
Chapter 19
Analytical Modelling of Point Process
and Application to Transportation

Le Minh Kieu

Abstract This chapter aims to explain the inference mechanisms of the expected
number of passengers arriving at transit stops. These questions are crucial in tactical
planning and operational control of public transport to estimate the impact and effec-
tiveness of different planning and control strategies. The existing literature offers a
limited number of approaches for these problems, which mainly focus more on the
prediction of aggregated passenger counts. We propose two analytical models to
model the arrival of passengers: The first model is a non-homogeneous Poisson Pro-
cess (NHPP); the second model is a time-varying Poisson Regression (TPR) model.
Finally, numerical experiments and a case study show the performance of the pro-
posedmodels using simulated data. The analysis of the estimatedmodel’s parameters
using domain knowledge also provides good insights into the factors that impact the
patronage level of buses in New South Wales, Australia.

19.1 Introduction

Passenger demand plays an essential role in tactical planning and operational control
in transportation, especially in public transport, because transit vehicles have to
stop for passengers boarding and alighting. Transit tactical planning and operational
control, as defined in [9], concerns the decisions to design the exact transit services,
e.g. frequency of services and timetables; and the decisions to control the operating
service, especially in real time. The questions of modelling the expected number of
passengers arrival at transit stops are essential for these studies. For instance, the
total or mean waiting time is often used as the main objective function for public
transport tactical planning and operation studies [3, 8–10], which in turn is estimated
using a knowledge of passenger demand.
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The expected number of passenger arrivals can be explicitly linked to the esti-
mation of aggregated passenger counts within a time period. Literature currently
offers two major lines of research for this problem, one for long-term and the other
for short-term passenger demand estimation. Long-term demand estimation models
aim to complement long-term transit planning practice, such as in four-step demand
modelling [19], route planning and frequency setting [9]. These models are devel-
oped to anticipate the approximation of passenger demand in the long-term for transit
strategic planning, rather than the tactical planning and operational control problem
discussed in this chapter. The other line of research, a short-term demand estima-
tion model, that favours the use of data-driven and black-box methods, mainly aims
for predictions. Examples of them include Neural Network [4, 20], Support Vector
Machine [23] and the time-series analysis models [18]. While these methods showed
their accuracy and robustness, the majority of them aim to provide predictions rather
than an analytical connection between passenger demand and explanatory variables.
For transit tactical planning and operational studies, data-driven models for short-
term prediction may not be as useful as analytical models, because analytical models
can be a part of an holistic framework, where researchers can estimate the passenger
demand given the changes in explanatory variables. Existing data-driven methods
generally use aggregated counts at previous time steps to predict the count at the next
time step by relying on the underlying dynamic relationship between adjacent time
steps.

One question which is of interest is how passengers arrive at transit stops. Trans-
port researchers are generally interested in modelling and simulating the exact pas-
senger arrival times at transit stops. This information is helpful for various purposes,
for instance, to estimate the total travel time for passengers from the moment of
arrival at transit stops to the moment of alighting from a transit vehicle. Existing
studies in transit planning and operational control usually assume a known passen-
ger arrival rate, which is the number of passengers arriving at a transit stop per
time unit. The arrival rate allows a convenient simulation of passenger arrivals under
one of two approaches: (a) deterministic or (b) stochastic point process. The deter-
ministic approach assumes that passengers arrive uniformly to transit stops, so that
the number of boarding/arrived passengers is simply the product of the passenger
arrival rate and the time headway between consecutive vehicles. The approach has
been used in many earlier studies such as [10, 13]. References [6, 7] also use a
variation of this approach, where a dimensionless parameter is used to represent the
marginal increase in vehicle delay resulted from a unit increase in headway. The
stochastic point process approach assumes that passengers arrive randomly at stops
with a stable arrival rate. In the majority of existing studies, this point process is an
Homogeneous Poisson Process (HPP), which aims to model the passenger arrival
times using only the arrival rate and the time interval between consecutive arrivals,
regardless of the interval starting time. HPP is widely used to model systems with
stochastic events, such as modelling the presence of connected vehicle in traffic [25]
or traffic incidents [1]. An emerging number of existing studies in public transport
have also adopted this stochastic approach, such as [12, 17, 24]. There is consid-
erable evidence that assumptions of stochastic HPP process for passenger arrivals



19 Analytical Modelling of Point Process and Application to Transportation 387

is reasonable for high-frequency services, such as those with scheduled headway
to 10–15 min [9]. At longer headways, there is another line of research concerning
passengers who time their arrivals with the schedule and service reliability [2, 11].
In this study, we assume that passengers do not consult the schedule prior to arrival
at transit stops, thus the use of a stochastic point process such as HPP remains valid.

In literature, existing stochastic processes of public transport assume a stable pas-
senger arrival rate or an intensity that does not change over time.A common approach
to include time into consideration is to define exogenous time intervals. In each inter-
val, the passenger arrival rate is constant. This approach has limited accuracy, because
the passenger arrival process is not fully continuous time-dependent, but rather mul-
tiple independent HPP superimposed [22]. The non-homogeneous Poisson Process
(NHPP), which allows the arrival rate to be continuous time-dependent, is a substan-
tial advance from the HPP in terms of versatility and accuracy to themodel passenger
arrival process. NHPP models are not popular in public transit studies, but have been
used elsewhere, such as software reliability [14] and finance [5].

This chapter proposes two analytical methods to model expected arrival rate of
passengers arriving at transit stops. After the literature review, the first part of the
chapter concerns the modelling of exact passenger arrival times using a time-varying
Point Process model. Another aspect of the chapter concerns that of the modelling
of aggregated counts of passenger demand, using a time-varying Poisson Regression
model. This model aims to count how many passengers will be at a stop in a specific
time period under certain conditions. Only aggregated counts of passenger demand
are required to train this model. Finally, we also show the model calibration process
using synthetic simulated data.

19.2 Modelling Exact Arrival Times with Point Process

In this section,webriefly recap the fundamentals of point processes and the celebrated
Poisson process, which would be used to ’count’ and further evaluate the passenger
demands. The following section serves as the building block for realistic modelling
of passenger demands in later sections, to include periodicities in demands.

19.2.1 A Representation of Point Processes

A point process is a mathematical construct to record times at which event happens,
which we shall denote by T1, T2, . . .. For example T1 represents the time when pas-
senger 1 arrives at a bus stop, T2, represents the following passenger arrival and so
on. Tk can usually be interpreted as the time of occurrence of the kth event, in this
case - the kth arrival. In this chapter, we refer to Ti as event times. Formally, we
define a counting process Nt as a random function defined on time t ≥ 0, and taking
integer values 1, 2, . . .. We define N0 = 0. Nt is piecewise constant and has jump
size of 1 at the event times Ti . The Poisson process can be defined as follows:
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Definition 19.1 (Poisson process) Let (Qk)k≥1 be a sequence of independent and
identically distributed Exponential random variables with parameter λ and event
times Tn = ∑n

k=1 Qi . The process (Nt , t ≥ 0) defined by Nt := ∑
k ≥1 1{t≥Tk } is

called a Poisson process with intensity λ.

Memoryless Property

Note that the sequence of Qk are known as the inter-arrival times, and it can be
interpreted as follows in terms our modelling context: the first passenger arrives at
time Q1, the second arrives at Q2 after the first, so on and so forth. One can show
that this construct means that each passenger arrives at an average rate of λ per unit
time, since the expected time between event times is 1

λ
. Suppose we were waiting for

an arrival of an event, say another bus passenger arrival to a bus stop, the inter-arrival
times of which follow an Exponential distribution with parameter λ. Assume that r
time units have elapsed and during this period no events have arrived, i.e. there are
no events during the time interval [0, r ]. The probability that we will have to wait a
further t time units is given by

p(Q > t + r | Q > r) = p(Q > t + r , Q > r)

p(Q > r)

= p(Q > t + r)

p(Q > r)
= exp(−λ(t + r))

exp(−λr)

= exp(−λt) = p(Q > t). (19.1)

Equation (19.1) is said to have no memory and it is one of the special properties
of the Poisson process. Usually memorylessness is a property of certain distribution
rather than a process. It usually refers to the waiting time distribution until a certain
event; and does not depend on how much time has elapsed already.

Moment Generating Functions

We now look at a particular kind of transformed average. The moment generating
function ϕ of a random variable X , is defined as ϕX (s) := E[esX ]. We now compute
the moment generating function of a Poisson distribution X ∼ Pois(λ):

ϕX (s) = E[esX ] =
∞∑

k=0

esk p(X = k) =
∞∑

k=0

eske−λλk

k! = e−λ

∞∑

k=0

(λes)k

k! = eλ(es−1).

(19.2)

The moment generating functions are important because each distribution pos-
sesses a unique moment generating function. This means that we can infer the dis-
tribution from the moment generating function. In addition, the moment generating
function of a sum of independent random variables is the product of the moment
generating function of the individual random variables.
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19.2.2 Non-homogeneous Poisson Process

The Poisson process, as we defined it so far, is simply characterised by a constant
arrival rate λ. It is equivalent to an assumption, for example, that public transport
passengers arrival rate to stops is the same regardless of the time being mid-night or
peak periods. It is more useful to extend the Poisson process to a more general point
process in which the arrival rate varies as a function of time. Note that the intensity
usually depends on the arrival time, not just on the interarrival time. We can define
this type of process as non-homogeneous Poisson process (NHPP).

Definition 19.2 Thepoint process N is said to be an inhomogeneousPoisson process
with intensity function λ(t) ≥ 0 with t ≥ 0, if

p(Nt+h = n + m | Nt = n) = λ(t)h + o(h) if m = 1,

p(Nt+h = n + m | Nt = n) = o(h) if m > 1,

p(Nt+h = n + m | Nt = n) = 1 − λ(t)h + o(h) if m = 0. (19.3)

Note that if the point process N be a NHPP with intensity function λ(t), then
N (t) follows a Poisson distribution with parameter

∫ t
0 λu du, i.e. p(Nt = n) =

1
n! exp

(
− ∫ t

0 λu du
) (∫ t

0 λudu
)n
. One can also show that the number of points

in the interval [s, t] follows a Poisson distribution with parameter
∫ t
s λu du, i.e.

p(Nt − Ns = n) = 1
n! · exp

(
− ∫ t

s λu du
) (∫ t

s λudu
)n
.

We can see that the exact event times are needed to calculate moments in the
NHPP setting. This next section proposes a public transport demand model and aims
to simulate the dynamic and stochastic arrival process of public transport passengers.

19.2.3 The Proposed Time-Varying Intensity Function
for Dynamic and Stochastic Passenger Arrival Process

We propose a parametric form for the rate of demand of passengers:

λt = pcp t p−1 + ε, (19.4)

where c > 0 and p ∈ R. The parameter ε is usually taken to be fixed and acts as a
parameter such that the rate never goes negative (bounded away from zero), since a
negative rate of demand is non-sensical. Note that this function is rich enough for
several reasons. When the parameter is p = 1, it reduces to a constant and we know
from above that this specifies the parameter for the Exponential random variables.
If this is respected then the data follows a Poisson process. If on the other hand,
under the case that p < 1, this gives a decreasing curve (see plot). We interpret this
as a decreasing rate of demand. Finally, our choice of intensity function can also
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Fig. 19.1 A proposed NHPP model with time-varying intensity function

handle the case when p > 1 - this corresponds to the increasing rate of demand. We
summarise the following description below:

• it reduces to a constant when p = 1, and hence is able to recover Poisson process
should the data respects this,

• when p < 1, the rate of demand is decreasing,
• when p > 1, the rate of demand is increasing.

Figure 19.1 shows a plot of this intensity. It can be easily noted that this is a gener-
alisation of the HPP, where the rate can be constant (similar to HPP) or varies over
time.

19.2.4 Likelihood Function for Nonhomogeneous
Poisson Process

One of the main problems in modelling a nonhomogeneous Poisson process is infer-
ring its parameters given data so that we have a calibrated model for the demand
of passenger arrivals. Let Nt be a counting process on [0, T ] for T < ∞ and let
{T1, T2, . . . , Tn} denote a set of event times of Nt over the period [0, T ]. Then the
data likelihood L (see [21] for instance) is a function of parameter set θ :

L(θ) =
n∏

j=1

λ(Tj )e
− ∫ T

0 λx dx . (19.5)
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Let Θ be the set of parameters of the modulating of the nonhomogeneous Pois-
son process. The maximum likelihood estimate can be found by maximising the
likelihood function in Eq. 19.5 with respect to the space of θ ∈ Θ . Concretely, the
maximum likelihood estimate θ̂ is defined to be θ̂ = argmaxθ∈Θ l(θ). It is customary
to maximise the log of the likelihood function:

l(θ) = log L(θ) = −
∫ T

0
λx dx +

N (T )∑

j=1

log λ(Ti ) (19.6)

This negative log-likelihood can then be minimised with standard optimisation pack-
ages.

19.3 Modelling Aggregated Passenger Demand
with Time-Varying Poisson Regression

In this section, we argue that a collective point process framework can also be formu-
lated as a time-varying Poisson Regression model to estimate the count of arriving
passengers to public transport stops. Aggregated counts of passengers are assumed
to follow a Poisson distribution, which is consistent with the collective assumption in
a Poisson Process (Definition19.2). We then further propose a time-varying formu-
lation of Poisson Regression to model the aggregated passenger counts at different
time of the day.

19.3.1 A Representation of a Generalised Linear Model:
Poisson Regression

One of the most common type of regression, the ordinary least squares assumes
that the dependent variable Y is normally distributed around the expected value,
and can take any real value, even negative values. Another type of regression, the
Logistic Regression assumes a binary 0-or-1 dependent variable. These models are
often unsuitable for count data, such as aggregated passenger counts, where the data
is intrinsically non-negative integer-valued.

Poisson Regression is widely considered as the benchmark model for count data.
It assumes the dependent variable Y has a Poisson distribution, and assumes the log-
arithm of Y can be modelled by a linear combination of X . It is a type of Generalized
LinearModel (GLM). Let k be the number of independent variables (regressors). X is
a 1-dimension vector X = (X1, X2, Xk), which can be both continuous or categorical
variables. Poisson Regression can be written as a GLM for counts:
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log(μ) = β0 + β1x1 + β2x2 + · · · + βk xk = xTβ (19.7)

The dependent variable Y has a Poisson distribution, that is yi ∼ Poisson(μi ) for
i = 1, . . . , N . The Poisson distribution has only one parameter μ that decides both
conditional mean and variance. The conditional mean E(y|x) and conditional vari-
ance Var(y|x) are equal in the Poisson regression model. The following exponential
mean function can be written:

E(y|x) = μ = exp(xTβ) (19.8)

Under the GLM framework and assuming an n independent sample of pairs of
observations (yi , xi ), the regression coefficient β j can be estimated using Maximum
Likelihood Estimation (MLE). It is worth reiterating that MLE aims to find parame-
ters thatmaximise the probability that the specifiedmodel has generated the observed
sample. Given the observed data, we can define the joint probability distribution of
the sample as the product of individual conditional probability distributions.

f (y1, . . . , yN |x1, . . . , xN ;β) =
N∏

i=1

f (yi |xi ;β) (19.9)

As per the previous section, Eq.19.9 is often called likelihood function, which is
often written in a shorter form:

L = L(β; y1, . . . , yN , x1, . . . , xN ) (19.10)

MLE aims to maximise this likelihood function with regard to parameters β̂:

β̂ = argβ max L(β; y1, . . . , yN , x1, . . . , xN ) (19.11)

It is often more convenient to maximise the logarithmic transformation of this
likelihood function, as it replaces products by sums and allows the use of the central
limit theorem. We define the log-likelihood function of Poisson Regression as:

�(β; Y, X) = log
N∏

i=1

f (yi |xi ;β)

=
N∑

i=1

log f (yi |xi ;β)

=
N∑

i=1

− exp(x ′
iβ) + yi x

′
iβ − log(yi !)

(19.12)
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The estimated regression coefficient β j that maximizes the value of the log-
likelihood function, is found by computing the k first derivatives of the log-likelihood
function with respect to β1, β2, . . . , βk and setting them equal to zero.

sN (β; y, x) = ∂�(β; y, x)
∂β

=
N∑

i=1

[yi − exp(x ′
iβ)]xi (19.13)

We define β̂ as the value of β that solves the first order conditions:

sN (β̂; y, x) = 0 (19.14)

The system of k equations in Eq.19.13 has to be solved using a numerical iterative
algorithm due to the non-linearity of β. There are a number of existing algorithms
in literature that have been well implemented in various statistical packages, such
asNewton-Raphson,Broyden-Fletcher-Goldfarb-Shanno (BFGS),Nelder-Mead and
Simulated Annealing method.

19.3.2 Time-Varying Poisson Regression Model

As we are concerned with the time dimension in the passenger arrival process,
the arrival patterns can be considered as a time series Yt . Autoregressive-based
approaches for time-series, such as [18], or Neural Network based [4] approaches
show high accuracy and robustness, but focus on short-term demand prediction,
rather than developing an analytical formulation which is more useful for statistical
studies. This section focuses on proposing an analytical model for public transport
planning and operational control. Thus we introduce here a time-varying formulation
of Poisson Regression to capture the variations of passenger arrivals to transit stops.
We call this model the Time-varying Poisson Regression (TPR) model.

We are interested in modelling the counts of passenger demand throughout the
time of the day. One can observe from aggregated passenger demand data that this
count variable has a periodic sinusoidal pattern with two demand peaks at AM and
PM rush hours, while gradually reducing to a plateau during off-peak periods. This
bimodality distribution of passenger demand is well observed and analysed in liter-
ature [15]. A natural modelling approach to capture this sinusoidal pattern is to use
a Fourier series:

f (x) = 1

2
a0 +

∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx), (19.15)

where

a0 = 1

π

∫ π

−π

f (x)dx, (19.16)
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an = 1

π

∫ π

−π

f (x) cos(nx)dx, (19.17)

bn = 1

π

∫ π

−π

f (x) sin(nx)dx . (19.18)

Here we assume the dependent variable Y is both Poisson distributed and time
dependent, that is yt ∼ Poisson(μt )where t = 1, . . . , N are a time-of-day variable.
The time-varying formulation of our Poisson Regression model can be written as:

log(λt ) = α0 +
K∑

k=1

[

βh cos

(

k
2π

T
t

)

+ γh sin

(

k
2π

T
t

)]

(19.19)

The harmonic terms sin(k 2π
T t) and cos(k 2π

T t) are added to capture the daily
demand patterns. K is the number of harmonics, in which larger K would gen-
erally increase the accuracy, but also the complexity of the model. If t is in minutes,
T equals 24*60 min.

We further increase the adaptability of the model to observed passenger demand
data by adding time-invariant independent variables into the model in Eq.19.19.
These variables do not have a time-varying formulation. Many variables in practice
can be classified into this group, such as weather, day-of-the-week, events or travel
cost. For generality, The TPR model can be formulated as:

log(μt ) = α0 +
H∑

h=1

[

βh cos

(

k
2π

T
t

)

+ γh sin

(

k
2π

T
t

)]

+
V∑

v=1

ξv xv (19.20)

where V is the number of time-invariant independent variables. Larger V would
generally increase the model complexity. The question whether a time-invariant
variable xi is used in the model is to be decided by considering its correlation to other
variables, and its contribution to the prediction of the dependent variable log(μt ).

TheTPRmodel inEq.19.20 has both time-varying and time-invariant independent
variables. The next section will discuss the parameter estimation procedure of this
model using MLE.

19.4 Simulated Experiments

In this section, we describe the numerical experiments of NHPP and TPR models
using synthetic simulated data. We first generate the synthetic data using predefined
parameters, and then fit this simulated data to the proposed NHPP models. The
models perform well if they can get back the predefined parameters.
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19.4.1 Non-homogeneous Poisson Process (NHPP)

This subsection discusses the simulation of data from NHPP with predefined param-
eters as well as the parameter estimation process for NHPP.

Simulation of a Nonhomogeneous Poisson Process Using Predefined
Parameters

Given predefined parameters, we briefly explain how we can apply the thinning
method [21] to simulate a NHPP. Thinning is a method to imitate the trajectory
of the counting process over time. Given a NHPP with time-dependent intensity
function λt , we choose a constant λ∗ such that

λt ≤ λ∗, for all t, 0 ≤ T, (19.21)

for some maturity T < ∞. We then simulate a homogeneous Point process with
the designated rate λ∗ through a sequence of independent and identically distributed
exponential distributed random variables, each having a theoretical mean of (λ∗)−1.
We then look at simulated event times of the homogeneousPoisson process and assign
some of these to be the event times of the nonhomogeneous Poisson process with
intensity function λt . We let an event time at a particular time t in the homogeneous
Poisson process be also an event time in the nonhomogeneous Poisson process with
probability λ(t)

λ∗ , independent of the history up to and including time t , and assign no
event time otherwise. Hence, the set of event times of the nonhomogeneous Poisson
process constructed is a subset of the event times from the homogeneous Poisson
process. The resulting pseudo-algorithm reads as follows:

1. Set T0 ← 0 and T ∗ ← 0 where T ∗ denotes the event times of homogeneous
Poisson process with intensity λ∗

2. For j = 1, 2, . . . , n : generate an exponential random variable E with mean
(λ∗)−1 and set T ∗ = T ∗ + E (λ∗). We then generate a unit uniform random vari-
able and accept the event time (Ti = T ∗) ifU < λ(T ∗)

λ∗ , and reject otherwise. The
sequence Ti generated from this algorithm is the event times from a nonhomoge-
neous Poisson process with rate λt .

Numerical Experiments

We set our parameters for the NHPP model in Eq.19.4 as in Table 19.1 as follows:
The aforementioned thinning simulation is therefore performed for the inten-

sity function λt = 0.304 · t−0.25 + ε. The simulated arrival times are then used to
estimate the parameters for the proposed NHPP model in Eq.19.4. The calibrated

Table 19.1 Parameters for
NHPP

Variables Value

p 0.75

c 0.3
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Fig. 19.2 Calibrated and true trajectory of the proposed NHPP intensity function

parameters should be as close as possible to the predefined parameters in Table 19.1.
Figure 19.2 shows the calibration results. The calibrated parameters are very similar
to the predefined parameters.

19.4.2 Time-Varying Poisson Regression (TPR)

This sub-section describes the generation of synthetic simulated data and the param-
eter estimation process for time-varying Poisson Regression model

Data Generation Process

TheTPRmodel has 1 + 2 × K + V parameters,where K is the number of harmonics
and V is the number of time-invariant independent variables. The complexity of the
model depends on the values of K and V . In this section, we generate the synthetic
data using 3 harmonics (K = 3) and 3 time-invariant variables (V = 3). The time-
invariant variables xi are normally distributedwith zeromean, and standard deviation
of 0.1, 0.2 and 0.3, respectively. Table 19.2 shows the chosen parameters for the
synthetic simulation.

We simulate 100 days of data, with the time varying from 4AM to 10PMeveryday
and each sample is an aggregated passenger count for a 15-min interval. Figure 19.3
shows the simulated passenger demand for the first 3 days. The x-axis is the passenger
count and the y-axis is the every time window for the first 3 days of the dataset.

We use this synthetic simulated data to estimate the parameters for 4 TPRmodels,
from simple to complex model. The details for each model are as follows:
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Table 19.2 Parameters for
synthetic simulation data

Variables Value Note

α0 1 Intercept

β1 −1 Harmonic 1

γ1 1 Harmonic 1

β2 −1 Harmonic 2

γ2 1 Harmonic 2

β3 1 Harmonic 3

γ3 −1 Harmonic 3

ξ1 0.5 x1 ∼ N (0, 0.1)

ξ2 0.5 x2 ∼ N (0, 0.2)

ξ3 0.5 x3 ∼ N (0, 0.3)
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Fig. 19.3 Synthetic simulated data of passenger demand

• H1V1

The first model is a simple model with 1 level of harmonic and 1 time-invariant
variable.

log(λt ) = α0 + β1 cos

(
2π

T
t

)

+ γ1 sin

(
2π

T
t

)

+ ξ1 x1 (19.22)

Table 19.3 shows the parameter estimates for Model 1.
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Table 19.3 Estimated parameters for Model 1

Coefficients Estimate Std. error z value Pr(>|z|)
α0 2.4169 0.0043 564.761 <2E-16 ***a

β1 −0.0316 0.0062 −5.139 2E-07 ***

γ1 0.8776 0.0047 185.005 <2E-16 ***

ξ1 0.4064 0.0322 12.628 <2E-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

Table 19.4 Estimated parameters for H0V3

Coefficients Estimate Std. error z value Pr(>|z|)
α0 2.5691 0.0033 787.4 <2E-16 ***a

ξ1 0.2484 0.0321 7.739 1E-14 ***

ξ2 0.5940 0.0161 36.824 <2E-16 ***

ξ3 0.4111 0.0106 38.607 <2E-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

• H0V3

The second model ignores the effect of the harmonics. This model only includes 3
time-invariant variables.

log(λt ) = α0 +
3∑

v=1

ξv xv (19.23)

Table 19.4 shows the parameter estimates for H0V3.
• H3V0

The third model ignores the effect of the time-invariant variables. This model only
includes the 3 harmonic levels.

log(λt ) = α0 +
H∑

h=1

[

βh cos

(

k
2π

T
t

)

+ γh sin

(

k
2π

T
t

)]

(19.24)

Table 19.5 shows the parameter estimates for H3V0.
• H3V3

The last model includes 3 harmonic levels and 3 time-invariant variables.

log(λt ) = α0 +
H∑

h=1

[

βh cos

(

k
2π

T
t

)

+ γh sin

(

k
2π

T
t

)]

+
V∑

v=1

ξv xv (19.25)

Table 19.6 shows the parameter estimates for Model H3V3.
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Table 19.5 Estimated parameters for H3V0

Coefficients Estimate Std. error z value Pr(>|z|)
α0 0.63622 0.03264 19.5 <2e-16 ***a

β1 −1.65975 0.05754 −28.84 <2e-16 ***

γ1 1.26252 0.0208 60.7 <2e-16 ***

β2 −1.27614 0.03227 −39.55 <2e-16 ***

γ2 1.27385 0.02118 60.15 <2e-16 ***

β3 0.92572 0.01676 55.22 <2e-16 ***

γ3 −0.83519 0.01336 −62.54 <2e-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

Table 19.6 Estimated parameters for H3V3

Coefficients Estimate Std. error z value Pr(> |z|)
α0 0.64099 0.03144 20.39 <2e-16 ***a

β1 −1.61123 0.05556 −29 <2e-16 ***

γ1 1.24552 0.02028 61.43 <2e-16 ***

β2 −1.25812 0.03142 −40.04 <2e-16 ***

γ2 1.24861 0.02058 60.67 <2e-16 ***

β3 0.93607 0.01662 56.34 <2e-16 ***

γ3 −0.85728 0.01304 −65.73 <2e-16 ***

ξ1 0.50175 0.03191 15.72 <2e-16 ***

ξ2 0.50383 0.01596 31.56 <2e-16 ***

ξ3 0.50248 0.01076 46.68 <2e-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

Table 19.7 Goodness-of-fit of the proposed models

Model Degree of freedom AIC

H1V1 4 135816.44

H0V3 4 173589.48

H3V0 7 26920.61

H3V3 10 23441.78

Model Comparison

The results from Table 19.3, 19.4, 19.5 and 19.6 show the model performance. It
is clear that H3V3 has the closest parameters to the actual parameters for synthetic
simulation.We further evaluate the goodness-of-fit of eachmodel by comparing their
Akaike Information Criterion (AIC) statistics in Table 19.7.

As expected, H3V3 shows the best fit among the proposedmodels. This is because
the model incorporates all the determinants in the data, including 3 harmonics and 3
time-invariant variables. H1V1 andH0V3 have significantly lower fits due to the lack
of harmonic variables, in which H1V1 has a slightly better fit compared to H0V3 due
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Fig. 19.4 Comparison of different Poisson Regression model performance on simulation data

to the inclusion of one harmonic. The time-invariant variables further increase the
goodness-of-fit of modelling. One can see this fact by comparing the AIC statistic
of H3V0 and H3V3 because the only difference between them is the time-invariant
variables.

We also simulate one day’s worth of new aggregated data to evaluate the per-
formance of each Poisson Regression model. The data is simulated using the same
parameters in Table 19.2 for 73 time periods of 15min each. The new simulated
data is used in H1V1 to H3V3 to predict the value of Counts. Figure 19.4 shows the
new data and the estimation results from H1V1 to H3V3. One can easily see that
H0V3 does not capture the sinusoidal pattern of the data. Model 1 captures some
pattern with limited accuracy, such as the fact that the demand in earlier time peri-
ods are larger than those in later time periods. H3V0 captures the sinusoidal pattern
of the data, even the difference between two peaks periods around 8:00 and 16:00.
Only H3V3 captures both the sinusoidal pattern and the deviation of the sinusoidal
pattern introduced by time-invariant variables. In fact, H3V3 provides a very close
estimation to the simulated data.

19.5 Case Study

This section describes a case study where the proposed models are implemented
using an observed dataset. We use domain knowledge in Transportation to decide
the explanatory variables and to process the data for the models.
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19.5.1 Case Study Site and Dataset

This chapter uses an aggregated Smart Card data from New South Wales (NSW),
Australia for the case study. Smart Card is a microchip card, typically the size of
a credit card, which has been widely used for ticketing purposes around the world.
Examples of Smart Card in public transport are the Oyster Card in London, Opal
Card in Sydney, or Myki Card in Melbourne. This chapter uses a 14-day Smart
Card data. The data consists of over 2.4 million Smart Card transactions over large
metropolitan areas in NSW, including Sydney, Newcastle andWollongong City from
February to March 2017. The data consists of all bus transactions in the aforemen-
tioned metropolitan areas. Each data record contains the following fields:

• CardI D: the unique Smart Card ID, which has been hashed into a unique number
• Ton: the time when the passenger with CardI D boards a bus
• Tof f : the time when the passenger with Card I D alight from a bus
• Son: the stop/station ID of Ton
• Sof f : the stop/station ID of Tof f .

We only focus our case study on estimating aggregated passenger counts using
the Time-varying Poisson Regression (TPR) model proposed in Sect. 19.3 because
the timestamps in the Smart Card are the boarding and alighting times of a passenger
to a bus, rather than the passenger arrival times that are required for the model
in Sect. 19.2. The objective is to estimate an aggregated count of passengers per
time period for each travel choice between a pair of origin and destination. Transit
providers can use this proposed TPR model to estimate the change in passenger
demand given the changes in explanatory variables such as travel time or transfer
time.

The next few subsections describe the required steps to process the input data for
the proposed TPR model.

19.5.2 Journey Reconstruction Algorithm

For each Smart Card record from each individual passenger, the first step is to recon-
struct the full public transport journey with transfers from origin to destination from
individual Opal card transactions. This step is essential because Smart Card data only
includes the tap-on and tap-off, while we are interested in modelling a completed
journey between an origin and a destination. A completed journey would naturally
give us the following explanatory variables for the TPR model:

• Travel time t t : the time gap between the first tap-on and the last tap-off of a journey
• Transfer time t f : the time gap between a tap-off from a bus to a tap-on to another
bus to continue the journey

• Travel distance d: the Euclidean distance between the first tap-on and the last
tap-off
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• Distance from the origin to CBD do: the Euclidean distance from the origin to the
Sydney CBD

• Distance from the destination to CBD dd : the Euclidean distance from the desti-
nation to the Sydney CBD

The journey reconstruction algorithm is based on the time and distance gap
between individual tap-on and tap-off. Figure 19.5 shows the proposed journey recon-
structing algorithm that is based on [16]. We revise the algorithm proposed in [16]
by adding the distance gap Δd, which is set to be 500m. Δd is added to ensure that
the transfer time will only be spent on walking and waiting, rather than any other
side activity using a private vehicle.

The time gap Δt is defined to be less than 60 min, because in Sydney passengers
will receive a discount if they make a transfer within 60 min from the last tap-off,
so the majority of passengers would continue their journeys within this time frame.
The following steps describes the trip reconstruction process.

• Step 1: Query all the Opal transactions of an individual passenger i . A binary
indicator RID is assigned as zero.

• Step 2: For each transaction in the above database, the corresponding transaction
is discarded if it is a tap-on reversal, where tap-on and tap-off are at the same
location

• Step 3: If RID equals zero, a variable Origin Location is defined and set as equal
to the current tap-on. We also assign a new unique Journey ID, change RID to one
and move to the next transaction. Otherwise we move to Step 4.

• Step 4: Now with RID equals one, the current transaction will be assigned the
current Journey ID if it satisfies three conditions: (1) time gap between the current
tap-on and the last tap-off δt is less than 60 minutes, (2) the distance gap δd is less
than 500 m, and (3) the current tap-off is different to Origin Location. Otherwise,
we assign a new Journey ID and set RID equals zero.

• Step 5: The journey reconstruction process for the passenger i is finished after the
last transaction of the day, otherwise we move to the next transaction.

19.5.3 Data Processing

After journey reconstruction, the remaining data processing in preparation for the
inputs forTPR is self-explanatory.Variables t t, t f, d, do anddd are directly calculated
from each completed journey. We then aggregate the completed journeys according
to their start time and their AlternativeI D to produce passenger demand counts.
The AlternativeI D is an indicator of the route choice. It has been defined in a way
such that passengers from the same area who make similar choices will have the
same AlternativeI D. Table 19.8 shows an example of the data used for the case
study.
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1

0

∆∆

Fig. 19.5 Journey reconstruction algorithm

The AlternativeI D, as shown inTable 19.8, has been coded in the format: [Origin
Zone ID, Destination Zone ID, Mode, Route of the first tap-on, Zone of the first tap-
on, Zone of the first tap-off, Route of the last tap-on, Zone of the last tap-on, Zone
of the last tap-off]. The Count is total number of passengers who travelled within the
same time period, and made the same travel decision as shown in AlternativeI D.
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19.5.4 Case Study Modelling Results

We use the five explanatory variables, as described in Sect. 19.5.1, as the time invari-
ant variables of the TPR model, as described in Sect. 19.3. The dataset is randomly
divided into the training dataset, which includes 90% of data points, and the testing
dataset, which includes the remaining 10%. We develop TPR models with 3, 4, 5
harmonics and 5 time-invariant variables. Thus the models are named H3V5, H4V5
and H5V5, similar to Sect. 19.4.2. We then compare them using Root Mean Square
Error (RMSE) as the criteria, which can be calculated as follows:

RMSE =
√
√
√
√ 1

D

D∑

i=1

(ci − c̄i )2 (19.26)

where ci and c̄i are the actual and estimated count, respectively. D is the total number
of data points in the testing dataset. Thus RMSE measures the mean error of our
prediction compared to the observed value. The models are trained using the training
dataset, and then tested using the testing dataset (Table19.9).

H5V5 shows better performance than H3V5 and H4V5. Table 19.10 shows the
estimated parameters of H5V5. Most of the parameters are significant.

The values and especially the signs of the explanatory variables do, dd , d, t t and
t f provide insights into the bus passenger demand in NSW, Australia. The positive
sign of do and d show that the further passengers are from the Sydney CBD and
the longer the travel distance, the more likely that a journey by bus will be made.
Similarly, the negative sign of dd shows that if the journey ends near the CBD, the
less likely that a journey by bus will be made. This is because the Sydney CBD is
well serviced by other public transport modes such as train, light rail and ferry, so
bus travels are more for distant areas. The negative signs of travel time t t and transfer
time t f show that passengers care about these factors. If transit providers can provide
services with shorter travel time and transfer time, bus patronage will be increased.
Passengers are concerned most about distance of travel and transfer time, which is
shown by the fact that the estimated coefficients d and t f are significantly larger than
others.

Table 19.9 Estimation errors
with different TPR models

Model RMSE

H3V5 7.29

H4V5 6.84

H5V5 6.67
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Table 19.10 Estimated parameters for H5V5

Coefficients Estimate Std. error z value Pr(> |z|)
α0 1.6030 0.0038 418.9300 <2e-16 ***a

β1 −0.2198 0.0059 −37.3720 <2e-16 ***

γ1 −0.0262 0.0038 −6.9340 <2e-16 ***

β2 −0.1925 0.0027 −72.6250 <2e-16 ***

γ2 −0.0043 0.0054 −0.7850 0.4330

β3 0.1262 0.0025 50.9330 <2e-16 ***

γ3 0.1108 0.0049 22.7230 <2e-16 ***

β4 −0.0882 0.0027 −33.2090 <2e-16 ***

γ4 0.2382 0.0032 75.6170 <2e-16 ***

β5 −0.0938 0.0016 −57.8180 <2e-16 ***

γ5 0.0456 0.0015 30.2900 <2e-16 ***

do 0.0017 0.0001 24.0960 <2e-16 ***

dd −0.0015 0.0001 −22.2250 <2e-16 ***

d 0.0365 0.0001 281.0640 <2e-16 ***

t t −0.0071 0.0000 −147.7890 <2e-16 ***

t f −0.0226 0.0001 −194.6990 <2e-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

19.6 Conclusion

The inference of the expected number of passengers arrivals at transit stops are
essentially important for transit tactical planning and operation control studies. We
propose a non-homogeneous Poisson Process (NHPP) framework to model the exact
records of passenger arrival times. Simulation and calibration for this model are
discussed. To estimate the aggregated count of passengers arriving at transit stops, this
chapter proposes a time-varying PoissonRegression (TPR)model, given the time and
other explanatory variables. This model uses aggregated counts of passenger demand
within a time period and several other variables to estimate the passenger counts. The
numerical experiments using synthetic simulated data show the calibration process
for parameters of both NHPP and TPR.

We also use domain knowledge to implement the TPRmodel on a case study using
observed Smart Card data in New SouthWales, Australia. The transportation domain
knowledge is used to define the important explanatory variables for the TPR model,
and to process the data. The variables of travel time, transfer time, and distance are
the most important to explain bus passenger demand. Domain knowledge has also
been used to obtain great insights into the factors that impact the patronage level of
buses in NSW, Australia. By analysing the values and signs of variables do, dd , d, t t
and t f , we have found that passengers are more likely to use a bus when the journey
is long, and starts further from the Sydney CBD. They are less likely to use a bus if
the travel time or transfer time are large; and if the journey is also serviced by other
modes of transport such as train, light rail or ferry.
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The proposed analytical models are useful as a part of a transit tactical planning
and operational control framework to estimate the passenger demand at transit stops.
Futurework includes the use of observed data, amore involved formulation forNHPP
model and possibly an inclusion of the autoregressive term for the TPR model.
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