
Chapter 8
Explaining the Predictions
of an Arbitrary Prediction Model:
Feature Contributions and
Quasi-nomograms

Erik Štrumbelj and Igor Kononenko

Abstract Acquisition of knowledge from data is the quintessential task of machine
learning. The knowledge we extract this waymight not be suitable for immediate use
and one or more data postprocessing methods could be applied as well. Data post-
processing includes the integration, filtering, evaluation, and explanation of acquired
knowledge. Nomograms, graphical devices for approximate calculations of func-
tions, are a useful tool for visualising and comparing prediction models. It is well
known that any generalised additive model can be represented by a quasi-nomogram
– a nomogram where some summation performed by the human is required. Nomo-
grams of this type are widely used, especially in medical prognostics. Methods for
constructing such a nomogram were developed for specific types of prediction mod-
els thus assuming that the structure of the model is known. In this chapter we extend
our previous work on a general method for explaining arbitrary prediction models
(classification or regression) to a general methodology for constructing a quasi-
nomogram for a black-box prediction model. We show that for an additive model,
such a quasi-nomogram is equivalent to the one we would construct if the structure
of the model was known.

8.1 Introduction

The field of nomography was invented at the end of the 19th century by Maurice
d’Ocagne [8]. Up to the final quarter of the 20th century, nomograms were widely
used as graphical computers for tasks such as navigation, projectile trajectories, and
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Večna pot 113, 1000 Ljubljana, Slovenia
e-mail: erik.strumbelj@fri.uni-lj.si

I. Kononenko
e-mail: igor.kononenko@fri.uni-lj.si

© Springer International Publishing AG, part of Springer Nature 2018
J. Zhou and F. Chen (eds.), Human and Machine Learning, Human–Computer
Interaction Series, https://doi.org/10.1007/978-3-319-90403-0_8

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90403-0_8&domain=pdf


140 E. Štrumbelj and I. Kononenko

Fig. 8.1 We used the Orange data mining software [7] to produce this quasi-nomogram for the
Naive Bayes model on the well known Titanic data set. A survival prediction for a specific instance,
for example, an adult male travelling first class, is constructed in the following way. First, we
mark the value of each input variable on its corresponding axis (three topmost dots) and read their
points-contribution on the Points axis (vertical dashed lines). The summation of the three points-
contributions ismarked on the Total axis (−0.6 − 0.05 + 1.25 ≈ 0.6). By drawing a straight vertical
line, we can convert the sum into a probabilistic prediction. In this case, approximately 45%. Note
that the range of the Points scale is determined by the minimum and maximum possible point
contribution across all input variable values, while the range of the Total scale is determined by the
minimum and maximum possible sum of point contributions across all input variables. The Points
and Total axes need not be aligned, because the point summation has to be done manually

other tasks that require the computation of complex formulas. For more information
see Doerfler’s survey of classical nomography [9].

In this chapterwe focus on a specific type of graphical representation (see Fig. 8.1).
Unlike a classical nomogram, Fig. 8.1 does not facilitate graphical-only computation
(using a straightedge and a pencil), but requires additional summation. In recent years
there has been a resurgence of interest in such graphical representations, especially
in medical diagnostics and prognostics [6, 10, 15, 16, 24].1 Note that nearly all
related publications simply refer to such graphical representations as nomograms
(sometimes as Kattan nomograms), although they do not completely fit the classical
definition of a nomogram. In this chapter we promote a clear distinction between the
two types of graphical representations and refer to Fig. 8.1 as a quasi-nomogram - a
nomogram that requires some additional (non-graphical) computation.

Quasi-nomograms serve a dual purpose. First, they are a tool for producing
“offline” predictions. And second, they provide the human with information about

1www.sciencedirect.com currently lists 1393 research papers that feature the word “nomogram” in
the title, keywords, or abstract and were published between 2006 and 2015. Most of them are from
the medical field.

www.sciencedirect.com
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the model and the effect of the predictor variables on the target variable. As such,
they are a useful tool for decision support and for providing non-experts, for exam-
ple, patients in a hospital, with insight into their diagnosis and prognosis. Further-
more, quasi-nomograms can also be used by data mining practitioners as a model
visualisation and inspection tool. As with other model-visualisation techniques, the
informativeness and usefulness of the quasi-nomogram visualisation decreases as
the number of input variables increases. However, in practical applications, such as
medical prognostics, the number of input variables rarely exceeds 10.

Any generalised additive model can easily be visualised with a quasi-nomogram,
which has motivated several model-specific approaches for constructing a quasi-
nomogram. In this chapter, however, we show how a quasi-nomogram can be con-
structed for any (generalised) additive model in a uniform way and, with possible
loss of prediction accuracy, for any prediction model. The main idea is to decom-
pose the (unknown) model function into generalised additive form and then estimate
each input variable’s contribution function on a point-by-point basis. This is made
possible by the fact that we do not need the analytical form of these functions to pro-
duce a quasi-nomogram. Instead, we only need to plot the functions in some finite
resolution.

The remainder of the paper is as follows. The next Section describes our previous
work and other related work in the broader area of explaining prediction models and
the particular case of using nomograms to visualise models. In Sect. 8.3, we describe
the construction of a nomogram for a black-box prediction model. Section8.4 illus-
trates the use of the method on several data sets and models. Section8.5 concludes
the paper.

8.2 Explaining the Predictions with Feature Contributions

Predictionmodels are an integral part of knowledge discovery. Howwe choose a pre-
diction model for a particular task strongly depends on the problem area. Sometimes
we are primarily interested in prediction accuracy, on other occasions, interpretability
is equally, if not more important.

Better interpretability is easily achieved by selecting a transparent model. How-
ever, more transparent models are usually less accurate than more complex models,
often to an extent that we would rather consider making the latter more interpretable.
As a result, numerous model-specific and general post-processing methods that pro-
vide additional explanationhavebeenproposed (see [2, 22, 29, 35–37] and references
therein).

Generating a nomogram for an arbitrary model is directly connected to devel-
oping a general (black-box) approach to explaining or increasing the interpretabil-
ity of a prediction model. We illustrate this problem with a simple linear model
f (x1, ..., xn) = f (x) = β0 + β1x1 + ... + βnxn . If we standardise the input features,
we could interpret the coefficient βi as the i−th feature’s global importance (in
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statistical literature, variable importance). Note that using the features’ global impor-
tance to select only a subset of features is analogous to a filter method for feature
selection.

While the global importance reveals which features are more important, it does
not tell us how features influence individual predictions. The difference between
what the i−th feature contributes when its value is xi and what it is expected to
contribute:

ϕi (x) = f (x) − E[ f (x)|i − th value unknown] =
=βi xi − βi E[Xi ], (8.1)

gives us such a local contribution. Equation (8.1) is also known as the situational
importance of Xi = xi [1].

Because our model is additive, the local contribution of Xi = x is the same across
all instances where Xi = x , regardless of the values of other features.

The above illustrative example is simple, with a knownmodel that is also additive.
However, in our problem setting, we want a general method. The model has to be
treated as a black-box - no assumptions aremade other than that themodelmaps from
some known input feature space to a known codomain. Therefore, we are limited to
sensitivity analysis - changing the inputs and observing the outputs.

General (black-box) approaches are at a disadvantage - not being able to exploit
model-specifics makes it more difficult to develop an effective and efficient method.
However, being applicable to any type of model also has its advantages. It facilitates
comparison of different types of models and, in practical applications, eliminates the
need to replace the explanation method when the underlying model is changed or
replaced.

Previously developed general approaches [21, 32, 39] tackle the problem in a
similar one-feature-at-a-time way. That is, the contribution of a feature is

ϕi (x) = f (x1, ..., xn) − E[ f (x1, ..., Xi , ..., xn)] (8.2)

Equation (8.2) is the difference between a prediction for an instance and the expected
prediction for the same instance if the i−th feature is not known.

In practice, expression Eq. (8.2) can be efficiently approximated (or computed, if
the feature’s domain is finite). Additionally, if f is an additive model, Eq. (8.2) is
equivalent to Eq. (8.1), so we do not lose any of the previously mentioned advantages
associated with explaining an additive model.

However, when the features interact, as is often the case, the one-feature-at-a-time
approach gives undesirable results. For example, observe the model f (x1, x2) =
x1 ∨ x2, where both features are uniformly distributed on {0, 1}. When computing
the contribution of the first feature for f (1, 1) = 1, we see that perturbing its value
does not change the prediction - the first feature’s contribution is 0. The same holds
for the second feature. Therefore, both features get a 0 contribution, which is clearly
incorrect.

This example shows that perturbing one feature at a time gives undesirable results.
All subsets have to be taken into account to avoid such issues.
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In our previouswork,wedeveloped an alternative general approach that tackles the
disadvantages of other general approaches described above [35–37]. To summarise
the main ideas of the approach, let X = [0, 1]n be our feature space and let f :
X → � represent the model that is used to predict the value of the target variable
for an instance x ∈ X . To avoid the shortcomings of other general methods, we
observe the contribution of each subset of feature values. For this purpose, Eq. (8.2)
is generalised to an arbitrary subset of features:

fQ(x) = E[ f |Xi = xi ,∀i ∈ Q], (8.3)

where Q ⊆ S = {1, 2, ..., n} represents a subset of features. This allows us to define
the contribution of a subset of feature values:

ΔQ(x) = fQ(x) − f{}(x). (8.4)

Equation (8.4) can be interpreted as the change in prediction caused by observing
the values of a certain subset of features for some instance x ∈ X .

To obtain each individual feature’s local contribution, we map these 2n terms onto
n contributions, one for each feature’s value. First,we implicitly define interactions by
having the contribution of a subset of feature values equal the sum of all interactions
across all subsets of those feature values:

ΔQ(x) =
∑

W⊆Q

IW (x), (8.5)

which, together with I{}(x) = 0 (an empty set of features contributes nothing),
uniquely defines the interactions:

IQ(x) = ΔQ(x) −
∑

W⊂Q

IW (x). (8.6)

Finally, each interaction is divided among the participating feature values, which
defines the i−th features local contribution:

ϕi (x) =
∑

W⊆S\{i}

IW∪{i}(x)
|W | + 1

. (8.7)

Figure8.2 shows two example explanations for an instance from the monks1 data
set (binary class has value 1 iff the value of the 1st feature equals the 2nd feature
or the 5th feature’s value is 1). The Naive Bayes model, due to its assumptions
of conditional independence of input features, cannot model the importance of the
equivalence between attr1 and attr2. Despite this limitation, it correctly predicts the
class value, because for this instance, attr5 = 1 is sufficient. The artificial neural
network correctly models both concepts.
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(a)

(b)

Fig. 8.2 Two visualisations of local contributions for two different models and the same instance
from the monks1 data set. The top of each visualisation shows information about the data set,
model, prediction and the actual class value for this instance. The features’ names and values for
this instance are on the right- and left-hand side, respectively. The value of each feature’s local
contributions is shown in the corresponding box and visualised

The proposed method correctly reveals which features contribute. On the other
hand, one-feature-at-a-time approaches would assign a 0 contribution to all features
in the artificial neural network case. Perturbing just one feature does not change the
model’s prediction.
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Equation (8.7) is shown to be equivalent to the Shapley value [33] of a coalitional
game, where features are considered players and the generalised contribution is the
worth of a coalition of features. This implies several desirable properties (see [35]
for a more detailed and formal treatment):

• the local contributions sum up to the difference between the prediction and the
expected prediction if no features are known,

• if two features have a symmetrical role in themodel, they get the same contribution,
and

• if a feature has no role, its contribution is 0.

This also facilitates a game-theoretic interpretation of the shortcoming of existing
methods. By not correctly taking into account all interactions they violate the first
property and can divide among features more (or less) than what their total worth is.

Computing the proposed local contribution has an exponential time complexity,
which limits its practical usefulness. We use an alternative formulation of the Shap-
ley value to derive an efficient sampling-based approximation, which allows us to
compute the contributions in polynomial time [35]. The algorithm is extended with
an online estimation of the approximation error. This provides a flexible mechanism
for trade-off between running times and approximation error. The approximation
algorithm is also highly parallelisable - it can be parallelised down to computing a
single prediction.

We also considered two improvements that reduce running times (or approxima-
tion errors). First, the use of low-discrepancy or quasi-random sequences can improve
the convergence of Monte Carlo integration [13]. We used Sobol quasi-random
sequences. And second, not all features are equally important and, intuitively, less
important features require fewer samples. We derive the optimal way of distributing
a finite number of samples between features to minimise the expected approximation
error across all n contributions. Empirical results show that non-uniform sampling
substantially improves convergence, while quasi-random sampling results in a rela-
tively small improvement. Note that the overall time complexity of generating our
nomogram is O(c · n · M(n)), where n is the number of input variables, M(n) is
the time complexity of generating a single prediction (depends on the model), and
c is a number-of-samples-per-feature constant that depends on the desired error and
resolution of the nomogram lines (or number of distinct values, for features with a
finite number of unique values), but not on the number of input variables n (that is,
it does not increase with the number of features).

Generalised additive models are, by definition, written as a sum of the effects
of individual input variables, transformed by some link function. Therefore, it is
relatively straightforward to visualise any generalised additive model with a quasi-
nomogram (see Sect. 8.3 for details). This has led to several model-specific methods
for explaining several different types of statistical and machine learning models
typically used for prediction: Support Vector Machines [5, 14, 38], the Naive Bayes
classifier [20, 23], logistic regression [40]. The proposed approach, however, decom-
poses an individual prediction among features in a way that takes into account the
other features’ values. For each feature and its value, we can compute the mean local
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(a) (b)

Fig. 8.3 Both models learn the concepts behind the data and the plotted average contribution func-
tions (black) reveal where the individual features’ contribution changes from negative to positive.
The grey horizontal line represents the root feature importance of the feature

contribution when the feature has that value [36]. This produces, for each feature,
a marginal effect function, which is similar to the marginal effect functions used in
the construction of nomograms. In fact, we can show that if the underlying model
is additive, this will produce equivalent results and this will be the basis for our
construction of a nomogram for an arbitrary prediction model (see Sect. 8.3).

Figure8.3 shows a pair of marginal effect visualisations for two different models
on the same cDisjunctN data set. Out of the five features, only the first three are
relevant. The class value equals 1 if (and only if) A1 > 0.5 or A2 > 0.7 or A3 < 0.4.
The visualisation reveals the difference between the step-function fit of the decision
tree and smooth fit of the artificial neural network. It also reveals that the artificial
neural network slightly overfits the two irrelevant features.

A feature’s importance - the variance of its local contributions - can also be
efficiently computed using a similar sampling-based approach. In combination with
any learning algorithm the global importance can be used as a filter for feature
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selection. This approach is similar to the in-built feature importance of Random
Forests [4] and related to the LMG variable importance method for linear regression
models [11].

Note that the practical advantages of explaining model predictions with feature
contributions have been established with two applications. Firstly, an application to
breast cancer recurrence predictions [34], where it was shown that in 95%of the cases
the oncologist agreed with both the direction and the magnitude of the contribution.
Furthermore, oncologists found the explanations a beneficiary tool and helpful in
increasing their trust in the model’s predictions. And second, a survey which showed
that providing an explanation significantly improves the humans’ predictions and
also increases confidence [37]. The usefulness of such an explanation method as a
tool for machine learning practitioners is further supported by several documented
uses by other researchers in different areas. These include maximum shear stress
prediction from hemodynamic simulations [3, 28], coronary artery disease diagnosis
from medical images [18, 19], businesses’ economic quality prediction [27] and the
use of the explanation method to explain the PRBF classification network [30, 31].

8.3 Constructing the Quasi-nomogram

Take a response randomvariableY and a set of predictor variables X1, X2, ..., Xn . In a
standard prediction setting, we are interested in how the response variable depends on
the values of the predictor variables.Wemodel this relationship with a model f , such
that f (x1, x2, ..., xn) = E(Y ). Usually, f is trained (inferred, estimated,...) using a
set of labelled training instances {(xi,1, xi,2, ..., xi,n, yi ) ∈ [0, 1]n × [0, 1]}Ni=1. With-
out loss of generality, we assumed that the predictor variables’ domain ω is a
n-dimensional unit cube.

Transparent models, such as the linear regression model f (x1, x2, ..., xn) = β0 +
β1x1 + ... + βnxn are self-explanatory.2 When dealing with less transparent models,
we often employ explanation methods and techniques that make the model easier to
understand and use. Quasi-nomograms are one such method. They make the model
more transparent and can be used for the computation of the model’s predictions.

Generalised additive models are a family of models that we can effectively repre-
sent with quasi-nomograms similar to one in Fig. 8.1. A generalised additive model
can be written as

f (x1, x2, ..., xn) = F−1

(
n∑

i=1

fi (xi ) + β0

)
= E(Y ), (8.8)

where F is a smooth and bijective link function which relates the expectation to the
predictor variables. That is, we try to fit the effect functions fi , such that

2Linear regression is, of course, just a special case of generalised additive model with identity link
function and linear effect functions
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F(E(Y )) =
n∑

i=1

fi (xi ) + β0.

Because a generalised additive model can be written as a sum of functions of individ-
ual predictor variables, we can plot each effect function fi separately. To reconstruct
a model’s prediction for a particular instance, we read and sum the values of fi , for
each i (and β0). Finally, we transform the sum with F−1, which can be done with a
simple conversion scale (“Total and Probability” in Fig. 8.1).

The described procedure is simple and effective, but assumes that the structure
of the (generalised additive) model f is known. Now we describe a method that can
be used to produce a nomogram for any prediction model f . Given a model f and
a link function F , we define a set of functions

gi (x) = E (F( f (X1, X2, ..., Xi = x, ..., Xn)) − F( f (X1, ..., Xn))) ,

for each i = 1..n. The value gi (x) can be viewed as the expected change in the
model’s output if the i−th predictor variable is set to x . Observe the model

g(x1, ..., xn) = F−1

(
n∑

i=1

gi (xi ) + E(F( f (X1, ..., Xn))

)
. (8.9)

Themodel in Eq. (8.9) transformsmodel f into a generalised additivemodel, without
assuming the structure of f . The following useful property can be shown.

Theorem 8.1 If f is a generalised additive model and F the corresponding link
function then g(x1, ..., xn) = f (x1, ..., xn), for all (x1, ..., xn) ∈ X1 × ... × Xn.

Proof Taking into account the theorem’s assumptions:

g(x1, ..., xn) = F−1

(
n∑

i=1

gi (xi ) + E(F( f (X1, ..., Xn))

)
=

= F−1

(
n∑

i=1

E( fi (xi ) − fi (Xi )) +
n∑

i=1

E( fi (Xi )) + β0

)
=

= F−1

(
n∑

i=1

fi (xi ) −
n∑

i=1

E( fi (Xi )) +
n∑

i=1

E( fi (Xi )) + β0

)
=

= F−1

(
n∑

i=1

fi (xi ) + β0

)
= f (x1, x2, ..., xn)

(8.10)

That is, the predictions obtained from g will be the same as the original models’
predictions, conditional to f being an additive model or a generalised additive model
with known link function F .
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To compute the transformed model g, we require functions gi and

E(F( f (X1, ..., Xn)).

The latter E(F( f (X1, ..., Xn)) = ∫
ω
F( f (...))dP can be efficiently approximated

with simple Monte Carlo integration

E(F( f (X1, ..., Xn)) ≈ 1

M

M∑

j=1

F( f (x j,1, x j,2, ..., x j,n)),

where the realisations x j,k are obtained by generating a sequence of random samples
(that is, instances) according to some distribution P of the input variables’ domain
ω. Each point gi (x) can be estimated in a similar way

gi (x) ≈ 1

M

M∑

j=1

(F( f (x j,1, ..., x j,i = x, ..., x j,n)) − F( f (x j,1, ..., x j,n))).

Theorem 8.1 holds for any probability distribution. Therefore, we can choose a
distribution that is more convenient for sampling, such as a uniform distribution or
a distribution where predictor variables Xi are independently distributed. Note that
in general the estimation converges towards the actual value independently of the
number of dimensions n. Furthermore, for faster convergence, quasi-random sam-
pling can be used instead of pseudo-random sampling [25, 26]. In our experiments,
we used the Sobol low-discrepancy quasi-random sequence [13].

The primary application of the proposed approach is to (generalised) additive
models. However, in practice it can also be applied to a potentially non-additive
model. In such cases, we are interested in how close the transformed model g is to
f and how good the prediction accuracy of g is. The farther away g is from f the
less useful the quasi-nomogram is in terms of providing insight into f . It is also
possible that g is not close to f but has a better prediction accuracy. In such cases,
we should consider using g instead of f , because it is both a better predictor and
easier to interpret.

Given a set of N labelled instances, we used the root mean squared error to
estimate the model’s prediction accuracy

eg,y =
√√√√ 1

N

N∑

i=1

( f (xi,1, xi,2, ..., xi,n) − yi )2

and the distance between the original model f and the transformed model g

e f,g =
√√√√ 1

N

N∑

i=1

(
f (xi,1, xi,2, ..., xi,n) − g(xi,1, xi,2, ..., xi,n)

)2
.
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8.4 Illustrative Examples

We start with a simple toy data set with three input variables A1, A2, and A3 with con-
tinuous domains [0, 1] and uniformly distributed values. Let the relationship between
the input variables and the target variable Y be linear: Y = 0.5A1 − 1.5A2. We gen-
erated 1000 instances from this data set at random, labelled each instance using
the aforementioned linear relationship, and used the instances to train a multilayer
perceptron artificial neural network model.

Let f be this multilayer perceptron model. The structure of f is unknown, but
we can access its value for any point. We used the procedure described in Sect. 8.3
to generate the quasi-nomogram shown in Fig. 8.4a. The quasi-nomogram consists
of three effect functions (one for each input variable) and a conversion scale. Each
individual effect function graph is used to convert the input variable’s value into a
point-contribution. This is done by first drawing a straight vertical line that connects
the input variable’s value to the plotted effect function and then a horizontal line
that connects this point to the vertical Points scale, where the points-contribution
of this value can be read. The sum of all three variables’ points is selected on the
left-hand side of the conversion scale and the prediction is readily available to be
read on the right-hand side of the conversion scale. Large dots and corresponding
lines in Fig. 8.4a illustrate this procedure for the instance (0.6, 0.8, 0.2).

The relationship between the procedure from the previous paragraph and the
equations in Sect. 8.3 (Eq. (8.9) in particular) is as follows. Each input variables’
effect function is plotted separately, one point at a time. The estimated value gi (x)
corresponds to the value of the i-th input variable’s effect function at x . Therefore,
horizontal and vertical lines are used to obtain the effect functions’ values. The sum-
mation part of the procedure produces the sum inEq. (8.9). The values on the left-hand
side of the conversion scale range from the minimum to the maximum possible sum
of the effect functions. What remains is to add the expectation E(F( f (X1, ..., Xn))

and in the case of a non-identity link function F , apply the inverse of the link func-
tion F−1. Because F is a bijective and smooth function, both operations are realised
simultaneously and themapped values are written on the right-hand of the conversion
scale, where the human can read the final value. Note that the Total to Probability
conversion scale from the nomograms generated in Orange (see Fig. 8.1) serves the
same purpose as the conversion scale.

Notice that the quasi-nomogram in Fig. 8.4a is for the multilayer perceptron
model, which is not necessarily additive. In this case the model was close to addi-
tive and the additive transformation in Fig. 8.4a was more accurate than the original
model (e f,y = 0.013, eg,y = 0.009, e f,g = 0.007). For comparison, linear regres-
sion, which is well-suited for the linear problem, produces the following results
(e f,y ≈ eg,y = 5.8 × 10−11). With an additive model such as the linear regression
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Fig. 8.4 Quasi-nomograms for two different types of models and the same linear problem data set.
For this illustrative data set the input variable A3 is irrelevant to the target variable, which is clear
from its flat effect function

model, the transformation g is, at least to a practical precision, the same as the
original model (e f,g = 1.1 × 10−11). The quasi-nomogram for the linear regression
model is shown in Fig. 8.4b and can be used to compare the two different models.
Because the structure of the model is not known, A3 is included in the nomogram,
despite being irrelevant. However, the irrelevance of input variable A3 results in a
flat effect function.

Note that input variables with finite domains (see Figs. 8.1 or 8.5b) can be visu-
alised in a more compact way. That is, listing the variable’s values on a single axis,
as opposed to a 2-dimensional plot. The same applies to continuous input variables
for which a visual inspection reveals a linear (or monotonic) effect function (see
Fig. 8.4b, input variable A2, or Fig. 8.6, several variables). For such variables, we
can reduce the visualisation by projecting the labelled values onto the x axis as it is
clear how to interpolate the effect of in-between values.

Quasi-nomograms are useful even when the effect of input variables is not linear.
Consider the second toy data set with two input variables A1 and A2 with continuous
domains [0, 1] and uniformly distributed values. The target variable is defined as
Y = sin(2π A1) + A2. Again, we generated 1000 instances from this data set and
used bagging to train an ensemble of regression trees. The ensemble gave the follow-
ing results (e f,y = 0.048, eg,y = 0.041, e f,g = 0.034). For comparison, the results
for linear regression were (e f,y ≈ eg,y = 0.43, e f,g = 6.2 × 10−16). Therefore, the
transformed bagging model (see Fig. 8.5a) is more accurate than linear regression,
while still easily represented with a quasi-nomogram.
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Fig. 8.5 Quasi-nomograms for two different types of models and data sets. The non-linear toy
data set has continuous input variables and a continuous target variable. Step effect functions are a
characteristic of tree-based models. The Titanic data set has discrete input variables and a binomial
target variable

Finally, Fig. 8.5b shows the quasi-nomogram for the Naive Bayes classifier and
the Titanic data set. It is equivalent to the quasi-nomogram from the introduction
(see Fig. 8.1) that we produced with Orange [7]. That is, the predictions obtained
from the two quasi-nomograms for the same instance are equal. For example, if we
revisit the adult male travelling first class from Fig. 8.1, but use the quasi-nomogram
from Fig. 8.5b instead, we obtain a sum of −0.56 (−1.15 for being male, −0.44
for an adult, and +1.03 for travelling first class). Using the conversion scale this
sum converts to approximately 45%, which is the same as the prediction obtained
from Fig. 8.1. The two nomograms also offer the same insight into the influence of
the input variables on survival. For example, being female or travelling first class
contributed more towards survival.

8.4.1 Predicting the Outcome of a Basketball Match

For a more realistic illustration of what data-mining practitioners encounter in prac-
tice, we performed the following experiment. For each basketball match of the
2007/08 NBA (National Basketball Association) season, we recorded the winner
and the following three summary statistics, for both competing teams: effective field
goal percentage (EFG), turnover percentage (TOV), and offensive rebounding per-
centage (ORB). For a more detailed description of these summary statistics see [17].
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Fig. 8.6 A quasi-nomogram for predicting the win probability of the home team in an NBA
basketball match. It is clear from the visualisation that the win probability of the home team
increases with its shooting efficiency and decreases with the shooting efficiency of the away team.
The remaining four input variables are visualised in a more compact way
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This gave us a total of 958 matches with 6 predictor variables and a binomial
target variable (match outcome) each.We hypothesised that this data could be used to
construct amodelwhich could predict the outcomeofNBAbasketballmatches.Using
10-fold cross-validation, we evaluated several classification models and obtained
the following results: multilayer perceptron (e f,y = 0.4554, percentage of correct
predictions = 68.5), Naive Bayes (e f,y = 0.4513, percentage of correct predictions =
68.7), bagging (e f,y = 0.4565, percentage of correct predictions = 67.3), and logistic
regression (e f,y = 0.443, percentage of correct predictions = 69.4). Note that the
relative frequency of home team win was 0.6, so all four models outperform this
default prediction for home team win probability.

Out of all the models, logistic regression gave the best results. Because this model
is a generalised additive model (with a log-odds ratio link function F(x) = ln( x

1−x )),
its transformation g is an accurate representation of the original model (e f,g = 2.7 ×
10−16). The resulting quasi-nomogram is shown in Fig. 8.6. It can be used both to
predict the winner of future matches and to inspect the effect of individual summary
statistics on the outcome of a basketball match.

All the learning algorithms we used in our experiments were from the Weka data
mining Java library [12], with the exception of the Naive Bayes that we used for
Fig. 8.1.

8.5 Conclusion

In our previous work, which we described in Sect. 8.2, we have proposed a method
for explaining an arbitrary prediction model in the form of contributions of individ-
ual features. In this chapter we extended that work by showing how such a black-
box approach to explanation is closely connected to visualising the model in the
form of a nomogram or quasi-nomogram. We proposed a method for constructing a
quasi-nomogram for a black-box prediction model, only by changing the inputs and
observing the changes of the output. This is convenient in situations when working
with and comparing several different types of models, when we wish to avoid imple-
menting a model-specific method for constructing a quasi-nomogram, or when such
an implementation is not possible (only the model might be available or we want to
avoid investing the time and effort necessary for modifying third-party code).

These quasi-nomograms can also be viewed as prediction curve plots (one for
each variable) - plots of how the effect of the variable depends on its value. The only
difference is that the values of other variables are not fixed, but varied in a way that
captures interactions among all subsets of variables (see Sect. 8.2). If the prediction
curve is monotonic (strictly increasing or decreasing) or the variable has only a few
values, it can be collapsed onto a single axis, as was shown in some of the examples.

As shown in the illustrative examples, the procedure can be applied to classi-
fication and regression tasks, discrete and continuous input variables. For models
which are known to be of the generalised additive type, the method is interchange-
able with any model-specific method, as it produces equivalent quasi-nomograms,
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and therefore generalises them. The approach is useful for non-additive models as
well, especially when the task is additive or when the resulting loss in prediction
accuracy is small or outweighed by the benefits with respect to the interpretability
offered by the quasi-nomogram. Additionally, non-additivity is straightforward to
detect from the variability and it would be possible to visualise the most important
pairwise interaction, further improving how the nomogram represents the model.
Three-way or higher level interactions become problematic, however, due to the
difficulties of effectively visualising, or representing in some other way, three (and
higher) dimensional data and for the human to understand such representations.
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