
Chapter 18
Water Pipe Failure Prediction: A
Machine Learning Approach Enhanced
By Domain Knowledge

Bang Zhang, Ting Guo, Lelin Zhang, Peng Lin, Yang Wang, Jianlong Zhou
and Fang Chen

Abstract Drinking water pipe and waste water pipe networks are valuable urban
infrastructure assets that are responsible for reliable water resource distributions and
waste water collection. However, due to fast growing demand and aging assets, water
utilities find it increasingly difficult to efficiently maintain their pipe networks. Pipe
failures - drinking water pipe breaks and waste water pipe blockages - can cause sig-
nificant economic and social costs, and hence have become the primary challenge to
water utilities. Identifying key influential factors, e.g., pipes’ physical attributes, envi-
ronmental features, is critical for understanding pipe failure behaviours. The domain
knowledge plays a significant role in this aspect. In this work, we propose a Bayesian
nonparametric machine learning model with the support of domain knowledge for
pipe failure prediction. It can forecast future high-risk pipes for physical condition
assessment, thereby proactively preventing disastrous failures. Moreover, compared
with traditional machine learning approaches, the proposed model considers domain
expert knowledge and experience, which helps avoid the limit of traditional machine
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learning approaches - learning only from what it sees - and improves prediction
performance.

18.1 Introduction

Pipe networks are valuable urban infrastructure assets that are responsible for reli-
able water resource distributions and waste water collection. However, as urbanisa-
tion trends continue and urban populations rise, water utilities find it increasingly
difficult to meet growing water demand with ageing and failing water pipe networks.
Water pipe failures, which can cause tremendous economic and social costs have
become the primary challenge to water utilities. In order to tackle the problem in a
financially viable way, preventative risk management strategies are widely adopted
by water utilities to prevent disastrous failures. The basic idea of the strategies is
to proactively identify high-risk pipes and renew them in time to avoid potential
failures. Meanwhile, replacement of pipes that are still in healthy condition is to be
avoided. Accordingly, the strategies consist of two main steps: (1) high-risk pipe pri-
oritisation, in which pipes are ranked based on their risk of failure, and (2) physical
condition assessment, in which physical inspections are conducted on highly rated
pipes to confirm their actual condition for replacements. The pipes, which are not
identified as high-risk pipes at the prioritisation step, will only be renewed reactively.
Hence, the success of the strategies relies heavily on the prioritisation step. To make
accurate selections of high-risk pipes, the prioritisation step requires a failure pre-
diction method that can give a precise estimation of pipe failure likelihood, based on
which the estimated failure cost and renewal cost can be readily obtained.

The problem of estimating water pipe failure risk has been studied for many
decades. There are two main methodologies for tackling the problem, namely data-
driven modelling and domain knowledge-driven modelling.

For domain knowledge-driven physical modelling, a variety of models has been
proposed for explaining and predicting the deterioration processes of water pipes.
They usually consider an individual aspect of the problem based on the domain
knowledge in the related area, such as pipe-soil interaction analysis, residual struc-
tural resistance, or hydraulic characteristics modelling. A comprehensive review can
be found in [14]. For data-driven statistical machine learning-based modelling, it
assumes that pipes with similar intrinsic attributes share similar failure patterns, and
that failure patterns which have appeared before are likely to reappear in the future.
The patterns can be learnt from the available factors and data sets.

Both methodologies have limitations. For domain knowledge-based physical
models, they often just consider one aspect of the problem, e.g., corrosion, and
lack the ability to learn knowledge from heterogeneous features. While, for data-
driven statistical machine learning-based models, they usually learn from what they
see, i.e., learning from the provided basic features, and lack the ability to identify
and include the informative features that only domain experts are aware of, e.g., a
significant proportion of the waste water pipe failures (blockages) are caused by tree
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Fig. 18.1 Traditional machine learning versus machine learning with domain knowledge. Tradi-
tional machine learning methods suffer the limit of learning only from what they see. Domain
knowledge can help avoid such limit via transferring the knowledge into machine learning models

root penetration. Therefore, in this work, we suggest and demonstrate that the incor-
poration of domain knowledge into machine learning methods could significantly
improve the model performance. Figure18.1 illustrates the difference between tra-
ditional machine learning methods and the machine learning methods considering
domain knowledge.

For the modelling perspective, in order to improve high-risk pipe prioritisation
for large-scale metropolitan pipe networks, we propose a Bayesian nonparametric
statistical approach, namely theDirichlet processmixture of hierarchical beta process
model, for water pipe failure prediction. Unlike parametric approaches, the structure
and complexity of the proposed model can grow as the amount of observed data
increases. It makes the model invulnerable to faulty assumptions of model forms and
adaptable to various failure patterns, thereby leading to more accurate predictions
for different application scenarios.

It is worth noting that water pipe failure data is extremely sparse in reality. Very
few pipes have failure records during the observation period. Such sparsity makes
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Fig. 18.2 Water supply networks in the selected regions

traditional failure predictionmethods incompetent for accurate pipe failure prediction
since most pipes do not have failure data for training. The proposed approach deals
with this issue by sharing failure data via a flexible hierarchical modelling of failure
behaviours. The key component of the hierarchical modelling is a flexible grouping
scheme. It clusters similar pipes together for modelling so that failure data can be
shared by similar pipes for training.

Additionally, domain experts’ experience, i.e., helping identify potential useful
features for building the model and rejecting false correlated features, also helps
tackle the data sparsity challenge.

The proposed method has been applied to the pipe network of an international
metropolis that has a total population of near five million people. In this work, three
representative regions are selected from the metropolis for comparison experiments.
The regions and the networks are shown in Fig. 18.2. As we can see, the water
supply network is constituted of two main categories of water pipes, critical water
main (CWM) indicated by red lines and reticulation water main (RWM) indicated
by blue lines. CWMs have larger diameters (300mm and above), and RWMs have
smaller diameters (smaller than 300mm). Each water pipe is composed of a set of
pipe segments connected in series. Failure records can be precisely matched with
pipe segments, allowing the proposed method to model failure behaviours of pipe
segments.

The rest of the chapter is organised as follows. Section18.2 reviews the related
work. Section18.3 describes the details of the proposed method. Empirical studies
and the importance of the domain knowledge are shown inSect. 18.4. The conclusions
are drawn in Sect. 18.5.

18.2 Related Work

In the past decades, a large number of statistical approaches have been proposed for
water pipe failure prediction with significant success. However, most of them need
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to pre-define the form of the model, hence lack the flexibility of modelling com-
plex situations, where the recent Bayesian nonparametric machine learning strategy
can readily solve the model selection problem. In this section, we briefly review
the related work on statistical water pipe failure prediction methods and Bayesian
nonparametric approaches.

18.2.1 Statistical Failure Prediction Methods

In recent decades, many statistical models have been proposed for water pipe failure
prediction. In the early stages, various methods were developed for modelling the
relationship between pipe age and pipe failure rate. For instance, the work in [15]
proposed a time-exponential model, which formulates the number of failures per
unit length per year as an exponential function of pipe age. Similarly, time-power
model [12] and time-linearmodel [9]were developedwith comparable performances.

Later, multivariate probabilistic models were suggested. They make predictions
based on a variety of pipe attributes, such as age, material, length and diameter.
One of the most popular multivariate approaches is the Cox proportional hazards
model [3]. It is a semi-parametric method, in which the baseline hazard function
has an arbitrary form and the pipe attributes alter the baseline hazard function via
an exponential function multiplicatively. The Weibull model and its variants [2, 8]
are also widely adopted in practice. They utilise either a Weibull distribution or a
Weibull process for modelling pipe failure behaviours.

Recently, a ranking-based method [18] was proposed for predicting water pipe
failures. It treats failure prediction as a ranking problem. Pipes are ranked based on
their failure risk. The method performs failure prediction via a real-valued ranking
function rather than an estimation of failure probability.

18.2.2 Bayesian Nonparametric Approaches

All the aforementioned methods are parametric or semi-parametric, which means
the forms of the methods are predefined and fixed during the training process. If
the assumptions made on the model form are not satisfied, accurate predictions
cannot be achieved. In contrast, Bayesian nonparametric approaches do not make
assumptions about the model structure. Instead, their model complexities grow as the
amount of observed data increases, endowing Bayesian nonparametric approaches
with flexibility for modelling complex real-world data.

The Beta process [5] and the Dirichlet process [4] are two Bayesian nonparamet-
ric approaches that were developed recently with tremendous success in a variety
of domains. They have become the cornerstones for building more sophisticated
Bayesian nonparametric models.
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The Beta process was originally developed for survival analysis on life history
data. It was utilised as a prior distribution over the space of cumulative hazard func-
tion. Later, the work in [17] extended the Beta process to more general spaces for
different applications, such as factor analysis [13], image reconstruction [20, 21],
image interpolation and document analysis [17]. One of its variants was also applied
to water pipe failure prediction [10, 11].

The Dirichlet process [4] is a flexible Bayesian nonparametric prior for data
clustering. It does not set any assumptions on the number of clusters. Instead, it
allows the number of clusters to grow as the number of data points increases. It is the
foundation of many nonparametric mixture models, and has been widely adopted in
various applications, such as document analysis [16], musical similarity analysis [6]
image annotation [19] and DNA sequence analysis [7].

18.3 The Proposed Method

The proposed Dirichlet process mixture of an hierarchical beta process model con-
sists of two main components working with each other interactively: a hierarchical
representation of water pipe failure behaviours and a flexible pipe grouping scheme.
The grouping scheme generates a set of groups, on each of which the hierarchical
representation can be constructed. The hierarchical representation provides a precise
modelling of each group’s failure behaviours, hence acts as the basis of grouping.

The two main components are described in Sects. 18.3.1 and 18.3.2 respectively.
The details of the proposed model are given in Sect. 18.3.3.

18.3.1 Hierarchical Modelling of Water Pipe Failure
Behaviours

The hierarchical beta process is adopted in this work as the hierarchical modelling of
water pipe failure behaviours. We first briefly introduce the beta-Bernoulli process
for modelling failure event and failure probability in Sects. 18.3.1.1 and 18.3.1.2.
Then the details of the hierarchical modeling are given in Sect. 18.3.1.3.

18.3.1.1 Beta Process

On a measurable space Ω , a beta process H is defined as a positive Levy process,
a positive random measure whose masses on disjoint subsets of Ω are independent.
It is parameterised by a positive concentration function c and a base measure H0,
which is also defined on spaceΩ . In simplified cases, where function c(ωi ) becomes
a constant, we call c concentration parameter.
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For disjoint infinitesimal partitions of Ω , the beta process can be generated as:

H(Bk) � Beta(cH0(Bk), c(1 − H0(Bk)), (18.1)

where Bk indicates a partition, and k ∈ {1, · · · , K } is the index. The process can be
denoted as H � BP(c, H0).

When the base measure H0 is discrete and has a set function form of H0 =∑
i piδωi , H turns to have atoms at the same locations as H0’s and can be written in

a set function form accordingly as:

H(ω) =
∑

i

πiδωi (ω)

πi � Beta(cqi , c(1 − qi ))
(18.2)

where δωi (ω) = 1 when ω = ωi and 0 otherwise.
As defined in a general space Ω , the Beta process provides us a flexible Bayesian

nonparametric prior for water pipe failure events which themselves can be modelled
by the Bernoulli process.

18.3.1.2 Bernoulli Process

For a Bernoulli process BeP(H), each of its draws X j is again a measure on space
Ω . j represents the draw index. H indicates a beta process on Ω , as defined before.
It acts as the prior of the Bernoulli process. A draw of the Bernoulli process can also
be represented via a set function form as:

X j (ω) =
∑

i

xi jδωi (ω)

xi, j � Bernoulli(πi )

(18.3)

where δωi corresponds to the same atom location of H . The random variable xi j
is generated from a Bernoulli distribution parameterised by πi which is defined as
Eq. 18.2. With xi j as its elements, an infinite binary column vector, also denoted by
X j , can be used for representing a draw of the Bernoulli process. Then the draws of
the Bernoulli process can form an infinite binary matrix X , with X j representing a
column and j representing the column index. Each row of the matrix corresponds to
an atom location δωi .We can see that the beta process appears to be a proper Bayesian
nonparametric prior for such infinite binary matrices.

It is worth noting that the Beta process is a conjugate prior of the Bernoulli
process. Given a beta process prior H � BP(c, H0), and a set of m observations
drawn from a Bernoulli process X j � BeP(H), the posterior is again a beta process,
with parameters updated as follow:
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Fig. 18.3 Binary failure matrices for pipes and pipe segments

H |X1,··· ,m � BP

⎛

⎝c + m,
c

c + m
H0 + 1

c + m

m∑

j=1

X j

⎞

⎠ (18.4)

The conjugacy significantly simplifies the inference procedure for parameter estima-
tion.

18.3.1.3 Hierarchical Modelling

With the aid of a Beta-Bernoulli process, a hierarchical representation can be devel-
oped for modelling water pipe failure behaviours. Firstly, failure events can be mod-
elled by aBernoulli process BeP(H). Let an infinite binarymatrix X , as illustrated in
Fig. 18.3 (1), represent failure records of pipes. Eachof its columns, X j , can be treated
as a draw from the Bernoulli process BeP(H). It is an infinite binary column vector
with the i-th element xi, j generated from xi, j � Bernoulli(πi ). xi, j = 1 means pipe
i failed in year j , and xi, j = 0 otherwise. Then the beta process, H � BP(c, H0),
defined as a positive Levy process on pipe space Ω , can be used as a prior of failure
events, namely failure probability. Its set function form is defined as Eq. 18.3.
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With beta process H as a prior, each row of the matrix X corresponds to an atom
location δωi in the pipe space Ω , which can be infinitely large. We assume that two
pipes share the same failure patterns if they have the same intrinsic attributes and
environmental factors. Hence, we treat such two pipes as the same in the pipe space
Ω . Considering all the possible combinations of pipe attributes and environmental
factors, the number of “unique” pipes in the pipe space becomes infinite. Therefore,
each column of thematrix X is an infinite binary vector that is drawn from aBernoulli
process. The beta process H is then a conjugate prior of the infinite binary matrix
X . It models the failure probabilities of pipes via πi .

While the Beta-Bernoulli process is capable of modelling failure behaviours as
described above, there are two issues of adopting it in practice. Firstly, the number of
failures is extremely small comparedwith the number of pipes, especially for CWMs.
Only a small portion of CWMs have failure records since most of the CWMs did not
fail during the observation period. Thus, the majority of CWMs have no failure data
for model training. Secondly, in addition to pipe failure histories, pipe attributes and
environmental factors are also crucial for estimating failure probabilities. However,
they are not properly considered in the Beta-Bernoulli process. The fact that the pipes
with similar intrinsic attributes and environmental factors often share similar failure
patterns is ignored by the Beta-Bernoulli process.

In order to address these issues, the hierarchical beta process (HBP) model [11,
17] can be adopted as a hierarchical modelling of water pipe failure behaviours.
Given a water pipe grouping, e.g., grouping by intrinsic attributes, one more beta
process can be added into the model hierarchy for modelling the failure behaviours
of groups. The new beta process is on top of the existing beta process, serving as the
prior of its mean parameter. The graphical model in Fig. 18.4 (1) illustrates the HBP
model. It can also be described as the followings:

qk � Beta(c0q0, c0(1 − q0)), k ∈ [1, · · · , K ],
πi � Beta(ckqk, ck(1 − qk)), i ∈ [1, · · · , N ],
xi, j � Bernoulli(πi ), j ∈ [1, · · · ,mi ],

(18.5)

where πi and xi j are defined as before, modelling the failure probability of pipe
i and failure history of pipe i in year j respectively. qk and ck are the mean and
concentration parameters for group k. qk can be regarded as modeling the failure rate
of group k. q0 and c0 are the hyper parameters.

By adding onemore hierarchy level, theHBPmodel estimates failure probabilities
through the inferences on both group level and pipe level. Group level inference
estimates the group failure rate qk , and pipe level inference estimates the pipe failure
probability πi . Failure data can be shared by the same group of pipes for estimating
group failure rate qk . It helps to solve the failure data sparsity problem. The failure
patterns that are shared by similar pipes are captured at the group level since the
pipes within the same group share the same qk . At the pipe level, the pipe failure
probability πi is estimated by considering not only the failure observations xi j , but
also the group similarity through the group failure rate qk .



372 B. Zhang et al.

18.3.2 Flexible Water Pipe Grouping

Real world data is complicated and often demonstrates multi-modality property,
which is the case for water pipe failures. Consequently, single-modality models
become insufficient in such circumstances for modelling the whole data corpora.
Mixture model is a widely adopted probabilistic approach for modelling the data
arising from different modalities. It assumes that the final model consists of a set of
mixture components, each of which can accurately model a portion of data.

For conventional parametric mixture models, the number of mixture components
is required to be known in advance, which is unrealistic for many real world applica-
tions, such as water pipe grouping. Therefore, we adopt the Dirichlet process (DP),
a nonparametric approach, for pipe grouping. It serves as a flexible prior for data
partitioning and sets no assumptions on the number of partitions. Correspondingly,
the Dirichlet process mixture model, which is built based on the Dirichlet process,
can comprise a countably infinite number of components and adjust itself for fitting
observed data.

In order to adopt DP as the prior of pipe grouping, we use the Chinese restaurant
process (CRP) [1] as the constructive representation of DP. It exhibits the clustering
property of DP via the following metaphor. Suppose there is a Chinese restaurant
that has an infinite number of tables. A sequence of customers enters and select a
table to sit. The first customer sits at the first table. The following customers sit at
tables with a guide:

p(zl = r |z−l, α) ∝
{

nr
n−1+α

if r � k
α

n−1+α
if r = k + 1.

(18.6)

zl indicates a customer, z−l denotes all the customers that appeared before zl , r
indicates a cluster index, and k represents the current number of clusters. nr is the
number of customers in cluster r and α is the concentration parameter for CRP,
controlling the probability that a customer is assigned to an unoccupied table.

The CRP offers an exchangeable distribution over the table assignments zl . The
joint distribution is invariant to the order of customers. The procedure of assigning
a table for a customer can be performed as he or she is the last customer entering
the restaurant. As described by Eq. 18.6, the i-th customer sits at an occupied table
with a probability proportional to the number of customers who are already sitting
at that table. He or she sits at an unoccupied table with a probability proportional to
the concentration parameter α. In this metaphor, customers correspond to data points
and tables correspond to clusters. Fig. 18.4 (2) shows the Dirichlet process mixture
model with the CRP as the constructive definition. Each data point xi is drawn from
a component of the mixture model. zi is the component indicator for xi . θk represents
the parameter for component k.

With the aid of theCRP,wecangrouppipes adaptively forfittingdata observations.
As a result, pipes with similar failure behaviours are grouped together. Moreover,
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the CRP helps to integrate the grouping process and the failure modeling process for
achieving accurate performance.

18.3.3 Dirichlet Process Mixture of Hierarchical
Beta Process

In this section, we give the detailed description of the proposed Dirichlet process
mixture of the hierarchical Beta process (DPMHBP) model for water pipe failure
prediction.

For the proposedDPMHBPmodel, a water pipe is treated as a set of pipe segments
that are connected in series. The failure probability of a pipe segment is modelled
by a beta process. It is different from the HBP model [11] where the Beta process is
used for modelling failure probabilities of pipes.

Pipe length is an important attribute for estimating failure probability. The intuition
is that longer pipes tend to have higher failure probabilities if other attributes and
external factors are the same. However, the HBP model ignores the impact of the
length attribute when estimating failure probabilities. It only focuses on pipe age
attribute and failure histories. The significant variance of pipe lengths is neglected.
In order to tackle the problem, the proposed approach suggests modelling the failure
probabilities of pipe segments whose lengths are relatively constant with a very small
variance.

Another difference between the HBP model and the proposed DPMHBP model
is that the HBP model groups pipes based on heuristic domain information e.g.,
pipe age. Its grouping is predefined and fixed during the inference process. The
number of the groups is also required to be set beforehand, which can be heuristic.
In contrast, for the proposed DPMHBP method, the grouping process is integrated
with the inference process via the DP mixture model. They interact with each other
to achieve an optimal model. The number of groups is not fixed and can grow as the
size of the training data increases.

Considering all the issues mentioned above, the DPMHBP model can finally be
given as follows:

qk � Beta(c0q0, c0(1 − q0)), k ∈ [1, · · · , K ],
zl � CRP(α), zl ∈ [1, · · · , K ],
ρl � Beta(czl qzl , czl (1 − qzl )), l ∈ [1, · · · , L],

yl, j � Bernoulli(ρl), j ∈ [1, · · · ,ml],

πi = 1 −
si∏

l=1

(1 − ρl), l ∈ [1, · · · , si ].

(18.7)

The failure probability estimation is conducted on three levels: segment group level,
segment level and pipe level. The failure events are recorded for segments rather
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than pipes. The grouping is performed on segments via the CRP, as illustrated by
Fig. 18.3 (2). At segment group level, qk denotes the failure rate of segment group
k. zl represents the group index for segment l. At segment level, ρl indicates the
failure probability of segment l. Once the segment level estimation is obtained, pipe
failure probability πi can be readily computed via the failure probability of a series
of connected segments. Figure18.4 (3) shows the graphical model of the DPMHBP
model.

It isworth noting that theBernoulli process ismore suitable formodelling segment
failures than modelling pipe failures because it is very rare for a segment to fail twice
in a year.

Regarding the inference of the model parameters from the training data, since no
analytical solution is available for the proposedmodel, we use aMarkov chainMonte
Carlo (MCMC) sampling algorithm for inference. Gibbs sampling is the MCMC-
based method that has been widely used for DP mixture models when conjugacy
exists between prior and likelihood. However, for the DPMHBP model, such con-
jugacy is broken by the extra hierarchy of the HBP model. Therefore, we choose to
utilise a Metropolis-within-Gibbs sampling method for inference.

18.4 Experiments

In this section, we conduct comparison experiments on themetropolitanwater supply
network data to demonstrate the superiority of the proposed DPMHBP model. We
first introduce the pipe network data and the failure data in Sect. 18.4.1. The features
that are suggested by domain experts and used in the experiments are explained in
Sect. 18.4.2. Then the compared methods are listed in Sect. 18.4.3. Finally, we give
the comparison results and discuss the impact of the proposedmethod in Sect. 18.4.4.

18.4.1 Data Collection

Three representative regions from the metropolis are selected to perform the experi-
ments. RegionA is a local government area with a population around 210,000, which
is one of the most populous local government areas in its state. Its population density
is 629 people per km2. Region B is a local government area with a high population
density of 2,374 people per km2. Its population is about 182,000. Region C is a low
density suburban local government area, which has a population of 205,000 and a
population density of 300 people per km2.

For each region, both network data and failure data are collected. Network data
consists of pipe IDs, pipe attributes, pipe locations and environmental factors. Pipe
location is represented as a set of connected line segments, each ofwhich corresponds
to a pipe segment. Failure data contains pipe IDs, failure dates and failure locations.



18 Water Pipe Failure Prediction: A Machine Learning … 375

Fig. 18.4 Graphical models for 1 Hierarchical Beta process, 2 Dirichlet process mixture model
(with Chinese restaurant process as the constructive definition), 3 Dirichlet process mixture of
hierarchical beta process

Table 18.1 Summary of pipe network data and pipe failure data

# Pipes # Failures Laid years Observation
period

Region A All 15189 4093 1930−1997 1998−2009

CWM 3793 520 1930−1997 1998−2009

Region B All 11836 3694 1888−1997 1998−2009

CWM 2457 432 1888−1997 1998−2009

Region C All 18001 4421 1913−1997 1998−2009

CWM 5041 563 1913−1997 1998−2009

Pipe amount, failure amount, laid year range and observation period are sum-
marised for different pipe types in Table 18.1. As we can see, CWMs only take a
small portion of the network, 24.97% for region A, 20.76% for region B, and 28.00%
for region C. The ratio between CWM failures and all the failures is even smaller,
12.71% for region A, 11.70% for region B, and 12.74% for region C.

The observation period covers 12 years, spanning from 1998 to 2009. It is short
compared with pipe life span which can be more than 100 years as shown in
Table 18.1. The majority of the pipes did not fail or just failed once during the
observation period. If considering pipe segment failures, the failure events are even
more sparse. Hence, the sparsity assumption holds for the proposed approximated
sampling algorithm.

Failure locations are used for matching failures with pipe segments. It enables
the proposed DPHBP model to work on pipe segment level for estimating failure
probabilities.
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Table 18.2 Pipe attributes and environmental factors

Property and factors Description

Pipe attributes Protective coating Categorical value indicating
the type of coating

Diameter Continuous value indicating
pipe diameter

Length Continuous value indicating
pipe length

Laid date Laid date for pipe

Material Categorical value indicating
the type of pipe material

Environmental factors Soil corrosiveness
Soil expansiveness
Soil geology
Soil map

Categorical value indicating
soil property for the
corresponding soil factor

Distance to traffic intersection Continuous value indicating
the distance between pipe
segment and the closest traffic
intersection

As mentioned before, we focus on CWMs for comparison experiments since both
physical condition assessment and proactive replacement are conducted for CWMs.
For comparing the performances of different approaches, we use the first 11 years’
failure records as training data and the last year’s failure records as testing data. All
the compared methods have the same setting for fair comparison.

18.4.2 Considered Features - The Importance of Domain
Knowledge

In this section, we describe the pipe attributes and the environmental factors that we
used in the experiments. As mentioned before, by considering the domain experts’
knowledge, informative features can be readily identified and considered in the
model. Without the support of domain knowledge, important features could be
ignored by the model and false correlated features could be incorporated into the
model, in which case, the model performance would be significantly reduced.

For drinking water pipe, there are five pipe attributes utilised in the experiments
including protective coating, diameter, length, laid date, and material. Two types of
environmental factors are considered in the experiments. One is the surrounding soil
condition, and the other is the distance between pipe segment and its closest traffic
intersection. These features are summarised in Table 18.2.

For pipe attributes, protective coating and material are categorical features indi-
cating the type of coating and material. Typical protective coatings are a polyethy-
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lene sleeve and tar coating. Typical materials are cast iron cement lined (CICL) and
polyvinyl chloride (PVC). Diameter, length, and laid date are continuous features.

Surrounding soil condition is one of themost complex and important environmen-
tal factors for water pipe failure prediction. It directly impacts on the pipe degradation
process. In the experiments, four different soil features are considered including soil
corrosiveness, soil expansiveness, soil geology and soil map. They depict different
perspectives of soil characteristics.

Soil corrosiveness describes the risk of pipe pitting (metal corrosion) which is
essentially an electrical phenomenon and can be measured by a linear polarisation
resistance test. Soil expansiveness describes the a shrinking and swelling of expansive
clays in response to moisture content change. It is a phenomenon that affects clay
soil and can be measured by shrink swell test. Soil geology depicts the information
of rocks, e.g., sandstone and shale. A soil map represents the landscape information,
e.g., fluvial, colluvial and erosional. It also includes information on the soil types
that are associated with different landscapes.

Each soil factor is a categorical feature containing several distinct values. The
selected local government areas are partitioned into small regions according to the
distinct values of soil factors. Pipe segments falling into the same region share the
same soil factor value.

A large portion of CWMs are buried underneath roads. It makes the change of road
surface pressure another important environmental factor for estimating water pipe
failures. It has been shown that frequent pressure changes can lead to high failure rate.
One of the main sources causing road surface pressure change comes from traffic
intersections due to the frequent vehicle starting and stopping. In order to measure
the impact of road surface pressure change, we calculate the distance between each
pipe segment and its closest traffic intersection. The obtained continuous value is
regarded as a feature of the pipe segment for predicting its failure probability.

For the waste water pipes, tree root coverage percentage, soil evaporation and
soil moisture are also considered based on domain experts’ knowledge. A key cause
of waste water pipe failures is the intrusion of tree roots. Roots have three basic
functions; they anchor the plant and hold it upright, store food, and absorb water
and nutrients. The extent of the tree root system is dependent on the species, the age
of the tree, the nutrient availability from surrounding decaying organic matter and
the physical limitations of the surrounding soil (soil depth, soil density/pore size,
oxygen and moisture content). A constant soil temperature and adequate moisture
availability lead to horizontal growing roots, in day soil condition tends to lead
to vertical growing roots. In temperate conditions, tree root growth is most active
during spring and autumn. In this work, we use tree canopy area (obtained by satellite
image recognition) as the estimation of the tree root area. Figure18.5 illustrates the
relationship between tree root canopy coverage and the waste water pipe failures.
Figure18.6 demonstrates the relationship between soil moisture andwastewater pipe
failures.

As we can see in Figs. 18.5 and 18.6, both tree canopy coverage and soil moisture
have a strong positive correlation with waste water pipe blockage. It demonstrates
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Fig. 18.5 The relationship between tree canopy coverage and waste water pipe failure (choke)

Fig. 18.6 The relationship between soil moisture and waste water pipe failure (choke)

that domain experts’ knowledge can help identify important factors and later improve
model performance.

18.4.3 Compared Approaches

In order to evaluate the proposed approach, four state-of-the-art methods are com-
pared in the experiments including the Cox proportional hazard model, the Weibull
model, the HBP model and a support vector machine (SVM) based ranking method.
Additionally, different grouping methods are used with the HBP model as com-
parisons for demonstrating the advantage of the grouping scheme of the proposed
approach.
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The Cox proportional hazard model [3] is one of the most popular approaches for
survival analysis. It is a semi-parametric approach, in which the form of the baseline
hazard function can be arbitrary, and the explanatory features put impacts on the
baseline hazard function via an exponential function multiplicatively. Formally, the
Cox proportional hazard model can be described as:

h(t, z) = h0(t)e
bT z, (18.8)

where h0 indicates the baseline hazard function, z indicates the explanatory features
of water pipe, and b is the parameter vector that can be learned from training data
via a partial likelihood maximisation procedure.

For theWeibull model [2, 8], water pipe failures aremodelled as a set of stochastic
events governed by a time dependent stochastic process, namely theWeibull process.
It can be regarded as a nonhomogeneous Poisson process whose intensity varies as
time changes. The intensity function can be formally given as:

λ(t) = αβtβ−1, (18.9)

where t represents pipe age, α and β are parameters that need to be learned from
training data. Similar to the Cox proportional hazard model, the explanatory features
can also be utilised via an exponential function multiplicatively.

Analogous to the method proposed in [18], an SVM-based ranking approach is
compared. This approach formulates pipe failure prediction as a ranking problem.
It ranks pipes according to their failure risks without estimating their actual failure
probability. It learns a real-valued ranking function H that maximises the objective
function:

∑

z∈P,z′∈N

I (H(z) > H(z′))
|P| · |N | , (18.10)

where P and N represent the positive class dataset (failure dataset) and negative class
dataset respectively. I (·) is the indicator function. |P| and |N | indicate the numbers
of data points in the positive and negative class datasets respectively.

The HBP model proposed by [11] is also compared. In order to evaluate the
grouping scheme of the proposed approach, three different grouping methods are
integrated with the HBP model for comparison. They group pipes based on pipe
attributes according to domain expert suggestions. Specifically, pipes are grouped
based on material, diameter and laid year.

For fair comparison, the features described in the previous section are used for all
the compared methods. For HBP and DPMHBP, the features are applied multiplica-
tively similar to the Cox proportional hazard model and the Weibull model. A linear
kernel is used for the SVM-based ranking approach.
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Fig. 18.7 Failure prediction results for the selected regions by different models

Table 18.3 AUC of different approaches. The second row shows the AUC when 100% of CWMs
are inspected. The third row shows the AUC when 1% of CWMs are inspected

Region A Region B Region C

DPM
HBP
Cox

HBP
SVM

Weibull DPM
HBP
Cox

HBP
SVM

Weibull DPM
HBP
Cox

HBP
SVM

Weibull

AUC
(100%)

82.67%
66.91%

77.05%
56.45%

68.44% 74.51%
65.53%

72.56%
61.90%

65.20% 78.37%
64.50%

73.54%
69.48%

55.84%

AUC
(1%)

8.09‱
4.67‱

5.64‱
4.32‱

5.84� 4.21‱
2.46‱

3.60‱
3.41‱

2.70‱ 5.11‱
2.50‱

2.48‱
1.73‱

2.98‱

18.4.4 Prediction Results and Real Life Impact

In this section, we compare the prediction results to demonstrate the superiority of
the proposed approach. As mentioned before, the historical failure data from 1998
to 2008 is used for training and the failures which occurred in 2009 are used for
testing. Water pipes are ranked by different methods based on their estimated failure
risks. The failure prediction results are shown in Fig. 18.7. The x-axis represents
the cumulative percentage of the inspected water pipes, and the y-axis indicates the
percentage of the detected pipe failures.

Additionally, we calculate AUC for measuring the performances of different
approaches. The results are shown in Table 18.3. Statistical significance tests, partic-
ularly the one-sided paired t-test at 5% level of significance, are performed on AUC
to evaluate the significance of the performance differences. The results are shown in
Table 18.4. For Tables 18.3 and 18.4, only the results from the best groupings are
shown for the HBP model.

As we can see from Fig. 18.7 and Table 18.3, the proposed DPMHBP model
consistently gives the most accurate prediction for all the three regions, whereas the
other methods only perform accurately for some of the regions. It demonstrates the
adaptability of the proposed approach to the diversity of failure patterns. The signif-
icance test results, listed in Table 18.4, show that the proposed model significantly
outperforms the other methods.
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Fig. 18.8 The detection results with 1% of pipe network length inspected

Table 18.4 Statistical significance test (t-test) results for the proposed method and the others. The
second row shows the results when 100% of CWMs are inspected. The third row shows the results
when 1% of CWMs are inspected

Region A Region B Region C

versus HBP versus
Weibull

versus HBP versus
Weibull

versus HBP versus
Weibull

versus Cox versus SVM versus Cox versus SVM versus Cox versus SVM

AUC 2.56(= 0.08) 9.37(<0.05) 3.12(= 0.05) 22.01(<0.05) 7.83(<0.05) 43.55(<0.05)

(100%) 10.58(<0.05) 18.88(<0.05) 21.17(<0.05) 30.11(<0.05) 26.08(<0.05) 15.63(<0.05)

AUC 44.29(<0.05) 40.46(<0.05) 1.26(<0.05) 4.64(<0.05) 65.90(<0.05) 53.43(<0.05)

(1%) 62.44(<0.05) 69.01(<0.05) 5.53(<0.05) 1.99(<0.05) 65.43(<0.05) 61.72(<0.05)

In addition to the comparison studies shown above, we also demonstrate the
real-life impact of the proposed method by showing its improvements in its real-
world application. Different from the standard performance measurement, domain
experts often adopt evaluation criteria that can reflect the constraints encountered in
reality. In the context of water pipe failure prediction, as mentioned before, only a
small portion of the pipes can be physically inspected each year. Specifically, due to
budget constraint, only 1%of the total CWMs can be inspected every year. Therefore,
we show the performance curves with 1% of CWMs inspected in Fig. 18.8. AUC
and significance test results are also given in Tables 18.3 and 18.4 for the situation
of inspecting 1% of CWMs. As we can see, the proposed approach significantly
outperforms the other methods for all the three regions. In region C, the proposed
approach nearly doubles the number of detected failures compared with the second
best method.

A risk map, as shown in Fig. 18.9, is another widely used method for visualising
real-life impact. As illustrated in the figure, the prioritisation of pipes is coded by
different colours. For instance, red lines indicate the top 10% high-risk pipes pre-
dicted by our method. Black stars in the figure denote the failures which occurred
in the testing year. As we can see, many failures could be prevented and significant
economic and social savings could be brought to the water utility if the proposed
method were applied.
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Fig. 18.9 Risk maps for the selected three regions

18.5 Conclusion

In this work, we present the Dirichlet process mixture of the hierarchical beta process
model for water pipe failure prediction. The model demonstrates high adaptability to
the diversity of failure patterns. Its structure and complexity cangrowas thenumber of
data points increases. It tackles the sparse failure data problem by sharing failure data
through pipe grouping. An efficient Metropolis-within-Gibbs sampling algorithm is
also proposed for handling large-scale datasets. The empirical studies conducted on
the real water pipe data verify the superiority of the proposed approach. The domain
expert knowledge also gave significant impact on the model development and the
informative factor identification. It would be extremely difficult, if not impossible,
to discover the key informative factors without the support of domain knowledge.
Besides, the incorporation of domain experts’ knowledge and experience can help
enhance domain users’ trust in the model as it improves their understanding of the
model and makes them trust the basis of the model development.

References

1. Aldous, D.J.: Exchangeability and Related Topics. Springer, Berlin (1985)
2. Constantine,A.G.: Pipeline reliability: StochasticModels inEngineeringTechnology andMan-

agement. World Scientific, Singapore (1996)
3. Cox, D.R.: Regressionmodels and life-tables. In: Journal of the Royal Statistical Society. Series

B Methodological, pp. 187–220. (1972)
4. Ferguson, T.S.: A bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230

(1973)
5. Hjort, N.L.: Nonparametric bayes estimators based on beta processes in models for life history

data. Ann. Stat. 18, 1259–1294 (1990)
6. Hoffman, M.D., Blei, D.M., Cook, P.R.: Content-based musical similarity computation using

the hierarchical dirichlet process. In: ISMIR, pp. 349–354 (2008)
7. Huelsenbeck, J.P., Jain, S., Frost, S.W., Pond, S.L.K.: A dirichlet process model for detecting

positive selection in protein-coding dna sequences. Proc. Natl. Acad. Sci. 103(16), 6263–6268
(2006)



18 Water Pipe Failure Prediction: A Machine Learning … 383

8. Ibrahim, J.G., Chen,M.H., Sinha, D.: Bayesian Survival Analysis.WileyOnline Library (2005)
9. Kettler, A., Goulter, I.: An analysis of pipe breakage in urban water distribution networks. Can.

J. Civil Eng. 12(2), 286–293 (1985)
10. Li, B., Zhang, B., Li, Z., Wang, Y., Chen, F., Vitanage, D.: Prioritising water pipes for condition

assessment with data analytics. OzWater (2015)
11. Li, Z., Zhang, B., Wang, Y., Chen, F., Taib, R., Whiffin, V., Wang, Y.: Water pipe condition

assessment: a hierarchical beta process approach for sparse incident data. Mach. Learn. 95(1),
11–26 (2014)

12. Mavin, K.: Predicting the failure performance of individual watermains. UrbanWater Research
Association of Australia (114) (1996)

13. Paisley, J., Carin, L.: Nonparametric factor analysis with beta process priors. In: Proceedings
of the 26th Annual International Conference on Machine Learning, pp. 777–784. ACM (2009)

14. Rajani, B., Kleiner, Y.: Comprehensive review of structural deterioration of water mains: phys-
ically based models. Urban Water 3(3), 151–164 (2001)

15. Shamir, U., Howard, C.: An analytic approach to scheduling pipe replacement. Am. Water
Works Assoc. 71(5), 248–258 (1979)

16. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes. J. Am. Stat.
Assoc. 101(476), a (2006)

17. Thibaux, R., Jordan, M.I.: Hierarchical beta processes and the Indian buffet process. In: Inter-
national Conference on Artificial Intelligence and Statistics, pp. 564–571 (2007)

18. Wang, R., Dong,W.,Wang, Y., Tang, K., Yao, X.: Pipe failure prediction: a dataminingmethod.
In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 1208–1218.
IEEE (2013)

19. Yakhnenko,O., Honavar, V.: Annotating images and image objects using a hierarchical dirichlet
process model. In: Proceedings of the 9th InternationalWorkshop onMultimedia DataMining:
Held in Conjunction with the ACM SIGKDD 2008, pp. 1–7. ACM (2008)

20. Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L., Paisley, J.W.: Non-parametric bayesian
dictionary learning for sparse image representations. In: Advances in Neural Information Pro-
cessing Systems, pp. 2295–2303 (2009)

21. Zhou, M., Yang, H., Sapiro, G., Dunson, D.B., Carin, L.: Dependent hierarchical beta process
for image interpolation and denoising. In: International Conference on Artificial Intelligence
and Statistics, pp. 883–891 (2011)


	18 Water Pipe Failure Prediction: A Machine Learning Approach Enhanced By Domain Knowledge
	18.1 Introduction
	18.2 Related Work
	18.2.1 Statistical Failure Prediction Methods
	18.2.2 Bayesian Nonparametric Approaches

	18.3 The Proposed Method
	18.3.1 Hierarchical Modelling of Water Pipe Failure Behaviours
	18.3.2 Flexible Water Pipe Grouping
	18.3.3 Dirichlet Process Mixture of Hierarchical  Beta Process

	18.4 Experiments
	18.4.1 Data Collection
	18.4.2 Considered Features - The Importance of Domain Knowledge
	18.4.3 Compared Approaches
	18.4.4 Prediction Results and Real Life Impact

	18.5 Conclusion
	References




