
Chapter 2
Transparency in Fair Machine Learning:
the Case of Explainable Recommender
Systems

Behnoush Abdollahi and Olfa Nasraoui

Abstract Machine Learning (ML) models are increasingly being used in many
sectors, ranging from health and education to justice and criminal investigation.
Therefore, building a fair and transparent model which conveys the reasoning behind
its predictions is of great importance. This chapter discusses the role of explanation
mechanisms in building fairmachine learningmodels and explainableML technique.
We focus on the special case of recommender systems because they are a prominent
example of a ML model that interacts directly with humans. This is in contrast to
many other traditional decision making systems that interact with experts (e.g. in
the health-care domain). In addition, we discuss the main sources of bias that can
lead to biased and unfair models. We then review the taxonomy of explanation styles
for recommender systems and review models that can provide explanations for their
recommendations. We conclude by reviewing evaluation metrics for assessing the
power of explainability in recommender systems.

2.1 Fair Machine Learning and Transparency

2.1.1 Fairness and Explainability

ML models make predictions that affect decision making. These decisions can have
an impact on humans, either individually (for a single person) or collectively for a
group of people. Such an impact can be unfair if it is based on an inference that is
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biased against a certain group of people. Hence fairness is an important criterion in
ML. Fairness in ML is a nascent topic that has only recently attracted attention [19,
34]. How to achieve this fairness is therefore still a matter of debate and there have
recently been only a few attempts to define fairness and design fair algorithms within
the ML context [18, 19, 26]. In our view, fairness can be achieved in multiple ways
and either completely or partially. In particular, fairness can be addressed by changing
the data that models ingest, the ways (i.e. algorithms) that models are learned, or the
predictions that are made by these models. Another way that fairness can be achieved
is by completely transparent models and thus scrutable predictions; in other words,
predictions that can be justified as to the reasons why a particular prediction has
been made and scrutinized for potential biases or mistakes. This is because such a
scrutiny provides a certain level of accountability. For this reason, we believe that
explainability can play an important role in achieving fairness in ML. Figure 2.1
presents a diagram that shows the relation between explainability, transparency and
fairness. Figures 2.2 and 2.3 show two forms of designing explainable ML systems.
In Fig. 2.2, the predictions are explained to the user using a model that is different
from the ML model, while in Fig. 2.3, explainability is incorporated at the design
level within the ML model.

2.1.2 Fair Machine Learning

ML models are increasingly being used in many sectors ranging from health and
education to justice and criminal investigation. Hence, they are starting to affect the
lives of more and more human beings. Examples include risk modeling and decision
making in insurance, education (admission and success prediction), credit scoring,
health-care, criminal investigation and predicting recidivism, etc [19, 54]. These
models are susceptible to bias that stems from the data itself (attribute or labels

Fig. 2.1 Explainability
leads to transparency and
both lead to improving
fairness of ML models
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Fig. 2.2 In this form of fair ML, explainability occurs at the prediction step which results in more
transparency and increasing fairness by presenting justified results to the user

Fig. 2.3 In this form of fair ML, explainability occurs in the modeling phase which results in
designing transparent ML models and consequently having more transparent and fair models

are biased) or from systemic social biases that generated the data (e.g. recidivism,
arrests). As such, models that are learned from real world data can become unethical.
Data can be collected and labeled in a biasedway such that it is discriminative against
a certain race, gender, ethnicity or age. As bias in the data can result in unfair models,
ML algorithms are also susceptible to strategic manipulation [6, 24]. Therefore, they
can be built such that the model creates bias against a certain group of people. The
involvement of the human in all the stages of collecting data, building a model, and
reporting the results, creates the setting for various types of bias to affect the process.
Some of the sources of human bias in the stages of collecting and processing the data
and reporting the results are [39]:

• Confirmation bias: It is a tendency to intentionally search for and include certain
data and perform analysis in such a way as to make a predefined conclusion and
prove a predetermined assumption.

• Selection bias: This happens when the sample is not collected randomly and
because of a subjective selection technique, the data does not represent the whole
population under study. Based on the elimination of samples or inclusion of certain
samples, the resulting bias can be of the omission or inclusion type, respectively.
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• Implicit bias: This type of bias is associated with the unconscious tendency to
favor a certain group of people against others based on characteristics such as
race, gender, and age.

• Over-generalization bias: This form of bias can come from making a certain con-
clusion based on information that is too general, especially when the sample size
is small or is not specific enough.

• Automation bias: The tendency to favor decisionsmade from an automated system
over the contradictory correct decision made without the automation.

• Reporting bias: This form of bias is the result of an error made in the reporting of
the result when a certain positive finding is favored over the negative results.

Recent studies proposed techniques for building fair models by alleviating the
effect of bias. Avoiding the use of sensitive features has been shown to be insuffi-
cient for eliminating bias, because of the correlation between some features which
can indirectly lead to oriented and unfair data [32]. Kamishima et al. [33] formulated
causes of unfairness in ML and presented a technique based on regularization by
penalizing the classifier for discrimination and building discriminative probabilis-
tic models to control the bias that resulted from prejudice. Since their solution as
the prejudice remover is formulated as a regularizer, it can be used in a variety of
probabilistic models such as the logistic regression classifier. Fish et al. [20] pro-
posed a method based on shifting the decision boundary in the learning algorithm
for achieving fairness and providing a trade-off between bias and accuracy.

In addition to designing fair algorithms, [32] proposed an approach for removing
bias and generating fair predictions by changing the data before training the model.
This method is based on modifying the dataset in order to transform the biased data
into an unbiased one. The authors used a ranking function learned on the biased
data to predict the class label without considering the sensitive attribute. Using this
technique, they estimate the probability of the objects belonging to the target class.
Their results showed that they could reduce the discrimination by changing the labels
between the positive and negative class.

2.2 Explainable Machine Learning

Conventional evaluation metrics such as accuracy or precision do not account for
the fairness of the model. Thus, to satisfy fairness, explainable models are required
[36]. While building ethical and fair models is the ultimate goal, transparency is the
minimum criterion that ML experts can directly contribute to and this could be the
first step in this direction. Therefore, designing explainable intelligent systems that
facilitate conveying the reasoning behind the results is of great importance in design-
ing fair models. Note that we do not make a distinction between “explainability” and
“interpretability” and use both terms interchangeably.
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In the context of machine learning, interpretability means “explaining or pre-
senting in understandable terms” [4]. In addition, interpretability and explana-
tions can help to determine if qualities such as fairness, privacy, causality, usabil-
ity and trust are met [18]. Doshi-Velez and Kim [18] presented a taxonomy of
approaches for the evaluationof interpretability inMLmodels in general: application-
grounded, human-grounded, and functionality-grounded. Application-grounded and
human-grounded evaluation approaches are both user-based, while the functionality-
grounded approach does not require human evaluation and uses some definition of
the explainability for the evaluation. Experiments can be designed based on different
factors, such as global versus local, which considers the general patterns existing in
the model as global, while considering local reasoning behind the specific prediction
of the model as local [18]. The global pattern is usually helpful for the designer
and developer of the model when understanding or detecting bias or causality in the
model. The local pattern, on the other hand, can be aimed at the end user of the
systems to understand the justifications of the system decisions.

Explainability-aware ML techniques can generally be categorized into two main
groups:

1. Models that explain their predictions in a way that is interpretable by the user.
These types of methods usually only justify their output without providing an in
depth understanding of the ML algorithm. This form of explanation is usually
helpful when the user of the system is not an expert such as in the case of recom-
mender systems. The explanation generation module can be located in a separate
module relative to the predictor.

2. Models that incorporate interpretable models in the building of the automated
systems. White-box models, such as decision trees where the ML model is intu-
itive for the user, can be categorized in this group, although, in these models the
model is usually kept simple and in many cases they might not be as accurate as
the more powerful black-box techniques.

Ribeiro et al. [42] proposed an explanation technique that explains the prediction of
the classifiers locally, using a secondary learned white box model. Their proposed
explanation conveys the relationship between the features (such as words in texts or
parts in images) and the predictions; and helps in feature engineering to improve the
generalization of the classifier. This can help in evaluating the model to be trusted in
real world situations, in addition to using the offline accuracy evaluation metrics.
Freitas [21] reviewed comprehensibility or interpretability of five classification
models (decision trees, decision tables, classification rules, nearest neighbors, and
Bayesian network classifiers). It is important to distinguish understanding or inter-
preting an entire model (which the paper does) from explaining a single prediction
(which is the focus of this chapter). In addition, we note that Freitas overviews the
problem from several perspectives and discusses the motivations for comprehensible
classier models, which are:
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1. Trusting the model: Regardless of accuracy, users are more prone to trusting a
model if they can comprehend why it made the predictions that it did.

2. Legal requirements, in some cases like risk modeling, where a justification is
required in case of denying credit to an applicant.

3. In certain scientific domains such as bioinformatics, new insights can be obtained
from understanding the model, and can lead to new hypothesis formation and
discoveries.

4. In some cases, a better understanding can help detect learned patterns in the
classification model that are not really stable and inherent in the domain, but
rather result from overfitting to the training data, thus they help detect the data
shift problem: i.e., when the new instances deviate in their distribution from past
training data; we note that concept drift (when a previously learned and accurate
model no longer fits the new data because of changes in patterns of the data) can
be considered as a special case of the data shift.

Understanding the logic behind the model and predictions (in other words, com-
prehension) can reveal to the user the fact that the (new) data has outpaced the
model. The user can then realize that the model has become old and needs to be
updated with a new round of learning on new data. Various interpretation methods
exist depending on the family of classier models: decision trees, rule sets, decision
tables, and nearest neighbors. Different studies have shown that the interpretability of
entire classier models depends on the application domain and the data, with findings
that sometimes contradict each other. Regardless of all the findings in interpreting
models, we note that the task of interpreting an “entire classifier model” (e.g. a com-
plete decision tree or a set of 500 rules) is different from that of one user trying
to understand the rationale behind a “single prediction/recommendation” instance.
That said, we find Freitas’ review to be very important for transparency, fairness
and explainability: first, he argues that model size alone is not sufficient to measure
model interpretability, as some models’ complexity is beyond mere size and small
models can actually hurt the user’s trust in the system (a notorious example is decision
stump models [1-level trees]). Also, extremely small models would likely suffer in
accuracy. Second, the work on interpreting rule-based models and nearest neighbor
models can be useful to us because it is closest to the Collaborative Filtering (CF)
recommendation mechanisms we study. For nearest neighbor models, Freitas [21]
mentions that attribute values of nearest neighbors can help provide explanations for
predictions, and that showing these values in decreasing order of relevance (based
on an attribute weighting mechanism) is a sensible strategy. Another strategy is to
show the nearest prototypes of training instances, for example after clustering the
training instances. However, in both of these strategies, Freitas [21] was motivating
interpretations of entire models rather than individual prediction explanations in the
context of recommending items.
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2.3 Explainability in Recommender Systems

2.3.1 Transparency and Fairness in Recommender Systems

Dascalu et al. [15] presented a survey of educational recommender systems and
Thai-Nghe et al. [54] presented a recommender system for predicting student perfor-
mance. Because the data in the education setting can be biased due to the underrepre-
sentation of women in Science, Technology, Engineering, andMathematics (STEM)
topics [7, 23, 49], the predictive models resulted in an unfair system when evaluated
using fairnessmetrics [58]. This form of bias can be dominant when the demographic
profile of the user, consisting of features such as gender, race and age, is used in the
model. To avoid unfairness or bias in the recommendations, the influence of specific
information should be excluded from the prediction process of recommendation and
for this reason CF techniques can be preferable to content-based recommender sys-
tems. While using CF models with only rating data can eliminate this bias, rating
data can include another form of bias. For example in the MovieLens data [27], the
ratings are obtained from the users who have rated a sufficient number of movies
and the data is inherently biased towards the “successful users” [27]. This shows the
serious problem of unfairness that can happen in a recommender model due to the
bias in the data. This setting provides a motivation for designing transparent mod-
els and generating explainable recommendations. Sapiezynski et al. [43] studied the
fairness of recommender systems used for predicting the academic performance of
students. They showed that because of the gender imbalance in many data sets, the
accuracy for female students was lower than male students and a different selection
of features can result in a fair model.

2.3.2 Taxonomy of Explanations Styles

Recommender systems are a prominent example of aMLmodel that interacts directly
with humans (users). This is in contrast to for instance, traditional medical decision
making systems that interact with health-care providers/experts. Explanations have
been shown to increase the user’s trust in a recommender system in addition to pro-
viding other benefits such as scrutability, meaning the ability to verify the validity of
recommendations [29]. This gap between accuracy and transparencyor explainability
has generated an interest in automated explanation generationmethods. Explanations
can be given using words related to item features or user demographic data, but these
cannot be done easily in CF approaches. They vary from simple explanation formats
such as: “people also viewed” in e-commerce websites [55] to the more recent social
relationships and social tag based explanations [44, 57]. Bilgic and Mooney [8]
showed how explaining recommendations can improve the user’s estimation of the
item’s quality and help users make more accurate decisions (i.e. user satisfaction).
Based on [8], three different approaches to explanations can be delineated:
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1. Neighbor Style Explanation (NSE): this explanation format compiles a chart
in CF that shows the active user’s nearest CF neighbors’ ratings on the recom-
mended item. A histogram of these ratings among the nearest neighbors can be
presented to the user. Figure 2.4 (1) and (3) show two different formats of the
neighbor style explanation.

2. Influence Style Explanation (ISE): this explanation format presents a table of
those items that had the most impact on computing the current recommendation.
They can be used in both CBF and CF. An example is shown in Fig. 2.4 (2).

3. Keyword Style Explanation (KSE): this explanation format analyzes the content
of recommended items and the user’s profile (interests) to find matching words
in CBF. An example of the KSE format which is obtained from the MovieLens
benchmark dataset is shown in Fig. 2.4 (4). Figure 2.4 (3), shows an example
of a neighbor style explanation (NSE) for a recommended movie based on the
user’s neighbors. This user-based example presents the ratings distribution of
the user’s neighbors on three rating levels.

Giving the user information about what type of data is used in the system encour-
ages the user to provide more helpful data of that kind, such as preference ratings.
Information about the neighbors selected as the predictors could give the user a
chance to examine their ratings and to disregard the recommendations if the right
neighborhood is not selected. A good explanation could also help discover weak
predictions. The distribution of the ratings of the neighbors on a target item is help-
ful in identifying whether the prediction is based on enough data or not. Herlocker
et al. [29] compared 20 other explanation systems and found histograms to perform
best based on promotion only. Abdollahi and Nasraoui [3] presented an Explain-

(2)(1)

(4)(3)

Fig. 2.4 Four different explanation style formats: (1) NSE, (2) ISE, (3) NSE, (4) KSE
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able Matrix Factorization (EMF) technique that proposed a metric for evaluating the
explainability of the NSE and ISE style explanations and proposed to precompute
explanations in a graph format and then incorporate them in a matrix factorization-
based recommender system. NSE can be formulated based on the empirical density
distribution of the similar users’ ratings on a recommended item. Therefore, for user
u, given the set of similar users as Nu , the conditional probability of item i having
rating k can be written as:

P(ru,i = k|Nu) = |Nu ∩Ui,k |
|Nu | (2.1)

where Ui,k is the set of users who have given rating k to item i [3]. For each expla-
nation, the expected value of the ratings given by Nu to the recommended item i can
be calculated as follows:

E(ru,i |Nu) =
∑

k∈κ

k × P(ru,i = k|Nu) (2.2)

where κ is the set of rating values [3]. Higher expected values indicate higher NSE
explainability of item i for user u. Similarly, ISE can be formulated based on the
empirical density distribution of the ratings given by user u to the items that are
similar to the recommended item i . Given the set of similar items to item i , Ni , the
conditional probability of item i having rating k can be written as:

P(ru,i = k|Ni ) = |Ni ∩ Iu,k |
|Ni | (2.3)

where Iu,k is the set of items that were given rating k by user u [3]. The expected
value of the ratings of user u to the items in the set Ni can be calculated as follows:

E(ru,i |Ni ) =
∑

k∈κ

k × P(ru,i = k|Ni ) (2.4)

The expected rating of similar users or similar items, obtained using Eqs. 2.2 or 2.4
gives a reasonable and intuitive measure of goodness or strength of a neighbor-based
explanation.

Abdollahi andNasraoui [2] expanded the EMF technique to RestrictedBoltzmann
Machines (RBM) and presented an explainability-aware RBM for CF. Bilgic and
Mooney [8] proposed a book recommendation system (LIBRA). They argued that the
quality of explanation can bemeasured using twodifferent approaches: the promotion
approachor the satisfaction approach.Thepromotion approach favors the explanation
that would convince the user to adopt an item, while the satisfaction approach favors
an explanation that would allow the user to assess the quality of (or how much they
like) an item best. The conclusion from Bilgic and Mooney is that while the NSE
style explanations were top performers in Herlocker et al.’s [29] experiments from
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the point of view of “promotion”, KSE and next ISE explanations were found to
be the top performers from a “satisfaction” perspective. Other than [8], Vig et al.
[57] proposed a KSE explanation by introducing tagsplanation, which is generating
explanations based on community tags. In their method, they consider a form of
content-based explanation. The average of a given user’s ratings of the movies with
a specific tag defines how relevant a tag is for that user.

Another KSE approach was presented by McCarthy [37]. Their explanation is
knowledge and utility based; that is, based on the users’ needs and interests. The
explanation is presented by describing the matched item for the specified require-
ments from the user. Zhang et al. [59] proposed an Explicit Factor Model (LFM)
to generate explainable recommendations. They extracted explicit product features
and user opinions using sentiment analysis. Ardissono et al. [5] built a recommen-
dation system that suggests places to visit based on the travelers’ type (e.g. children,
impaired). In this case, the explanation comes in the form of the presentation of
the recommendation to the user. The demographic information of the user is uti-
lized to group users, and the explanation is focused on the most meaningful types of
information for each group.

Billsus and Pazzani [9] presented a keyword style and influence style explanation
approach for their news recommendation system which synthesizes speech to read
stories to the users. The systemgenerates explanations and adapts its recommendation
to the user’s interests based on the user’s preferences and interests. They ask for a
feedback from the user on how interesting the story had been to the user or if the
user needs more information. The explanation is then constructed from the retrieved
headlines that are closest to the user’s interests. An example of their explanation is:
“This story received a [high | low] relevance score, because you told me earlier that
you were [not] interested in [closest headline].”

Symeonidis et al. [53] proposed a recommendation system that was based on
the Feature-Weighted Nearest Bi-cluster (FWNB) algorithm, and they measured the
accuracy of the recommendation using precision and recall. Their recommendation is
based on finding bi-clusters containing item content features that have strong partial
similarity with the test user. The item content features can later be used for justifying
the recommendations. Their survey-based user study measured the user satisfaction
against KSE, ISE and their own style, called KISE. They designed a user study with
42 pre- and post-graduate students of Aristotle University, who filled out an online
survey. Each target user was asked to provide ratings for at least five movies that
exist in theMovieLens data set. They then recommended a movie to each target user,
justifying their recommendation by using the three justification styles (a different
style each time). Finally, target users were asked to rate (in 1–5 rating scale) each
explanation style separately to explicitly express their actual preference among the
three styles. Subsequent analysis of the mean and standard deviation of the users’
ratings for each explanation style, found KISE to outperform all other styles.

Paired t-tests also concluded that the difference between KISE and KSE and ISE
was statistically significant at p-value = 0.01 level. Although the findings in [8, 53]
did not compare with NSE, their study and experiments were similar to those of
Bilgic and Mooney [8] who previously found KSE to be the top performer, followed
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closely by ISE (then by a margin, NSE). However it is worth mentioning that the data
sets in the two studies were different: MovieLens for [53] versus books for [8]. Thus,
their item content features are different (genre, keywords, directors, actors collected
from the Internet and Movie Database (IMDb) for movies versus keywords in the
author, title, description, subject, related authors, related titles, that are crawled from
Amazon for books). It is easy to see that the content features for the books in LIBRA
draw significantly more on Human Expert knowledge (subject, related authors and
book titles) compared to the IMDB-sourced content features ofmovies in Symeonidis
(no related movie titles or related producers).

Regardless of the type of explanation used for CF approaches, most explanation
generation techniques reported in the literature are designed for transparent, or white-
box methods, such as classical neighborhood-based CF. The prediction is performed
as the process of aggregation of the ratings of the neighbor. This process could end up
giving weak recommendations which might be discovered with good explanations.
Other explanationmethods, designed for opaquemodels such as latent factormodels,
assume some form of content data or an additional data source for explanations.
Therefore, their explanation module is a separate approach from the recommender
module which does not reflect the algorithm behind the suggestion made. Therefore,
the explanation may, or may not reflect the underlying algorithm used by the system.

Thus it is of great interest to propose explainable CF techniques that computes
the top-n recommendation list from items that are explainable in the latent space.
To generate latent factors, some well-known latent factor models can be used such
as: Matrix Factorization (MF) and Restricted Boltzmann Machines (RBM) methods
[1–3].

2.4 Evaluation Metrics for Explainability in Recommender
Systems

Evaluation of explanations in recommender systems require user-based metrics to
evaluate the perceived quality of the explanation and the efficiency of the justifica-
tion of the recommendation provided to the user by the explanation. Pu et al. [41]
proposed a method that consists of 60 questions to assess the perceived quality of
the recommendations such as usefulness, user satisfaction, influence on the users’
intention to purchase the recommended product, and so on. However, this question-
naire was designed for user-based evaluation of the recommender system and not
the explanation. Herlocker et al. [29] provided some initial explorations into mea-
suring how explanations can improve the filtering performance of users, but their
study was more focused on different aspects of the explanation generation than their
evaluation. The user-based experiments in the two studies are different in two per-
spectives: Symeonidis et al. [53] used both (i) a quantitative (objective) metric for
justification (coverage ratio) which is based on the amount of influence from content
features in the justified recommendation list, and (ii) direct user’s 1–5 scale ratings
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about how satisfied they are with each explanation style (KSE, ISE or KISE), while
Bilgic and Mooney [8] collected the user’s satisfaction via analysis of their ratings
of the explanations before and after examining the recommended item in question.
Furthermore [8] collected the user satisfaction without showing them which expla-
nation method was used and most importantly, they collected the user satisfaction by
providing an explanation of why the itemwas recommended before being shown and
examining the item, thus allowing measurement of the user’s satisfaction with the
explanation itself and not merely the recommendation. Bilgic and Mooney’s mea-
sure of the quality of an explanation is based on how similar the user’s ratings of the
recommendation are before and after examining the recommended item, thus mea-
suring the power of the explanation to convey the true nature of the recommended
item, even in cases where the recommended item was rated low by the user, and
not merely a promotion-based explanation (which accounts only for highly rated
recommended items). Despite the apparent limitation of [53], it remains easier to
implement because it does not require the user to examine the item being recom-
mended, and because it also computes an objective quantitative measure (based on
total contribution of the influence of recommended items’ dominant content features
relative to the dominant user profile features). These can be computed directly from
the ratings data, recommended lists, and explanations, none of which require actual
user-based tests.

2.5 Conclusion

Machine learning models are increasingly reliant on data that is being generated at a
fast pace. In particular, more and more of this data is related to humans or generated
by human activity, and this in turn makes the data susceptible to various forms of
human bias. Bias that can originate from the data or the design of the algorithm itself
can result in building unfair machine learning models. Therefore, it is important to
study and recognize the source of the bias before designing ML models. One way to
determine if a model is fair is by incorporating explainability which results in trans-
parency. Prominent examples of ML models are recommender system models that
interact directly with humans and whose outputs are consumed directly by humans.
Designing explainable recommender system models and explaining recommenda-
tions can help enhance the scrutability of the learnedmodels and help detect potential
biases, in addition to offering, as additional output, the reasoning behind the predic-
tions. In this chapter, we presented our definition of fairness and transparency in ML
models in addition to the main sources of bias that can lead to unfair models. We
further reviewed the taxonomy of explanation styles for recommender systems, and
reviewed existing models that can provide explanations for their recommendations.
We concluded by reviewing several evaluation metrics for assessing the power of
explainability in recommender systems.
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