x3)),

(−6.10 ∗ cube(x13)), (1.48 ∗ log(x4)))

D3 = sum((1.37 ∗ sin(x0)), (3.62 ∗ square(x10)), (4.04 ∗ (x2/x3)),

(1.95 ∗ cube(x13)), (9.54 ∗ log(x4)))

3 Genetic Programming Symbolic Classification: A Study 49

• T6: y = argmax(D1,D2,D3) where Y = 1, 2, 3, X is 5000 × 1000, and each
Di is as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ tanh(x0)), (−39.34 ∗ square(x10)), (2.13 ∗ (x2/x3)),

(46.59 ∗ cube(x13)), (−11.54 ∗ log(x4)))

D2 = sum((−0.56 ∗ tanh(x0)), (9.34 ∗ square(x10)), (5.28 ∗ (x2/x3)),

(−6.10 ∗ cube(x13)), (1.48 ∗ log(x4)))

D3 = sum((1.37 ∗ tanh(x0)), (3.62 ∗ square(x10)), (4.04 ∗ (x2/x3)),

(1.95 ∗ cube(x13)), (9.54 ∗ log(x4)))

• T7: y = argmax(D1,D2,D3,D4,D5) where Y = 1, 2, 3, 4, 5, X is 5000 × 25,
and each Di is as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ cos(x0/x21)), (9.34 ∗ ((square(x10)/x14) ∗ x6)),

(2.13 ∗ ((x2/x3) ∗ log(x8))), (46.59 ∗ (cube(x13) ∗ (x9/x2))),

(−11.54 ∗ log(x4 ∗ x10 ∗ x15)))

D2 = sum((−1.56 ∗ cos(x0/x21)), (7.34 ∗ ((square(x10)/x14) ∗ x6)),

(5.28 ∗ ((x2/x3) ∗ log(x8))), (−6.10 ∗ (cube(x13) ∗ (x9/x2))),

(1.48 ∗ log(x4 ∗ x10 ∗ x15)))

D3 = sum((2.31 ∗ cos(x0/x21)), (12.34 ∗ ((square(x10)/x14) ∗ x6)),

(−1.28 ∗ ((x2/x3) ∗ log(x8))), (0.21 ∗ (cube(x13) ∗ (x9/x2))),

(2.61 ∗ log(x4 ∗ x10 ∗ x15)))

D4 = sum((−0.56 ∗ cos(x0/x21)), (8.34 ∗ ((square(x10)/x14) ∗ x6)),

(16.71 ∗ ((x2/x3) ∗ log(x8))), (−2.93 ∗ (cube(x13) ∗ (x9/x2))),

(5.228 ∗ log(x4 ∗ x10 ∗ x15)))

D5 = sum((1.07 ∗ cos(x0/x21)), (−1.62 ∗ ((square(x10)/x14) ∗ x6)),

(−0.04 ∗ ((x2/x3) ∗ log(x8))), (−0.95 ∗ (cube(x13) ∗ (x9/x2))),

(0.54 ∗ log(x4 ∗ x10 ∗ x15)))

• T8: y = argmax(D1,D2,D3,D4,D5) where Y = 1, 2, 3, 4, 5, X is 5000×100,
and each Di is as follows

50 M. F. Korns

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ sin(x0/x11)), (9.34 ∗ ((square(x12)/x4) ∗ x46)),

(2.13 ∗ ((x21/x3) ∗ log(x18))), (46.59 ∗ (cube(x3) ∗ (x9/x2))),

(−11.54 ∗ log(x14 ∗ x10 ∗ x15)))

D2 = sum((−1.56 ∗ sin(x0/x11)), (7.34 ∗ ((square(x12)/x4) ∗ x46)),

(5.28 ∗ ((x21/x3) ∗ log(x18))), (−6.10 ∗ (cube(x3) ∗ (x9/x2))),

(1.48 ∗ log(x14 ∗ x10 ∗ x15)))

D3 = sum((2.31 ∗ sin(x0/x11)), (12.34 ∗ ((square(x12)/x4) ∗ x46)),

(−1.28 ∗ ((x21/x3) ∗ log(x18))), (0.21 ∗ (cube(x3) ∗ (x9/x2))),

(2.61 ∗ log(x14 ∗ x10 ∗ x15)))

D4 = sum((−0.56 ∗ sin(x0/x11)), (8.34 ∗ ((square(x12)/x4) ∗ x46)),

(16.71 ∗ ((x21/x3) ∗ log(x18))), (−2.93 ∗ (cube(x3) ∗ (x9/x2))),

(5.228 ∗ log(x14 ∗ x10 ∗ x15)))

D5 = sum((1.07 ∗ sin(x0/x11)), (−1.62 ∗ ((square(x12)/x4) ∗ x46)),

(−0.04 ∗ ((x21/x3) ∗ log(x18))), (−0.95 ∗ (cube(x3) ∗ (x9/x2))),

(0.54 ∗ log(x14 ∗ x10 ∗ x15)))

• T9: y = argmax(D1,D2,D3,D4,D5) where Y = 1, 2, 3, 4, 5, X is 5000 ×
1000, and each Di is as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ sin(x20 ∗ x11)), (9.34 ∗ (tanh(x12/x4) ∗ x46)),

(2.13 ∗ ((x321 − x3) ∗ tan(x18))), (46.59 ∗ (square(x3)/(x49 ∗ x672))),

(−11.54 ∗ log(x24 ∗ x120 ∗ x925)))

D2 = sum(((−1.56) ∗ sin(x20 ∗ x11)), (7.34 ∗ (tanh(x12/x4) ∗ x46)),

(5.28 ∗ ((x321 − x3) ∗ tan(x18))), ((−6.10) ∗ (square(x3)/(x49 ∗ x672))),

(1.48 ∗ log(x24 ∗ x120 ∗ x925)))

D3 = sum((2.31 ∗ sin(x20 ∗ x11)), (12.34 ∗ (tanh(x12/x4) ∗ x46)),

((−1.28) ∗ ((x321 − x3) ∗ tan(x18))), (0.21 ∗ (square(x3)/(x49 ∗ x672))),

(2.61 ∗ log(x24 ∗ x120 ∗ x925)))

D4 = sum(((−0.56) ∗ sin(x20 ∗ x11)), (8.34 ∗ (tanh(x12/x4) ∗ x46)),

(16.71 ∗ ((x321 − x3) ∗ tan(x18))), ((−2.93) ∗ (square(x3)/(x49 ∗ x672))),

(5.228 ∗ log(x24 ∗ x120 ∗ x925)))

D5 = sum((1.07 ∗ sin(x20 ∗ x11)), ((−1.62) ∗ (tanh(x12/x4) ∗ x46)),

((−0.04) ∗ ((x321 − x3) ∗ tan(x18))), ((−0.95) ∗ (square(x3)/(x49 ∗ x672))),

(0.54 ∗ log(x24 ∗ x120 ∗ x925)))

3 Genetic Programming Symbolic Classification: A Study 51

• T10: y = argmax(D1,D2,D3,D4,D5) where Y = 1, 2, 3, 4, 5, X is 5000 ×
1000, and each Di is as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ sin(x20 ∗ x11)), (9.34 ∗ (tanh(x12/x4) ∗ x46)),

(2.13 ∗ ((x321 − x3) ∗ tan(x18))), (46.59 ∗ (square(x3)/(x49 ∗ x672))),

(−11.54 ∗ log(x24 ∗ x120 ∗ x925)))

D2 = sum(((−1.56) ∗ sin(x20 ∗ x11)), (7.34 ∗ (tanh(x12/x4) ∗ x46)),

(5.28 ∗ ((x321 − x3) ∗ tan(x18))), ((−6.10) ∗ (square(x3)/(x49 ∗ x672))),

(1.48 ∗ log(x24 ∗ x120 ∗ x925)))

D3 = sum((2.31 ∗ sin(x20 ∗ x11)), (12.34 ∗ (tanh(x12/x4) ∗ x46)),

((−1.28) ∗ ((x321 − x3) ∗ tan(x18))), (0.21 ∗ (square(x3)/(x49 ∗ x672))),

(2.61 ∗ log(x24 ∗ x120 ∗ x925)))

D4 = sum(((−0.56) ∗ sin(x20 ∗ x11)), (8.34 ∗ (tanh(x12/x4) ∗ x46)),

(16.71 ∗ ((x321 − x3) ∗ tan(x18))), ((−2.93) ∗ (square(x3)/(x49 ∗ x672))),

(5.228 ∗ log(x24 ∗ x120 ∗ x925)))

D5 = sum((1.07 ∗ sin(x20 ∗ x11)), ((−1.62) ∗ (tanh(x12/x4) ∗ x46)),

((−0.04) ∗ ((x321 − x3) ∗ tan(x18))), ((−0.95) ∗ (square(x3)/(x49 ∗ x672))),

(0.54 ∗ log(x24 ∗ x120 ∗ x925)))

The Symbolic Classification system for all four SC algorithms (AMAXSC,
M2GP, MDC, LDA) avail themselves of the following operators:

• Binary Operators: + - / × minimum maximum
• Relational Operators: <,≤,=, �=,≥,>

• Logical Operators: lif land lor
• Unary Operators: inv abs sqroot square cube curoot quart quroot exp ln binary

sign sig cos sin tan tanh

The unary operators sqroot, curoot, and quroot are square root, cube root, and
quart root respectively. The unary operators inv, ln, and sig are the inverse, natural
log, and sigmoid functions respectively.

52 M. F. Korns

3.9 Performance on Test Problems

Here we compare the out of sample CEP testing scores of the four proposed SC
algorithms and five well-known commercially available classification algorithms
to determine where SC ranks in competitive comparison. The four SC algorithms
are: simple genetic programming using argmax referred to herein as (AMAXSC);
the M2GP algorithm; the MDC algorithm, and Linear Discriminant Analysis
(LDA). The five commercially available classification algorithms are available in the
KNIME system, and are as follows: Decision Tree Learner (DTL); Gradient Boosted
Trees Learner (GBTL); Multiple Layer Perceptron Learner (MLP); Random Forest
Learner (RFL); and Tree Ensemble Learner (TEL). On a positive note, the three
new proposed symbolic classifications algorithms are a great improvement over the
vanilla AMAXSC algorithm. On a negative note, none of the three newly proposed
SC algorithms are the best performer. The top performer overall by a good margin
is the Gradient Boosted Trees Learner (GBTL).

It is interesting to note that all three newly proposed SC algorithms performed
better overall than the Multiple Layer Perceptron Learner (MLP). This is significant;
as it is the first time we have seen a genetic programming SC algorithm beat one of
the top commercially available classification algorithms.

Of the three newly proposed SC algorithms, surprisingly the MDC algorithm
was the best overall performer; although all three SC algorithms were grouped very
close together in performance.

Clearly progress has been made in the development of commercially competitive
SC algorithms. But, a great deal more work has to be done before SC can outperform
the Gradient Boosted Trees Learner (GBTL).

Table 3.1 Test problem CEP testing results

Test AMAXSC LDA M2GP MDC DTL GBTL MLP RFL TEL

T1 0.0808 0.0174 0.0330 0.0330 0.0724 0.0308 0.0072 0.0492 0.0496

T2 0.1108 0.0234 0.0656 0.0402 0.0740 0.0240 0.0360 0.0664 0.0648

T3 0.1436 0.0182 0.1010 0.0774 0.0972 0.0332 0.0724 0.1522 0.1526

T4 0.1954 0.0188 0.0180 0.0162 0.0174 0.0170 0.0472 0.0260 0.0252

T5 0.1874 0.1026 0.1052 0.1156 0.0858 0.0530 0.3250 0.0920 0.0946

T6 0.6702 0.5400 0.4604 0.5594 0.5396 0.3198 0.6166 0.6286 0.6284

T7 0.4466 0.4002 0.4060 0.4104 0.2834 0.2356 0.4598 0.2292 0.2284

T8 0.8908 0.4176 0.4006 0.4124 0.2956 0.2340 0.4262 0.2250 0.2248

T9 0.8236 0.7450 0.7686 0.6210 0.6058 0.4286 0.6904 0.4344 0.4334

T10 0.8130 0.7562 0.7330 0.6440 0.5966 0.4286 0.5966 0.4296 0.4352

Avg 0.4362 0.3039 0.3091 0.2930 0.2668 0.1805 0.3277 0.2333 0.2337

3 Genetic Programming Symbolic Classification: A Study 53

3.10 Conclusion

Several papers have proposed GP Symbolic Classification algorithms for multi-
class classification problems [1, 9, 10, 14]. Comparing these newly proposed SC
algorithms with the performance of five commercially available classifications
algorithms shows that progress has been made. The three newly proposed SC
algorithms now outperform one of the top commercially available algorithms on
a set of artificial test problems of varying degrees of difficulty.

It may be significant that, of the commercially available classifiers, the best
overall performers are all tree learners. While the random forest learner (RFL) and
the tree ensemble learner (TEL) enjoy enhanced performance over the decision tree
learner (DTL), it is the gradient boosted tree learner (GBTL) which clearly enjoys
the overall top performer slot on these ten artificial test problems.

It will be interesting to see if gradient boosting can be adapted to the three newly
proposed SC algorithms (M2GP, MDC, and LDA) such that they will also enjoy
enhanced performance.

Acknowledgements Our thanks to: Thomas May from Lantern Credit for assisting with the
KNIME Learner training/scoring on all ten artificial classification problems.

References

1. Ingalalli, Vijay, Silva, Sara, Castelli, Mauro, Vanneschi, Leonardo 2014. A Multi-dimensional
Genetic Programming Approach for Multi-class Classification Problems. Euro GP 2014
Springer, pp. 48–60.

2. Korns, Michael F. 2013. Extreme Accuracy in Symbolic Regression. Genetic Programming
Theory and Practice XI. Springer, New York, NY, pp. 1–30.

3. Koza, John R. 1992. Genetic Programming: On the Programming of Computers by means of
Natural Selection. The MIT Press. Cambridge, Massachusetts.

4. Korns, Michael F. 2012. A Baseline Symbolic Regression Algorithm. Genetic Programming
Theory and Practice X. Springer, New York, NY.

5. Keijzer, Maarten. 2003. Improving Symbolic Regression with Interval Arithmetic and Linear
Scaling. European Conference on Genetic Programming. Springer, Berlin, pp. 275–299.

6. Billard, Billard., Diday, Edwin. 2003. Symbolic Regression Analysis. Springer. New York, NY.
7. Korns, Michael F. 2015. Extremely Accurate Symbolic Regression for Large Feature Problems.

Genetic Programming Theory and Practice XII. Springer, New York, NY, pp. 109–131.
8. Korns, Michael F. 2016. Highly Accurate Symbolic Regression for Noisy Training Data.

Genetic Programming Theory and Practice XIII. Springer, New York, NY, pp. 91–115.
9. Korns, Michael F. 2018. An Evolutionary Algorithm for Big Data Multi-class Classification

Problems. In William Tozier and Brian W. Goldman and Bill Worzel and Rick Riolo editors,
Genetic Programming Theory and Practice XIV, Ann Arbor, USA, 2016. www.cs.bham.
ac.uk/∼wbl/biblio/gp-html/MichaelKorns.html.

10. Munoz, Louis, Silva, Sara, M. Castelli, Trujillo 2014. M3GP Multiclass Classification with
GP. Proceedings Euro GP 2015 Springer, pp. 78–91.

11. Fisher, R. A. 1936. The Use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics 7 (2) 179–188.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/MichaelKorns.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/MichaelKorns.html

54 M. F. Korns

12. Friedman, J. H. 1989. Regularized Discriminant Analysis. Journal of American Statistical
Association 84 (405) 165–175.

13. McLachan, Geoffrey, J. 2004. Discriminant Analysis and Statistical Pattern Recognition.
Wiley. New York, NY.

14. Korns, Michael F., 2017. Evolutionary Linear Discriminant Analysis for Multiclass Classifi-
cation Problems. GECCO Conference Proceedings ’17, July 15–19, Berlin, Germany. ACM
Press, New York (2017), pp. 233–234.

15. Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten
Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd Wiswedel, 2007. KNIME: The
Konstanz Information Miner. ACM SIGKDD Explorations Newsletter. ACM Press, New York
(2009), pp. 26–31.

Chapter 4
Problem Driven Machine Learning
by Co-evolving Genetic Programming
Trees and Rules in a Learning Classifier
System

Ryan J. Urbanowicz, Ben Yang, and Jason H. Moore

Abstract A persistent challenge in data mining involves matching an applicable
as well as effective machine learner to a target problem. One approach to facilitate
this process is to develop algorithms that avoid modeling assumptions and seek
to adapt to the problem at hand. Learning classifier systems (LCSs) have proven
themselves to be a flexible, interpretable, and powerful approach to classification
problems. They are particularly advantageous with respect to multivariate, complex,
or heterogeneous patterns of association. While LCSs have been successfully
adapted to handle continuous-valued endpoint (i.e. regression) problems, there are
still some key performance deficits with respect to model prediction accuracy and
simplicity when compared to other machine learners. In the present study we
propose a strategy towards improving LCS performance on supervised learning
continuous-valued endpoint problems. Specifically, we hypothesize that if an
LCS population includes and co-evolves two disparate representations (i.e. LCS
rules, and genetic programming trees) than the system can adapt the appropriate
representation to best capture meaningful patterns of association, regardless of
the complexity of that association, or the nature of the endpoint (i.e. discrete vs.
continuous). To successfully integrate these modeling representations, we rely on
multi-objective fitness (i.e. accuracy, and instance coverage) and an information
exchange mechanism between the two representation ‘species’. This paper lays out
the reasoning for this approach, introduces the proposed methodology, and presents
basic preliminary results supporting the potential of this approach as an area for
further evaluation and development.

R. J. Urbanowicz (�) · J. H. Moore
Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA
e-mail: ryanurb@upenn.edu; jhmoore@upenn.edu

B. Yang
Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
e-mail: yangben@sas.upenn.edu

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_4&domain=pdf
mailto:ryanurb@upenn.edu
mailto:jhmoore@upenn.edu
mailto:yangben@sas.upenn.edu
https://doi.org/10.1007/978-3-319-90512-9_4

56 R. J. Urbanowicz et al.

4.1 Introduction

Learning classifier systems (LCSs) challenge the typical paradigm of modeling
in classification and regression [22] by evolving a piecewise, distributed model
comprised of rules. These rule-based machine learning techniques are flexible and
powerful largely because they avoid making assumptions about the underlying pat-
tern(s) of association in a given dataset. While LCSs have repeatedly demonstrated
their efficacy on complex problems, e.g. detecting epistatic interactions between
feature combinations [2, 15, 23], one of the more unique abilities of rule-based
machine learning is their ability to model and characterize heterogeneous patterns of
association where different features or subsets of features are predictive in different
respective subsets of data instances [14, 21, 24]. Solving these types of problems
effectively with traditional machine learning approaches would require successful
dataset stratification prior to modeling. Unfortunately, proper stratification is often
not possible without reliable prior knowledge of the underlying heterogeneity.

To date, the vast majority of LCS research has focused on reinforcement learning
problems and the development of LCS strategies designed to address these types
of problems [22]. An emerging focus over the last decade, seeks to adapt and
optimize these rule-based systems to the particulars of supervised learning, where
the endpoint label is always provided during training [2, 3, 11, 19]. We use the
term ‘endpoint’ to generically refer to the dependent variable, also referred to
as the ‘class’ or ‘action’. Previously, we developed, an LCS called the Extended
Supervised Tracking and Classifying System (ExSTraCS), specifically designed to
facilitate the detection and characterization of complex, epistatic, and heterogeneous
patterns of association in bioinformatics supervised learning problems [19, 24].
Bioinformatics problems, particularly those derived from the field of genomics, are
characteristically noisy and often involve a large number of potentially predictive
features (discrete or continuous-valued). The ExSTraCS algorithm and it’s algorith-
mic predecessors have been successful in solving complex classification problems,
including simulated genomic data embedded with concurrent patters of epistasis and
genetic heterogeneity [15, 19], real-world genetic data with similar patterns [18],
and most recently, the first and still only algorithm to report directly solving the
135-bit multiplexer problem [24]. The multiplexer family of problems, including
the lower-order 6-bit and 11-bit variations, represent a traditional and scalable set
of benchmarks in the evolutionary algorithm community [20]. Solving the 135-bit
multiplexer problem requires identifying 128 distinct (i.e. heterogeneous) subgroups
of features that are each epistatically associated with endpoint within the subset of
data instances they are relevant to.

LCSs have been advantageous for solving extremely complex classification
problems, however, when dealing with simple classification problems or regression
problems (i.e. continuous endpoints or quantitative traits) there can be distinct
disadvantages in adopting the distributed modeling paradigm of rule-based machine
learning. Specifically, (1) rule-based systems can require a large number of rules
to cover the problem space of simpler non-heterogeneous problems, where a classic

4 Co-evolving GP Trees and LCS Rules 57

Y

X

Y

X

Y

X

Regression Single Threshold Multiple Thresholds

Fig. 4.1 Illustration of continuous-valued endpoint scenarios

model such as a genetic programming tree, might be able to cover that same problem
just as accurately with a single tree. Additionally, (2) rule-based systems that learn
continuous endpoint intervals as actions, such as ExSTraCS [17], struggle to make
precise endpoint predictions in regression problems. However, notably this interval
approach is advantages when it comes to other continuous-valued endpoint problem
scenarios.

Figure 4.1 identifies three example scenarios of continuous endpoint problems
where the independent variable ‘X’ has a meaningful predictive relationship with
the dependent variable ‘Y’. First there is a traditional regression scenario where we
use the value of X to try and predict a particular value of Y while minimizing error.
This assumes that there is an accurate, mapping from independent variable(s) to
a precise continuous-valued endpoint. The next two scenarios illustrate what we
are calling threshold models [17], where the continuous variable Y could more
effectively be binned into categorical groups for classification rather than regression.
In other words there are meaningful underlying discretizations of the dependent
variable range. Thus, the precise predicted value of Y is not particularly informative,
but rather it is informative that Y is above, below, or between some ‘threshold(s)’
illustrated by the dotted red lines in Fig. 4.1. The problem here is that in many real
world situations it is unlikely that a practitioner would know ahead of time when
binning the endpoint is relevant, how many bins to use, and where to place the
thresholds. An algorithm like ExSTraCS could resolve these issues automatically.
These threshold-based dependent variable problems are worth considering, for
example, in the context of biological gene regulation where some minimum quantity
of a repressor or inducer element triggers or prevents some secondary event.

Beyond ExSTraCS, previous efforts to adapt LCS algorithms to continuous
endpoint problems have focused on traditional regression or function approximation
problems (i.e. no threshold models). Further, efforts have focused on systems
designed for reinforcement learning (RL), such as those attempting to control
movement of robotics components over a continuous range of angles [5], rather
than supervised learning (SL).

The first RL-based LCSs to produce real-valued outputs utilized fuzzy logic
[4, 26], applied as controllers for continuous output assignment, or to determine

58 R. J. Urbanowicz et al.

the degree of membership among discrete classes [12]. The best known RL-based
LCS algorithm to date, named XCS [27], was extended to XCSF [29, 30] adapting
its reward prediction mechanism to calculate a prediction rather than rely on fixed
scalars in order to perform function approximation. This was later followed by
a proposal for three separate approaches for continuous endpoint prediction in
RL-based LCSs including a Interpolating Action Listener (IAL), a Continuous
Actor-Critic (CAC), and a General Classifier System (GCS) [31]. The proposed IAL
and CAC add a layer of computational complexity by running two LCS algorithms
in tandem, where one observes and learns from the other in order to produce a
continuous action output. Alternatively GCS integrated the action as part of the
rule condition, and learned a simple interval predicate capturing a rang of action
values. An extension of XCSF, called XCS-FCA, added an action weight vector
to compute real-valued actions along with an evolutionary update of these action
weights. Increasing the complexity of rule representation, XCSRCFA and XCSCFA
expanded upon XCSR [28] and XCS [27] respectively, replacing discrete actions
with a code fragment representation [7, 8]. These code fragments are tree-based
expressions similar to those found in genetic programming.

While many of these RL-based LCS approaches to continuous-valued endpoint
prediction offer useful ideas, they are not directly translatable to supervised
learning systems such as ExSTraCS. For example, the SL algorithm, ExSTraCS,
has introduced some uniquely effective mechanisms such as ‘attribute tracking’
[14] that rely on the formation of a correct set, something that does not exist in
RL-based LCSs. Additionally, these methods do not address the interpretability of
the resulting rule population, which is of significant import in applications such
as bioinformatics, or data mining in general. Furthermore, each of these previous
approaches has utilized a more sophisticated representation (e.g. like a genetic
programming tree) as part of the condition or action of a rule. In other words the
learning entity is still a rule, that must have a satisfied condition to be relevant
to a given training instance. Previously, a few other attempts have been made to
utilize GP-like tree structures into LCS rule conditions [1, 10, 13]. However these
works substitute the classic LCS rule condition with a tree, rather than integrating
traditional rules with traditional trees as complete model candidates. To the best
of our knowledge the combination of rules and GP trees as separate co-evolving
modeling entities has yet to be explored.

As mentioned, in previous work we proposed an extension to the supervised
learning ExSTraCS LCS algorithm considering all of the continuous endpoint
scenarios described above [17]. This extension incorporated endpoint intervals into
rule actions (as opposed to a static class value), as well as a novel prediction
scheme that converted these intervals into a specific continuous-value prediction.
That work revealed that rules with interval actions retained the ability to detect
heterogeneous associations in regression problems and displayed the unique ability
to successfully and automatically model the threshold-based continuous endpoint
problems. However, with regards to traditional regression geared at predicting
precise continuous values, it was found that while the predictive features could still

4 Co-evolving GP Trees and LCS Rules 59

be identified, the prediction error of these rule-based models was much larger than
would be expected for traditional modelling approaches.

In this paper, we propose an integrated strategy to deal with these problem-
specific rule-based machine learning shortcomings. In recognizing that for some
problems, a single model may be preferable to a distributed rule-based model,
we seek to merge the best of both worlds into a single learning system. In doing
so we seek to retain, if not enhance, the functionality and interpretability of the
original ExSTraCS system. Therefore we propose to integrate genetic programming
(GP) tree modeling as a co-evolving alternative to the ‘condition:action’ rule
representation of an LCS. We consider these two different representations to be
separate species evolving within a finite population managed by the LCS. This
is because rules and trees have distinctly different architectures unable to be
crossed with one another to form offspring in the same way that can be achieved
in evolutionary systems with a uniform representation (see Table 4.1). We have
focused on integrating GP trees since they have classically been successful in
accurately modeling regression problems [9], and are widely recognized as a largely
interpretable approach to modeling in contrast with methods such as artificial neural
networks or random forests [6]. In addition to the algorithm automatically choosing
the most appropriate model representation, we consider that there may be an
inherent learning advantage in using duel representations, such that useful building
blocks of information (particularly with respect to informative features and feature
combinations) may be more easily captured by one representation or the other
depending on the problem, which could then be transferred across representations,
thereby accelerating learning.

Table 4.1 Comparing LCS rules and GP trees

LCS rule (ExSTraCS-style representation [24])

• Can only cover (i.e. is relevant to) instances that it matches.

• Does not use functions or operators.

• Features (and a specific value or range) are either specified or instead

generalized with a ‘don’t care’ (i.e. #).

• Rule population starts off empty and relies on covering for

smart initialization.

• Evolutionary operators: mutation and crossover—can specialize or

generalize features.

GP tree (traditional representation)

• Covers all instances.

• Relies on functions and operators.

• Features are treated as variables with unspecified values.

• Tree population is randomly initialized.

• Evolutionary operators: mutation and crossover—can manipulate the

variables, constants, and operators at nodes or terminals.

Key representation considerations for learning and modeling

60 R. J. Urbanowicz et al.

Our proposed methodology is unique in its attempt to co-evolve complete
models in the form of GP trees, as well as partial models in the form of LCS
rules. It is notable that our proposed method is not strictly co-evolution, since
we do allow some limited exchange of ‘genetic’ information between rules and
trees, however we believe this exchange is advantageous to the overall learning
efficiency. We hypothesize that this methodology will allow the problem to drive
the success of either rules or GP trees based on which representation is most
effective at capturing the underlying pattern(s) of association. In this preliminary
implementation and evaluation, we ask the simple question of whether rules and
trees can evolve together in the same population sharing a common multi-objective
fitness metric without one entity or the other being eliminated in the modeling
process. More importantly does the best suited representation indeed capture the
underlying patterns of association.

We believe this proposed approach will be particularly beneficial in problems
with unknown patterns of association or to help supervised LCSs function better
on regression problems while retaining performance on threshold-style continuous
endpoint problems. The rest of this paper will discuss our proposed methodology,
and present the preliminary findings associated with this research in progress.

4.2 Methods

In this section we describe (1) ExSTraCS, the LCS algorithm within which we
are testing our problem driven co-evolution strategy, (2) our proposed method for
integrating GP tree modeling into ExSTraCS, and (3) the datasets and evaluation
strategy utilized in preliminary testing.

4.2.1 ExSTraCS

The LCS algorithm utilized in this study is based on the ExSTraCS algorithm
detailed in [24]. For a general introduction to LCS algorithms we refer readers
to [20, 22]. ExSTraCS is a supervised, Michigan-style learning classifier system
descended from the XCS [27] and UCS algorithms [3] that was expanded to
better fit the needs of real world problems such as those found in bioinformatics.
ExSTraCS focuses on the detection of complex and heterogeneous patters, for
both accurate prediction and interpretable knowledge discovery. Specifically the
ExSTraCS algorithm combined strategies for improving scalability [24], generating
and applying statistically generate expert knowledge for rule initialization and
guided evolutionary search [21], and a unique attribute tracking and feedback
mechanism for reusing useful building feature combination and explicitly charac-
terizing patterns of heterogeneity and candidate heterogeneous subgroups of data

4 Co-evolving GP Trees and LCS Rules 61

instances [14, 18]. Like other Michigan-style LCS algorithms, ExSTraCS evolves a
population of individual rules comprised of a ‘condition’ specifying feature value
states (e.g. IF: featureA = 0 AND featureC = 1) and an ‘action’ or ‘class’ (e.g.
THEN: class = 1) forming a simple IF:THEN expression that is relevant to the
subset of data instances to which the condition applies.

A schematic of the basic ExSTraCS algorithm utilized in this study is given
in Fig. 4.2. As a brief summary, ExSTraCS (1) learns incrementally, one training
instance at a time from the dataset. (2) This instance is passed to the rule population
[P] with a user defined, finite size. In this study, the population can be comprised
of either LCS rules, or traditional GP trees collaborating, as well as competing for
survival within the restricted population size. (3) Any rule or tree that ‘matches’,
i.e. is relevant to, the current training instance moves on to form a match set [M].
We will refer to rules and trees interchangeably in this study as ‘entities’. If we
wanted to make predictions on testing data rather than train, at this point any
entities in the match set would submit their endpoint prediction to a prediction
array, where a voting scheme decides on an overall endpoint prediction based on
the collective ‘votes’ of the matching entities. Going back to a training cycle,

Deletion

[P]

[M]

[I] [C]

Genetic
Algorithm

SubsumptionPrediction

Covering

Update Rule
Parameters

One Training Instance INPUT

Dataset

OUTPUT

[Pc]

Rule
Compaction

Learning Cycle

1

2

7
3

5

6

8

9

+

*X1

X3X2

0 1 # 1 # : 1
+

*X1

X3X2

0 1 # 1 # : 1

0 1 # 1 # : 1

0 1 # 1 # : 1

0 1 # 1 # : 1

0 1 # 1 # : 1

+

*X1

X3X2

+

*X1

X3X2

+

*X1

X3X2

+

*X1

X3X2

0 1 # 1 # : 1

0 1 # 1 # : 1

+

*X1

X3X2

4

Fig. 4.2 Schematic of the core ExSTraCS algorithm applied in this study. Note that our proposed
approach preserves the LCS learning cycle, but integrates GP trees along with rules to comprise
the competing and collaborating population of learning entities (i.e. rules and trees)

62 R. J. Urbanowicz et al.

(4) after the match set is formed, the entities are split into respective ‘correct’ [C], or
‘incorrect’ [I] sets based on whether their individual predicted values were correct
on the current training instance. (5) At this point if no rules made it to the correct
set, the covering mechanism will randomly generate a new rule that both matches
and has the correct prediction for the current training instance. Covering is thus
responsible for ‘intelligently’ initializing the rules in the population. (6) Next, the
parameters of the entities are updated including their prediction accuracy over all the
instances they have matched, and their proportionally related fitness value. Rules
that made it to the correct set get an accuracy and fitness boost, while those in
the incorrect set receive a loss. (7) Next, the subsumption mechanisms applies an
direct generalization pressure to rules in the correct set, where one rule subsumes
(i.e. copies itself and replaces another) if it is as accurate and more general (i.e.
specifies fewer feature states). Notably in this initial study, subsumption can only
operate on rules, not on GP trees. Subsumption is again activated later among parent
and offspring rules in the genetic algorithm. (8) The genetic algorithm selects two
entities from the correct set proportional to entity fitness. Mutation and crossover
operators are applied so that a pair of rules, a pair of trees, or one from each
generate new offspring of the original type(s). (9) The deletion mechanism selects
entities from [P] with a probability inversely proportional to their respective fitness
and removes them from [P] until the population size is less than or equal to the
maximum population size. The nine steps of this learning cycle are repeated, cycling
through the training dataset for some user defined number of iterations. Lastly,
after training, a simple rule compaction mechanism is applied to remove rules
(and trees) that are either young (i.e. inexperienced) or have an accuracy below
random chance. The resulting rule population constitutes the ExSTraCS prediction
model.

The version of ExSTraCS used in this study is an expansion of the one described
in [24] that includes both a pareto-front inspired multi-objective rule fitness, rather
than the traditional purely accuracy-based rule fitness [25], and that includes the
interval-predicate-based expansion of ExSTraCS rules to regression problems [17].
This prototype python implementation is available upon request.

4.2.2 GP Integration

Integrating GP trees into an LCS framework includes a number of challenges
resulting from the many differences between these disparate evolutionary systems.
To avoid implementing a GP system from the ground up, we utilized the Distributed
Evolutionary Algorithms in Python (DEAP) software package for the basic func-
tionality of GP tree initialization, mating, and prediction. Generally, we sought to
preserve the LCS algorithm framework, and simply adapt the GP components to this
framework wherever needed. Thus, the overall evolutionary cycles are based on the
ExSTraCS algorithm rather than a typical GP system. This means that each iteration
of the algorithm, the system is exposed to a single training instance, and the system

4 Co-evolving GP Trees and LCS Rules 63

is highly elitist, such that only two new rules or trees are added to the population,
with deletion operating to maintain a maximum population size while the rest of the
population is preserved.

4.2.2.1 GP Population Initialization

In ExSTraCS and other Michigan-style LCS algorithms, it is typical for the rule
population to start out empty, and for the covering operator to activate when needed
to initialize rules intelligently that are certain to cover at least the current training
instance being learned upon. While this makes sense for rule based systems, GP
systems rely on some form of population initialization. Using the GP module in
DEAP, trees were allowed to utilize the following operators (addition, subtraction,
multiplication, division, negative, negation, less than, greater than, maximum,
cosine, and sine), as well as integers ranging from −5 to 5 and all features in
the dataset as candidate terminals in the tree. For simplicity in this preliminary
study trees were initialized with a depth of two to three. Because DEAP was
designed to evolve trees within it’s own population structure, we generated DEAP
tree populations of size one, and incorporated those into the LCS rule population. In
this way, the LCS rule population was initialized with a population half filled with
random GP trees, leaving the other half to be filled by rules through covering, and
by rule or GP mating.

To give both entities a fair initial balance an equal number of rules were pre-
generated with the covering operator before algorithm interactions began. In this
study 500 rules and 500 GP trees were generated to initialize the entire entity
population.

Notably, LCS covering is typically only activated to generate a new rule when
there are currently no rules in the population that both match and make a correct
prediction on the current training instance. Since every tree will match every
instance, and since it is likely that there will always be at least one tree that makes
a correct prediction on the current training instance, we adapted rule covering to
activate regardless of the presence of GP trees in the population, but still only when
there were no correct or matching rules in the population (as is standard in LCS).

4.2.2.2 GP Parent Selection

The selection of parents for mating by the evolutionary system in ExSTraCS relies
on tournament selection as described in [24]. Unlike most co-evolutionary systems,
our proposed GP-ExSTraCS algorithm allows for limited mating between GP trees
and rules. Therefore parent selection occurs normally within the correct set [C] of
the LCS as described in [24]. The correct set is the set of rules (and in this case trees)
that both match the current training instance as well as make a correct prediction
of endpoint. For discrete endpoints, rules are simply determined to be correct if
the action/class component of the rule is equivalent to the class of the instance.

64 R. J. Urbanowicz et al.

Alternatively, in the case of regression, a rule is included in the correct set if it’s
interval predicate rage includes the correct endpoint value [17]. For GP trees, the
endpoint prediction is not hard coded like the action of a rule, thus the GP is directed
to make an endpoint value prediction on the current training instance and this is
used to determine if the tree is included in the correct set. This correct set forms the
mating pool from which parents can be drawn.

4.2.2.3 GP Mating

If the selected parents are of the same ‘species’ (i.e. they are both rules or both
GP trees) then the discovery of two offspring elements by the genetic algorithm is
completed in the standard respective manner. Specifically, rule mating incorporates
mutation and crossover as described in [24], and GP tree mating takes place using
default DEAP settings and operators.

However if parents of two different species are selected we have introduced
here a method that attempts to ‘mate’ a rule and a tree in the most generic sense.
Notably even when a tree and rule are selected as parents mutation operators will
still function as they are normally implemented for rules in ExSTraCS and for trees
in DEAP. This is not the case for crossover. In particular, since GP tree operators are
meaningless in the context of LCS rules, and the specific feature values captured in
rules are meaningless to GP trees, the only useful information that can be exchanged
is which features are specifically included in either representation. In rules this set
of features is captured by the specified attribute list [24], and in trees this is capture
by the terminal list (i.e. the set of leaf nodes in the tree), excluding any constants.
Next, we identify any features that appear in one representation but not the other.
These features are candidates for exchange, each of which has a 50% chance of
being exchanged or preserved in the current species. At this there are a few possible
scenarios that can occur summarized by Fig. 4.3.

In scenario 1, if there are an equal number of features to be exchanged between
rule and tree, we perform an equal swap between species. For example if there is
only one feature selected to be exchanged from each species (e.g. feature D in the
tree, and feature A in the rule) then feature A will replace feature D in the tree, and
feature D (and it’s value in the current training instance) will be specified in the rule.
Additionally to complete the swap, feature A and it’s stored value will be removed
from the rule.

In scenario 2, if there is additional feature in the tree selected to be exchanged,
then like before that feature will become specified in the rule using the value for
the feature in the current training instance. The respective feature terminal is then
removed from the tree along with any operator above it in the tree hierarchy.

4 Co-evolving GP Trees and LCS Rules 65

X1 X2 X3 X4 X5 : Class
+

*X1

X3X2

Current Training Instance

Unique Features

0 1 # 1 # : 1

X4 X3

0 1 0 # # : 1

0 1 0 1 1 : 1

Rule (Matching and Correct)

1 0 # # : 1

X4

1 # 1 1 : 1
Rule (Matching and Correct)

Scenario 1 : Equal Feature Swap

Scenario 2 : Extra Unique Feature in Tree

+

*

X2X45.0X1

-

+

*

X2X35.0X1

-

+

X2

5.0X3

-

+

*

X4X21.0X5

/

X5X3

Scenario 3 : Extra Unique Feature in Rule

* Randomly pick between X4 and X5 for equal swap with X3.
* Here, X3 and X5 swap like in Scenario 1.
* X4

1 0 # 1 : 1

X1

0 1 # # # : 1

Rule (Matching and Correct)
/

X1

1.0X2

+

X3

* Randomly pick between X3 and X5 for equal swap with X1.
* Here, X5 and X1 swap like in Scenario 1.
* Either replace a random constant in tree with X3 or add X3 to shortest
 tree branch with random operator as needed.

X5

/

X5

X2

+

50%

50%

0 1 # # # : 1

/

1.0X2

+

X3

-

X3X5

Key
Genetic

Programming
Tree# 1 # 1 # : 1

Condition : Class

Fig. 4.3 Crossover ‘mating’ exchange between LCS rules and GP trees. The key illustrates
identifies the five ‘X’ features available in this example, defines a hypothetical current training
instance, and offers an example of both and LCS rule and a GP tree. Note that a rule is comprised
of two parts, a condition and a predicted class (also referred to as the action). The three scenarios
illustrate situations where a rule and tree are chosen as parent entities on the left, and show how
information is exchanged to create two new offspring entities (one rule and one tree)

66 R. J. Urbanowicz et al.

In scenario 3, if there is an additional feature in the rule selected to be exchanged
we remove the respective feature and its associated value from the rule and then
make one of two choices based on a 50% chance: Add that feature to the tree by
replacing an existing terminal that specifies a constant value rather than a feature, or
directly add a new terminal to the shortest possible branch (provided that this doesn’t
cause the tree to exceed maximum depth). If either is not possible we default to the
other. If neither is possible then the feature is simply removed from the rule, and
nothing more is altered in the GP tree.

4.2.2.4 GP Fitness and Evaluation

Different from traditional GP algorithms which evaluate the fitness of a tree batch
wise on all or a significant chunk of the training data, this LCS implementation
forces GP trees to be updated incrementally in the same way as rules. Specifically
each iteration that a rule or tree matches an instance (which would be every iteration
for trees), we determine if the respective representation made a correct or incorrect
prediction and keep track of this experience, updating estimated prediction accuracy
every iteration until a given rule or tree has seen all of the training data, at which
point it is considered to be ‘epoch complete’ and the accuracy statistic is not longer
updated. To allow GP trees in this context to perform batch-wise evaluation would
be an unfair advantage with respect to rule evaluation. The fitness of a rule or tree
is based on a multi-objective pareto-front-based rule fitness function combining
accuracy and the number of instances correctly covered by the rule or tree in the
dataset as described in [25].

It is this multi-objective fitness that allows us to reasonably co-evolve and
compete rules as partial solutions and trees as candidate full solutions. If fitness was
purely based on accuracy, then rules would have a general advantage given that they
are not bound to be applicable to all training instances. As a result the accuracy of a
rule is better viewed as a ‘local’ accuracy, where overfit rules will easily reach 100%
training accuracy even in noisy problems. This might not be expected of GP trees
unless they were given sufficient time and flexibility to evolve deep and complex
architectures. If the fitness was purely based on the correct coverage of instances, we
would expect GP trees to have a general advantage since they cover all instances by
default, thus any reasonably accurate tree may have a much larger correct coverage
than the average LCS rule which can only maximally correctly cover the number of
instances which it’s condition matches. Note that this ExSTraCS multi-objective
fitness does not use accuracy and correct coverage directly, but rather surrogate
values that only consider accuracy and correct coverage beyond what is expected
by random chance. Using these surrogates also helps to account for class imbalance.
These surrogate metrics were first introduced to an LCS system in [16] and extended
to a pareto-front-based fitness in [25].

4 Co-evolving GP Trees and LCS Rules 67

4.2.3 Datasets and Evaluation

To initially evaluate our proposed system we selected a handful of simple datasets
to explore whether ExSTraCS can adapt itself to apply the most appropriate
representation for the underlying problem without prior information. Future work
will need to greatly expand the variety of datasets before making any definitive
conclusions pertaining to the performance of our proposed GP-LCS co-evolutionary
system.

Our initial test datasets focused on classification problems including the 6-bit
multiplexer problem described in [24] including six binary attributes and a binary
classification. Solving the 6-bit problem requires the identifying four heterogeneous
feature combinations each with a 3-way interaction to predict endpoint. Additionally
we tested a simple toy dataset with 180 instances and 19 features (with two features
additively associated with a continuous valued endpoint). These represent two
relatively simple datasets where it is expected that rules will be best suited to
modeling the 6-bit multiplexer, while GP trees will be best suited to modeling the
additive association with a continuous endpoint.

Our initial evaluation involved running each dataset using a rule population of
1000, and 10,000 learning iterations, with expert knowledge guidance and attribute
tracking deactivated for simplicity but all other ExSTraCS run parameters set to
their recommended default values as described in [24]. Following training of each
dataset, we examined the relative number of GP trees vs. rules as well as the overall
prediction accuracy of the rule/tree population.

4.3 Preliminary Results

Initial examination of the rule population following training on the 6-bit and 11-bit
multiplexer problems, suggested that ideal rules were being discovered that captured
the complex heterogeneous associations in these datasets. Figure 4.4 illustrates LCS
rules and GP trees as they exist together on the common pareto-front inspired fitness
landscape. Note that ideal rules (in blue) were identified with a perfect accuracy and
a normalized coverage of 4 which is expected for the 6-bit multiplexer problem.
Alternatively we observe that GP trees as individuals are unable to achieve the same
level of accuracy as individual models, however they inherently correctly cover a
larger number of individuals in the datasets, since any GP tree ‘matches’ (i.e. can be
applied to make a prediction for) every instance in the training data.

Differently, as illustrated in Fig. 4.5, when run on the continuous endpoint dataset
using the same run configuration we observe that a GP tree emerged that quite
nearly identified the simple additive underlying association, while a large number of
accurate, but low-coverage rules were need to piece-wise identify the same pattern.
However, this prototype implementation is still flawed given that the objective

68 R. J. Urbanowicz et al.

metrics of ‘Useful Accuracy’ and ‘Normalized Coverage’ were designed exclusively
for rules [16, 25]. Briefly, ‘Useful Accuracy’ is the classification accuracy of a rule
beyond what is expected for the given class by random chance, while ‘Normalized
Coverage’ is the number of instances in the datasets that were correctly classified
by the rule beyond the number expected by random chance.

This flaw can be visualized in Figs. 4.4 and 4.5 by the parametric curve pattern
of the GP model red dots, which would be expected to instead fall on a straight line
given that normalized coverage is a linear function of accuracy. This preliminary
analysis has revealed that new strategies or uniquely adapted metrics will be
required for GP trees in the context of LCS rules and continuous endpoints.

The next task will be to finish adapting this prototype system and run respective
comprehensive analyses across a much wider simulation study. Additionally we
will update ExSTraCS to output GP trees along side rules for inspection and
interpretation in the context of an LCS rule population.

1

0.5

0
0 8.0 16.0

Normalized Coverage

1.0

0.8

0.6

0.4

0.2

0.0

U
se

fu
l A

cc
ur

ac
y

Fig. 4.4 Pareto-front inspired multi-objective entity fitness landscape for the 6-bit multiplexer
problem. The colored gradient indicates the respective fitness of entities as a function of the
distance from the entity front (defined by the black dots and line). Blue dots represent LCS rules
that have trained on the entire dataset, while green dots represent young/inexperienced rules that
have not. Red dots represent GP trees that have trained on the entire dataset, while orange dots
represent GP trees that have not

4 Co-evolving GP Trees and LCS Rules 69

1.0

0.8

0.6

0.4

0.2

0.0

1

0.5

0
0 45.0 90.0

U
se

fu
l A

cc
ur

ac
y

Normalized Coverage

Fig. 4.5 Pareto-front inspired multi-objective entity fitness landscape for the additive continuous
endpoint dataset. The colored gradient indicates the respective fitness of entities as a function of
the distance from the entity front (defined by the black dots and line). Blue dots represent LCS
rules that have trained on the entire dataset, while green dots represent young/inexperienced rules
that have not. Red dots represent GP trees that have trained on the entire dataset, while orange dots
represent GP trees that have not

4.4 Conclusions and Ongoing Work

In this study we propose a methodology for integrating the respective advantages
of evolutionary rule-based machine learning with those of genetic programming.
Specifically, we sought to integrate the ability of LCSs to model heterogeneous
patterns of association, and complex classification problems, with the ability of
GP to compactly model simpler non-heterogeneous patterns, as well as regression
problems in a relatively interpretable manner. Our preliminary results support
our hypothesis, that by co-evolving both representations, the underlying problem
will drive the system to preferentially use the preferable representation. However
these initial results were gathered on a prototype implementation and over two
small and simple target test problems. There are many alternative implementation
considerations that might lead to improved performance. Thus far we can conclude
that this proposed approach holds promise and is worth further evaluation and
methodological development.

Ongoing work will focus most immediately on adapting this rule/tree implemen-
tation further to the challenges of continuous endpoint dataset analysis including a

70 R. J. Urbanowicz et al.

much more extensive evaluation, testing a much wider variety of simulated datasets
with different underlying patterns of association. Rigorous statistical analyses and
comparisons between ExSTraCS with and without this proposed GP integration
over this spectrum of simulated data should also be completed. Further, the
composition of the resulting rule populations should be examined to assess solution
interpretability with and without GP under different problem scenarios.

Lastly, we expect that it will be beneficial to adapt strategies to utilize expert
knowledge and attribute tracking [24] to guide GP tree initialization and evolution
in a manner similar to that of LCS rules in our ExSTraCS algorithm.

Acknowledgements This work was supported by NIH grants AI11679, LM009012, AI116794,
DK112217, ES013508, and LM010098.

References

1. M. Ahluwalia and L. Bull. A genetic programming-based classifier system. In Proceedings of
the genetic and evolutionary computation conference, volume 1, pages 11–18, 1999.

2. J. Bacardit, E. K. Burke, and N. Krasnogor. Improving the scalability of rule-based
evolutionary learning. Memetic Computing, 1(1):55–67, 2009.

3. E. Bernadó-Mansilla and J. M. Garrell-Guiu. Accuracy-based learning classifier systems: mod-
els, analysis and applications to classification tasks. Evolutionary Computation, 11(3):209–
238, 2003.

4. A. Bonarini. An introduction to learning fuzzy classifier systems. In Learning Classifier
Systems, pages 83–104. Springer, 2000.

5. M. V. Butz and O. Herbort. Context-dependent predictions and cognitive arm control with
xcsf. In Proceedings of the 10th annual conference on Genetic and evolutionary computation,
pages 1357–1364. ACM, 2008.

6. P. G. Espejo, S. Ventura, and F. Herrera. A survey on the application of genetic programming
to classification. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications
and Reviews, 40(2):121–144, 2010.

7. M. Iqbal, W. N. Browne, and M. Zhang. Xcsr with computed continuous action. In AI 2012:
Advances in Artificial Intelligence, pages 350–361. Springer, 2012.

8. M. Iqbal, W. N. Browne, and M. Zhang. Evolving optimum populations with xcs classifier
systems. Soft Computing, 17(3):503–518, 2013.

9. J. R. Koza. Genetic programming ii: Automatic discovery of reusable subprograms. Cam-
bridge, MA, USA, 1994.

10. P. L. Lanzi. Extending the representation of classifier conditions part i: from binary to
messy coding. In Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation-Volume 1, pages 337–344. Morgan Kaufmann Publishers Inc., 1999.

11. P. L. Lanzi and D. Loiacono. Classifier systems that compute action mappings. In Proceedings
of the 9th annual conference on Genetic and evolutionary computation, pages 1822–1829.
ACM, 2007.

12. A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Fuzzy-ucs: a michigan-style learning
fuzzy-classifier system for supervised learning. Evolutionary Computation, IEEE Transactions
on, 13(2):260–283, 2009.

13. P. Tufts. Dynamic classifiers: genetic programming and classifier systems. In Proceedings
of the Genetic Programming. Papers from the 1995 AAAI Fall Symposium, pages 114–119,
1995.

4 Co-evolving GP Trees and LCS Rules 71

14. R. Urbanowicz, A. Granizo-Mackenzie, and J. Moore. Instance-linked attribute tracking
and feedback for michigan-style supervised learning classifier systems. In Proceedings of
the fourteenth international conference on Genetic and evolutionary computation conference,
pages 927–934. ACM, 2012.

15. R. Urbanowicz and J. Moore. The application of michigan-style learning classifier systems to
address genetic heterogeneity and epistasis in association studies. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation, pages 195–202. ACM, 2010.

16. R. Urbanowicz and J. Moore. Retooling fitness for noisy problems in a supervised michigan-
style learning classifier system. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pages 591–598. ACM, 2015.

17. R. Urbanowicz, N. Ramanand, and J. Moore. Continuous endpoint data mining with exstracs:
A supervised learning classifier system. In Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary Computation, pages 1029–1036. ACM,
2015.

18. R. J. Urbanowicz, A. S. Andrew, M. R. Karagas, and J. H. Moore. Role of genetic
heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier
system approach. Journal of the American Medical Informatics Association, 20(4):603–612,
2013.

19. R. J. Urbanowicz, G. Bertasius, and J. H. Moore. An extended michigan-style learning
classifier system for flexible supervised learning, classification, and data mining. In Parallel
Problem Solving from Nature–PPSN XIII, pages 211–221. Springer, 2014.

20. R. J. Urbanowicz and W. N. Browne. Introduction to Learning Classifier Systems. Springer,
2017.

21. R. J. Urbanowicz, D. Granizo-Mackenzie, and J. H. Moore. Using expert knowledge to guide
covering and mutation in a michigan style learning classifier system to detect epistasis and
heterogeneity. In Parallel Problem Solving from Nature-PPSN XII, pages 266–275. Springer,
2012.

22. R. J. Urbanowicz and J. H. Moore. Learning classifier systems: a complete introduction, review,
and roadmap. Journal of Artificial Evolution and Applications, 2009.

23. R. J. Urbanowicz and J. H. Moore. The application of pittsburgh-style learning classifier
systems to address genetic heterogeneity and epistasis in association studies. In International
Conference on Parallel Problem Solving from Nature, pages 404–413. Springer, 2010.

24. R. J. Urbanowicz and J. H. Moore. Exstracs 2.0: description and evaluation of a scalable
learning classifier system. Evolutionary Intelligence, 8(2–3): 89–116, 2015.

25. R. J. Urbanowicz, R. S. Olson, and J. H. Moore. Pareto inspired multi-objective rule fitness for
noise-adaptive rule-based machine learning. In International Conference on Parallel Problem
Solving from Nature, pages 514–524. Springer, 2016.

26. M. Valenzuela-Rendón. The fuzzy classifier system: A classifier system for continuously
varying variables. In Proceedings of the Fourth Intemational Conference on Genetic
Algorithms (Morgan Kauffman), 1991.

27. S. W. Wilson. Classifier fitness based on accuracy. Evolutionary computation, 3(2):149–175,
1995.

28. S. W. Wilson. Get real! xcs with continuous-valued inputs. In Learning Classifier Systems,
pages 209–219. Springer, 2000.

29. S. W. Wilson. Function approximation with a classifier system. In Proc. 3rd Genetic and
Evolutionary Computation Conf.(GECCO’01), pages 974–981. Citeseer, 2001.

30. S. W. Wilson. Classifiers that approximate functions. Natural Computing, 1(2–3):211–234,
2002.

31. S. W. Wilson. Three architectures for continuous action. In Learning Classifier Systems, pages
239–257. Springer, 2007.

Chapter 5
Applying Ecological Principles to Genetic
Programming

Emily Dolson, Wolfgang Banzhaf, and Charles Ofria

Abstract In natural ecologies, niches are created, altered, or destroyed, driving
populations to continually change and produce novel features. Here, we explore
an approach to guiding evolution via the power of niches: ecologically-mediated
hints. The original exploration of ecologically-mediated hints occurred in Eco-EA,
an algorithm in which an experimenter provides a primary fitness function for a
tough problem that they are trying to solve, as well as “hints” that are associated with
limited resources. We hypothesize that other evolutionary algorithms that create
niches, such as lexicase selection, can be provided hints in a similar way. Here,
we use a toy problem to investigate the expected benefits of using this approach to
solve more challenging problems. Of course, since humans are notoriously bad at
choosing fitness functions, user-provided advice may be misleading. Thus, we also
explore the impact of misleading hints. As expected, we find that informative hints
facilitate solving the problem. However, the mechanism of niche-creation (Eco-EA
vs. lexicase selection) dramatically impacts the algorithm’s robustness to misleading
hints.

5.1 Introduction

Natural evolution produces effective solutions to complex problems, often well
beyond the ability of human engineers to duplicate. If we are to harness these natural
evolutionary dynamics, we must understand the full depth of how they function

E. Dolson (�) · C. Ofria
BEACON Center for the Study of Evolution in Action and Department of Computer Science and
Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing,
MI, USA
e-mail: dolsonem@msu.edu; ofria@msu.edu

W. Banzhaf
BEACON Center for the Study of Evolution in Action and Department of Computer Science,
Michigan State University, East Lansing, MI, USA
e-mail: banzhafw@msu.edu

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_5&domain=pdf
mailto:dolsonem@msu.edu
mailto:ofria@msu.edu
mailto:banzhafw@msu.edu
https://doi.org/10.1007/978-3-319-90512-9_5

74 E. Dolson et al.

and why they are so effective. In this paper, we explore how ecological factors
promote more open-ended evolutionary systems that have a greater potential to
produce complex, dynamic, and practical solutions to targeted problems. First we
discuss why we believe that this approach can help solve difficult AI problems, then
we review the current scientific understanding of ecological dynamics of interest.
Next, we present experiments that we have performed using Eco-EA and lexicase
selection to test the potential of ecologically-mediated hints, before discussing the
implications of these results, and finally laying out the next steps we plan to take in
this line of research.

5.1.1 Motivation

Many problems in machine learning center around creating artificial intelligence
systems that can resolve challenging problems that are traditionally solved by
humans. Often, these programs are written with the goal of mimicking the strategies
employed by skilled humans. When human strategies can be clearly articulated
as a set of well-defined rules, the process of writing the AI can be straight-
forward. However, humans tend to rely on intuition when solving many types of
problems. While human intuition is often effective, it is challenging to abstract into
an algorithm that an AI can follow without missing important nuances. Attempts
to do so often produce rigid AIs that fail to appropriately adapt to situations
that are subtly different than those that were originally expected. Such issues are
exacerbated for problems where early decisions determine what scenarios the AI
will later encounter. For example, in many board games, minor mistakes early on
can drastically reduce success and alter what options are available for the middle
and end of the game.

This property—whereby early decisions shape what strategies are possible
later—can pose even more substantial obstacles to evolving AIs. If a good strategy
is critical early on, an AI without one would consistently lose. However if a good
early strategy is not sufficient for overall success, the selection pressure in favor of it
will be weak (at best) relative to its importance. Specifically, in any problem where
many tasks must all be performed reasonably well for fitness to be non-zero, it is
nearly impossible for evolution to get enough initial traction to be successful. Taken,
from another perspective, the fitness landscape for such a problem will be almost
entirely flat, with a small rugged region featuring steep peaks that are challenging
to even find, let alone navigate. Previous attempts to make this landscape more
easily navigable by giving the evolving AIs “hints” based on strategies successfully
employed by humans have generally been ineffective due to the aforementioned
difficulties with abstracting human intuition.

We hypothesize that we can apply ecological dynamics to evolve models
of human decision making and reliably create human-competitive AIs. Here, we
present our concepts in terms of playing games, as this is an intuitive set of
problems to think about, but the techniques we propose should generalize to other

5 Applying Ecological Principles to Genetic Programming 75

categories of problems. The key is to have evolution be responsible for the process
of abstracting general strategy from human intuition. We believe that we can achieve
this goal by supplying data on human decisions from a wide variety of scenarios and
selecting for AIs that are capable of predicting the move that a given human made
in any given situation. This approach will allow selection to operate evenly across
early-, mid-, and late-game strategy, removing the issue of temporally compounded
mistakes. Furthermore, it eliminates the need for humans to be able to codify their
strategies into a concrete rule set.

Selecting for AIs that can predict human moves has a second, more fundamental
benefit. Often, problems that are too complex for evolutionary computation to solve
in isolation can be solved if there is also a fitness benefit for solving simpler, related
problems. These simpler problems, often referred to as “building blocks”, [16] cause
genomes within the population to accumulate information that is relatively easy
to repurpose into solving the actual problem [16], a technique that has proven to
be effective in evolutionary computation [1]. We hypothesize that AI’s evolving to
predict a human’s choices will often do so by recreating the underlying building
blocks that comprise that human’s strategy—even if the human does not recognize
it themself.

An obvious problem with this approach is that some humans may be poor at a
given problem. For example, predicting their moves in a game may be impossible
because they are effectively random, or worse employing actively poor strategy that
will lead the evolving population down a maladaptive path. Fortunately, Goings and
Ofria previously developed an evolutionary algorithm that is resistant to bad advice:
Eco-EA [5–7]. Eco-EA creates limited resources associated with tasks that are
expected to be valuable on the way to a high-quality solution. This approach proved
effective on example problems, in part because human intuition could be used to
select the rewarded tasks and the algorithm would associate limited resources with
them. As long as no organisms are performing the rewarded traits, the resources
build up in the population (to a limit) and make the associated tasks more valuable.
Once the resources are in use, however, their abundance dwindles until they supply
fitness to only a small fraction of the population. Resources associated with useful
sub-tasks should produce evolutionary building-blocks that get incorporated as parts
of a more complex strategy and used in the overall solution. Unhelpful or misleading
resources, however, should be used by only a small fraction of the population,
resulting in a trivial slowdown as compared to running the algorithm without the
resources present.

For example, if we wanted to evolve a controller for a robot that would perform
search-and-rescue, we would never get there if we started with random controllers
and only rewarded robots that successfully rescued people. We could, however, use
ecologically-mediated hints by adding a set of limited resources that each rewarded
some component, such as (1) moving to a target location, (2) exploring, (3) fully
scanning an area, (4) identifying dangers, (5) navigating around obstacles, (6)
identifying trapped people, (7) moving toward trapped people, (8) freeing trapped
people, (9) moving with people, and (10) finding your way back to safety. With all
of these helpers as building blocks, it is easy to imagine that a controller would

76 E. Dolson et al.

eventually evolve that could occasionally find and return people safely, which
would allow it to start getting rewarded by the primary (unlimited) fitness function.
This approach uses ecologically-mediated hints to push the population to solve the
problem from multiple directions at once; before the whole problem is solved, some
individuals might be able to find people, but then ignore them. Some will explore
and then find their own way back. Others might be able to free people they find, but
not know what to do with them next. Some evolutionary trajectories might be more
likely than others to continue to evolve toward the final goal. Of course, some of the
“hints” might be associated with counter-productive tasks. If there were a limited
resource associated with avoiding all dangers (because a misguided programmer
thought this would be helpful), the result might be to make it less likely for the
robot to find trapped people. With ecologically-mediated hints, however, only a
small portion of the population (a single niche) would be rewarded for this ability,
so others would still plow ahead and complete the mission.

The inspiration for this approach comes from the study of eco-evolutionary
dynamics [11]. Ecology and Evolution are considered sister fields of study within
Biology, often separated by the misconception that their dynamics occur on two
different timescales. However, the lines between these disciplines have blurred as
it has been acknowledged that ecological and evolutionary dynamics strongly influ-
ence one another [21]. Practitioners of evolutionary computation have recognized
this relationship, but typically use ecological effects only for preserving diversity to
prevent premature convergence on a sub-optimal solution and produce a wider range
of solutions to choose among. In Artificial Life systems, however, ecology has also
been linked to promoting open-ended evolution in the form of increased complexity,
novelty, cooperation, distributed problem solving, and intelligence [24]. As such, we
believe that richer ecological dynamics are a source of substantial untapped potential
for evolutionary computation.

A key component of this approach is that in an ecology, niches drive the types
of diverse solutions that appear. If an organism is the first to occupy a new niche,
it must have some traits associated with that niche, but is otherwise free from
direct competition, allowing it to sustain substantial loss of unrelated traits. This
dynamic allows for many different pathways to coexist in a population, any of
which can be followed to solve the high-level problem, with the most successful
strategies dominating multiple niches. In essence, these co-existing niches facilitate
the creation of a variety of building blocks leading to successively more complex
strategies.

Another benefit to an eco-evolutionary approach is that ecological communi-
ties are, by definition, at least somewhat diverse. While promoting diversity in
evolutionary computation has long been recognized as critical to avoiding the
problem of premature convergence, most existing mechanisms to promote diversity
in evolutionary computation select for solutions that are distinct from each other,
regardless of other qualities [8]. In natural systems, however, diversity arises due to
organisms filling niches, each requiring specific phenotypic traits for success. Thus
there is pressure for a diversity of functional traits. Furthermore, new niches are
continuously created in nature as organisms interact with each other and modify

5 Applying Ecological Principles to Genetic Programming 77

both their physical and social environment. In problem domains such as playing
complex games, this diversity of solutions becomes even more important, as there
is no single, deterministic, best strategy. Instead, there are various strategies that are
effective in different situations and against different opponents, just as there would
be in an ecological community.

5.1.2 Ecological Approaches in Evolutionary Algorithms

A number of highly effective evolutionary-computation techniques owe their suc-
cess to ecological dynamics. First, there is lexicase selection [22], a different
approach to creating niches associated with various sub-problems, which has proven
extraordinarily successful in genetic programming [9, 10]. In lexicase selection, a
large number of test cases are used as criteria for evaluation. Each time an organism
has to be selected to propagate into the next generation, the test cases are applied
in a random order, filtering out all but the most fit candidates each time. Once a
single candidate remains (or all of the test cases have been applied and a random
individual is chosen from the final set) it is replicated into the next generation and
the process is repeated. The fact the ordering of these test cases continually changes
means that solutions successful at different subsets of tasks are all able to co-exist.
Although lexicase selection has traditionally been used with test cases, there should
be no reason it cannot be used with multiple fitness functions instead to provide
ecologically-mediated hints. In this way, any hint that could be given to a system
like Eco-EA could just as easily be provided to lexicase selection as well.

From an ecological perspective, lexicase selection creates pressure for the
population to diversify into different niches that are based on building blocks to a
more complex problem. In order for an organism to be evolutionarily successful, it
must be among the very best at at least one of the test cases/fitness functions. In most
cases, it must be among the best at many of them (probably a related group). Thus,
organisms compete with others within the niches created by each test case/fitness
function. Eco-EA also promotes intra-niche competition, but in a subtly different
way. Limited resources are used up as organisms receive fitness bonuses, meaning
that they compete with other organisms benefiting from the same bonus. Thus, those
with higher fitness will competitively exclude less fit organisms that depend too
much on the same resources [2].

This distinction between competition in lexicase selection and in systems
with limited resources has a few implications. First, limited resources allow for
generalists that do not excel at any tasks but are decent at many. It is unclear
whether this flexibility opens up additional pathways through the fitness landscape.
Second, lexicase selection always exerts selective pressure to improve on all test
cases/fitness functions, whereas limited resources create little incentive to expand
into a niche that is already fully occupied. This dynamic may make lexicase
selection less robust to receiving bad advice about how to solve a problem than other
mechanisms for providing ecologically-mediated hints. Third, lexicase selection

78 E. Dolson et al.

automatically incentivizes organisms that excel at uncommon combinations of
test cases/fitness functions. Eco-EA could, however, be adjusted to mimic this
property by adding additional resources. Ideally, we will be able to find a hybrid
approach to providing ecologically-mediated hints that combines Eco-EA with
lexicase selection to achieve the best of both worlds.

MAP-Elites is another successful algorithm that leverages ecological dynamics
and user input [19]. In MAP-Elites, the user chooses axes along which they believe
variation will be important. MAP-Elites then breaks the hyperspace defined by these
axes into discrete regions. Each region can be occupied by at most one solution.
When a new candidate solution is created, it is assessed on each axis and the
corresponding bin is located. If the new candidate solution has a higher fitness than
the previous occupant of that bin, it replaces that occupant. Otherwise, it is tossed
out. Evolution proceeds by choosing occupants of various bins in the search space
and mutating them to create new candidate solutions.

The sub-division of axes for MAP-Elites explicitly partitions the search space
into niches in a way that has clear parallels to choosing tests to provide to lexicase
selection or hints to associate with limited resources. The lack of directionality in
MAP-Elites, however, makes it distinct from lexicase selection. At face value, it
might seem to make it different from Eco-EA as well. Certainly this intuition is true
to some extent—hints provided as limited resources do have directionality to them.
However, the foundation of limited resources is negative frequency-dependence
which, in addition to reducing the risk of the entire population being led astray, has
the important effect of promoting diversity along the axis of the hint. This diversity
goes beyond merely allowing a portion of the population to drift; niche partitioning
should force the population to spread out along the axis in question to produce
meaningful diversity that may be helpful in solving the overall problem.

There are a wide variety of other ecologically-inspired strategies that have proven
to be effective for maintaining diversity in evolutionary algorithms. These largely
fall into four categories: niching/speciation (e.g. [8, 23]), parent selection (e.g. [4,
17]), dividing the population into subpopulations (e.g. [13, 14]), and adjusting the
objective function to favor diversity and/or novelty (e.g. [18]). Of these approaches,
only niching/speciation consistently promotes stable coexistence of different types
of strategy. Even among niching/speciation strategies, most emphasize a diversity
of phenotypes rather than the diversity of evolutionary building blocks that Eco-EA
and Lexicase Selection promote. While solutions built on different building blocks
may often exhibit different phenotypes, they may also arrive at similar phenotypes
despite taking very different paths through the fitness landscape. These different
paths will likely result in underlying differences in genetic architecture that may
influence which behaviors are easy for a lineage to evolve next. As such, we suspect
that diversity of building blocks will promote greater evolutionary potential than
other kinds of population diversity.

5 Applying Ecological Principles to Genetic Programming 79

5.1.3 Limited Resources and Eco-EA

The original formulation of limited resources that led to ecologically-mediated hints
arose in work by Cooper and Ofria where they demonstrated that limited resources
are sufficient to evolve stable branching of different ecotypes [3]. The resulting
ecological community was incredibly simple, with competition being the only form
of interaction between organisms. However, we hypothesized that these simple
ecologies (with meaningful differences between niches) were better positioned to
solve complex problems than populations in which diversity was promoted by other
means.

Goings and Ofria initially tested a more applied form of limited resources in
Eco-EA, using a toy bitstring matching problem, with the goal of maintaining a
population of diverse solutions [7]. In this experiment, resources (either limited
or unlimited) were associated with different bitstrings that could be matched to
varying extents by members of the population. When resources were unlimited,
the population converged on matching a single one of these strings. Limiting
the resources, however, produced consistent subpopulations specialized on each
string. The negative frequency dependent selection imposed by the limited resources
caused the different bitstrings to stably coexist within the population. These results
held when the task was to match a more general pattern of bits, rather than an exact
string.

Following this initial conceptual test, Goings et al. applied Eco-EA to a complex
real-world problem: generating models for the behavior of sensor nodes in a flood
warning network [6]. Not only did Eco-EA successfully evolve a diversity of models
that satisfied the constraints of the problem, but the models evolved by Eco-EA were
better than a comparison algorithm at continuing to diversify when transferred to an
environment without limited resources. These results demonstrate the strength of
Eco-EA at evolving a diversity of solutions to complex problems.

Eco-EA is just one example of the benefits that making more thoughtful and
intentional use of ecology can provide. Here, we define ecological dynamics as
interactions between members of the population that affect fitness. We propose that
such dynamics provide a variety of benefits, some of which have begun to be put
in to practice and some of which have not. The most obvious of these effects is the
benefit to diversity alluded to above.

5.1.4 Complexifying Environments

Thus far, the ecological communities that we have discussed have only contained
competitive interactions between organisms. In nature, however, there are many
other kinds of interaction, such as mutualism, parasitism, and predation. The
network of interactions within a community grows increasingly complex over
evolutionary time, as the evolution of new species creates new niches for other

80 E. Dolson et al.

species to evolve into. This gradual complexification has two implications that
may be important for evolutionary computation: (1) The gradual increase in
complexity of the biotic environment facilitates the continual production of more
complex niches and thus the evolution of more complex traits, and (2) Ecological
communities as a whole can often perform functions that no single species could
perform alone.

The niches inhabited by various members of an ecological community usually
bear commonalities. While they are not identical, the ability to occupy one niche
is often a building block for the ability to occupy a different one (a clear example
of this effect in nature is metabolic pathways for metabolizing various resources).
When new niches appear, they are closely enough related to existing niches that
it’s plausible that existing populations will evolve to inhabit them. Without the
gradual feedback loop of increasing complexity that eco-evolutionary feedbacks
enable, evolving the ability to exploit newly established niches would be incredibly
improbable.

Community-level functions represent a different mechanism for solving complex
problems. For example, a forest, collectively, is able to store solar energy in sugar
molecules, fix nitrogen, take in various nutrients from the soil, and use these
nutrients and energy to power mobile, decision-making agents. Of course, these
functions are each performed by different species in the community. While it may
be possible to evolve a single species that carries out all of these tasks, it is worth
considering the possibility that it is easier to evolve a community that carries
them out collectively. The fact that such communities seem to be so common in
nature is certainly suggestive of this possibility. Such an approach would have
a variety of potential benefits. For example, it would promote more functional
modularity, a trait that is believed to be critical for evolutionary potential. Moreover,
the closely interdependent species found in a complex ecological community are a
likely precursor to egalitarian major transitions, which are believed by many to be
a critical step towards evolving complex species. Lastly, as ecological communities
can effectively be thought of as a set of subroutines running in parallel, they lend
themselves easily to evolving parallel programs, somewhat akin to Holland’s bucket
brigade algorithm [12] and more recent advances in learning classifier systems.

Incorporating such complex interactions into evolutionary algorithms will be
challenging, and is far beyond the scope of the current paper. However, these factors
are yet another reason that we believe that ecological dynamics have the potential
to be a powerful force in evolutionary computation in the long run.

5.2 Methods

We expect that ecologically-mediated hints provided via Eco-EA and lexicase
selection will display similar set of strengths. Both maintain a diverse population
with respect to the hints that are provided. However, as discussed above, we expect

5 Applying Ecological Principles to Genetic Programming 81

the use of limited resources to be robust to hints that turn out to be counter-
productive, while lexicase selection will have difficulty escaping uncontested bad
advice. To assess the accuracy of these hypotheses, we evaluate them in the context
of a proof-of-concept problem where we can easily manipulate the quantity and
quality of the hints.

5.2.1 10-Dimensional Box Problem

The search space for our proof-of-concept problem is a 10-dimensional box. All
sides of the box have a length of 1. Candidate solutions in the population are
sequences of 10 floating point numbers between 0 and 1, representing a point within
the box. The goal is to find the origin (i.e. the sequence [0, 0, 0, 0, 0, 0, 0, 0, 0,
0]). This problem could be trivially solved by using the inverse Euclidean distance
between a point within the box and the origin as the fitness function. To simulate a
more challenging problem, we use the following fitness function:

f itness =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.01

√
10∑
i=1

x2
i > 0.1

1√
10∑
i=1

x2
i

√
10∑
i=1

x2
i ≤ 0.1

(5.1)

In this function, inverse Euclidean distance from the origin is the fitness only
when Euclidean distance from the origin is less than 0.1 (which, given the high
dimensionality of the space, represents 2.5 × 10−13 of the possible positions). For
all points in the box that are farther away from the origin, fitness is 0.01. We used
0.01 rather than 0 as the base fitness to ensure the Eco-EA’s fitness multipliers would
have an effect. The cut-off of 0.1 was chosen such that it is unlikely for evolution to
solve the problem without hints. Using this fitness function creates a quintessential
“needle in a haystack” problem, where the fitness landscape is flat except for one
incredibly tall and thin peak. Such problems are generally considered to be among
the most challenging for evolutionary computation to solve, as they do not allow for
incremental improvement.

To make this problem more possible for evolution to solve, we can provide
hints about the optimal value for each dimension. Since the goal is to minimize
all dimensions, a good (i.e. informative) hint would be to minimize an individual
dimension. Conversely, maximizing an individual dimension would be a bad (i.e.
misleading) hint, leading a population away from the goal. We provided various
combinations of good and bad hints to Eco-EA, lexicase selection, and to standard
tournament selection. As an additional control, we ran an equivalent number of trials
using unaltered tournament selection.

82 E. Dolson et al.

5.2.2 Eco-EA Implementation

The crux of the idea behind Eco-EA is that it must provide hints about how to
solve a problem and incentivize following them in a manner that leads to negative
frequency-dependence. There are a variety of ways to implement this concept, and
there are likely various trade-offs amongst them that are worthy of a systematic
study. For the purposes of this chapter, we have used an implementation as similar
as possible to the original Eco-EA implementation [7].

Each hint is associated with a resource. That resource flows into the environment
at some rate, I , and flows out at some rate, O. For these experiments, the inflow
rate, I , was 100, and the outflow rate, O, was 0.01. Thus, 100 units of each resource
entered the environment over the course of each generation, and 1% of the total
quantity of each resource exited the environment at the end of each generation.
Resources entered the environment at a constant rate as fitnesses were evaluated to
minimize stochastic effects from the order in which solutions were evaluated.

There are a few parameters that are necessary for determining how resources are
consumed and how they impact fitness. First, there is Cf , the consumption fraction.
Just as no organism in an ecosystem in nature is capable of consuming all of a
resource in that environment, no solution in Eco-EA is. Cf specifies what fraction of
the total quantity of resource any individual solution consumes. Next, there is m, the
maximum amount of resource an individual is capable of consuming at any one time.
For all experiments, we use Cf = 0.0025 and m = 5 to maintain consistency with
previous Eco-EA research [5]. Additionally, there is the c, the cost of attempting to
use a hint. In order to create negative frequency dependence, there must be a cost to
attempting to use a hint when too many other members of the population are also
attempting to use it. In most scenarios, there is an implicit cost to attempting to use
a hint, stemming from the trade-offs inherent in choosing to take one action over
another. In a problem as simple as the 10-dimensional box problem, however, there
is no such implicit cost. Thus, without an explicit cost, there will not be negative
frequency-dependence. Since negative-frequency dependence is a core element of
Eco-EA, we impose a cost of c = 1. Lastly, if there is a cost to attempting to use
a hint, then we also must define the range within which a solution is considered to
be attempting to use that hint. We call this range the niche width, n, which is set to
0.2 for all of these experiments. Since the maximum score for any hint function is
1, this means that solutions must score a minimum of 0.8 on a hint function in order
to potentially get a reward or pay a cost from it.

In order to calculate the fitness impact of a hint, we need two more pieces of
information. The first is R, the current amount of the relevant resource present. The
second is s, the score on the hint function, which is squared to incentivize even small
increases in performance on the hint function. The amount of resource successfully
used, A, is calculated with the equation:

5 Applying Ecological Principles to Genetic Programming 83

A =
{

0 s < 1 − n

min((s2 ∗ Cf ∗ R) − c,m) s ≥ 1 − n
(5.2)

A is subtracted from the current amount of resource in the environment, and is
used to update the base fitness of the current organism with the equation:

f itness = f itness ∗ 2A (5.3)

Thus, successfully using more than c resource will multiply the solution’s fitness
by a number greater than one, whereas using less than c resource will multiply the
solution’s fitness by a number less than one.

These calculations are performed for all hints for all members of the population
to determine resource-adjusted fitness for all candidate solutions. Tournament
selection with a tournament size of two is then performed on the population based
on these fitness values. To ensure that the impact of hints doesn’t wash out small
fitness gains on the main fitness function, every generation created with Eco-EA
also contains a copy of the individual from the previous generation with the highest
base fitness.

5.2.3 Lexicase Selection Implementation

Traditionally, lexicase selection is given a large number of test cases. For each
iteration of selection, these test cases are placed in a random order. Each member in
the population is evaluated on each one in sequence. For each test case, only those
solutions that performed best are kept in contention to be selected. When only a
single solution is left, it is placed into the next generation. Ties are broken randomly.

We argue that test cases can be thought of as a subset of the broader category
of hints about how to solve a problem, and that lexicase selection should generalize
to any kind of hint. So, in place of test cases, we use the hints on solving the 10-
dimensional box problem described above. For every selection event, we randomly
order these hint fitness functions (along with the overall fitness function) and filter
the population based on this ordering.

5.2.4 Tournament Selection Implementation

In an iteration of tournament selection, a pre-determined number (two, in these
experiments) of individuals are chosen at random from the population. The fittest
of them is selected to reproduce. In this paper, we use tournament selection as our
control, as it is effectively a less-informed version of the implementation of Eco-EA
that we use here.

84 E. Dolson et al.

5.2.5 Configuration Details

For all experiments, we evolved a population of 5000 vectors containing 10 floating-
point numbers between 0.0 and 1.0 (inclusive) for 50,000 generations. The next
population for each generation was chosen using one of the three selection schemes
being compared: lexicase selection, Eco-EA, or tournament selection. To avoid
giving Eco-EA an unfair advantage due to its use of elitism (in a problem domain
where that could only be beneficial), we always preserved a copy of the individual in
the population with the highest fitness. For selection schemes requiring a tournament
size (tournament selection and Eco-EA), we used a tournament size of two.

We placed the individuals selected by each iteration of the selection scheme
into the next generation. Each site in each genome was mutated by adding a
value randomly selected from a Gaussian distribution centered at 0 with a standard
deviation of 0.05. Subsequently, we recombined each vector with a random other
vector, using one-point crossover.

5.2.6 Statistical Methods

To determine the effects of good advice, bad advice, and selection scheme on
the probability of solving the problem, we performed a logistic regression. The
predictor variables were the number of good hints, the number of bad hints, a
boolean indicating whether lexicase selection was used, and a boolean indicating
whether Eco-EA was used. Tournament selection, being the control, was the base
case to which all other conditions were compared. The regression coefficients for
the interactions between good or bad hints and the selection type were used as the
test statistic for all statements about the effect of a hint type on a selection scheme.

All statistics were computed using the R statistical computing language, version
3.4.3 [20]. Since some combinations of variables were able to perfectly separate
successes from failures, which can bias the results of logistic regression, we used
Firth’s bias reduction technique, as implemented in the R package brglm [15]. All
plots were made using the ggplot2 package [25].

5.2.7 Code Availability

The full source code for the experiments and analysis in this paper is freely available
at https://github.com/emilydolson/eco-ea-box. This code makes heavy use of the
evolutionary computation modules in the Empirical library, which is available at
https://github.com/devosoft/Empirical. All code for this paper is open source and
freely available.

https://github.com/emilydolson/eco-ea-box
https://github.com/devosoft/Empirical

5 Applying Ecological Principles to Genetic Programming 85

5.3 Results and Discussion

Both Eco-EA and lexicase selection make effective use of good advice (see Fig. 5.1).
Eco-EA solved the problem consistently when given at least four good hints.
Lexicase selection did even better, solving the problem most of the time when given
as few as two good hints. Good hints enable both lexicase selection and Eco-EA to
significantly outperform tournament selection (logistic regression, β = 1.3334 for
lexicase, β = 1.8363 for Eco-EA, p < 0.0001 for both).

These data strongly support our hypothesis that Eco-EA is essentially unaffected
by receiving bad hints; the regression coefficient for the interaction between Eco-EA
and bad hints is not significantly different from 0 (logistic regression, β = 0.0633,
p = 0.66). Lexicase selection, on the other hand, is harmed dramatically by bad
hints (logistic regression, β = −10.6841, p < 0.0001).

Overall, our results illustrate the power of ecological approaches as a vehicle for
providing hints to evolutionary algorithms. We have provided a proof-of-concept
that this technique can make it possible for evolution to solve problems that would
otherwise have been out of reach. Moreover, we have clarified the instances in
which two specific ecological approaches, Eco-EA and lexicase selection, are most
appropriate; lexicase is best when all of the hints are accurate, whereas Eco-EA is
robust in scenarios where there may be some misleading hints.

Fig. 5.1 Impact of good and bad advice on Eco-EA and Lexicase. Heat maps for each algorithm
show the success rate of that algorithm in the presence of varying quantities of good and bad advice.
Note that tournament selection is not actually capable of receiving hints; it is presented here as a
control. Each cell in the heat maps represents the proportion of runs (out of 10) that successfully
found the optimal solution to the 10-dimensional box problem

86 E. Dolson et al.

5.4 Conclusions and Future Work

Thus far, we have tested ecologically-mediated hints on only simple model problems
as a proof-of-concept, but we expect this approach to excel on complex problems
where fitness functions do not provide a clear path from random starting conditions
to meaningful solutions. Artificial Intelligence is a perfect example of this type
of problem. Problem-solving strategies may require many different components
to coordinate to formulate plans. Board-game-playing agents are a particularly
accessible problem that has these properties: they are complex, while still being
experimentally tractable, and are often well-studied. They involve clear measures
of success, while allowing for multiple co-existing strategies. Most importantly,
they are intuitive to humans who can provide “suggestions” for limited resources
to produce building blocks for complex strategies.

The next step will be to more thoroughly explore the parameter space in which
providing hints via Eco-EA and lexicase selection is effective. In the process, we
hope to gain insight that will allow us to develop an approach that includes the best
properties of both. Thus far, we have explored the impact of good and bad hints that
are orthogonal to each other. However, most hints in real world problems will not
be independent, and we expect that this connection may influence the way Eco-EA
and lexicase selection respond to them. Similarly, we have not explored the impact
of completely neutral hints, which may be harmful if they are present in excessive
quantities. That said, a resource is helpful only when it produces a building block
that turns out to be useful for a more complex goal, after which it is no longer
needed. As such, many resources would be helpful if they were around just long
enough for the associated niche to be filled as a stepping-stone to more complex
niches.

If good advice is helpful and other advice is harmless, it should be possible to
bootstrap the solving of a problem by generating random hints. Each hint, once
used, will remain for a limited amount of time (providing an opportunity to be used
as a building-block) before it is removed and replaced by a new hint associated
with a new randomly-determined behavior. These random behaviors will usually be
harmful and thus ignored, but any that turn out to be helpful building blocks should
be incorporated into the successful players.

Finally, we will use human problem-solving patterns to create niches for evolving
“crowd-sourced” AIs. While we believe transient resources will have some utility,
most of those building blocks are likely to be useless, merely using up computational
time. A benefit of working with board games, however, is that we can collect a
wealth of information about how human players make decisions across a variety
of situations. Rather than reward building blocks that we identify from those logs,
we can instead create limited resources that reward AI players for consistently
predicting the next move made by a human player. In other words, we do not
need to understand why a human player made a decision in order to reward an
AI for following the same type of strategy. If that player plays well, the building
blocks produced to mimic them should be generally useful, even for some other

5 Applying Ecological Principles to Genetic Programming 87

strategy types. Ultimately, the biggest rewards will still come from winning games,
so mimicking poor players should have a minimal negative impact (as is usually the
case with Eco-EA).

References

1. Bongard, J. C. and Hornby, G. S. (2010). Guarding Against Premature Convergence While
Accelerating Evolutionary Search. In Proceedings of the 12th Annual Conference on Genetic
and Evolutionary Computation, GECCO ‘10, pages 111–118, New York, NY, USA. ACM.

2. Chesson, P. (2000). Mechanisms of Maintenance of Species Diversity. Annual Review of
Ecology and Systematics 31:343–366.

3. Cooper, T. F. and Ofria, C. (2002). Evolution of stable ecosystems in populations of digital
organisms. In Artificial Life VIII: Proceedings of the Eighth International Conference on
Artificial life, pages 227–232.

4. De Jong, K. A. (1975). Analysis of the behavior of a class of genetic adaptive systems.
5. Goings, S. (2010). Natural niching: Applying ecological principles to evolutionary computa-

tion. Dissertation, Michigan State University.
6. Goings, S., Goldsby, H. J., Cheng, B. H., and Ofria, C. (2012). An ecology-based evolutionary

algorithm to evolve solutions to complex problems. Artificial Life, 13:171–177.
7. Goings, S. and Ofria, C. (2009). Ecological approaches to diversity maintenance in evolution-

ary algorithms. In IEEE Symposium on Artificial Life, 2009. ALife ‘09, pages 124–130.
8. Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multimodal

function optimization. In Genetic algorithms and their applications: Proceedings of the Second
International Conference on Genetic Algorithms, pages 41–49. Hillsdale, NJ: Lawrence
Erlbaum.

9. Helmuth, T. and Spector, L. (2015). General Program Synthesis Benchmark Suite. Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ‘15,
pages 1039–1046, New York, NY, USA, ACM.

10. Helmuth, T., Spector, L., and Matheson, J. (2015). Solving Uncompromising Problems With
Lexicase Selection. IEEE Transactions on Evolutionary Computation, 19(5):630–643.

11. Hendry, A. P. (2016). Eco-evolutionary Dynamics. Princeton University Press.
12. Holland, J. H. (1985). Properties of the bucket brigade. In Proceedings of an International

Conference on Genetic Algorithms, pages 1–7, Hillsdale, NJ, USA. Lawrence Erlbaum Assoc.
13. Hornby, G. S. (2006). ALPS: The Age-layered Population Structure for Reducing the Problem

of Premature Convergence. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, GECCO ‘06, pages 815–822, New York, NY, USA. ACM.

14. Hu, J., Goodman, E., Seo, K., Fan, Z., and Rosenberg, R. (2005). The Hierarchical Fair Compe-
tition (HFC) Framework for Sustainable Evolutionary Algorithms. Evolutionary Computation,
13(2):241–277.

15. Kosmidis, I. (2017). brglm: Bias Reduction in Binary-Response Generalized Linear Models,
version 0.6.1 http://www.ucl.ac.uk/~ucakiko/software.html

16. Lenski, R. E., Ofria, C., Pennock, R. T., and Adami, C. (2003). The evolutionary origin of
complex features. Nature, 423(6936):139–144.

17. Mahfoud, S. W. (1992). Crowding and preselection revisited. Urbana, 51:61801.
18. Mouret, J.-B. and Doncieux, S. (2009). Using Behavioral Exploration Objectives to Solve

Deceptive Problems in Neuro-evolution. In Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, GECCO ‘09, pages 627–634, New York, NY, USA.
ACM.

19. Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites. In
arxiv:1504.04909

http://www.ucl.ac.uk/~ucakiko/software.html

88 E. Dolson et al.

20. R Core Team. (2017). R: A Language and Environment for Statistical Computing. https://www.
R-project.org

21. Schoener, T. W. (2011). The Newest Synthesis: Understanding the Interplay of Evolutionary
and Ecological Dynamics. Science, 331(6016):426–429.

22. Spector, L. (2012). Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In Proceedings of the 14th annual
conference companion on Genetic and evolutionary computation, pages 401–408. ACM.

23. Stanley, K. and Miikkulainen, R. (2004). Competitive coevolution through evolutionary
complexification. J. Artif. Intell. Res. (JAIR), 21:63–100.

24. Taylor, T., Bedau, M., Channon, A., Ackley, D., Banzhaf, W., Beslon, G., Dolson, E., Froese,
T., Hickinbotham, S., Ikegami, T., McMullin, B., Packard, N., Rasmussen, S., Virgo, N.,
Agmon, E., Clark, E., McGregor, S., Ofria, C., Ropella, G., Spector, L., Stanley, K. O., Stanton,
A., Timperley, C., Vostinar, A., and Wiser, M. (2016). Open-Ended Evolution: Perspectives
from the OEE Workshop in York. Artificial Life, 22(3):408–423.

25. Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New
York.

https://www.R-project.org
https://www.R-project.org

Chapter 6
Lexicase Selection with Weighted Shuffle

Sarah Anne Troise and Thomas Helmuth

Abstract Semantic-aware methods in genetic programming take into account
information about programs’ performances across a set of test cases. Lexicase
parent selection, a semantic-aware selection, randomly shuffles the list of test cases
and places more emphasis on those test cases that randomly appear earlier in the
ordering than those that appear later in the ordering. In this work, we explore
methods for weighting this shuffling of test cases to give some test cases more
influence over selection than others. We design and test a variety of weighted shuffle
algorithms and methods for weighting test cases. In experiments on two program
synthesis benchmark problems, we find that none of these methods significantly
outperform regular lexicase selection. We analyze these results by examining how
each method affects population diversity, and find that those methods that perform
much worse also have significantly lower diversity.

6.1 Introduction

Many different types of problems typically tackled by genetic programming (GP),
including symbolic regression, classification, and program synthesis, require a
program that performs well on a set of tests, which we will call test cases. On such
problems, each program is evaluated on each test, producing an error vector that
summarizes its performance on the tests. These error vectors typically provide all of
the information used to determine which individuals in the population are selected
to be parents of the next generation.

In many parent selection methods, such as the pervasive tournament selection,
each error vector is aggregated into a single fitness value that represents the

S. A. Troise
Washington and Lee University, Lexington, VA, USA
e-mail: troises19@mail.wlu.edu

T. Helmuth (�)
Hamilton College, Clinton, NY, USA
e-mail: thelmuth@hamilton.edu

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_6&domain=pdf
mailto:troises19@mail.wlu.edu
mailto:thelmuth@hamilton.edu
https://doi.org/10.1007/978-3-319-90512-9_6

90 S. A. Troise and T. Helmuth

performance of an individual on the problem. Such methods ignore a wide range
of behavioral and semantic information that could potentially be used to more
effectively guide search [16, 22]. Recently, researchers have started incorporating
this information in their GP systems, such as in the case of geometric-semantic
GP [23], behavioral programming [15], and other semantic-aware methods [19].

One recent semantic parent selection method, lexicase selection, has been shown
to improve problem-solving performance on a range of problems compared to
tournament selection [8, 9] and other semantic-based selection methods [19].
These encouraging results suggest not only that lexicase selection deserves careful
analysis of how it contributes to these improves results, but also whether there are
modifications that could be made in order to improve its performance further. In this
study, we explore variants of lexicase selection in which we modify how it considers
the test cases and their order.

An essential part of the lexicase selection algorithm consists of randomly
shuffling the test cases. It then considers the test cases in the shuffled ordering,
with test cases earlier in the ordering receiving more attention than those later in
the ordering. Traditionally, this shuffling has been conducted in a uniform fashion,
with each test case having equal probability of appearing at any position [25]. While
many people have asked us personally if it would be useful to weight the shuffling
so that some test cases are more likely to come earlier in the shuffling than others,
to our knowledge this has not been tested in practice.

In this paper we explore the idea of weighting the shuffle of test cases in lexicase
selection. One key question, that does not seem to have an obvious theoretical
answer, is how should the test cases be weighted? Should easier test cases appear
earlier in the ordering, or should harder cases appear earlier? We could imagine it
being better for easier test cases to appear earlier, since this may allow evolution to
make small steps to improve slowly over time. On the other hand, maybe it would
be better to have harder test cases appear earlier, which could reward programs that
perform well on test cases on which the rest of the population performs poorly. Since
we do not know the best method for weighting shuffle, here we conduct an empirical
investigation of a variety of methods, some of which place easier test cases earlier,
some of which place harder test cases earlier, and some of which dictate order based
on variance.

Our experiments on two program synthesis problems show a surprising result:
while some of the weighting methods reduce the performance of lexicase selection,
none of them significantly improve performance. To help explain this result, we
examine how each method affects population diversity throughout each GP run. We
find that many of the methods result in significant reductions in diversity, and none
appear to increase diversity compared to regular lexicase selection. Since we believe
that diversity maintenance is an important feature of lexicase selection, these results
help explain the cases where shuffling methods perform much worse.

In the next section, we give a detailed description of lexicase selection and prior
results that use it. In Sect. 6.3, we describe the weighted shuffling algorithms and our
methods for weighting test cases. Next, we discuss the design of our experiments on

6 Lexicase Selection with Weighted Shuffle 91

weighted shuffle, and present results from those experiments. We finally give some
examples of related parent selection techniques.

6.2 Lexicase Selection

Lexicase selection is defined in terms of test cases, i.e. the data points used to
evaluate the performance of individuals in the population. While we treat test
cases as input/output pairs of the form used in supervised learning, lexicase
selection could work in any population-based search technique where individuals
are evaluated on multiple metrics. Lexicase parent selection was motivated by the
desire of having parent selection treat individual test cases separately, without ever
comparing the results of programs on one test case with the results on another
[9, 25].

Algorithm 6.1 presents the lexicase selection algorithm. During lexicase selec-
tion, we consider one test case at a time, whittling down the population by removing
any individual that does not exhibit the very best performance on that case. Once
a single individual remains, it is returned. If we iterate through every test case
and multiple individuals remain, that means those individuals have identical error
vectors, so we return one of them at random. In practice, we actually retain only one
random individual per error vector prior to each lexicase selection, since this gives
the exact same results and reduces the time required to filter the population at each
step.

A key element of the lexicase selection algorithm is that the test cases are shuffled
into a different order for selecting each parent. The test cases at the start of the
shuffled list have the most impact on selection, since they have potential to filter
out the most individuals from the pool. Many times, a test case near the end of
the shuffled list will have no bearing on which individual is selected, if the set of
candidates is whittled to a single individual before using every test case. In this way,

Algorithm 6.1 Lexicase selection (to select one parent)
Inputs: candidates, the entire population; cases, a list of test cases
Shuffle cases into a random order
loop

Set f irst be the first case in cases

Set best be the best performance of any individual currently in candidates on f irst

Set candidates to be the subset of candidates that have exactly best performance on f irst

if |candidates| = 1 then
Return the only individual in candidates

end if
if |cases| = 1 then

Return a randomly selected individual from candidates

end if
Remove the first case from cases

end loop

92 S. A. Troise and T. Helmuth

lexicase selection often selects specialist individuals that perform poorly on some
cases as long as they perform very well on the cases at the start of the ordering [4].

Empirical studies have shown lexicase selection to increase and maintain much
higher levels of behavioral diversity than tournament selection [5, 6]. These effects
on diversity are thought to be a consequence of lexicase selection’s emphasis on
selecting different specialist individuals. In particular, since lexicase selection uses
a different ordering of test cases for each selection, it is able to reward individuals
that do well on different parts of a problem. Tournament selection, on the other hand,
computes a single fitness value aggregating a program’s performance across all test
cases. No matter how this aggregation is performed (e.g. summed errors, implicit
fitness sharing [20], etc.), it emphasizes the selection of generalist individuals that
perform well across all test cases. An individual can achieve terrible fitness and low
probability of being selected by tournament selection if it performs very poorly on
a single test case, even if it has excellent performance on all other cases; such an
individual would often be selected by lexicase selection.

Other variants of lexicase selection have made alterations to other parts of the
algorithm. In the initial work describing lexicase selection, what is now consid-
ered standard lexicase selection was described as “global pool, uniform random
sequence, elitist lexicase parent selection” [25]. Each of these areas suggests part
of the algorithm that could be changed. For example, “elitist” refers to the fact that
only those individuals with exactly the best error on a test case will continue. This
constraint has been relaxed in epsilon lexicase selection, in which any individual
with an error value within an “epsilon” of the best error value on a case will continue
to the next step [17, 18]. This variant has proved very successful on continuous-error
problems, for which lexicase selection had previously performed poorly.

Since the test cases at the start of the shuffled list of cases have the most impact
on selection, every selection will treat some cases as more important than others, but
those cases will be different in different selection events. As indicated by “uniform
random sequence” above, most work has used a uniform shuffling of test cases,
giving each case equal probability of appearing at any point in the shuffled order.
Since the invention of lexicase selection, many researchers (the authors included)
have speculated that there must be some better way to arrange the test cases than
using completely uniform shuffling. In fact, Spector tested many ad hoc methods of
weighting the test case shuffle around the time lexicase selection was invented, but
none of them proved superior in initial testing (L. Spector, personal communication,
2012). Burks and Punch describe a variant of lexicase selection that does not use
uniform shuffling of test cases, which we discuss in more detail below and use as a
comparison [1].

6.3 Weighted Shuffle

In our experiments, we consider three different methods for shuffling the test cases
in a non-uniform manner for lexicase selection. Each of these shuffling methods
requires a technique for weighting or ordering the test cases, which we will call the

6 Lexicase Selection with Weighted Shuffle 93

bias metric. The bias metric, when applied to a test case, will produce the weight
for that test case.

6.3.1 Shuffling Methods

Weighted shuffle first scores each test case by the chosen bias metric, assigning
the result as the weight for the case. Then, a list of test cases is built by selecting
cases one at a time, with higher weighted test cases having a greater chance of being
selected at each step. The weighted selection can be modeled with a roulette wheel.
If a test case has a higher weight on the bias metric, its slice of the roulette wheel
is larger. We then randomly select a test case based on these slices. This process is
repeated until we have a weighted ordering of the test cases. This Weighted shuffle
is repeated for every parent selected during a generation, meaning that different
orderings will occur during the generation, but they will all use the same weights
when performing the shuffle.

This Weighted shuffle algorithm, as far as we can tell, is a standard method for
performing weighted shuffle. For example, this is the weighted shuffle implemented
in Haskell [2].

Ranked shuffle takes the test cases and ranks them by the selected bias metric.
Ranked shuffle then selects a random integer upper bound, uniformly selected
between 1 and the number of test cases inclusive. Next, another uniform random
integer is selected between 1 and that upper bound, inclusive; this is the index of
the chosen test case. The test case at this index becomes the first test case in the
new shuffled order. This same process then repeats for the remaining cases, adding
each selected case to the end of the list so far. With this method, the test cases with
a better rank (ex. 1, 2, 3, . . .) are more likely to be chosen at each step because
they are more likely to be within the range from 1 to the selected upper bound. The
motivation for Ranked shuffle is that the chance of being selected is based on rank,
instead of weight, and thus will not be as skewed by large differences in weight.

During each step of the Ranked Shuffle process, we choose a case out of T test
cases. The case with rank t ∈ 1, . . . , T has probability of being selected of

P(t) = 1

T

T∑

i=t

1

i
,

which can be seen because it will have 1/i chance of being chosen for each index
i ≥ t . This distribution is “a discretized version of the negative log distribution” [3],
and for every integer t ∈ 1, . . . , T , is equivalent to

P(t) = − log(t/T)

T
.

94 S. A. Troise and T. Helmuth

Fixed-order lexicase-based tournament selection (FOLBaT) is what we will
call a variant of lexicase selection introduced by Burks and Punch that does not
use uniform shuffling of test cases [1]. In fact, they use a fixed ordering of the test
cases for every selection in a generation, instead of shuffling the test cases at all.
They base this ordering on how well the population performs on the test cases that
generation, with more difficult test cases coming first. Since the test case ordering is
fixed each generation, if the entire population were used in each selection, the same
exact individual would be selected every time. Instead, this method only applies
lexicase to a subset of the population, as in tournament selection. Thus we will call
this method fixed-order lexicase-based tournament selection.

For each generation, the test cases are ordered deterministically for every
selection (although ties are broken randomly for each selection). The original
work using FOLBaT selection uses test case orderings sorted by two different bias
metrics: the Number-of-Nonzeros and Average metrics described below [1]. We use
tournament size of 7, and experiment with using other bias metrics as well.

6.3.2 Bias Metrics

Some of our bias metrics tend to order “easier” test cases earlier, some order
“harder” test cases earlier, and some base the ordering on the variance of the
population error values on the cases. The Number-of-Zeros metric counts the
number of individuals in the population that achieve zero (i.e. perfect) error on the
given test case. This means that easier test cases that the population tends to get
correct more often are given more weight, and therefore tend to appear earlier when
shuffled. The Number-of-Zeros-Inverse metric simply divides 1 by the Number-of-
Zeros metric. Thus, the weights are inverted, and more difficult test cases will be
more likely to appear earlier when shuffled.

Similarly, the Number-of-Nonzeros metric counts the number of individuals in
the population that do not achieve zero error on the test case. Thus it orders harder
cases earlier. Note that this weighting is not equivalent to the Number-of-Zeros-
Inverse weighting, since the relative weights will be different between test cases.
As we will see below, this difference is not simply theoretical, since these methods
give significantly different results in our empirical tests. We also try a Number-
of-Nonzeros-Inverse metric that, as above, divides 1 by the Number-of-Nonzeros
metric.

We could also imagine that there might be more information in the actual error
values for each test case, not just whether an individual perfectly passes the case or
not. Thus, we use a Median metric, which uses the median error in the population
on a test case as its weight. In this setting, a higher median error will give more
weight to the test case, so harder cases will come earlier. We also test a Median-
Inverse metric, with which easier cases will come first. We also use an Average

6 Lexicase Selection with Weighted Shuffle 95

error metric, though we do worry that outliers may make some test cases dominate
the weighting. The original FOLBaT paper used Average, so here it serves as a
comparison metric [1]. Again, higher average error will give more weight, so harder
cases will come earlier.

Finally, we also could imagine that it would be useful to have cases that
differentiate more between individuals to come earlier; thus, we also try a Variance
metric, which uses the variance of errors on a test case as its weight. Thus cases that
have more varied errors will come earlier in the ordering. To be thorough, we also
include a Variance-Inverse metric, where cases that have less divergent errors tend
to come first.

6.4 Experimental Setup

We conducted experiments to compare our weighted shuffle lexicase selection
variants to regular lexicase selection. Below we describe the experiments, including
the problems and GP system we used.

6.4.1 Problems

For our experiments, we use two general program synthesis problems from a recent
benchmark suite [8]. The problems in this suite, which are taken from introductory
programming textbooks, require a range of data types and programming constructs
to solve. We chose problems for which lexicase selection has performed well but has
also showed room for improvement, so that we can expect important differences in
performance to be visible. The first problem, Replace Space With Newline (RSWN),
requires a program to take a string as input and print the string after replacing
all spaces in the input with newline characters. It also requires the program to
functionally return an integer representing the number of non-whitespace characters
in the input. The second problem, Syllables, also gives a string as input. The program
must count the number of vowels in the string, and then print that number as X in
the string “The number of syllables is X”.

In each of our experiments, we report the number of successful programs out of
100 runs. Here, a program must pass both the test cases used during evolution as
well as an unseen test set in order to be called a solution. We created the both data
sets using the methods described with the benchmark suite [8]. We will also plot
the median behavioral diversity of populations across sets of runs, which is defined
as the proportion of distinct behavior vectors of individuals in the population [11].
Here, a behavior vector is the list of outputs of a program when run on the test cases.

96 S. A. Troise and T. Helmuth

Table 6.1 PushGP
parameters used in our
experiments

Parameter Value

Runs per problem/parameter combination 100

Population size 1000

Maximum generations 300

Genetic operator Prob

Alternation 0.2

Uniform mutation 0.2

Uniform close mutation 0.1

Alternation followed by uniform mutation 0.5

6.4.2 Push and PushGP

For our experiments, we use the PushGP system, which has previously been used
extensively on the benchmark problems we use here [4, 5, 7, 8, 21]. PushGP
evolves programs in the Push programming language, a stack-based language
designed specifically for GP [24, 26]. Push has many features that make it well-
suited for general-purpose program synthesis, such as the availability of many data
types and control-flow constructs. Besides the language it evolves programs in,
PushGP is otherwise a standard generational GP system. For this work, we use the
Clojure implementation of PushGP, which is currently the most actively-developed
implementation.1

We give the PushGP parameters that we use in our experiments in Table 6.1.
Our experiments use Plush genomes, the linear genome representation of Push
programs [10]. The genetic operators in Table 6.1 act on these Plush genomes.
Alternation is a crossover of two parents, and uniform mutation and uniform close
mutation act on one parent; more details can be found in [10].

6.5 Results

We present the number of successful runs out of 100 for each setting on the Replace
Space With Newline (RSWN) problem in Table 6.2 and the Syllables problem
in Table 6.3. As a comparison, regular lexicase found 54 successful programs
on RSWN and 22 successful programs on Syllables. The success results in these
tables show that none of the combinations of shuffle methods with bias metrics
significantly improve performance compared to regular lexicase selection. In fact,
some give significantly worse results, using a pairwise chi-square test with Holm
correction for multiple comparisons.

1https://github.com/lspector/Clojush.

https://github.com/lspector/Clojush

6 Lexicase Selection with Weighted Shuffle 97

Table 6.2 Number of successes out of 100 runs on the Replace Space With Newline problem

Type Bias metric Weighted Ranked FOLBaT

Easy-first Number-of-zeros 13 40 6

Number-of-nonzeros-inverse 54 43 7

Median-inverse 53 39 4

Hard-first Number-of-zeros-inverse 52 49 35

Number-of-nonzeros 61 44 40

Median 50 53 26

Average 33 45 17

Variance-based Variance 30 57 11

Variance-inverse 52 53 30

Underlined results are significantly worse than regular lexicase selection, which produced 54
successes. No results were significantly better than regular lexicase

Table 6.3 Number of successes out of 100 runs on the Syllables problem

Type Bias metric Weighted Ranked FOLBaT

Easy-first Number-of-zeros 20 12 7

Number-of-nonzeros-inverse 13 10 8

Median-inverse 19 12 8

Hard-first Number-of-zeros-inverse 11 16 2

Number-of-nonzeros 17 14 3

Median 20 17 6

Average 14 15 5

Variance-based Variance 11 13 20

Variance-inverse 16 19 10

Underlined results are significantly worse than regular lexicase selection, which produced 22
successes. No results were significantly better than regular lexicase

While we tried every bias metric with each shuffle method, some combinations
seem more relevant to consider than others. For example, in the paper describing
FOLBaT, the authors use the Number-of-Nonzeros and Average bias metrics [1].
Our results with FOLBaT are mixed for these metrics. In fact, we expected the
Weighted and Ranked methods to perform poorly with the Average bias metric,
since we imagined it could be heavily skewed by outliers. The results show that
while neither performed exceptionally well with Average, neither did exceptionally
poorly either.

With the Ranked shuffle and FOLBaT, two sets of two methods should produce
equivalent rankings of cases and therefore comparable results. That is, Number-of-
Zeros and Number-of-Nonzeros-Inverse should behave identically, since counting
the number of zeros will produce the same ordering of test cases as taking the inverse
of the number of nonzeros. Similarly, Number-of-Zeros-Inverse and Number-of-
Nonzeros should also behave equivalently with Ranked shuffle. As expected, the
numbers of successes for each of these combinations is not significantly different

98 S. A. Troise and T. Helmuth

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Generation

M
ed

ia
n

B
eh

av
io

ra
l D

iv
er

si
ty

Regular−Lexicase

Number−of−Zeros

Number−of−Nonzeros−Inverse

Median−Inverse

Number−of−Zeros−Inverse

Number−of−Nonzeros

Median

Average

Variance

Variance−Inverse

Fig. 6.1 For Weighted shuffle, the average population behavioral diversity of each bias metric
plotted over the generations of each set of runs on the RSWN problem. Note that the black Regular-
Lexicase line is mostly hidden behind the red Median line

from one another. This equivalency does not hold for Weighted shuffle, where the
relative differences in weight matter for the shuffle.

Figure 6.1 plots the average population behavioral diversity for each bias metric
when using Weighted shuffle on the RSWN problem. This plot shows that Weighted
shuffle is not able to produce significantly higher levels of behavioral diversity than
regular lexicase selection, no matter what bias metric is used. While many of the bias
metrics produce similar diversity to regular lexicase, a few result in significantly
worse diversity. This is especially apparent with Number-of-Zeros, Variance, and
Average, the three bias metrics that performed worst on this problem, showing a
correlation between poor performance and poor diversity.

Figure 6.2 gives the same diversity plots, except for the Ranked shuffling method.
Here, we see diversity more akin to that of regular lexicase, though many of the bias
metrics have lower diversity in the first 150 generations of runs. There does not seem
to be much correlation between diversity and success rate, with some of the metrics
that create lower diversity still finding comparable numbers of solutions.

Finally, we give the diversity results for FOLBaT in Fig. 6.3. Most of the bias
metrics we used with FOLBaT do not exhibit the ability to increase and maintain
diversity shown by regular lexicase selection. The two exceptions are with the
Median and Average bias metrics; these metrics achieve high levels of diversity,

6 Lexicase Selection with Weighted Shuffle 99

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Generation

M
ed

ia
n

B
eh

av
io

ra
l D

iv
er

si
ty

Regular−Lexicase

Number−of−Zeros

Number−of−Nonzeros−Inverse

Median−Inverse

Number−of−Zeros−Inverse

Number−of−Nonzeros

Median

Average

Variance

Variance−Inverse

Fig. 6.2 For Ranked shuffle, the average population behavioral diversity of each bias metric
plotted over the generations of each set of runs on the RSWN problem

although still lower than with regular lexicase. Interestingly, both of these metrics
performed poorly in success rates, while some metrics with lower levels of diversity
performed significantly better.

6.6 Discussion

Both Weighted shuffle and Ranked shuffle perform about as well as regular lexicase
for most of the bias metrics. Weighted shuffle had slightly better results than Ranked
shuffle with the bias metrics that gave the best results, but also much worse results
with the worst bias metrics. FOLBaT, on the other hand, was often significantly
worse than regular lexicase, with every bias metric except Variance-Inverse giving
significantly worse results on one of the two problems.

As for the bias metrics, none stand out as particularly good or bad on these two
problems, at least when only considering Weighted and Ranked shuffles. In fact,
some of the bias metrics that give the worst results on one problem give the best
results on the other problem.

The success rate results show that none of our combinations of shuffle methods
with bias metrics resulted in significantly better results than with regular lexicase,

100 S. A. Troise and T. Helmuth

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Generation

M
ed

ia
n

B
eh

av
io

ra
l D

iv
er

si
ty

Regular−Lexicase

Number−of−Zeros

Number−of−Nonzeros−Inverse

Median−Inverse

Number−of−Zeros−Inverse

Number−of−Nonzeros

Median

Average

Variance

Variance−Inverse

Fig. 6.3 For FOLBaT, the average population behavioral diversity of each bias metric plotted
over the generations of each set of runs on the RSWN problem

which does not weight the shuffling of test cases. Thus it is difficult to recommend
any of these shuffle methods or bias metrics over regular lexicase selection. Why,
we must ask, does this intuitive idea of weighting the shuffling of test cases not lead
to improvements?

Although we do not have any quantitative data, we have seen anecdotal evidence
that suggests that with Weighted shuffle, some of the bias metrics that perform
best often use near-uniform distributions of test cases when shuffling. Test cases
have similar or identical weights when most individuals in the population perform
similarly on them. When most or all test cases have similar wights, Weighted shuffle
acts very similarly to the uniform shuffle used by regular lexicase selection. Thus,
it is not surprising that bias metrics that use near-uniform shuffling of test cases
will give good performance results similar to regular lexicase selection. What is
surprising is that many of the bias metrics that produce more weighting of test cases
perform poorly, suggesting simply that weighting the shuffle leads to poor results.
Note that these anecdotes only apply to Weighted shuffle, since the other shuffle
methods result in different distributions of shuffles.

One possible explanation for the significantly worse results that we do see with
some bias metrics with Weighted shuffle, and the slightly worse results for Ranked
shuffle, is that they over-concentrate on some test cases while ignoring others. Such
behavior may reduce the population diversity by limiting which test cases influence
selection.

6 Lexicase Selection with Weighted Shuffle 101

Turning attention to the diversity figures, we note that maintaining high diversity
is somewhat correlated to better performance, but not always. In some cases, low
diversity may play a large part in poor performance, especially with FOLBaT. But,
this correlation does not always hold; for example, with Ranked shuffle, the Variance
bias metric had the highest number of success, yet exhibited some of the lowest
diversity in the first half of runs.

Of the three shuffle methods, FOLBaT performed the worst and also the exhibited
the lowest diversity. We believe this lack in diversity is caused by FOLBaT not
using different orderings of test cases. This feature of lexicase selection allows it
to emphasize different test cases with each selection, and therefore select many
different individuals that perform well on different tests. Since FOLBaT doesn’t
shuffle the test cases at all, it always emphasizes the same cases within a generation.
FOLBaT’s reliance on a single sorting of the test cases gives a total ordering of the
population, which can be seen as a scalar fitness value assigned to each individual
based on rank. It only selects different individuals because it uses a tournament, and
therefore the best individuals for each generation’s ordering will not be present in
every tournament. Avoiding a scalar fitness value is one of the key tenants of lexicase
selection. This use of a scalar fitness value, a characteristic that it shares with
tournament selection, may explain FOLBaT’s inability to increase and maintain
diversity, similar to tournament selection [6].

What does this teach us about lexicase selection? Lexicase selection’s ability to
emphasize different test cases with each selection seems paramount to its ability
to maintain diversity, by selecting a wide range of individuals that specialize in
different combinations of test cases. Using non-uniform shuffle decreases this
uniformly random aspect of lexicase selection, which seems to have a neutral or
negative impact on results.

Additionally, lexicase selection already places emphasis on individuals that
uniquely perform well on single or multiple test cases, especially if such individuals
also perform well on other cases. It appears to not be useful to place extra emphasis
on some test cases; such favoring does not add utility to how often those cases
appear early in the shuffle, and other times could lead to other cases being under-
emphasized.

6.7 Related Work

The primary idea behind this work, that some test cases should be emphasized more
than others based on how well the population performs on them, shares motivation
with other parent selection methods. Each of the following methods uses tournament
selection, but modifies fitness calculations in some way. In implicit fitness sharing
(IFS), fitness is weighted so that test cases that are solved by fewer individuals
receive more weight [20]. On problems such as those in this paper where test cases
are non-binary, it is necessary to use a non-binary adaptation of IFS [14]. Earlier
work showed that this non-binary IFS produced significantly worse results than

102 S. A. Troise and T. Helmuth

lexicase selection on the two problems presented here, and on the benchmark suite
that the problems come from more generally [8]; it has also been shown to produce
lower levels of population diversity [5].

In “co-solvability” fitness, IFS has been extended to not weight individual cases,
but instead pairs of test cases [13]. In this way, individuals that solve pairs of
test cases not often solved by other individuals receive more reward. “Historically-
assessed hardness” is another generalization of IFS to non-binary test cases, where
fitness on each test case is scaled based on the performance of the population [12].

6.8 Conclusions and Future Work

This work demonstrates that using weighted shuffle of the test cases in lexicase
selection does not increase the performance of GP. Over a wide array of methods
for biasing the shuffle, including some that emphasize easy test cases and some that
emphasize difficult test cases, we do not see any significant gains in performance
compared to regular lexicase selection. We note a correlation between success
rate and the ability to maintain diversity across some of our experimental results,
in which methods that produced lower diversity were also those with the worst
performance, though this correlation does not hold across the board.

These results, while discouraging with regard to improving performance, do
suggest that it is not necessary to use any additional test case shuffling scheme
in order to achieve good results with lexicase selection. Thus we recommend the
continued use of lexicase selection with uniform random shuffling.

We hypothesize that one potential problem with the shuffle methods we present
here is that they over-emphasize certain cases, which over-selects specific members
of the population. In the future, we could consider whether there are ways to not
over-emphasize specific test cases while still performing weighted shuffling. Such
a scheme may be able to achieve better performance results while maintaining high
levels of diversity. On the other hand, the resulting shuffles will be more similar
to uniform shuffling, and therefore may simply behave more similarly to regular
lexicase selection.

Acknowledgements Hammad Ahmad, Lee Spector, and Nicholas Freitag McPhee shared inter-
esting discussions that were very helpful in conducting this work.

References

1. Burks, A.R., Punch, W.F.: An investigation of hybrid structural and behavioral diversity
methods in genetic programming. In: Genetic Programming Theory and Practice XIV, Genetic
and Evolutionary Computation. Springer, Ann Arbor, USA (2016), in press (2018)

2. Data.random.shuffle.weighted. https://hackage.haskell.org/package/random-extras-0.19/docs/
Data-Random-Shuffle-Weighted.html. Accessed: 2017-05-01

https://hackage.haskell.org/package/random-extras-0.19/docs/Data-Random-Shuffle-Weighted.html
https://hackage.haskell.org/package/random-extras-0.19/docs/Data-Random-Shuffle-Weighted.html

6 Lexicase Selection with Weighted Shuffle 103

3. Drury, M.: Does this discrete distribution have a name? Cross Validated. URL https://stats.
stackexchange.com/q/152786. Accessed: 2017-11-25

4. Helmuth, T.: General program synthesis from examples using genetic programming with parent
selection based on random lexicographic orderings of test cases. Ph.D. dissertation, University
of Massachusetts, Amherst (2015). URL http://scholarworks.umass.edu/dissertations_2/465/

5. Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis: A diversity
analysis. In: Genetic Programming Theory and Practice XIII, Genetic and Evolutionary
Computation, pp. 151–167. Springer, Ann Arbor, USA (2015). https://doi.org/10.1007/978-3-
319-34223-8. URL http://cs.wlu.edu/~helmuth/Pubs/2015-GPTP-lexicase-diversity-analysis.
pdf

6. Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament selection on
diversity recovery and maintenance. In: GECCO ‘16 Companion: Proceedings of the Com-
panion Publication of the 2016 Annual Conference on Genetic and Evolutionary Computation,
pp. 983–990. ACM, Denver, Colorado, USA (2016). https://doi.org/10.1145/2908961.
2931657

7. Helmuth, T., McPhee, N.F., Spector, L.: The impact of hyperselection on lexicase selection.
In: T. Friedrich (ed.) GECCO ‘16: Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference, pp. 717–724. ACM, Denver, USA (2016). https://doi.org/10.1145/
2908812.2908851

8. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: GECCO ‘15:
Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 1039–
1046. ACM, Madrid, Spain (2015). http://doi.acm.org/10.1145/2739480.2754769

9. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase
selection. IEEE Transactions on Evolutionary Computation 19(5), 630–643 (2015). https://
doi.org/10.1109/TEVC.2014.2362729

10. Helmuth, T., Spector, L., McPhee, N.F., Shanabrook, S.: Linear genomes for structured
programs. In: Genetic Programming Theory and Practice XIV, Genetic and Evolutionary
Computation. Springer, Ann Arbor, USA (2016), in press (2018)

11. Jackson, D.: Promoting phenotypic diversity in genetic programming. In: PPSN 2010 11th
International Conference on Parallel Problem Solving From Nature, Lecture Notes in Computer
Science, vol. 6239, pp. 472–481. Springer, Krakow, Poland (2010). https://doi.org/10.1007/
978-3-642-15871-1_48

12. Klein, J., Spector, L.: Genetic programming with historically assessed hardness. In: Genetic
Programming Theory and Practice VI, Genetic and Evolutionary Computation, chap. 5, pp. 61–
75. Springer, Ann Arbor (2008). https://doi.org/10.1007/978-0-387-87623-8_5

13. Krawiec, K., Lichocki, P.: Using co-solvability to model and exploit synergetic effects in
evolution. In: PPSN 2010 11th International Conference on Parallel Problem Solving From
Nature, Lecture Notes in Computer Science, vol. 6239, pp. 492–501. Springer, Krakow, Poland
(2010). https://doi.org/10.1007/978-3-642-15871-1_50

14. Krawiec, K., Nawrocki, M.: Implicit fitness sharing for evolutionary synthesis of license plate
detectors. In: Applications of Evolutionary Computing, EvoApplications 2012, Lecture Notes
in Computer Science, vol. 7835, pp. 376–386. Springer, Vienna, Austria (2013). https://doi.
org/10.1007/978-3-642-37192-9_38

15. Krawiec, K., O’Reilly, U.M.: Behavioral programming: A broader and more detailed take on
semantic GP. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, GECCO ‘14, pp. 935–942. ACM, New York, NY, USA (2014). http://doi.acm.
org/10.1145/2576768.2598288

16. Krawiec, K., Swan, J., O’Reilly, U.M.: Behavioral program synthesis: Insights and prospects.
In: Genetic Programming Theory and Practice XIII, Genetic and Evolutionary Computation
Series, pp. 169–183. Springer (2015)

17. La Cava, W., Moore, J.: A general feature engineering wrapper for machine learning using
epsilon-lexicase survival. In: M. Castelli, J. McDermott, L. Sekanina (eds.) EuroGP 2017:
Proceedings of the 20th European Conference on Genetic Programming, LNCS, vol. 10196,
pp. 80–95. Springer Verlag, Amsterdam (2017). https://doi.org/10.1007/978-3-319-55696-3_6

https://stats.stackexchange.com/q/152786
https://stats.stackexchange.com/q/152786
http://scholarworks.umass.edu/dissertations_2/465/
https://doi.org/10.1007/978-3-319-34223-8
https://doi.org/10.1007/978-3-319-34223-8
http://cs.wlu.edu/~helmuth/Pubs/2015-GPTP-lexicase-diversity-analysis.pdf
http://cs.wlu.edu/~helmuth/Pubs/2015-GPTP-lexicase-diversity-analysis.pdf
https://doi.org/10.1145/2908961.2931657
https://doi.org/10.1145/2908961.2931657
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/2908812.2908851
http://doi.acm.org/10.1145/2739480.2754769
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1007/978-3-642-15871-1_48
https://doi.org/10.1007/978-3-642-15871-1_48
https://doi.org/10.1007/978-0-387-87623-8_5
https://doi.org/10.1007/978-3-642-15871-1_50
https://doi.org/10.1007/978-3-642-37192-9_38
https://doi.org/10.1007/978-3-642-37192-9_38
http://doi.acm.org/10.1145/2576768.2598288
http://doi.acm.org/10.1145/2576768.2598288
https://doi.org/10.1007/978-3-319-55696-3_6

104 S. A. Troise and T. Helmuth

18. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: T. Friedrich
(ed.) GECCO ‘16: Proceedings of the 2016 Annual Conference on Genetic and Evolutionary
Computation, pp. 741–748. ACM, Denver, USA (2016). https://doi.org/10.1145/2908812.
2908898

19. Liskowski, P., Krawiec, K., Helmuth, T., Spector, L.: Comparison of semantic-aware selection
methods in genetic programming. In: C. Johnson, K. Krawiec, A. Moraglio, M. O’Neill (eds.)
GECCO 2015 Semantic Methods in Genetic Programming (SMGP’15) Workshop, pp. 1301–
1307. ACM, Madrid, Spain (2015). http://doi.acm.org/10.1145/2739482.2768505

20. McKay, R.I.: Fitness sharing in genetic programming. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), pp. 435–442. Morgan Kaufmann, Las
Vegas, Nevada, USA (2000)

21. McPhee, N.F., Finzel, M., Casale, M.M., Helmuth, T., Spector, L.: A detailed analysis of a
PushGP run. In: Genetic Programming Theory and Practice XIV, Genetic and Evolutionary
Computation. Springer, Ann Arbor, USA (2016), in press (2018)

22. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In:
Proceedings of the 11th European Conference on Genetic Programming, EuroGP 2008, Lecture
Notes in Computer Science, vol. 4971, pp. 134–145. Springer, Naples (2008)

23. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In:
Parallel Problem Solving from Nature, PPSN XII (part 1), Lecture Notes in Computer Science,
vol. 7491, pp. 21–31. Springer, Taormina, Italy (2012)

24. Spector, L.: Autoconstructive evolution: Push, PushGP, and Pushpop. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 137–146. Morgan
Kaufmann, San Francisco, California, USA (2001). URL http://hampshire.edu/lspector/pubs/
ace.pdf

25. Spector, L.: Assessment of problem modality by differential performance of lexicase selection
in genetic programming: a preliminary report. In: Proceedings of the fourteenth interna-
tional conference on Genetic and evolutionary computation conference companion, GECCO
Companion ‘12, pp. 401–408. ACM, New York, NY, USA (2012). https://doi.org/10.1145/
2330784.2330846

26. Spector, L., Klein, J., Keijzer, M.: The Push3 execution stack and the evolution of control. In:
GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation,
pp. 1689–1696. ACM Press, Washington DC, USA (2005). https://doi.org/10.1145/1068009.
1068292. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p1689.pdf

https://doi.org/10.1145/2908812.2908898
https://doi.org/10.1145/2908812.2908898
http://doi.acm.org/10.1145/2739482.2768505
http://hampshire.edu/lspector/pubs/ace.pdf
http://hampshire.edu/lspector/pubs/ace.pdf
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/1068009.1068292
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p1689.pdf

Chapter 7
Relaxations of Lexicase Parent Selection

Lee Spector, William La Cava, Saul Shanabrook, Thomas Helmuth,
and Edward Pantridge

Abstract In a genetic programming system, the parent selection algorithm deter-
mines which programs in the evolving population will be used as the material out of
which new programs will be constructed. The lexicase parent selection algorithm
chooses a parent by considering all test cases, individually, one at a time, in a
random order, to reduce the pool of possible parent programs. Lexicase selection
is ordinarily strict, in that a program can only be selected if it has the best error in
the entire population on the first test case considered, and the best error relative to all
other programs that remain in the pool each time it is reduced. This strictness may
exclude high-quality candidates from consideration for parenthood, and hence from
exploration by the evolutionary process. In this chapter we describe and present
results of four variants of lexicase selection that relax these strict constraints: epsilon
lexicase selection, random threshold lexicase selection, MADCAP epsilon lexicase
selection, and truncated lexicase selection. We present the results of experiments
with genetic programming systems using these and other parent selection algorithms
on symbolic regression and software synthesis problems. We also briefly discuss
the relations between lexicase selection and work on many-objective optimization,

L. Spector (�)
Hampshire College, Amherst, MA, USA
e-mail: lspector@hampshire.edu

W. La Cava
Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
e-mail: lacava@upenn.edu

S. Shanabrook
University of Massachusetts, Amherst, MA, USA

T. Helmuth
Hamilton College, Clinton, NY, USA
e-mail: thelmuth@hamilton.edu

E. Pantridge
MassMutual, Amherst, MA, USA
e-mail: EPantridge@MassMutual.com

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_7

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_7&domain=pdf
mailto:lspector@hampshire.edu
mailto:lacava@upenn.edu
mailto:thelmuth@hamilton.edu
mailto:EPantridge@MassMutual.com
https://doi.org/10.1007/978-3-319-90512-9_7

106 L. Spector et al.

and the implications of these considerations for future work on parent selection in
genetic programming.

7.1 Introduction

Almost all parent selection algorithms used in genetic programming systems involve
not only comparisons among potential parent programs, but also random choices.

For example, in fitness-proportionate selection, we simulate the spinning of
a roulette wheel, with the size of the pocket for each parent being inversely
proportional to its total error over the set of test cases. It is possible for any program
in the population to be selected as a parent, and the choice among potential parents,
while random, is biased so that higher quality programs have higher probabilities of
being selected.

In tournament selection, we first choose a tournament set randomly from the
population, with each program in the population having equal probability of being
chosen. We then select the best program in the tournament set to serve as the parent,
where the “best” program is the one with the lowest total error. Here random choices
are made first, to determine the tournament set, followed by a choice that is driven by
the quality of the programs that have been chosen to participate in the tournament.

One could, in principle, avoid making any random choices in parent selection,
but this is rarely done. For example, one could use a form of pure elitism, in which
each program in the “best” n% of the population is selected as a parent some pre-
specified number of times.

In lexicase selection, randomization plays a particularly central role, but rather
than being applied directly to choices of programs, it is applied to sequences of
individual test cases by which programs are compared. In lexicase selection, parents
are selected through a filtering process that is iterated over a sequence of test cases
that is randomly shuffled for each parent selection event. Once randomly re-ordered,
the test cases are considered one at a time, with only the best programs for each case
retained at the corresponding filtering step.

Tournament selection can be thought of as subjecting a subset of the potential
parents to a challenge of this form for each selection event: “Are you better, overall,
than these other randomly-chosen programs?” By contrast, lexicase selection can
be thought of as subjecting each potential parent to a sequence of challenges—“Are
you the best on this test case? And of those of you who are, are you best on this
one? Etc.”—among which the order is randomized.

Lexicase selection has been shown to be advantageous in several contexts. It
often allows problems to be solved more quickly and reliably than they can be
without it [7, 17], and in some cases allows for the solution of problems that cannot
otherwise be solved at all [6].

The power of lexicase selection appears to stem from the way in which it
leverages multiple, randomized challenges to guide search. The randomization of
test case order allows the parent selection process to be sensitive to more information
about the strengths and weaknesses of programs in the population than it can be

7 Relaxations of Lexicase Parent Selection 107

under the approach used in tournament selection. In fact, recent experiments with
weighted shuffling of test cases produced similar or worse results, suggesting that
the uniform shuffling of test cases allows lexicase selection to better sample useful
programs in the population [22]. This randomization of challenges allows lexicase
selection to be sensitive not only to the performance of programs on all test cases
considered in aggregate, but also to their performance on all subsets of the test
cases; in this way, lexicase selection often selects individuals that specialize in some
test cases while performing poorly on others. Considering all subsets of test cases
explicitly would require exponential resources, but randomization allows them to be
considered implicitly, through random sampling.

When a parent selection algorithm is sensitive to more information about the
strengths and weaknesses of programs, then that information may be used to
provide better guidance to evolutionary search in different ecological circumstances.
Semantic- or behavior-aware genetic programming methods (such as lexicase selec-
tion) take into account information about a program’s execution or its individual
outputs/errors on test cases, going beyond methods that simply use a single fitness
value [8, 9, 15, 18].

Might variations of lexicase selection perform even better on problems of specific
kinds? In this chapter we describe and present data on four “relaxed” forms of
lexicase selection, each of which allows some programs to be selected that would
not be selected by ordinary lexicase selection; these are epsilon lexicase selection,
random threshold lexicase selection, MADCAP epsilon lexicase selection, and
truncated lexicase selection. Among the motivations for considering these forms
of relaxation is the hypothesis that ordinary lexicase selection can sometimes be too
strict, insofar as it eliminates any opportunity to serve as a parent for some programs
that are quite good in many respects.

In the following sections, we first describe the most basic form of lexicase
selection, on which the other selection methods described in this chapter are based.
We then describe each of the four relaxed versions of lexicase selection in turn.
Following the descriptions of the algorithms, we present and discuss the results of
experiments involving all of the described algorithms, along with a few others from
the literature to facilitate broader comparisons. These experiments involve eight
symbolic regression problems and five software synthesis problems. We conclude
with a brief discussion of the relation between work on lexicase selection and work
on many-objective optimization, and we discuss the implications of our results for
future research.

7.2 Lexicase Selection

Lexicase selection is designed for problems in which candidate solutions are
assessed with multiple test cases. In most other parent selection methods, a
candidate solution’s performance over multiple test cases is aggregated into a single
measure, for example, an average error value, and this single aggregate measure is

108 L. Spector et al.

used as the basis of selection. In lexicase selection, no aggregation is performed;
the measures for each individual test case are retained, and they may all be used,
individually, in the parent selection process.

Although lexicase selection can be used for other kinds of performance measures
as well, for the sake of simplicity we will refer to measures of performance on
individual test cases as “errors,” and we will assume that we are seeking a solution
that minimizes all errors.

With the most basic form of lexicase selection (“global pool, uniform random
sequence, elitist lexicase parent selection” [20], which will also refer to below as
“ordinary lexicase selection”), when the genetic programming system requires a
parent to use for the production of offspring, we first shuffle a sequence of the test
cases that are being used to assess programs in the population. We then form a pool
that initially contains all of the programs in population. We will winnow this pool
down to a single selected program by considering each test case in turn. When each
test case is considered, we first note the lowest error that any program in the pool
has for that test case. We then eject all programs that have a higher error on that
test case from the pool. If these ejections ever reduce the pool to a single program,
then we return that program as the selected parent. If instead, we exhaust the test
cases and still have more than one program in the pool, then we return one of them
randomly.

Why might one expect this selection method to be useful? One reason is that it
allows programs to be selected if they perform particularly well on individual test
cases, or on collections of test cases, even if they perform poorly on many others.
This allows specialists to produce offspring that may build on their specialties,
perhaps in conjunction with other specialties that they may have inherited from
other ancestors. The full reasons for lexicase selection’s utility, however, are more
complex, and still under investigation [3–5, 15].

A variety of time optimizations of lexicase selection are possible. For example,
we can include in the initial pool just a single random representative of any group
that shares the same errors for all test cases. Doing so will decrease the number of
programs in the pool that will have to be filtered, and it will also allow fewer test
cases to be considered for some parent selection events.

7.3 Epsilon Lexicase Selection

In prior work, it was noted that lexicase selection would sometimes perform poorly
on symbolic regression problems involving floating-point errors [7]. It was thought
that this was due to the fact that in these contexts it would often be the case
that most or all programs in the population would have unique error values when
any particular test case is considered. In such situations, the strictness of lexicase
selection would reduce the candidate pool to a single program as soon as the first
test case is considered, and parenthood decisions would often be made on the basis
of single test cases. These considerations led to the development of epsilon lexicase

7 Relaxations of Lexicase Parent Selection 109

selection, which has indeed proven to be useful for problems involving floating-
point errors [11, 12].

In epsilon lexicase selection we relax the elitism of the filtering steps. Rather than
retaining only the programs with exactly the lowest error on the current test case, we
retain all programs that are “close enough”—that is, those with errors within some
small epsilon of the lowest error of any program in the pool on the current test case.

While the reasons for epsilon lexicase selection’s good performance are still
under investigation, an intuitive case for its success can be based on the considera-
tions sketched above. In a population in which no two programs have the same error
for any test case, which is not terribly hard to imagine for problems with floating-
point errors, ordinary lexicase selection would select every parent based on a single
test case. Specialists would still be selected, but not programs that perform well on
multiple test cases. By allowing programs with errors that are “close enough” to the
minimum error on a test case to pass through the filter, the algorithm will once again
be able to select programs based on performance on larger subsets of the test cases.
Support for this theory has been demonstrated by observing that epsilon lexicase
selection uses more cases per selection event than ordinary lexicase selection does
on regression problems [11, 12].

How should the epsilon in epsilon lexicase selection be determined? Several
approaches to this question have been explored, with the most consistently good
performance having been obtained so far with a method dubbed “MAD” epsilon
lexicase selection, for “Median Absolute Deviation from the median.” Here epsilon
is computed one per generation, for each test case, on the basis of all the errors for
the test case across the population. Specifically, epsilon for a particular test case
is computed as the median of the differences between errors on the case and the
median error for the case. When we use the name “epsilon lexicase selection” below,
without further qualification, we are referring to this method.

7.4 Random Threshold Lexicase Selection

Epsilon lexicase selection sets a threshold for each challenge that a program must
meet in order to survive a filtering step: if the program has an error for the case that
differs from the best error by the threshold or less, then it survives. The threshold is
set on the basis of the distribution of errors for the test cases in the population; for
example, it is the median absolute deviation from the median error when the MAD
version of epsilon lexicase selection is used.

The idea behind random threshold lexicase selection is to randomize the setting
of the threshold as well. One motivation for doing this is the observation that
the threshold in epsilon lexicase selection can be quite sensitive to changes in
the distribution of error values across the population. If the distribution is not
sufficiently well behaved, for example because of unusual features of the problem
that we are trying to solve, or because high error penalties are imposed on programs
that violate specified constraints, or because the genetic operators being used often

110 L. Spector et al.

produce large changes in error between parent and child, then one might expect the
thresholds used by epsilon selection to be unhelpful.

For this reason, random threshold lexicase selection was developed to choose
thresholds that are derived from the errors present in the population, but less
sensitive to their specific distributions. Specifically, at each step of filtering, we
choose an error randomly from those present in the current pool for the current
case. We then retain only those programs that have the chosen error or better for the
current case. If the randomly selected error happens to be the best error in the pool,
then the filtering at this step will be equivalent to that used by ordinary lexicase
selection. If it happens to be the worst error in the pool, then no filtering at all will
take place for the current test case in the current selection event.

One can think of random threshold lexicase selection as randomly sampling
combinations of relative tightness of selection on different test cases, all within
lexicase selection’s random ordering of test cases. So there is a sense in which all
orderings of test cases and also all combinations of strictness vs. laxness for each
test case may be considered. As with ordinary lexicase selection, however, we do not
consider all of these combinations of challenges explicitly. Rather, we sample both
the orderings and the strictnesses of the challenges that programs must confront.

At one extreme, when an elite error is picked at each step, this will act like
ordinary lexicase selection. However, this will be rare. Consequentially, random
threshold lexicase selection is a significantly relaxed form of lexicase selection,
insofar as it will generally make it easier for programs to meet the challenges to
survive filtering. For problems in which all errors are binary (pass/fail), it will act
like lexicase selection on a random subset of the cases.

One would expect that this technique would often end up producing effects
similar to those of ordinary lexicase selection, but with some test cases more-or-
less skipped during some selection events, while the cases with “tight” bounds on
errors will be the ones that do the major culling. How much of an effect this will
have can be expected to depend on how many intermediate values there are between
the elite values and the worst values; if there are many, then we might expect its
effects to be quite different from those of ordinary lexicase selection.

We can think of both epsilon lexicase selection and random threshold lexicase
selection as loosening lexicase selection’s elitist filtering condition, and thereby
weakening the challenge presented by each test case. Such weakening will generally
lessen the selection pressure exerted by individual test cases while increasing the
selection pressure exerted by groups of test cases that are adjacent in random
shuffles.

We would generally expect random threshold lexicase selection to weaken test
case challenges more than MAD epsilon lexicase selection does, since we would
expect the bound provided by epsilon to be relatively tight, so that randomly chosen
errors would not usually fall within it. It is possible that this will mean that random
threshold lexicase selection will not provide enough selection pressure for good
performance on individual test cases. Whether or not this will actually be the case
is an empirical question, best answered by experiments.

7 Relaxations of Lexicase Parent Selection 111

7.5 MADCAP Epsilon Lexicase Selection

Random threshold lexicase selection relaxes test case challenges in a randomized
way, but it may also be useful to consider methods that do something similar while
nonetheless obeying the limit of relaxation used in epsilon lexicase selection. That
is, it might be useful in some contexts to consider methods that vary in stringency
between MAD epsilon lexicase selection and ordinary lexicase selection (which is
strictly elitist), again using randomization to sample different strengths applied to
different test cases. MADCAP epsilon lexicase selection is such a method.

At each filtering step of MADCAP epsilon lexicase selection, we sometimes
retain just the best individuals on the case, and sometimes retain any individuals
within epsilon of best, choosing randomly between these options for each test case.
The application of epsilon lexicase’s “cap” (threshold) is probabilistic.1 Specifically,
we provide a parameter for the probability of applying the MAD cap versus just
retaining individuals with the best error. In the experiments described below, this
parameter is set to 0.5. At each filtering step, we use this probability to determine
whether to retain only those programs with exactly the best error in the pool on the
current case, or whether to retain all programs with errors within the MAD epsilon
of the best error. Thus the selectivity of MADCAP epsilon lexicase selection will be
between that of ordinary lexicase selection and MAD epsilon lexicase selection.

The motivation for this formulation is that for some problems, it is required that
solutions have errors that are actually zero, or at least equal to the lowest possible
error, rather than just being low. Especially for these problems, but possibly for
others as well, we would like selection to sometimes (probabilistically) distinguish
between programs that have the minimum (possibly zero) error on a test case and
programs that merely have low errors.

Intuitively, one might expect MADCAP epsilon lexicase selection to allow the
genetic programming search process to hone in on minimal-error solutions. Whether
this happens in practice will probably depend on several factors including the
distribution of errors in the population, which will depend in turn on factors such
as the genetic operators and rates that are being used. Epsilon lexicase selection is
always sensitive to the distribution of errors across the population, while MADCAP
epsilon lexicase selection will always provide some selection in favor of elites,
regardless of the error distribution.

As with the other methods considered here, MADCAP epsilon lexicase selection
uses sampling to consider, in the limit but not explicitly, all combinations of favoring
vs. not favoring elites for each case and each combination of cases.

Again, whether or not this will actually be useful in practice is an empirical
question, best answered by experiments.

1So “MADCAP” = Median Absolute Deviation from the median, Cap Applied Probabilistically.

112 L. Spector et al.

7.6 Truncated Lexicase Selection

Truncated lexicase selection is a form of lexicase selection in which we limit the
number of cases that are considered in each parent selection event. The number (or
percentage) of the total cases that will be considered is a parameter of the method.
For example, suppose that we use truncated lexicase selection on a problem with 100
test cases and that we specify that 25% of cases will be used. Then for each parent
selection event, we will proceed initially as we do in ordinary lexicase selection, but
if we have filtered the pool using 25 test cases and it still contains multiple programs,
then we will immediately choose a random remaining member of the pool and return
it as the selected parent.

Epsilon lexicase selection, random threshold lexicase selection, and MADCAP
epsilon lexicase selection are all relaxed forms of lexicase selection in which the
constraints on selection are reduced with respect to the allowed error values for
individual cases. In ordinary lexicase selection, a program can only be selected
to serve as a parent if it is globally elite on at least one case and elite with
respect to the survivors in the selection pool as each subsequent case is considered.
In epsilon lexicase selection, random threshold lexicase selection, and MADCAP
epsilon lexicase selection, this requirement of eliteness is relaxed, to a greater or
lesser (and sometimes random) extent.

By contrast, in truncated lexicase selection we still require eliteness on the test
cases that are considered, but we place no constraints at all on the error values of the
cases that are not considered. Whether or not this form of relaxation has beneficial
impacts on the ability of the genetic programming system to solve problems, it also
has the potential to improve system runtimes by reducing the amount of computation
that must be dedicated to filtering the lexicase selection candidate pools.

7.7 Experimental Results

We include here the results from two sets of experiments on the relaxed variants of
lexicase selection presented above.

First, we present the results of comparisons of several selection methods, includ-
ing ordinary lexicase selection, epsilon lexicase selection, random threshold lexicase
selection, and MADCAP lexicase selection, on a collection of eight symbolic
regression problems. For completeness, we also include comparisons to purely
random selection, tournament selection with a tournament size of 2, lasso selection
[21], age-fitness Pareto optimization [19], and deterministic crowding [16].

Table 7.1 describes the problems used for these experiments, each of which
comes from the UCI repository [14]. Table 7.2 describes the genetic programming
system parameters that were used, and also provides abbreviations for the parent
selection methods that were studied, which are used in the graph of results in

7 Relaxations of Lexicase Parent Selection 113

Table 7.1 Regression
problems used for method
comparisons

Problem Dimension Samples

Airfoil 5 1503

Concrete 8 1030

ENC 8 768

ENH 8 768

Housing 14 506

Tower 25 3135

UBall5D 5 6024

Yacht 6 309

Table 7.2 Genetic programming system settings for symbolic regression problems

Setting Value

GP tool ellyn

Population size 1000

Crossover/mutation 60/40%

Program length limits [3, 50]

ERC range [−1,1]

Generation limit 1000

Trials 50

Terminal set {x, ERC, +, −, ∗, /, sin, cos, exp, log}

Elitism Keep best

Fitness (non-lexicase methods) MSE

Method Abbreviation

Lasso [21] lasso

Random selection rand

Tournament selection (size 2) tourn

Lexicase selection lex

Age-fitness Pareto optimization [19] afp

Deterministic crowding [16] dc

Epsilon-lexicase selection ep-lex

Random threshold lexicase selection ep-lex-rand

MADCAP epsilon-lexicase selection ep-lex-madcap

Fig. 7.1. The experiments were run using the ellyn,2 a linear GP system described
in [10] (in this experiment, no epigenetic markers were used).

As Fig. 7.1 makes clear, epsilon lexicase selection achieves the best results,
and achieves the most consistently good results, across this set of problems.
Ordinary lexicase selection sometimes performs reasonably well, occasionally
beating competitors, but as has been noted elsewhere and motivated the development
of epsilon lexicase selection in the first place, ordinary lexicase selection often
performs relatively poorly in the context of floating-point errors [12].

2https://epistasislab.github.io/ellyn/.

https://epistasislab.github.io/ellyn/

114 L. Spector et al.

airfoil

10

20

30

Te
st

 M
S

E
concrete

50

100

150

200

Te
st

 M
S

E

enc

0

20

40

60

Te
st

 M
S

E

enh

0

5

10

15

20

25

Te
st

 M
S

E

housing

20

40

60
Te

st
 M

S
E

tower

0.1

0.2

0.3

0.4

0.5

Te
st

 M
S

E

uball5d

la
ss

o
ra

nd
to

ur
n

le
x

af
p

dc
ep

-le
x

ep
-le

x-
ra

nd
ep

-le
x-

m
ad

ca
p

0.00

0.01

0.02

0.03

0.04

Te
st

 M
S

E

yacht

la
ss

o
ra

nd
to

ur
n

le
x

af
p

dc
ep

-le
x

ep
-le

x-
ra

nd
ep

-le
x-

m
ad

ca
p

0

40

80

120

Te
st

 M
S

E

0.0

2.5

5.0

7.5

la
ss

o
ra

nd
to

ur
n

le
x

af
p

dc
ep

-le
x

ep
-le

x-
ra

nd
ep

-le
x-

m
ad

ca
p

M
ea

n
R

an
ki

ng

All Problems

Fig. 7.1 Comparison of multiple parent selection methods on multiple symbolic regression
problems. The boxplots span the upper and lower quartiles of test set mean squared error (MSE)
for each problem, with a central line indicating the median. On the lower right, the mean ranking
according to median MSE of each method across all problems is shown, with the error bar
indicating the standard error

Random threshold lexicase selection performs much better than ordinary lexicase
selection but worse than epsilon lexicase selection. Its average ranking over these
regression problems is about the same as deterministic crowding. MADCAP
lexicase selection has broadly similar performance, sometimes a bit better and
sometimes a bit worse. It is possible, however, that each of these relaxed forms
of epsilon lexicase selection will prove to be more advantageous for problems with
particular characteristics that might be discovered by broadening the experiments to
cover more types of problems.

In a second set of experiments, we compared ordinary lexicase selection to
truncated lexicase selection on software synthesis problems from our general
program synthesis benchmark suite [6]. Specifically, we conducted runs on the
“Median,” “Negative to Zero,” “Number IO,” “Replace Space with Newline,”

7 Relaxations of Lexicase Parent Selection 115

Table 7.3 Genetic programming system settings for software synthesis problems

Negative to
Setting Smallest Median zero Number IO RSWN Vector average

GP tool Clojush Clojush Clojush Clojush Clojush Clojush

Population size 1000 1000 1000 1000 1000 1000

Generation limit 200 200 300 200 300 300

Alternation/ 20/30/50% 20/30/50% 20/30/50% 30/20/50% 20/30/50% 20/30/50%
mutation/both

Max initial 100 100 250 100 400 200

genome length

Test cases 100 100 200 1000 100 250

All problems are explained in detail in [6]. The full set of settings, including the set of instructions
allowed in programs, can be found in the Clojush GitHub repository

Fig. 7.2 Comparison of ordinary lexicase selection and truncated lexicase selection on software
synthesis benchmark problems. The x-axis labels denote the values for the cap parameter of
truncated lexicase selection in number of test cases. The values are a single test case, 25% of the
total number of test cases, and 100% of the total number of test cases (which is ordinary lexicase
selection). Error bars indicate the standard error

“Smallest,” and “Vector Average” problems. These problems require a range of
data types and programming constructs to solve. For these problems, we tested
truncating lexicase selection after considering just a single test case, and after
considering 25% of the test cases. We note that when only a single test cases are
considered we are creating, intentionally, exactly the situation which was thought to
be problematic when using ordinary lexicase selection on problems with floating-
point errors, which motivated the development of epsilon lexicase selection.

The parameters for the runs comparing truncated lexicase selection with ordi-
nary lexicase selection, using the Clojush implementation of the PushGP genetic
programming system (https://github.com/lspector/Clojush), are shown in Table 7.3.
We conducted 20 runs in each setting. Figure 7.2 shows the success rates that were

https://github.com/lspector/Clojush

116 L. Spector et al.

observed. We note that the results appear to indicate that the relaxation provided by
truncation damages problem-solving performance, with greater relaxation generally
producing greater damage. We have too little data to draw any firm conclusions
about the extent of this effect, or about the ways in which this effect may vary
across problems, but we present it as a baseline for future study of truncated lexicase
selection.

7.8 Relation to Many-Objective Optimization

All of the lexicase selection relaxation algorithms discussed above assess programs
with respect to multiple test cases, each of which might be considered, in some
sense, to be a separate objective of the genetic programming search process. Because
there is existing research on so-called “many-objective optimization algorithms,”
which attempt to optimize four or more objectives, it is worth considering how such
research relates to the parent selection algorithms we have discussed here.

We recently provided a multi-objective analysis of lexicase selection to show
that, if we treat each fitness case as an objective, parents selected by lexicase
selection are Pareto-optimal (i.e., they are non-dominated in the population) and
located at the boundaries of the Pareto front [11]; we borrow from that analysis in
the remainder of this section. The utility of Pareto dominance as a search driver is
reduced as the number of fitness cases/objectives grows since the number of non-
dominated solutions grow exponentially with the number of objectives. However, it
is noteworthy that lexicase selection corresponds to selections of the boundaries of
the Pareto front since boundary solutions influence typical measures of quality in
many-objective optimization.

In many-objective optimization, the performance of algorithms is typically
assessed in terms of convergence, uniformity, and spread [13], with the last of
these dealing directly with the extent of boundary solutions. Some indicator-based
methods, for example IBEA and SMS-EMOA, use a measure of the hypervolume
in objective space to evaluate algorithm performance [23]. There appears to be
some disagreement regarding the importance of boundary solutions in this context.
Although Deb et al. [2] argued empirically that boundary solutions have an
outsized effect on hypervolume measures, according to Auger et al., “optimizing the
unweighted hypervolume indicator stresses the so-called knee-points—parts of the
Pareto front decision-makers believe to be interesting regions. . . Extreme points are
not generally preferred as claimed in [2], since the density of points does not depend
on the position on the front but only on the gradient at the respective point” [1].

In general, many-objective optimization methods have not highlighted random
sampling as a useful method for exploring high-dimensional objective spaces.
MOEA/D, R-NSGA-II, and NSGA-III opt for the use of reference points in
objective space to preserve the spread of solutions. Unlike lexicase selection, there
does not seem to be explicit motivation to keep boundary solutions in this literature.

7 Relaxations of Lexicase Parent Selection 117

Results like those demonstrated in the present chapter, and in other work on lexicase
selection, suggest that it may be worthwhile for many-objective optimization
researchers to give greater consideration to methods based on random sampling,
and to methods in which samples are considered with randomized priorities.

7.9 Discussion

In ordinary lexicase selection, test case order is randomized, allowing the algorithm
to implicitly select on the basis of performance on all subsets of test cases, even
though the exponentially many subsets are not considered explicitly. Randomization
samples the space of test case sequence prefixes, thereby sampling the space of test
case combinations that “matter” for a particular parent selection event, and thereby
implicitly considering, over time, all subsets of test cases.

This appears to be a powerful technique for selecting useful parents in genetic
programming, as it sometimes allows solutions to be found in significantly more
runs and/or fewer generations than they can be found with previous, test-case-
aggregating parent selection algorithms. However, the ordinary lexicase selection
algorithm appears to be too strict in some circumstances, preventing the selection
of parents that have much to offer to future generations in the evolutionary search
process.

Epsilon lexicase selection appears to resolve this issue for many problems with
floating-point errors by relaxing the requirement for eliteness in each step of the
filtering of candidate parents. Two closely related methods were also explored here.
The first, random threshold lexicase selection, is often (but not necessarily always)
a more (and randomly more) relaxed version of epsilon lexicase selection, which
also depends less directly on the distribution of errors in the population than does
epsilon lexicase selection. The second, MADCAP epsilon lexicase selection, is a
less (and randomly less) relaxed version of epsilon lexicase selection. Neither of
these alternatives performed better than epsilon lexicase selection on the problems
studied here, but they both performed better than several of the other methods
considered, and one can imagine situations in which each would be more useful.
For example, one might expect random threshold lexicase selection to be useful in
contexts requiring particularly broad exploration, and one might expect MADCAP
epsilon lexicase selection to be useful in contexts requiring convergence to solutions
with zero or truly minimal errors. One area for future research is the application of
these methods to problems of other types, in order to support or to falsify such
expectations.

Truncated lexicase selection provides a different form of relaxation, limiting the
number of test cases that can be considered in any parent selection event. While we
were initially motivated to perform experiments on truncated lexicase selection by
an expectation that the truncation might provide runtime performance benefits, we
also wanted to study how this affects solution rates. Our experiments here, while
preliminary, suggest that truncation often hampers the ability of the system to find

118 L. Spector et al.

solutions, but that it does so to a different extent on different problems. These
results suggest that more experiments should be conducted, on additional problems
of various types, to help us to understand when this form of relaxation might be
beneficial (regarding success rates and/or runtime) and when it is detrimental. They
also suggest that experiments should be conducted with additional truncation levels.
Levels of 50% or higher may be particularly interesting, as they would provide
only modest relaxation relative to ordinary lexicase selection. Levels that allow the
consideration of very few test cases, but more than just a single one, may also be
revealing because they would be quite relaxed while still allowing for selection on
the basis of multiple test cases.

Another obvious avenue for future research is to combine truncation with
relaxation of the eliteness constraints for individual test cases. That is, it would
be straightforward and possibly useful or at least instructive to conduct runs with
truncated versions of epsilon lexicase selection, random threshold lexicase selection,
and MADCAP epsilon lexicase selection.

Other forms of relaxation are also possible and may be useful in some cir-
cumstances. Two that we have implemented but not yet studied systematically are
methods in which we perform lexicase selection with a certain probability and
purely random selection otherwise, and methods in which we perform truncated
lexicase selection but with different, randomly chosen numbers of test cases used
in each selection event. Of course, these could also be combined with one another,
and with many of the other methods described above. The choice of which of these
to explore first might best be guided by theoretical consideration of the ways in
which they sample the search space, along the lines of the initial discussion that
we offered above on the relation between work on lexicase selection and work on
many-objective optimization.

We note that many of the ideas discussed here could be applied to survival
selection as well as parent selection.

While all of the methods here in some way relax the requirements made by
ordinary lexicase selection, it is possible that strengthening the requirements in some
way could potentially have benefits for some problems. It is unclear at this point
what such strengthening would look like, but variants of this sort would certainly be
interesting to examine.

The specific methods described here appear to have varying utility, at least from
the experiments conducted to date. Regardless of the utility of the specific methods,
however, we hope that the discussion here may help to stimulate additional work
developing selection algorithms that can guide evolution more effectively.

Acknowledgements This material is based upon work supported by the National Science
Foundation under Grants No. 1617087, 1129139 and 1331283. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

7 Relaxations of Lexicase Parent Selection 119

References

1. Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler. Theory of the hypervolume
indicator: optimal -distributions and the choice of the reference point. In Proceedings of the
tenth ACM SIGEVO workshop on Foundations of genetic algorithms, pages 87–102. ACM,
2009.

2. Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. Evaluating the ε-Domination
Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal
Solutions. Evolutionary Computation, 13(4):501–525, December 2005.

3. Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. Effects of lexicase and
tournament selection on diversity recovery and maintenance. In Tobias Friedrich and et al.,
editors, GECCO ‘16 Companion: Proceedings of the Companion Publication of the 2016
Annual Conference on Genetic and Evolutionary Computation, pages 983–990, Denver,
Colorado, USA, 20–24 July 2016. ACM.

4. Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. The impact of hyperselection on
lexicase selection. In Tobias Friedrich, editor, GECCO ‘16: Proceedings of the 2016 Annual
Conference on Genetic and Evolutionary Computation, pages 717–724, Denver, USA, 20–24
July 2016. ACM. Nominated for best paper.

5. Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. Lexicase selection for program
synthesis: A diversity analysis. In Rick Riolo, William P. Worzel, M. Kotanchek, and
A. Kordon, editors, Genetic Programming Theory and Practice XIII, Genetic and Evolutionary
Computation, pages 151–167, Ann Arbor, USA, May 2016. Springer.

6. Thomas Helmuth and Lee Spector. General program synthesis benchmark suite. In Sara Silva
and et al., editors, GECCO ‘15: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pages 1039–1046, Madrid, Spain, 11–15 July 2015. ACM.

7. Thomas Helmuth, Lee Spector, and James Matheson. Solving uncompromising problems with
lexicase selection. IEEE Transactions on Evolutionary Computation, 19(5):630–643, October
2015.

8. Krzysztof Krawiec and Una-May O’Reilly. Behavioral programming: A broader and more
detailed take on semantic gp. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, GECCO ‘14, pages 935–942, New York, NY, USA, 2014. ACM.

9. Krzysztof Krawiec, Jerry Swan, and Una-May O’Reilly. Behavioral program synthesis:
Insights and prospects. In Genetic Programming Theory and Practice XIII, Genetic and
Evolutionary Computation. Springer, 2015.

10. William La Cava, Kourosh Danai, and Lee Spector. Inference of compact nonlinear dynamic
models by epigenetic local search. Engineering Applications of Artificial Intelligence, 55:292–
306, October 2016.

11. William La Cava, Thomas Helmuth, Lee Spector, and Jason H. Moore. ε-Lexicase selection:
a probabilistic and multi-objective analysis of lexicase selection in continuous domains.
Evolutionary Computation, 1–28. https://doi.org/10.1162/evco_a_00224.

12. William La Cava, Lee Spector, and Kourosh Danai. Epsilon-lexicase selection for regression.
In Tobias Friedrich, editor, GECCO ‘16: Proceedings of the 2016 Annual Conference on
Genetic and Evolutionary Computation, pages 741–748, Denver, USA, 20–24 July 2016.
ACM.

13. Miqing Li and Jinhua Zheng. Spread assessment for evolutionary multi-objective optimization.
In International Conference on Evolutionary Multi-Criterion Optimization, pages 216–230.
Springer, 2009.

14. M. Lichman. UCI machine learning repository, 2013.
15. Pawel Liskowski, Krzysztof Krawiec, Thomas Helmuth, and Lee Spector. Comparison of

semantic-aware selection methods in genetic programming. In Colin Johnson, Krzysztof
Krawiec, Alberto Moraglio, and Michael O’Neill, editors, GECCO 2015 Semantic Methods
in Genetic Programming (SMGP’15) Workshop, pages 1301–1307, Madrid, Spain, 11–15 July
2015. ACM.

https://doi.org/10.1162/evco_a_00224

120 L. Spector et al.

16. Samir W Mahfoud. Niching methods for genetic algorithms. PhD thesis, 1995.
17. Yuliana Martnez, Enrique Naredo, Leonardo Trujillo, Pierrick Legrand, and Uriel Lpez.

A comparison of fitness-case sampling methods for genetic programming. Journal of
Experimental & Theoretical Artificial Intelligence, 29(6):1203–1224, 2017.

18. Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison. Semantic building blocks in genetic
programming. In Proceedings of the 11th European Conference on Genetic Programming,
EuroGP 2008, volume 4971 of Lecture Notes in Computer Science, pages 134–145, Naples,
26–28 March 2008. Springer.

19. Michael Schmidt and Hod Lipson. Age-fitness Pareto optimization. In Genetic Programming
Theory and Practice VIII, pages 129–146. Springer, 2011.

20. Lee Spector. Assessment of problem modality by differential performance of lexicase selection
in genetic programming: A preliminary report. In Kent McClymont and Ed Keedwell, editors,
1st workshop on Understanding Problems (GECCO-UP), pages 401–408, Philadelphia,
Pennsylvania, USA, 7–11 July 2012. ACM.

21. Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

22. Sarah Anne Troise and Thomas Helmuth. Lexicase selection with weighted shuffle. In Genetic
Programming Theory and Practice XV, Genetic and Evolutionary Computation, pages 89–103,
Ann Arbor, USA, May 2017. Springer.

23. Tobias Wagner, Nicola Beume, and Boris Naujoks. Pareto-, Aggregation-, and Indicator-Based
Methods in Many-Objective Optimization. In Evolutionary Multi-Criterion Optimization,
pages 742–756. Springer, Berlin, Heidelberg, March 2007. https://doi.org/10.1007/978-3-
540-70928-2_56.

https://doi.org/10.1007/978-3-540-70928-2_56
https://doi.org/10.1007/978-3-540-70928-2_56

Chapter 8
A System for Accessible Artificial
Intelligence

Randal S. Olson, Moshe Sipper, William La Cava, Sharon Tartarone,
Steven Vitale, Weixuan Fu, Patryk Orzechowski, Ryan J. Urbanowicz,
John H. Holmes, and Jason H. Moore

Abstract While artificial intelligence (AI) has become widespread, many
commercial AI systems are not yet accessible to individual researchers nor the
general public due to the deep knowledge of the systems required to use them. We
believe that AI has matured to the point where it should be an accessible technology
for everyone. We present an ongoing project whose ultimate goal is to deliver
an open source, user-friendly AI system that is specialized for machine learning
analysis of complex data in the biomedical and health care domains. We discuss
how genetic programming can aid in this endeavor, and highlight specific examples
where genetic programming has automated machine learning analyses in previous
projects.

R. S. Olson · W. La Cava · S. Tartarone · S. Vitale · W. Fu · R. J. Urbanowicz · J. H. Holmes
J. H. Moore (�)
Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
e-mail: rso@randalolson.com; lacava@upenn.edu; ryanurb@pennmedicine.upenn.edu;
jhmoore@upenn.edu

M. Sipper
Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA

Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
e-mail: sipper@cs.bgu.ac.il

P. Orzechowski
Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA

Department of Automatics and Biomedical Engineering, AGH University of Science
and Technology, Krakow, Poland

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_8

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_8&domain=pdf
mailto:rso@randalolson.com
mailto:lacava@upenn.edu
mailto:ryanurb@pennmedicine.upenn.edu
mailto:jhmoore@upenn.edu
mailto:sipper@cs.bgu.ac.il
https://doi.org/10.1007/978-3-319-90512-9_8

122 R. S. Olson et al.

8.1 Introduction

A central goal of artificial intelligence (AI) is to use computational hardware
and software to solve complex problems in a human-competitive manner [9].
The practicality of this goal is that AI can be tasked with solving problems or
performing functions that humans cannot perform or simply do not have time
for. Most AI methodologies can be grouped into top-down approaches, wherein
cognition is viewed as a high-level phenomenon that is independent of the low-level
details, or bottom-up approaches, which define basic computational building blocks
such as artificial neurons that collectively give rise to “emergent” [29] intelligent
behavior. The top-down approach has been difficult to realize given the inherent
complexity of human cognition. However, the bottom-up has had some success
owing to the availability of sophisticated algorithms such as genetic programming
(GP) [10] and deep neural networks [6]. This is particularly true today with abundant
and inexpensive high-performance computing, leading to many human-competitive
success stories [9].

Medical applications of AI have had a long history with both successes and
failures. One of the early successes was the Mycin system, which was designed
to predict the antibiotic that a patient with an infection should receive in the
intensive care unit [2]. Mycin combined a knowledge base along with a set of
rules implemented as part of an expert system. The system was demonstrated to
be human-competitive, but was never put into clinical practice because of legal
concerns and the time it took clinicians to enter the patient data required for Mycin
to make the predictions. The field of AI has matured since Mycin was developed
and, importantly, computing power has grown tremendously in parallel. Examples
of modern AI successes include IBM’s Watson, which beat the world champion of
the game show Jeopardy [5]. The Watson AI system that won Jeopardy combined
knowledge representation, information retrieval, natural language processing, and
machine learning along with high-performance computing to access and exploit a
knowledge base that included the Wikipedia text corpus. This was a milestone in
AI because it showed that a computational system could compete with humans on
difficult language processing tasks. Watson is now being marketed in the health care
domain although the jury is still out on its effectiveness.

Commercial AI systems such as Watson show potential but are not yet accessible
to individual researchers nor the general public due the cost and the complexity of
working with a team from IBM. It is our working hypothesis that,

AI has matured to the point where it should be an accessible technology for everyone.

Democratization of AI will be important if we seek to integrate this exciting new
technology into multiple different domains, as demonstrated by recent efforts such
as Orange [4]. We describe here the early development stages of an open source
and user-friendly AI system—PennAI (http://pennai.org)—for machine learning
analysis of complex data in the biomedical and health care domains. We focus
our initial efforts on the classification of biomedical endpoints such as disease
susceptibility. We describe in turn below each of the components of our AI system
and then end with an example and a discussion of how we envision this system

http://pennai.org

8 A System for Accessible Artificial Intelligence 123

Fig. 8.1 The components of PennAI, a user-friendly AI system developed at the University of
Pennsylvania

being used to solve complex biomedical problems. Further, we discuss how GP can
aid in enhancing PennAI, and highlight specific examples where GP has automated
machine learning analyses in previous work.

The components of PennAI include a human engine (i.e., the user); a user-
friendly interface for interacting with the AI; a machine learning engine for data
mining; a controller engine for launching jobs and keeping track of analytical
results; a graph database for storing data and results (i.e., the memory); an AI
engine for monitoring results and automatically launching or recommending new
analyses; and a visualization engine for displaying results and analytical knowledge
(Fig. 8.1). This AI system provides a comprehensive set of integrated components
for automated machine learning (AutoML), thus providing a data science assistant
for generating useful results from large and complex data problems. PennAI is
housed in the “Idea Factory,” a facility designed to facilitate collaboration and
promote new methods of communicating and presenting scientific innovation.
The Idea Factory makes sophisticated data visualization and artificial intelligence
analytics easy for users across the entire Penn community (Fig. 8.2).

8.2 The Human Engine

The most important component of the proposed AI system is the user. Contrary to
some claims that AI will replace human users, we see the human as an integral
part of the discovery process and a partner with the AI. One way to view this

124 R. S. Olson et al.

Fig. 8.2 The “Idea Factory,” home of PennAI

partnership is with the human as the driver of the discovery process and the AI
as the data science assistant. Thus, the AI provides an additional set of hands in a
modern data science discovery environment that might include human teammates
with expertise in computer science, statistics, and applied mathematics. We have
previously suggested this idea of human-computer interaction that places the human
user at the epicenter [22]. This idea has also previously been explored from the point
of view of the user or domain expert [16].

Langley [16] provides five important tips that are relevant to thinking about the
relationship humans have with AI for data mining using machine learning. First,
traditional machine learning notations are not easily communicated to scientists.
This consideration is important because a machine learning model may not be
interpretable by a user. Second, scientists often have initial models that should
influence the discovery process. Domain-specific knowledge can be critical to the
discovery process. Third, scientific datasets are often rare and difficult to obtain.
It often takes years to collect and process the data before it can be analyzed. As
such, it is important that the analysis is carefully planned and executed, and that any
general feedback about the performance of the learning process is not lost between
studies. Fourth, scientists want models that move beyond description and provide
explanations of the data. Explanation and interpretation are paramount to the user.
Finally, scientists want computational assistance rather than a complete replacement
of themselves. Langley [16] further suggests that users want interactive discovery
environments that help them understand their data while at the same time giving
them control over the modeling process. Collectively, these five lessons suggest that

8 A System for Accessible Artificial Intelligence 125

synergy between the user and the AI is critical. With this in mind, our proposed AI
system includes a graphical user interface (GUI) that allows the user to easily launch
analyses, view the results, and give the AI feedback about what results are useful or
interesting.

8.3 The Human-Computer Interaction Engine

As described above, a key component of PennAI is human-computer interaction.
The first important feature is to make it easy for the user to directly launch machine
learning analyses by choosing a method and its parameter settings from an intuitive
push-button menu implemented through the web using JavaScript. The user can
launch single analyses or, in an advanced mode, launch a grid search across multiple
methods and parameter settings. The methods and the controller that keep track
of these analyses is described below. Figures 8.3 and 8.4 show prototypes of
our GUI for uploading and viewing datasets for analysis and launching machine
learning analyses on those datasets, respectively. Our JavaScript implementation is
compatible with mobile devices, which allows the user to interact with the AI system
from any Internet-connected device.

The second key feature of PennAI is the ability to toggle the AI on and off for
automated analysis, shown in Fig. 8.3. An AI toggle allows the user to turn the AI
on and set parameters controlling the maximum number of runs the AI can launch,
as well as the frequency of updates the user would like to receive by email or text
message. The GUI also provides a simple thumbs up/down selection for each result
received by PennAI, which provides feedback to PennAI that is incorporated into
its expert knowledge system.

8.4 The Machine Learning Engine

Our first application of PennAI is for data mining using machine learning in the
biomedical domain. Here, we make use of an extensive open source machine learn-
ing library in Python called scikit-learn [28]. Scikit-learn provides peer-reviewed
implementations of several common supervised and unsupervised machine learning
algorithms, data preprocessing methods, feature engineering and selection methods,
hyperparameter optimization procedures, and more. To most users, scikit-learn is
considered to be the standard machine learning library in Python.

Of course, there are dozens of machine learning algorithms, preprocessors, etc.
to choose from in scikit-learn, which can be overwhelming to a novice user. To
simplify the algorithm selection process for PennAI users, we currently limit Pen-
nAI to six machine learning algorithms that we believe will handle most supervised
classification use cases, shown in Table 8.1. We also limit the parameter choices
for each algorithm to a handful of the most important parameters and parameter

126 R. S. Olson et al.

Fig. 8.3 Prototype of the graphical user interface for managing and viewing datasets

Table 8.1 Machine learning
algorithms available in
PennAI

Classification Regression

Logistic regression ElasticNet

Decision tree Decision tree

k-Nearest neighbors k-Nearest neighbors

Support vector machine Support vector machine

Random forest Random forest

Gradient boosting Gradient boosting

options, which makes it easier for users to choose a parameter configuration at
the expense of algorithm customizability. An example of the interface to the
Machine Learning Engine can be found in Fig. 8.4, where only a handful of the
most important parameters and parameter options are available for the k-Nearest
Neighbors classification algorithm.

8 A System for Accessible Artificial Intelligence 127

Fig. 8.4 Prototype of the Machine Learning Engine graphical user interface

In an upcoming PennAI implementation, we will provide simplified descriptions
of the machine learning algorithms and parameters so users can make use of the
algorithms without fully understanding their implementation. For example, when
using a random forest it is not necessary for the user to understand what tuning the
n_estimators parameter does to the model. Instead, it is more important for
the user to understand that adding more decision trees to the random forest (i.e.,
increasing n_estimators) improves model performance but increases training
time, whereas removing decision trees from the random forest decreases model
performance but decreases training time [7].

Once the Machine Learning Engine finishes training and evaluating a machine
learning model, it stores the machine learning model, the model predictions, and
an analysis of the model in the Graph Database Engine, which are used in the
Visualization Engine (both described below).

128 R. S. Olson et al.

8.5 The Controller Engine

The Controller Engine acts as the interface between the high-performance comput-
ing system and the user or AI. This component is hidden from the user but facilitates
the automatic launching of jobs on a multi-CPU machine, computing cluster, or
cloud computing system. The controller must not only coordinate the launching of
jobs but also keep track of when they finish and deposit the results in the Graph
Database Engine (described below) that serves as the memory of the system.

For the Controller Engine, we selected an open source package called the Future
Gadget Lab (FGLab), which is available on GitHub.1 FGLab functions as a server
with individual runs launched as clients, called FGMachines. FGLab uses node.js to
coordinate distributed jobs and uses MongoDB [3] as the backend database in the
Graph Database Engine.

8.6 The Graph Database Engine

Another key component of PennAI is a memory system that keeps track of every
analysis that is run on each data set. We keep track of the details of the machine
learning method, the parameter settings, the data set analyzed, and results such as
the model, model error, and area under the receiver operating characteristic curve
(AUC). These are all stored in a JSON file that is deposited in a MongoDB NoSQL
database. The advantage of using a NoSQL database is that new data elements
can be added without creating tables and without strict format specifications. This
flexibility is important for the rapidly changing landscape of machine learning.
MongoDB can also function as a graph database that allows the documents to be
linked in a network according to shared index terms related to the analysis and
data. This feature facilitates more complex semantic queries of the database, such
as “Return the machine learning algorithm configurations that achieved the highest
accuracy on any study involving prostate cancer.”

8.6.1 Knowledge Base

The Graph Database Engine serves as the memory of PennAI and provides the
raw materials for the AI to learn which methods and parameter settings are
working better than others for particular kinds of problems. The initial knowledge
base consists of results from a previously published benchmark of scikit-learn
algorithms [24], in which 14 machine learning algorithms were run with full

1FGLab: https://github.com/Kaixhin/FGLab.

https://github.com/Kaixhin/FGLab

8 A System for Accessible Artificial Intelligence 129

hyperparameter optimization on a suite of 165 supervised classification problems.
The results are combined with meta-information about the datasets (e.g., number of
features, number of instances, correlations between features, etc.) in order to allow
the creation of a mapping from ‘problem instance space’, i.e. dataset meta-features
and model performance, to ‘learning space’, i.e. machine learning algorithms and
their parameters. This data can then be modelled to extract rules that represent the
knowledge used by the Artificial Intelligence Engine to make informed analyses.
The knowledge base will be updated with all future analyses.

8.7 The Artificial Intelligence Engine

Each component described above provides the raw materials for the Artificial
Intelligence Engine which then (1) searches the graph database for results related
to one or more data sets, (2) performs statistical analysis comparing algorithms
and their parameters, (3) combines facts and rules in an expert system to make
new analysis recommendations, (4) communicates findings to the user, and (5)
automatically launches new analyses using suggestions from the expert system.
The first function uses the search capabilities of the MongoDB graph database to
identify relevant machine learning results in the form of JSON files. All returned
JSON files can be parsed to extract the machine learning algorithm, parameters,
and information about the model performance. These results are collated in a tab-
delimited file and a statistical analysis performed to determine the best algorithm
configurations for certain problem types, similar to meta-learning techniques [8].

New statistical results are used to populate the knowledge base of an expert
system that has a set of decision rules provided by developers and advanced machine
learning practitioners. This expert system is then used to make suggestions for
additional analyses, for example by recommending better parameter settings or even
entirely different machine learning algorithms that might be better-suited for the
user’s dataset. The user can access these suggestions manually or PennAI can use the
suggestions to automatically launch new jobs, thus continually growing the PennAI
knowledge base. Essentially, the Artificial Intelligence Engine becomes a research
assistant who tinkers with new ways of modeling the dataset and reports back to the
user with their best findings.

8.8 The Visualization Engine

Visualization will be critical for fostering the human-AI collaboration described
above. The user will need to be able to see individual machine learning models
and results as well as higher-level results from statistical analyses across machine
learning runs. We extract visual results such as the receiver operating characteristic
(ROC) curves and models to store in the graph database, as shown in Fig. 8.5.

130 R. S. Olson et al.

Fig. 8.5 Prototype of the Visualization Engine graphical user interface

PennAI will also generate heatmaps and other visualizations that summarize
results across different machine learning methods and datasets. These higher-level
visualizations will aid the user with making decisions about new manual analyses
to launch and will help them assess how well the PennAI assistant is doing. These
images will be linked to the datasets and results in the Graph Database Engine, and
will thus be easily searchable.

8.9 Discussion and Future Work

Thus far, we have described PennAI as a system that provides a simple interface
for users to upload their datasets, launch machine learning analyses, view the
results of the analyses in an intuitive manner, and use those results to refine their
machine learning analyses. We also described how PennAI will use a combination of
expert knowledge from advanced machine learning practitioners and prior statistical
knowledge of machine learning algorithm performance on datasets to recommend
new analyses to the user, as well as launch its own analyses to later report to the
user. In essence, the primary goal of PennAI is to provide an AI research assistant
for its users. However, considering the name of this workshop and book—Genetic
Programming Theory and Practice—one may be left wondering how GP can be
incorporated into PennAI. In the following paragraphs, we will describe our plans
for integrating GP into PennAI.

8 A System for Accessible Artificial Intelligence 131

The first point of entry is to include GP as a machine learning option since a num-
ber of successful biomedical applications have been reported (e.g., [17–21, 34]). A
GP system for classification based on multidimensional clustering [31] was recently
demonstrated on biomedical classification problems [15] as a competitive alterna-
tive to traditional machine learning approaches. Recently GP has been proposed
as a general feature engineering wrapper (FEW)2 in order to harness its feature
learning capability to improve scikit-learn estimators, both for regression [13] and
classification [14]. FEW allows GP to provide readable feature transformations to
users while still utilizing existing modeling techniques for making predictions. As
mentioned in Sect. 8.2, interpretation and explanatory power are important aspects
of using AI for data mining, and therefore GP methods that produce concise models,
e.g. by local search [11] or Pareto optimization [12], are important options to
include. Further down the road, it could be possible for PennAI to allow advanced
users to incorporate custom machine learning algorithms into PennAI by providing
a scikit-learn formatted interface to their project (e.g. ellyn3). PennAI could then
provide a “bring your own learner” type of service [1] to allow researchers to tackle
complex data mining tasks with customized learning approaches, and incorporate
the results into its knowledge base for improving future data science projects.

Beyond using GP to perform the machine learning itself, recent work has shown
that GP can also be harnessed to optimize a sequence of existing data analysis and
machine learning operations on a dataset to maximize the predictive performance
of the final machine learning model [30, 35]. For example, TPOT4 is an early
prototype that uses GP to optimize a sequence of scikit-learn operations for both
classification and regression problems [25–27], and has been shown to work quite
well across a broad range of application domains ranging from epidemiological
studies to image classification to time series prediction [23]. Given the general
design of TPOT, the operations it optimizes over can be specialized for particular
problem domains. As another example, the TPOT-MDR project [33] showed that
TPOT can be specialized for genome-wide association studies (GWAS), and it
outperforms several state-of-the-art modeling methods on both simulated and real-
world GWAS problems because it considers a broad range of operations in with
one another. As such, we view GP as a strong candidate for a future version of
the PennAI Artificial Intelligence Engine, where the GP is seeded with the best
known algorithm configurations and uses the core principles of GP (inheritance,
mutation, and crossover)—distributed over a high-performance computing cluster—
to improve the algorithm configurations from there. This brand of GP-based AI
system would be useful for automatically launching new analyses, but less useful
for recommending particular algorithm configurations to the user because GP does
not provide a notion of the “next best” solution to attempt.

2http://lacava.github.io/few.
3http://epistasislab.github.io/ellyn.
4https://github.com/rhiever/tpot.

http://lacava.github.io/few
http://epistasislab.github.io/ellyn
https://github.com/rhiever/tpot

132 R. S. Olson et al.

Another extension of PennAI is the use of a meta genetic algorithm to find
parameters (population size, generation count, etc.) for a GP instance that work
well, i.e., solve a given problem [32]. This meshes well with the idea that the AI of
PennAI will aid non-machine learning experts run complex algorithms, such as GP,
without having to find or even understand every single parameter.

Ultimately, PennAI will likely be comprised of several disparate AI algorithms
that use meta-data and meta-learning to improve the user experience and user
productivity by suggesting machine learning algorithms and parameters, as well as
providing other insights. As a result, we will be able to harness ensemble techniques
to collate the advice given by the numerous AI algorithms.

The time is now to bring AI technology to anyone that wants to use it for big
data analytics. The software and hardware technology exists and data has never
been bigger, more complex, and more plentiful. PennAI will provide both machine
learning and AI capability to both naive and expert users alike with a user-friendly
web and smartphone-enabled interface. We see AI technology such as PennAI not
as a replacement for the data scientist but rather as a data science assistant that
can suggest analyses to the user or provide automatically generated results that are
informed by previous analyses across different data sets. The user can take these
results as-is or use them as inspiration in manual analyses. The democratization of
AI is here.

Acknowledgements This work was generously funded by the Perelman School of Medicine
and the University of Pennsylvania Health System. Additional funding was provided by National
Institutes of Health grants AI116794, DK112217, ES013508, and TR001878.

References

1. Arnaldo, I., Veeramachaneni, K., Song, A., O’Reilly, U.M.: Bring your own learner: A
cloud-based, data-parallel commons for machine learning. IEEE Computational Intelligence
Magazine 10(1), 20–32 (2015)

2. Bruce, G., Buchanan, B., Shortliffe, E.: Rule-based expert systems: The MYCIN experiments
of the Stanford heuristic programming project (1984)

3. Chodorow, K., Dirolf, M.: MongoDB: The Definitive Guide, 1st edn. O’Reilly Media, Inc.
(2010)

4. Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M., Možina, M.,
Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M.,
Zupan, B.: Orange: Data mining toolbox in Python. Journal of Machine Learning Research 14,
2349–2353 (2013)

5. Ferrucci, D.A.: Introduction to “This is Watson”. IBM Journal of Research and Development
56(3.4), 1–1 (2012)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press (2016)
7. Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer, New York, NY, USA (2009)
8. Kalousis, A.: Algorithm selection via meta-learning. Ph.D. thesis, Universite de Geneve (2002)
9. Kannappan, K., Spector, L., Sipper, M., Helmuth, T., La Cava, W., Wisdom, J., Bernstein,

O.: Analyzing a decade of human-competitive (“HUMIE”) winners: What can we learn? In:
Genetic Programming Theory and Practice XII, pp. 149–166. Springer International Publishing
(2015)

8 A System for Accessible Artificial Intelligence 133

10. Koza, J.R.: Genetic programming: on the programming of computers by means of natural
selection, vol. 1. MIT Press (1992)

11. La Cava, W., Danai, K., Spector, L.: Inference of compact nonlinear dynamic models by
epigenetic local search. Engineering Applications of Artificial Intelligence 55, 292–306 (2016)

12. La Cava, W., Danai, K., Spector, L., Fleming, P., Wright, A., Lackner, M.: Automatic iden-
tification of wind turbine models using evolutionary multiobjective optimization. Renewable
Energy 87, 892–902 (2016)

13. La Cava, W., Moore, J.: A general feature engineering wrapper for machine learning using
ε-lexicase survival. In: European Conference on Genetic Programming, pp. 80–95. Springer
(2017)

14. La Cava, W., Moore, J.H.: Ensemble representation learning: an analysis of fitness and survival
for wrapper-based genetic programming methods. In: GECCO ‘17: Proceedings of the
Conference on Genetic and Evolutionary Computation. ACM (2017)

15. La Cava, W., Silva, S., Vanneschi, L., Spector, L., Moore, J.: Genetic programming repre-
sentations for multi-dimensional feature learning in biomedical classification. In: European
Conference on the Applications of Evolutionary Computation, pp. 158–173. Springer (2017)

16. Langley, P.: Lessons for the Computational Discovery of Scientific Knowledge (2002)
17. Moore, J.H., Andrews, P.C., Barney, N., White, B.C.: Development and evaluation of an open-

ended computational evolution system for the genetic analysis of susceptibility to common
human diseases. In: European Conference on Evolutionary Computation, Machine Learning
and Data Mining in Bioinformatics, pp. 129–140. Springer (2008)

18. Moore, J.H., Greene, C.S., Hill, D.P.: Identification of novel genetic models of glaucoma
using the “emergent” genetic programming-based artificial intelligence system. In: R. Riolo,
W.P. Worzel, M. Kotanchek (eds.) Genetic Programming Theory and Practice XII, pp. 17–35.
Springer International Publishing, Cham (2015)

19. Moore, J.H., Greene, C.S., Hill, D.P.: Identification of novel genetic models of glaucoma
using the “emergent” genetic programming-based artificial intelligence system. In: Genetic
Programming Theory and Practice XII, pp. 17–35. Springer (2015)

20. Moore, J.H., Hill, D.P., Fisher, J.M., Lavender, N., Kidd, L.C.: Human-computer interaction
in a computational evolution system for the genetic analysis of cancer. In: R. Riolo,
E. Vladislavleva, J.H. Moore (eds.) Genetic Programming Theory and Practice IX, pp. 153–
171. Springer New York, New York, NY (2011)

21. Moore, J.H., Hill, D.P., Saykin, A., Shen, L.: Exploring interestingness in a computational
evolution system for the genome-wide genetic analysis of alzheimer’s disease. In: R. Riolo,
J.H. Moore, M. Kotanchek (eds.) Genetic Programming Theory and Practice XI, pp. 31–45.
Springer New York, New York, NY (2014)

22. Moore, J.H., White, B.C.: Genome-wide genetic analysis using genetic programming: The
critical need for expert knowledge. In: Genetic Programming Theory and Practice IV, pp. 11–
28. Springer (2007)

23. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a Tree-based Pipeline
Optimization Tool for Automating Data Science. In: GECCO 2016, GECCO ‘16, pp. 485–492.
ACM, New York, NY, USA (2016)

24. Olson, R.S., La Cava, W., Orzeshowski, P., Urbanowicz Ryan J Moore, J.H.: PMLB: A large
benchmark suite for machine learning evaluation and comparison. arXiv e-print. https://arxiv.
org/abs/1703.00512 (2017)

25. Olson, R.S., Moore, J.H.: Identifying and Harnessing the Building Blocks of Machine Learning
Pipelines for Sensible Initialization of a Data Science Automation Tool. arXiv e-print. http://
arxiv.org/abs/1607.08878 (2016)

26. Olson, R.S., Moore, J.H.: TPOT: A Tree-based Pipeline Optimization Tool for Automating
Machine Learning. JMLR 64, 66–74 (2016)

27. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.:
Automating Biomedical Data Science Through Tree-Based Pipeline Optimization. In:
G. Squillero, P. Burelli (eds.) Applications of Evolutionary Computation: 19th European
Conference, EvoApplications 2016, Porto, Portugal, March 30–April 1, 2016, Proceedings,
Part I, pp. 123–137. Springer International Publishing (2016)

https://arxiv.org/abs/1703.00512
https://arxiv.org/abs/1703.00512
http://arxiv.org/abs/1607.08878
http://arxiv.org/abs/1607.08878

134 R. S. Olson et al.

28. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, 2825–2830 (2011)

29. Ronald, E.M., Sipper, M., Capcarrère, M.S.: Design, observation, surprise! A test of emer-
gence. Artificial Life 5(3), 225–239 (1999)

30. de Sá, A.G., Pinto, W.J.G., Oliveira, L.O.V., Pappa, G.L.: RECIPE: A Grammar-Based
Framework for Automatically Evolving Classification Pipelines. In: European Conference on
Genetic Programming, pp. 246–261. Springer (2017)

31. Silva, S., Muñoz, L., Trujillo, L., Ingalalli, V., Castelli, M., Vanneschi, L.: Multiclass
classification through multidimensional clustering. In: Genetic Programming Theory and
Practice XIII, pp. 219–239. Springer (2016)

32. Sipper, M., Fu, W., Ahuja, K., Moore, J.H.: Investigating the parameter space of evolutionary
algorithms (2017). arXiv:1706.04119

33. Sohn, A., Olson, R.S., Moore, J.H.: Toward the automated analysis of complex diseases in
genome-wide association studies using genetic programming. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ‘17, pp. 489–496. ACM, New York, NY,
USA (2017)

34. Vanneschi, L., Archetti, F., Castelli, M., Giordani, I.: Classification of oncologic data with
genetic programming. Journal of Artificial Evolution and Applications p. 6 (2009)

35. Zutty, J., Long, D., Adams, H., Bennett, G., Baxter, C.: Multiple objective vector-based genetic
programming using human-derived primitives. In: Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pp. 1127–1134. ACM (2015)

Chapter 9
Genetic Programming Based on Error
Decomposition: A Big Data Approach

Amirhessam Tahmassebi and Amir H. Gandomi

Abstract An investigation of the deviations of error and correlation for different
stages of the multi-stage genetic programming (MSGP) algorithm in multivariate
nonlinear problems is presented. The MSGP algorithm consists of two main stages:
(1) incorporating the individual effect of the predictor variables, (2) incorporating
the interactions among the predictor variables. The MSGP algorithm formulates
these two terms in an efficient procedure to optimize the error among the predicted
and the actual values. In addition to this, the proposed pipeline of the MSGP
algorithm is implemented with a combination of parallel processing algorithms to
run multiple jobs at the same time. To demonstrate the capabilities of the MSGP,
its performance is compared with standard GP in modeling a regression problem.
The results illustrate that the MSGP algorithm outperforms standard GP in terms of
accuracy, efficiency, and computational cost.

9.1 Introduction

We are entering the era of big data that refers to the explosion of available
information with new promising levels of scientific exploration. Despite the novel
opportunities that big data offers to recent society, it brings challenges including
computational cost, huge high-dimensional sample size, storage impasse, and error
extent. The rise of big data in various scientific fields such as genomics, economics,
finance, neuroscience, internet security, digital humanities, etc and their challenges

A. Tahmassebi
Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
e-mail: atahmassebi@fsu.edu

A. H. Gandomi (�)
School of Business, Stevens Institute of Technology, Hoboken, NJ, USA

BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing,
MI, USA
e-mail: a.h.gandomi@stevens.edu

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_9&domain=pdf
mailto:atahmassebi@fsu.edu
mailto:a.h.gandomi@stevens.edu
https://doi.org/10.1007/978-3-319-90512-9_9

136 A. Tahmassebi and A. H. Gandomi

demand new evolutionary computational paradigms to deal with salient features
of big data, including heterogeneity, noise accumulation, spurious correlation, and
incidental endogeneity [3]. Evolutionary algorithms have mostly been successful in
solving big data problems [9, 16, 21].

Genetic programming (GP) [12] is as an extension of genetic algorithms (GA)
which uses computer programs to solve problems. GP uses tree structures to
represent the solutions and evolves them during generations. Prediction of real
values based on each tree is the procedure by which GP performs regression
[4–6, 18]. In 1998, Ryan et al. [15] proposed a relatively novel evolutionary
computation method known as grammatical evolution (GE). GE provides a solution
by restricting the search space using domain knowledge according to a user-
specified grammar for evolving solutions. Due to the modular approach of GE, it
has been successfully applied to financial applications such as predicting corporate
bankruptcy, forecasting stock indices, and bond credit ratings. In addition to this,
Ferreira has previously proposed another promising variant of GP, known as gene
expression programming (GEP) to model nonlinear problems.

Besides the traditional tree-based GP, a linear variant of GP, know as LGP was
published in Brameier and Banzhaf in 2007 [1]. The standard GP model expresses
the functional programming language using tree structures in which inner nodes
hold functions and leaves are the location of input predictor values. On the other
hand, an evolutionary GP variant of a sequence of instructions from an imperative
programming language is the essential basis for LGP. The term “linear” refers to the
imperative program representation which does not mean that the method provides
linear solutions [1]. Furthermore, GP has a phenomenal ability in model selection
from a pool of a given population. Many of the GP-based models incorporate
all the predictor input values in the modeling phase. Gandomi and Alavi [4]
have previously proposed a novel scheme to formulate a problem using individual
predictor variables and the interactions among them.

Different genetic operators play an essential role in the evolution process. Iba
et al. [11] presented a novel method for GP, known as structured representation on
genetic algorithms for nonlinear function fitting (STROGANOFF) by recombining
standard GP with local hill-climbing. They have pointed out the critical changes in
the semantics due to mutation operators. To overcome these difficulties: (1) they
have tuned local parameters with the help of statistical identification techniques,
and (2) they have controlled tree growth in GP by setting the fitness score to a
minimum description length (MDL) measure. The authors validated their proposed
method by comparing STROGANOFF’s effectiveness in its application to symbolic
regression of nonlinear problems with numerical results. Moreover, the complexity
measure can be improved by tweaking the fitness function through evolution. For
example, Zhang et al. [22] analyzed fitness functions on error landscapes and the
complexity measures by benchmarking the importance of tree representations of GP
models via a Bayesian framework. This flexibility helped to investigate the solutions
to programs which might end with bloat phenomenon. In addition to this, Zhang
et al. [22] improved the fitness score by balancing the complexity of the model
using an adaptive learning strategy. In this procedure, the parsimony coefficient was

9 Genetic Programming Based on Error Decomposition: A Big Data Approach 137

increased to reach better accuracy. The effectiveness of their method has been tested
on real-world medical diagnosis problems.

In addition to the reasonable performance of GP models in regression problems,
they have also shown great performance in classification problems in various
real-world and big data problems, including those in neuroscience and medical
imaging. Tahmassebi et al. [19] have employed several data reduction algorithms to
reduce the dimensionality of an fMRI big data classification problem. In particular,
the problem with high numbers of dimensions (∼240,000) was decomposed into
a new problem with feasible numbers of dimensions (<30) via data reduction
algorithms. Then, the decomposed data were used as input predictor variables for
the GP classifier. Tahmassebi et al. [20] have also shown the performance of GP in
classification for large numbers of generations (∼13,000) using high-performance
computing (HPC). This would suggest employing parallel algorithms for such
population-based evolutionary algorithms to overcome the curse of dimensionality.

In this study, we propose a GP-based scheme to decompose the error in a
multivariate nonlinear problem. We apply the MSGP method, previously proposed
by Gandomi and Alavi [4], in solving problems with N inputs in which N

1-dimensional programs were used instead of solving the problem with one N -
dimensional program. In particular, the MSGP method incorporates the individual
effect of each of the input predictor variables, and the interactions among them.
Additionally, it is presented that the interactions among the input predictor variables
can be neglected. This decreased the computational cost dramatically without losing
more than a negligible amount of accuracy. The performance of the MSGP method
is tested in a problem where the deviations of the error and correlation in each
stage of the MSGP method are investigated. This opens new approaches with less
computational cost and the same accuracy to tackle big data problems.

9.2 Computational Model

A multi stage evolutionary algorithm, called MSGP, is presented to decompose the
error through several steps. The MSGP algorithm is implemented in Python along
with GPlearn and Scikit-Learn [13] libraries. The model starts with generating
a population of tree-like programs to represent the data based on stochastic
formulations of variables. Just a subset of the generated programs compete with
each other based on the tournament size, and the winners are optimized recursively
through the evolutionary process based on the fitness metrics. Three different
options were set as fitness metrics: mean absolute error (MAE), mean squared error
(MSE), and root mean squared error (RMSE). Additionally, the code has the ability
of customizing the fitness metric by user-defined functions.

To find the best mathematical formulation and the fittest individual, different
genetic operators such as crossover, subtree mutation, hoist mutation, and point
mutation were employed in the GP model. To see the convergence during the evolu-
tionary process, the size of the programs was increased which is normally expected

138 A. Tahmassebi and A. H. Gandomi

Table 9.1 Parameters setting
for the GP and MSGP
algorithms

Parameter Setting

Population size 300

Number of generations 100

Tournament size 20

Crossover probability 0.7

Subtree mutation probability 0.1

Hoist mutation probability 0.05

Point mutation probability 0.1

Point replace probability 0.05

Parsimony coefficient 0.001

Stopping criteria 0.0

Max samples 0.9

Random state 1367

Number of jobs 1

Loss metric MAE

Score metric R2

Function set +,−,×, /

to increase fitness values. Sometimes, this would never happen since it would cause
computational costs and would make the final programs less understandable, a
phenomenon called “bloat”. To control bloat, a parsimony coefficient was defined
for the GP model which made programs with lower values for the fitness metric
unavailable for the selection at each generation. The other alternative was generating
an offspring by applying the hoist mutation operator to insert a random subtree into
the original subtree location in the next generation [14]. The MSGP algorithm was
implemented in Python employing parallel algorithms to run multiple jobs at the
same time. By changing the number of jobs in the code, we could use the maximum
CPU cores available to decrease the computational runtime which would help to
solve a big data problem. The coefficient of determination (R2) was defined as the
output score for regression problems. Table 9.1 lists the parameter setting used in
the MSGP model. Figure 9.1 also presents a schematic tree structure of a program.
Most of the GP models discussed in Sect. 9.1 employed all the predictor variables
as inputs. This incorporation of all the variables might affect the decomposition cost
throughout the modeling process. To address these issues, an MSGP strategy was
proposed to model the predictor variables by taking into account the effect of each
of the individual predictor variables.

The MSGP algorithm could be divided into two phases:

1. Incorporating the individual effect of the predictor variables
(MSGPwo−int).

2. Incorporating the interactions among the predictor variables (MSGPw−int).

9 Genetic Programming Based on Error Decomposition: A Big Data Approach 139

Fig. 9.1 A schematic tree
representation of a GP model

for (
√

X1 + 5
X2

)

To shine some light on the details of the MSGP algorithm, it should be noted that
the final solution, f (X), entails the following terms:

f (X) = f1(x1)+f2(x2)+· · ·+fn(xn)+fint (X) =
n∑

i=1

fi(xi)+fint (X) (9.1)

where xi is the input variable, n is the number of input variables, fi(xi) indicates the
function based on only one input variable xi , and the interaction among the input
variables was defined by fint (X). It is always possible to formulate a set of variables
in terms of output values and a subset of the variables. Equation (9.2) presents the
formulation of a binary problem with two variables based on the values predicted
by the first input variable and the target output values:

f2(x2) = f (X) − f1(x1) (9.2)

In other words, Eq. (9.2) demonstrates that a new variable formulates the error
between the predicted and the actual values. This formulation is known as the
decomposition of errors. This procedure can be extended by repeating the formula-
tion presented in Eq. (9.2).

f3(x3) = f (X) − f1(x1) − f2(x2) (9.3)

...

fn(xn) = f (X)−f1(x1)−f2(x2)−· · ·−fn−1(xn−1) = f (X)−
n−1∑

i=1

fi(x1) (9.4)

140 A. Tahmassebi and A. H. Gandomi

Algorithm 9.1 Multi-stage genetic programming (MSGP)

1 begin
2 Y = f (X) ;
3 for i = 1 : n (n is the number of input variables) do

Input : xi

Output: Y

4 Run GP for fi(Xi) ;
5 Generate Initial Population ;
6 Calculate Fitness of Population ;
7 if The Termination or Convergence Conditions are not satisfied then
8 Select Individuals based on Fitness;
9 Apply Genetic Operators: (Crossover, Mutation,. . .) ;

10 Check the Fitness of Population ;
11 end
12 Y ← Y − fi(xi) ;
13 end

Input : X (x1, x2, . . . , xn)

Output: Y

14 Run GP for fint (X) ;
15 Generate Initial Population ;
16 Calculate Fitness of Population ;
17 if The Termination or Convergence Conditions are not satisfied then
18 Select Individuals based on Fitness;
19 Apply Genetic Operators:(Crossover, Mutation,. . .) ;
20 Check the Fitness of Population ;
21 end
22 fMSGP (X) ← ∑n

j=1 fj (xj) + fint (X) ;
23 end

Considering fint (X) presented in Eq. (9.1), the final solution calculated by the
MSGP algorithm can be presented as follows:

fMSGP (X) =
n∑

i=1

fi(x1) + fint (X) (9.5)

The pseudo code of the MSGP algorithm is presented in Algorithm 9.1.

9.3 Case Study

The database presented by Garzon-Roca et al. [10] was employed to compare
decomposition of errors using GP and MSGP methods. The database contains
experimental studies of compressive strength of masonry made of clay bricks and
cement mortars. The database consists of binary inputs: (1) mortar compressive
strength fm, and (2) brick compressive strength fb with output f (X) = f (x1, x2) =
f (fm, fb). Both the GP and the MSGP algorithms ran in Python [2, 13] for 100
generations and a population size of 300 to build regression models for the above-

9 Genetic Programming Based on Error Decomposition: A Big Data Approach 141

Fig. 9.2 The tree structure of the predicted solution using the GP model

mentioned database. Table 9.1 presents the details of the final parameter settings
which were selected on the basis of a trial and error approach and multiple runs for
the GP and MSGP algorithms. The tree structure of the resulting solution for GP is
presented in Fig. 9.2. It visually presents the relation between mortar compressive

142 A. Tahmassebi and A. H. Gandomi

add

add

add

add add

div

0.728 0.728

add

add add

add

add

add

mul

–0.442 –0.793

–0.760

0.241

mul

0.598

X1 X1 X1

f1(X1) f2(X2) fint(X)

X1

X2

X1

X2

X2X2
X1

Fig. 9.3 The tree structures of the predicted solution using the MSGP model

strength (x1 = fm) and brick compressive strength (x2 = fb) to find the solution
(f (X) = f (x1, x2)) using the final GP model. Additionally, Fig. 9.3 illustrates the
tree structures of the solutions in the three stages of the final MSGP model.

9.4 Performance Analysis

As it is shown in Fig. 9.3, the decomposition of the errors in different stages of the
MSGP method can be discussed to find out the impact of each stage in terms of
error and their correlation with the outputs during the process. In this regards, the
MSGP method in three different stages was considered: (1) in the first stage only
the error between the actual and the predicted values based on the first variable (x1)
using GP program (f1) was considered. (2) In the second stage, the error between the
predicted values using the second input variable (x2) and the actual values subtracted
from the error calculated by (x1), and (3) as the last stage, the sum of the errors in
the first and the second stages in addition to the error calculated by the interaction
function (fint) were considered. In the first 10 generations, f1 was calculated based
on x1, then from 10 to 15 generations f2 was calculated, and from generation 15 to
25 fint was used to calculate the error and R2 score. Figure 9.4 illustrates the stages
of calculating MAE through the generations. It is obvious that fint (X) in MSPG-
II stage has just increased the accuracy of the prediction of the output values for
a small amount which is infinitesimal with respect to its change in computational
cost. Additionally, Fig. 9.5 also presents the R2 score during the generations for the
both GP and MSGP in the different stages. This also proves the low impact of the
fint (X) in the MSGPw−int stage based on the statistical scores. More details of the
calculated statistical parameters were presented in Table 9.2.

It was previously shown that a combination of minimum errors (MAE or RMSE)
and R2 > 0.8 lead us to a reasonable correlation between the target values and the
predicted values of the models [7, 17]. To track how close the data was to the fitted
regression hyperplane, R2, the coefficient of determination for both GP and MSGP
models was calculated.

9 Genetic Programming Based on Error Decomposition: A Big Data Approach 143

Fig. 9.4 The decomposition of the mean absolute error through the generations for the GP and the
MSGP models

Fig. 9.5 The evolution of the coefficient of determination through the generations for the GP and
the MSGP models

144 A. Tahmassebi and A. H. Gandomi

Table 9.2 Statistical
parameters for different
models

GP MSGPwo−int MSGPw−int

R2 0.8591 0.8581 0.8754

PI 0.1448 0.0469 0.0364

MAE 0.2215 0.0868 0.0648

RMSE 0.2791 0.0904 0.0706

As discussed, Table 9.2 presents the statistical scores for the GP and the MSGP
models with and without fint (X). It also illustrates the effect of the interaction
between variables. It should be noted that adding fint in the MSGPw−int resulted in
an increase of 2% in R2 with respect to MSGP. In addition to this, the performance
index (PI) was also calculated for both GP and MSGP models [8]. Considering
the PI for both MSGPwo−int and MSGPw−int stages suggests the idea that the
interaction function can be neglected in the multi-stage model. The MSGP strategy
decreases the cost of decomposing the error by 15% and also runtime by 30%. The
MSGP strategy can be employed to solve big data problems. The importance of the
proposed method can be shown especially when the input numbers are high, where
traditional GP method might not be a wise choice. The MSGP strategy changes the
magnitude of the complexity of the problems from one N -dimensional problem to
N 1-dimensional ones. It increases the efficiency by losing an infinitesimal increase
in the accuracy and the correlation between the inputs and outputs.

Figure 9.6 depicts the 3-dimensional hyperplane solutions of the inputs by GP,
MSGPwo−int , and MSGPw−int models. It seems the interaction between variables
changed the shrinkage path of the hyperplanes. As shown, standard GP always finds
the best linear plane for the inputs data. Dealing with a binary problem brings
the chance to illustrate both variables x1 and x2 and also the resulting regressed
hyperplane in the same space. The most important aspect here would be how this
hyperplane, without incorporating the interaction between the variables, could fit the
best regression with a reasonable accuracy with respect to the actual output values.

9.5 Conclusions

This chapter discusses statistical and computational aspects of an efficient strategy
called the MSGP method. It specifically focused on the decomposition of error
and correlation in a multivariate nonlinear problem to reveal the capabilities of the
MSGP algorithm to be applied to big data problems. The proposed method separates
one N -dimensional problem into N 1-dimensional problems. To see how the MSGP
performs, the performance of the MSGP model was compared with a standard GP
model in the case of a nonlinear regression problem. The decomposition cost of
both models during the generations was presented. Based on a high correlation in
predicted values, the MSGP outperforms standard GP. These results suggest that
the MSGP algorithm can be employed in various big data problems which are

9 Genetic Programming Based on Error Decomposition: A Big Data Approach 145

Fig. 9.6 The predicted regression hyperplanes by (a) GP, (b) MSGPwo−int , and (c) MSGPw−int

models

more difficult to solve using traditional methods due to the high computational
cost. Error decreased by 15% by using the MSGP model. Additionally, the MSGP
strategy reduced computational runtime by 30%. The evolution of the MAE was
presented for both MSGPwo−int and MSGPw−int stages. This suggests the idea of
solving the N 1-dimensional problems without considering the interactions among
predictor variables. The calculated statistical scores such as R2, and PI suggest
that neglecting the interactions between the input variables causes a loss of only 1%
of the correlation between the inputs and the output. This would save a reasonable
amount of computational time in big data problems. To recapitulate, the MSGP
method opens an innovative avenue to apply evolutionary algorithms in big data
problems to overcome difficulties resulting from the big data features such as
heterogeneity, noise accumulation, spurious correlation, and incidental endogeneity.

Acknowledgements This material is based in part upon work supported by the National Science
Foundation under Cooperative Agreement No. DBI-0939454. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. For valuable help in the revision of the chapter
we also would like to thank Eitan Lees for critical and helpful comments on final draft.

146 A. Tahmassebi and A. H. Gandomi

References

1. Brameier, M.F., Banzhaf, W.: Linear genetic programming. Springer Science & Business
Media (2007)

2. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B.,
Varoquaux, G.: API design for machine learning software: experiences from the scikit-learn
project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning,
pp. 108–122 (2013)

3. Fan, J., Han, F., Liu, H.: Challenges of big data analysis. National Science Review 1(2), 293–
314 (2014)

4. Gandomi, A.H., Alavi, A.H.: Multi-stage genetic programming: a new strategy to nonlinear
system modeling. Information Sciences 181(23), 5227–5239 (2011)

5. Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to non-
linear system modeling. part II: geotechnical and earthquake engineering problems. Neural
Computing and Applications 21(1), 189–201 (2012)

6. Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to nonlinear
system modeling. part I: materials and structural engineering problems. Neural Computing and
Applications 21(1), 171–187 (2012)

7. Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R., Nejad, F.M.: Nonlinear genetic-based
models for prediction of flow number of asphalt mixtures. Journal of Materials in Civil
Engineering 23(3), 248–263 (2010)

8. Gandomi, A.H., Roke, D.A.: Assessment of artificial neural network and genetic programming
as predictive tools. Advances in Engineering Software 88, 63–72 (2015)

9. Gandomi, A.H., Sajedi, S., Kiani, B., Huang, Q.: Genetic programming for experimental big
data mining: A case study on concrete creep formulation. Automation in Construction 70,
89–97 (2016)

10. Garzón-Roca, J., Marco, C.O., Adam, J.M.: Compressive strength of masonry made of clay
bricks and cement mortar: Estimation based on neural networks and fuzzy logic. Engineering
Structures 48, 21–27 (2013)

11. Iba, H., deGaris, H., Sato, T.: A numerical approach to genetic programming for system
identification. Evolutionary Computation 3(4), 417–452 (1995).

12. Koza, J.R.: Genetic programming: on the programming of computers by means of natural
selection, vol. 1. MIT Press (1992)

13. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

14. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming.
Lulu. com (2008)

15. Ryan, C., Collins, J., Neill, M.: Grammatical evolution: Evolving programs for an arbitrary
language. In: European Conference on Genetic Programming, Paris 1998, pp. 83–96 (1998)
Springer, Berlin (1998)

16. Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Cloud and heterogeneous
computing solutions exist today for the emerging big data problems in biology. Nature Reviews
Genetics 12(3), 224–224 (2011)

17. Smith, G.N.: Probability and statistics in civil engineering. Collins Professional and Technical
Books 244 (1986)

18. Tahmassebi, A., Gandomi, A.H.: Building energy consumption forecast using multi-objective
genetic programming. Measurement 118, 164–171 (2018)

19. Tahmassebi, A., Gandomi, A.H., McCann, I., Schulte, M.H., Schmaal, L., Goudriaan, A.E.,
Meyer-Bäse, A.: An evolutionary approach for fMRI big data classification. In: 2017 IEEE
Congress on Evolutionary Computation (CEC) pp. 1029–1036 (2017)

9 Genetic Programming Based on Error Decomposition: A Big Data Approach 147

20. Tahmassebi, A., Gandomi, A.H., Meyer-Bäse, A.: High performance GP-based approach for
fMRI big data classification. In: Proceedings of the Practice and Experience in Advanced
Research Computing 2017 on Sustainability, Success and Impact, PEARC17, pp. 57:157:4.
ACM Press, New York, NY, USA (2017)

21. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE transactions on
knowledge and data engineering 26(1), 97–107 (2014)

22. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic programming.
Evolutionary Computation 3(1), 17–38 (1995)

Chapter 10
One-Class Classification of Low Volume
DoS Attacks with Genetic Programming

Stjepan Picek, Erik Hemberg, Domagoj Jakobovic, and Una-May O’Reilly

Abstract We use Genetic Programming in a machine learning approach to learn a
detector of DoS-related network intrusion events. We present a one class classifier
technique that trains a model from one class of data—normal, i.e., non-intrusion
events. Our technique, after ensemble fusion, is competitive with one-class mod-
eling with Support Vector Machines. We compare with three datasets and our best
GP-based classifiers are able to outperform one-class SVM. For two out of four test
cases, the advantage of GP classifiers when compared with one-class SVM is less
than 1% which does not represent a significant improvement. On the last two cases,
GP achieves significantly better results and making it a viable choice for anomaly
detection task.

10.1 Introduction

Denial of Service (DoS) cyber attacks present a serious threat to computer systems
and inflict significant economic damage. They disrupt critical public and enterprise
services. DoS attacks can be characterized by their attack surface, e.g. application
resources, protocol or network, by their volume, and in terms of how they are
measured: bandwidth magnitude is measured in bits per second (Bps), protocol
layer attacks are measured in packets per second and application layer attacks are
measured in requests per second. Many DoS attacks are advanced by malicious
network intrusion events that flood a system’s resources so that services to legitimate
requests are denied.

S. Picek (�) · E. Hemberg · U.-M. O’Reilly
MIT, CSAIL, Cambridge, MA, USA
e-mail: stjepan@computer.org; unamay@csail.mit.edu

D. Jakobovic
University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
e-mail: domagoj.jakobovic@fer.hr

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation,
https://doi.org/10.1007/978-3-319-90512-9_10

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_10&domain=pdf
mailto:stjepan@computer.org
mailto:unamay@csail.mit.edu
mailto:domagoj.jakobovic@fer.hr
https://doi.org/10.1007/978-3-319-90512-9_10

150 S. Picek et al.

One such example is the so-called SYN Flood attack [6]. It exploits a known
vulnerability in the TCP (Transfer Connection Protocol) connection sequence. This
sequence has three steps. (1) Host A sends a SYN request to open a connection
to host B. (2) B then responds with a SYN-ACK response and waits while holding
resources for A. (3) A confirms with an ACK. In a SYN Flood attack, the requester A
sends multiple SYN requests but either does not respond to B’s SYN-ACK response,
or sends the SYN requests from an IP address that is not its own (spoofed). Either
way, B continues to wait for each ACK response so eventually no new connections
can be made and ultimately denying B from providing connection services. Other
DoS flood attacks take advantage of similar ways to tie up a resource. Low volume
DoS flood attacks, including SYN Flood, rely on flying under the radar, i.e., sparsely
displaying a signature in network traffic flows, in order to evade intrusion detection
techniques [12]. In this paper we focus on intrusions closely related to DoS attacks.
Detecting such attacks is often very difficult but highly valuable because DoS
attacks can be high volume.

One option stemming from the nature-inspired computation area for developing
intrusion classifiers is to use Genetic Programming (GP). GP has been used to learn
a binary classifier that discriminates between the normal and the anomalous data
a number of times with good results [7]. When the problem offers only one class
(i.e., normal data) some researchers have approached the problem by synthetically
creating a second, “non-normal”, class of data and continuing to use GP to learn a
binary classifier [5]. Others have approached this problem from the unsupervised
learning perspective [13].

Differing from this approach, herein we present the design of a GP intrusion
classifier (i.e., a detector) that requires only one class to regress. We train the
classifier with only normal data by selecting for mappings with outputs that lie
within a restricted range. When we evaluate candidate classifiers, in the testing
phase, we test with both normal and anomalous data. Afterward we ensemble
selected classifiers from our runs and perform further evaluations. In order to
evaluate its efficiency we compare our method with one-class SVM on several
datasets (network logs) that are either created for the purpose of benchmarking a
classifier or taken from practical settings. Our one-class classification technique is
general, i.e., it extends to problems of anomaly outside intrusion detection.

Our main contributions are:

• Design of a new one-class GP classifier using symbolic regression and interval
mapping.

• Design and evaluation of ensemble classifiers based on the one-class GP
classifier.

• Experimental evaluation of our approach on a number of datasets and comparison
with one-class SVM.

The rest of this paper is organized as follows. In Sect. 10.2 we present the design
of our GP-based one-class classifier and outline our ensemble fusion method. In
Sect. 10.3 we summarize related work. Section 10.4 presents the datasets we use,

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 151

experimental settings, results, and discussion. Finally, in Sect. 10.5 we consider
possible future research and conclude.

10.2 Our Method

An adversarial model defines the scope of intrusions a classifier is expected to
detect. Our model assumes the adversary is able to launch attacks identifiable as
sourced from any IP address and can, prior to intrusion, conduct a reconnaissance
phase to identify its target. The adversary can launch different types of attacks, not
only DoS which imply it seeks to penetrate the network perimeter of the target.
Intrusions outside this model are not considered. One such example is an adversary
who can influence the GP training process. We further assume that we only need
to collect data from a network that has not experienced intrusion providing us with
data of class “normal”.

10.2.1 Intuition

We ask GP to evolve a mapping that compresses normal class data into a pre-
defined target interval I = [lower . . . upper]. An output for an input datum
that is anomalous should be mapped outside I . On an intuitive level, we seek a
compressive relation that embeds data from a high dimensional feature space to a
one-dimensional space with a specific “normal” interval for normal class data and
values outside the interval for “anomalous” data. We want the interval to be as small
as possible to minimize both false negatives, i.e., anomalous data mapping into the
interval, and false positives, i.e., normal data falling outside it.

Since GP computes floating point numbers, we use how floating points are stored
in computers and their discretely decreasing density to define the target intervals
for a classifier. For floating point representation, computers use a system highly
resembling that of exponential notation where a number can be stored in binary
notation (recall any number can be expanded to the binary representation) as ±n ×
2E with n being the significand, E the exponent, and 1 ≤ n < 2. A 32-bit word
can then be divided into 1 bit for the sign, 8 bits for the exponent, and 23 bits for
the significand. Since the significand has 23 bits, the gap (precision) between the
floating point value 1 and the next larger floating point (in binary, first bit equal to 1,
followed by 21 zero bits and the last bit equal to one) is η = 2−22. That gap between
adjacent floating point numbers becomes bigger as the magnitudes of the numbers
become bigger, and smaller as the magnitudes of the numbers become smaller.

We illustrate the density of floating point numbers in a small example in Fig. 10.1.
The precision as well as the magnitudes of the floating point numbers are defined
by the IEEE floating point representation [1]. Additional details about the floating
point and how are they stored in computers can be found in [15].

152 S. Picek et al.

Fig. 10.1 Density of floating
point values on the real line

Table 10.1 Classification
outcomes for
ŷ = GPFR(Xi)

Outcome Description

TP ŷ = GPF(Xi; R) /∈ R and class(Xi) = 1

FN ŷ = GPF(Xi; R) ∈ R and class(Xi) = 1

TN ŷ = GPF(Xi; R) ∈ R and class(Xi) = 0

FP ŷ = GPF(Xi; R) /∈ R and class(Xi) = 0

In our approach, we treat the choice of the target interval as a parameter of the
learning method and we use intervals [0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [7, 8], [8, 9],
[15, 16], [16, 17], [31, 32], and [32, 33]. These intervals are chosen because either
the lower or the upper boundary coincides with an increasing power of 2, since the
powers of 2 mark the change in the density of floating point representation. We
ask GP to evolve classifiers for smaller and smaller intervals. We expect GP to find
larger intervals more easily, e.g. forcing the output for all training instances to [0, 1]
could be done trivially, but the interval [16, 17] requires a mapping with a smaller
range. After a sweep through different target intervals, we select a classifier from
the smallest interval where we obtain acceptable training performance.

We use absolute values so we consider both signs (negative and positive); range
[0, 1 > (or < −1, 1 > if not taking absolute value) holds half of all IEEE
floating point numbers, which is approximately 263, while the range [1, inf >

holds the other half. Range [1, 2] holds approximately 253 numbers, which are all
the combinations using the same exponent. Ranges [2, 3] and [3, 4] both hold 252

numbers, [4, 5] and [7, 8] hold 251 etc.

10.2.2 Formal Definition

Our GP evolves a function GPF in the form of a regression tree that produces a
single value. Let GPF be a function (classifier) evolved by GP and R the set of
intervals we regress our values to, i.e., R ∈ [0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [7, 8],
[8, 9], [15, 16], [16, 17], [31, 32], [32, 33]. Next, n denotes the number of instances
in the dataset and X is the vector of m features – (x1, . . . , xm). Y is the set of all
possible class labels, here Y = (0, 1), y ∈ Y is the actual label of instance Xi, and
ŷ is the predicted label of X.

Our goal is to learn the classifier y = f (Xi;R) where R denotes the target
interval. The predicted label for ŷ is “normal” for ŷ = GPFx(Xi;R) ∈ R and
“anomaly” for ŷ = GPF(Xi;R) /∈ R. In Table 10.1 we present how to derive
classification outcomes. The normal class is denoted as negative (“0”) and anomaly
as positive (“1”), but the choice of labels is arbitrary.

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 153

Note that in the training phase, which includes only normal instances, only true
negatives and false positives are possible and we evaluate a model’s accuracy as
follows:

ACC1(GPF I) = T N

T N + FP
. (10.1)

There are a number of design options to supplement the method’s fitness function
to express more than accuracy. One option is to posit that all the features of the data
are relevant to the unseen “anomalous” class and therefore GP should use all (or at
least the majority) of input features. Fitness pressure to express this is achieved by
multiplying the classifier accuracy with the fraction of the features from the entire
input set that appear in the GP model. This should further serve to prevent GP from
evolving “cheat” solutions that are trivial mappings that don’t depend on the input
at all.

The resulting training fitness function for the GP is:

f itness = ACC1 · nUsedFeatures
nAllFeatures

, (10.2)

Here, nUsedFeatures is the number of features that appear in the tree and
nAllFeatures is the total number of features in the dataset. With this fitness
function, only a solution including all the features can have the best possible fitness.
Another design option could maximize the range of the mapped outputs for the
training set or the number of unique outputs. Our experiments use the first design
option. We check whether some features in the evolved classifier are used in a trivial
way, e.g., a feature that is subtracted from itself, and we do not include such features
in the nUsedFeatures number. Naturally, it is still possible that although all
features are used in the tree that some of them are actually canceled out.

After each generation of GP with the training set, we check the best classifier
on cross-validation split and stop immediately when the cross-validation score
gets worse. We report the accuracy of an evolved classifier using test data distinct
from the training or cross-validation splits, composed of both normal and anomaly
instances. Our measure is:

ACC2(GPF I) = T P + T N

T P + T N + FN + FP
. (10.3)

We also report the F1 measure on the test data:

F1 = 2
precision · recall

precision + recall
, (10.4)

where precision is the number of correct positive results divided by the number of
all positive results, while recall is the number of correct positive results divided by
the number of positive results that should have been returned.

154 S. Picek et al.

We do not have a feature selection step within our method. While fewer
features will make classification faster and may help with training set accuracy we
anticipate some features that are not relevant to discriminating “normal” may be
relevant for “anomaly”. Feature selection only makes sense when learning a binary
classifier from this perspective. We present the pseudocode for our GP classifier in
Algorithm 10.1.

Algorithm 10.1 One-class GP classifier
Input:
R – set of ranges,
Strain – training set,
Sxval – cross-validation set,
Stest – testing set,
Output:
GPFr – evolved classifier,
ACC1(GPF r , Strain) – accuracy on the training set for the evolved classifier,
ACC2(GPF r , Stest) – – accuracy on the testing set for the evolved classifier,
F1(GPF r , Strain) – F1 measure on the testing set for evolved classifier,
f itness(GPF r , Strain) – fitness score for the training set and evolved classifier,
repeat

r = next in R

repeat
f ind best classif ier that maximizes f itness on training set

until ACC1(GPF r
current , Sxval) < ACC1(GPF r

previous , Sxval)

until all ranges tested

10.2.3 Ensemble Formation

Since GP produces a population of solutions, and since we execute the GP in several
runs, a natural question is whether it is possible to use more than one solution
in order to obtain more reliable results. Consequently, we use GP as an ensemble
classifier where the size of ensemble varies. We note that GP ensembles were also
used before for intrusion detection frameworks but the GP part was understandably
different from ours [8].

To construct an ensemble, we simply choose some among the evolved models
from multiple runs. The models are included in the ensemble in the order of their
decreasing output standard deviation, up to the target ensemble size. To obtain the
fused result, we either use voting (where we must use odd number of models)
or compute the average output value before determining the instance class. To
conclude, in order to use ensemble formation, we need to select the following
parameters:

1. The target range selection policy.
2. The model selection policy and the number of classifiers in the ensemble.
3. The prediction fusing policy.

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 155

10.3 Related Work

Anomaly based detection is a well researched topic in the last decade and more
with many papers examining various defense types or algorithms to be used. In
this section, we give only a short overview of relevant works in order to better
understand the variety of approaches used up to now. Intrusion detection techniques
are usually divided into signature based and anomaly detection based approaches.
In the signature based approaches one relies on recognizing the signatures of attacks
(e.g. hash values that are characteristic for certain attack types). Such detection
techniques are easily avoided by modifying the attack or using previously unknown
attack (zero-day attack). Anomaly detection systems rely on recognizing what is
normal traffic and categorizing all that does not fit the description of normal into
anomaly.

One-class GP is an idea introduced by Curry and Heywood where they artificially
create the second class (outliers) on the basis of the normal data that is available [5].
We note that we do not consider it to be appropriate for network anomaly detection
scenarios since one can only create data that does not belong to the normal data that
are available, which does not mean that such created data correspond to anomalies.

Cao et al. experiment with one-class classification by using kernel density
function where the density function is approximated by using genetic programming
symbolic regression [3]. Their results improve over standard one-class KDE and
the authors report good results on a number of datasets where one is the KDD
Cup dataset. We construct our one-class GP differently, where we do not artificially
create anomaly data. In addition, we do not use feature selection when training the
one class GP.

To and Elati developed a one-class GP where they use only one class in the
training [22]. In their approach, GP tries to find a curve that fits all patterns in the
training set. Next, patterns close to the curve are selected where the proximity is
evaluated with Euclidean distance. Then, if an instance belonging to the testing set
is close to the trained patterns, it is defined as belonging to the normal class.

Orfila et al. use genetic programming in order to train easy-to-understand
network intrusion detection rules [14]. The authors concluded that GP can be used
to generate short rules that are easily understood which facilitates the understanding
of the semantics of the attack.

Song et al. use genetic programming to detect anomalies in KDD Cup dataset
where the authors use the hierarchical dynamic subset selection in order to be able
to train on around 500,000 instances [20].

There has been also a series of work concentrating on the feature selection for the
anomaly detection, see e.g. [24, 26]. Still we note that it is hard to conduct feature
selection with anomaly detection since the important features for the normal class
do not necessarily need to be important features for anomaly class.

For a somewhat outdated but extensive overview of computational intelligence
methods for usages in the intrusion detection system we refer interested readers
to [25]. For an overview of machine learning techniques for intrusion detection we

156 S. Picek et al.

refer readers to [23]. Finally, for a general reference on outlier analysis, we refer
readers to [2].

10.4 Experiments

In this section, we first describe the datasets we use for evaluation, our experimental
settings, and the algorithm to which we compare. Then, we present results for one-
class classification.

10.4.1 Datasets

We evaluate with three datasets named KDD, NSL-KDD, and Proprietary. KDD
is the oldest and was created from manually generated traffic in a controlled
(research) network. The traffic has been criticized as unrealistic [19] and some data
is redundant. The NSL-KDD dataset is a revision of KDD to address these problems.
Both datasets are in common use as benchmarks so we use them. They also offer
examples of multiple attack types which is not always possible to obtain from a
single real dataset. The third dataset is proprietary. It consists of only one attack
type and normal traffic. This type of attack is also present in the KDD and NSL-
KDD datasets.

10.4.1.1 KDD Cup Dataset

The KDD Cup dataset [21] is extracted from 9 weeks of raw TCP dump data for a
local-area network (LAN) simulating a typical U.S. Air Force LAN being exposed
to multiple attacks. The dump consists of about five million connection records
selected for training purposes and around two million connection records for testing
purposes. The records are grouped into sequences of TCP packets starting and
ending at some well defined times. Each sequence can be labeled as either normal
or anomalous. Each sequence has 41 features [21]. Anomalous sequences can be
further divided into four classes:

1. DoS—denial-of-service attacks.
2. Probe—surveillance and other probing attacks.
3. R2L—unauthorized access from a remote machine.
4. U2R—unauthorized access to local superuser privileges.

We use 25,000 instances in the training set and 5500 in the cross-validation set,
all normal. One testing set is comprised of 75,000 instances, normal and anomalous.

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 157

The anomalous class includes instances of two different attack types: DoS and Probe
grouped under the “anomaly” label. In the testing set, 35% of instances belong to
the anomaly class. We could also include all instances of every attack type. We call
this second KDD dataset KDD∗ and it consists of 77,000 instances in the testing
set (training and cross-validation sets are the same as for the KDD Cup dataset). For
the KDD∗ testing set, 38% of instances belong to the anomaly class.

10.4.1.2 NSL-KDD Dataset

The second dataset is the NSL-KDD which attempts to remedy some of the
problems of the KDD Cup dataset [9]. The differences are:

• The dataset does not include redundant records in the train set.
• There are no duplicate records in the proposed test sets.
• The number of selected records from each difficulty level group is inversely

proportional to the percentage of records in the original KDD Cup dataset.
• The number of records in the train and test sets are smaller (which enables us to

use all the instances).

The details for this dataset are the same as for the KDD Cup dataset (i.e., the
same number of features) and we use 10,000 instances in the training, 3500 in the
cross-validation, and 22,000 instances in the testing phase. Testing set has 57% of
instances belonging to the anomaly class.

10.4.1.3 Proprietary Dataset

The last dataset we use for evaluation is a proprietary dataset obtained from an
anonymized Internet provider. In order to preserve the confidentiality of data, we
report only its basic characteristics. It consists of only 9200 network logs with
3000 instances belonging to the normal traffic in the training set and 700 instances
belonging to the normal traffic in the cross-validation set. As before, instances are
starting and ending at some well defined times in accordance to the rules as defined
by the firewall in use. Post-hoc analysis showed the remaining instances to be a type
of low intensity DoS attack called Syn Flood, see Fig. 10.2. It is possible that this
dataset has instances labeled incorrectly, most likely false positives (“normal” labels
for anomalous data). This cannot happen with the manually generated datasets NSL-
KDD and KDD. Each record consists of 15 features extracted from the raw data.
We do not conduct any feature selection since there is no a priori knowledge on
what features are the most important. Proprietary testing set has 31% of instances
belonging to the anomaly class.

158 S. Picek et al.

Fig. 10.2 Syn Flood attack. Part (a) Normal traffic between legitimate user and server. Part (b) The
attacker sends several packets but does not send the “ACK” back to the server. The connections are
half-opened and consuming resources on server. A legitimate user tries to connect but the server
refuses to open a connection resulting in a denial of service

10.4.2 Genetic Programming Parameters

The input terminals are the features of the dataset and they are treated as real values.
To include the nominal features with discrete values, these have been mapped to the
set {0, 1, . . .} containing as many values as the given nominal feature. The rest of
the features are used without any transformation.

As functions, we use the standard arithmetic binary operators (+, −, *, /
(protected)), as well as the square root function and the branch operator iflte, which
accepts four arguments, returns the third argument if the first one is less than or equal
to the second, and the fourth one otherwise. The square root and division operators
are protected so that the square returns 0 if the argument is negative, and division
returns 1 if the denominator is close to zero.

For all the GP classifiers, the training phase is conducted with a population size of
500 individuals; all the training combinations are executed in 30 runs (repetitions).
In the evolution process, GP uses a 3-tournament selection, where the worst of the
three randomly selected individuals is eliminated. A new individual is immediately
created by applying crossover to the remaining two individuals from the tournament.
The new individual is then mutated with a probability of 0.5. The crossover is
performed with five different tree-based crossover operators selected at random:
a simple tree crossover with 90% bias for functional nodes, uniform crossover, size
fair, one-point, and context preserving crossover [16]. The mutation operators are
subtree, shrink, hoist, permutation, and Gaussian mutation of ephemeral random

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 159

constants, applied at random for each mutation operation. The GP implementation
is based on the Evolutionary computation framework [10].

10.4.3 Comparison Algorithm

We compare to one-class SVM. SVM is a semi-supervised learning algorithm where
the support vector model is trained on instances belonging to only one class [18].
That class is usually called “normal” class and the one-class SVM tries to infer
the properties of that class and from them predict which examples are not like the
normal class, i.e., they are anomalies. One-class SVM is therefore usually used for
anomaly detection due to the fact that the lack of training examples is what defines
anomalies. The one-class classification is reached by searching a hyperplane with
a maximum margin between the target data and the origin. Note that since SVM
decision boundaries are soft, it can be used as an unsupervised algorithm as well.
The implementation we use is from LIBSVM [4] as available in the R tool [17].
Further details about one-class classification techniques can be found in [11].

We perform a tuning phase of the SVM parameters for each dataset. In all our
experiments we use a radial basis kernel and tune ν and γ parameters. Here, ν

parameter is an upper bound on the fraction of margin errors and a lower bound of
the fraction of support vectors relative to the total number of training examples. The
γ parameter defines how far the influence of a single training example reaches. The
parameter values resulting from the tuning phase are given in Table 10.2.

10.4.4 Classification Results

In the GP case, we varied the target output interval in the learning phase, and the
same interval is used in the testing phase: if an instance in the testing phase is
mapped outside the given interval, it is classified as the anomaly. To assess the
efficiency of our GP classifier, we consider two measures; accuracy and F1 measure.
In this case, the accuracy measure should be considered only as a rough indication
of classifier behavior and not as a definitive measure for assessing the performance
of a classifier. This is especially correct in scenarios where anomaly data is much
less represented than the normal data since then even trivial classifiers would attain
a high accuracy by simply putting all measurements in the normal class.

Table 10.2 One class SVM
parameter tuning

Parameter KDD/KDD* NSL-KDD Proprietary

ν 0.001 0.001 0.5

γ 0.1 0.1 0.001

160 S. Picek et al.

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

0.0 0.2 0.4 0.6 0.8 1.0

Ta
rg

et
 r

an
ge

Training fitness

(a)

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

Ta
rg

et
 ra

ng
e

Accuracy

(b)

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ta
rg

et
 ra

ng
e

F1

(c)

Fig. 10.3 GP one-class regression, KDD Cup dataset. (a) Training results. (b) Test results
(accuracy). (c) Test results (F1)

The training results on the KDD Cup dataset for the GP classifier are given in
Fig. 10.3a. We observe that the GP easily succeeds in producing models which
include all of the features (since the maximum fitness equals to 100%) and still
output values in the desired interval. This is especially true for ranges [0, 1], [1, 2],
and [2, 3] where it is trivial to fit almost all instances into those ranges. We note that
in cases where fitness is lower, this is almost in every instance due to the accuracy

term in Eq. (10.2), while the second term equals 1, which means that the GP is
able to include all the features easily. As the most interesting ranges we consider
[3, 4], [4, 5], [15, 16], [16, 17] where the fitness value is still high and behavior is
stable.

The testing results are given in Fig. 10.3b for the accuracy and Fig. 10.3c for the
F1 measure. While in the training results the models are able to accurately map the
training data with absolute precision for some target ranges, we can see from the test
results that these ranges do not provide models with generalization capabilities. The
results indicate that the most of the evolved classifiers tend to classify all the testing
instances as belonging to the normal class; this result is the consequence of forcing
the output to the desired range in the training phase. For [0, 1] and [1, 2] ranges,

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 161

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

Ta
rg

et
 ra

ng
e

Accuracy

(a)

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ta
rg

et
 ra

ng
e

F1

(b)

Fig. 10.4 GP one-class regression, KDD∗ dataset. (a) Test results (accuracy). (b) Test results
(F1)

accuracy is around 65% which actually represents the percentage of normal data in
the whole dataset. Consequently, F1 measure reveals the problems with those ranges
where we see the results to be 0.

Rather than using the feature information in a meaningful manner, some of the
developed models simply “play it safe” and retain the target output value range
regardless of the input features. The same result can be observed in the case of the
one-class SVM, which also exhibits this behavior, classifying the majority of test
instances in the normal class (Table 10.3). Since the evolved models do not show a
great difference in training fitness values, the open question is the identification of
model properties that would indicate better performance on the unseen data.

The same models that were trained using the KDD Cup dataset are tested on the
KDD∗ dataset, which uses the same features. The test results in terms of accuracy
and F1 measures are shown in Fig. 10.4a and b, respectively. It can be seen that the
similar level of accuracy is reached for the same target ranges as in the KDD Cup
dataset. Likewise, ranges [0, 1] and [1, 2] result in trivial classifiers where all data
is classified as normal.

Next, Fig. 10.5a–c give results for the NSL-KDD dataset for training, testing
with accuracy, and testing with F1 measure, respectively. In the training phase the
smallest ranges again easily fit all the data.

The final set of results are given for the proprietary dataset, with training results
given in Fig. 10.6a. The testing results are shown in Fig. 10.6b for accuracy and
in Fig. 10.6c for the F1 measure. We can observe that in this dataset the test
performance over different target ranges is much more diverse, and it is difficult
to reach a conclusion of the most effective range.

In Table 10.3 we give results for testing phases for GP as well as for one-
class SVM. We note that for all investigated datasets, GP was able to reach higher
accuracy and F1 measure than the one-class SVM. We also depict those results in
Fig. 10.7a and b for accuracy and F1 score, respectively. Still, the GP efficiency
varies considerably over multiple training runs, which is an issue we address further
in the next section.

162 S. Picek et al.

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

0.0 0.2 0.4 0.6 0.8 1.0

Ta
rg

et
 r

an
ge

Training fitness

(a)

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

Ta
rg

et
 ra

ng
e

Accuracy
(b)

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ta
rg

et
 ra

ng
e

F1
(c)

Fig. 10.5 GP one-class regression, NSL-KDD dataset. (a) Training results. (b) Test results
(accuracy). (c) Test results (F1)

Finally, we give an example of a solution (in prefix notation) obtained with GP
for one-class classification for the KDD Cup dataset.

iflte((var15+var27)*(var11-var18),iflte(iflte(var10,
var2,var21,var34),iflte(var1,var20,var12,var17),
sqrt(var13),iflte(var16,var3,var14,var30)),iflte(var7,
var8,var39,var41)*(var26-var9),(var28/var27)+
(var36*var6))-(var38+var37-var23/var14-var24/var22)+
sqrt(iflte(var25,var15,var37,var16)+sqrt(var33)-
iflte(iflte(var5,var19,var32,var33),var40-var35,
var4*var29,var31*var25))

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 163

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

0.0 0.2 0.4 0.6 0.8 1.0

Ta
rg

et
 r

an
ge

Training fitness

(a)

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

Ta
rg

et
 ra

ng
e

Accuracy
(b)

[0 1]

[1 2]

[2 3]

[3 4]

[4 5]

[7 8]

[8 9]

[15 16]

[16 17]

[31 32]

[32 33]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ta
rg

et
 ra

ng
e

F1
(c)

Fig. 10.6 GP one-class regression, proprietary dataset. (a) Training results. (b) Test results
(accuracy). (c) Test results (F1)

Table 10.3 Testing results (accuracy/F1)

Algorithm KDD KDD* NSL-KDD Proprietary

One-class SVM 95.70/94.10 93.70/91.70 80.90/81.20 83.30/73.80

GP [4, 5] min 26.94/3.62 27.73/6.82 34.73/16.31 38.87/0.00

max 96.49/94.99 94.35/92.27 87.83/89.96 99.69/99.50

median 82.69/76.85 82.20/74.02 71.12/72.27 79.92/75.59

10.4.5 Selection of GP Models and Ensemble Classifier

From the results in the previous section we can observe that GP is able to produce
highly accurate classifiers. However, there is unfortunately no visible correlation
between the training fitness of a model and its efficiency on the test dataset, since
there are models with high fitness and poor generalization properties. Likewise,
a lower training fitness model can still obtain significantly better result on test
instances. Therefore, one needs to determine both which target range and which
model to use for unseen instances.

164 S. Picek et al.

Proprietary ProprietaryNSL−KDD NSL−KDDKDD KDDKDD* KDD*

A
cc

ur
ac

y

Dataset

(a)

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dataset

F1

(b)

Fig. 10.7 GP (in blue plus symbol) with target range [4, 5] vs one-class SVM (in red filled circle
symbol). (a) GP vs one-class SVM (accuracy). (b) GP vs one-class SVM (F1)

As for the target range, we can see from the results in the previous section that
ranges below [4, 5] should be avoided because the evolved models do not have a
satisfactory generalization ability. This is also evident from examining the individual
models, which in lower ranges have a very small deviation of output values, or a very
small number of unique outputs (e.g., all the instances are mapped to a single output
value). These are trivial models which do not actually depend on input data but form
an identity function to fit the desired training interval.

For the higher ranges the training fitness decreases as the distance from zero is
greater, making it harder to evolve a model that would capture the training instances.
Therefore, any as high range as possible that offers high enough training fitness
could be considered for use.

To chose a target range relying solely on the training data, we design a selection
policy where we use the range that has the largest number of highly fit individuals.
In order to select it, we could for instance use the median value or the number of
models above some minimal classification score σ where that parameter needs to be
user-defined. For all the datasets in the previous section, based on the training results
in Fig. 10.3a, b, this would result in the range [4, 5] as the chosen one; consequently,
we will concentrate on this range in further analysis.

As for the choice of a particular model, simply choosing the one with the
highest training fitness does not guarantee the most successful performance on
the test set. On the contrary, often the models with perfect training score perform
poorly on unseen instances. The same behavior is present with the accuracy on
the cross-validation data, which also does not show meaningful indication of test
performance. Here, the goal would be determining whether the training phase
produced a “regular” classifier or just a trivial arithmetic operation to map all the
input combinations into the given output interval. One way of performing this

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 165

Table 10.4 Training model selection—KDD Cup, range [4, 5]
Training fitness 0.6586 0.5587 0.2332 0.4336 0.92584 0.4069 0.66032 0.9042

F1 (test data) 83.7 87.9 3.6 88.6 93.1 88.6 84.3 76.3

St. dev. (training) 1.8 × 106 1.5 × 106 1.1 × 106 200,227 157,564 69,228 59,717 24,795

Table 10.5 Ensemble test results—all datasets, range [4, 5] (F1 measure)

Dataset KDD KDD* NSL-KDD Proprietary

Ensemble size Vote Average Vote Average Vote Average Vote Average

3 84.5 39.3 83.2 42.8 79.5 63.4 94.3 60.1

7 87.9 59.9 87.4 62.1 85.3 75.1 90.4 57.1

11 91.3 60.2 89.6 62.1 84.4 81.5 65.0 55.3

15 89.7 54.1 88.7 56.2 86.9 78.5 80.0 56.4

analysis is to test the variability of output values, thus forcing the model to include
the information in a meaningful way. To achieve this, we analyze the models’
behavior on the training set, recording the GP output values for all training instances,
and calculate the standard deviation of those values. We note that we do not presume
any specific distribution of output values, but merely aim to estimate the model
efficiency.

We therefore concentrate on all evolved models and sort them not by training
fitness, but in the decreasing order of standard deviation of the values they produce.
A sample of these models for the KDD Cup dataset in the range [4, 5] is shown in
Table 10.4. While not perfect, the selection of models based on this criterion (greater
values of deviation) provides a more reliable outcome than relying on training fitness
only. This simple analysis also immediately reveals a number of models with perfect
training score but with deviation close to zero (or exactly zero) which can be quickly
discarded.

If we follow the guidelines for the range, we construct the ensembles using the
range [4, 5]; the final results for all datasets are given in Table 10.5. Regarding the
ensemble construction methods, we can immediately note that the averaging method
should not be considered; this is the consequence of different models using radically
different output values which cannot be added in a meaningful manner.

The obtained results are encouraging since we are able to increase the perfor-
mance of our GP classifier, where we note that the best results should be obtained
with medium sized ensembles (of 7 or 11). At the same time, there is almost no
overhead stemming from using GP in ensemble setting. Indeed, since GP works
with populations we already have the solutions and the only additional step is sorting
them and running the voting or averaging. However, for effective ensembles of target
size, the total number of runs should be significantly higher than the ensemble size
to provide diversity of models to choose from.

166 S. Picek et al.

10.5 Conclusion

In this paper, we investigate how to employ genetic programming as one-class
classifier in order to detect anomalies in the network traffic. To be able to use GP
as one-class classifier we use it in a regression style where all anomaly instances
fall out of a specified range. To vary the difficulty of regressing, we use the fact
that density of floating point numbers to real values decreases the farther away from
zero one goes. The results indicate that the GP is able to cope with the investigated
problems and exhibits efficiency comparable to existing state-of-the-art classifiers.
We also discuss how to further increase the stability of our classifier by using it in
ensemble model.

Since our GP classifier represents a new technique for one-class classification,
there are numerous options to follow when considering future work. One direction
could be to investigate various density metrics either in post-hoc analysis or already
in the fitness function. Next, one extremely interesting option would be to explore
explainability. Here, by explainability we mean being able to understand why GP
classifies correctly a specific instance. Even more importantly, if GP does not
classify an instance correctly, being able to understand why not and what needs
to be added to the model in order to classify that instance correctly.

Acknowledgements This work has been supported in part by Cybersecurity@CSAIL initiative.
Additionally, this work has been supported in part by Croatian Science Foundation under the
project IP-2014-09-4882.

References

1. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 pp. 1–70 (2008)
2. Aggarwal, C.C.: Outlier Analysis. Springer Publishing Company, Incorporated (2013)
3. Cao, V.L., Nicolau, M., McDermott, J.: One-Class Classification for Anomaly Detection with

Kernel Density Estimation and Genetic Programming. In: Genetic Programming - 19th
European Conference, EuroGP 2016, Porto, Portugal, March 30 - April 1, 2016, Proceedings,
pp. 3–18 (2016)

4. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology 2, 27:1–27:27 (2011). Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm

5. Curry, R., Heywood, M.I.: One-Class Genetic Programming. In: Genetic Programming, 12th
European Conference, EuroGP 2009, Tübingen, Germany, April 15–17, 2009, Proceedings,
pp. 1–12 (2009)

6. Eddy, W.M.: Defenses Against TCP SYN Flooding Attacks - The Internet Protocol Journal
- Volume 9, Number 4 (2017). URL http://www.cisco.com/c/en/us/about/press/internet-
protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html

7. Elsayed, S., Sarker, R., Slay, J.: Evaluating the performance of a differential evolution
algorithm in anomaly detection. In: 2015 IEEE Congress on Evolutionary Computation (CEC),
pp. 2490–2497 (2015)

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html

10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming 167

8. Folino, G., Pizzuti, C., Spezzano, G.: GP Ensemble for Distributed Intrusion Detection
Systems. In: S. Singh, M. Singh, C. Apte, P. Perner (eds.) Pattern Recognition and Data
Mining: Third International Conference on Advances in Pattern Recognition, ICAPR 2005,
Bath, UK, August 22–25, 2005, Proceedings, Part I, pp. 54–62. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

9. Habibi, A., et al.: UNB ISCX NSL-KDD DataSet (2017). URL http://nsl.cs.unb.ca/NSL-KDD/
10. Jakobovic, D., et al.: Evolutionary Computation Framework (2016). URL http://ecf.zemris.fer.

hr/
11. Khan, S.S., Madden, M.G.: One-Class Classification: Taxonomy of Study and Review of

Techniques. CoRR abs/1312.0049 (2013). URL http://arxiv.org/abs/1312.0049
12. Kuzmanovic, A., Knightly, E.W.: Low-rate tcp-targeted denial of service attacks: the shrew vs.

the mice and elephants. In: Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 75–86. ACM (2003)

13. Ni, X., He, D., Chan, S., Ahmad, F.: Network Anomaly Detection Using Unsupervised
Feature Selection and Density Peak Clustering. In: M. Manulis, A.R. Sadeghi, S. Schneider
(eds.) Applied Cryptography and Network Security: 14th International Conference, ACNS
2016, Guildford, UK, June 19–22, 2016. Proceedings, pp. 212–227. Springer International
Publishing, Cham (2016)

14. Orfila, A., Estevez-Tapiador, J.M., Ribagorda, A.: Evolving High-Speed, Easy-to-Understand
Network Intrusion Detection Rules with Genetic Programming. In: M. Giacobini,
A. Brabazon, S. Cagnoni, G.A. Di Caro, A. Ekárt, A.I. Esparcia-Alcázar, M. Farooq, A. Fink,
P. Machado (eds.) Applications of Evolutionary Computing: EvoWorkshops 2009: EvoCOM-
NET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION,
EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG, Tübingen, Germany, April 15–17,
2009. Proceedings, pp. 93–98. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

15. Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (2001)

16. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published
via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008). (With
contributions by J. R. Koza)

17. R Development Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria (2008). URL http://www.R-project.org.
ISBN 3-900051-07-0

18. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the
Support of a High-Dimensional Distribution. Neural Comput. 13(7), 1443–1471 (2001)

19. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward Developing a Systematic
Approach to Generate Benchmark Datasets for Intrusion Detection. Comput. Secur. 31(3),
357–374 (2012)

20. Song, D., Heywood, M.I., Zincir-Heywood, A.N.: Training genetic programming on half a
million patterns: an example from anomaly detection. IEEE Trans. Evolutionary Computation
9(3), 225–239 (2005)

21. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A Detailed Analysis of the KDD CUP 99
Data Set. In: Proceedings of the Second IEEE International Conference on Computational
Intelligence for Security and Defense Applications, CISDA’09, pp. 53–58. IEEE Press,
Piscataway, NJ, USA (2009)

22. To, C., Elati, M.: A Parallel Genetic Programming for Single Class Classification. In: Proceed-
ings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation,
GECCO ‘13 Companion, pp. 1579–1586. ACM, New York, NY, USA (2013)

23. Tsai, C.F., Hsu, Y.F., Lin, C.Y., Lin, W.Y.: Intrusion detection by machine learning: A review.
Expert Systems with Applications 36(10), 11,994–12,000 (2009)

http://nsl.cs.unb.ca/NSL-KDD/
http://ecf.zemris.fer.hr/
http://ecf.zemris.fer.hr/
http://arxiv.org/abs/1312.0049
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.R-project.org

168 S. Picek et al.

24. Wang, W., Gombault, S., Guyet, T.: Towards Fast Detecting Intrusions: Using Key Attributes
of Network Traffic. In: Proceedings of the 2008 The Third International Conference on Internet
Monitoring and Protection, ICIMP ‘08, pp. 86–91. IEEE Computer Society, Washington, DC,
USA (2008)

25. Wu, S.X., Banzhaf, W.: The Use of Computational Intelligence in Intrusion Detection Systems:
A Review. Appl. Soft Comput. 10(1), 1–35 (2010)

26. Zargari, S., Voorhis, D.: Feature Selection in the Corrected KDD-dataset. In: 2012 Third
International Conference on Emerging Intelligent Data and Web Technologies, pp. 174–180
(2012)

Chapter 11
Evolution of Space-Partitioning Forest
for Anomaly Detection

Zhiruo Zhao, Stuart W. Card, Kishan G. Mehrotra, and Chilukuri K. Mohan

Abstract Previous work proposed a fast one-class anomaly detector using an
ensemble of random half-space partitioning trees. The method was shown to be
effective and efficient for detecting anomalies in streaming data. However, the
parameters were pre-defined, so the random partitions of the data space might not
be optimal. Therefore, the aims of this study were to: (a) give some mathematical
analysis of the random partitioning trees; and (b) explore optimizing forests for
anomaly detection using evolutionary algorithms.

11.1 Anomaly Detection for Streaming Data

The problem of anomaly detection or outlier detection has been well studied in
many applications, [4, 7] provide detailed surveys; [1] is a comprehensive reference.
While in [5] the outliers/anomalies are defined as “Data objects are grossly different
from or inconsistent with the remaining set of data”; in [4], they are defined as
“Patterns in data that do not confirm to expected behavior”. The definition of what is
an anomaly depends on the application. For example, in intrusion detection systems,
an anomaly is referred to an intrusion attack; in medical diagnosis, an anomaly
could be a patient who is diagnosed of having cancer. Detecting anomalies on
static data has been well-studied in [2, 8, 9, 12], and ensemble-based methods were
proposed in [3, 13–16]. The focus of this paper is to improve an ensemble method
for detecting anomalies in streaming data.

Given a data stream arriving at continuous time stamps T1, T2, . . . , Tn, . . ., each
data Xk is a high-dimensional data point containing d attributes, denoted by Xk =
(x1

k , x2
k , . . . , xd

k , label), where label ∈ {normal, abnormal} is unknown a priori.
The problem of finding anomalies from streaming data is to separate the data points
with label = abnormal from the majority data points with label = normal. We

Z. Zhao (�) · S. W. Card · K. G. Mehrotra · C. K. Mohan
Syracuse University, Syracuse, NY, USA
e-mail: zzhao11@syr.edu; stu.card@critical.com; mehrotra@syr.edu; mohan@syr.edu

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation,
https://doi.org/10.1007/978-3-319-90512-9_11

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90512-9_11&domain=pdf
mailto:zzhao11@syr.edu
mailto:stu.card@critical.com
mailto:mehrotra@syr.edu
mailto:mohan@syr.edu
https://doi.org/10.1007/978-3-319-90512-9_11

170 Z. Zhao et al.

Fig. 11.1 An illustration of dataspace partition by one HSTree

use A to denote the set of attributes, namely, A = {ai |i = 1, . . . , d}. By definition of
anomaly detection, abnormal points are far fewer than normal points. With absence
of labeled training data, to find anomalies is to find a set of rules which can separate
the minor data points from major data points and denote the minority points as
anomalies.

Previous work in Half-Space Trees [11] adopt an ensemble method which
combines results from a set of full binary trees where each tree node selects a
random attribute from A and partitions that attribute in half. An illustration can
be found in Fig. 11.1. In their method, each tree node is associated with a mass
profile which records the number of points falling in that partition. The method
constructs t trees without using any data; to get the mass profile for each node,
they use the first φ data points and assume they are all normal points. The intuition
behind this method is that anomalies fall in sparse partitions while normal objects
fall in dense areas. In order to deal with streaming data, the method retains the mass
profile every φ data points, records the newly arrived points in their latest window,
and stores the previous batch in the ref erence window. They use the mass profile
in ref erence window to detect anomalies, let Node represents the node a point
falls in (reaches the maximum height or contains less than sizeLimit points), and,
Node.r is the mass profile in ref erence window, Node.height denotes the node
height, Score(x, T) is the anomaly score for object x in tree T , Score(x, T) =
Node.r ∗ 2Node.height . This score will be equivalent for different partitions at
different tree levels if the data distribution is uniform. For rare anomalies, the score
is far less than the score of normal objects.

This method has shown its advance in detecting anomalies in low-dimensional
data streams, however, the previous paper suffers from the following aspects:

• the tree height and number trees are selected using pre-defined values without
any mathematical justification w.r.t dimensionality of dataset

• each tree partitions the data spaces randomly, building random trees in non-
informative attributes could lead to pollution of final results

11 Evolution of Space-Partitioning Forest for Anomaly Detection 171

In this paper, we address the aforementioned problems:

• we give a mathematical justification of required tree height and number of trees
based on the dimensionality of the dataset by casting the problem as a classical
coupon collector problem

• we better partition the data space for anomaly detection by using an EA to
maximize the likelihood of separating outliers from normal observations

11.2 Analysis of Random Trees

11.2.1 Number of Nodes Needed to Capture Anomaly
Characteristics

For our purposes, some features may be merely noise, i.e. uninformative for
anomaly detection. When such features are present, more nodes may be needed
to capture anomaly characteristics.

11.2.1.1 Theoretical Justification

Let m = |A| be total number of features, k = |I | be the number of informative
features, so m−k = |A−I | is the number of noise features that are not contributing
to anomaly detection. In constructing a random forest, if each node is randomly
selected from m features, and Pr(SelectInf orm) represents the probability that
informative features are selected at each node, then, it follows:

Pr(SelectInf orm) = k/m.

For each random tree t , let h be the height of t , and nodeCount (t) = 2h − 1 since t

is a complete binary tree. Let IF (t) be the number of informative features covered
by tree t and follows a binomial distribution,

IF (t) ∼ B(n, p), n = nodeCount (t), p = k

m
.

When the number of noisy feature increases, i.e. k
m

is decreasing, we need more
nodes to cover more informative features. If the height of trees are the same, then,
this is equivalent to say that we will need more trees in our forest to cover a
substantial fraction of the informative features.

172 Z. Zhao et al.

11.2.1.2 Experimental Results

We construct two synthetic datasets to address this problem. We choose two datasets
which are used in the original HSTree paper [11] where their method was shown to
be very effective. Http dataset contains 567,497 data points, three features and
0.4% anomalies presented. CoverType dataset contains 286,048 data points, 10
features and 0.9% anomalies presented. We add spurious features drawn from a
uniform distribution to the two data sets, to simulate the scenario where anomalies
may be hidden by such noise features. We denote the data with noisy features
Http dataset as syn-1 and CoverType dataset as syn-2. In the following we use
area under the ROC curve (AUC) [6] score to evaluate the performance of our
algorithm. A perfect detector will have an AUC score of 1.0 while a random one
gives 0.5.

We designed and performed three sets of experiments. In the first experiment we
compare the performance with increased noisy features. In the second experiment
we insert 40 noisy features and compare how increased number of trees affect model
performance. In the third we test how the height of trees affect performance when
dimensions are different.

In Fig. 11.2 we show the results. From these figures, we observe that:

• random forests need more trees to cover all the features
• random forests need higher trees to ‘reach’ the feature values

showing the experimental results are consistent with our theoretical justification.

Fig. 11.2 Performance comparison in the presence of noise features. (a) Performance with syn-1.
(b) Performance with syn-2

11 Evolution of Space-Partitioning Forest for Anomaly Detection 173

11.2.2 Number and Height of Trees

Given the demonstration in the previous section that more trees are needed to capture
anomaly characteristics in the presence of noise features, in this section we calculate
the expected number and height of trees required when the number of features is
fixed.

11.2.2.1 The Coupon Collector’s Problem: Analysis of Tree Height

In the coupon collector’s problem [10], there are d types of coupons and they are
drawn at random at each trial. Let r be the number of trials for one to collect at
least one copy of each of the d types of coupons. The goal of the coupon collector’s
problem is to find out what is the relationship between r and d.

The similarity between the random trees and the coupon collector’s problem is
that if we treat each feature as a type of coupon, each detection path in the tree can be
treated as an experiment with n trials—where n is the number of nodes in a random
tree of height h. If an anomaly is jointly described by d features, each tree should
capture at least one copy of each of the d features. To study the relationship between
the number of nodes n and number of features present, we adopt the theoretical
results for the coupon collector’s problem.

We show that when the tree height is

h = log2(βd ln d + 1),

the probability that at least one of the features is not captured is bounded by d−(β−1),
where β > 1.

Let Xd be a random variable defined to be the number of nodes required to collect
at least one copy of each type of the d features. The expected number of nodes is

E[Xd] = d

d∑

i=1

1

i
= dHd

where Hd is the harmonic sum [10].
Let σn

i be the event that feature i is not selected in the n nodes, the probability of
this event is:

Pr[σn
i] = (1 − 1

d
)n ≤ e− n

d ,

for n = βd ln d, this bound is d−β , where β > 1 is a constant.

174 Z. Zhao et al.

Thus, the probability that at least one of the features is not captured in the n

nodes is

Pr[∪d
i=1σ

n
i] ≤

d∑

i=1

Pr[σn
i] ≤

d∑

i=1

d−β = d−(β−1),

for a random tree with number of nodes n = βd ln d, consequently, the tree height
h = log2(n + 1) = log2(βd ln d + 1).

11.2.2.2 Number of Trees T for a Given Tree Height h and Number of
Features d

Given tree height h, each tree has n = 2h − 1 nodes. For T such trees, the total
number of nodes is nT . Number of trees T is chosen such that the probability that
each feature occurs at least in one of the T trees should be larger than 1 − ν. From
the results from the coupon collector problem, we have:

Pr(Xd = k) =
d−1∑

j=0

(−1)j
(

d − 1

j

)
(1 − 1 + j

d
)k−1.

It is desired that:

1 − (1 − Pr[d ≤ Xd ≤ nT]) ≥ 1 − ν (11.1)

Pr[d ≤ Xd ≤ nT] ≥ 1 − ν (11.2)

nT∑

i=d

P r(Xd = i) ≥ 1 − ν (11.3)

nT∑

i=d

d−1∑

j=0

(−1)j
(

d − 1

j

) (
1 − 1 + j

d

)k−1

≥ 1 − ν (11.4)

This is a combinatorial problem, and numerical solutions are shown in Fig. 11.3.

11.3 Use EA to Better Partition Data Space

Currently, in our model, when we build detection trees, each tree denotes a random
partition. In each partition, attributes are selected randomly and then split into half.
We want to further improve the partition generation process given that picking up
irrelevant features might dilute the general detection performance, and instead of
splitting the attribute into half space, we want to find a better split point where
extreme values (anomalies) can be better separated from the normal data.

11 Evolution of Space-Partitioning Forest for Anomaly Detection 175

Fig. 11.3 Numerical results for the number of trees and tree height. (a) Y-axis is nT , X-axis is
1 − ν. (b) Y-axis is nT , X-axis is number of dimensions

11.3.1 How to Partition the Data Space to Separate Outliers

Though the definition of outliers/anomalies depends on the application, a general
heuristic is that outliers reside in sparser regions of the data space than do normal
observations. For a dataset D, we want to find a partition that best separates the
anomalies from the normal objects. Thus, we define:

Density(partition) =
P∑

i=1

density(partitioni)

176 Z. Zhao et al.

Claim All the outliers are separated in a data space DS if Density d is the
maximum over the data space DS.

Proof by Contradiction Suppose d is maximum and there exists at least one
outlier not separated.

∃o ∈ Outliers such that o is grouped with a normal group NG and form
a partition NG′ = {o} ∪ NG. By definition, density(NG′) < density(NG)

since outlier lie in low density area. Let the Density over DS \ NG′ be d0 =
d − density(NG). There exists a partition {DS \ NG′, o,NG } such that the total
density over it is

d1 = d0 + density(NG)

= d − density(NG′) + density(NG)

> d

which contradicts to the assumption that d is the maximum density.
In order to find the best partition for a dataset that contains n data points, it

requires O(2n) time complexity. Therefore, we consider EA as the optimization
tool to find the best partitions.

11.3.2 Space-Partitioning Forest

Each detection tree should partition the data space such that normal objects are
grouped in denser and outliers in sparser regions. Attempting to find one optimal
tree may result in over-fitting. Thus we aim at building a collection of T space-
partitioning trees, i.e. a space-partitioning forest. Therefore, for T trees of same
height h full-binary trees, the query for each data object is O(T · h).

11.3.3 Individual Representation

The goal is to find a collection of trees to better capture anomalies. Each individual
is a collection of T trees, and each tree is represented in its level-order traversal
representation. Each tree of height h (start from 1) consists of 2h − 1 interior nodes,
each interior node is represented as a tuple: (attId, splitVal), represents the ID of the
attribute and the cutoff value at that node. Thus, each tree of height h is represented
as a vector of nodes:

< node1, node2, . . . , node2h−1 >

Each individual is a collection of T trees, represented as a set of T such vectors.

11 Evolution of Space-Partitioning Forest for Anomaly Detection 177

11.3.4 Cost Function

In the previous section, we defined a density function for a partition recursively as
the sum of the densities of its constituent partitions, but did not address the base case.
Here, to maximize density, we approximate its inverse (sparsity) by the maximum
distance between points in a sub-partition (node):

MaxDist (node) = Max{distance(centroid(node), node.datai),

i = 1 . . . |node.data|}

Cost function of each tree is defined as the averaged maximum distances among all
its leaf nodes:

cost (tree) = 1

2H

2H∑

l=1

MaxDist(leafl).

Each individual in EA is defined as a collection of T trees. The cost of individual is
defined as the average of the costs of the T trees:

cost (individual) = 1

T

T∑

i=1

cost (treei)

The goal is to minimize the cost.
We first want to examine the effectiveness of our cost function in finding

anomalies. The following figures show two partitions created from two different
detection trees.

We notice in Fig. 11.4 that when cost is high, anomalies cannot be separated using
the partition generated. For example, the two trees built in Fig. 11.4 partition in total
101 points, 1 outlier is located at (0,0) and 100 normal objects form two clusters. For
the tree in Fig. 11.4a, each tree leaf contains 15, 50, 34 and 2 points respectively;
the partitioned data space is shown in the left, outlier is partitioned with some of
the normal objects from the lower right corner, and the cost for this tree is equal to
(2.6 + 2.5 + 3.7 + 0.1)/4 = 2.225. While the tree built in Fig. 11.4b partitions the
outlier from the normal observations, and the normal objects are grouped densely in
other partitions, and this tree has a cost of (2.6+2.5)/4 = 1.275, which is lower than
before. This illustrates the effectiveness of our cost function in separating anomalies
from normal objects (Fig. 11.5).

178 Z. Zhao et al.

10

8

2.6

2.5

3.7

0.1

6

4

2

0

–4 –2 2 4 60

10

8

6

4

2

0

–4 –2 2

2.6

2.5

4 60

0.0

(a)

(b)

Fig. 11.4 Cost computation for two trees with different degrees of separation of outliers from the
other data points. (a) Cost is higher when outlier is partitioned with normal objects. (b) Cost is
lower when outlier is separated

Fig. 11.5 Mutation algorithm

11 Evolution of Space-Partitioning Forest for Anomaly Detection 179

Fig. 11.6 Mutation with different strategies for synthetic data

11.3.5 Mutation

The idea of mutation is to not change the individual drastically, instead we modify
one (or few) nodes in one tree to keep the diversity. In order to find better solution,
we discard the offsprings which give us higher cost. Intuitionally, this will lead to a
hill-climbing searching procedure which could be unnecessary and computationally
expensive, therefore, we add some contraints in our mutation procedure such that
we set a counter and constrain it to be less than N times to find a better mutate. In
our experiment, we tried N = 0, 1, 5 and N ∝ current generation. When N = 0,
that means the constraint is removed. When N ∝ current generation used, it means
we want finer tuning at the end of convergence. The results for some synthetic data
are shown in Fig. 11.6, where we observe that using the last strategy has higher cost
reducing rate than the others.

11.3.6 Crossover

In our algorithm, each individual is a set of independent detection trees. For
crossover, we apply single-point crossover on the two parents sets. For example,
for two individual {T1, T2} and {T3, T4}, after applying single point crossover at the
midpoint, we obtained two offspring {T1, T4} and {T2, T3}.

The cost over iterations for different crossover probability pC is shown in
Fig. 11.7.

180 Z. Zhao et al.

Fig. 11.7 Different crossover probability for synthetic data

Fig. 11.8 Elitism with different e for synthetic data

11.3.7 Selection

We add elitism in our selection procedure. Which means in each iteration, we keep
e ∗ 100% elites from the sorted population in the next iteration. For reproductive
selection, we choose parents with probability inversely related to their cost (‘fitness
proportionate’ selection).

The cost over iterations for different e is shown in Fig. 11.8, Moderate values of
e (from 0.2 to 0.6) gave better results than extremely strong elitism or no elitism.

11 Evolution of Space-Partitioning Forest for Anomaly Detection 181

Fig. 11.9 Overall evolutionary algorithm

Fig. 11.10 TestTermination algorithm

11.3.8 Algorithms

The overall EA is sketched as Fig. 11.9 and its termination test as Fig. 11.10.

11.3.9 Preliminary Results for EA

In this section, we show some preliminary results for comparison of using EA to
generate the random trees with pure random trees generation. We generate synthetic

182 Z. Zhao et al.

Fig. 11.11 Synthetic data 1.
(a) Synthetic data—normal
data from gaussian, outliers
uniformly distributed. (b)
Cost vs AUC for using EA to
generate random trees

dataset where the normal data comes from Gaussian distribution while outliers are
uniformly distributed, the data is shown in Fig. 11.11. Results for using this simple
EA is shown in Fig. 11.11. We observe that EA successfully finds all the outliers
(AUC score is 1.0) when it converges.

Another synthetic dataset is shown in Fig. 11.12. In this experiment, we want
to see whether the EA can better separate the outliers between clusters better than
purely random trees. We fix the tree height at 4 for both purely random and EA-
generated trees. We observe that when using 10 trees, the AUC for random is 0.64
while EA is 0.94. Notice that in this experiment, when we use large number of
trees of large height, the improvement of using EA over random tree is not very
significant. The reason is if given enough tree cost (i.e. tree height and number of
trees), the probability of covering all combinations of all features is high (refer to
our previous mathematical analysis.)

11 Evolution of Space-Partitioning Forest for Anomaly Detection 183

Fig. 11.12 Synthetic data 2–4 clusters, outliers are inserted in between

11.4 Conclusion and Future Work

In this study, we first calculate the height and number of trees expected to be needed
by treating the random partitioning tree problem as a coupon collector problem.
Secondly, we formulate an optimization problem for separating anomalies from
normal objects, and demonstrate performance improvement on synthetic datasets
using a simple EA to build optimized rather than purely random trees. The trade-
off between the performance gain and computational cost of using an EA for this
application remains to be addressed, Rewarding diversity should be considered in
future work. Finally, this approach should be attempted on a variety of real world
datasets.

References

1. Charu C Aggarwal. Outlier analysis. Springer Science & Business Media, 2013.
2. Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying

density-based local outliers. In ACM Sigmod Record, volume 29, pages 93–104. ACM, 2000.
3. João BD Cabrera, Carlos Gutiérrez, and Raman K Mehra. Ensemble methods for anomaly

detection and distributed intrusion detection in mobile ad-hoc networks. Information Fusion,
9(1):96–119, 2008.

4. Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):15, 2009.

5. Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier,
2011.

6. James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

7. Victoria J Hodge and Jim Austin. A survey of outlier detection methodologies. Artificial
Intelligence Review, 22(2):85–126, 2004.

184 Z. Zhao et al.

8. Huaming Huang, Kishan Mehrotra, and Chilukuri K Mohan. Rank-based outlier detection.
Journal of Statistical Computation and Simulation, 83(3):518–531, 2013.

9. Wen Jin, Anthony KH Tung, Jiawei Han, and Wei Wang. Ranking outliers using sym-
metric neighborhood relationship. In Advances in Knowledge Discovery and Data Mining,
pages 577–593. Springer, 2006.

10. Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman & Hall/CRC,
2010.

11. Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly detection for streaming data.
In IJCAI Proceedings-International Joint Conference on Artificial Intelligence, volume 22,
page 1511, 2011.

12. Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. Enhancing effectiveness
of outlier detections for low density patterns. In Advances in Knowledge Discovery and Data
Mining, pages 535–548. Springer, 2002.

13. Lena Tenenboim-Chekina, Lior Rokach, and Bracha Shapira. Ensemble of feature chains for
anomaly detection. In Multiple Classifier Systems, pages 295–306. Springer, 2013.

14. Zhiruo Zhao, Kishan G Mehrotra, and Chilukuri K Mohan. Ensemble algorithms for
unsupervised anomaly detection. In Current Approaches in Applied Artificial Intelligence,
pages 514–525. Springer, 2015.

15. Zhiruo Zhao, Chilukuri K. Mohan, and Kishan G. Mehrotra. Adaptive sampling and learning
for unsupervised outlier detection. In Proceedings of the Twenty-Ninth International Florida
Artificial Intelligence Research Society Conference, FLAIRS 2016, Key Largo, Florida, May
16–18, 2016, pages 460–466, 2016.

16. Arthur Zimek, Matthew Gaudet, Ricardo JGB Campello, and Jörg Sander. Subsampling for
efficient and effective unsupervised outlier detection ensembles. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 428–
436. ACM, 2013.

Index

A
acknowledgments, x
adversary, 151
Affenzeller, Michael, 17
AI, 74, 122
anomalous, 151
anomaly detection, 169
artificial intelligence, 122
attack, 151, 169
AutoML, 123

B
Banzhaf, Wolfgang, 73
behavioral diversity, 92
behavioral genetic programming, 1
BGP, 1
big data, 137
board game, 74
building block, 27
Burlacu, Bogdan, 17

C
C4.5, 4
Card, Stuart W., 169
CART, 4
classification, symbolic, 40
crossover, archive-based, 2

D
dataset stratification, 56
decision tree learner, 40
denial of service, 149

directionality, 78
discriminant function, 41
diversity, 77, 90
Dolson, Emily, 73
DoS, 149
DTL, 40
dynamics, ecological, 74

E
Eco-EA, 75
eco-evolutionary dynamics, 76
ecological community, 76
ecological dynamics, 74
ecotype, 79
elitism, 109
endpoint, 56
ensemble classifier, 150
ensemble method, 170
epistatic interaction, 56
evolutionary dynamics, 17

F
Fine, Steven B., 1
Fu, Weixuan, 122

G
Gandomi, Amir H., 135
GBTL, 40
generalist, 92
genetic programming, behavioral, 1
genetic programming, semantic, 3
gradient boosted tree learner, 40

© Springer International Publishing AG, part of Springer Nature 2018
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, https://doi.org/10.1007/978-3-319-90512-9

185

https://doi.org/10.1007/978-3-319-90512-9

186 Index

H
Helmuth, Thomas, 89, 106
Hemberg, Erik, 1, 149
hint, 74
Holmes, John H., 122
hyperschema, 19

I
IEEE floating point representation, 151
IFS, 101
implicit fitness sharing, 101
interaction, epistatic, 56
intrusion, 169
intrusion classifier, 150
intrusion detection, 154, 169
intuition, 74

J
Jakobovic, Domagoj, 149
Jeopardy, 122

K
Kommenda, Michael, 17
Korns, Michael, 39
Krawiec, Krzysztof, 1
Kronberger, Gabriel, 17

L
La Cava, William, 106, 122
LCS, 56
learning classifier system, 56
lexicase selection, 77, 90, 106
linear discriminant, 42

M
MAD, 109
major transitions, 80
MAP-Elites, 78
Mehrotra, Kishan G., 169
MLP, 40
model, bias, 4
model, complexity, 2
model, error, 2
Mohan, Chilukuri K., 169
Moore, Jason H., 55, 122
MSGP, 137
multiple layer perceptron learner, 40
Mycin, 122

N
niche, 77
normal, 151

O
O’Reilly, Una-May, 1, 149
Ofria, Charles, 73
open-ended evolution, 76
Orzechowski, Patryk, 122
outlier detection, 169

P
Pantridge, Edward, 106
parent selection, 107, 118
Pareto dominance, 116
Pareto front, 116
partition, 175
PennAI, 122
Picek, Stjepan, 149
preface, ix
program synthesis, 89
program, complexity, 1
program, trace, 2

R
random forest learner, 40
random tree, 171
regression, symbolic, 40
resource, 75
RFL, 40
rule, 56

S
schema, 20
schema analysis, 35
schema frequencies, 22
schema generation, 20
semantic genetic programming, 3
semantic-based selection, 90
Shanabrook, Saul, 106
Sipper, Moshe, 122
species, 64
Spector, Lee, 106
strategy, human, 74
subprogram, 2
subsumption, 62
survival selection, 118
SVM, 150
symbolic classification, 40
symbolic regression, 40

Index 187

T
Tahmassebi, Amirhessam, 135
Tartarone, Sharon, 122
TCP, 150
TEL, 40
threshold model, 57
tournament selection, 90, 106
tree ensemble learner, 40
Troise, Sarah A., 89

U
uniform shuffling, 92
Urbanowicz, Ryan J., 55, 122

V
Vitale, Steven, 122

W
Watson, 122
weighted shuffling, 92
Winkler, Stephan, 17

Y
Yang, Ben, 55

Z
Zhao, Zhiruo, 169

	Foreword
	Preface
	Acknowledgements

	Contents
	Contributors
	1 Exploiting Subprograms in Genetic Programming
	1.1 Introduction
	1.2 Related Work
	1.3 Exploiting Subprograms
	1.3.1 BGP Strategy
	1.3.2 Exploring Model Bias
	1.3.3 Identifying Useful Subprograms

	1.4 Experiments
	1.4.1 Experimental Data, Parameters
	1.4.2 Sensitivity to Model Bias
	1.4.3 Aggregate Trace Matrices

	1.5 Conclusions and Future Work
	References

	2 Schema Analysis in Tree-Based Genetic Programming
	2.1 Introduction
	2.1.1 Diversity and Evolutionary Dynamics
	2.1.2 Genetic Programming Schemata

	2.2 Methodology
	2.2.1 Schema Generation
	2.2.2 Schema Matching

	2.3 Experimental Setup
	2.3.1 Algorithm Parameters
	2.3.2 Problem Instances
	2.3.3 Analysis Methods

	2.4 Empirical Results
	2.4.1 Standard GP
	Poly-10 Problem
	Tower Problem

	2.4.2 Offspring Selection GP
	Poly-10 Problem

	2.5 Conclusion
	References

	3 Genetic Programming Symbolic Classification: A Study
	3.1 Introduction
	3.2 AMAXSC in Brief
	3.3 MDC in Brief
	3.4 M2GP in Brief
	3.5 LDA Background
	3.6 LDA Matrix Math
	3.7 LDA Assisted Fitness Implementation
	3.7.1 Converting to Basis Space
	3.7.2 Class Clusters and Centroids
	3.7.3 LDA Coefficients

	3.8 Artificial Test Problems
	3.9 Performance on Test Problems
	3.10 Conclusion
	References

	4 Problem Driven Machine Learning by Co-evolving Genetic Programming Trees and Rules in a Learning Classifier System
	4.1 Introduction
	4.2 Methods
	4.2.1 ExSTraCS
	4.2.2 GP Integration
	4.2.2.1 GP Population Initialization
	4.2.2.2 GP Parent Selection
	4.2.2.3 GP Mating
	4.2.2.4 GP Fitness and Evaluation

	4.2.3 Datasets and Evaluation

	4.3 Preliminary Results
	4.4 Conclusions and Ongoing Work
	References

	5 Applying Ecological Principles to Genetic Programming
	5.1 Introduction
	5.1.1 Motivation
	5.1.2 Ecological Approaches in Evolutionary Algorithms
	5.1.3 Limited Resources and Eco-EA
	5.1.4 Complexifying Environments

	5.2 Methods
	5.2.1 10-Dimensional Box Problem
	5.2.2 Eco-EA Implementation
	5.2.3 Lexicase Selection Implementation
	5.2.4 Tournament Selection Implementation
	5.2.5 Configuration Details
	5.2.6 Statistical Methods
	5.2.7 Code Availability

	5.3 Results and Discussion
	5.4 Conclusions and Future Work
	References

	6 Lexicase Selection with Weighted Shuffle
	6.1 Introduction
	6.2 Lexicase Selection
	6.3 Weighted Shuffle
	6.3.1 Shuffling Methods
	6.3.2 Bias Metrics

	6.4 Experimental Setup
	6.4.1 Problems
	6.4.2 Push and PushGP

	6.5 Results
	6.6 Discussion
	6.7 Related Work
	6.8 Conclusions and Future Work
	References

	7 Relaxations of Lexicase Parent Selection
	7.1 Introduction
	7.2 Lexicase Selection
	7.3 Epsilon Lexicase Selection
	7.4 Random Threshold Lexicase Selection
	7.5 MADCAP Epsilon Lexicase Selection
	7.6 Truncated Lexicase Selection
	7.7 Experimental Results
	7.8 Relation to Many-Objective Optimization
	7.9 Discussion
	References

	8 A System for Accessible Artificial Intelligence
	8.1 Introduction
	8.2 The Human Engine
	8.3 The Human-Computer Interaction Engine
	8.4 The Machine Learning Engine
	8.5 The Controller Engine
	8.6 The Graph Database Engine
	8.6.1 Knowledge Base

	8.7 The Artificial Intelligence Engine
	8.8 The Visualization Engine
	8.9 Discussion and Future Work
	References

	9 Genetic Programming Based on Error Decomposition: A Big Data Approach
	9.1 Introduction
	9.2 Computational Model
	9.3 Case Study
	9.4 Performance Analysis
	9.5 Conclusions
	References

	10 One-Class Classification of Low Volume DoS Attacks with Genetic Programming
	10.1 Introduction
	10.2 Our Method
	10.2.1 Intuition
	10.2.2 Formal Definition
	10.2.3 Ensemble Formation

	10.3 Related Work
	10.4 Experiments
	10.4.1 Datasets
	10.4.1.1 KDD Cup Dataset
	10.4.1.2 NSL-KDD Dataset
	10.4.1.3 Proprietary Dataset

	10.4.2 Genetic Programming Parameters
	10.4.3 Comparison Algorithm
	10.4.4 Classification Results
	10.4.5 Selection of GP Models and Ensemble Classifier

	10.5 Conclusion
	References

	11 Evolution of Space-Partitioning Forest for Anomaly Detection
	11.1 Anomaly Detection for Streaming Data
	11.2 Analysis of Random Trees
	11.2.1 Number of Nodes Needed to Capture Anomaly Characteristics
	11.2.1.1 Theoretical Justification
	11.2.1.2 Experimental Results

	11.2.2 Number and Height of Trees
	11.2.2.1 The Coupon Collector's Problem: Analysis of Tree Height
	11.2.2.2 Number of Trees T for a Given Tree Height h and Number of Features d

	11.3 Use EA to Better Partition Data Space
	11.3.1 How to Partition the Data Space to Separate Outliers
	11.3.2 Space-Partitioning Forest
	11.3.3 Individual Representation
	11.3.4 Cost Function
	11.3.5 Mutation
	11.3.6 Crossover
	11.3.7 Selection
	11.3.8 Algorithms
	11.3.9 Preliminary Results for EA

	11.4 Conclusion and Future Work
	References

	Index

