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Abstract Structural Health Monitoring (SHM) is a condition-based maintenance
technology using sensing systems. In SHM, the use of domain knowledge is essen-
tial: it motivates the use of machine learning approaches; it can be used to extract
damage sensitive features and interpret the results by machine learning. This work
focuses on two SHM problems: damage identification and substructure clustering.
Our solutions to address them are based on machine learning techniques and robust
feature extraction using domain knowledge. In the first problem, damage sensitive
features were extracted using a frequency domain decomposition, followed by a
robust one-class support vector machine for damage detection. In the second prob-
lem, a novel clustering technique and spectral moment feature were utilised for
substructure grouping and anomaly detection. These methods were evaluated using
data from lab-based structures and data collected from the Sydney Harbour Bridge.
We obtained high damage detection accuracies andwere able to assess damage sever-
ity. Furthermore, the clustering technique was able to group substructures of similar
behaviour and detect spatial anomalies.
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20.1 Introduction

Most structural and mechanical system maintenance is time-based, i.e. an inspec-
tion is carried out after a predefined amount of time. Structural health monitoring
(SHM) is a condition-based approach to monitor infrastructure using sensing sys-
tems. SHM systems promise significant safety and economic benefits [21], and thus
they have been the focus of several studies and activities with sometime real-world
deployments [21, 24, 62].

One of the key problems in SHM is damage identification, which can be classified
into different levels of complexity [49]:

• Level 1 (Detection): to detect if damage is present in the structure.
• Level 2 (Localisation): to locate the position of the damage.
• Level 3 (Assessment): to estimate the extent of the damage.
• Level 4 (Prediction): to give information about the safety of the structure, e.g.
remaining life estimation. This level requires an understanding of the physical
damage progression in the structure.

A typical engineering approach in SHM adopts a physic-based model of the struc-
ture, usually based on finite element analysis. The differences betweenmeasured data
and the data generated by the model are used to identify any damage [18]. However,
a numerical model may not always be available in practice and does not cater well
to uncertainties due to changes in environmental and operational conditions. This
challenge motivates the use of a data-driven approach which establishes a model
by learning from measured data and then makes a comparison between the data
model and new measured responses to detect damage. This approach normally uses
techniques in machine learning [62].

Farrar and Worden defined the SHM process in terms of a four-step statistical
pattern recognition paradigm [21]: (1) operational evaluation; (2) data acquisition,
normalisation and cleansing; (3) feature extraction and information condensation; (4)
statistical model development. Among the four, feature extraction and information
condensation in Step 3 is an important step to help the statistical modelling using
machine learning in Step 4 to identify damage.

Feature extraction is a process of extracting meaningful indicative information
from the measured response to determine the structural health state of the system
and identify the presence, location and severity of any possible damage. Features
may or may not have explicit physical meaning. However, the features that represent
the underlying structural physic are preferred for SHM from the point of view that
they can provide more effective insight into the condition of the structure. An ideal
feature should be sensitive to damage and correlated with the severity of damage but
insensitive to environmental and operational effects. The reason is that in real-world
SHM applications the effect of environmental and operational changes on features
might camouflage damage-related changes and also alter the correlation between the
magnitude of changes in the features and associated damage levels [51], and this is
one of the main challenges in SHM [21].
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All the aforementioned challenges highlight the role of domain experts in solving
SHM problems and in this chapter domain knowledge is used in all stages of the data
analysis. First, domain knowledge shows data-driven machine learning approaches
are suitable for forming an SHM problem. Second, it shows robust feature extraction
techniques using domain knowledge are essential in order to extract damage sensitive
features. Last, domain knowledge is also used to explain the results found bymachine
learning techniques.

This work is part of our ongoing efforts to apply data driven SHM to the Sydney
Harbour Bridge (SHB), one of the iconic structures in Australia. We tackle two dif-
ferent problems faced by a civil infrastructure: damage detection and substructure
clustering. Our approaches to these problems are based on machine learning tech-
niques and robust feature extraction using domain knowledge. The first problem is
identifying damage in components of a structure over time. In this case, we fused
and extracted damage sensitive features from multiple sensors using a frequency
domain decomposition (FDD), and then applied a novel self-tuning one-class sup-
port vector machine (SVM) for damage detection. The second problem is detecting
similar characteristics of a structure’s components by comparing and grouping them
across locations. In this case, we extended a robust clustering technique and utilised
a novel spectral moment feature for substructure grouping and anomaly detection.
These methods were evaluated using data from controlled lab-based structures and
data collected from a real world deployment on the SHB.

The remainder of this chapter is organised as follows. Section 20.2 provides
information about the SHM system of the SHB. Section 20.3 presents a review
on feature extraction and fusion in SHM, which is based on domain knowledge.
Then the proposed approaches to extract features, to identify damage and to group
substructures are introduced in Sect. 20.4. Section 20.5 presents the results of our
proposed techniques in two case studies. Finally, there are concluding remarks in
Sect. 20.6.

20.2 A Large Scale SHM on the Sydney Harbour Bridge

The SHB supports eight lanes of road traffic and two railway lines. Lane 7 on its
eastern side is dedicated to buses and taxis. This lane is supported by 800 concrete
and steel jack arches, which may develop cracks due to the ageing of the structure
and traffic loadings on the lane. It is critical to detect such a deterioration as early as
possible. However, they are currently visually inspected once every two years and
some locations are difficult to access.

We have developed and deployed a SHM system on the SHB which acquires,
integrates, and analyses a large amount of data from about 2400 sensors distributed
underneath Lane 7 of the infrastructure [48]. Our SHB system is composed of four
layers, as described in Fig. 20.1. First at the Sensing and Data Acquisition layer, we
have deployed three tri-axial accelerometers on each of the 800 jack arches. These
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Fig. 20.1 Overview of the SHM system deployed on the SHB

sensors are low-cost MEMS (Microelectromechanical systems) and they record the
vibrations of the structure.

At the Data Management layer, we have smart nodes and gateways, which con-
centrate the data from the sensors. Vibration data are captured at 250Hz from the
three sensors on a given jack arch, when a vehicle drives over it. Each node also
collects continuous ambient vibration at midnight for 10 min at 1500Hz. The data
are transmitted and used by the next Data Analytics layer.

At the third Data Analytics layer, we can deploy several algorithms to derive
actionable information from the data. Some algorithms are online and in production,
i.e. they operate on real-time data to produce information for the bridge manager
and engineers. Other algorithms are offline and in research phase, i.e. they operate
on past collected data for a research purpose.

Finally at the Service layer, we developed a secure web-based visualisation dash-
board, which allows the bridge manager and engineers to monitor all the jack arches
in real time so that they can optimise the maintenance schedule.
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20.3 Feature Extraction Using Domain Knowledge:
A Review

As a result of damage occurrence in the structure, the physical characteristics of
the structure (e.g. stiffness, mass or damping) change, which consequently induces a
change to the dynamic response [39]. Therefore, one of the key factors in a successful
implementation of any vibration-based SHM technique is an appropriate selection of
damage sensitive feature from the measured vibration response of the structure [55].
The efforts of previous researchers have been directed to damage sensitive features
in modal domain [20], frequency domain [38], time domain [11] and time-frequency
domain [43].

Examples of the early features introduced and adopted for SHM applications are
modal parameters (e.g. natural frequencies [50], damping [14], and mode shapes),
and their derivatives such as modal strain energy [53] and flexibility matrix [44].
Although successful applications of these features have been widely reported in the
literature (as discussed in [7]), the use of modal-based features to identify damage in
real-world applications has been highly debated in the last few years. Modal-based
features are suffering from several problems. Firstly, they are not broadband data and
they only provide information at limited frequency resonances. Secondly, they are
error prone by nature as they are not directly-measured data and thus complicated
modal analysis should be carried out to extract these features from the measured time
responses, which may lead to computational errors [40]. Moreover, in real-world
applications, it is not possible to capture a complete set of modal parameters from
the measurements because only a limited number of lower modes are measured and
the information related to higher modes, which is more sensitive to minor changes
in the structural integrity, is missed. Finally, it has been demonstrated that modal
parameters and in particular natural frequencies are quite sensitive to environmental
changes, which is not desirable [45]. These major shortcomings make modal-based
approaches less suitable for practical applications.

SHM schemes based on time-domain features have also attracted attention in
recent years since no domain transformation is required, which leads to faster mon-
itoring applications [11]. In such a case, damage identification is directly sought
based on discrepancies of the measured responses in time domain. Basically, time
domain-based features can be treated as data-based features rather than physics-
based features and the adopted features might not have an explicit physical meaning.
Damage is identified by comparison of a current characteristic quantity with its
baseline in a statistical sense. Statistical properties of a time series (e.g. mean and
variance) were amongst the earliest statistical frameworks employed for monitoring
the acceleration measurements in order to identify data that are inconsistent with
the past data (e.g. undamaged state) [22]. Features based on autoregressive models
have also been adopted in various SHM applications [54]. In this regard, features are
either based on the residues between the prediction from an autoregressive model
and the actual measured time history at each time interval, or they are simply based
on autoregressive model coefficients [63].
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Frequency-based features such as power spectral density (PSD) [34], frequency
response functions and their derivatives [33] can be derived from the response in
the frequency domain. Unlike modal parameters, frequency data are broadband data
which contain a wide range of frequencies [2]. Spectral-based methods in the fre-
quency domain have become another alternative to extract features in mechanical
components under stochastic loadings [8]. Applications of spectral methods in the
context of damage detection have been found in the literature [5]. Spectral-based
methods use spectral moments which can be evaluated directly from the PSD of time
responses. Spectral moments represent somemajor statistical properties of a stochas-
tic process; for example, the variance of a random process is the zero-order spectral
moment of that observation [46]. Spectral moments are useful for characterisation of
non-Gaussian signals buried in a Gaussian background such as noisy environment
[59]. The early efforts in this field were conducted by Vanmarcke to estimate modal
parameters (natural frequency and damping) from ambient response measurements
of dynamically excited structures [60]. Zero, first and second moments were applied
to identify modal parameters. Later on, some researchers used spectral moments to
predict the fatigue damage evaluation and estimate the rate of damage accumulation
in structures subjected to random processes [8]. Several researchers have applied
higher order spectral moments such as spectral kurtosis of the time series data for
health assessment of rotary structures [5].

Further, features can be extracted by time-frequency analysis of the measured
response using wavelet analysis [43]. Wavelet transform has emerged as a powerful
tool for capturing changes in structural properties induced by damage. Wavelet anal-
ysis allows the study of local data with a “zoom lens having an adjustable focus” to
provide multiple levels of details and approximations of the original signals. There-
fore, transient behaviour of the data can be retained [23]. Wavelet analysis not only
can detect any subtle differences in the signals but also can localise them in time,
and therefore it is quite useful for studying non-stationary systems. Promising appli-
cations of wavelet transform approaches to SHM have been reported in the literature
[32, 58].

In addition to feature extraction from one single sensor, data fusion which is the
process of integrating information frommultiple sensors, needs to be considered. An
appropriate fusion process can reduce imprecision, uncertainties and incompleteness
and achieve more robust and reliable results than a single source approach [26, 57].
Various data fusionmethods have been used in SHM [37, 56]. Fusion can be executed
in three levels: data-level fusion, feature-level fusion, and decision-level fusion [35].
In data-level, raw data from multiple sensors are combined to produce new raw data
that are expected to be more informative than data from a single sensor. In feature-
level, features obtained from individual sensors are fused to obtain more relevant
information [26]. Data fusion in feature-level can be performed in an unsophisticated
manner by simply concatenating features obtained from different sensors. However,
more advanced methods including Principle Component Analysis (PCA), neural
networks and Bayesian methods have been adopted at this level. Fusion at decision-
level can be achieved through various techniques such as voting or fuzzy logic to
obtain an ultimate decision based on each decision obtained from individual sensors.
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In this study, we adopt a spectral-based approach using the concept of spec-
tral moment to extract the damage sensitive feature from the measured acceleration
response. Spectral moment correlates to the energy of the signal in the frequency
domain and is computed from the PSD of a signal. Moreover, we also adopt a feature
extraction and data fusion approach using FDD to integrate frequency data frommul-
tiple sensors. The next section describes in detail our feature extraction and fusion
methods.

20.4 Damage Identification and Substructure Grouping

In this section, we discuss how domain knowledge is used to phrase a general SHM
problem as a machine learning problem and the importance of domain knowledge
for feature extraction. Then two typical problems faced by a civil infrastructure are
presented: damage detection and substructure clustering. We propose solutions for
these two problems which utilise machine learning techniques and robust features
extracted using domain knowledge. Specifically, FDD is used with a self-tuning
one-class SVM for damage identification; and a spectral moment feature is used
with k-means−− for substructure grouping.

20.4.1 Machine Learning Approach for SHM Using
Domain Knowledge

Any change in the structural integrity reflects the vibration characteristic, e.g. nat-
ural frequency of the structure. In the context of vibration-based SHM, the main
objective is thus to identify any change in these characteristics with respect to a
benchmark state. To achieve this, either a physics-based model of the structure or
a statistical-based model of the system under study is developed to build a repre-
sentative model of the structure in the benchmark state. In the first approach, finite
element method and optimisation techniques are adopted to establish and calibrate a
numerical model of the structure. Future measured response of the structure is then
compared with the numerical model prediction to identify any potential change in the
system. Although this approach is capable of providing additional useful information
about any potential change in the structure, e.g. location and severity, its capability
is quite limited to small scale structures in a controlled environment. The main rea-
son is that obtaining a detailed, reliable and calibrated model of the structure is not
straightforward, especially in the case of large infrastructures and in the presence of
practical uncertainties.

In contrast, a data-based or machine learning model relies solely on measured
data. The massive data obtained from monitoring are transformed into meaningful
information using domain knowledge as reviewed in Sect. 20.3. It is amore promising
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alternative for real-world SHM applications. Not only is establishing the model
more straightforward, but also it is capable of overcoming problems associated with
environmental and operational variability in SHM since the measured data from
many different conditions can be employed for learning the model, which is not the
case for a physics-based approach.

Most of the vibration-based SHM techniques require both input and output sig-
nals in order to identify possible structural damage. This technique is applied only
to small and moderate sized structures and often requires disruption of traffic and
human activities for structures under in-service condition. These drawbacks make
this approach less practical, specifically in the case of large infrastructures. In con-
trast, methods based on output-only dynamic test where the structure is excited by
natural or randomly varying environmental excitations such as traffic, winds, waves
or human movements are more practical for SHM applications. In this approach,
structural integrity assessment is performed based on only response measurement
data without any knowledge of the input driving forces. Hence, a smaller number
of operators and equipment is required, which makes this approach more attractive
over measured input vibration. In order to extract the vibration characteristics of the
structure, a special procedure named output-only modal identification needs to be
considered [41]. It highlights the role of domain knowledge experts in extracting the
most characteristic features from the measured response. In the following sections,
two different features have been employed based on the domain knowledge about
output-only modal identification.

20.4.2 Damage Identification

This section presents an approach to identifying damage in components of a struc-
ture over time. A flowchart of the approach is shown in Fig. 20.2. First, damage
sensitive features are extracted using FDD followed by a dimensionality reduction
using random projection. Then an adaptive (self-tuning) one-class SVM is used on
the reduced dimensional space for damage detection.

20.4.2.1 Data Fusion and Feature Extraction: Frequency Domain
Decomposition

FDD was used in this study to fuse data from a sensor network in a data-level. FDD
assumes that the vibration responses from l distinct locations within the structure are
available. From a probabilistic point of view, the response process at locations p and
q (p and q ∈ [1 : l]) can be characterised through a correlation function, Rpq , in the
time domain as [10],

Rpq(τ ) = E[xp(t)xq(t + τ)] (20.1)
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Fig. 20.2 The flowchart of the proposed damage detection and severity assessment

where E[] and τ are, respectively, the probabilistic expected value operator and the
lag operator. Rpq(τ ) function defines how a signal is correlated with the other, with
a time separation τ .

The frequency characterisation of such a random stationary process can be com-
puted using the PSD function which is calculated by taking the Fourier transform
as,

Spq(ω) =
∫ +∞

−∞
Rpq(τ ) exp−iωτ dτ (20.2)

where Spq(ω) is the cross PSD of the response at locations p and q, and frequency
ω. Once p = q, Spq(ω) is referred to as the auto-power, otherwise it is called cross-
power.

At each frequency spectra, a symmetric matrix of Sl×l(ω) can be populated using
an auto and cross power information obtained earlier for different pair-wise locations.
Matrix S can be decomposed using the singular value decomposition (SVD) as,

S(ω) = U
∑

UH (20.3)
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where U and
∑

are l × l matrix of singular vectors and diagonal matrix of singular
values, respectively, and superscript H is the conjugate transpose. Singular values
are typically in a descending order and the first singular value is the highest one.

Combining the first singular value obtained at each frequency spectra will result in
an m dimensional vector which is considered as a feature vector for further analysis,
where m refers to the number of spectral lines or attributes. In this way, information
from l signals obtained from l sensors is fused into a single feature vector.

20.4.2.2 Dimensionality Reduction: Random Projection

Dimensionality reduction aims to extract an intrinsic low dimensional information
fromahighdimensional dataset. It transforms ahigh-dimensional data set into a lower
dimensional one which represents the most important variables that can explain the
original data. This feature extraction step is required in this work since we have a
low number of observations compared to a large number of features. In [31], the
authors discussed an effectiveness of dimensionality reduction approaches in SHM
applications.

PCA [29] is one of the most popular and widely used techniques proposed for
dimensionality reduction. The main objective of PCA is to calculate eigenvalues and
eigenvectors of a covariance matrix computed from a given dataset to determine
the components where the data have a maximum variance. However, PCA has a
complexity of O(m3) due to the eigen decomposition of the covariance matrix where
m is the dimension of data. This makes it impractical to use for very high dimensional
datasets, a common issue in SHMsensing data.Moreover, its performance is sensitive
to the number of the selected components.

Random projection is an alternative and less expensive method to reduce the
dimensionality of extremely high dimensional data [1]. Using random projection,
the dimension of the projected space only depends on the number of data points
n, no matter how high the original dimension m of the data is. It is an effective
and efficient dimensionality reduction method for high-dimensional data [9]. The
rational idea of random projection is to preserve the pairwise Euclidean distances
between data points which is achieved by projecting the high-dimensional data into
a random subspace spanned by O(log n) columns [28]. Further study, carried out by
Achlioptas [1], shows that the number of dimensions required for random projection
can be calculated using:

k = log n/ξ 2 (20.4)

where k is the number of dimensions in the low-dimensional space and ξ is a small
positive number.

Given X ∈ Rn×m , ξ > 0, and k = log n/ξ 2. Let Rm×k be a random matrix where
each entry ri j can be drawn from the following probability distribution [1]:
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ri j =
{+1 with probability 1

2s
0 with probability 1 − 1

2s−1 with probability 1
2s

(20.5)

where s represents the projection sparsity. With probability at least 1 − 1
n , the pro-

jection, Y = XR approximately preserves the pairwise Euclidean distances for all
data points in X .

In practice, k is usually a small number. Venkatasubramanian and Wang [61]
suggested that kRP = 2 ln n/0.252.

20.4.2.3 Damage Detection: Self-tuning One-Class Support Vector
Machine

In practice, events corresponding to damaged states of structures are often unavailable
for a supervised learning approach. Therefore, a one-class approach using only data
from a healthy structure is more practical. In this work, we use one-class SVM [52]
as an anomaly detection method.

Given a set of data X = {xi }ni=1 extracted from the original sensor data (feature
vector) collected from a healthy structure and where n is the number of training
samples, one-class SVM maps these samples into a high dimensional feature space
using a function φ through the kernel K (xi , x j ) = φ(xi )Tφ(x j ). Then one-class
SVM learns a hyperplane that separates these data points from the origin with a
maximum margin. A feature vector is defined as a vector of m elements, and each
element is called an attribute.

The classification model is a function described by f : Rm → {−1,+1} and is
written in the form of

f (x) = sgn(w · φ(x) − ρ) (20.6)

where ‘.’ is the dot product. w and ρ are the parameters of the model and can be
learned from the training data. f (x) = +1, if (w · φ(x) − ρ) > 0 which indicates
that the structure is healthy; otherwise f (x) = −1 which means that the state of the
structure has changed.

Using the data samples, X = {xi }ni=1, the training process determines the model
parameters w and ρ by minimising the classification error on the training set while
still maximizing the margin. Mathematically, it is equivalent to the following min-
imisation problem,

min
w,ξ,ρ

1

2
‖w‖2 + 1

νn

n∑
i=1

ξi − ρ (20.7)

s.t w · φ(xi ) ≥ ρ − ξi , ξi ≥ 0, i = 1, . . . , n.
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where ξi is a slack variable for controlling the amount of training error allowed and
ν ∈ [0, 1] is a user-specified variable for controlling the balance between ξi (the
training error) and w (the margin). The problem can be transformed to a dual form
using Lagrangian multiplier as,

min
α1,α2,...,αn

n∑
i, j

αiα j K (xi , x j ) (20.8)

s.t 0 ≤ αi ≤ 1

νn
,

n∑
i=1

αi = 1.

This problem can then be solved using quadratic programming [27]. Having
obtained a learned model, the decision values for a new data instance xnew can be
computed as,

f (x) = sgn(

n∑
i=1

αi K (xi , xnew) − ρ) (20.9)

A negative decision value indicates an anomaly, which likely corresponds to a
structural damage.

Self-tuning Gaussian Kernel:

Gaussian kernel defined in Eq.20.10 has gained much popularity in the area of
machine learning and it turned out to be an appropriate setting for one-class SVM [13,
30, 36]. It has a parameter denoted σ which may severely affect the performance of a
one-class SVM. An inappropriate choice of σ may lead to overfitting or underfitting.

K (xi , x j ) = exp(−‖xi − x j‖2
2σ 2

) (20.10)

where σ ∈ R is the kernel parameter.
K -fold cross validation is often used at a training stage in order to tune σ . How-

ever, in case of a one-class learning, this technique is not possible because it selects
σ that works only on the training class data and thus it is lack of generalisation
capability (overfitting problem). Therefore, alternative approaches have been pro-
posed for tuning σ in one-class SVM. The Appropriate Distance to the Enclosing
Surface (ADES) algorithm [4] is our recent proposed method for tuning σ based on
inspecting the spatial locations of the edge and interior samples, and their distances
to the enclosing surface of one-class SVM. ADES showed successful performances
on several datasets and thus was adopted for tuning σ in this work.

Following the objective function f (σi ) described in Eq.20.11, the ADES algo-
rithm selects the optimal value of σ̂ = argmax

σi

( f (σi )), which generates a hyper-

plane that is the furthest from the interior samples and the closest to the edge samples,
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using a normalised distance function.

f (σi ) = mean(dN (xn)xn∈ΩI N ) − mean(dN (xn)xn∈ΩED ) (20.11)

where ΩI N and ΩED , respectively, represent sets of interior and edge samples in the
healthy training data points identified using a hard margin linear SVM, and dN is the
normalized distance from these samples to the hyperplane. It is defined as:

dN (xn) = d(xn)

1 − dπ

(20.12)

where dπ is the distance of a hyperplane to the origin described as dπ = ρ

‖w‖ , and
d(xn) is the distance of the sample xn to the hyperplane. It is calculated using:

d(xn) = f (xn)

‖w‖ =
∑n

i=1 αi K (xi , xn) − ρ.√∑n
i j αiα j K (xi , x j )

(20.13)

where w is a perpendicular vector to the decision boundary, αi are the Lagrange
multipliers, and ρ is the bias term. More details on the ADES method can be found
in [4].

20.4.3 Substructure Grouping

This section proposes a robust clustering technique, which uses spectral moment
features for substructure grouping and anomaly detection. The proposed approach
follows the following steps,which are further detailed in the remainder of this section:

• a structurally meaningful feature is extracted using spectral moment from the
measured acceleration for each jack arch for many time windows,

• a modified k-means−− clustering algorithm is applied to this feature data to
identify groups of similar substructures and potential anomalies,

• a multi-indices criterion is used to select the best grouping outcome,
• under the assumption that near-by substructures should have similar behaviours
and thus should belong to the same cluster groups, any substructure which is
identified as an outlier or which belongs to a one-member group, is then marked
as an anomaly.

20.4.3.1 Feature Extraction Using Spectral Moment

In this study, a frequency-based feature using spectral moments of the measured
acceleration responses is adopted as a damage sensitive feature. PSD of the response
signal is required to calculate spectral moment. For a stationary random process,
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PSD contains some major characteristics of the system that can be extracted. In a
classical Fourier analysis, the power of a signal can be obtained by integrating the
PSD, i.e., the square of the absolute value of the Fourier-transform coefficients [15].

The energy contents of a signal within a frequency band of interest can also be
quantified using PSD. The calculation of PSD is computationally efficient, as it has a
low processing cost compared to modal analysis. Moreover unlike modal data, PSD
does not suffer the lack of information and provides an abundance of information in
a wider frequency range.

The spectral moment of a random stationary signal provides some important
information about its statistical properties. They explicitly depend on the frequency
content of the original signal, whichmakes them suitable to SHM applications. Spec-
tral moment captures information from entire spectra and hence they can distinguish
any subtle difference between normal and distorted signals.

As described in Sect. 20.4.2.1, the frequency characterisation of a random station-
ary process can be computed using the PSD function as,

Sxx (ω) =
∞∫

−∞
Rxx (τ )e−iwτdτ (20.14)

For a given PSD, the nth-order spectral moment can be then computed as,

λn
x =

∞∫

−∞
|ω|n Sxx (ω)dω (20.15)

where n is the order of spectral moment. Finally, for a discretised signal x , the
nth-order spectral moment λn

x can be obtained using,

λn
x = 2

Nn+1

�N/2	∑
0

Sxx ( j)

(
j

Δt

)n

j ∈ [1 : N/2] (20.16)

where Sxx and Δt are, respectively, the discrete spectral density and the sampling
period.

The zero-th order moment refers to the area under the spectral curve which repre-
sents the significance of the response. Higher order moments assign more weight to
frequency components. Past research studies have concluded that spectral moments
with orders 1–4 provide useful information about the system, whereas higher order
moments usually do not provide further information as they are highly masked by
noise [17].
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20.4.3.2 k-means– Clustering

Clustering is a popularmethod in datamining applications [25]. Thegoal of clustering
is to partition a set of data objects into groups of similar objects based on a given set
of features. k-means is a widely used clustering algorithm, which groups data into
k clusters C = {C1, ...,Ck} with the goal of minimising the within-cluster sum of
squares, i.e.

argmin
C

k∑
i=1

∑
x∈Ci

||x − μi ||2 (20.17)

where μi is the centre of cluster i (mean of data points in Ci ). This optimisation
function can be solved in an iterative manner, which converges after no further
assignment changes between iterations.

However, the k-means method may converge to a sub-optimal partitioning, as it
is sensitive to the initial selection of cluster centres. The k-means++ algorithm [6]
is an alternative method, which uses a specific mechanism to select the initial set
of centres, before applying the original k-means steps. k-means++ only selects
one initial centre uniformly at random from all data points (as opposed to all the
initial centres for k-means). Each subsequent cluster centre is then selected from the
remaining data points with a probability proportional to its squared distance to the
closest existing centre.

Outliers in the data can skew the selection of cluster centres and thus can lead
both k-means and k-means++ to sub-optimal solutions. The recent k-means−−
alternative [12] proposes a mechanism to detect such outliers (e.g. potential anoma-
lies). In the previous methods, such anomalies were likely located in significantly
small clusters as a by-product of the iterative process. In contrast, in k-means−−,
these anomalies are explicitly detected and isolated before the iterative cluster update
process.

We propose the following extension to the original k-means−− algorithm. When
convergence is achieved, any groupwith a singlemember is removed from the cluster
set and its data point is added to the set of anomalies. This additional step prevents
biases when selecting the best cluster result, as described in the next subsection.
Our extended k-means−− is described in Algorithm 3. It follows the iterative steps
of k-means, but first selects o anomalies in the data before assigning the remaining
points into k clusters. Thus, these o data points that are furthest from their closet
centres are isolated and are not used to recompute the centres in the update step and
subsequent iterations.

20.4.3.3 Selection of the Best Clustering Result

Due to the random choice of the initial first centres in Algorithm 3, multiple runs
over the same data set will produce different clustering results. This can be addressed
by using a high number of replications, such as 50. However, different settings of
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Algorithm 3 A modified k-means−− clustering.
Input: Matrix of X data points, number of clusters k, number of anomalies o
Output: o anomalies in L , cluster ID for each data point in X − L

1: Initialisation: using k-means++ to find k initial centres
2: Assignment: assign each data point to the nearest centre, and set their cluster ID accordingly
3: Anomaly detection: find the o points, which are furthest from their cluster centres (i.e. anoma-

lies), and assign them to L
4: Update: recompute the centre for each cluster (excluding the found anomalies)
5: Iterate: repeat steps 2 to 4 until the algorithm converges, i.e. no further changes in the data point

assignments
6: Finalise: convert clusters with only one data point to anomalies

k and o will also produce different clustering results. To address this issue, we limit
the choice for k to a fixed maximum arbitrary value. In practice, this selection of the
maximum k should be guided by domain knowledge of the application at hand. In
the case of SHM such as the application of our scheme to a bridge, the maximum k
value could be set equal to the number of structural spans of a bridge. For example, k
could be set to 6 for a bridge which has 6 different structural spans. The o parameter
may remain arbitrarily low, such as less than 5.

We then propose the following mechanism to select the most informative clus-
tering and anomaly detection results. For each pair of input parameters (k, o), we
compute the values of the Silhouette [47], theDavies-Bouldin [16], and theDunn [19]
indices over the resulting cluster set. Each index measures a specific characteristic
of such a resulting cluster set. Indeed, the Silhouette index measures the averaged
dissimilarity of each point against its assigned cluster, and then compares these mea-
surements against the dissimilarity of the points within their nearest neighbouring
clusters. On the other hand, theDavies-Bouldin index reports on the compactness and
separation of the clusters, through the ratio between the similarities within a group
and the differences between groups. The Dunn index computes the ratio between the
closest points across different groups and the furthest points within groups.

We then select the (k, o) results which have extremum values for each of the
computed indices, i.e. maximum value for Silhouette and Dunn; and minimum value
for Davies-Bouldin. Within this set of results, we select the logical intersection of all
identified anomalies as the final set of anomalies, i.e. points which have instrumen-
tation issues or indicate structural damage. Any empty set of identified anomalies
is treated as the identity element for this operation (i.e. does not influence the out-
come). As the three indices report on different aspects of the cluster groups, using
their intersection may lead to a more accurate set of anomalies. This is confirmed
through experimental results in the next Sect. 20.5.
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20.5 Case Studies and Results

20.5.1 Damage Identification

20.5.1.1 Case Study: The Sydney Harbour Bridge Specimen

A concrete cantilever beam, which has an arch section with a similar geometry to
those on the SHB, was manufactured and tested, as shown in Fig. 20.3. The beam
consists of a 200UB18 steel I-Beam with a 50mm concrete cover on both ends. The
length of the specimen is 2m, thewidth is 1m and the depth is 0.375m. The specimen
was fixed at one end using a steel bollard to form a cantilever, where 400mm along
the length of the beam were fully clamped. In addition, a support was placed at
1200mm away from the tip to avoid any cracking occurring in the specimen under
its self-weight [42].

Ten PCB 352C34 accelerometers were mounted on the specimen to measure the
vibration response resulting from impact hammer excitation. Accelerometers were
mounted on the front face of the beam. The cross-section of the beam and locations
of the accelerometers are shown in Fig. 20.3. The structure was excited using an
impact hammer with steel tip, which was applied on the top surface of the specimen
and just above the location of sensor A9. The acceleration response of the structure
was collected over a time period of 2 s at a sampling rate of 8 kHz, resulting in 16000
samples for each event (i.e. a single excitation). A total of 190 impact tests were
collected from a healthy condition of the specimen.

A crackwas introduced into the specimen in the locationmarked in Fig. 20.3 using
a cutting saw. The crack is located between sensor locations A2 and A3 and pro-
gressively increases towards sensor location A9. The length of the cut was increased
gradually from 75 to 150mm, 225 and 270mm, and the depth of the cut was fixed
to 50mm. After introducing each damage case, a total of 190 impact tests were
performed on the structure in the location described earlier.

Fig. 20.3 A laboratory specimen with cracking
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Fig. 20.4 Comparison of the frequency response function (inertance) between the healthy state
and the four damage cases for sensor location A4

Table 20.1 Comparison of the first three modes of the structure in the healthy state and the four
damage cases

Natural
Fre-
quency
(Hz)

Healthy Damage case 1 Damage case 2 Damage case 3 Damage case 4

ω Δ % ω Δ % ω Δ % ω Δ % ω Δ %

ω1 45.90 – 45.90 0.00 45.90 0.00 45.90 0.00 45.50 0.87

ω2 181.6 – 181.4 0.11 181.2 0.22 180.8 0.44 180.0 0.88

ω3 265.0 – 264.6 0.15 264.4 0.23 264.2 0.30 262.4 0.98

We further investigated the impact of damage by comparing the frequency
response function (FRF) of the structure between the measured responses obtained
from the healthy case and four damage cases as shown in Fig. 20.4. It was observed
that the damage effects are more evident at high frequency, as the change between
the healthy and the damaged structure becamemore significant. Table20.1 compares
the natural frequencies for the first three modes in the healthy state and three dam-
age cases, as well as the change in frequency of each damage case relative to the
healthy state. From Table 20.1, it can be clearly seen that once the severity of damage
increases, a higher discrepancy in the first three modal frequencies with respect to
the healthy state is obtained.

20.5.1.2 Results

We have applied our proposed damage detection and severity assessment framework
(described in Fig. 20.2) onto our specimen dataset. A total of 950 samples were
collected in this experiment, where each sample is a measured vibration response of
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Fig. 20.5 Damage identification results using FDD for feature fusion and extraction

the structure with eight thousand attributes in the frequency domain (8kHz×2s ×
0.5 (considering Nyquist frequency)). We separated the data samples into two main
groups, healthy samples (190 samples) and damaged samples (760). 80% of the
healthy cases data were randomly selected for a training stage, while the remaining
20% of healthy samples and all the damaged cases were used as a test data for
validating the proposed approach. Feature extraction and fusion from ten sensors
using FDD were initially applied on the training data, and random projection was
used for dimensionality reduction. This was followed by calculating the optimal
value of σ using the ADESmethod defined in Eq.20.11 and constructing a one-class
SVM as a damage detection model.

The constructed model was then validated using the test data. Similar to the
training steps, the FDD method was initially applied to the test data followed by
dimensionality reduction algorithm. The final step was to present the test data onto
the constructed one-class SVMmodel to evaluate its performance in terms of damage
detection and severity assessment. As expected, the constructed model was able to
successfully detect the damaged cases and produced an F1-score of 0.95. A detailed
summary of the results is presented in Fig. 20.5. The figure shows the decision values
of all test data, where the black dots represent average decision values for healthy
and each damaged cases.

Only three events from the healthy samples were misclassified as damaged. On
the other hand, all the damaged samples were correctly classified except for four
events in Damage Case 1 that had positive decision values (false negative). This
suggests that the model is well generalised on unseen samples and has the ability
to detect damaged and healthy samples. It should be emphasised that the level of
damage in this case study is considerably small. Moreover, the method also shows a
capability to assess a progression of damage (as shown by decreasing decision values
for Damage Cases 1 to 4) despite variations in operational conditions. Moreover, the
obtained machine learning results match very well with the findings from domain
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Fig. 20.6 Damage identification results using a separate one-class SVM model for each sensor
location

knowledge presented in Table 20.1. A decreasing trend in the ML scores indicates
progressive damage in the structure.

To further investigate the effectiveness of feature fusion using FDD, an alternative
approach was adopted without using FDD for sensor fusion. Only the frequency
features (using FFT) of the acceleration response obtained from each sensor were
used to construct a separate damage detection model for each sensor using data from
the healthy case.

Damage identification results using this approach are presented in Fig. 20.6 for
sensors A1, A2, A3 and A4 (results for other sensors were similar). It can be realised
that this approach does not have the capability to monitor the progress of damage.
The decision values did not consistently follow the trend of the damage as shown in
Fig. 20.6b, c. Based on this, it can be concluded that FDD is robust against excitation
variations and can provide reliable information about the severity of damage in the
structure.
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20.5.2 Substructure Clustering and Anomaly Detection

20.5.2.1 Case Study: The Sydney Harbour Bridge

The goal of this study was to group substructures (i.e. jack arches) with a similar
behaviour and then identify substructures with potential anomalies. We used a set of
85 nodes over five structural sections of the SHB, i.e. five different spans of the bridge.
These spans were located on the Northern Main Span and the Northern Approach, as
illustrated onFig. 20.1. For each node,we collected 10min of continuous acceleration
data at 1500Hz over 22 days in July 2015 (as described in Sect. 20.2). We pre-
processed this data to identify a continuous 1min of ambient response, i.e. a period
where no vehicle was driving over the node. For each of these periods, we computed
the spectral moment feature as described in Sect. 20.4.3.1 for accelerations in x , y
and z direction (denoted SMx , SMy and SMz), and we averaged them for each node
over the 22 days.

We applied our extended k-means – method and its outcome selection criteria
(Sect. 20.4.3.2) to this set of spectral moment features. We varied the parameter k
(i.e. number of clusters) from 2 to 6, as the studied nodes were spread across five
structural sections, and the parameter o (i.e. number of anomalies) from 0 to 4.
Finally, we replicated this experiment 10 times. The following subsection reports
on the results related to the second order spectral moment. The first and third order
moments produced similar results and were not included here.

20.5.2.2 Results

Figure 20.7 shows the Silhouette, Davies-Bouldin, and Dunn indices for each (k,
o) pair. Using our selection criteria, we retained the pairs (k = 2, o = 3), (k = 2,
o = 4), and (k = 3, o = 0) as they corresponded to the required extremum values.
For these pairs, Fig. 20.8 shows the 3D scatterplots for the second order spectral
moment in x , y and z, and Fig. 20.8d shows the related index values. The nodes 184,
427, and 433 formed the set of anomalies resulting from the intersection of these
pairs as described in Sect. 20.4.3.2.

For (k = 3, o = 0), the nodes 184 and 427 were in a well-separated group in the
3D feature space, and node 433 was included into one of the other two clusters.
This outcome is due to the setting o = 0, i.e. the clustering algorithm had to reject
any outright outliers (i.e. by-pass step 3 of Algorithm 3). Limiting the range of o to
strictly positive integers (e.g. o ∈ [1, 4]) would result in node 433 being identified as
an anomaly. However, having o > 1may provide more false positives, as it will force
the clustering process to mark the most distant point in a dataset as an anomaly, even
if that point is well matched to a group. This may be a better decision for a bridge
manager, as it could be safer to discard a false positive after a visual engineering
inspection than letting a false negative remain undetected.
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Fig. 20.7 Silhouette, Davies-Bouldin, and Dunn indices for different (k, o) parameters
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Fig. 20.8 a, b, c Selected 3D scatter plots of spectral moments (SM) for each node, which are
coloured based on their cluster membership for specific parameters, and d their corresponding
performance index values. Cluster groups are coloured in blue, green, and grey, anomalies are
coloured in red
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Further engineering investigations of the nodes in the resulting set of anomalies
(i.e. 184, 427, and 433) showed that they were all having instrumentation issues
during the 22-day period of this study (i.e. sensor defect for 184 and 433, power unit
defect for 427) [3]. As an example for node 433, Fig. 20.9 presents the log-scale
ECDF of the time interval jitter between two collected data points, as compared to
the healthy working node 170. This jitter should be as close to 0 as possible, i.e.
for node 170 only 0.01% of the data points had a jitter greater than 1ms. Node 433
produced in contrast a higher jitter distribution, i.e. more than 1% of the data points
had a jitter greater than 2ms. From a hardware perspective, the cause of such a high
jitter could be a failure of the oscillator-based clock of the sensor producing the data.
This sensor was marked for replacement.

Figure 20.10 shows the boxplots of second order spectral moment values for each
direction and each node in the case of (k = 2, o = 3). The nodes are ordered on the
x-axis according to their physical location on the SHB from north (left) to south
(right). The boxplot for a node is coloured based on its group membership, with the
anomalies marked in red. This figure confirms that the nodes that are located on a
given structural section are mostly grouped into the same cluster. Indeed most of the
North Approach nodes are in the green group, whereas all the Northern Main Span
nodes are in the blue group.
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20.6 Conclusion

This work presents damage identification and substructure grouping approaches for
SHM applications using machine learning techniques and features extracted using
domain knowledge. The two approaches performed successfully in two case studies
using data from a laboratory structure and real data collected from the SHB. Domain
knowledge is used in this chapter to show how an SHM problem is formed as a
machine learning problem using domain knowledge. It also shows the importance
of domain knowledge in extracting damage sensitive features as well as interpreting
the results found by machine learning approaches.

In the first approach, a structural benchmark model was built using a self-tuning
one-class SVM on a feature space fused and extracted from multiple sensors by
FDD, followed by random projection for dimensionality reduction. Then new events
were tested against the benchmark model to detect damage. The approach detected
damage well with high accuracy and low false positives, even for a small damage
case. Moreover, this proposed approach also achieved damage severity assessment
using data fusion and decision values from the SVM. In the second approach, a
robust clustering technique was utilised on spectral moment features for substructure
grouping and anomaly detection. The technique was able to group substructures
of similar behaviour on the SHB and to detect anomalies spatially, which were
associated with sensor issues from the instrumented substructures.

This work is part of our ongoing effort to build Smart Infrastructures, which bring
together data acquisition, datamanagement, and data analytics techniques to optimise
their maintenance and services. Our future works include an implementation of the
proposed approaches on our production system on the SHB, and applying them using
data collected from other structures.
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