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Abstract This paper considers the use of machine learning in medicine by focus-
ing on the main problem that it has been aimed at solving or at least minimizing:
uncertainty. However, we point out how uncertainty is so ingrained in medicine that
it biases also the representation of clinical phenomena, that is the very input of this
class of computational models, thus undermining the clinical significance of their
output. Recognizing this can motivate researchers to pursue different ways to assess
the value of these decision aids, as well as alternative techniques that do not “sweep
uncertainty under the rug” within an objectivist fiction (which doctors can come up
by trusting).
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1 Motivations and Background

It is a truism to say that uncertainty permeates contemporary medicine—not much
differently than it has always been—as it has also been confirmed by extensive studies
in the field of sociology and medicine itself (e.g., [20, 49]). We cope with some form
of uncertainty when we cannot pinpoint a phenomenon exactly or when we cannot
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measure it precisely (i.e., approximation, inaccuracy); when we do not possess a
complete account of a case (incompleteness, inadequacy); when we cannot predict
what it will come next (unpredictability for randomness or excessive complexity);
when our observations seem to contradict each other (inconsistency, ambiguity); and,
more generally, when we are not confident of what we know. In clinical practice, all
of these phenomena occur on a daily basis, several times. Medical doctors can be
uncertain on almost every aspect of their practice: on how to classify patients’ con-
ditions (diagnostic uncertainty); why and how patients develop diseases (etiological
u., pathophysiological u.); what treatment will be more appropriate for them (thera-
peutic u.); whether they will recover with or without a specific treatment (prognostic
u.), and so on. In this picture, technology has often been proposed—and seen—as a
solution. In the words by Reiser [44, p. 18]: From the beginning of their introduction
in the mid-nineteenth century, automated machines that generated results in objec-
tive formats [...] were thought capable of purging from health care the distortions of
subjective human opinion [and] to produce facts free of personal bias, and thus to
reduce the uncertainty associated with human choice.

Clearly, also computing technology has been proposed to address all of the above
areas of uncertainty—to either control orminimize it: the first computational support,
what was then called a rule-based expert system, was introduced more than 40years
ago to propose a “quantification scheme which attempts to model the inexact rea-
soning processes of medical experts” [48].

After the introduction of many and different computational systems, a new class
of applications has recently emerged in the health care debate: the decision support
systems embedding predictivemodels that have been developed bymeans ofmachine
learning methods and techniques. These systems, which for the sake of brevity
we will call ML-DSS, have recently raised a strong interest among the medical
practitioners of almost every corner of the world in virtue of their high accuracy at
an unprecedented extent [19, 23]. This is reflected by the stance of commentators
that have recently shared their thoughts from some of the most impacted journals
of the medical community (e.g. [32, 38]). These voices do not clearly indulge in
techno-optimistic claims and do not refrain from offering some words of caution
[11]; however, the recent successes of ML-DSS in medical imaging pose the issue
of how these systems and their improved versions will impact in the near future
those medical professions whose tasks are mostly based on pattern recognition, like
radiologists, pathologists and dermatologists and how it will impact health care in
general [32, 38]. In regard to this, two elements should be object of further scholarly
interest and research, which are bound together by a feedback loop making their
mutual influence subtle but yet hard to pinpoint. First: howML-DSS can bias human
interpretation and decision, or automation bias. Second: how human interpretation
and classification can bias the ML-DSS performance, or information bias. While
the former case is still neglected but some first studies are shedding light on it [39],
in this paper we will focus on the latter case, which is almost completely ignored,
especially by the computer scientists and designers of ML models. Nevertheless
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information bias, whichwewill define in the next section, regards the quality1 of both
the training and input data of ML-DSS, and hence has got the potential to undermine
the reliability of the output of ML-DSS. Our point is that a renovated awareness
of the irreducible nature of the uncertainty of medical phenomena, even in regard
to their plain representation into medical data, can help put in the right perspective
the current potential of ML-DSS and motivate the exploration of alternative ways to
conceive them and validate their indications.

2 Information Bias, the Open Secret of Medical Records

Before considering information bias from a medical perspective, let us recall what
a ML predictive model is. A predictive model, no exception those developed with a
machine learning approach,2 are functionally relational models that bind input data
to one category out of a set of predefined ones (most of the times encompassing
only two options, like positive/negative). This category is the output (or prediction)
of the model. To this aim, the model is progressively fine-tuned on the basis of
what ML experts call experience [37, p. 2], that is input data that have been already
classified in terms of a specific category. In the case ofmedical classification (for both
diagnostic or prognostic aims) the above “experience” is a set of cases that have been
already classified “correctly” according to some gold standard method. In so doing,
the machine can learn the model, that is the hidden relationship between the cases
(as long as they are represented in terms of the same attributes and characteristics),
and hence their correct interpretation. Grounding on this model, the ML-DSS can
“predict” the right category or label when fed with new cases, as long as these are
sufficiently similar to those ones with which it has been trained.

The point we address here is: how much valid and reliable is the above “experi-
ence” on which ML-DSS learn their predictive model? Here it comes the concept
of information bias [2], and the related one of information variability, which both
undermine the extent we can be certain of the available data, and hence of the predic-
tions ML models can infer from them. Information bias is a collective name for all
the human biases that distort the data on which a decision maker (or a computational
decision support) rely on, and that account for the validity of data, that is the extent
these represent what they are supposed to represent accurately.

This kind of bias3 can take various forms including, most manuals concur, mea-
surement error, misclassification and miscoding. However, this bias should not be
only associated with errors and mistakes by the physicians due to either negligence,

1This is a vague term: here we mean data quality mainly in terms of accuracy and validity.
2In what follows we introduce the concept of ML predictive model with reference to supervised
discriminative (or classification) models, by far the most frequently used in medicine.
3While biases are, strictly speaking, mental prejudices, idiosyncratic perceptions and cognitive
behaviors producing an either impairing and distorting effect, here we rather intend the effect (by
metonymy), that is the “error” in the data recorded and the decisions taken caused by the bias itself.
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Fig. 1 The main biases affecting the validity and reliability of medical data. Sampling and non-
response biases are indicated to account for the lack of information that, if present, could reduce
uncertainty of representation

incompetence or inexperience. In medicine, information bias can be due to both
patients and physicians in different but intertwined ways (see Fig. 1). Patient can
(often unaware) contribute in terms of response bias, that occurs whenever what
the patient says or reports is inaccurate, incomplete or both. This bias occurs when
patients either exaggerate or understate their conditions (for many reasons and often
in good faith), or whenever they intentionally suppress some information (e.g., like in
case of sexually transmitted diseases or drug history for the related social stigma) or
distort it orwhen their recall is limited or flawed, or simply because they do not under-
stand what physicians ask them or they aim to respond how (they believe) physicians
expect them to (cf. the particular kind of response bias known as “social desirability
bias”). A large extent of response bias can be related to the inability of the observer
to get confidence of the respondent. As an example, a recent study [47] focused on
the degree of concordance agreement between patients and cardiologists in regard
to the presence of angina pectoris and its frequency. The study showed that when
patients reported monthly angina symptoms, cardiologists agreed only 17% of time,
while among patients with angina symptoms reported daily/weekly, approximately
one quarter of them were noted as having no angina by their physicians. Besides
the above mentioned condescending bias, it is well known that patients can exhibit
behaviors (cf. Hawthorne effect), or even levels of some physiological parameter
(usually blood pressure in what is also known as ‘white-coat effect’) when they are
under examination in a clinical setting that they would not exhibit in other settings.

Physicians introduce observer bias in their data due to both perceptual, cognitive
and behavioral traits, weaknesses or just “bad habits”; this bias also occurs whenever
they favor one type of response or measurement over others (cf. confirmation bias).
Those who observe a clinical condition are often those who report it in the medical
record. In this case observer bias can blur with is denoted as either recording, report-
ing, or coding bias. In particular, this latter distorting factor can be traced back to
many causes, from the least common and most poorly studied, like digit preference
and conflictual coding, to the most pervasive ones, like the intrinsic inadequacies of
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any classification schema. Conflictual coding can affect the accuracy and complete-
ness of medical data when proper reporting clashes with the personal interests of
those who are supposed to document a clinical condition (like in the case of blood
pressure recordings within a quality and outcome assessment framework of incen-
tives [13]).Digit preference occurswhenmeasurements aremore frequently recorded
ending with 0 or 5, or as results of arbitrary rounding off. In [27] the authors observed
a much larger occurrence of these two digits in renal cell carcinoma measurement
and concluded that this recording behavior could affect the determination of tumour
stage, “with resulting consequences in regard to prognosis and patient management”.
Moreover, coding variability that leads to a lack of reliability can happen even when
instructions on how to proper code are well known: a study [3] compared consistency
of coding supposedly clean and high-quality data-source like clinical research form
from observational studies among three professional coders, each using the same
terminology and with the same instructions. All three coders agreed on the same
core concept 33% of the time; two of the three coders selected the same core concept
44% of the time; and, no agreement among all three was found 23% of the time.
Moreover, no significant level of agreement beyond that due to chance was found
among the experts. On the other hand, the shortcomings of classifying taxonomies
and measurement scales would deserve a study of its own. In a famous work, Star
and Bowker [6, p. 69] hinted at some of these inadequacies, which include: temporal
rigidity; a one-size-fits-all nature in regard to meaning and implications; and, as also
discussed in [52], the reflection of disciplinary interests, agendas and priorities.

Last, but not least, information bias in medicine can also be traced back to some
sort of intrinsic ambiguity of the medical conditions being documented, due to either
their instability over time, or to variability across subjects and across observers. A
noteworthy example of this sort of ambiguity can be found in a recent study by
Dharmarajan and colleagues [16]. This study focused on elderly people diagnosed
(at hospital admission) with one of the following conditions: pneumonia, chronic
obstructive pulmonary disease, or heart failure. These are three common conditions
of the elderly that are responsible for breathlessness and other warning symptoms
usually requiring hospital admission. The authors showed that patients regularly
received, during hospital stay, concurrent treatment for two or more of the above
cardiopulmonary conditions and not only for the main diagnosis identified at hospi-
tal admission. This exemplifies the fact that in real-world clinical practice, patients’
clinical pictures are often blurry and not capable of being associated with clear-cut
labels as expressed instead in textbooks and clinical practice guidelines. Indeed, even
common clinical syndromes have disease presentations that often fall in-between
traditional diagnostic categories. The common and relevant overlap of medical treat-
ments as in the case mentioned above highlights the intrinsic ambiguity of clinical
phenomena and the downstream uncertainty that medical doctors face in choosing
what they deem a single right therapeutic strategy for a specific disorder.

This latter sort of variability, as well as the biases mentioned above cannot be
addressed by improving the accuracy of any measurement tool, or by any other
contrivance conceived from the engineering standpoint. Moreover, the extent these
biases are expressed in a clinical setting varies a lot: although they look as abstract
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and general categories, biases are always exhibited by someone in particular, they
are highly situated, and depend on personal skills, like clinical perspicuity, life-
long acquired competencies, and contingent workloads. Since the impact of personal
biases are difficult (if impossible) to prevent, medical organizations try to minimize
them with redundancy of effort, like relying on double checking and on second (or
multiple) opinion. However, multiple opinions are both a resource to fight biases (by
averaging multiple observations and measures), and, paradoxically enough, a source
of low reliability and further uncertainty (‘Quot capita, tot sententiae’). Indeed, when
more than one physician are supposed to determine the presence of a sign, make a
diagnosis, or assess the severity of a condition, observer variability is introduced to
account for the discrepancies in their decisions and for any difference in considering
the same conditions.Observer variability has to dowith the reliability of the judgment
of so called medical “raters”, and with the agreement that these latter ones reach
independently of each other when they either measure, classify or interpret the same
phenomenon (e.g. an electrocardiogram, a radiography, a pathological sample, etc.)
to make a decision, mainly a diagnosis.

In medicine, not only multiple raters could classify the same phenomenon in
different ways, but also the same doctor can disagree with herself, examining the
same case after a certain amount of time, or in different environment conditions
(e.g., with respect to workload, interruption rate, work shift).

To account for the extent the majority decision (in case of multiple raters) or the
category chosen more frequently can be considered reliable, and hence “true”, the
so called inter-rater agreement (or reliability, IRR) is measured.

3 Between Gold Standards and Ghost Standards

A “gold standard” (or with a less evocative but more correct expression “criterion
standard”) is a reference method to ascertain medical truth in regard to the accuracy
of any diagnostic test. By ‘reference’ here we mean the ‘best one’ under reason-
able conditions, that is the method that ‘by definition’ is capable to pose the so called
“ground truth” for any practical aim, including the development of aML-DSS. How-
ever, the degree of truth that a gold standard usually reaches is far from resembling
an accurate, unambiguous and unique representation of medical facts that computer
scientists long for their “ground-truthing”, i.e., the process of gathering objective
data to train aMLmodel. In fact, even in regard to those tests that are usually consid-
ered the most reliable and definitive gold standards, like post-mortem, histological
and genetic examinations, whenever there is a human factor, variability, and hence
uncertainty, can emerge [7, 55, 56] as if the observers were called to observe and
account for phantom phenomena. In all of these cases, IRR scores can give an idea of
the extent the data that doctors collect, which glitter in medical datasets, are golden
or alloyed.

Medical researchers use several techniques to measure IRR: the most frequently
used is the Cohen’s Kappa, although this is applicable only to categorical values
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assigned by two raters. Recently also the Krippendorf’ Alpha has found some appli-
cation, probably for its known advantages on the kappa, like the capability to address
any number of raters (not just two), values of any level of measurement (i.e., cat-
egorical, ordinal, interval, etc.), and datasets with missing values, which are very
common in medical records.

All these metrics are intended to assess the degree of agreement beyond chance
(that is considering the fact that raters can agree not only because they believe the
same thing, but also by chance). As such, there is a lot of controversy on their validity
(lacking anymodel of how chance affects the rater decisions, let alone of the different
ways to misinterpret a phenomenon) and, above all, regarding how to interpret their
scores [34].

To give an example of the above concepts, we consider an ambit where ML-DSS
have recently reached levels of diagnostic accuracy (at least) on a par with human
doctors. A convolutional neural network was recently trained and then evaluated in
regard to the detection of diabetic retinopathy (which is cause of 1 case of blindness
out of 10) in a wide dataset of retinal fundus photographs [23]. In this study, the
authors reported high levels of both sensitivity and specificity for their ML-DSS
according to the gold standard that they decided to adopt, i.e. the majority decision
of a panel of board-certified ophthalmologists analyzing the same retinal fundus pho-
tographs. As a matter of fact, some authors reported that the adoption of this gold
standard can be considered controversial [59], since this may compare unfavorably
with other gold standards used in previous studies on diabetic retinopathy (i.e. stan-
dardized centralized assessment of images or optical coherence tomography). In fact,
the prevalence of diabetic retinopathy may vary significantly whether this condition
is evaluated throughmonocular fundus photographs or, rather, through optical coher-
ence tomography [58]. This could turn out to be relevant since diagnostic accuracy
metrics are dependent on the prevalence of diseases according to the Bayes’ theorem.
Thus, two questions are at stake here. On the one hand, whether similar successful
results would have been obtained if a different gold standard (e.g., optical coherence
tomography) had been used. On the other hand, even if we assume eye fundus pho-
tographs as an indisputable, unique and reliable gold standard for the diagnosis of
diabetic retinopathy, IRR among ophthalmic care providers has been shown to be
very low (i.e., kappa between 0.27 and 0.34 for different diagnostic analyses); and
still inadequate, even if higher, among retina specialists (kappa between 0.58 and
0.63) [46].

4 Garbage In, Gospel Out

The question of the quality of medical record and of the data extracted from there
is still understudied [9]. The assumption that medical data could support secondary
uses has been challenged since almost 25years ago, and also strongly so, e.g., by
Reiser [45], who described several cases of erroneous, missing and ambiguous data,
and by Burnum [8], who provocatively wrote that “all medical record information
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should be regarded as suspect;muchof it is fiction” (p. 484)”, and that the introduction
of health information technology had not led to improvements in the quality of
medical data recorded therein, but rather to the recording of a greater quantity of
“bad data”.4 In those same years, van der Lei was among the first ones to warn
against the reuse of clinical data for other goals other than care and proposed what
since then is known as the first law of informatics: ‘[d]ata shall be used only for
the purpose for which they were collected’ [54]. These claims are reflected in some
recent research articles in higly impacted medical journals that warn about the risks
and challenges related to the use of routinely collected data (e.g. from electronic
health records) for clinical decision making [1, 28].

In light of the phenomena of both low quality and uncertainty that are intrinsic
to the production of medical data, what are the main implications for the machines
that are fed with this information? As widely known, many factors can contribute in
downsizing the performance of aML-DSS. Just to mention a few that we observed in
the hospital domain: the fact that medical data seldommeet the common assumptions
that training data should ideally possess: their attributes are seldom independent and
identically distributed (IDD); their distribution is not uniformor normal;missing data
do not occur randomly (in fact they often indicate an either good or just better health
condition that relieves practitioners from the need to record it with continuous effort);
data can be strongly unbalanced with respect to the number of healthy and positive
cases, or to the real incidence of a pathological condition; they are not temporally
stable (for instance, computer interpretations of electrocardiograms recorded just
one minute apart were found significantly different in 4 of 10 cases in [50]); they can
fall short of representing the target population (sampling bias) or to make explicit
any potential confounding variable (especially those related to “external” medical
interventions [41]).

In this view, misclassified cases by information bias could be seen as just another
issue to cope with. However, our point is that to consider misclassification a defect
of data collection is a conceptual error as long as it is considered a mis-classification:
as we saw above, it is just a classification where independent observers disagree and
classify the same phenomenon differently, to the best of their competence, perspi-
cacity and perceptual acuity.

This variability if often neglected even by doctors, and few studies indulge in
reporting low IRR scores. No wonder then that the related uncertainty is dispelled
as closely as possible to the “source”, as also the official guidelines for medical cod-
ing and reporting (International Classification of Diseases, Ninth Revision, Clinical
Modification, ICD9-CM) ratify in an explicit way: “If the diagnosis documented at
the time of discharge is qualified as ‘probable’, ‘suspected’, ‘likely’, ‘questionable’,
‘possible’, or ‘still to be ruled out’, or other similar terms indicating uncertainty,
code the condition as if it existed or was established” [43, p. 90]. Alternatively uncer-
tainty is sublimated in the (statistically significant) consensus of a sufficiently wide
group of experts [51].

4Moreover, Burnum traced back this lie of the land to “standards of care and a reimbursement
system [that is] blind to biologic diversity”.



A Giant with Feet of Clay: On the Validity of the Data … 129

Adopting different gold standards could affect ML-DSS significantly. We illus-
trate this by mentioning the case of Carpal Tunnel Syndrome (CTS): this is a kind of
functional hand impairment that is frequently observed due to the compression of the
median nerve at the wrist. This syndrome is commonly diagnosed and often referred
to surgical treatment through either the sole physical examination by orthopedic sur-
geons or by a nerve conduction examination (electromyography) by neurologists [4].
In the last years, alternative diagnostic methods have been proposed to improve diag-
nostic accuracy for CTS, like the ultrasonography of the median nerve of the arm.
These tests which have shown different results in accuracy metrics when compared
to the previous standards mentioned above (i.e. physical examination or electromyo-
graphy) [4]. These diagnostic divergences, if neglected in the training of a ML
classifier aimed at the diagnosis of CTS [36], may result in the ossification into the
model of an arbitrarily partial version of the ground truth (that is whether patient X
is really affected by CTS or this syndrome can be ruled out) and hence to unpre-
dictable downstream clinical consequences. For instance, it has been observed that a
number of patients diagnosed with CTS who had undergone surgery did not receive
any relevant benefit from the invasive treatment, and that this could be explained in
terms of wrong upstream diagnoses [21]. A ML-DSS that has learned the uncertain
(i.e., right for a standard, wrong for another) mapping between the patient’s features
and one single diagnosis will propose its advice within a dangerous “close-world
assumption” (that is: all the relevant features have been considered and the mapping
between the input and the desired output is acquired as accurate and reliable), which
is never challenged by design.

On the other hand, in the open world of hospital wards physicians are used to
observer variability and less-than-perfect gold standards whenever they consult the
medical data that are produced by their colleagues and even by themselves. Con-
versely, designers of computational systems usually do not consider the case that
the input of their system can be inherently and irremediably biased and inaccurate
(to some extent), they assume it true. The primary concern of ML-DSS designers
are the completeness, timeliness and consistency [9] of the datasets that they feed
into the machines. There is little (if any) recognition that medical data could not be
any better than “dirty” data with which to think to optimize a ML model adequately
would be highly optimistic if not over-ambitious. Contrarian thinking would then
suggest to look with some caution at the high accuracy rates that are often reported
in the specialist literature (e.g. in [19]) even assuming that model overfitting has
been duly avoided.

This is hardly considered when medical data are taken from the context where
they have been natively produced to support coordination, knowledge sharing, sense
making and decision making and they are transformed into data sets to feed in some
computational systems. Neglecting the gap between the primary use of medical data
(i.e., care) and any secondary use (e.g., ML-DSS training) could mislead those who
have to design trustworthy decision support systems, and also probably jeopardize
the actual improvement of the ML-DSS performance on new and real data other than
the training data.
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This points to the difference between research data, which are usually used for
ML-DSS training and optimization; and real-world data, which are produced in real-
life clinical situations. While research data are not made up on purpose to get high
accuracy, they are nevertheless selected, cleansed, and engineered to an extent that is
completely unrealistic or unfeasible to replicate in actual clinical settings. This is not
only a matter of generalizability and interpretability of the model. It is also a matter
of different ways to evaluate ML-DSS. The most common one can be considered
essentialist [12], in that it focuses on accuracy and other performance measures (like
F1-scores and AUC-ROC) that are appraised in a laboratory setting (i.e., in laborato-
rio). An alternative and still neglected approach, which is the consequentialist one,
focuses on the actual clincal outcomes (consequences) produced in situated practice
(i.e., in labore), that is in the original context of work of the physicians involved
and in their actual relationship with patients, when decisions must be converted into
real-life choices that must align with the patients’ attitudes, preferences, fears and
hopes, as well as with the economic feasibility of the available options.

5 Embracing Uncertainty, Also in Computation

As hinted above, there are many types of uncertainty in medicine, which affect med-
ical records in different ways. For a certain attribute (i.e., variable) that is pertinent
for a certain case, users could ignore what value is applicable, let alone true; or what
single value is true among a finite set of values that are known to be equally appli-
cable. Users could be uncertain between two values from the above set, or among
many. Moreover, they could prefer some options with respect to others. If single
users are certain about a value, they could nevertheless disagree among each other
(and even with themselves over time). Ultimately, they could be uncertain among
different values at various levels of confidence with respect to each other (e.g., in
a dichotomous domain, which is the simplest, doctor A is fairly certain that the
condition is pathological, doctor B is strongly certain).

As shown by Svensson et al. in [51], the performance of ML-DSS is negatively
impacted and deeply underminedwhen fedwithmedical datasets that are intrinsically
uncertain. Their idea is to employ conventional statistical tests to reduce the variabil-
ity of the data produced by different observers by choosing the values that have been
proposed by a statistically significant majority of the observers. However effective,
this could be also seen as a way to discard the richness of amulti-value representation
that accounts for a manifold phenomenon, which competent and skillful observers
can describe each in her own, and partially sound yet specifically irreproachable,
way.

Thus, if we take the “dirtiness” and “manifoldness” (seen as sides of the same
coin) of medical data as a given factor of medicine, one could wonder: how can
ML techniques take these constraints seriously, and even exploit them to get a richer
picture of the phenomena of interest; and hence buildmodels that could really support
human experts in their daily, and uncertain, practice?
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First of all, let us remark once more that there exist different kinds of uncer-
tainty, as exemplified above. Indeed, if we look at the different classifications and
taxonomies of uncertainty [40], we find a long list of terms, such as: Absence, Ambi-
guity, Approximation, Belief, Conflict, Confusion, Fuzziness, Imprecision, Inaccu-
racy, Incompleteness, Inconsistency, Incorrectness, Irrelevance, Likelihood, Non-
specificity, Probability, Randomness, . . .Each form has its own tools to represent and
manage it, to name a few: probability theory, fuzzy sets, possibility theory, evidence
theory, rough sets. By large, the predominant role is played by probability theory, and
machine learning is not an exception in this attitude. However, there exist solutions
(in some case preliminary attempts) to incorporate other tools in machine learning
(see e.g., [5, 15, 30]). There are several reasons why these approaches are not well
established in ML, as widely discussed in [31] for the fuzzy set case: sometimes
the new tools are naïves; there is not a connection among different communities;
there is a problem of credibility for many young, or at least not as well established
as probability theory, disciplines. However, if we want to deal with all the different
forms of uncertainty, it is needed and possible to directly manage them. Indeed, it is
our belief that the above discussed flaws in data can be addressed inmachine learning
by making use of the appropriate tools. In the following we give some hints on how
this can be done, making reference to the biases previously discussed.

At first, let us consider the problem of representing a rater reliability. It is always
assumed that ratings are exact, though they may be classified as “deterministic”
or “random”, where random means that “the rater is uncertain about the response
category” [24]. More than a question of randomness, this description points to a
form of epistemic uncertainty which can be handled by not assuming exactness and
introducing graduality on the judgment scale of a rater. For instance, we could have
three levels of certainty (i.e., low/fair/good) on the assigned score and/or the rater
can express her uncertainty by selecting more than one score with its own level
of certainty. This kind of uncertainty can be applied also to the input data and we
can represent the fact that a patient has low headache and high nausea, whereas
in a dichotomic situation we were forced to say no headache and yes nausea. This
situation can be handled with Possibility Theory and, in particular, with its simplified
form of certainty-based model [42], which is more interpretable and simple from a
computational standpoint. Of course, machine learning tools have to be modified to
comply with this model, though some steps in this direction already exists [25, 29].
Worth mentioning is also the fuzzication of the Arden syntax aimed “at simplifying
programmes which process indeterminate data by means of fuzzy logic” [57].

As another problem, let us consider a numerical information, such as the one
obtained by some measurement. Of course, any point value brings an imprecision,
due to the instrument itself or to an average among repeated measures, etc. Thus, we
can consider to represent the information in form of an interval and directly work
with it. To this scope, interval arithmetics and fuzzy arithmetics [35] give the formal
instruments to operate with this kind of representation.

Finally, it is well known that data often come with missing values. A standard
approach in ML is to impute them in order to get a complete dataset. Of course, in
this way, we loose the original information and some errors or at least imprecisions
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are introduced. On the contrary, we should not get rid of the missing values and
moreover take into account that a missing value can have several meanings, such
as ignorance, non existence, etc. Rough set theory includes rule induction methods
that comply with missing values and also with different meanings of it. In particular,
we point the attention to the works by J. Gryzmala-Busse and his MLEM algorithm
[22]. We also notice that some attempts to directly deal with missing values exist
also in other ML approaches, such as fuzzy clustering [26].

6 Conclusions

Fox [20] in her relevant work on the sociology of medical knowledge once wrote that
uncertainty has become the hallmark of the entire field of medicine. For this reason,
confronting uncertainty has been the first and foremost driver for the introduction
of computational Decision Support Systems in medicine and their increasingly wide
adoption in clinical settings. We could just speculate on why medicine has turned
to technology to “make sense of health data” (to cite a position paper on Nature
published a couple of years ago [18]). Quite subtly, Katz [33] has argued that the
traditional mechanisms that physicians use to adopt to cope with uncertainty (e.g.,
terminological standards, standard care protocols, guidelines based on statistical
studies) can slowly push them towards disregarding or even opposing uncertainty.

Irrespective of the root causes of this situation, the digitization of medicine has
contributed to shifting the idea of uncertainty, from being a natural and irreducible
element of medical practice [49] in the interpretation of subtle and sometimes con-
tradictory clues in the existential and complex context of idiosyncratic patients, into
the domain of those rational problems that can be modeled to pursue an engineering
solution, or even a computational one.

In this paper we have briefly explored the blurring boundaries between what
computer scientists and medical doctors pursue in medical data: data accuracy and
completeness the former ones; trustworthiness andmeaningfulness the latter ones [9].
We have also shed light on information bias and observer variability, which separate
us from getting an absolute true, universal and reliable representation of a physical
(let alone psychological or mental) phenomenon. In particular for the ML designers,
we have pointed out that information bias does not regard only the labelling of
data set, i.e., the information on which a ML-DSS is trained to predict other labels
accurately; but it also (and above all) affects the whole input data, in both training
and prediction, especially in regard to nominal and ordinal variables.

In light of these different viewpoints, we outline a couple of recommendations
along the general framework byDomingos, who conceivesML problems as a combi-
nation of representation, optimization and evaluation [17]. From the representation
perspective, computer scientists should not settle for “polished data” but rather “get
to the source” of medical data: the multiple, possibly divergent opinions of experts.
This means to be wary of researches where the gold standard is not reported or it
is a dataset annotated by a single, or just a couple of physicians. Moreover, if the
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adopted gold standard is based on a consensus reconciliation of divergent opinions,
the authors of those researches should also be aware that they proceed considering
all of these divergences plain mistakes. If they are less than certain this is fair, they
should offer a word of caution on the potential arbitrariness of the clearly-cut clas-
sification they have used in their study. In the study design phase authors could also
ask the competent observers the degree of self-perceived confidence with which they
share their ideas and produce their data. This ordinal scale could be used to weight
the multiple values of a single representation, so that theML algorithms can leverage
again the knowledge of the domain experts to build a coherently fuzzy representa-
tion. Furthermore they could annotate the representativeness of each value in terms
of a three-way partitioning (e.g, belonging to the majority opinion, belonging to the
minority, belonging to neither with statistical significance [10]). In any case, ML
researchers should always report how they did collect their ground truth, relying on
what gold standard.

In regard to optimization, further research should be devoted in transferring tech-
niques and methods from the rough set theory [53] domain into the ML arena.

In regard to evaluation, the ball could be passed to the medical practitioners
again. They should develop a wariness of any essentialist evaluations of ML-DSS
performance that are carried out in laboratorio, on research data and are expressed
as accuracy metrics. Rather, they should demand to theML-DSS designers (and their
advocates) evidence-based validations of their systems, that are focused on health
outcomes and adopt them only once some further information has been given about,
e.g. the trade-off between the internal (i.e., bias) and external (i.e., variance) validity
of the model (regarding also the extent the ML-DSS could fit multimorbid cases,
instead of being excessively specialized for one disease); and between its prediction
power and its interpretability [14], that is its scrutability by doctors and lay users to
understand why the ML-DSS has suggested them a certain decision over possible
others andmake the “hybrid” agency ofman-and-machinemore accountable towards
the colleagues, the patients and their dears. Even more than that, ML-DSS should
be object of a value-based assessment, where researchers invest time and effort on
the evaluation of their systems in the mid- long-term after their deployment in real
settings and their appraisal is conducted in terms of user and patient satisfaction, in
terms of effect size on clinical outcomes, and eventually in terms of cost reduction
or better service provision. All these elements should not be overlooked or given
for granted, especially in light of the perils of automation bias (such as deskilling,
technology overreliance and overdependence) not least the surreptitious increase of
trust by doctors in numbers and the “objective facts” (cf. McNamara fallacy) that the
reckless application ofmachine learning in response to an excessive human yearning
for certainty could bring in, especially in fields where this is likely to turn out to be
only a dream of ignorance.
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