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Foreword

Machine learning has transitioned from an arcane and obscure research area to one
of the hottest technologies around. Like other new and general purpose technolo-
gies, this rise to prominence brings social issues to the forefront. When electricity
was the plaything of eccentric hobbyists, it was of little concern to most people.
When it became infrastructure, many more took an interest because it directly
started affecting their lives. Machine learning is now affecting everyone’s lives, and
reasonably, higher demands are being made about the technology as a consequence.

Thus, the book you hold in your hand is timely and important. Machine learning
is arcane. It makes use of sophisticated mathematics and unimaginably complex
data to seemingly magically ascertain patterns that were previously hidden from the
view. As it becomes widely deployed, this arcaneness becomes a problem.

Machine learning offers the opportunity for great good, but also for great harm.
A first step in taming the new technology is to better understand it, and in particular
understand each of its manifestations when embedded in a social context. That is
the focus of this book. This is not a simple problem. Neither is it a single problem,
and that plurality and messiness is reflected in the diverse approaches in the book.
There is not (and cannot be) a single solution to this problem. Indeed, at present, I
do not believe we have an adequate handle on what ‘the problem’ is. We can wave
our arms about the need for transparency and understandability and accountability,
but what do those big words really mean? We can only find out by hard analysis
and thinking, and by attempting to build real systems, and importantly, doing
rigorous scientific experiments with such systems.

This is a new chapter for machine learning researchers, necessitating the mastery
of a much richer set of ways of knowing. The editors of the book have been at the
forefront of this richer view, and they have assembled an eclectic set of contributions
that start to make sense of the exciting problem situation we now find ourselves in.
This is not the last word on the subject. But it is a very important first step.

Canberra, Australia
March 2018

Robert C. Williamson
Professor, Australian National University
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Preface

With the rapid boom of data from various fields such as infrastructure, transport,
energy, health, education, telecommunications and finance, data analytics-driven
solutions are increasingly demanded for different purposes. From management
service delivery to customer support and all the way to specialised decision support
systems, domain users are looking to integrate ‘Big Data’ and advanced analytics
into their business operations in order to become more analytics-driven in their
decision-making (which is also known as predictive decision-making). Rapid
advances in Machine Learning (ML) research have been inspired by such expec-
tations. While we continuously find ourselves coming across ML-based appealing
systems that seem to work (or have worked) surprisingly well in practical scenarios
(e.g. AlphaGO’s beating with professional GO players, and the self-driving cars for
deciding to choose among different road conditions), ML technologies are currently
still facing prolonged challenges with user acceptance of delivered solutions as well
as seeing system misuse, disuse or even failure.

These fundamental challenges can be attributed to the nature of the ‘black-box’
of ML methods for domain experts and a lack of consideration of the human user
aspects when offering ML-based solutions. For example, for many non-ML users,
they simply provide source data to an ML-based predictive decision-making sys-
tem, and after selecting some menu options on screen, the system displays colourful
viewgraphs and/or recommendations as output. It is neither clear nor well under-
stood how ML algorithms processed input data to get predictive probabilities, how
trustworthy was this output, or how uncertainties were handled by underlying
algorithmic procedures. That is, explanation and transparency of ML are significant
for domain users to trust and use ML confidently in their practices. To this end,
visual representation plays a significant role in fostering the understanding of ML
mechanisms. As a result, demands for visible, explainable, trustworthy and trans-
parent ML are increasing as the use of predictive decision-making systems grows
and as people realise the potential impact of these systems in society. For example,
Google launched a new initiative of ‘People + AI Research’ (PAIR) in 2017 to
study and redesign the ways human interact with AI systems. The PAIR focuses on
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the ‘human side’ of AI: the relationship between humans and technology, the new
applications it enables and how to make it broadly inclusive.

The above observations and discussions motivate the editing of this book:Human
and Machine Learning: Visible, Explainable, Trustworthy and Transparent. This
edited book makes a systematic investigation into the relations between human and
machine learning, and reports the state-of-the-art advances in theories, techniques
and applications of transparent machine learning. The book specifically focuses on
four aspects of ML from a human user’s perspective: visible, explainable, trust-
worthy and transparent. The book consists of six parts, which are based on the
systematic understanding of the current active research activities and the outcomes
related to the topic of human and machine learning. The six parts cover the areas of
transparency in machine learning, visual explanation of ML processes/results,
algorithmic explanation of ML models, human cognitive responses in ML-based
decision-making, human evaluation of machine learning and domain knowledge in
transparent ML applications.

Part I investigates the Transparency in machine learning when applying ML to
real-world applications. This part presents a 2D transparency space which integrates
domain users and ML experts to translate ML into impacts. It demonstrates that
transparency not only includes ML method transparency but also means input
influence transparency and user response transparency. The transparency in ML is
investigated from various perspectives in this part. From the perspective of fairness,
the involvement of the human in ML stages such as collecting data, building a model
and reporting the results introduces various bias, for example, data can be collected
and labelled in a biased way which is discriminative against a certain race, gender,
ethnicity or age, resulting in unfair models. The transparency in ML is the first step
towards ethical and fair ML models. From the end-user’s perspective, the End-User
Development (EUD) models are used to create an end-user data analytics paradigm
for transparent machine learning. From the cognitive perspective, the knowledge
transfer in human deep cognitive learning benefits the transparency in ML by
considering human cognitive processes in the ML design and implementation. From
the communication perspective, the impediment to a human’s situation awareness of
ML-based systems often results in the disuse or over-reliance of ML-based auton-
omous systems. The Situation Awareness-based Agent Transparency (SAT) aims to
communicate ML in autonomous systems.

Part II features visualisation for the explanation and understanding of MLmodels.
The visualisation is not simply to make ML models visible but to foster under-
standing by the viewer. This part specifically focuses on the visual explanation of the
neural network which is one of the most complex ML models to understand. For
example, with the use of saliency map visualisation, it is possible to localise
the regions that affect image classifications to understand and interpret the
Convolutional Neural Network (CNN) classification mechanisms. Six case studies
are also discussed to investigate visual representation and explanation of neural
networks crossing disciplinary boundaries, focusing on extracting semantic encod-
ings, developing interactive interfaces, discovering critical cases and negotiating
cultural images of neural networks.
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Part III reports the algorithmic explanation and interpretation of ML models
from different perspectives. From the popular feature importance/contribution’s
perspective, with the use of quasi-nomograms, prediction models can be explained
based on the feature importance visually. From the methodology’s perspective,
different from the gradient-based approaches limited to neural networks, the
perturbation-based approaches, by perturbing the inputs in the neighbourhood of
given instance to observe effects of perturbations on model’s output, allow the
explanation of an arbitrary prediction model decision process for each individual
predicted instance as well as the model as a whole. From the perspective of a
linguistic explanation, fuzzy models serve as a basic model architecture to offer
linguistically understandable explanations both on a local level and a global level.

Part IV focuses on the transparency in ML by communicating human cognitive
responses such as trust with multimodal interfaces for trustworthy ML solutions.
The communication of human cognitive responses could help understand to what
degree humans accept ML-based solutions. On the other hand, through under-
standing human cognitive responses during ML-based decision-making, ML-based
decision attributes/factors and even ML models can be adaptively refined in order to
make ML transparent. To this end, this part investigates trust dynamics under
uncertainty in predictive decision-making to reveal relations between system per-
formance and user trust. Since inappropriate trust in ML may result in system
disuse, misuse or failure (e.g. the medical error in clinical decision support), this
part discusses significant factors such as code structure, algorithm performance and
transparency of learning affordance to foster appropriate trust in ML. Furthermore,
the level of transparency of ML impacts trust in ML-based systems. It is demon-
strated that different levels of transparency are needed depending on the risk levels
in domains and the ability of a domain expert to evaluate the decision. Group
cognition is also introduced in pursuit of natural collaboration of ML-based systems
with humans.

Part V discovers the relations between human and machine learning from the
perspective of evaluation of machine learning. Since humans are the key stake-
holders as the ultimate frontline users of ML-based systems, this part presents
user-centred evaluation of machine learning for model optimisation, selection and
validation in order to best address the user experience as a whole. Furthermore, this
part couples two types of validation for interactive machine learning to benefit the
transparency in ML: algorithm-centred analysis, to study the computational beha-
viour of the system; and user-centred evaluation, to observe the utility and effec-
tiveness of the application for end-users.

Part VI introduces the attempts and efforts of the use of domain knowledge in
machine learning for ML explanation and ML performance improvement with case
studies covering domains and areas including infrastructure, transport, food science
and others. The domain knowledge is utilised to help extract meaningful features,
interpret ML models, and explain ML results. This part shows that human domain
experts play an active role in ML-based solutions from phrasing a practical problem
as an ML program, feature definition, ML model building to the ML results’
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interpretation and deployment, resulting in visible, explainable, trustworthy and
transparent ML for the impact of ML in real-world applications.

This edited book sets up links between human and machine learning from the
perspectives of visualisation, explanation, trustworthiness, and transparency. Such
links not only help human users proactively use ML outputs for informative and
trustworthy decision-making but also inspire ML experts to passionately develop
new ML algorithms which incorporate humans for human-centred ML algorithms
resulting in the overall advancement of ML. The book creates a systematic view of
relations between human and machine learning in this timely field for further active
discussions to translate ML into impacts in real-world applications.

The book aims to serve as the first dedicated source for the theories, method-
ologies and applications of visible, explainable, trustworthy and transparent
machine learning, establishing state-of-the-art research, and providing a ground-
breaking textbook to graduate students, research professionals and machine learn-
ing practitioners.

Sydney, Australia Jianlong Zhou
March 2018 Fang Chen
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Chapter 1
2D Transparency Space—Bring Domain
Users and Machine Learning Experts
Together

Jianlong Zhou and Fang Chen

Abstract Machine Learning (ML) is currently facing prolonged challenges with the
user acceptance of delivered solutions aswell as seeing systemmisuse, disuse, or even
failure. These fundamental challenges can be attributed to the nature of the “black-
box” of ML methods for domain users when offering ML-based solutions. That is,
transparency of ML is essential for domain users to trust and use ML confidently
in their practices. This chapter argues for a change in how we view the relation-
ship between human and machine learning to translate ML results into impact. We
present a two-dimensional transparency space which integrates domain users and
ML experts together to make ML transparent. We identify typical Transparent ML
(TML) challenges and discuss key obstacles to TML, which aim to inspire active
discussions of making ML transparent with a systematic view in this timely field.

1.1 Introduction

With the rapid boom of data from various fields such as biology, finance, medicine,
and society, data analytics-driven solutions are increasingly demanded for different
purposes. From government service delivery to commercial transactions and all the
way to specialised decision support systems, domain users are looking to integrate
“Big Data” and advanced analytics into their business operations in order to become
more analytics-driven in their decision making (which is also known as predictive
decision making) [29]. Rapid advances in Machine Learning (ML) research have
been inspired by such expectations. While we continuously find ourselves coming
across ML-based appealing systems that seem to work (or have worked) surprisingly

J. Zhou (B) · F. Chen
DATA61, CSIRO, 13 Garden Street, Eveleigh, NSW 2015, Australia
e-mail: jianlong.zhou@data61.csiro.au
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4 J. Zhou and F. Chen

well in practical scenarios (e.g.AlphaGO’s beatingwith professionalGOplayers, and
the self-driving cars for choosing between different road conditions), ML technolo-
gies are currently still facing prolonged challenges with user acceptance of delivered
solutions as well as seeing system misuse, disuse, or even failure. These fundamen-
tal challenges can be attributed to the nature of the “black-box” of ML methods
for domain experts and a lack of consideration of the human aspects when offer-
ing ML-based solutions [39]. For example, for many of non-ML users, they simply
provide source data to an ML-based predictive decision making system, and after
selecting some menu options on screen, the system displays colourful viewgraphs
and/or recommendations as output [48]. It is neither clear nor well understood that
how ML algorithms processed input data to get predictive probabilities, how trust-
worthy was this output, or how uncertainties were handled by underlying algorithmic
procedures. That is, transparency of ML is significant for domain users to trust and
use ML confidently in their practices. As a result, demands for ML transparency are
increasing as the use of predictive decision making systems grows and as humans
realise the potential impact of these systems in society.

Therefore, besides the development ofML algorithms, the research of introducing
humans into theML loop andmakingML transparent has emerged recently as one of
the active research fields recently [18, 20, 45]. Other terms are also used to refer to
such researches, e.g. human-in-the-loop machine learning [19], human interpretabil-
ity in machine learning [18], or eXplainable Artificial Intelligence (XAI) [14] and
others. We use Transparent Machine Learning (TML) in this chapter. TML aims
to translate ML into impacts by allowing domain users understand ML-based data-
driven inferences to make trustworthy decisions confidently based on ML results,
and allowing ML to be accessible by domain users without requiring training in
complex ML algorithms and mathematical concepts. TML results in evolutionary
improvements of the existing state of practice, for example,

• TML not only helps domain users proactively use ML outputs for informative and
trustworthy decisionmaking, but also allows users to see if an artificial intelligence
system is working as desired;

• TML can help detect causes for an adverse decision and therefore can provide
guidance on how to reverse it;

• TML allows effective interactions with ML algorithms, thus providing opportuni-
ties to the improve impact of ML algorithms in real-world applications.

Various approaches ranging from visualisation of the ML process to algorithmic
explanations of ML methods have been investigated to make ML understandable
and transparent [2, 9]. Yet these efforts are highly biased towards explaining ML
algorithms, and are largely based on abstract visualisation or statistical algorithms,
which introduce further complexities to domain users.

According to Wagstaff’s [39] three-stage model of presenting an ML research
program (the stage 1 is the preparation stage for an ML research program, the stage
2 is the development of ML algorithms, and the stage 3 is the impact stage of ML
methods on real-world applications), the ML algorithm development is only one of
three stages in the overall pipeline. Therefore the current highly biasedML algorithm
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explanation ignores the other two critical stages to translate ML results into impact.
The success of the other two stages of preparation of anML program and deployment
of ML results is highly dependent on human users and therefore human factors. This
is because that the judgement of ML results as “right” or “wrong” is an activity
that comes after apprehension, which needs a very human intervention [36, 40].
Furthermore, the current visualisation or algorithmic explanations ofML are isolated
from the two other stages and are rarely accompanied by an assessment of whether
or how human factors from the preparation stage and deployment stage affect ML
algorithm explanations or how the three stages interact with each other.

This also occurs because there is no a systematic understanding of the problem of
making ML transparent. A systematic view of TML can be used as the guidance for
future investigations in this timely field in order to translate ML results into impact
in real-world applications. Furthermore, many TML or ML explanation approaches
are phrased in terms of answering why a prediction/classification is made. It is time
for us to ask questions of a larger scope: What is TML’s ideal objective? What are
the roles of domain users in TML? Can we maximize the transparency of ML by
approaches besides explaining ML algorithms? Or can we characterise ML-based
solutions in a more meaningful way that measures the user’s cognitive responses
because of ML transparency?

In this chapter, we argue for a change in how we view the relationship between
human andmachine learning to translateML results into impact. The contributions of
this work include: (1) identifying a fundamental problem in making ML transparent:
a lack of connection between domain users and ML experts; (2) suggesting a two-
dimensional (2D) transparency space which integrates the domain users and ML
experts together to make ML transparent; (3) introducing transparent questions and
transparent uses as well as feedback into the 2D transparency space from domain
user’s perspective to makeML transparent; (4) identifying example TML challenges
to the community; and (5) finding several key obstacles to TML. This chapter does
not propose ML algorithms or present experimental results but inspires a systematic
view of making ML transparent in this timely field for further active discussions to
improve the impact of ML in real-world applications.

1.2 Can Only Explanation Make ML Transparent?

This section highlights related work conducted recently and demonstrates their lim-
itations in making ML transparent.

1.2.1 Hyper-focus on Visualisation of ML Process

In the early years, visualisation is primarily used to explain the ML process of
simple ML algorithms in order to make ML transparent. For example, different
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visualisation methods are used to examine specific values and show probabilities of
picked objects visually for Naïve–Bayes [5, 26], decision trees [3], Support Vector
Machines (SVMs) [7], or Hidden Markov Models (HMMs) [10]. Advanced visuali-
sation techniques are then proposed to present more complex ML processes. Erra et
al. [12] introduced a visual clustering which utilises a collective behavioral model.
Each data item is represented by an agent visualised with a metaphor in 3D domain.
Visualisation helps users to understand and guide the clustering process. Huang et
al. [17] used a visual clustering for assisting the analysis of email attacks. Paiva
et al. [30] presented an approach that employs the similarity tree visualisation to
distinguish groups of interest within the data set.

Visualisation is also used as an interaction interface for users in data analysis. For
example, Guo et al. [15] introduced a visual interface named Nugget Browser allow-
ing users to interactively submit subgroup mining queries for discovering interesting
patterns dynamically. Talbot et al. [38] proposed EnsembleMatrix allowing users to
visually ensemble multiple classifiers together and provides a summary visualisation
of results of these multiple classifiers. Zhou et al. [48] revealed states of key internal
variables of ML models with interactive visualisation to let users perceive what is
going on inside a model.

More recent work tries to use visualisation as an interactive tool to facilitate
ML diagnosis. ModelTracker [2] provides an intuitive visualisation interface for
ML performance analysis and debugging. Chen et al. [8] proposed an interactive
visualisation tool by combining ten state-of-the-art visualisation methods in ML
(shaded confusion matrix, ManiMatrix, learning curve, learning curve of multiple
models, McNemar Test matrix, EnsembleMatrix, Customized SmartStripes, Cus-
tomized ModelTracker, confusion matrix with sub-categories, force-directed graph)
to help users interactively carry out a multi-step diagnosis for ML models. Krause
et al. [23, 24] presented an interactive visual diagnostic tool for ML models based
on the concept of partial dependence to communicate how features affect the predic-
tion, as well as support for tweaking feature values and seeing how the prediction
responds.

Visualisations comprise the major body of ML process explanations. However,
the abstract visualisations may introduce more complexities to users. Furthermore,
without the consideration of how a domain problem is phrased as an ML task and
what user cognitive responses on ML-based decisions are, users still have difficulty
understanding the overall ML process with abstract visualisations.

1.2.2 Hyper-focus on Algorithmic Explanation of ML

Besides visualisation, various algorithmic approaches are proposed to explain ML
models. At least two types of algorithmic explanation approaches can be categorised:

• Feature/instance contributions to ML models: The approach of feature contri-
butions reveals each feature contributions toMLmodels to explainMLmodels. For
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example, Robnik-Sikonja et al. [34] explained classification models by evaluating
contributions of features to classifications based on the idea that the importance of
a feature or a group of features in a specific model can be estimated by simulating
lack of knowledge about the values of the feature(s). Besides feature contributions,
an explanation of individual instance contributions toMLmodels was investigated
to allow users to understand why a classification/prediction is made. For exam-
ple, Landecker et al. [27] developed an approach of contribution propagation to
give per-instance explanations of a network’s classifications. Baehrens et al. [4]
used local gradients to characterise how an instance has to be moved to change its
predicted label in order to explain individual classification decisions.

• Mathematical models for ML model explanation: This kind of explanation uses
mathematical models to explain why certainML results are obtained. For example,
Chen et al. [9] developed statistical models to give online users of social network
sites (e.g. Facebook) transparency intowhy certain inferences aremade about them
and control to inhibit those inferences by hiding certain personal information from
inference. Zahavy et al. [43] explained the success of Deep Q-Network (DQN)
based on its learned representation, by showing that DQN is mapping states to
sub-manifolds with mutual spatial and temporal structure and learning specific
policies at each cluster using a t-Distributed Stochastic Neighbor Embedding (t-
SNE) map. Zrihem et al. [49] further developed approaches to automatically learn
an internal Semi-Markov Decision Process (SMDP) model in the DQN’s learned
representation and visualized SMDP for the explanation of DQN’s policy. Koh
and Liang [22] used influence functions to trace a model’s prediction back to its
training data, and identify the training points which most contribute to a given
prediction.

These approaches explain ML models mostly from an ML expert’s perspective,
which introduce further complexities to domain users and make it more difficult for
users to understand complex algorithms. Furthermore, these explanations only focus
on one stage of ML method development and ignore the other two stages of an ML
program.

1.2.3 Limited User Cognitive Response Communication

As the ultimate frontline users ofML-based systems, humans are the key stakeholders
and human factors such as user trust are essential in extracting and delivering more
sensible and effective insights from data science technologies [13]. From this per-
spective, Zhou et al. [44, 47] argued that communicating human cognitive responses
such as user trust (on ML results) and confidence (in decision making based on
ML results) benefit the evaluation of effectiveness of ML approaches. On the one
hand, human cognition status could help understand to what degree humans accept
innovative technologies. On the other hand, through understanding human cogni-
tion status in predictive decision making, ML-based decision attributes and even
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ML models can be adaptively refined in order to make ML transparent. Therefore,
different approaches are investigated to reveal human cognition states such as user
trust and confidence in a predictive decision making scenario [44, 48].

Moreover, various researches have been investigated to learn user trust varia-
tions in ML-based decision making. Kizilcec [21] proposed that the transparency
of algorithm interfaces can promote awareness and foster user trust. It was found
that appropriate transparency of algorithms through explanation benefited user trust
whereas toomuch explanatory information on algorithms eroded user trust. Ribeiro et
al. [33] explained predictions of classifiers by learning an interpretable model locally
around the prediction visualising importance of the most relevant instances/features
to improve user trust in classifications. Kulesza et al. [25] investigated the soundness
and completeness of explanations to end users to build mental models and demon-
strated that end users trusted intelligent assistants more in explanations with high
soundness and completeness.

However, these investigations focus more on the user cognitive responses during
the stage of deployment of ML-based solutions, i.e. during the predictive decision
making. It is highly necessary to feed user cognitive responses back into the loop to
improve the understanding ofMLprogrampreparation andMLmethod development,
and thus improve the overall transparency of ML.

1.2.4 Lack of Domain Knowledge Use in Transparency

Usually, it is more acceptable for domain users to get an understanding of data and
their analysis with the use of domain knowledge. Therefore, domain knowledge is
used in ML for different purposes. For example, Sun and DeJong [37] proposed
explanation-augmented SVMs by incorporating domain knowledge into SVMs to
identify the “important” features in the explained instance that are allowed to con-
tribute to the kernel inner product evaluation. In the Bayesian network, domain
knowledge is used to judge the form of linear inequality and approximate equal-
ity constraints on Bayesian network parameters to improve learning accuracy [46].
Domain knowledge is also used as a form of restrictions (e.g. existence or absence
of arcs or edges between nodes) to improve Bayesian network structure (e.g. in less
time) [11]. Altendorf et al. [1] used domain knowledge on qualitative monotonicity
to guide the process of finding the maximum likelihood parameters. Williams and
Mostafa [42] used domain knowledge of anticipated changes between the source and
target tasks to reduce prediction uncertainty in active transfer learning. Interestingly,
Harrison et al. [16] used sociocultural knowledge presented in stories to train vir-
tual agents and robots to exhibit desired behaviours using reinforcement learning.
Peng et al. [32] investigated the strategy of non-expert humans in curriculum learn-
ing and showed its potentials in the reinforcement learning process to improve the
learning performance.
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The previous work primarily focuses on the improvement of ML performance
with the incorporation of domain knowledge into the learning process. Little work
has been done on the use of domain knowledge to explain input data or to phrase
practical problems into an ML program in order to make ML transparent.

1.3 Workflow of Applying ML to a Practical Problem

Before giving more details on TML, this section presents the current workflow of
applying ML technologies to a practical problem with the use of water pipe failure
prediction as a case study, in order to motivate TML approaches. Water supply net-
works constitute one of the most crucial and valuable urban assets. The combination
of growing populations and ageing pipe networks requires water utilities to develop
advanced risk management strategies in order to maintain their distribution systems
in a financially viable way [28]. Especially for critical water mains (generally>300
mm in diameter), failure of defining based on the network location (e.g. a single
trunk line connecting distribution areas or under a major road) or size which infers
impact potential, failure of them typically bring severe consequences due to service
interruptions and negative economic and social impacts, such as flooding and traf-
fic disruption, which can cost millions of dollars [28]. From an asset management
perspective there are two goals for critical mains management [41]: (1) minimise
unexpected critical mains failure by prioritising timely renewals; (2) avoid replacing
a pipe too early before the end of its economic life. Thus, utility companies use
outcomes from failure prediction models, to make renewal plans based on risk levels
of pipes and reasonable budget plans for pipe maintenance.

Figure1.1 illustrates the workflow of phrasing water pipe failures as an ML pro-
gram in the current practice. In this workflow, original domain data (in the format of
various spread sheets and images) are firstly collected from customers. Interviews
with domain experts are then arranged to learn details of the water pipes, such as
what factors affect pipe failures from the domain experts’ view, how domain experts
predict pipe failures in their routine work. After this stage, the original domain data
are cleaned in order to be processed easily by future stages, such as removing records
withmissing information or inputting default values in recordswithmissing informa-
tion. After cleaning the data,MLmethod developers try to get an overview of domain
data and learn some patterns in the data. Based on the overview of the cleaned data,
various data features are derived and ML models are developed. In order to allow
users to easily perceive ML results, visualisation of ML results is then presented.
The results need to be explained to users using domain knowledge. According to
the explanation of ML results, decisions are made to practice domain actions such
as digging out and replacing high risk pipes. From the practice actions, significant
information can be gathered such as whether pipes predicted as high risk ones are
confirmed or violated from actual digging. The information can be used as feedback
to the pipeline to improve effectiveness of theML analysis, such as feature definition
and ML modeling.
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Fig. 1.1 Workflow of applying ML to water pipe failure predictions

From this workflow, we have the following observations:

• Domain users and ML experts collaborate closely in applying ML to practical
problems.

• All stages of preparation of anMLprogram, deployment ofML, aswell as feedback
loop affect the effectiveness of ML-based solutions.

• Interviewswith domain experts, which are based on questions/answers and domain
knowledge, play a significant roles in applying ML to practical problems.

Based on these observations, this chapter proposes a two-dimensional trans-
parency space to make ML transparent as presented in the following sections.

1.4 Making Machine Learning Transparent

Instead of just explaining why a certain prediction is beingmadewith abstract visual-
isation or more complexmathematical algorithms which add additional complexities
to domain users, can domain users play a greater role as they are the key stakeholders
of ML-based solutions? This is also not simply a matter of user studies on different
ML algorithms. A fundamental change is highly necessary in the overall workflow
of making ML transparent in applying ML to domain applications.
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Fig. 1.2 The uncertainty-aware 2D transparency space of ML-based solutions

This chapter argues that making ML transparent can be framed into a two-
dimensional (2D) transparency space by integrating both ML experts and domain
users as active participants into the overall workflow (see Fig. 1.2). In this trans-
parency space, the horizontal axis from left to right represents how ML-based solu-
tions are used from a domain user’s perspective, while the vertical axis from top
to bottom shows the view of phrasing an ML-based solution from an ML expert’s
perspective. This 2D transparency space implies that domain users and ML experts
need to collaborate closely to make ML transparent.

From a domain user’s perspective, the process of using an ML-based solution
can be divided into three steps (see the horizontal axis in Fig. 1.2): (1) setup of an
ML research program, (2) understanding transparent questions (information needs)
for the effective use of ML-based solutions, and (3) transparent uses of ML-based
solutions. Transparent questions are those questions and information needs domain
users may have for the effective use of ML-based solutions. Transparent uses focus
on providing answers for transparent questions for the effective use of ML-based
solutions. From an ML expert’s perspective, the process of phrasing an ML program
can be divided into three stages (see the vertical axis in Fig. 1.2): (1) preparation
of an ML research program, (2) development of ML methods, and (3) deployment
and impact of ML methods. For the purpose of clearances, the terms of “step” and
“stage” are used for the horizontal and vertical axis respectively to show different
points on each axis.

Furthermore, uncertainty is inherent to the whole process of ML-based data ana-
lytics from data collection, data preprocessing, ML modelling to the deployment. It
has been shown that uncertainty awareness positively influences human trust build-
ing in ML-based decision making [6, 35]. In the 2D transparency space, uncertainty
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is integrated into each stage of ML-based solutions so that domain users are aware of
uncertainty and its effects in order to make ML transparent. Such uncertainty-aware
transparent ML allows domain users to make trustworthy decisions confidently.

In this 2D transparency space, domain users andML experts collaborate to imple-
ment each block for making ML transparent. However, they may have different
emphases in this 2D transparency space: ML experts focus more on the setup of an
ML program especially the development of ML methods, while domain users are
more interested in the transparent uses of ML-based solutions as shown in the last
column in the 2D transparency space. Furthermore, a feedback loop is set up in the
step of transparent uses of ML-based solutions, allowing user cognitive responses
to be fed back into the input transparency and ML method transparency stages to
improve the overall transparency.

The following subsections introduce more details of each step of ML-based solu-
tions in the 2D transparency space from the domain user’s perspective since the
domain user plays the key role in TML.

1.4.1 Setup of ML Research Program

The setup of anML research program is the starting step of applyingML approaches
to practical problems (see the first column in Fig. 1.2). During the preparation stage
of setting up the ML research program, business requirements are presented and
related data are provided. The data are preprocessed (e.g. cleaning, transformation,
feature extraction) and then an ML task is phrased based on the data. This stage
requires close collaboration between ML experts and domain users. Based on the
data acquired at the preparation stage,ML experts developMLmethods at the second
stage and choose metrics to evaluate ML algorithms. The third stage of ML impact
focuses on the interpretation and deployment of ML results to create impact.

1.4.2 Transparent Questions

Instead of utilising the ML research program directly which hinders the effective use
of ML-based solutions, this chapter argues that questions on (and information needs
to understand) the ML research program from the domain user’s perspective at each
stage both help transparent uses of ML-based solutions effectively and motivate ML
experts to develop approachesmeaningfully. Therefore, in the 2D transparency space,
the introduction of “transparent questions” connects the “ML research program”
and “transparent uses” of ML-based solutions (see the second column in Fig. 1.2).
Transparent questions demonstrate the problems domain users may have in order to
useML-based solutions transparently. From this perspective, the step of “transparent
questions” helps to transfer the use ofML-based solutions from theML’s perspective
to the domain’s perspective.
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Domain users may have different questions corresponding to different stages of
the ML research program. Taking the water pipe failure prediction as an example
(see the previous section), domain users may have questions [41]:

• At the preparation stage, domain users may have questions such as how the pipe
failure problem is formulated and explained as an ML program, and how domain
knowledge on pipe failures is transformed into the ML program.

• At the development stage, domain users are concerned with how the pipe failure
records are processed to get the future failure predictions, what are the influences
of different pipe attributes (e.g. pipe environment, length, size) on pipe failures,
or how the prediction process is interpreted with domain knowledge.

• At the impact stage, domain users have concerns such as how, when, and where
pipes will fail within the entire network (i.e. how to interpret the ML performance
measurement based on the domain knowledge), how to interpret the prediction
and its uncertainty with domain knowledge, or how to transfer the new knowledge
from the ML-based data analysis to the industry for optimal pipe management.

These transparent questions are proposed based on domain knowledge and deliv-
ered along the horizontal axis of domain users in the 2D transparency space to the next
step of “transparent uses” in order to develop approaches to answer these questions.
Part VI in this book features the efforts of the use of domain knowledge in machine
learning. The questions from domain experts help to define meaningful features in
ML, explain ML results, and improve ML performance in real-world applications.

1.4.3 Transparent Uses

Depending on different transparent questions, various approaches are then developed
to provide answers for those corresponding questions. The approaches for transparent
uses of ML-based solutions (see the third column in Fig. 1.2) are detailed as follows:

• Input influence transparency: This stage focuses on the presentation of input
influences on the system output to makeML transparent. It needs to present under-
standing of the business requirements, feature space definition, and the process of
phrasing real-world problems as ML tasks to domain users. The input influence
transparency uses this understanding and domain knowledge, and sets up a domain
specific input influence transparency report. For example, in the water pipe failure
prediction, this stage helps domain users understand how the water pipe failure
is phrased as an ML task and what influence each attribute of input data has on
failures based on domain knowledge. Part II and Part III in this book discuss differ-
ent approaches on input influence transparency from visualisation and algorithmic
perspectives.

• ML method transparency: This stage reveals how ML methods work for prob-
lems to be solved, and why a prediction is made based on the domain knowledge.
The ML method transparency also defines meaningful evaluation metrics based
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on domain knowledge. For example, in the water pipe failure prediction, this stage
communicates why certain pipes are predicted as high risk pipes based on domain
knowledge. Part II and Part III in this book cover approaches on ML method
transparency.

• User cognitive response transparency: In this stage, user cognitive responses
such as trust and confidence in ML-based solutions are communicated to show
the acceptance of ML-based solutions by domain users. These are based on the
meaningful definition of themeasurement ofML performance. For example, in the
water pipe failure prediction, domain users are more interested in whether theML-
based solutions help them make trustworthy decisions in pipe risk management
thus saving management costs in practice. Part IV in this book presents studies on
user cognitive response transparency in predictive decision making.

• Feedback loop: In the step of transparent uses, a feedback loop is introduced
into the pipeline, which links the three stages of input influence transparency, ML
method transparency, and user cognitive response transparency together. Such link
allows the adaptation of transparency at each stage to make ML transparent. For
example, in the water pipe failure prediction, when domain users have low trust
in ML-based pipe failure management (e.g. in the case where predictions of risk
pipes are not consistent with the actual pipe failures), user cognitive responses are
used as the feedback to the input and ML method development stages to modulate
corresponding parameters until domain users are satisfiedwithML-based solutions
with appropriate cognitive response levels. Part V in this book tries to introduce
users into the feedback loop from the perspectives of evaluation of ML.

1.4.4 Uncertain But Verified for Transparency

This subsection shows the importance of uncertainty and its effects on transparency
at each stage of ML-based solutions.

At the preparation stage of ML-based solutions, uncertainty is mainly from the
input data and its preprocessing actions. The uncertainty from these sources needs
to be quantified and explained based on the domain knowledge. The clarification
of uncertainty at this stage helps users better understand the input influence trans-
parency. At theMLmethod development stage, uncertainty is mainly fromMLmod-
els. Uncertainty from the preparation stage is propagated to this stage. The revealing
and explanation of these uncertainties allow domain users to perceive the trans-
parency of ML methods in ML-based solutions. At the impact stage, ML results and
their visualisations cause uncertainties. These uncertainties as well as uncertainty
propagated from the ML method development stage together affect user responses
to ML-based solutions. The revealing of the effects of uncertainty on user responses
such as user trust helps both domain users and ML experts understand the effective-
ness and transparency of ML-based solutions. The uncertainties at each stage may
be modulated in the feedback loop in order to allow domain users make trustworthy
decisions confidently based on ML solutions.
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Finally, the flow of uncertainty generation, propagation, transformation, and
aggregation during the overall process of ML-based solutions can be revealed to
users. By communicating uncertainty at each stage, the 2D transparency space allows
users to verify results at each stage to make ML transparent.

1.5 TML Challenges

TML is an ambitious framework for improving ML impact in real-world applica-
tions. By considering both dimensions of domain users and ML experts in the 2D
transparency space as shown in Fig. 1.2, we propose following research challenges
as examples to make ML transparent:

• Problem formulation: General protocols are set up to link input data and targets,
and phrase practical problems into ML tasks based on domain knowledge.

• ML process explanation: The domain knowledge is incorporated into the ML
process. The explanation of the ML process becomes a part of routine domain
work without the use of ML knowledge.

• User cognitive response communication: User cognitive responses such as trust
and confidence in ML-based solutions are automatically communicated to show
the acceptance of ML by domain users.

• User cognitive response feedback: User cognitive responses in ML-based solu-
tions are used as feedback to the input stage andMLdevelopment stage tomodulate
corresponding parameters from the domain user’s perspective in order tomakeML
acceptable to domain users with appropriate levels of cognitive responses.

• User cognitive responses in ML: User cognitive responses from the feedback loop
are integrated into the ML method development and result in the user cognition-
driven ML method.

• Uncertainty communication: ML transparency strongly depends on the extent of
a domain user’s awareness of the inherent underlying uncertainties. Users under-
stand uncertainty in theMLprocess, and its relationships to use domains and exper-
tise. However, there are still challenges in uncertainty analysis during ML-based
solutions: first, uncertainty may originate from different states of the ML-based
data analytics (e.g. preprocessing, training, visualisation), and thus it is difficult
to effectively quantify the uncertainty. Second, it is difficult to model different
types (e.g. input data uncertainty, model uncertainty, human uncertainty during
interaction) of uncertainty with a unified framework.

• ML-based decision making: Users understand how ML results are effectively
used in decision making, and how knowledge of uncertainty influences ML-
based decision making. The outcomes of decision making are used to evaluate
effectiveness of ML-based solutions.

These transparent challenges differ from existing challenges such as [31, 38]
which focus more on parameter selections and performance evaluations, or [39]
which ignore user cognitive responses and therefore do not put those responses into a
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feedback loop. The challenges phrased in this chapter try to capture the entire pipeline
of a successful ML-based solution, from preparation ofML tasks, MLmethod devel-
opment and deployment, to the feedback loop from both the ML expert and domain
user’s perspectives. The purpose is to make domain users aware that uncertainty is
coupled in the pipeline and thus make ML an integral part of the overall domain
problem exploration.

These TML challenges act as inspiring examples and additional transparent chal-
lenges are to be formulated to benefit both the ML field and domain applications.

1.6 Obstacles to TML

The obstacles to the success of TML we can foresee lie in different aspects ranging
from fundamental research to the generalisation of approaches.

• Fundamentals: User cognitive responses such as trust and confidence play signif-
icant roles in TML. Despite the conspicuous progress in neuroscience for under-
standing human’s neural activities, there are still many unsolved questions on
quantitative evaluation of human cognition. This is one of the major obstacles in
understanding human cognition in predictive decision making. Current research
in neuroscience uses various techniques such as imaging techniques (e.g. fMRI)
or other physiological signals to understand differences in user cognitions when
conducting tasks. However, these are not as precise as expected. There are still no
concrete theories or evidence for the quantitative evaluation of human cognition
states, and for the linking of human cognition with predictive decision making.
These obstacles may not always be there, but are more likely to be understood pre-
cisely with the advancement of neurobiological and genome research with modern
tools such as imaging or microscopic techniques.

• Uncertainty and risk: Uncertainty is coupled with the entireML process. Despite
the improvement of ML technologies, humans can still feel at risk when making
decisions relying on machines because of uncertainties. For instance, how can this
uncertainty be solved in and delivered to different stages? When an error from
the system occurs, to where can we track back the error sources? What is the cost
when making a false decision? How risky is it to take actions based on decisions
from the system? These concerns are especially significant in modern complex
high-risk domains such as aviation, medicine, and finance. These concerns could
be addressed by communicating uncertainty and risk from the domain user’s
perspective.

• Generalisation: Human cognition may be different in conducting the same task
because of differences of users’ social background such as culture, education,
gender and other factors. People from different domainsmay also show differences
in their attitude while conducting the same task. Therefore, the generalization
becomes one obvious obstacle if predictive decision making with user cognition
state communication is conducted by different users from different domains.
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1.7 Conclusion

Machine learning offers a large number of powerful ways to approach problems
that otherwise require manual solutions. However, significant barriers to widespread
adoption of ML approaches still exist because of the “black-box” of ML to domain
users. Different investigations have been conducted to make “black-box” ML trans-
parent ranging from visualisation and algorithmic explanations to user cognitive
response communication inML-based solutions. However, many current approaches
ofmakingML transparent suffer from the abstract visualisation-based andmore com-
plex algorithmic explanations for domain users, which continuously isolate domain
users from ML in ML-based solutions for widespread impact in real-world applica-
tions. This chapter integrated domain users and ML experts into a 2D transparency
space, where the introduction of transparent questions and transparent uses from
the domain user’s perspective makes ML transparent meaningfully based on domain
knowledge. This chapter also identified examples of TML challenges and several
key obstacles for TML in the hope of inspiring active discussions of howML can be
made transparent to best benefit domain applications.
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Chapter 2
Transparency in Fair Machine Learning:
the Case of Explainable Recommender
Systems

Behnoush Abdollahi and Olfa Nasraoui

Abstract Machine Learning (ML) models are increasingly being used in many
sectors, ranging from health and education to justice and criminal investigation.
Therefore, building a fair and transparent model which conveys the reasoning behind
its predictions is of great importance. This chapter discusses the role of explanation
mechanisms in building fairmachine learningmodels and explainableML technique.
We focus on the special case of recommender systems because they are a prominent
example of a ML model that interacts directly with humans. This is in contrast to
many other traditional decision making systems that interact with experts (e.g. in
the health-care domain). In addition, we discuss the main sources of bias that can
lead to biased and unfair models. We then review the taxonomy of explanation styles
for recommender systems and review models that can provide explanations for their
recommendations. We conclude by reviewing evaluation metrics for assessing the
power of explainability in recommender systems.

2.1 Fair Machine Learning and Transparency

2.1.1 Fairness and Explainability

ML models make predictions that affect decision making. These decisions can have
an impact on humans, either individually (for a single person) or collectively for a
group of people. Such an impact can be unfair if it is based on an inference that is
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biased against a certain group of people. Hence fairness is an important criterion in
ML. Fairness in ML is a nascent topic that has only recently attracted attention [19,
34]. How to achieve this fairness is therefore still a matter of debate and there have
recently been only a few attempts to define fairness and design fair algorithms within
the ML context [18, 19, 26]. In our view, fairness can be achieved in multiple ways
and either completely or partially. In particular, fairness can be addressed by changing
the data that models ingest, the ways (i.e. algorithms) that models are learned, or the
predictions that are made by these models. Another way that fairness can be achieved
is by completely transparent models and thus scrutable predictions; in other words,
predictions that can be justified as to the reasons why a particular prediction has
been made and scrutinized for potential biases or mistakes. This is because such a
scrutiny provides a certain level of accountability. For this reason, we believe that
explainability can play an important role in achieving fairness in ML. Figure 2.1
presents a diagram that shows the relation between explainability, transparency and
fairness. Figures 2.2 and 2.3 show two forms of designing explainable ML systems.
In Fig. 2.2, the predictions are explained to the user using a model that is different
from the ML model, while in Fig. 2.3, explainability is incorporated at the design
level within the ML model.

2.1.2 Fair Machine Learning

ML models are increasingly being used in many sectors ranging from health and
education to justice and criminal investigation. Hence, they are starting to affect the
lives of more and more human beings. Examples include risk modeling and decision
making in insurance, education (admission and success prediction), credit scoring,
health-care, criminal investigation and predicting recidivism, etc [19, 54]. These
models are susceptible to bias that stems from the data itself (attribute or labels

Fig. 2.1 Explainability
leads to transparency and
both lead to improving
fairness of ML models
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Fig. 2.2 In this form of fair ML, explainability occurs at the prediction step which results in more
transparency and increasing fairness by presenting justified results to the user

Fig. 2.3 In this form of fair ML, explainability occurs in the modeling phase which results in
designing transparent ML models and consequently having more transparent and fair models

are biased) or from systemic social biases that generated the data (e.g. recidivism,
arrests). As such, models that are learned from real world data can become unethical.
Data can be collected and labeled in a biasedway such that it is discriminative against
a certain race, gender, ethnicity or age. As bias in the data can result in unfair models,
ML algorithms are also susceptible to strategic manipulation [6, 24]. Therefore, they
can be built such that the model creates bias against a certain group of people. The
involvement of the human in all the stages of collecting data, building a model, and
reporting the results, creates the setting for various types of bias to affect the process.
Some of the sources of human bias in the stages of collecting and processing the data
and reporting the results are [39]:

• Confirmation bias: It is a tendency to intentionally search for and include certain
data and perform analysis in such a way as to make a predefined conclusion and
prove a predetermined assumption.

• Selection bias: This happens when the sample is not collected randomly and
because of a subjective selection technique, the data does not represent the whole
population under study. Based on the elimination of samples or inclusion of certain
samples, the resulting bias can be of the omission or inclusion type, respectively.
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• Implicit bias: This type of bias is associated with the unconscious tendency to
favor a certain group of people against others based on characteristics such as
race, gender, and age.

• Over-generalization bias: This form of bias can come from making a certain con-
clusion based on information that is too general, especially when the sample size
is small or is not specific enough.

• Automation bias: The tendency to favor decisionsmade from an automated system
over the contradictory correct decision made without the automation.

• Reporting bias: This form of bias is the result of an error made in the reporting of
the result when a certain positive finding is favored over the negative results.

Recent studies proposed techniques for building fair models by alleviating the
effect of bias. Avoiding the use of sensitive features has been shown to be insuffi-
cient for eliminating bias, because of the correlation between some features which
can indirectly lead to oriented and unfair data [32]. Kamishima et al. [33] formulated
causes of unfairness in ML and presented a technique based on regularization by
penalizing the classifier for discrimination and building discriminative probabilis-
tic models to control the bias that resulted from prejudice. Since their solution as
the prejudice remover is formulated as a regularizer, it can be used in a variety of
probabilistic models such as the logistic regression classifier. Fish et al. [20] pro-
posed a method based on shifting the decision boundary in the learning algorithm
for achieving fairness and providing a trade-off between bias and accuracy.

In addition to designing fair algorithms, [32] proposed an approach for removing
bias and generating fair predictions by changing the data before training the model.
This method is based on modifying the dataset in order to transform the biased data
into an unbiased one. The authors used a ranking function learned on the biased
data to predict the class label without considering the sensitive attribute. Using this
technique, they estimate the probability of the objects belonging to the target class.
Their results showed that they could reduce the discrimination by changing the labels
between the positive and negative class.

2.2 Explainable Machine Learning

Conventional evaluation metrics such as accuracy or precision do not account for
the fairness of the model. Thus, to satisfy fairness, explainable models are required
[36]. While building ethical and fair models is the ultimate goal, transparency is the
minimum criterion that ML experts can directly contribute to and this could be the
first step in this direction. Therefore, designing explainable intelligent systems that
facilitate conveying the reasoning behind the results is of great importance in design-
ing fair models. Note that we do not make a distinction between “explainability” and
“interpretability” and use both terms interchangeably.
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In the context of machine learning, interpretability means “explaining or pre-
senting in understandable terms” [4]. In addition, interpretability and explana-
tions can help to determine if qualities such as fairness, privacy, causality, usabil-
ity and trust are met [18]. Doshi-Velez and Kim [18] presented a taxonomy of
approaches for the evaluationof interpretability inMLmodels in general: application-
grounded, human-grounded, and functionality-grounded. Application-grounded and
human-grounded evaluation approaches are both user-based, while the functionality-
grounded approach does not require human evaluation and uses some definition of
the explainability for the evaluation. Experiments can be designed based on different
factors, such as global versus local, which considers the general patterns existing in
the model as global, while considering local reasoning behind the specific prediction
of the model as local [18]. The global pattern is usually helpful for the designer
and developer of the model when understanding or detecting bias or causality in the
model. The local pattern, on the other hand, can be aimed at the end user of the
systems to understand the justifications of the system decisions.

Explainability-aware ML techniques can generally be categorized into two main
groups:

1. Models that explain their predictions in a way that is interpretable by the user.
These types of methods usually only justify their output without providing an in
depth understanding of the ML algorithm. This form of explanation is usually
helpful when the user of the system is not an expert such as in the case of recom-
mender systems. The explanation generation module can be located in a separate
module relative to the predictor.

2. Models that incorporate interpretable models in the building of the automated
systems. White-box models, such as decision trees where the ML model is intu-
itive for the user, can be categorized in this group, although, in these models the
model is usually kept simple and in many cases they might not be as accurate as
the more powerful black-box techniques.

Ribeiro et al. [42] proposed an explanation technique that explains the prediction of
the classifiers locally, using a secondary learned white box model. Their proposed
explanation conveys the relationship between the features (such as words in texts or
parts in images) and the predictions; and helps in feature engineering to improve the
generalization of the classifier. This can help in evaluating the model to be trusted in
real world situations, in addition to using the offline accuracy evaluation metrics.
Freitas [21] reviewed comprehensibility or interpretability of five classification
models (decision trees, decision tables, classification rules, nearest neighbors, and
Bayesian network classifiers). It is important to distinguish understanding or inter-
preting an entire model (which the paper does) from explaining a single prediction
(which is the focus of this chapter). In addition, we note that Freitas overviews the
problem from several perspectives and discusses the motivations for comprehensible
classier models, which are:
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1. Trusting the model: Regardless of accuracy, users are more prone to trusting a
model if they can comprehend why it made the predictions that it did.

2. Legal requirements, in some cases like risk modeling, where a justification is
required in case of denying credit to an applicant.

3. In certain scientific domains such as bioinformatics, new insights can be obtained
from understanding the model, and can lead to new hypothesis formation and
discoveries.

4. In some cases, a better understanding can help detect learned patterns in the
classification model that are not really stable and inherent in the domain, but
rather result from overfitting to the training data, thus they help detect the data
shift problem: i.e., when the new instances deviate in their distribution from past
training data; we note that concept drift (when a previously learned and accurate
model no longer fits the new data because of changes in patterns of the data) can
be considered as a special case of the data shift.

Understanding the logic behind the model and predictions (in other words, com-
prehension) can reveal to the user the fact that the (new) data has outpaced the
model. The user can then realize that the model has become old and needs to be
updated with a new round of learning on new data. Various interpretation methods
exist depending on the family of classier models: decision trees, rule sets, decision
tables, and nearest neighbors. Different studies have shown that the interpretability of
entire classier models depends on the application domain and the data, with findings
that sometimes contradict each other. Regardless of all the findings in interpreting
models, we note that the task of interpreting an “entire classifier model” (e.g. a com-
plete decision tree or a set of 500 rules) is different from that of one user trying
to understand the rationale behind a “single prediction/recommendation” instance.
That said, we find Freitas’ review to be very important for transparency, fairness
and explainability: first, he argues that model size alone is not sufficient to measure
model interpretability, as some models’ complexity is beyond mere size and small
models can actually hurt the user’s trust in the system (a notorious example is decision
stump models [1-level trees]). Also, extremely small models would likely suffer in
accuracy. Second, the work on interpreting rule-based models and nearest neighbor
models can be useful to us because it is closest to the Collaborative Filtering (CF)
recommendation mechanisms we study. For nearest neighbor models, Freitas [21]
mentions that attribute values of nearest neighbors can help provide explanations for
predictions, and that showing these values in decreasing order of relevance (based
on an attribute weighting mechanism) is a sensible strategy. Another strategy is to
show the nearest prototypes of training instances, for example after clustering the
training instances. However, in both of these strategies, Freitas [21] was motivating
interpretations of entire models rather than individual prediction explanations in the
context of recommending items.
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2.3 Explainability in Recommender Systems

2.3.1 Transparency and Fairness in Recommender Systems

Dascalu et al. [15] presented a survey of educational recommender systems and
Thai-Nghe et al. [54] presented a recommender system for predicting student perfor-
mance. Because the data in the education setting can be biased due to the underrepre-
sentation of women in Science, Technology, Engineering, andMathematics (STEM)
topics [7, 23, 49], the predictive models resulted in an unfair system when evaluated
using fairnessmetrics [58]. This form of bias can be dominant when the demographic
profile of the user, consisting of features such as gender, race and age, is used in the
model. To avoid unfairness or bias in the recommendations, the influence of specific
information should be excluded from the prediction process of recommendation and
for this reason CF techniques can be preferable to content-based recommender sys-
tems. While using CF models with only rating data can eliminate this bias, rating
data can include another form of bias. For example in the MovieLens data [27], the
ratings are obtained from the users who have rated a sufficient number of movies
and the data is inherently biased towards the “successful users” [27]. This shows the
serious problem of unfairness that can happen in a recommender model due to the
bias in the data. This setting provides a motivation for designing transparent mod-
els and generating explainable recommendations. Sapiezynski et al. [43] studied the
fairness of recommender systems used for predicting the academic performance of
students. They showed that because of the gender imbalance in many data sets, the
accuracy for female students was lower than male students and a different selection
of features can result in a fair model.

2.3.2 Taxonomy of Explanations Styles

Recommender systems are a prominent example of aMLmodel that interacts directly
with humans (users). This is in contrast to for instance, traditional medical decision
making systems that interact with health-care providers/experts. Explanations have
been shown to increase the user’s trust in a recommender system in addition to pro-
viding other benefits such as scrutability, meaning the ability to verify the validity of
recommendations [29]. This gap between accuracy and transparencyor explainability
has generated an interest in automated explanation generationmethods. Explanations
can be given using words related to item features or user demographic data, but these
cannot be done easily in CF approaches. They vary from simple explanation formats
such as: “people also viewed” in e-commerce websites [55] to the more recent social
relationships and social tag based explanations [44, 57]. Bilgic and Mooney [8]
showed how explaining recommendations can improve the user’s estimation of the
item’s quality and help users make more accurate decisions (i.e. user satisfaction).
Based on [8], three different approaches to explanations can be delineated:
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1. Neighbor Style Explanation (NSE): this explanation format compiles a chart
in CF that shows the active user’s nearest CF neighbors’ ratings on the recom-
mended item. A histogram of these ratings among the nearest neighbors can be
presented to the user. Figure 2.4 (1) and (3) show two different formats of the
neighbor style explanation.

2. Influence Style Explanation (ISE): this explanation format presents a table of
those items that had the most impact on computing the current recommendation.
They can be used in both CBF and CF. An example is shown in Fig. 2.4 (2).

3. Keyword Style Explanation (KSE): this explanation format analyzes the content
of recommended items and the user’s profile (interests) to find matching words
in CBF. An example of the KSE format which is obtained from the MovieLens
benchmark dataset is shown in Fig. 2.4 (4). Figure 2.4 (3), shows an example
of a neighbor style explanation (NSE) for a recommended movie based on the
user’s neighbors. This user-based example presents the ratings distribution of
the user’s neighbors on three rating levels.

Giving the user information about what type of data is used in the system encour-
ages the user to provide more helpful data of that kind, such as preference ratings.
Information about the neighbors selected as the predictors could give the user a
chance to examine their ratings and to disregard the recommendations if the right
neighborhood is not selected. A good explanation could also help discover weak
predictions. The distribution of the ratings of the neighbors on a target item is help-
ful in identifying whether the prediction is based on enough data or not. Herlocker
et al. [29] compared 20 other explanation systems and found histograms to perform
best based on promotion only. Abdollahi and Nasraoui [3] presented an Explain-

(2)(1)

(4)(3)

Fig. 2.4 Four different explanation style formats: (1) NSE, (2) ISE, (3) NSE, (4) KSE
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able Matrix Factorization (EMF) technique that proposed a metric for evaluating the
explainability of the NSE and ISE style explanations and proposed to precompute
explanations in a graph format and then incorporate them in a matrix factorization-
based recommender system. NSE can be formulated based on the empirical density
distribution of the similar users’ ratings on a recommended item. Therefore, for user
u, given the set of similar users as Nu , the conditional probability of item i having
rating k can be written as:

P(ru,i = k|Nu) = |Nu ∩Ui,k |
|Nu | (2.1)

where Ui,k is the set of users who have given rating k to item i [3]. For each expla-
nation, the expected value of the ratings given by Nu to the recommended item i can
be calculated as follows:

E(ru,i |Nu) =
∑

k∈κ

k × P(ru,i = k|Nu) (2.2)

where κ is the set of rating values [3]. Higher expected values indicate higher NSE
explainability of item i for user u. Similarly, ISE can be formulated based on the
empirical density distribution of the ratings given by user u to the items that are
similar to the recommended item i . Given the set of similar items to item i , Ni , the
conditional probability of item i having rating k can be written as:

P(ru,i = k|Ni ) = |Ni ∩ Iu,k |
|Ni | (2.3)

where Iu,k is the set of items that were given rating k by user u [3]. The expected
value of the ratings of user u to the items in the set Ni can be calculated as follows:

E(ru,i |Ni ) =
∑

k∈κ

k × P(ru,i = k|Ni ) (2.4)

The expected rating of similar users or similar items, obtained using Eqs. 2.2 or 2.4
gives a reasonable and intuitive measure of goodness or strength of a neighbor-based
explanation.

Abdollahi andNasraoui [2] expanded the EMF technique to RestrictedBoltzmann
Machines (RBM) and presented an explainability-aware RBM for CF. Bilgic and
Mooney [8] proposed a book recommendation system (LIBRA). They argued that the
quality of explanation can bemeasured using twodifferent approaches: the promotion
approachor the satisfaction approach.Thepromotion approach favors the explanation
that would convince the user to adopt an item, while the satisfaction approach favors
an explanation that would allow the user to assess the quality of (or how much they
like) an item best. The conclusion from Bilgic and Mooney is that while the NSE
style explanations were top performers in Herlocker et al.’s [29] experiments from



30 B. Abdollahi and O. Nasraoui

the point of view of “promotion”, KSE and next ISE explanations were found to
be the top performers from a “satisfaction” perspective. Other than [8], Vig et al.
[57] proposed a KSE explanation by introducing tagsplanation, which is generating
explanations based on community tags. In their method, they consider a form of
content-based explanation. The average of a given user’s ratings of the movies with
a specific tag defines how relevant a tag is for that user.

Another KSE approach was presented by McCarthy [37]. Their explanation is
knowledge and utility based; that is, based on the users’ needs and interests. The
explanation is presented by describing the matched item for the specified require-
ments from the user. Zhang et al. [59] proposed an Explicit Factor Model (LFM)
to generate explainable recommendations. They extracted explicit product features
and user opinions using sentiment analysis. Ardissono et al. [5] built a recommen-
dation system that suggests places to visit based on the travelers’ type (e.g. children,
impaired). In this case, the explanation comes in the form of the presentation of
the recommendation to the user. The demographic information of the user is uti-
lized to group users, and the explanation is focused on the most meaningful types of
information for each group.

Billsus and Pazzani [9] presented a keyword style and influence style explanation
approach for their news recommendation system which synthesizes speech to read
stories to the users. The systemgenerates explanations and adapts its recommendation
to the user’s interests based on the user’s preferences and interests. They ask for a
feedback from the user on how interesting the story had been to the user or if the
user needs more information. The explanation is then constructed from the retrieved
headlines that are closest to the user’s interests. An example of their explanation is:
“This story received a [high | low] relevance score, because you told me earlier that
you were [not] interested in [closest headline].”

Symeonidis et al. [53] proposed a recommendation system that was based on
the Feature-Weighted Nearest Bi-cluster (FWNB) algorithm, and they measured the
accuracy of the recommendation using precision and recall. Their recommendation is
based on finding bi-clusters containing item content features that have strong partial
similarity with the test user. The item content features can later be used for justifying
the recommendations. Their survey-based user study measured the user satisfaction
against KSE, ISE and their own style, called KISE. They designed a user study with
42 pre- and post-graduate students of Aristotle University, who filled out an online
survey. Each target user was asked to provide ratings for at least five movies that
exist in theMovieLens data set. They then recommended a movie to each target user,
justifying their recommendation by using the three justification styles (a different
style each time). Finally, target users were asked to rate (in 1–5 rating scale) each
explanation style separately to explicitly express their actual preference among the
three styles. Subsequent analysis of the mean and standard deviation of the users’
ratings for each explanation style, found KISE to outperform all other styles.

Paired t-tests also concluded that the difference between KISE and KSE and ISE
was statistically significant at p-value = 0.01 level. Although the findings in [8, 53]
did not compare with NSE, their study and experiments were similar to those of
Bilgic and Mooney [8] who previously found KSE to be the top performer, followed
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closely by ISE (then by a margin, NSE). However it is worth mentioning that the data
sets in the two studies were different: MovieLens for [53] versus books for [8]. Thus,
their item content features are different (genre, keywords, directors, actors collected
from the Internet and Movie Database (IMDb) for movies versus keywords in the
author, title, description, subject, related authors, related titles, that are crawled from
Amazon for books). It is easy to see that the content features for the books in LIBRA
draw significantly more on Human Expert knowledge (subject, related authors and
book titles) compared to the IMDB-sourced content features ofmovies in Symeonidis
(no related movie titles or related producers).

Regardless of the type of explanation used for CF approaches, most explanation
generation techniques reported in the literature are designed for transparent, or white-
box methods, such as classical neighborhood-based CF. The prediction is performed
as the process of aggregation of the ratings of the neighbor. This process could end up
giving weak recommendations which might be discovered with good explanations.
Other explanationmethods, designed for opaquemodels such as latent factormodels,
assume some form of content data or an additional data source for explanations.
Therefore, their explanation module is a separate approach from the recommender
module which does not reflect the algorithm behind the suggestion made. Therefore,
the explanation may, or may not reflect the underlying algorithm used by the system.

Thus it is of great interest to propose explainable CF techniques that computes
the top-n recommendation list from items that are explainable in the latent space.
To generate latent factors, some well-known latent factor models can be used such
as: Matrix Factorization (MF) and Restricted Boltzmann Machines (RBM) methods
[1–3].

2.4 Evaluation Metrics for Explainability in Recommender
Systems

Evaluation of explanations in recommender systems require user-based metrics to
evaluate the perceived quality of the explanation and the efficiency of the justifica-
tion of the recommendation provided to the user by the explanation. Pu et al. [41]
proposed a method that consists of 60 questions to assess the perceived quality of
the recommendations such as usefulness, user satisfaction, influence on the users’
intention to purchase the recommended product, and so on. However, this question-
naire was designed for user-based evaluation of the recommender system and not
the explanation. Herlocker et al. [29] provided some initial explorations into mea-
suring how explanations can improve the filtering performance of users, but their
study was more focused on different aspects of the explanation generation than their
evaluation. The user-based experiments in the two studies are different in two per-
spectives: Symeonidis et al. [53] used both (i) a quantitative (objective) metric for
justification (coverage ratio) which is based on the amount of influence from content
features in the justified recommendation list, and (ii) direct user’s 1–5 scale ratings



32 B. Abdollahi and O. Nasraoui

about how satisfied they are with each explanation style (KSE, ISE or KISE), while
Bilgic and Mooney [8] collected the user’s satisfaction via analysis of their ratings
of the explanations before and after examining the recommended item in question.
Furthermore [8] collected the user satisfaction without showing them which expla-
nation method was used and most importantly, they collected the user satisfaction by
providing an explanation of why the itemwas recommended before being shown and
examining the item, thus allowing measurement of the user’s satisfaction with the
explanation itself and not merely the recommendation. Bilgic and Mooney’s mea-
sure of the quality of an explanation is based on how similar the user’s ratings of the
recommendation are before and after examining the recommended item, thus mea-
suring the power of the explanation to convey the true nature of the recommended
item, even in cases where the recommended item was rated low by the user, and
not merely a promotion-based explanation (which accounts only for highly rated
recommended items). Despite the apparent limitation of [53], it remains easier to
implement because it does not require the user to examine the item being recom-
mended, and because it also computes an objective quantitative measure (based on
total contribution of the influence of recommended items’ dominant content features
relative to the dominant user profile features). These can be computed directly from
the ratings data, recommended lists, and explanations, none of which require actual
user-based tests.

2.5 Conclusion

Machine learning models are increasingly reliant on data that is being generated at a
fast pace. In particular, more and more of this data is related to humans or generated
by human activity, and this in turn makes the data susceptible to various forms of
human bias. Bias that can originate from the data or the design of the algorithm itself
can result in building unfair machine learning models. Therefore, it is important to
study and recognize the source of the bias before designing ML models. One way to
determine if a model is fair is by incorporating explainability which results in trans-
parency. Prominent examples of ML models are recommender system models that
interact directly with humans and whose outputs are consumed directly by humans.
Designing explainable recommender system models and explaining recommenda-
tions can help enhance the scrutability of the learnedmodels and help detect potential
biases, in addition to offering, as additional output, the reasoning behind the predic-
tions. In this chapter, we presented our definition of fairness and transparency in ML
models in addition to the main sources of bias that can lead to unfair models. We
further reviewed the taxonomy of explanation styles for recommender systems, and
reviewed existing models that can provide explanations for their recommendations.
We concluded by reviewing several evaluation metrics for assessing the power of
explainability in recommender systems.
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Chapter 3
Beyond Human-in-the-Loop:
Empowering End-Users with
Transparent Machine Learning

Patrick C. Shih

Abstract Advances in data analytics and human computation are transforming how
researchers conduct science in domains like bioinformatics, computational social sci-
ence, and digital humanities. However, data analytics requires significant program-
ming knowledge or access to technical experts, while human computation requires
in-depth knowledge of crowd management and is error-prone due to lack of scien-
tific domain expertise. The goal of this research is to empower a broader range of
scientists and end-users to conduct data analytics by adopting the End-User Develop-
ment (EUD) models commonly found in today’s commercial software platforms like
Microsoft Excel, Wikipedia and WordPress. These EUD platforms enable people to
focus on producing content rather than struggling with a development environment
and new programming syntax or relying on disciplinary non-experts for essential
technical help. This research explores a similar paradigm for scientists and end-
users that can be thought of as End-User Data Analytics (EUDA), or Transparent
Machine Learning (TML).

3.1 Introduction

The scientific method is based on empirical measures that provide evidence for
hypothesis formation and reasoning. The process typically involves “systematic
observation, measurement, and experiment, and the formulation, testing, and
modification of hypotheses” [74]. Critical thinking—“the intellectually disciplined
process of actively and skillfully conceptualizing, applying, analyzing, synthesiz-
ing, and/or evaluating information gathered from, or generated by, observation,
experience, reflection, reasoning, or communication, as a guide to belief and action”
[84]—is key to the process.

In empirical research, the scientificmethod typically involves a scientist collecting
data based on interviews, observations, surveys, or sampling of specimens. Once the
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Fig. 3.1 Traditional process of scientific inquiry

raw data sample is collected, a data cleaning and coding process identifies outliers
and erroneous data resulting from sampling error, and the researcher synthesises
raw data points into aggregated clusters or themes that suit the research focus. A
data analytics and validation process typically follows, involving statistical or inter-
coder reliability checks to ensure the quality of the findings. Finally, the results are
formatted in a fashion appropriate for the intended audience, be it a research or public
community. Figure 3.1 provides a simplified view of the traditional scientific inquiry
process.

With the improvement of data collection instruments (e.g., space imaging for
astrophysicists, environmental sampling for climate scientists, etc.) and the emer-
gence and wide adoption of consumer Information and Communication Technolo-
gies (ICTs), researchers are turning to a broad variety of data sources to infer sample
population characteristics and patterns [46]. Although improvements in data collec-
tion have enabled scientists to make more accurate generalisations and ask novel
questions, the sheer amount of available data can exceed scientists’ ability to utilise
or process it. Some have described this as the “Big Data” phenomena, defined by
the three V’s: volume, variety, and velocity [67]. To cope, the scientific community
has enlisted the help of citizen science and crowdsourcing platforms to engage the
public in both data collection and data analysis [109]. However, this naturally results
in a crowd management problem in which factors like task modulation, task coor-
dination, and data verification have added to the issues that scientists must actively
manage [57]. Advances in computational infrastructure and the availability of big
datasets have also led to a new set of computational techniques and data analytical
tools capable of processing and visualising large scale datasets [15]. This imposes a
further burden on scientists, however, in the form of having to constantly learn new
computational techniques and manage new visualisation tools.

Thus, crowd management and computational data analytics have become vital
skillsets that the scientific workforce is starting to develop as basic building blocks
of the modern day scientific method. Scientists using Big Data are increasingly
dependent on knowledge of computational skillsets or on having access to technical
experts in all aspects of the scientific method (e.g., data gathering, data generation,
data collection, data storage, data processing, data analysis, data verification, data
representation, data sharing, data preservation, etc.). They also find themselves lever-
aging crowd workers whomay not possess relevant scientific knowledge to provide a
ground truth label of large datasets, known as “Human-in-the-Loop” (HITL)machine
learning [18, 82], and scientists to correct data errors and fine-tune algorithms, known
as “Interactive Machine Learning” (IML) [25, 107]. In fact, the incumbent skillsets
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Fig. 3.2 Emerging process of scientific inquiry

have become so necessary and in such high demand that the White House has issued
a call for a Science, Technology, Engineering, and Mathematics (STEM) initiative
to make these areas of inquiry and practice more accessible to the general public
[44]. Figure 3.2 provides an overview of this newer, emerging process of scientific
inquiry.

Although the demand for STEM skillsets is increasing, enrolment in computer
science has remained stagnant [17], which may be attributable to perceived race
and gender stereotypes, or unequal access to computer science education [43, 108].
Computer education researchers have investigated how to effectively integrate com-
putational thinking into education in order to craft, “the thought processes involved in
formulating a problem and expressing its solution(s) in such a way that a computer-
human or machine-can effectively carry out” [111, 112]. One approach involves
motivating student interests with gamification [22, 32]. Another approach focuses
on removing the technical barrier to content creation with user-friendly End-User
Development (EUD) platforms [27, 62]. The latter view includes the belief that
end-users with little or no technical expertise will be more willing to participate
in tinkering, hacking, or other STEM activities if the barrier to entry is lowered.
This research follows this second approach by proposing an end-user data analytics
paradigm to broaden the population of researchers involved in this work, extend-
ing prior efforts to make computationally complex data analytics algorithms more
accessible to end-users. This exploratory study focuses on examining the impact of
interface design for eliciting data input from end-users as a segue into future work
that will generate insights for designing end-user data analytics mechanisms.

The initial goal of this research is to create a transparentmachine learning platform
prototype to assist the scientists and end-users in processing and analysing real-time
data streams and to understand opportunities and challenges of developing an end-
user data analytics paradigm for future scientific workforces. Ultimately, the goal is
to empower scientists and end-users to train supervised machine learning models to
pre-process other sensor and device data streams along with those from cameras, and
interactively provide feedback to improve model prediction accuracy. In this sense,
the proposed end-user data analytics paradigm replaces human observers taking and
coding data by hand with computational labour, where scientists or trained observers
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Fig. 3.3 Proposed process of scientific inquiry (End-User Data Analytics)

become end-users training the system by providing the system with ground truth
labels for the data. In the process, the system frees the scientists fromhaving to depend
on highly technical programming expertise. In the context of a scientific workforce,
this could potentially replace the onerous, labour-intensive system commonly used
in observation research around the world. The same applies to domain applications
with similar care andmonitoringmandates, such as nursing homes, hospital intensive
care units, certain security and military-related environments, and space and deep
sea exploration vessels. Figure 3.3 provides an overview of the proposed end-user
data analytics paradigm.

3.2 Background

The emergence, adoption, and advances of ICTs in the past several decades have rev-
olutionised the scientific method and the process of scientific inquiry. This section
provides a general overview of the roles of ICTs in scientific inquiry along two
dimensions: the scientific domain expertise of the users and the technical functions
of the ICTplatforms. ICTuse in the scientificworkforce evolved from collaboratories
in the late 1980s that created communication infrastructures for scientists to share
resources and early results, to citizen science platforms in the 1990s that allowed the
public to contribute to scientific data collection, analysis, and interpretation. The cit-
izen science platforms have led more recently to crowdsourcing platforms that allow
online crowd workers to analyse modularised datasets (e.g., human computation and
HITL machine learning). The proposed end-user data analytics platform—a trans-
parent machine learning platform prototype that assists animal behavioural scientists
to analyse multi-channel high-definition video camera data-is an effort to now pro-
vide scientists with computational capabilities to process and analyse large datasets.
Figure 3.4 shows the overview of ICT use in scientific inquiry.
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Fig. 3.4 Overview of ICT use in scientific inquiry

3.2.1 Collaboratory and Large-Scale Scientific Workforce

The term “collaboratory” was coined by William Wulf while he worked for the
National Science Foundation by merging the notion of traditional laboratory and
collaboration that is afforded by ICT platforms that emerged in the late 1980s [59].
The shift in scientific inquiry occurred naturally out of the need to overcome physi-
cal limitations of instrument, infrastructure, and information sharing, such as results
collected by scarce research instruments [1], or annotated electronic editions of 16th-
century manuscripts [49]. Bos et al. (2007) describes a taxonomy of seven types of
collaboratories that are differentiated by the nature of activities (loose coupling &
asynchronous vs. tight coupling, synchronous) and resource needs (infrastructure
and research instruments, open data, and virtual learning and knowledge communi-
ties) [8]. The early collaboratory platforms typically included functionalities such
as electronic whiteboards, electronic notebooks, chatrooms, and video conferencing
to facilitate effective coordination and interactions between dispersed scientists in
astrophysics, physics, biology, medicine, chemistry, and the humanities [26].

3.2.2 Citizen Science

Citizen science is a two-part concept that focuses on (1) opening science and sci-
ence policy processes to the public and (2) public participation in scientific projects
under the direction of professional scientists [80]. Unfortunately, discussions of the
public understanding of science tend to dismiss citizen expertise as uninformed or
irrational, and some have advocated for involving the public in citizen projects to
facilitate more sustainable development of the relationship between science, society,
and the environment [51, 52]. Although research has attempted to involve the public
in citizen science projects, without proper research framing and training prior to
the project, most people will not recognise scientifically relevant findings [16, 96].
Citizen science projects are also limited to those that could be broken down into
modular efforts in which laypeople could reasonably participate [96]. This limits
the complexity of the projects that citizens could participate in. There have been
reports of mild success in terms of scientific discoveries, but the actual impact of
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involving citizens in scientific projects remains fairlyminimal [9]. The intent inmany
citizen science projects is to involve volunteers in data collection or interpretation,
such as the large volume of video data of animals at the zoo, that are difficult for
scientists to process. These citizen science efforts are viewed as “complementary
to more localized, hypothesis-driven research” [20]. Nonetheless, citizen science is
generally seen as a positive factor in raising awareness of science and is frequently
used as a mechanism for engaging people in civic-related projects [7, 24]. Earlier
citizen science platforms typically employed traditional technologies that are com-
monly found in asynchronous collaboratories mentioned in the previous section [8,
26]. Modern citizen scientist platforms are starting to incorporate features found in
common crowdsourcing platforms [99], and those will be described in the section
below.

3.2.3 Crowdsourcing, Human Computation,
and Human-in-the-Loop

Although citizen science taps into people’s intrinsic motivation to learn and con-
tribute to science by providing labour for scientific inquiry, other crowdsourcing
platforms have emerged as a way for people to outsource other kinds of labour at an
affordable cost [45]. Research has linked gamification to crowdsourcing projects—if
people can be incentivised to spend countless hours on playing highly interactive and
engaging video games, this motivation can be harnessed as free work using progress
achievement and social recognition [29, 30, 32, 85, 98]. Proponents also argue that
if a task can be broken down finely enough, anyone can spend just a short moment
to complete a simple task while also making a little bit of extra income. As such,
crowdsourcing and human computation platforms primarily focus on task structure
and worker coordination relating to workflow, task assignment, hierarchy, and qual-
ity control [57], whereas communication features between clients and workers and
among workers themselves are practically nonexistent [50].

In terms of getting citizens to contribute to science projects, research has leveraged
crowd workers on crowdsourcing platforms to provide ground truth label of large
datasets to improve HITL prediction models [18, 25, 82, 107]. In contrast with the
citizen science platforms that typically fulfil workers’ desires for educational or civic
engagement activities, workers on crowdsourcing platforms are typically underpaid
and have no opportunity to learn or become more engaged with the project after
task completion [57]. The ethics of crowdsourcing platforms are heavily debated for
these reasons [41, 50, 81]. These platforms have also sparked a growth of peer-to-
peer economy platforms that undercut existing worker wages[66].
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3.2.4 From Human-in-the-Loop to Transparent Machine
Learning

With the increase in available user-generated content and sensor data along with sig-
nificant improvement in computing infrastructure, machine learning algorithms are
being used to create prediction models that both recognise and analyse data. HITL
machine learning attempts to leverage the benefits of human observation and cate-
gorisation skills as well as machine computation abilities to create better prediction
models [18, 25, 82, 107]. In this approach, humans provide affordable ground truth
labels while the machine creates models based on the humans’ labels that accurately
categorise the observations. However, HITL machine learning suffers similar issues
of crowdsourcing and citizen science platforms. For example, similar to the workers
on crowdsourcing platforms, the human agents in these cases are typically used to
simply complete mundane work without deriving any benefits from participation in
the project. In addition, human labels suffer from errors and biases [60, 61]. Sim-
ilar to the participants of the citizen science program, crowd workers are prone to
making incorrect labels without domain knowledge and proper research training and
framing. Accuracy in the correct identification of data and the training of the system
remain two major issues in the field of HITL machine learning and machine learn-
ing as a field in general [4, 60, 61, 78]. To empower scientists with mitigating the
aforementioned issues, a research agenda on an end-user data analytics paradigm is
necessary for investigating issues relating to the design, implementation, and use of a
transparent machine learning platform prototype to make computationally complex
data analytics algorithms more accessible to end-users with little or no technical
expertise.

3.3 Impact of Interface Design for Eliciting Data Input
from End-Users

The goal of this research is to learn about the barriers that scientists and end-users
face in conducting data analytics and to discover what kinds of interaction techniques
and end-user technological platforms will help them overcome these barriers. As an
initial step to understand current problems and practices that scientists and end-
users encounter throughout the data analytics process, the following experiment was
conducted to demonstrate the impact of interface design for eliciting data input from
end-users.

The experiment uses NeuralTalk2 [56, 102], a deep learning image caption gen-
erator, to generate 5 most likely captions for each of 9 images. In a between-subject
experiment, a total of 88 college students were randomly assigned to one of the three
interface groups—Yes/No (31 students), multiple-selection (34), and open-ended
questions (23).
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• In the Yes/No group, participants answered whether the generated caption accu-
rately describes an image. This was repeated for all 5 captions for each of the 9
images, totalling 45 questions.

• In the multiple-selection group, all five captions were presented to the partici-
pants at the same time. The participants were asked to select all the captions that
accurately described an image. This was repeated for all 9 images, totalling 9
questions.

• In the open-ended group, participants were asked to describe what they saw in an
image. This was repeated for all 9 images, totalling 9 questions.

Participants were asked to rate their confidence level after answering each ques-
tion. Participants’ feedback accuracywas assessedmanually after the experimentwas
conducted. Selection consensus across participants and time spent were also com-
pared and analysed. Figure 3.5 illustrates the design of the experimental conditions.
Below are results that detail how different feedback interfaces influence feedback
accuracy, feedback consensus, confidence level, and time spent in how participants
provide feedback to machine learning models.

Figure 3.6 illustrates the feedback accuracy of the captions selected by the partic-
ipation. An ANOVA test followed by post-hoc comparisons revealed that the open-
ended group produced higher feedback accuracy than both the Yes/No group and the
multiple-selection group, and the Yes/No group outperformed the multiple-selection
group (F(2,85) = 20.44, p < .0001).

Fig. 3.5 Experimental design

Fig. 3.6 Feedback accuracy:
open-ended > Yes/No >
multiple-selection
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Fig. 3.7 Feedback
consensus

Fig. 3.8 Feedback
confidence: Yes/No >
open-ended and
multiple-selection

Although the feedback accuracy varied significantly across groups, participants
achieved similarly high within-group consensus across all 3 conditions (non-sig.,
see Fig. 3.7). This indicates that the differences in the feedback provided by the
participants were indeed caused by the interface design conditions.

In terms of feedback confidence, although the open-ended group provided the
highest level of feedback accuracy, their self-perceived confidence level (U = 372.5,
p < 0.05) is as low as the multiple-selection group (U = 197.5, p < 0.01) when
compared to the Yes/No group. Figure 3.8 shows that the Yes/No group reported
the highest self-perceived confidence level. This is likely due to the fact that there
leaves less room for self-doubt when the participants are presented with only Yes/No
options.

Figure 3.9 illustrates the difference in time spent for providing feedback across
the 3 groups. It took the Yes/No group significantly more time to rate 45 captions (5
per 9 images) than the multiple-selection group (F(2,85) = 6.15, p < 0.05), whereas
there is no significant difference between the open-ended and the multiple-selection
groups. This is likely due to the fact that the captions in the Yes/No group were
presented across a series of 45 questions instead of 9 questions presented to the
multiple-selection and the open-ended groups.

Based on the results presented above, future transparentmachine learning research
should account for the following trade-offs when eliciting user feedback.
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Fig. 3.9 Time spent on
providing feedback: Yes/No
> multiple-selection

• The open-ended group achieved the highest level of feedback accuracy, and the
participants also reported the highest level of confidence in their feedback. The fact
that this can be accomplished within a similarly short time frame as the multiple-
selection group points to the potential of utilising an open-ended form to elicit
user feedback when the task demands such high level of accuracy. The biggest
drawback is that the open-ended feedback requires active human involvement to
interpret the data.A future transparentmachine learningmodel could utilise current
state-of-the-art natural language processing efforts to pre-process the open-ended
responses to generate a list of possible labels before a second round of human
coding. This essentially reduces the effort of analysing open-ended responses
into two rounds of Yes/No or multiple-selection coding efforts for the users. The
cumulative time spent in the proposed multi-round effort will not greatly exceed
that of the Yes/No group based on the results demonstrated in this experiment, and
the superb accuracy may justify the usage of the multi-round effort in some cases.

• While the multiple-selection group may appear to be promising due to the ease of
data processing of user feedback relative to the open-ended group, the results show
that it produced the lowest feedback accuracy and the participants are less confident
of their feedback. One advantage of this user feedback elicitation method is that
it gives the users the ability to view and provide feedback on multiple machine-
generated labels at the same time, which results in the lowest cumulative time spent
for the participants in our experiment. This method may be desirable in situations
where feedback accuracy is less critical and the goal is to process through a large
amount of data in a short period of time.

• The Yes/No group produced the medium level of feedback accuracy. Although
the participants in the Yes/No group spent the highest cumulative time to provide
feedback, it took the participants much less time to rate the individual options with
the highest self-reported confidence level compared to the multiple-selection and
the open-ended groups. The flexibility of adjusting the number of options that the
users rate at any given time (e.g., users can stop after rating through 2 options
instead of having to view all of the options at once in the multiple-selection group)
can be especially desirable when user commitment is unknown and the intention
is to minimise user burden to provide feedback. The human-labelled results are
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also easy for machine learning models to process, making the Yes/No group the
most flexible and adaptable method.

These experimental findings show that interface design significantly affects how
end-users transform information from raw data into codified data that can be pro-
cessed using data analytics tools, and the insights can inform the design, imple-
mentation, and evaluation of a usable transparent machine learning platform in the
future. Future transparent machine learning could expand the study to different user
feedback scenarios and contexts that require human feedback.

3.4 Design for End-User Data Analytics

Currently, there are many popular, general-purpose open-source scientific numerical
computation software libraries such as NumPy [103], Matplotlib [47], and Pandas
[69] that users can import into their software development environment to conduct
numerical analysis programmatically. However, the use of these software libraries
requires significant programming knowledge. To make data analytics more user-
friendly, popular machine learning and data mining software suites such as Weka
[31, 113], Orange [19], KNIME [6], and Caffe [55] provide users with command-
line and/or graphical user interfaces to access a collection of visualisation tools and
algorithms for data analysis and predictivemodelling.Yet these software suites do not
provide label suggestions based on the currently trained model, typically operating
under the assumption that ground truth labels are error-free. Functionalities of these
software suites are typically limited to training static rather than real-time live-stream
datasets and lack the ability to allow users to interactively train machine learning
models in order to more effectively explore data trends and correct label errors.
In other words, these platforms neglect data collection and data (pre-)processing
phases, both of which are essential steps throughout data analytics. A new paradigm
is needed to more effectively disseminate the data science mindset more holistically
and make data analytics more accessible to learners and end-users.

To realise intuitive, easy-to-learn, and user-friendly interfaces for data collection,
processing, and analytics, it is necessary to create a series of software front-end
prototypes, increasing in complexity but all sharing the same basic framework for
interaction. The goal of the prototypes will be to learn about how different interac-
tion techniques can replace or enhance the current paradigm of data processing by
scientists and end-users. In the spirit of end-user development paradigms such as
Scratch [79], combining interaction techniques used in interactive machine learning
[25, 107] and direct manipulation interfaces [48] to create a novel interface to ease
the training process of supervised learning models could potentially yield a more
usable transparent machine learning platform. The goal is to create a system that
allows the user to smoothly move between data and a list of inferred behaviours,
allowing scientists and end-users to visually preview and make corrections to the
prediction model. Although the prototypes will vary, the interactions will share the
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same basic features. Users will use the platform to select the input data streams to
be worked and then overlay these with behavioural data previously coded by trained
scientists and end-users.

3.5 Conclusion

Successful investigations of transparent machine learning require multidisciplinary
expertise in (1) human-computer interaction and end-user oriented design processes
such as participatory design, interaction design, and scenario-based design [2, 3,
10, 11, 23, 28, 58, 63–65, 73, 83, 91, 94, 97, 104], (2) human computation and
crowdsourcing[5, 12, 14, 21, 34, 36, 37, 39, 40, 75, 86, 90, 100, 105, 106, 114],
(3) end-user visualisation interfaces and computational data analytics [33, 35, 38,
42, 53, 54, 70–72, 87–89, 92, 93, 95, 101, 110, 116], and (4) computer science
education [13, 68, 76, 77, 115, 117, 118]. This research reveals the initial insights
on how to make data analytics more accessible to end-users, to empower researchers
in scientific inquiry, and to involve the public in citizen science. This research also
will provide trained end-users opportunities to participate in citizen science efforts,
allowing them to contribute directly to citizen science aswell as becomemore familiar
with the scientific method and data literacy, heightening awareness of how STEM
impacts the world.

There are numerous potential applications of this work. Sensor and surveillance
technologies havemade great strides in behaviour profiling and behavioural anomaly
detection. Such technologies may allow scientists and end-users to closely observe
real-time data streams around the clock. Although the proposed end-user data ana-
lytic and transparentmachine learning platform is currently targeted toward scientists
and end-users, the platform and the resulting knowledge could be used most imme-
diately to make data analytics more accessible for other domain applications with
similar care and monitoring mandates, such as nursing homes, hospital intensive
care units, certain security and military-related environments, and space and deep
sea exploration vessels.
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Chapter 4
Effective Design in Human and Machine
Learning: A Cognitive Perspective

Robert Zheng and Kevin Greenberg

Abstract This chapter offers a discussion on the relations between knowledge trans-
fer in human deep learning and machine learning. A review of cognitive theories and
models related to knowledge transfer in human deep learning was made in reference
to the cognitive structure of surface and deep processes in learning. This is followed
by a review of the characteristics of machine learning and their unique features in
terms of supporting cognitive processes in knowledge transfer. Discussions on how
knowledge in human cognitive processes may assist the design and implementation
of machine learning are made. A framework was proposed to advance the practice
of machine learning focusing on transfer of knowledge in human deep learning with
respect to the relations between human cognitive processes and machine learning.

4.1 Introduction

The growth of digital technology has significantly changed the landscape in educa-
tion providing numerous opportunities for personalized and human deep learning,
enabling students to engage in creative and critical thinking, and to develop skills
and abilities necessary to meet the challenges in the 21st century [2, 16]. Machine
learning has become a viable venue for improving learners’ behaviours and cognitive
processes in learning.Hildebrandt [38] points out thatmachine learning can “help stu-
dents to improve their learning behaviours …help schools, colleges, and universities
to manage, coordinate, and administrate information and communication regarding
the progress of their students’ performance” (p. 7). Machine learning has shown
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promises in education. A review of literature reveals that machine learning has been
applied in areas like domain assessment [4, 42], intelligent tutoring [41], expertise
acquisition [37], educational gamification [13, 23], learner interaction [47], and cur-
ricular integration [22]. Despite its multifaceted approaches in education, the focus in
machine learning research appears to be more interested in the technical aspects such
as the algorithm of the expert system, the semantic functions in gamification, and
so forth [6, 31, 33]. Few considerations have been given to the nature and structure
of cognitive processes such as deep-level cognitive processes relating to knowledge
transfer and construction. A lack of this cognitive perspective has begun to hamper
the practice and application of machine learning in education. The objectives of the
current chapter therefore are two-fold: First, it describes the cognitive processes in
human deep learning by reviewing models and theories in research. Second, it pro-
poses a framework that delineates the relationship between cognitive processes and
machine learning. From this chapter the readers will be able to understand:

1. The role of knowledge structure and cognitive processes in learning;
2. The process of human deep learning in machine learning.

4.2 Theoretical Background

Since the second objective highlights the process of human deep learning in machine
learning, it is essential that the concept of “deep learning” be defined to set the tone
for the rest of the chapter. There are significant differences in the definitions of deep
learning between cognitive scientists and machine learning scientists. A discussion
of the differences follows. From a machine learning perspective, deep learning is
part of a broader family of machine learning methods based on learning data repre-
sentations. The notion of representations derives from and is loosely based on the
interpretation of information processing and communication patterns in a biological
nervous system, such as neural coding that attempts to define a relationship between
various stimuli and associated neuronal responses in the brain. Based on the biologi-
cal nervous system,machine learning researchers create architectures to explicate the
data patterns from large-scale, unlabelled data sets. These architectures commonly
known as deep learning architectures (also known as deep structured learning or
hierarchical learning) that include deep neural networks, deep belief networks and
recurrent neural networks, have been applied to fields including computer vision,
speech recognition, natural language processing, audio recognition, social network
filtering, machine translation, bioinformatics and drug design with results produced
comparable to and in some cases superior to human experts. Differing frommachine
learning scientists, cognitive scientists define deep learning based on the processing
levels of information in learning. This includes shallow learning where information
is processed at lexicon and semantic level with recall and rote memorisation and
deep learning where the information is processed through the connection with learn-
ers’ prior knowledge and schemata that results in constructive and creative thinking,
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knowledge application and transfer [11, 34, 40]. In this chapter, the term deep learn-
ing refers to human cognitive information processing in learning as measured by
their ability to thinking deeply in terms of creativity, application and transfer of
knowledge.

The current study is informed by several cognitive and learning theories including
Merrill’s [40] component display theory, the framework on deep learning [10], and
recent research on machine learning.

4.2.1 Merrill’s Component Display Theory and Knowledge
Process

It has been recognised that human learning activity, regardless of the learningdomains
and subject, can be essentially categorized into five outcomes: intellectual skills,
verbal information, cognitive strategy, motor skills and attitude [19]. According to
Gagne [20], intellectual skills refer to using concepts and rules to solve problems;
verbal information means stating information; cognitive strategy describes the act
of originating novel solutions to problems by utilizing various means for controlling
one’s thinking or learning processes; motor skills refer to executing bodily move-
ments smoothly and in proper sequence; finally, attitude means choosing to behave
in a particular way.

Merrill [40] further added that human learning activities in relation to their achiev-
able outcomes interact at four levelswhich he described as components of knowledge.
They comprise facts, concepts, procedures, and principles. Facts are the smallest units
that “have no general or abstract representation” ([40], p. 288). Examples of facts
include a census number or a reading from a thermometer. In contrast, concepts
are general notions or ideas that combine all the characteristics of facts or partic-
ulars. Concepts can be abstract or concrete, both generalise the characteristics of
individual facts. For example, the concept of car is an abstraction of the characteris-
tics of individual cars, that is, all cars regardless of the brand and colour, have four
wheels, engines, and so forth. Procedure is a particular way of carrying out an act
and defines the steps of action in certain order and manner. Examples of procedure
include surgical procedure, how to bake a cake, how to assemble a car, etc. Finally,
principles refer to rules or beliefs that explain or control how things happen or work.
For example, Newton’s laws of motion explain the motion of an object or body in
terms of force. The principle of diminishing returns in economics explains the point
at which the level of profits or benefits gained becomes less than the amount ofmoney
or resources invested. Merrill claimed that knowledge components can be executed
at three levels of cognitive processing. They are remembering, using, and finding.
When learning a content, learners first memorise the facts, concepts, procedures and
principles followed by using or applying the facts, concepts, procedures and prin-
ciples. Finally, they find or discover concepts, procedures, and principles. Table 4.1
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Table 4.1 Knowledge components with levels of cognitive processing

Facts Concepts Procedures Principles

Remember X X X X

Use X X X X

Find X X X

summarises Merrill’s component display theory showing the relationship between
components of knowledge and levels of cognitive processing.

4.2.1.1 Shallow and Deep Processing

Research has shown that learners’ processing of information can differ significantly.
Some process information at a shallow or surface level by memorising and recall-
ing information; others process information at a deeper level by making inferences
about what they learn and transferring their knowledge to new learning situations
[26, 34]. In Merrill’s framework of knowledge components, memorisation repre-
sents a shallow cognitive processing where knowledge like facts, concepts, proce-
dures, and principles are passively processed. Learners memorise the information
verbatim without fully understanding the roles and relationship between knowledge
components. For example, learners may memorise the facts of different brands of
car (e.g., Ford, Honda, Mercedes, etc.) and the concept of a car (e.g., four wheels,
engine, carburretor, etc.), but may never be able to tell how these cars differ in terms
of air and fuel combustion ratio in relation to horse power, or compare types of
wheel in terms of speed, safety and duration among different cars. In other words,
if the process of learning is characterised as memorising information only, undesir-
able consequences associated with this process may occur. Evidence from empirical
research has shown that rote memorisation and recalling lead to knowledge regur-
gitation and inertia, failing to meaningfully apply knowledge to new learning and
application [5, 27].

In contrast, when learning focuses on application and discovery, learners begin to
use the concepts, procedures and principles to understand the content thus leading
them to explore and find new rules and principles. This is what Kintsch [34] describes
as deep learning in his comprehension theory. According to Kintsch, the most robust
learning occurs when learners integrate the content with their prior knowledge to
understand rather than memorise what is being learned. This integrated comprehen-
sion approach helps promote learners’ inference, application, and knowledge transfer
in learning. Wilhelm [53] pointed out when learners are engaged “in the challenges
of understanding and then apply what they are learning, [thus] producing important
and usable meanings and actions instead of just consuming information provided
from external sources” (p. 37) (See also [44]). However, Asikainen and Gijbels [3]
conducted a review of 43 studies on deep learning and found no empirical evidence
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for the assumption that students develop deeper approaches during higher educa-
tion. The finding raises some concerns in the state of student learning in regard to
deep understanding. Is it due to a lack of rigour in curricular content that students
are not challenged enough to engage in deep learning? Or is it due to a lack of
instructional strategies that fail to properly challenge students to deep level thinking
and understanding? While the curricular content can be problematic sometimes, the
issue seems to lie more in the strategy than content, particularly in light of the impact
of fast-paced digital technology on our information processing. The next section
focuses on a theoretical framework in cognitive strategy in deep learning.

4.2.2 Deep Learning: A Two-Tier Perspective

Deep learning like knowledge transfer involvesmapping between the source problem
and the target problem [30] at the surface and the deep levels [10]. The source problem
is the initial task presented to the learner in order for them to find the knowledge
required to solve the question, while the target problem is the ensuing problem
to measure the learners’ transfer of the knowledge. The surface level refers to the
problem state which describes what the problem is. An example would be solving
the area of a triangle. The deep level refers to rules and principles underlying the
problem state. For example, the formula Area_tr iangle = 1/2 ∗ Base ∗ Height is
used to solve the problem at the surface structure. In complex learning like knowledge
transfer, the source/target problems crisscross with the surface/deep levels to affect
the outcome in knowledge transfer. In other words, transfer learning is characterised
by (a) mapping between the source and target problems and (b) applying rules (deep)
to the problem state (surface) (e.g., [10, 24, 30, 55]).

There are two situations associated with knowledge transfer. First, the source
problem and the target problem are similar at the surface and deep levels, that is, the
problem types and their underlying rules are similar (Fig. 4.1a). Second, the source
problem and the target problem are dissimilar at the surface level but similar at
the deep level (Fig. 4.1b). Research has shown that learners often have difficulty in
applying the rules/principles to the problem state when the source problem and target

Fig. 4.1 Surface and deep structure of source and target problems
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problem are dissimilar at the surface level but similar at the deep level [8, 14]. The
following sections discuss the two situations in complex learning.

4.2.2.1 Similar Surface and Deep Structures Between Source
and Target Problems

When surface and deep structures are similar, learners are often able to transfer
knowledge from the source problem to the target problem which is defined as near
transfer. Due to the structural similarity between the problem state, rules and prin-
ciples, it is easy for learners to apply what they learn in the source problem to the
target problem [10]. Figure4.2 presents a situation in which the source and tar-
get problems have similar problem states (both are triangles) with the same rule
(Area_tr iangle = 1/2 ∗ Base ∗ Height) in problem solving. In this situation, the
learner first learns to apply the formula of triangle area to solve the triangle area

Fig. 4.2 Source and target problems share the similar surface and deep structure
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problem in the source problem. Then he/she applies the same formula to solve a
similar problem in the target problem. There is a consistency between the source and
target problems in terms of surface and deep structure. Research shows that when
the surface and deep structures are similar between the source and target problems,
transfer of knowledge is more likely to occur since learners can easily apply the rules
and principle in the source problem to the target problem in problem solving [10].

4.2.2.2 Dissimilar Surfaces with Similar Deep Structures Between
Source and Target Problems

When the source problem and the target problem are different at the surface structure
level but similar at the deep structure level, transfer can be challenging. This type
of knowledge transfer is often referred to as far transfer. Fig. 4.3 presents a scenario

Fig. 4.3 Dissimilar surface with similar deep structure between source and target problems
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where the learner transfers knowledge between different surface structures. In the
source problem, the learner is given a two dimensional geometry shape consisting
of six separate squares and asked to identify the height, width, and length (problem
state). They then learn how to apply the cubic volume formula (v3 = Length ∗
Width ∗ Height) to find the cubic volume (deep learning). In the target problem,
the learner is presented with a three dimensional geometry figure of a hay stack
and asked to identify the height, width, and length (problem state) and applies the
same formula to solve the cubic volume problem (deep learning). Since the surface
structures between the source and target problems are different, the learner could have
trouble in identifying the height, width, and length and fail to transfer knowledge
from source problem to target problem. Previous studies have shown that even after
students have succeeded in solving a source problem, they still cannot successfully
solve a target problem with the problem state different from its source problem at
the surface level [9, 24, 25, 45]. The difficulty in far transfer not only lies in the
differences in problem states (see previous discussion) but also in domains such as
transferring mathematical concepts to solving physics problems.

4.2.2.3 Facilitate Knowledge Transfer in Problems with Different
Surface Structure

As discussed earlier, students often fail in knowledge transfer when the problem
states are dissimilar in surface structure [9, 10, 24, 25, 45]. Chi and VanLehn [10]
point out that the failure in knowledge transfer between source and target problems is
probably due to a lack of in-depth interaction between the surface and deep structures
in initial learning. They suggest that the learner must have a deep interaction with
the source problem before he/she can transfer knowledge to solve the problem in
the target problem. That is, the learner must “see” the deep structure in the source
problem first before he/she can solve the problem in the target problem [10]. Chi and
VanLehn [10] noted the concept of deep structure is not limited to rules and principles.
It includes schemas in problem solving research, causal relations in non-problem-
solving studies, and mental models in learning studies. An indepth interaction with a
deep structure (e.g., rules, principles, mental model, schema, etc.) enables learners to
gain full understanding of the deep structure in initial learning which consequently
facilitates transfer in target problem solving (Fig. 4.4).

4.2.2.4 Evidence of Indepth Interaction in Initial Learning

Evidence has demonstrated the effects of initial deep interaction in a source problem
on knowledge transfer in a target problem [11, 25, 48, 51]. Several approaches have
been introduced to solicit indepth interaction in initial learning. For example, Chi [11]
conducted a study using a constructive/generative approach to foster learners’ deep
thinking in order to solicit knowledge transfer. The study asked students to draw
a diagram that delineated the relationship among the concepts and principles and
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Fig. 4.4 A two-stage
knowledge transfer model
for deep interaction in initial
learning

requested them to self-explain a worked-out solution to identify the deep structure
principles. The results showed that the invention group developed deeper understand-
ing that led to greater transfer than did the control group. Gick and Holyoak [25]
studied student knowledge transfer by asking students to provide their own solutions
to the source problem. They found providing one’s own solution to initial learning
led to deeper initial learning which fostered greater transfer. Schwartz et al. [48] pro-
vide two source examples and asked students to compare and contrast the two source
examples so that they were able to outline the underlying abstract principles. The
results showed that students who engaged in the comparing and contrasting process
in initial learning performed better than did the control group in terms of knowledge
transfer. VanLehn and Chi [51] studied transfer by asking students to identify, for
every written step in a solution, the deep principle that generated it. They found that
students gained deep understanding of the principles and were able to apply this to
target problem solving.

The evidence from empirical research has demonstrated that students’ initial deep
interaction with learning materials “was successful enough to provide a substantive
basis for them to have transferred what they learned to new contexts” ([17], p. 453).

4.2.2.5 Challenges of Deep Interaction in Initial Learning

In spite of the evidence in successful transfer by interacting deeply with the deep
structure in initial learning, there are several challenges in regard to the practice
of student deep interaction in initial learning. First, the challenge is related to the
degree of support neededwhen students interactwith the deep structure. For example,
how much support should be provided when students try to identify deep principles
in written steps in solutions in VanLehn and Chi’s study [51]? What would the
cognitive scaffolding look like if students fail to compare and contrast in initial
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learning in Schwartz et al.’s study [48]? To what extent should teachers give support
to students in Gick andHolyoak’s study [25] when students fail to provide a solution?
Second, there is a big challenge in terms of instructional resources. Since individual
students differ in their abilities to interact with deep structure, there is a need for
instructional resources and teachers to support individualised deep learning. Since
there has already been a shortage of teachers in schools, placing more teachers in
classrooms to support individualised deep learning is practically impossible and
logistically unrealistic.

Because of the challenges with the deep interaction approach, the practice of
having students engaged in effective knowledge transfer through deep interaction
in initial learning has been stagnant. Students basically read through the solutions
provided to them and then are asked to work on new problems. Chi and VanLehn
[10] pointed out “reading [the solution] is considered a passive overt engagement
activity…that reading a solution example alone is not a good enough learning activity
to engender deep learning” (p. 179). However, the status quo has changed with
the advancement of new technology, especially artificial intelligence and machine
learning. The next section discusses howmachine learning can assist in deep learning.

4.3 Machine Learning as an Instructional Support
in Deep Learning

Machine learning has long been considered a viable tool for education [35, 38, 43,
49]. It has been successfully used to help student learning in the form of intelligent
tutoring, assessment, reading, and more recently game-based learning. Studies show
thatmachine learning has the potential to support complex learning, adapt the content
to individual students’ cognitive styles, and facilitate students’ deep understanding
by bringing in deep representation of the subject matter [4, 13, 41, 43]. There are
some unique traits of machine learning that makes it suitable for various educational
purposes and goals. The next section offers a discussion of the traits associated with
machine learning.

4.3.1 Individualised Performance Diagnosis

The conventional concept of performance measures in the context of education
assumes that learners’ behaviours can be effectively measured by quizzes, tests,
examinations, and other educational assessments. Such measures often take on a
global representation of the student. Subsequently, global actions are prescribed to
address the issues related to the student performance. An example would be offering
massive remedial courses for everyone. The approach has been proven costly and
inefficient, taking a tremendous amount of time from teachers and students with
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little evidence of improvement. In contrast to traditional practice, machine learning
provides moment-by-moment diagnosis of students’ performance. It records every
behaviour including hits, search paths, clicks, and answers to decidewhat this student
needs right now in order to learn the relevant concept, fact, procedure, or principle.

The student’s performance profile is determined by complex algorithms in learner
analytics – a techniquewidely used inmachine learning for educational improvement.
Based on multiple sources of input (e.g., audio, video, verbal data, etc.), learner
analytics provides an accurate diagnosis of the learner’s performance and engenders
a performance file for instructional remediation.

4.3.2 Expert Checking

When developing learners’ performance profile, there are two concerns regarding
learners’ performance. One involves how much knowledge a learner has, the other
is what a learner knows. Some researchers (e.g., [12, 43, 49]) argue that the focus
should be onwhat a learner knows because understandingwhat a learner knows helps
determine the learner’s schema level known as prerequisite hierarchy which further
assists in identifying the learner’s path in learning.

In conventional learning the expert checking is often accomplished by having a
domain expert (in schools it is the teacher) talk with the learner to determine what the
learner already knowns so a remedial plan can be made. With machine learning, this
is done by adding overlays of subject matter to the system. The overlay model breaks
down the subject matter to be learned into components or prerequisites. The typical
procedure of an overlay works by relating the student’s performance to the prerequi-
site structure of the subject matter. If a student succeeds in completing a task related
to the prerequisites in a subject domain, it is inferred they have acquired the knowl-
edge items that are prerequisites for the subject domain. If they fail, it can be assumed
that at least one of the prerequisites is missing in their competence. One drawback
in the overlay model is that it can tell which prerequisite the student has failed but
it cannot discriminate how the error was made, whether by misunderstanding or by
misrepresentation.

4.3.3 Error Discrimination

Research in error diagnosis of human learning suggests that learners do not only
fail to acquire the content presented to them but also misrepresent it [29, 36, 46].
Oftentimes, students acquire erroneous concepts, procedures, and false principles
through various formal and informal learning environments and bring them to the
classrooms when learning the subject content. In traditional classrooms explaining
to students how they made an error and what type of error it is (e.g., error due to
misrepresentation versus lack of knowledge) can be challenging. This is partly due
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to the limited instructional resources and an increasingly tight pool of teachers in
schools.Machine learning provides the opportunity for supporting students in gaining
an in-depth understanding of the errors they make. For example, by building an error
library inmachine learning, the learnerwill find that the error theymade in assignment
is due to (1) an incidental incorrect calculation (miscalculation), (2) a wrong mental
model (misrepresentation), or (3) a lack of proper knowledge (inadequate schema).
The error library consists of a list of possible errors. It compares the learner’s errors
with its list, determines type of error, and computes the best-fitting combination
effectively enough to deliver a diagnosis in a reasonable time.

4.3.4 Determining Learning Path

It is believed that within a machine learning system learners’ progress can be grad-
uated to reflect the learning path of activities towards the learning goal [18, 43, 52].
Farago points out that by identifying the underlying metric, machine learning can
model the system behaviour with respect to path choices. The system can monitor
learners’ complex learning process and observe what the learner does step by step.
By installing a knowledge base consisting of several hundred problem-solving rules,
which encode both correct knowledge about the domain and typical errors, the system
locates the rule (or rules) that correspond with each problem-solving step the learner
takes. That is, the system can represent both learners’ knowledge and errors in terms
of what steps the learner takes, how the goal is managed, and what mental model the
learner may have to determine the optimal learning path in complex learning.

4.3.5 Limitations of Machine Learning

Despite its wide applications in general education such as curricular integration,
learner interaction, and cognitive problem solving in particular [13, 22, 23, 37, 42,
47], machine learning has shown some limitations in terms of how it can promote
learners’ deep learning. As was discussed earlier, research in machine learning has
been primarily focused on the system functions like individualised cognitive diag-
nosis, error detection, expert model overlay, and learning path determination. Few
efforts have been directed toward understanding the role of machine learning pertain-
ing to scaffolds of deep and surface learning. It is obvious that teaching learners to
solve problems without facilitating their abilities to transfer knowledge to new learn-
ing may render the learning experience less relevant and meaningful since learners
tend to repeat the problem steps without questioning the meaning of the steps and
understanding their connection to new learning.

Another reason why machine learning has been slow in moving forward to deep
and surface cognitive scaffolds is the technical challenges in terms of solutions to
deep learning and knowledge transfer scaffolds. For example, in his discussion of



4 Effective Design in Human and Machine Learning: A Cognitive Perspective 67

algorithmic challenges in learning pathmetrics Farago [18] points out that significant
challenges exist with respect to learning path metrics such as general non-additive
metric based learning tasks. Regardless, machine learning has shown promises in
automating deep learning for learners. Researchers have been exploring deep learning
at a meta-structure level by studying the ontological design of teaching and learning
in the digital environment [1, 21, 28, 54]. In the next section we will present a
framework that focuses on the cognitive structure of deep learning and the features
of machine learning.

4.4 Designing Machine Learning for Deep Learning: A
Cognitive Perspective

Machine learning holds promises for deep level cognitive learning such as making
inferences and transferring knowledge. Literature has shown that many of the fea-
tures in machine learning such as cognitive diagnosis, error detection, expert model
overlay, and learning path determination have significantly improved the diagno-
sis of learner performance and assist teachers in making relevant instructional and
curricula decisions. However, there is a lack of attempt to marry the features of
machine learning with research in deep learning, particularly the two-tie process of
deep learning for knowledge transfer. In the framework we are about to propose, we
will focus on the features of machine learning and how the features may enhance
cognitive performance in deep learning, in this case, knowledge transfer.

4.4.1 Connecting Features of Machine Learning
to Knowledge Transfer Performance

As is widely recognised, knowledge can be divided into facts, concepts, procedures
and principles. Merrill [40] claimed that the actions in executing the above knowl-
edge components should involve remembering, using and finding. The latter two are
often consider deep learning whereas the first one is considered shallow or surface
learning. Chi and colleagues [10, 11] proposed a constructive-generative model in
deep learning by suggesting active interaction with deep learning content (i.e., rules
and principles) in initial learning in order to successfully transfer knowledge to new
learning. Strategies for active interaction range from students’ providing their own
solution [25], comparing and contrasting [48], asking students to identify deep princi-
ples [51], and asking students to draw conceptual diagrams [11]. Studies have shown
that the active interaction with rules and principles deepens learners’ understanding
and supports both near and far transfer in learning.

While the two-tier deep learning model has demonstrated advantages in deep
learning, the cognitive utility of the model can be enhanced by incorporating the
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features of machine learning. For example, individualised cognitive diagnosis, error
detection, and expert overlay can be utilised to support learners’ interaction with
deep learning in initial learning and target problem solving. The individualized cog-
nitive diagnosis monitors the learner’s step by step performance and determines what
the learner needs in initial and target problem solving. The error detection system
has an error library which consists of a list of errors. It checks if an error exists
and compares the learner’s errors with its list and then determines the type of error
associated with the learner’s performance, i.e., error due to misrepresentation or lack
of knowledge. The expert overlay, which consists of a repository of expert knowl-
edge model, compares the learner’s performance with that of expert performance
simulated in the model. If the learner succeeds in completing a task in terms of the
knowledge components in a subject domain, they are inferred as having acquired the
knowledge for the subject domain. If they fail, it can be assumed that at least one of
the knowledge components is missing in their competence. The results from individ-
ualised cognitive diagnosis, error detection, and expert overlay will be used as inputs
for a higher level knowledge depository, that is, determining a learner path which
compiles the data and determines how well the learner is on his/her way to target.

4.4.2 Framework for Deep Learning with Machine Learning

As discussed earlier, combining the features ofmachine learningwith cognitivemod-
els holds a great promise for deep learning. We also argued that due to the challenges
in human support with deep learning (i.e., logistical concerns, level and degree of
scaffolding in problem solving), machine learning can be used as an effective sup-
port to alleviate financial and logistical constraints and release teachers from intense
day-to-day effort so they can effectively engage in the design, planning, and imple-
mentation of instruction. We therefore propose a framework for deep learning with
machine learning. The framework consists of two parts: activity of deep learning and
infrastructure of machine learning. The activity of deep learning is built on Chi and
colleagues’ [10] two-tier knowledge transfer model where the interaction between
surface and deep learning in initial problem solving leads to the transfer of knowl-
edge to target problem solving. The infrastructure ofmachine learning consists of low
and high processing databases. The low processing databases include individualised
cognitive diagnosis, error detection, and expert overlay interacting directly with the
learner’s problem solving in the source problem, providing feedback, determining
error type, and identifying missing components in the learner’s knowledge structure.
They also provide secondary support to the learner in his/her target problem solving
where the learner applies the deep learning rules/principles to new learning situations
in problem solving. In the target problem the cognitive support begins to fade away.
The learner independently solves the new problem and receives limited support like
hints and prompts from the system. The results from low processing databases serve
as input to the high level database which determines the learner’s learning path by (a)
deciding whether the learner is on the right track to achieving the learning goal, and
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Fig. 4.5 Framework for deep learning with machine learning

(b) providing feedback, strategies, and knowledge that enable the learner to perform
the transfer task successfully. Figure4.5 presents the framework of deep learning
with machine learning.

4.4.3 Implications of Cognitive Deep Learning for the Design
of Machine Learning

The primary focus of this chapter is on how the characteristics of machine learning
can assist and improve human cognitive processes such as knowledge application and
transfer. The framework proposed (see Fig. 4.5) has both theoretical and practical sig-
nificance. At the theoretical level, the framework connects the cognitive functionality
of machine learning with human cognitive processes in terms of deep learning, hence
bridging the gap in research on machine learning and deep cognitive processing. At
the practical level, the framework identifies variables that are specific to the design of
deep cognitive learning with machine learning. It delineates the relationships among
the entities of cognitive processing and a machine learning based supporting system.
The framework is still in its embryo form in conceptualisation and much work is
needed between cognitive scientists and machine learning scientists to further flush
out details of the framework at the operational levels. With that in mind, we take a
flipped view to examine how the research in deep cognitive processing can inform
the design of machine learning to help users understand black-box machine learning.
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Black-Box Concerns

As machine learning gets smarter, it can act like humans helping inform decision
making andmaking predictions. However, like humans, it can have biases and limita-
tions caused by additional layers of complexity and opaqueness concerning machine
behaviour known as black-box [38, 50]. The concern with black-box is that after
a machine learning algorithm is developed, it can act in ways unforeseen by its
designer, which raises questions about the autonomy and responsibility capacities of
machine learning. Sometimes it is difficult to understand why it gives a particular
response to a set of data inputs – a serious concern when the algorithm is used in
mission-critical tasks [15]. Given that, our discussion in the next section focuses on
how findings from human cognitive processing research may inform the design of
machine learning, particularly the black-box issue.

Research in Human Cognitive Deep Learning and Design of Machine Learning

Machine Learning algorithms are essentially systems that learn patterns of behaviour
from collected data to support prediction and informed decision-making, which are
harnessed through two extremes:

1. Helping humans in discovering newknowledge that can be used to informdecision
making;

2. Through automated predictive models that are plugged into operational systems
and operate autonomously.

The above two extremes appear to be similar to what was discussed earlier in this
chapter: that the purposes of researching on the mechanisms of human deep cog-
nitive learning are to (a) inform human decision making in knowledge application
and transfer and (b) predict the problem state based on prior knowledge. The human
cognitive process framework (Fig. 4.5) entails elements predictable for future learner
behaviour and performance. It is based on two-tier information processing derived
from research in cognition. Therefore, the model has the following features: trust-
worthiness, interpretability, and absence of hidden rules. These are the features that
machine learning scientists advocate to institute in the design of machine learning
to increase transparency.

Trustworthiness. For people to use machine learning to make decisions and pre-
dictions, they must trust the model. To trust a model, they must understand how it
makes its predictions, i.e., the model should be interpretable. Most current machine
learning systems are operated on deep neural network principles which are not easily
interpretable. Whereas in the human deep processing framework, the initial inputs
(source problem, and deep structure elements: rules, principles, schema, causal rela-
tions, and mental model) are clearly defined (see Fig. 4.4). The inputs delineate the
relationship between source problem and deep structure that further define the cog-
nitive activities in the initial learning stage. As such, learning activities and paths
become fully interpretable. The users can therefore trust the model to arrive at the
outcomes as anticipated.

Interpretability. In the cognitive human deep learning model, the steps involved
in various stages of learning (i.e., initial learning and transfer learning) are clearly
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laid out. The users are able to explain how knowledge can be transferred through a
two stage process (Figs. 4.4 and 4.5). There are no hidden rules or principles that may
deviate from the paths of learning. For the designers of machine learning, a thorough
task analysis may be the initial step toward an interpretable product by examining
the steps and relationships involved in a complex problem state. Depending on the
nature of the problem, a proper task analysis method may be employed to unveil the
relationships, complexity, as well as the depth and breadth of the problem [32].

Absence of hidden rules. Related to discussion point #2 above, machine learning
that is devoid of black-box concerns should eliminate hidden rules and principles
to increase its interpretability. Domingos [15] noted, “when a new technology is as
pervasive and game-changing as machine learning, it’s not wise to let it remain a
black-box. Opacity opens the door to error and misuse.” Hidden rules and principles
increase the possibility of bias and errors in machine learning performance.

In conclusion, the practices and methodology in human cognitive deep learning
research can inform the design of machine learning, especially in terms of the black-
box issue. By observing the rules of transparency and governance in the design and
development of machine learning, it is anticipated that machine learning will be a
powerful tool in knowledge gathering and decision-making automation benefiting
people and entities in different walks of life including economy, education, business,
and so forth.

4.5 Discussion

The issue of how to nurture and develop learners’ high level thinking and facili-
tate their knowledge transfer in deep learning has received considerable attention
in cognitive research. Models and strategies related to the improvement of learn-
ers’ deep learning have been proposed. While initial evidences demonstrated that
transfer may occur with analogy [30], comparison and contrasting [48], think-aloud
[11], and solution identification [51], the two-tier cognitive problem solving model
by Chi and VanLehn [10] demonstrates a more robust path for knowledge trans-
fer than previous practices. However, since cognitive scaffolding can be laborious
and human resource intensive, there is a concern about the affordability of using a
two-tier cognitive problem solving model due to a lack of teachers and instructional
resources. Machine learning provides an effective alternative to the problem under
study. Its automating features based on the principles of artificial intelligence opens
the door for sophisticated detecting of cognitive processes in learning. Features like
individualised cognitive diagnosis, error detection, expert overlay, and learning path
determination have been applied in multiple areas including education [7, 39].
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4.6 Conclusion

It is believed that machine learning supported by artificial intelligences and data
warehouse is capable of calibrating human performance to a moment by moment
level. This opens the opportunity for computing a large dataset frommultiple sources
of information (e.g., cognitive diagnosis, error detection and discrimination, expert
checking) and making instructional and learning decisions that are uniquely adaptive
to the needs of the learner. The current chapter bases its review of the literature
on cognitive problem solving and knowledge transfer pertaining to learners’ deep
learning and the features of machine learning, particularly its adaptability to the
diagnosis of cognitive information processing by proposing a framework for human
deep learning with machine learning. The framework is well grounded in cognitive
theories and the research in machine learning. It should be pointed out that the
framework is still in its conceptual level. Further empirical studies based on evidence-
based hypotheses should be conducted to understand the relationship among the
variables in the framework. Research that aims at the validity and usability of the
framework should be done by sampling from a wide range of population in terms of
culture, ethnicity, social and economic status, as well as education level.
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Chapter 5
Transparency Communication
for Machine Learning in
Human-Automation Interaction

David V. Pynadath, Michael J. Barnes, Ning Wang and Jessie Y. C. Chen

Abstract Technological advances offer the promise of autonomous systems to form
human-machine teams that are more capable than their individual members. Under-
standing the inner workings of the autonomous systems, especially as machine-
learning (ML) methods are being widely applied to the design of such systems, has
become increasingly challenging for the humans working with them. The “black-
box” nature of quantitativeMLapproaches poses an impediment to people’s situation
awareness (SA) of these ML-based systems, often resulting in either disuse or over-
reliance of autonomous systems employing such algorithms. Research in human-
automation interaction has shown that transparency communication can improve
teammates’ SA, foster the trust relationship, and boost the human-automation team’s
performance. In this chapter, we will examine the implications of an agent trans-
parencymodel for human interactions withML-based agents using automated expla-
nations. We will discuss the application of a particular ML method, reinforcement
learning (RL), in Partially Observable Markov Decision Process (POMDP)-based
agents, and the design of explanation algorithms for RL in POMDPs.
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5.1 Introduction

As autonomous agents become prevalent in future battle spaces [11, 24], it will be
increasingly difficult for humans to understand the logic and significance of an agent’s
purposed actions.Althoughmachine learning (ML) techniques offer great advantages
in both efficiency and adaptability, they also present a paradox. Themore effective the
ML algorithm, the more likely the operator is to eventually become complacent, lose
attentional focus of the tasking environment, and accept erroneous outputs [21, 22].
ML processes tend to be opaque, making explainable AI necessary, but not always
sufficient to achieve a synergistic relationship between humans and agents. Human
partners’ situation awareness (SA) must encompass not only their own situation,
but also the agent’s plans and its future implications and uncertainties. For both
tactical and legal reasons, the human operator is responsible for understanding the
consequences of the agent’s action in a military environment [1, 9, 13].

Researchers from theU.S.Department ofDefense (DoD) are investigating human-
agent teaming in diverse scenarios: autonomous robots, targeting systems, assured
mobility, planning, and control of aerial, ground, and ship unmanned systems, etc.
[5, 7, 18, 19, 28]. It is important to develop a general framework that enables humans
and agents to collaborate effectively and safely within diverse tasking environments
[1]. Effective human teams are a good analogy, wherein all partners understand the
objective, their respective roles, and the interaction protocols necessary for efficient
collaboration [18, 32]. As an example, consider the case of an autonomous robot
that moves from point A to point B carrying the infantry squad’s equipment. The
robotic agent must learn to recognise landmarks in order to return home, know what
constitutes an anomaly, understand soldiers’ intent, react to changes in the squad’s
mobility, and communicate with its soldier teammates [7]. That is, it must not only
be aware of and signal to the operator what the agent intends, but also be aware of
the changing military situation and be able to react to the actions of the other squad
members [23]. While such a level of awareness does not constitute consciousness,
it does require a richer shared awareness than simply understanding what the agent
intends to do next.

The SA-based Agent Transparency (SAT) (Fig. 5.1) defines the essential informa-
tion that a human-agent team must share for effective collaboration [7]. Section5.2
presents the SAT model and the empirical research that supports the model’s con-
tinued development. Empirical examinations of the SAT model highlight the chal-
lenges faced in trying to make ML-based autonomous systems transparent to human
teammates.

In this chapter,we focus on a subset ofML that is particularly aimed at autonomous
systems, namely reinforcement learning (RL), which has successfully applied quan-
titative probabilities and utilities within a variety of domains [14, 26]. RL’s algo-
rithms for computing long-term expected values can provide autonomous agents
with optimal sequential decision policies. However, while RL’s rich representation
and complex reasoning provide useful performance guarantees for software agents,
they also present a significant obstacle to human understanding.
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Automatically generated explanations have provided such understanding in other
areas of artificial intelligence (AI) [27]. More recent work has proposed methods
for making the results of machine learning more understandable to human users
[2]. However, most of these learning frameworks are unsuitable for autonomous
decision-making in human-machine teams.

In contrast, model-based RL first learns a quantitative model in the form of Par-
tially Observable Markov Decision Processes (POMDPs), which contain probabilis-
tic action and sensor models, utility-based goal priorities, etc. that could facilitate
explanations in human-machine interaction [15]. However, for real-world domains,
the size and complexity of quantitative models like POMDPs are more likely to
overwhelm human operators, rather than inform them. Existing explanation meth-
ods show potential [12], but their impact on human-machine trust and performance
has not been studied.

The work described in this chapter seeks to identify the modelling content that
best facilitates human comprehension. We begin by mapping the components of the
POMDP model to different levels of SA in the SAT model. By developing algo-
rithms that can generate natural-language explanations from these separate com-
ponents (e.g., beliefs, observations, outcome likelihoods), we arrive at a variety of
explanation content that aims to achieve different levels of team SA. By grounding
these explanations in the agent’s RL-based decision-making process, we can auto-
matically generate a space of possible explanation content and measure their impact
on human-machine trust and team performance.

5.2 SA-Based Agent Transparency and Trust

Trust is an important concept because it mediates between the reliability of autonomy
and the operators’ ability to effectively collaborate with intelligent agents (IAs) [17,
18]. Appropriate trust is not blind trust; instead, it is the ability of the operator
to calibrate his or her interactions with agents to minimise disuse (failure to rely
on reliable automation) and misuse (over-relying on unreliable automation) [10,
21, 22]. Calibration depends on the human partner knowing the agent’s purpose,
process, and performance [17]. U.S. Army Research Laboratory (ARL) researchers
[9] developed the SATmodel to make the agent’s human partner aware of the agent’s
plans, reasoning, and predictions (Fig. 5.1). SAT posits three levels of information
as necessary to foster insight into the IA’s decision process: (L1) operator perception
of the IA’s actions and plans; (L2) comprehension of the IA’s reasoning process; and
(L3) understanding of the IA’s predicted outcomes including its uncertainties about
accomplishing its objectives [13].

In a series of experiments, Chen and colleagues examined the generality of SAT in
a variety of military paradigms attempting to parse out what features of transparency
were effective under what conditions. Two of the paradigms were part of DoD’s
AutonomyResearchPilot Initiative (ARPI): the use of agents for control and planning
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• To support operator’s Level 1 SA ’s going on and what is the agent trying to
achieve?)

– Purpose
· Desire (Goal selection)

– Process
· Intentions (Planning/Execution)
· Progress

– Performance

• To support operator’s Level 2 SA (Why does the agent do it?)

– Reasoning process (Belief) (Purpose)
· Environmental & other constraints

• To support operator’s Level 3 SA (What

(What

should the operator expect to happen?)

– Projection to Future/End State
– Potential limitations

· Uncertainty: Likelihood of error
· History of performance

Fig. 5.1 SAT model [8]

support and an autonomous robot. Section5.2.1 discusses these two investigations
and Sect. 5.2.2 summarises the key lessons learned from these investigations.

5.2.1 Human Factors Experiments on Transparency

IMPACT (IntelligentMulti-UxV Planner with Adaptive Collaborative/Control Tech-
nologies) was a multiservice collaboration that was one of the seven ARPI research
projects. IMPACT’s purpose was to investigate various intelligent systems, including
an intelligent planner andML-based systems acting in concert with a human operator
to send a group of unmanned vehicles (UxV) to defend various portions of a large
littoral military base [5]. The transparency experiments used a simplified version of
the basic paradigm, assuming that an IA planned the best route and chose the best
complement of the available UxV assets to respond to an emergency [20, 25]. One
experiment [20] varied SAT levels to create three conditions: Level 1 (L1: planning);
Level 1 + 2 (L12: planning + reasoning information); and the final condition show-
ing Level 1+ 2+ 3 (L123: Level 1+ 2+ predictions and uncertainties). Each of the
transparency conditions received the same updated information (state of the world)
ensuring that (L1, L12, L123) differed only on the transparency dimension. For each
mission, the IA provided two recommended plans utilising the UxVs. Plan A was
always the agent’s top recommendation, and plan B was the back-up plan. About



5 Transparency Communication for Machine Learning … 79

Fig. 5.2 Example of an IMPACT interface showing L123 plus uncertainty information for the
second transparency experiment [25]

1/3 of the time, Plan B was actually the better option due to external information
(changes in Commander’s Intent, intelligence, etc.).

Results showed that L12 and L123 reduced both misuse (choosing A when B
was the better option) and disuse (choosing B when A was the better option). This
indicated that operators could better adapt to new information if they understood the
IA’s reasoning and prediction processes. Notably, participants reported greater trust
in the IA in the L123 condition, which contained uncertainty information, compared
to the other two transparency conditions.

Reference [25] examined 3 SAT conditions using the same basic paradigm but
parsed out uncertainty information (U) to better understand its effects for the IMPACT
tasks: L12, L123, and L123U. The highest level of transparency (L123U, illustrated
in Fig. 5.2) resulted in the best overall performance with a slight increase in pro-
cessing time (2–3s). This suggests the utility of uncertainty information when it is
added to predictions. In summary, the experiments showed the efficacy of higher
levels of agent transparency to enable the operator to adjust to a changing military
environment and also indicated that knowing uncertainties in the agent’s planning
process proved to be useful information for the operator. The IMPACT operator
tasks were time constrained, but getting the right mix of UxVs and route planning
was more important to mission success than the extra few seconds that processing
the uncertainty information required [25].

TheAutonomousSquadMember (ASM)project investigated enabling agent capa-
bilities to support infantry squad-level performance in dynamic mission environ-
ments. The robot (ASM) behaved like a member of the squad and performed such
tasks as carrying the squad’s equipment. Because an infantry squad has to react
instantaneously to changes in the combat situation, the ASM’s operator control unit,
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Fig. 5.3 Icons and pictorial visualisations of SAT information for the ASM experiment

a hand-held sized display, required “at a glance” status information based on a simpler
icon-based visualisation interface (Fig. 5.3) The visualisation was designed based on
the SATmodel to enable humans to understand the agent’s plan, reasoning (motivator
icons), predicted outcome, and uncertainty. User studies showed that visualisations
showing icons representing L123 received higher overall SA scores and subjective
trust scores than displays depicting the three other SAT conditions (L1, L12, L123U).
Importantly, the display with uncertainty information did not improve performance
[23]. In situations (such as the ASM paradigm) where timeliness is at a premium,
information that predictions were uncertain did not prove to be useful.

RoboLeader [9] is a research program investigating the human-factors aspects of a
supervisory agent (RoboLeader) that is an interface between its human operators and
multiple less capable semi-autonomous vehicles. In a recent experiment, RoboLeader
monitored a 3-element convoy of manned and unmanned systems [31] that encoun-
tered various obstacles during its mission. Knowing RoboLeader’s reasoning process
decreased the human operator’s misuse of erroneous agent suggestions. However,
adding information about when the last intelligence update occurred (i.e., informa-
tion staleness) actually caused the operator’s performance to degrade compared to
the reasoning-alone condition.
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5.2.2 Summary of Transparency Experimentation Results

In summary, the series of transparency experiments revealed several findings that
can inform how an RL-based agent can help its human teammates achieve SA. (1)
Increasing SAT-level information can improve the operator performance and trust in
the agent under diverse experimental conditions. (2) Adding uncertainty information
was useful for paradigms that required detailed planning information (IMPACT) but
less useful for paradigms that required instantaneous decisions (ASM). (3) Uncer-
tainty is an important component of understanding the real world; currently, we have
examined only a subset of uncertainty visualisation concepts [3, 8]. (4) Ultimately,
success in conveying transparency will depend not only on the type of transparency
information but also on the efficacy of the visualisation techniques for specific mis-
sion requirements. (5) Additionally, the type of information presented needs to be tai-
lored to the operator’s experience level and mission; too much information degrades
performance. (6) Overall, the SAT researchers concluded that the underlying model
needs to be expanded to include more dynamic processes and to encompass bidirec-
tional understanding between agents and their human partners [7].

5.3 Model-Based Reinforcement Learning

These findings provide both guidance and challenges when designing an ML-based
autonomous system that provides the right kind of transparency to human teammates.
Using model-based RL helps address the first finding from Sect. 5.2.2 by providing
the system with a declarative model that forms a potential basis for informing human
teammates. Furthermore, this model includes explicit probabilities, potentially help-
ing to address the second finding. However, the volume of quantitative information
in the learned model is likely to violate the fifth finding and degrade human perfor-
mance when communicated in full. We instead need to identify the most valuable
subset of learned content to be made transparent to operators.

Section5.3.1 describes the components of the modelling content built up by
model-based RL. Section5.3.2 shows how those components map to SAT levels
and how they can support textual explanation content. Section5.3.3 describes an
empirical study of the impact of such content on human-machine trust and team
performance.

5.3.1 POMDP Models Constructed by RL

Model-based RL can be viewed as constructing a POMDP [15], which, in precise
terms, is a tuple, 〈S, A, P,Ω, O, R〉, that we describe here in terms of an illustrative
HRI scenario [28]. In it, a human teammate works with a robot in reconnaissance
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missions to gather intelligence in a foreign town. Each mission involves the human
teammate searching buildings in the town. The robot serves as a scout, scans the
buildings for potential danger, and relays its observations to the teammate. Prior
to entering a building, the human teammate can choose between entering with or
without putting on protective gear. If there is danger present inside the building, the
human teammate will be fatally injured without the protective gear. As a result, the
team will have to restart from the beginning and re-search the entire town. However,
it takes time to put on and take off protective gear (e.g., 30 s each). So the human
teammate is incentivised to consider the robot’s observations before deciding how
to enter the building. In the current implementation, the human and the robot move
together as one unit through the town, with the robot scanning the building first and
the human conducting a detailed search afterward. The robot has an NBC (nuclear,
biological and chemical) weapon sensor, a camera that can detect armed gunmen,
and a microphone that can listen to discussions in foreign language.

The state, S, consists of objective facts about the world, some of which may be
hidden from the agents themselves. We use a factored representation [4] that decom-
poses these facts into individual feature-value pairs, such as the separate locations of
the robots and their human teammates, as well as the presence of dangerous people or
chemicals in the buildings to be searched. The state may also include feature-value
pairs that represent the health level of any and all human teammates, any current
commands, and the accumulated time cost so far.

The available actions, A, correspond to the possible decisions the agents canmake.
Given the proposed mission, each agent’s first decision is where to move to next.
Upon completing a search of a building, an agent can make a decision as to whether
to declare a location as safe or unsafe for its human teammates. For example, if a
robot believes that armed gunmen are at its current location, then it will want its
teammate to take adequate preparations (e.g., put on body armour) before entering.
Because there is a time cost to such preparations, the robot may instead decide to
declare the location safe, so that its teammates can more quickly complete their own
reconnaissance tasks.

In most RL domains, S and A are known a priori. However, the effects that the
latter have on the former are typically not known. In model-based RL, the agent
learns a transition probability function, P , to capture its action model, the possibly
uncertain effects of each agent’s actions on the subsequent state. For example, a robot
with perfect movement may have an action model that assumes that a decision to
move to a specific waypoint succeeds deterministically. More commonly, however,
the robot will find a nonzero probability of failure, as is captured in more realistic
robot navigation models [6, 16]. Recommendation actions by an agent can affect
the health and happiness of its human teammates, although only stochastically, as a
person may not follow the recommendation.

The ever-present noisewhen trying to sense the physical worldmeans that realistic
agents will not have perfect information about the true state of the world. The “partial
observability” of a POMDP is specified through a set of possible observations, Ω

(usually knownapriori), that are probabilistically dependent (through the observation
function, O , usually learned) on the true values of the corresponding state features.
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Different observations may have different levels of noise. For example, an agent may
be able to use GPS to get very accurate readings of its own location. However, it
cannot detect the presence of armed gunmen or dangerous chemicals with perfect
reliability or omniscience. Instead, the agent will receive local readings about the
presence (or absence) of threats in the immediate vicinity. For example, if dangerous
chemicals are present, then the robot’s chemical sensor may detect them with a high
probability. There is also a lower, but nonzero, probability that the sensor will not
detect them. In addition to such a false negative, we can also model a potential false
positive reading, where there is a low, but nonzero, probability that it will detect
chemicals even if there are none present. By controlling the observations that the
agents receive, we can manipulate their ability level in our testbed.

Partial observability gives the robot only a subjective view of the world, where it
forms beliefs about what it thinks is the state of the world, computed via standard
POMDP state estimation algorithms. For example, the robot’s beliefs may include
its subjective view on the presence of threats, in the form of a likelihood (e.g., a
33% chance that there are toxic chemicals in the farm supply store). Again, the robot
would derive these beliefs from prior beliefs about the presence of such threats,
updated by its more recent local sensor readings. Due to the uncertainty in its prior
knowledge and sensor readings (not to mention its learning), the robot’s beliefs are
likely to diverge from the true state of the world. By decreasing the accuracy of the
robot’s observation function, O , we can decrease the accuracy of its beliefs, whether
receiving correct or incorrect observations. In other words, we can also manipulate
the robot’s ability by allowing it to learn over- or under-estimates of its sensors’
accuracy.

The human-machine team’s mission objectives are captured by the reward func-
tion, R, which maps the state of the world into a real-valued evaluation of benefit for
the agents. This function is also typically learned through experience. In our example
domain, the robot will eventually learn that it receives the highest reward when the
surveillance is complete. It will also receive higher reward values when its teammate
is alive and unharmed. This reward component punishes the agents if they fail to
warn their teammates of dangerous buildings. Finally, the agent will receive a slight
negative reward for every epoch of time that passes. This motivates the agents to
complete the mission as quickly as possible.

If we can construct such a POMDP model of the mission, the agents can
autonomously generate their behaviour by determining the optimal action based
on their current beliefs, b, about the state of the world [15]. Each agent uses a (pos-
sibly bounded) lookahead procedure that seeks to maximise expected reward by
simulating the dynamics of the world from its current belief state across its possible
action choices. It will combine these outcome likelihoods with its reward function
and choose the option that has the highest expected reward.
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5.3.2 POMDPs and SAT

Conventional wisdom holds that, in general, quantitative models such as POMDPs,
are not readily explainable. However, the elements 〈S, A, P,Ω, O, R〉 of a learned
POMDPmodel correspond to concepts that teammates are likely to be familiar with.
By exposing different components of an agent’s learnedmodel,we canmake different
aspects of its learning and decision-making transparent to human teammates. In
prior work, we created static templates to translate the contents of a POMDP model
into human-readable sentences. We create such templates around natural-language
descriptions of each state feature and action. We then instantiate the templates at
runtime with prespecified functions of the agent’s current beliefs (e.g., probability of
a state feature having a certain value). The following list illustrates the templates we
created for each POMDP component, using specific runtime instantiations to show
the final natural-language text provided to a human participant:

S: An RL-based agent can communicate its current beliefs about the state of the
world, e.g., “I believe that there are no threats in the market square.” Such a
statement would constitute an L1 explanation within the SAT model. The agent
could also use a standard POMDP probabilistic belief state to communicate its
uncertainty in that belief, e.g., “I am 67% confident that the market square is
safe.”

A: An agent can make a decision about what route to take through its search area,
e.g., “I am proceeding through the back alley to the market square.” Such a
statement would constitute an L1 explanation within the SAT model.

P : An agent can also reveal the relative likelihood of possible outcomes based
on its learned action model, e.g., “There is a 33% probability that you will be
injured if you follow this route without taking the proper precautions.” With the
uncertainty explicitly stated, this is an example of an L3U explanation within
the SAT model.

Ω: Communicating its observation can reveal information about an agent’s sensing
abilities, e.g., “My NBC sensors have detected traces of dangerous chemicals.”
Because such a statement is meant to expose the agent’s reasoning in arriving at
its overall recommendation, this statement constitutes an L12 explanation within
the SAT model.

O: Beyond the specific observation it received, an agent can also reveal information
about the observation model it has learned so far, e.g., “My image processing
will fail to detect armed gunmen 30% of the time.” This elaboration on the Ω

explanation is also anL12 explanation, aimed at conveying the agent’s reasoning.
R: By communicating the expected reward outcome of its chosen action, an agent

can reveal its benevolence (or lack thereof) contained in its current learned reward
function, e.g., “I think it will be dangerous for you to enter the informant’s house
without putting on protective gear. The protective gear will slow you down
a little.” The template here relies on factored rewards, allowing the agent to
compute separate expected rewards, E[R], over the goals of keeping its teammate
alive and achieving the mission as quickly as possible. The end result is an L123
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explanation within the SAT model, as it conveys the agent’s current goal, the
reasoning going into the agent’s decision, and what teammates can expect upon
making their own subsequent decision.

5.3.3 Evaluation of Automatically Generated Explanations

We implemented an online version of our HRI scenario to study the impact of
these explanation variations on trust and team performance [28]. The testbed can be
accessed from a web browser through either a largely text-based interface (Fig. 5.4)
or through a more immersive 3D first-person virtual environment (Fig. 5.5). The
testbed’s server executes the robot’s POMDP to both maintain the state of the sim-
ulated mission and to generate decisions for the robot. These are displayed on the
participant’s web browser, which sends decisions made by the participant back to
the testbed’s server.

A prior study [29] used the text-based version of this online platform (Fig. 5.4) to
team participants with a simulated robot with either high or low ability, and offered
four classes of explanations of its decisions:

None: When the explanation condition is “None”, the robot informs its teammate
of only its decisions. One such communication from our scenario would be: “I
have finished surveying the Cafe. I think the place is safe.”

Fig. 5.4 Human robot interaction simulation testbed with HTML front-end
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Fig. 5.5 Human robot interaction simulation testbed with Unity front-end

Ω2R (L123): When the explanation condition is Ω2R, the robot augments the
“None” condition’s decision message with non-numeric information about the
robot’s sensing capability. In this case, the sensing capability is limited to the
NBC sensor and the camera–the first two sensors implemented in the testbed.
Section5.3.2’s Ω template thus provides the teammate with the robot’s obser-
vations from these two sensors. The R template provides additional explanation
of the impact of the robot’s decision on its teammate’s subsequent behaviour.
One such communication with both decision and explanation from our scenario
would be: “I have finished surveying the Cafe. I think the place is dangerous.
My sensors have detected traces of dangerous chemicals. From the image cap-
tured by my camera, I have not detected any armed gunmen in the Cafe. I think
it will be dangerous for you to enter the Cafe without protective gear. The pro-
tective gear will slow you down a little.”. This explanation condition provides
transparency at all three levels of the SATmodel, but it does not provide any uncer-
tainty information. Although these explanations can potentially actually help the
robot’s teammate understand which sensors are working correctly (e.g., the NBC
sensor) and which ones are not (e.g., the faulty camera), they do not actually help
the teammate decide what to do with sensor readings from the camera. This is
because the robot, particularly the one in the Low Ability condition, has a faulty
camera that makes false-negativemistakes. This means that evenwhen teammates
know that the robot’s report of no danger found by its camera is incorrect, they
still do not know whether they should put on the protective gear or not.

Ω3 (L123): When the explanation condition isΩ3, the explanations again augment
the “None” condition’s decision message with non-numeric information about
the robot’s sensing capability—in this case, all three sensors: the NBC sensor,
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camera, and microphone. Section5.3.2’s Ω explanation provides the teammate
with the robot’s observations from these two sensors. One such communication
with both decision and explanation from our scenario would be: “I have finished
surveying the Cafe. I think the place is safe. My sensors have not detected any NBC
weapons in here. From the image captured by my camera, I have not detected any
armed gunmen in the cafe. My microphone picked up a friendly conversation.”.
Like the Ω2R condition, this explanation provides transparency at all three levels
of the SAT model. However, unlike the Ω2R condition, the explanations here
will potentially help the robot’s teammate understand which sensors are working
correctly and which ones are not, and help them decide what to do in case of
camera failure. For example, even when the faulty camera is unable to detect
armed gunman, the microphone would still be capable of picking up a suspicious
conversation.

S (L1U): In the S explanation condition, the confidence-level explanations aug-
ment the decision message with additional information about the robot’s uncer-
tainty in its decision. Section5.3.2’s S template incorporates the robot’s proba-
bilistic assessment of the hidden state of theworld (e.g., the presence of threats) on
which it bases its recommendation. One example of a confidence-level explana-
tion would be: “I have finished surveying the Cafe. I think the place is dangerous.
I am 78% confident about this assessment.” Because the low-ability robot’s one
faulty sensor will lead to occasional conflicting observations, it will on those
occasions have lower confidence in its erroneous decisions after incorporating
that conflicting information into its beliefs. The quantitative confidence measure
provides the explicit uncertainty information asked for by the SATmodel (finding
2 from Sect. 5.2.2). However, there is no information provided as to Levels 2 and
3 of the SAT model. For example, the robot gives its teammate no information
about what threat to expect in the building.

Consistent with the SAT model findings from Sect. 5.2.2, the results of this study
showed that the robot explanations can potentially improve task performance, build
transparency, and foster trust relationships [29]. However, only explanations that
were designed to facilitate decision-making made much difference. Explanations
that left participants unsure about how to act did not achieve such an effect and were
as badly regarded as when no explanations were offered at all. This was particularly
true when the robot’s ability was low and made unreliable recommendations.

Additionally, the decision-facilitation explanation helped improve understanding
of the robot’s decision, but only in the low-ability robot and not the high-ability one.
This could be due to the fact that the high-ability robot had learned a model that
made correct decisions 100% of the time. Participants who interacted with this robot
never needed to question the robot’s decisions. Thus, these participants may have
never carefully examined the robot’s statement that explained its confidence level
or observations. Working with a low-ability robot, on the other hand, required the
teammates to pay close attention to the explanations to gauge when and when not to
trust the robot’s decisions.
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Interestingly, this study did not find any significant differences on the measures
we analyzed between the two decision-facilitating explanation conditions,Ω3 and S.
Both types of explanations are useful in helping the human teammate decide when
to trust the robot. For example, a teammate in the S condition could potentially learn
his/her own heuristics that if the robot’s confidence level is below (for example) 75%,
then do not follow the robot’s decision. Similarly, a teammate in the Ω3 condition
could diagnose from the observation explanations that if the camera reports no signs
of danger, but the robot’s microphone picks up unfriendly conversations, then it
is time to be cautious and put protective gear on, regardless of the robot’s overall
assessment of safety.

The positive impact of the S condition’s explicit confidence-level explanation
provides further validation of the SATmodel’s recommendation for including uncer-
tainty information. However, it is concerning that participants in this condition also
felt that they understood the robot’s decision-making process, even though the
explanations they received did not reveal any Level 2 or 3 information. While
confidence-level explanations may help teammates make decisions just as well as
with observation explanations, they will not help teammates diagnose or repair the
robot (e.g., the participants will not know that it is the camera that caused the robot
to make wrong decisions).

From finding 5 in Sect. 5.2.2, we should expect individual differences to exist
across the robot’s various human teammates. In fact, [30] identified several patterns
of behaviour that the robot could use to distinguish different trust levels. Somewhat
surprisingly, compliance with the robot’s recommendation was not a strong indicator
of trust. Examining our scenario’s “None” and Ω2R conditions, although human
teammates can observe the robot’s mistakes in hindsight, its explanations do not
help them identify them a priori. As a result, the teammates’ best bet is to comply
with the robot and hope for the best, leading to high compliance, but low trust.

Instead, correctness of teammate decisions was a better indicator of trust [30].
When teammates (usually in the Ω3 or S conditions) could identify an incorrect
robot recommendation a priori, they would ignore the robot’s recommendation and
successfully search the building. Even though they did not comply with the robot’s
recommendation, they still reported significantly higher levels of trust in it than those
who were unable to correctly infer the robot’s failures. In other words, higher trust
was more closely tied to the success of the combined human-machine team, rather
than the success of the robot’s decisions in isolation. As a result, a robot should pay
attention to whether its teammates make the right or wrong decision in dynamically
identifying their current trust level, rather than to whether they simply obeyed or
ignored its recommendation.
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5.4 Conclusion

TheSATmodel provides a framework for examining themodelling content that needs
to be made transparent to human teammates by autonomous systems in general,
as well as by ML-based systems more specifically. Model-based RL provides a
compatible representation of the kind of information that can be made transparent to
people. However, communicating all of that potential information will most likely
overwhelm people and lead to degraded performance of the human-machine team.

Fortunately, by combining the levels of the SAT model with the modelling com-
ponents of a learned POMDP, we arrive at a space of possible explanation content
that can reveal precisely defined subsets of the system’s available information. The
results presented here show promising success within even a very limited number of
possible automated explanations. By systematically evaluating a wider set of these
candidate explanation styles in human-machine interaction, future investigations can
provide an even more comprehensive mapping of the impact that different ML-based
explanation content will have on transparency and team performance.
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Chapter 6
Deep Learning for Plant Diseases:
Detection and Saliency Map Visualisation

Mohammed Brahimi, Marko Arsenovic, Sohaib Laraba,
Srdjan Sladojevic, Kamel Boukhalfa and Abdelouhab Moussaoui

Abstract Recently, many researchers have been inspired by the success of deep
learning in computer vision to improve the performance of detection systems for
plant diseases. Unfortunately, most of these studies did not leverage recent deep
architectures and were based essentially on AlexNet, GoogleNet or similar architec-
tures. Moreover, the research did not take advantage of deep learning visualisation
methods which qualifies these deep classifiers as black boxes as they are not trans-
parent. In this chapter, we have tested multiple state-of-the-art Convolutional Neural
Network (CNN) architectures using three learning strategies on a public dataset
for plant diseases classification. These new architectures outperform the state-of-
the-art results of plant diseases classification with an accuracy reaching 99.76%.
Furthermore, we have proposed the use of saliency maps as a visualisation method
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to understand and interpret the CNN classification mechanism. This visualisation
method increases the transparency of deep learning models and gives more insight
into the symptoms of plant diseases.

6.1 Introduction

Plant diseases can cause great damages to agriculture crops by significantly decreas-
ing production [12]. Early blight is a typical example of disease that can severely
decrease production [4]. Similarly, in a humid climate, late blight is another very
destructive disease that affects the plant leaves, stems, and fruits [4]. Protecting
plants from diseases is vital to guarantee the quality and quantity of crops [5]. A
successful protection strategy should start with an early detection of the disease in
order to choose the appropriate treatment at the right time to prevent it from spread-
ing [2]. Usually, this detection is achieved by experts having an academic knowledge
reinforced by practical experience on symptoms and causes of diseases [4]. Further-
more, these experts must monitor plants consistently to avoid disease spreading. This
continuous monitoring represents a difficult and time-consuming task for humans,
which makes the automation of the plant diseases detection and identification essen-
tial to protect plants [5]. Several studies [1, 2, 7, 26] have been proposed to detect
and classify plant diseases using image processing and machine learning. These
approaches try to build disease classifiers using images taken from the crops. These
classifiers are based on hand-crafted features designed by experts to extract relevant
information for image classification. For this reason, these classifiers suffer from
the lack of automation because of the dependency on hand-crafted features [22].
Moreover, the classifier must be trained using images labelled by experts. Collecting
these labelled images is very expensive because it is done manually. This difficulty
of data collection has forced the previous studies to use small datasets to train and
test classifiers [1, 2, 7, 26]. The use of small labelled datasets is a limiting factor in
machine learning, and it can lead to overfitting. In the last few years, Deep Learning
(DL) has been adopted by the computer vision community, thanks to its results that
outperform the state-of-the-art in many domains. The main advantage of DL in com-
puter vision is the direct exploitation of image without any hand-crafted features.
DL classifiers are end-to-end systems that form features in a fully automated way
without any intervention by human experts. In plant diseases protection, many works
have proposed the use of DL to detect and classify diseases. Notably, in [15] more
than 54,306 images of diseased and healthy plant leaves are collected which makes
the training of DL classifier possible. This new trend produced more accurate clas-
sifiers compared to traditional machine learning approaches [5, 8, 9, 18, 24, 25, 27,
34]. Despite these good results, DL research in plant diseases remains immature and
requires more attention to produce practical systems. For example, many new suc-
cessful deep architectures are not tested in the context of plant diseases. Moreover,
DL classifiers suffer from a lack of interpretability and transparency. These accurate
classifiers are often considered as black boxes that give good results but without
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any explanation or details about the classification mechanism. High accuracy is not
sufficient for plant disease classification. Users also need to be informed how the
detection is achieved and which symptoms are present in the plant. This knowledge
is very important from a practical viewpoint. For example, inexperienced farmers can
gain intuition about disease and symptoms used by the classifier. Similarly, agricul-
ture experts and experienced farmers can evaluate the classifier decision by showing
its classification mechanism. Also, these experts can exploit the transparency of the
classifier to discover new symptoms or to localise known symptoms that are difficult
to see with the human eye. In this chapter, we will compare previous works based on
DL to detect and identify diseases. Moreover, we evaluate the state-of-the-art deep
architectures based on the dataset proposed in [15]. Furthermore, we investigate
visualisation methods applied on deep models to increase the transparency of deep
classifiers. This study presents two main contributions in plant disease classification:

• Comparison between state-of-the-art CNN architectures performance in plant dis-
eases protection: this comparison helps researchers to choose the best deep archi-
tecture for building a practical system for plant diseases protection.

• Visualisation of symptoms used by deep classifiers: visualisation methods allow
the localisation of the infected region on the plant and help the users by giving them
information about the disease. Also, this biological information is extracted with-
out the intervention of agriculture experts. In this study, we propose the saliency
map as a visualisation method based on a derivative of the deep network output
with respect to the image.

6.2 Related Work

Plant diseases classification can be a very complex task as it relies mainly on experts
know-how. Developing a reliable system that is applicable for a large number of
classes is a very challenging task. Up to now, most of the approaches for automatic
plant diseases classification depended on machine learning algorithms and basic fea-
ture engineering. These approaches are usually concentrated on certain environments
and are suited for a smaller number of classes, where some small changes in the sys-
tem can result in a drastic fall in accuracy. In recent years, Convolutional Neural
Networks (CNN) have shown great results in many image classification tasks which
have given researchers the opportunity to improve classification accuracy in many
fields including agriculture and plant diseases classification.

Kawasaki et al. [18] proposed the use of deep CNN to distinguish healthy cucum-
bers from the infected ones by using images of leaves. In this study, they used CNN
to diagnose two harmful viral infections: MYSV (melon yellow spot virus) and
ZYMV (zucchini yellow mosaic virus). The used dataset in this work consists of
800 images of cucumbers leaves (300 with MYSV, 200 with ZYMV and 300 non-
diseased). Rotation transformations on images were used to enlarge the dataset. For
this binary classification task, authors proposed CNN architecture which consists of
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three convolutional layers, pooling layers, and local contrast normalisation layers.
The activation function used in this network is theRectifiedLinearUnit (ReLU) func-
tion. The achieved accuracy of this study is 94.9% under a 4-fold cross-validation
strategy.

Sladojevic et al. [34] applied deep CNN for plant diseases classification. They
collected a dataset from publicly available images on the internet. This dataset con-
tains 13 classes of plant diseases, one class of healthy leaves and one class of back-
ground images extracted from Stanford background dataset [11]. The addition of
this background class is to train the classifier to distinguish the plants leaves from
the background images, which is emphasised as the limitation of [25]. The obtained
dataset contains 4483 original images of different sizes, qualities, and backgrounds.
To increase the size of this dataset, images were pre-processed and augmented to
reduce overfitting in the training stage. For the augmentation stage, affine and per-
spective transformation were used in addition to image rotations. Using these aug-
mentation transformations, the produceddataset consists of 30880 images for training
and 2589 images for validation. Authors proposed the transfer learning using Caf-
feNet architecture [17]. CaffeNet is a modified version of AlexNet architecture that
switches the order of pooling and the normalisation layers. This CNN was trained
with and without fine-tuning by experimental changing of hidden layers parameters
and hyperparameters. Visualisation of the features in the trained classification model
intuitively helped in understanding the network which aided the fine-tuning process.
The overall accuracy of the best architecture was 96.3% with fine-tuning and 95.8%
without fine-tuning.

Mohanty et al. [25] used the public dataset named PlantVillage [15] which con-
sists of 38 labelled classes including 26 diseases of 14 crop species. Authors used
three versions of the dataset. The first version contains colour images, the second
one contains grey-scaled images, and the third one contains images of segmented
leaves to assess the influence of the background information on classification. Dif-
ferent training-test distributions were used to measure the performance of the CNN;
80–20, 60–40, 50–50, 40–60 and 20–80%. Two standards architectures were used for
classification, AlexNet and GoogLeNet. They used two training strategies for train-
ing the CNN; training from scratch and transfer learning. They used 60 experimental
configurations (2 CNN architectures ×3 versions of the dataset ×2 types of training
×5 training-test distributions) to evaluate the accuracy of deep CNN for the plant dis-
eases classification task. From all the configurations, the highest accuracy is 99.34%
which was achieved by the transfer learning of GoogleNet on the colour images
using 80–20 dataset distribution. However, a couple of limitations were underlined
in this study. Firstly, the majority of images are captured in a controlled environment
using a simple background. Secondly, the number of images is not sufficient to train
a classifier that is able to generalise to images taken in an uncontrolled environment.
For instance, authors achieve an evaluation of the trained model using images taken
from different conditions which shows that the accuracy decreases significantly to
31%.

Nachtigall et al. [27] proposed a CNN for automatic detection and classification of
nutritional deficiencies and damages on apple trees from images of leaves. To build
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a dataset, they collected healthy leaves, two classes of damage caused by nutritional
imbalances, two classes of diseases and one class of damage caused by the herbicide.
To ensure the quality of labelling, chemical analysis was conducted for symptoms
caused by nutritional imbalances and herbicide damage. This well-balanced dataset
of 1450 images contains 290 images in each class (15 for testing, 193 for training and
83 for validation). AlexNet was used as a CNN architecture for building a classifier.
They compared shallow methods against deep CNN. For the shallow method, Multi-
layer Perceptron (MLP) was chosen. Deep CNNwas compared with seven volunteer
experts where the final diagnoses were chosen by majority vote. The accuracy of the
CNN was 97.3%, human experts had an accuracy of 96% where much less accuracy
was achieved by MLP at 77.3%.

Fujita et al. [9] proposed a classifier for cucumber diseases using CNN. They
used two datasets for training and validation. These datasets contain seven different
types of diseases in addition to the healthy class. The first dataset consists of 7320
centred images of leaves captured under good conditions. The second dataset con-
sists of 7520 images captured under good and bad conditions. To increase the size of
this dataset, many crops from each image are used in addition to the rotated and the
mirrored images. The proposed network is composed of four convolutional layers
alternated with max-pooling layers and local response normalisation functions hav-
ing parameters fromAlexNet architecture [21]. Finally, the accuracy of the proposed
system was 82.3% under a 4-fold cross validation scenario test.

Brahimi et al. [5] applied CNN for classifying tomato diseases based on
images of leaves. In this study, the dataset consists of 14828 images of tomato leaves
extracted from PlantVillage public dataset and divided into nine classes of diseases.
For developing a classifier, the standard architectures AlexNet and GoogLeNet were
trained from scratch or using transfer learning and fine-tuning. CNN models trained
with fine-tuning showed a better accuracy than models trained from scratch. For
GoogleNet, fine-tuning improves the accuracy from 97.71 to 99.18% and similarly
for AlexNet the fine-tuning increases the accuracy from 97.35 to 98.66%. Authors
have also compared the accuracy of theCNNwith shallowmodels; SVMandRandom
Forest. CNN models have a better accuracy than shallow models, 94.53% for SVM
and 95.46% for Random Forest. Finally, authors have proposed the use of occlusion
experiments for localising and visualising the diseases regions and symptoms which
can help users by giving them better insight to the diseases.

DeChant et al. [8] proposed to use the DL approach for the classification of
northern leaf blight lesions on images of maize plants. 1028 images of infected
leaves and 768 images of non-infected leaves were gathered on the field. From the
total number of images, 70% were used for training, 15% for validation and 15%
for testing. The proposed classification method in this chapter differs from the other
studies presented in this chapter. In this study, instead of using only one end-to-end
network in classification, the authors applied three training stages. In the first stage,
several CNN models were trained to detect the presence of lesions in small parts of
the images. These CNNmodels were used in the second stage to produce a heat map
indicating the probability of infection for every image. In the last stage, the produced
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Table 6.1 Comparison between deep learning studies for plant diseases classification

Paper Year Nbr. of
classes

Nbr. of
images

Image pre-processing
and augmentation

CNN
architecture

Transfer
learning

Accuracy
%

[18] 2015 3 800 Centred crop
Resizing Rotation

Customised No 94.90

[34] 2016 15 4483 Rotation
Affine transformation
Perspective
transformation

CaffeNet Yes 96.30

[25] 2016 38 54306 Resizing
Segmentation
Grey-scaling

AlexNet
GoogLeNet

Yes 99.34

[27] 2016 5 1450 Resizing AlexNet Yes 97.30

[9] 2016 7 14840 Centred crop
Resizing
Rotation
Shifting and Mirroring

Customised No 82.30

[5] 2017 9 14828 Resizing AlexNet
GoogLeNet

Yes 99.18

[8] 2017 2 1796 Segmentation
Rotation

Customised No 96.70

[24] 2017 10 500 Resize
Grey-scaling

AlexNet Yes 95.48

heat map was used to classify the images. The proposed system achieved an overall
accuracy of 96.7% on the test set.

Lu et al. [24] explored the use of CNN for the classification of rice diseases. They
used 500 images captured in an experimental rice field to build a dataset used for
training and validation purposes. AlexNet was the CNN architecture used to build
a rice diseases classifier. Authors have compared the deep CNN with traditional
machine learning algorithms. The overall accuracy of the deep model was 95.48%
under 10-fold cross-validation. On the other side, the results of shallow models are:
SVM achieved an accuracy of 91%, standard back propagation achieved 92% and
Particle Swarm Optimization (PSO) achieved 88%.

Table6.1 summarises the results of works that use DL models for plant diseases
classification. We observe from Table6.1 that most of the studies were conducted
over the two last years. Also, the most used CNN architectures in these works are
AlexNet, GoogleNet and similar architectures like CaffeNet.

Most of the described studies in this section focused on improving the accuracy of
diseases classification without treating the interpretability challenge, by extracting
insights from the classifier. There are several attempts in this direction based on
visualisation methods to address this challenge. Despite these efforts, understanding
and interpretation of results in the DL models is still immature and requires more
attention. For example, visualisation of CNN filters as small images is used by [18,
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34]. This visualisation method is applied to the first layers that interact directly
with the input images. This represents a limiting factor because near-to-input layers
extract only low-level feature like edges in different directions. Understanding of
plant diseases still requires more abstract features like complex shapes and textures.

Visualisation of feature maps is another technique used in the classification of
plant diseases [24, 25, 34]. These methods convert the internal activations to images
in order to visualise the features that are activated in response to lesions and symp-
toms of diseases. Nevertheless, it is still difficult to localise precisely the specialised
activations of these symptoms among a large number of feature maps and nodes.

The occlusion method, investigated in [5], is another method that tries to localise
disease symptoms in tomato leaves. It analyses the CNN behaviour as a black box
without taking into account the architecture and the internal details of CNN, such
as feature maps and filters visualisations. The basic idea of this method is to apply
occlusions to some parts of the images and then observe the CNN output sensitivity
regarding to these occlusions. The advantage of this method is its ability to determine
which image parts are important from the CNN viewpoint. However, this method
is sensitive to hyperparameters like the shape, the size and the displacement stride
of occlusion regions. Furthermore, a large number of occluded images are used as
input of CNN which makes it computationally expensive and time-consuming.

6.3 Comparison Between Deep and Shallow Approaches

DL represents a new promising trend in the classification of plant diseases. Recently,
DL algorithms have achieved the state-of-the-art in many domains, particularly in
computer vision, by giving spectacular results compared to classic machine learning
algorithms. For instance, the top 5 classification error achieved by the deep network
called AlexNet in ImageNet dataset is 15.3% whereas the classic machine learning
algorithms have a top 5 error of 26.2%. Likewise, in plant diseases classification DL
outperformed shallow classifiers results and recently became a hot topic [5, 25].

These DL algorithms are different from classic machine learning algorithms in
the following points:

Data Consumption: The supervised training of DL classifiers requires a large
number of labelled examples, for this reason, data availability in the last decade has
contributed to DL success [6]. DL classifiers require a huge training set because
these classifiers contain a large number of parameters to tune. This constraint
of labelled data represents a limiting factor when the labelling is expensive. For
example, the biological labelled examples are expensive and difficult to collect
in most cases [3]. Plant diseases classification is an example of a biological field
where data collection and labelling is very expensive. In this context, each image
must be labelled by an agriculture expert who should have an academic knowl-
edge supported by practical experience in identification of disease symptoms.
Also, taking a large number of images containing many diseases represents a
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tedious task and many years are required to cover all the existing diseases. Vari-
ous approaches have been proposed to handle this data avidity. Pre-training a deep
architecture with a big labelled dataset like ImageNet and fine-tuning this pre-
trained architecture using a small dataset is used in many studies [25]. Moreover,
data augmentation can help in increasing the number of labelled examples and
variations in the training set [34]. Despite that, the adaptation of DL to domains
where labelling is expensive represents an active research area and requires more
effort [19, 28, 31, 38].

Dedicated Hardware: The training phase of DL classifiers requires dedicated
hardware like the Graphics Processing Units (GPUs) to reduce execution time
[21]. TheseGPUs represent an essential component inDL approaches and training
without GPUs leads to many further days of training. However, the testing phase
of a DL classifier does not require any dedicated hardware and can be executed on
small devices like mobiles or embedded systems. In plant diseases classification,
a DL classifier is trained in dedicated hardware and once the training is finished,
this classifier is deployed to users on mobiles to detect diseases directly in the
fields.

Feature Extraction: Machine Learning algorithms contain a feature engineering
phase. In this phase, experts propose the hand-crafted features to facilitate learning
from examples. This phase is very important and affects the overall performance
of the learning system. Unfortunately, feature engineering is a manual component
in the machine learning pipeline and it is time-consuming [22]. On the other hand,
in a DL pipeline, feature extraction is embedded in the learning algorithm where
features are extracted in a fully automated way and without any intervention by a
human expert. CNN represents a good example of automatic feature extraction in
computer vision. Filters in traditional machine learning are proposed by experts
of vision, where CNN filters are learned in training using a backpropagation
algorithm [22]. Recently, DL features achieved better results than hand-crafted
features [5, 21, 27]. Despite this superiority of DL features, they still suffer from
the difficulty of interpretation. Many attempts have been made to understand the
role of these features using visualisation methods. Despite these efforts, more
studies are required to demystify DL features as understanding of these features
is still immature [32, 39].

6.4 Deep Learning System for Plant Diseases Classification

An overview of the DL system is illustrated in Fig. 6.1. This system contains three
phases presented in this section.
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Fig. 6.1 Overview of deep learning system for plant diseases classification

6.4.1 Data Preparation

Every machine learning system starts with a data preparation phase. This data prepa-
ration phase contains the following stages:

• Data collection: is an important stage for developing any data-driven application.
Particularly, deepmodels require a large dataset to avoid overfittingwhich presents
amajor challenge.Up to now, only a fewdatasets are publicly available for diseased
plants. Most of the works in this area are conducted on the PlantVillage public
dataset [15] or private datasets [9, 34].

• Labelling: the labelling process consists of annotating the collected images by a
human expert. This expert labels images according to two possible strategies:

– Weak labelling: where the agriculture expert identifies only the disease in each
plant without any additional information about this disease.

– Strong labelling: where the agriculture expert determines, in addition to the
disease, the infected regions on the plant. This labelling strategy is expensive
and time-consuming because it requires the patience of the expert where he uses
the annotation software. For this reason, most of the available dataset are weakly
labelled.

• Data augmentation and pre-processing: deep models like CNN are very greedy in
their use of labelled data as discussed in Sect. 6.3. Unfortunately, data collection
and labelling are very tedious and expensive tasks. To address this problem, data
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augmentation techniques are used commonly by DL researchers. Augmentation
techniques aim to increase the size of the dataset and includemore variations. These
techniques consist of geometrical transformations (resizing, crop, rotation, hori-
zontal flipping) and intensity transformations (contrast and brightness enhance-
ment, colour, noise). Moreover, image pre-processing is used to normalise the
images of the dataset. The most used techniques in the DL context are image
resizing and mean subtraction. The resizing is used to convert input images to the
size of the network input layer. However, mean subtraction is used to centre the
data which accelerate the optimisation using a gradient descent algorithm.

6.4.2 Training

After the process of data preparation, deep models and particularly CNNmodels are
trained using backpropagation algorithm. This algorithm aims to minimize a cost
function that measures the total error of the model on the training set. To reduce this
error, the gradient of this cost function is calculated with respect to all weights. The
gradient descent algorithm is then used to find the optimum of the cost function. For
more technical details about backpropagation and gradient descent algorithms, the
reader is referred to [10]. As illustrated in Fig. 6.1, the training phase contains two
stages:

• Pre-training: consists of training a deep CNNon a large dataset like ImageNet first,
before the training on our dataset. This pre-training is carried out to prepare the
CNNby the transfer learning fromabig dataset to plant diseases classification. This
stage is used to deal with the lack of labelled data in plant diseases classification.

• Fine-tuning: in this stage, the last layer (output layer) of the original pre-trained
network is replaced with a new layer compatible with the number of classes in
our dataset. The obtained network is then retrained using the backpropagation
algorithm to fit our data. This method improves the results of our model because
the weights have already been trained on a bigger dataset. This fine-tuning is a
transfer learning method that allows the plant diseases task to take advantage of
models trained on another computer vision task where a large number of labelled
images is available.

6.4.3 Deployment

The trained models can be deployed to users machines (computers, mobiles...etc.)
and can be used in two modes:

• Diseases classification: a captured image is used as an input of the model, then,
the output of the network determines which diseases are present in the plant.
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• Symptoms detection and visualisation: the user can visualise regions that char-
acterise the identified disease. The visualisation methods used for symptoms are
very useful for inexperienced users by giving them more information about the
alteration to the plant made by the disease.

6.5 Evaluation of State-of-the-Art CNN Architectures
for Plant Diseases Classification Task

In this section, the state-of-the-art architectures of CNN are used for plant diseases
classification based on the images of the leaves. The entire procedure is divided into
several steps: preparing the dataset, training and evaluating the trained models and
analysis of the results discussed in detail.

6.5.1 Dataset Structure

In order to compare our results with the existing works, the evaluation process will
be conducted using the PlantVillage dataset. This dataset includes 54323 images of
14 crop species with 38 classes of diseases or healthy plants, as shown in Table6.2.

All used images in the experimental tests are randomly cropped to be 224 ∗ 224
or 299 ∗ 2991 according to the network input size. Only colour images are used in
the training stage due to the conclusion of [25] where the results show that colour
images give a better accuracy than grey scale images. Moreover, a background class
containing 715 images is added in order to train the classifier to distinguish between
plants leaves and the surrounding environment [34]. This class is formed using colour
images from Stanford public dataset of background images [11]. Finally, the size of
the final dataset after adding the background class becomes 55038 divided into 39
classes.

6.5.2 Training Deep Networks for Plant Diseases
Classification

In this experiment, six state-of-the-art architectures (AlexNet [21], DenseNet-169
[14], Inception v3 [37], ResNet-34 [13], SqueezeNet-1.1 [16] and VGG13 [33])
are trained on the dataset described in the previous section. To train and evaluate the
performance of these state-of-the-art CNN,we use a Python deep learning framework

1Images are randomly cropped to be 299 ∗ 299 for Inception v3 architecture and 224 ∗ 224 for
(AlexNet, DenseNet-169, ResNet-34, SqueezeNet-1.1 and VGG13).
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Table 6.2 PlantVillage dataset details

Name Images no

1. Apple Scab, Venturia inaequalis 630

2. Apple Black Rot, Botryosphaeria obtusa 621

3. Apple Cedar Rust, Gymnosporangium juniperi-virginianae 275

4. Apple healthy 1645

5. Blueberry healthy 1502

6. Cherry healthy 854

7. Cherry Powdery Mildew, Podoshaera clandestine 1052

8. Corn Grey Leaf Spot, Cercospora zeae-maydis 513

9. Corn Common Rust, Puccinia sorghi 1192

10. Corn healthy 1162

11. Corn Northern Leaf Blight, Exserohilum turcicum 985

12. Grape Black Rot, Guignardia bidwellii 1180

13. Grape Black Measles (Esca), Phaeomoniella aleophilum, Phaeomoniella
chlamydospora

1383

14. Grape Healthy 423

15. Grape Leaf Blight, Pseudocercospora vitis 1076

16. Orange Huanglongbing (Citrus Greening), Candidatus Liberibacter spp. 5507

17. Peach Bacterial Spot, Xanthomonas campestris 2297

18. Peach healthy 360

19. Bell Pepper Bacterial Spot, Xanthomonas campestris 997

20. Bell Pepper healthy 1478

21. Potato Early Blight, Alternaria solani 1000

22. Potato healthy 152

23. Potato Late Blight, Phytophthora infestans 1000

24. Raspberry healthy 371

25. Soybean healthy 5090

26. Squash Powdery Mildew, Erysiphe cichoracearum 1835

27. Strawberry Healthy 456

28. Strawberry Leaf Scorch, Diplocarpon earlianum 1109

29. Tomato Bacterial Spot, Xanthomonas campestris pv. vesicatoria 2127

30. Tomato Early Blight, Alternaria solani 1000

31. Tomato Late Blight, Phytophthora infestans 1591

32. Tomato Leaf Mould, Passalora fulva 1909

33. Tomato Septoria Leaf Spot, Septoria lycopersici 952

34. Tomato Two Spotted Spider Mite, Tetranychus urticae 1771

35. Tomato Target Spot, Corynespora cassiicola 1676

36. Tomato Mosaic Virus 1404

37. Tomato Yellow Leaf Curl Virus 373

38. Tomato healthy 5375
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Table 6.3 Machine characteristics

No Hardware and software Characteristics

1. Memory 16Gb

2. Processor (CPU) Intel Core i7-4790 CPU @ 3.6GHz x8

3. Graphics (GPU) GeForce GTX TITAN X 12Gb

4. Operating system Linux Ubuntu 16.04 64 bits

called pyTorch with a GPU acceleration option2. Our pytorch implementation is
available at https://github.com/MarkoArsenovic/DeepLearning_PlantDiseases.

These six CNN architectures are trained for the plant diseases classification task
using three different strategies. Two of these strategies are based on the transfer learn-
ing from pre-trained networks. The first transfer learning approach, called shallow
strategy, consists of fine-tuning only the fully connected layers, while the rest of the
network is used as a feature extractor. On the other hand, the second transfer learning
strategy, called deep strategy, fine-tunes all network layers and starts backpropaga-
tion optimisation from the pre-trained network. Using these two approaches, the
CNN classifier tries to learn more specific features for plant diseases classification
starting from pre-trained networks. Finally, the third strategy consists of training the
CNN from scratch starting from a random configuration of weights.

All these 18 training configurations (6 CNN architectures × 3 strategies) use
the same hyperparameters values (momentum 0.9, weight decay 0.0005, learning
rate 0.001, batch sizes 20). The dataset is divided into 80% for training and 20%
for evaluation. All experiments are performed on a powerful machine, having the
specifications that are summarized in in Table6.3.

6.5.3 Model Evaluation Results and Discussion

The accuracy and training time for all the six CNN architectures using the different
training strategies for plant diseases classification task is displayed in Table6.4.

The obtained results can be compared to [25], where they used the same dataset,
except for the background class added in our experiments. All other works in plant
diseases classification, described in related works, used only part of the PlantVillage
dataset specific to particular plant species [5] or their privately collected datasets [8,
9, 18, 24, 27, 34].

In [25], authors used only two architectures AlexNet [21] and GoogLeNet (Incep-
tion v1) [36] and based on two learning strategies: training from scratch and transfer
learning. In this study, the accuracy results of the training from scratch, using 80–
20% train-test distribution, are (AlexNet, 97.82%) and (GoogleNet, 98.36%), while

2https://github.com/pytorch/pytorch.

https://github.com/MarkoArsenovic/DeepLearning_PlantDiseases
https://github.com/pytorch/pytorch
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Table 6.4 Experiment results

Model Training type Training time [h] Accuracy

AlexNet Shallow 0.87 0.9415

AlexNet From scratch 1.05 0.9578

AlexNet Deep 1.05 0.9924

DenseNet169 Shallow 1.57 0.9653

DenseNet169 From scratch 3.16 0.9886

DenseNet169 Deep 3.16 0.9972

Inception_v3 Shallow 3.63 0.9153

Inception_v3 From scratch 5.91 0.9743

Inception_v3 Deep 5.64 0.9976

ResNet34 Shallow 1.13 0.9475

ResNet34 From scratch 1.88 0.9848

ResNet34 Deep 1.88 0.9967

Squeezenet1_1 Shallow 0.85 0.9626

Squeezenet1_1 From scratch 1.05 0.9249

Squeezenet1_1 Deep 2.1 0.992

VGG13 Shallow 1.49 0.9223

VGG13 From scratch 3.55 0.9795

VGG13 Deep 3.55 0.9949

the accuracy results of training using transfer learning are (AlexNet, 99.24%) and
(GoogleNet, 99.34%).

FromTable6.4, Inception v3 network (modification ofGoogLeNet by introducing
batch normalisation [37]) gives the best accuracy for deep training strategy, with
99.76% outperforming the results shown on [25].

From the results of Table6.4, we observe that themost successful learning strategy
in the classification of plant diseases for all CNN architectures is the deep transfer
learning. Also, we can observe that DenseNet169 has a comparable accuracy to
Inception-V3 with 99.72% but with less training time, followed by ResNet34 that
has an accuracy of 99.67% with even less training time. Furthermore, VGG13, using
deep transfer learning strategy, is ranked fourth according to accuracy with 99.49%.
AlexNet and SqueezeNet have a similar accuracy of 99.2% which is smaller than the
results of other architectures. DenseNet169 gave the best accuracy in the other two
strategies (shallow and from scratch) with 98.86 and 96.53% respectively.

Evaluation of the performance of the models by comparing training time and
accuracy is also displayed in Fig. 6.2.

A large fraction of the PlantVillage dataset are images of leaves in a controlled
environment and simple background. Adding images with different qualities and
complex backgrounds in the training and validation dataset could improve accuracy
and produce a classifier more useful for practical usage. The PlantVillage dataset
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Fig. 6.2 Training time and accuracy of CNN architectures

is unbalanced, where some classes have more images than others, which could be
very misleading and could lead to overfitting if not trained carefully. Augmentation
techniques could help in these situations, and it is a common procedure in many
classification tasks.

6.6 Deep Learning Visualisation Methods

Despite the good results of DL classifiers, they are often considered as black boxes
because of their lack of interpretability. The superposition of layers and the use of
nonlinear functions make the understanding of the classification difficult. Thus, DL
classifiers require specialized algorithms to deal with this interpretability challenge,
by extracting insights from the classifier [32, 35, 39].

These visualisation algorithms help both the designer and the user of the classifier.
The classifier designer uses these algorithms to analyse the classifier behaviour to
improve the performance, while the user benefits from the transparency offered by
the visualisation in order to understand the classification. In many domains, clas-
sification is insufficient and requires support by an explanation of this automatic
decision. Notably, plant diseases classification represents a domain where the clas-
sifiers understanding is very important. For users, a visualisation algorithm helps in
disease understanding by localising the symptoms and the infected regions. Hence,
biological knowledge is extracted from the classifier to help the non-expert farmers,
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while agriculture experts and classifier designers use visualisation to understand the
classifier behaviour [5]. For example, a classifier having a good accuracy may use
contextual information in the image to detect the disease and ignore symptoms. In
this situation, the classifier will suffer from a generalisation problem if the subject
background is different. Without visualisation algorithms, it is difficult to identify
this issue based on the classifier performance. In practice, this situation of classifi-
cation by background context may happen, if all training images of one disease are
taken in the same background by one farmer.

In literature, there are many proposed visualisation algorithms for DL classifiers.
In this chapter, we focus on algorithms proposed for CNN. This choice is motivated
by the extensive use of CNN for images and particularly in plant diseases detection.

6.6.1 Visualisation in Input Image

This type of methods is very important from the practical viewpoint because it
projects the features used by network back to the input image. Therefore, the image
can be examined to understand how the classifier behaves [32, 35]. In plant diseases,
these visualisations give valuable information about the important parts used by the
network as features. If the classifier behaves correctly, these parts may represent the
symptoms or the characteristics of a disease [5]. However, if the classifier uses the
background or another feature unrelated to disease, then this undesirable behaviour
can be detected [5].

6.6.1.1 Occlusion Experiments

Occlusion experiments aim to analyse the network sensitivity to the occlusions of
image regions. Using this method, the classifier designer examines whether the net-
work captures the characteristics of the image or not during the classification. For
instance, the background of an infected leaf in a plant should not affect the diagno-
sis of the disease. However, the classification should be based on the symptoms of
each disease in the leaf. In this specific situation, occlusion of the leaf background
should not affect the classifier decision in the sameway of an occlusion of a symptom
region [5].

For implementing occlusion experiments, a black square is used to occlude a
region in the input image. The obtained image is then classified by the network to
produce an output vector. This vector is examined to understand the sensitivity of
the network to this occlusion. Precisely, the node corresponding to the ground truth
class of the image is checked. Naturally, if this region is important, then the value of
the mentioned node decreases dramatically, in response to occlusion of this region.
However, if the occluded region is not important then the node value, corresponding
to ground truth class, does not fluctuate very much [39].
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Fig. 6.3 Occlusion experiments in plant diseases classification. The red squares drawn in the leaves
images represent the most active occluded parts in the heat map

The square of occlusion is slided by stride over the image to produce a heat map
formed using the ground truth node values. This heat map visually demonstrates the
influence of each region on the classification. Hotter regions are likely to be important
in classification and colder regions are likely to be less important. Similarly, users of
the classifier can benefit from thismethod to understand the disease and its symptoms
by viewing the importance of each image region [39].

Figure6.3 shows the tendency of the network to focus on lesions caused by the
diseases while ignoring the healthy part of the leaf in addition to the background.
Specifically, the heat map of Fig. 6.3a indicates precisely the location of grey con-
centric rings in the infected leaf. The occlusion of this symptom affects the classifier
decision more than the leaf regions of the other samples. This result is compatible
with the experts defined symptoms for early blight [20]. Similarly, for Septoria, Late
Blight and Leaf Mould, active regions in the heat map match exactly the lesions that
characterise these diseases. Nevertheless, the heat map visualisation misses some
infected regions in the leaf. For instance, in Fig. 6.3d some yellow regions in the
bottom part of the leaf are not shown on the heat map.

Occlusion experiments suffer from some problems and have many drawbacks. To
produce a heat map, a large number of occluded images are used as input to the net-
work which makes it computationally expensive and time-consuming. Considering
an image of 500 ∗ 500 pixels resolution and an occlusion square having the size 50 ∗
50 pixels and slided by a stride of 10 pixels, the size of the produced heat map is 46
∗ 46 which requires 2116 occluded images. Similarly, if the stride is only one pixel,
then the number of occluded images grows exponentially to 451 ∗ 451 = 203401
images. In addition to the computation cost, occlusion experiments are inefficient if
there are several important regions in one image. In this case, the occlusion of one
region among these regions does not affect so much of the network decision. This
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situation is likely to occur in plant diseases classification if the symptom of a disease
is dispersed overall the leaf.

6.6.1.2 Saliency Map

Asmentioned above, occlusion experiments are computationally expensive and time-
consuming thus, another method for estimating the importance of image regions is a
necessity. Notably, a saliency map is an analytical method that allows estimation of
the importance of each pixel, using only one forward and one backward pass through
the network [32].

The intuition behind this method is that, if one pixel is important in respect to the
node corresponding to ground truth y, then changing the values of this pixel leads to
a big change in this latter node. Therefore, if the value of the gradient in this pixel
is big with absolute value, then this pixel is important. Conversely, if the gradient is
equal or close to zero, then the pixel is not important and its variations do not affect
the output node corresponding to y. The aggregation across the channels is achieved
in order to estimate the overall importance of pixels rather than the importance of
each pixel channel alone.

We can consider this method as an analytical version of occlusion experiments.
In occlusion experiments, the saliency map matrix is estimated numerically by mod-
ifying pixels and observing the output changes. For this reason, the calculation of a
saliency map is not computationally expensive like the calculation of the heat map in
occlusion experiments, since the calculation of gradient in a numerically discreet way
requires the modification of each pixel or region in the image in order to approximate
his gradient. However, calculating gradient analytically requires only one backward
pass to calculate all the derivatives with respect to all pixels.

To the best of our knowledge, the saliencymap has never been used in plant disease
classification. The utility of a saliency map is comparable to occlusion experiments.
It helps to identify the symptoms of diseases for users. Moreover, this method is
insensitive to the dispersed important regions, because the importance of pixels is
calculated analytically and is not based on occluding pixels.

To calculate the saliencymap, the input image x is forwarded through the network
to calculate the output of network noted f (x). Then, a backward pass is used to
calculate the gradient of f (x)y with respect to the input image x where y is the
ground truth label corresponding to the input image x . More formally, the gradient
G(x), using formula (6.1), is calculated to estimate the importance of each pixel in
the image x . This G(x) is a tensor having the same dimension of the image x . If
x has a width W , height H and three channels, then G(x) is a tensor having the
dimension 3 ∗ W ∗ H and indexed by three indexes: i for indexing channels and j, k
for indexing pixels.

G(x) = d f (x)y
dx

(6.1)
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Fig. 6.4 Saliency map in plant diseases classification. For image leaves in column 1, 4 there
are two types of visualisations. Images in column 2, 5 represent visualisations without guided
backpropagation. Images in column 3, 6 represent a visualisation using guided backpropagation

To estimate the importance of a pixel x(i, j), the maximum of the absolute values
across channels is calculated. Consequently, the produced matrix having the dimen-
sion W ∗ H is called saliency map SM and calculated using the following formula:

SM(i, j) = Max {|G(0, i, j)|, |G(1, i, j)|, |G(2, i, j)|} (6.2)

The saliency map can localise with a good precision the infected regions in the
input leaf image. Fig. 6.4b, e, f represent good examples where the visualisation of
the saliency maps labels exactly the infected regions in leaves. Moreover, in Fig. 6.4f
the two dispersed regions of the leaf mould disease are localised in contrast with the
occlusion experiments that showonly one infected region. Despite these good results,
in many cases the saliency maps are not clear and suffer from noisy activations that
can disturb the user. As an example, the visualisations in Fig. 6.4c, d show many
activated regions in addition to the infected ones. This limitation is addressed by
adding the guided backpropagation option which is described in the next section.
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6.6.1.3 Saliency Map with Guided Backpropagation

The guided backpropagation method adds an additional rule during the backward
pass. This rule is applied during the backpropagation through the nonlinear function
called rectified linear (ReLU). In contrast with the standard backpropagation, only
positive gradients are backward through ReLU [35]. This rule prevents the backward
flow of negative gradients on ReLU from the higher layer in the CNN architecture
[35]. This stops the gradients originated from the neurons that decrease the activation
of the class node f (x)y and keeps the gradients from neurons that increase the
activation of class node f (x)y . Interestingly, unlike the standard backpropagation,
this method produces more precise visualisations which help the user in detection of
infected regions [35].

As shown in Fig. 6.4, the noisy activations on Fig. 6.4c, d are filtered and the
visualisation become sharper. The three infected regions of early blight are now
clear and easily distinguishable. Similarly, the main infected region of Septoria Leaf
Spot is clear which gives the user a good intuition about this disease.

Furthermore, as illustrated in Fig. 6.4a, guided backpropagation produces a nice
visualisation for healthy leaves. In this specific case, the network detects the contour
of the leaf because no symptom is available in the leaf. This result shows the power
of the network in understanding the input image by focalising only in the regions of
interest and ignoring the background and non-infected regions.

6.7 Plant Diseases Classification Challenges

6.7.1 Plant Diseases Detection in Complex Images

Most studies in DL for classification of plant diseases have only focused on analysing
images containing one leaf taken in a controlled environment. Although these
approaches can classify a disease accurately in one image taken by a human agent,
they are unable to find disease regions automatically in large fields. Obviously, a
human agent is unable to monitor a large field and detects the earlier symptoms of
diseases in order to take a picture. For this reason, a practical diseases detection
system should automate the monitoring of fields to interact with plant diseases in
due course. This automatic monitoring that leads to early detection of diseases can
considerably reduce the damage on crops.

For this task, drones can fly above the field and take images for online or offline
analysis. In this case, the learning system, used in data analysis, must deal with com-
plex images containing several leaves and maybe many diseases. To achieve this, DL
object detection algorithms can be used to localise and classify the affected regions
in each image taken by drones. These object detection algorithms use the DL clas-
sifiers trained using simple images and adapt them to localise and classify diseases
in complex images. This type of algorithm is used in literature in many contexts.
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For example, in automatic driving, object detection and classification are extensively
used to enhance the quality of driving. In a similar application to plant diseases
classification, DL object detection algorithms are proposed in forest firefighting for
detecting the fire using CNN [23]. Finally, the challenge of object detection algo-
rithms lies in the absence of a big labelled dataset containing images taken by drones
in affected crops. Efforts in this direction to collect a big dataset of labelled examples
taken by drones will enhance the utility of plant diseases detection.

6.7.2 Symptoms Segmentation in Plant Diseases

DL approaches focus on diseases classification and ignores the localisation of
infected regions in the leaf. This disease region identification is very important for a
human expert to gain more insights into the disease and its symptoms [5]. In order to
address this problem, DL segmentation algorithms can be used to divide the image
into many parts in an unsupervised manner. After this segmentation, the supervised
algorithm can be used to classify the disease. In this case, the user can know the dis-
eases and the infected region at the same time.Also,more efforts inDLunderstanding
help users to understand how classifiers classify the diseases. Visualisations algo-
rithms should be included to enhance the user experience in understanding diseases
[32, 39].

6.7.3 Labelled Images Challenge

DL algorithms require a large number of labelled images to produce a classifier
not suffering from overfitting. Labelling this large number by a human expert is a
real challenge and time-consuming. To address this challenge, crowdsourcing, as
distributed internet framework, can produce big labelled datasets in an acceptable
time. Also, crowdsourcing helps to achieve more complex labelling like the infected
regions labelling [3, 30]. For example, we can divide an image using a grid of squares
and ask users in crowdsourcing frameworks to select infected squares. This structured
labelling can be used to evaluate automatic systems of diseases regions and symptom
identification.

Crowdsourcing addresses the labelled datasets by offering an efficient tool for
data collection. However, in many contexts learning algorithm must minimize the
number of labelled examples and exploit unlabelled examples. Weakly and semi-
supervised algorithms can be used for this objective [19, 29, 31]. This type of algo-
rithms uses unlabelled images to improve the training of the classifier, knowing that
unlabelled examples are relatively cheap and does not require human expert efforts
which reduces the cost of data collection.
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In addition to semi-supervised algorithms, active learning can help by choosing
the examples efficiently for a labelling expert. This selective labelling improves the
classifier accuracy and reduces the labelling cost at the same time [28, 38].

6.7.4 The Exploitation of Multiple Information Sources

Previous works have only focused on using images and have ignored valuable infor-
mation. For example, the age of the plant is important to achieve a good disease
diagnostic. Each phase in plant life has a specific set of diseases. This information
can be combined with the image to avoid any incorrect decision incompatible with
the age of the plant.

Climate represents an important factor for triggering plant diseases. A sudden
change in temperature causes many diseases to plants. For this reason, a practical
tool for protecting plants from diseases should exploit this information.

Field location is another important factor in disease detection because each region
is characterised by a set of knowndiseases.Moreover, if one disease spreads in nearby
fields, then it is likely to detect this spreading disease.

All this information can be combined with features extracted from the image to
enhance the DL system performance. The fully connected layer can be combined
with information from many sources and used as input of a classifier. In this case,
the classifier exploits the extracted features from an image, taken directly from the
field, and combines them with information that is easy to collect. Commonly, the
climate state and location information can be retrieved easily from the internet on
smartphones. Exploitation of this cheap information allows the detection system to
adapt to the environmental factors in real time.

6.8 Conclusion

We studied in this chapter a recent trend for building a system able to detect and
classify plant diseases. After analysing and comparing the previous work based on
DL, we have concluded that these studies principally use two CNN architectures
(AlexNet and GoogleNet). For this reason, we have evaluated the state-of-the-art
CNN architectures using a public dataset of plant diseases. The results of this evalu-
ation show clearly that we can improve the accuracy using a new CNN architecture
such as inceptionV3 which achieved an accuracy of 99.76%.

In addition to this improvement in accuracy, we have investigated increasing the
transparency of deep models based on visualisation techniques. In this context, the
saliencymapmethod is introduced for localising the infected regions of the plant after
the identification of diseases. Despite the fact that the training images are weakly
labelled, this visualisation has succeeded in the extraction of the infected regions
without any expert intervention. Furthermore, this visualisation method shows a
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precise and sharp visualisation which helps the inexperienced users to understand
the diseases.

As a limitation of this study, we can notice that visualisation method is not evalu-
ated quantitatively using a defined measure. However, the images are assessed based
on expert defined visual symptoms. This qualitative evaluation is motivated by the
weak labelling of the dataset. Therefore, our future work will focus on the prepara-
tion of a strong labelled dataset, which makes it possible to measure numerically the
performance of saliency maps visualisation.
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Chapter 7
Critical Challenges for the Visual
Representation of Deep Neural Networks

Kieran Browne, Ben Swift and Henry Gardner

Abstract Artificial neural networks have proved successful in a broad range of
applications over the last decade. However, there remain significant concerns about
their interpretability. Visual representation is one way researchers are attempting to
make sense of these models and their behaviour. The representation of neural net-
works raises questions which cross disciplinary boundaries. This chapter draws on
a growing collection of interdisciplinary scholarship regarding neural networks. We
present six case studies in the visual representation of neural networks and exam-
ine the particular representational challenges posed by these algorithms. Finally we
summarise the ideas raised in the case studies as a set of takeaways for researchers
engaging in this area.

7.1 Introduction

The internal patterns and processes of artificial neural networks are notoriously dif-
ficult to interpret. The advent of deep neural networks has heightened this challenge
and rendered many existing interpretive methods obsolete. This has prompted new
research into methods for interpreting neural networks. One of the most fruitful areas
of this research, and the focus of the present chapter, is visual representation. Cen-
tral to this research is the concern that neural networks are black boxes. Growing
awareness and criticism of machine learning in public discourse has transformed
the explanation of these algorithms into a social and political as well as technical
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concern. Interrogating the black box is a compound problem. Its constituent parts
cross disciplinary boundaries to raise questions of engineering, epistemology, aes-
thetics and semantics. We will argue that it is valuable for researchers aiming to
explain neural networks through visual representation to become familiar with the
interdisciplinary critical scholarship on this topic. We begin this chapter with a dis-
cussion of the black box problem which draws upon this research. We then situate
the visual representation of deep neural networks in data visualisation and inter-
face theory, and discuss the specific challenges it poses. In Sect. 7.2 we outline the
diagrammatic representations favoured by researchers prior to 2006 and offer an
explanation for their rapid obsolescence following the rise of deep neural networks.
In Sect. 7.3 we present six diverse case studies in contemporary visual representation
of neural networks. The case studies come from research, industry and individual
makers. They have been selected for their potential to highlight critical challenges
rather than their citation metrics. In the final section we summarise the ideas raised
in the case studies as a list of takeaways for students or researchers engaging in this
area.

7.1.1 The Black Box Problem

The term “black box” describes a system with clearly observable inputs and outputs,
but with inscrutable internal processes. Neural networks are considered black boxes
not because we cannot see inside as such; the relationship between input and output
is observable but unintelligible. An apparently strong relationship in one layer of the
network may be cancelled out or inverted in the next or simply diluted by count-
less other smaller relations. Like many machine learning (ML) techniques, neural
networks trade interpretability for predictive power [7].

The black box problem is an ongoing concern for researchers and a growing
concern for institutions and individuals who use trained models but are estranged
from their development. If it is difficult to understand how neural networks make
decisions, then it becomes difficult to trust the decisions they make.

The black box problem has been cited many times as a barrier to the adoption of
neural networks [6, 16, 42]. This concern has proved unwarranted as the successes
of deep neural networks in countless disparate fields have led to pragmatic adoption
despite difficulties explaining their behaviour. Over the past decade deep neural
networks have received massive investment from research councils, industry and
government and have been applied to problems as broad-ranging as translation [2],
gameplay [28], fine art [17], stock trading [25] and object recognition [24].

Despite some early claims to have solved the black box problem [6], concern
for explainability remains. Indeed the black box has become a central metaphor for
questioning how andwhether neural networks can be explained. Notably, researchers
have made attempts at “illuminating” [32], “coloring” [16], “opening” [39, 42] and
“greying” [43] black boxes.

Since 2006, the use of deep architectures, i.e. neural networks of many layers, has
become prevalent [5]. The comparatively tiny neural networks used by researchers



7 Critical Challenges for the Visual Representation of Deep Neural Networks 121

in the 90s have been replaced by massively deep, massively multivariate networks.
AlexNet [24], for example, contains 650,000 neurons and 60 million parameters.
This enormous growth has rendered many existing modes of visual representation
ineffective.

The invention of new types of networks has created additional challenges for
explainability. Much of the recent success of neural networks has been made with
alternative architectures such as convolutional neural networks and long short term
memory (LSTM) networks [35]. These models augment the standard feedforward
neural network with structures that enable new kinds of modelling but introduce
additional behavioural complexities.

7.1.2 Interdisciplinarity

As a potentially transformative technology, ML has consequences which reach far
beyond computer science. As a novel way of representing knowledge ML raises
questions for epistemology [41]. Because ML is subject to human biases, anti-
discrimination law must be reformed to account for it [3]. As a technology driv-
ing socially consequential mechanisms such as news trends and credit scores, the
opacity of ML becomes a sociological concern [13]. There are more examples of
interdisciplinary research into ML than can be enumerated here. In each case, the
authors describe the critical challenges of machine learning in the nomenclature of
their field. This seemingly disparate scholarship provides a useful lens with which
to understand ML itself and its effects in the world. In Sect. 7.3 there are a number
of cases where interdisciplinary research is leveraged to make sense of some of the
particular critical challenges posed by the visual representation of neural networks.

7.2 Historical Precedents

The defining trope of pre-2006 neural network visualisation was the structure of the
network itself. This was most commonly represented as a graph of nodes and edges
arranged in neat layers left-to-right or bottom-to-top (Figs. 7.1 and 7.2). In these, the
network’s topology is central to the representation.

Craven and Shavlik’s 1992 review paper [14] surveyed the contemporary cutting
edge of artificial neural network visualisation.Notable amongst thesewere theHinton
and Bond diagrams, which have a structural focus. Curiously the authors criticise the
Hinton diagram for not showing the network’s “topology” despite its elements being
arranged in layers that mimicked the network’s structure. Although the Hinton and
Bond diagrams can theoretically include any number of inputs, they are practically
uninterpretable for large networks [42].

What followed was a general convergence to and then refinement of a particular
representation which centred around a structural depiction of the network. We call
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Fig. 7.1 Neural interpretation diagram based on S. L. Özesmi and U. Özesmi (1999) [33] — the
visual representation mirrors the structure of the schematic representation introduced by Rosenblatt
(1962) [34]. The thickness of each edge is relative to the absolute value of the synapse weight. Blue
edges represent positive weights and red edges represent negative weights. Source code for image
available at [9]

Fig. 7.2 Diagram for a large spam-classifier neural network based on Tzeng and Ma (2005) [42].
The size of nodes indicates their relative importance in identifying spam. Node colour is used to
indicate the mean and standard deviation of a given node. Source code for image available at [10]

this type of image a “neural interpretation diagram” (NID) borrowing from the name
used by S. L. Özesmi and Özesmi (1999) [33]. In NIDs, neurons are represented
as dots or circles, and synapses are represented as lines with thickness and colour
indicating value. Variations on this theme can also be seen in the work of other
researchers [32, 33, 38, 42]. In their 2005 paper, Tzeng and Ma cite the Hinton and
Bond diagrams as precedents to their work and note that these had failed to scale
to larger networks. They go on to apply their take on the NID to a network with
8300 synapses. Although it doesn’t appear to be the authors’ intent, the resulting
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image demonstrates that NIDs share a similar scaling problem to Hinton and Bond
diagrams. In the multitude of criss-crossing lines it is impossible to make sense of
individual synapse values (Fig. 7.2).

The NID and its variants went out of fashion because they failed to scale to the
very large, very deep networks that became the focus of research after 2006. More
significantly however, these diagrams fail to target the core of the problem. Neural
networks are not black boxes because we cannot see inside at all; the value of any
weight, bias or activation can be easily accessed. It is clear that seeing the network
does not in itself create understanding. The real challenge for explaining neural
networks is untangling meaningful relationships from the multitude of connections.

By meaningful, we mean relating to representations for which people have con-
cepts. It is not useful to explain how a pixel value relates to steering instructions. For
self-driving cars we want our explanations in terms of semitrailers, cliffs and pedes-
trians. Because deep neural networks produce their own intermediate representations
we require means of mapping these back to meaningful concepts and testing how
robust these mappings are.

Additionally it is not possible to explain the behaviour of a network by its structure
as structure does not dictate behaviour; neural networks are universal approximators
[21]. Two structurally identical networkswill approximate different behaviours given
different data. A neural network’s behaviour is latent in the dataset, not the network.

7.3 Case Studies

In this section we explore contemporary developments in visual representation of
neural networks, examining six case studies drawn from research, industry and indi-
viduals. These cases have been selected for their potential to highlight critical chal-
lenges of visually representing neural networks.

7.3.1 AI Brain Scans

The AI Brain Scans (2016-ongoing) [19], are a collection of visualisations by Matt
Fyles of Graphcore. Initially referred to as “large scale directed graph visualizations”
[20], the images were dubbed “brain scans” in a report by Wired in early 2017 and
the title stuck [12].

The AI Brain Scans visualise the edges and nodes of a neural network’s com-
putational graph. They are produced with Graphcore’s proprietary ML framework,
Poplar, and the open source graph visualisation software, Gephi [4], which is used
primarily for social and biological network analysis. The “brain scans” are structural
like the NID, but rather than representing the network’s topology they represent the
graph of computations required to train and run a neural network. Unlike other neural
network graph visualisations such as those produced by TensorFlow’s TensorBoard
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[40], the “brain scans” do not abstract nodes into higher dimensional representa-
tions, namely tensors. The results are beautiful, but enigmatic; see [12] for images.
The network is presented in its vast complexity, often containing millions of nodes
and edges. These are unidentifiable in the emergent global form, making the image
appear more photographic than diagrammatic. The edges of the graph are all but
noise and appear as a fine grain, evocative of a micrograph.

The graph layout demonstrates patterns of growth similar to bacteria on a petri
dish. Force-directed layout is used to arrange the nodes, which produces growth-like
properties. There are a multitude of ways to lay out a graph visualisation, and no
single “correct” way to do so. In this case as in any, the choice to use one layout over
another is an aesthetic judgement. The “brain scans” revel in the complexity of deep
neural networks. No longer are nodes arranged in even rows and parallel layers with
neatly criss-crossing edges. Rather, the sub-structures grow radially but distort due
to competition for space.

The “brain scans” appear to be a rejection of structure and clarity of contemporary
visualisationwhich seeks to render phenomena beyond the scale of human perception
accessible to our senses. Manovich (2002) [27] calls this the “anti-sublime ideal”.
Contrary to this, the AI Brain Scans are deeply sublime, they are an image of the
complexity of contemporary neural networks, whose internal patterns and processes,
as we have seen, are at least partially unknowable. By leveraging a biomorphic
representation they present a metaphor for artificial neural networks that is complex,
esoteric and uncanny.

This is not to say that the “brain scans” do not help us to understand neural
networks. It is possible for example to identify convolutional and fully connected
layers in the emergent structures of the images (see [19]). Importantly the AI Brain
Scans help us to think about neural networks because they offer a visual metaphor
that actually represents their complexity and obscurity rather than representing an
incomplete or inconclusive visual explanation in false clarity.

7.3.2 Optimal Stimulus Images

One of the key strengths of deep neural networks over shallow ones is their capac-
ity to build abstraction over successive layers [5]. Accordingly, one of the greatest
challenges for explaining the behaviour of neural networks is interpreting these inter-
mediate representations learned by a network and encoded in hidden layers.

Because deep neural networks are often trained on low-level representations (like
pixels or characters) which have little semantic value, the use of numerical expla-
nations such as rule extraction are undermined. Le (2013) [26] demonstrates the
use of numerical optimisation to find the optimal stimulus for a given neuron in an
unsupervised neural network. The author includes three instances of interpretable
high-level features discovered with this method. This suggests that neural networks
have the capacity to discover salient features in the pursuit of higher goals, evenwhen
these are not encoded as part of a classification. Le uses gradient descent in training,
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Fig. 7.3 Optimal stimulus of interpretable neuron from Le (2013) [26]. (Copyright 2013 IEEE,
reprinted by permission of IEEE)

keeping the weights and biases constant in order to to optimise the activation of a
given neuron with respect to the input variable. Because the resulting optimal input
data is in pixel space, it can be rendered directly as an image. Figure7.3 is a visuali-
sation created in this way that clearly contains a human face.

The power of this and similar methods is that they accumulate the information
which encodes this representation and is distributed throughout preceding layers. In
doing so, they shift the focus of explanation from network weights with no inherent
semantic value to distributed high-level features.

This kind of visualisation is extraordinarily expressive. At later layers in the net-
work it theoretically makes it possible to simplify the tangled mess of relations
encoded within. Used in combination with a technique such as rule extraction, it
allows us to give coefficients at the level of meaningful concepts. However, this also
requires that researchers engage critically with semantics. Tun (2015) [41] prob-
lematised the epistemic status of ML, noting that statistical learning is a form of
inductive inference. It is therefore subject to the problem of induction. This idea can
help researchers to better understand the nature of the semantics encoded in neural
networks.
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Figure7.3 shows a blurry image of a human facewhich is the optimal input for one
of the network’s neurons. The face is clearly white and clearly male. Its eyes contrast
strongly with the background. Its lips are rosy and there is a hint of stubble on the
upper lip. The clarity with which the face can be seen in the image led the author
to claim that the tested neuron has learned “the concept of faces” [26]. However,
with the problem of induction in mind, this claim becomes less certain. The image
appears to represent the basic notion of a face because whiteness and maleness are
unmarked categories in English. We understand the image through the lens of our
preexisting linguistic categories. If the pictured face were feminine, or non-white,
or that of a child we would be be less inclined to assume it represents the general
concept of faces.

The optimal stimulus is an important datum but it represents an archetype not a
category. Categories are defined as much by what is excluded as what is included.
It is possible that this neuron activates strongly only for faces that are also white,
adult and male, or even only to those that resemble the man pictured. Alternatively
this really could be the generic category of “face”, its features representing only an
overrepresentation of white adult males in the dataset. It is not possible to know
how far this representation of a face will stretch without experimentation. To test the
equality of meaning between this neuron and the Anglophonic definition of a face,
we need to measure how quickly the activation declines as correlates of femaleness,
age and ethnicity change.

The optimal stimulus images and other methods that visualise the internal seman-
tics of neural networks are crucial to our understanding of these systems. Nonethe-
less, it is necessary to take a critical approach when dealing with notions as slippery
as meaning. It is valuable for researchers aiming to represent semantic encodings
in neural networks to become familiar with the critical issues of semantics from
philosophy and linguistics.

7.3.3 Interpretable, Long-Range LSTM Cells

Semantic relationships in recurrent neural networks are explored in Karpathy, John-
son, and Fei-Fei (2015) [23]. The authors visualise the activation of a particular
neuron across a passage of text generated by an LSTM network to look for inter-
pretable relationships between the neuron’s activation and the composed content.
Their visualisation highlights each character with a colour mapped to the activation
of a given neuron and looks for interpretable patterns.

InFig. 7.4 this techniquewas applied to anLSTMtrainedonLeoTolstoy’sWarand
Peace. Two interpretable neurons are shown. The first can be interpreted as relating to
the carriage returnwhichmust be used approximately every70 characters. The second
turns on inside quotes, allowing the network to remember to close them. Interpreting
meaningful relationships in the content of the prose itself was not achieved. It is
possible that an appropriately comparative string of characters that would reveal the
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Fig. 7.4 Visualisation of interpretable activations of neurons from LSTM network trained onWar
andPeace based onKarpathy, Johnson, and Fei-Fei (2015) [23]. Text colour represents the activation
of the interpretable neuron tanh(c), where blue is positive and red is negative. Source code for image
available at [8]

pattern simply did not emerge. It is also possible that the relationships that produce
prose are more complex than the viewer can discern.

Unlike the optimal stimulus images, these visualisations engage with a softer
notion of meaning. Here, meaning emerges from the consistent relation between the
neuron activation and the output. The semantic meaning of a cell is inferred by the
viewer in the context of real data. The visualisation exists only to service comparison.

The insight of this visualisation is to integrate neuron activation with the data
it consumes or produces. By placing the abstract representation of activations in
context, the viewer can discover patterns without the author’s curation (Fig. 7.5).

Fig. 7.5 “Fooling images” produce >99%confidence predictions but are unrecognisable to humans.
This process and the notion of a fooling image are introduced in Nguyen, Yosinski, and Clune
(2015) [31]. The examples above were produced using a script operating on Felix Andrew’s CPPN
clojurescript implementation [1]. The source code is available at [11]
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7.3.4 Fooling Images

The “fooling images” of Nguyen, Yosinski, and Clune (2015) [31] are a collection
of images produced with genetic algorithms that are unrecognisable to humans but
produce high confidence predictions from state-of-the-art deep neural networks. The
works expose a significant divide between human and computer vision. Nguyen,
Yosinski, and Clune (2015) [31] introduce two methods for generating “fooling
images” based on evolutionary algorithms (EAs). We will focus on the second
form which uses Compositional Pattern Producing Networks (CPPNs) [37] to breed
images which optimise for a given fitness function, in this case a single classification
of a convolutional neural network trainedon ImageNet. In order to simultaneously tar-
get all 1000 classes of ImageNet the researchers used the multi-dimensional archive
of phenotypic elites algorithm, but noted that results were unaffected for a simpler
EA.

The “fooling images”, unlike the previous case studies, contain no image of the
network’s weights, structure, training set or indeed any data about the network at
all. Despite this they do foster understanding. The images probe the network with
targeted experiments to seek out unusual and revelatory behaviour.

The “fooling images” are critical cases that force the viewer to reconsider assump-
tions about the network. The researchers found that test subjects were able to reason
about why an image was classified a certain way after its class was revealed to them.
It is clear however, that global coherence does not affect the network’s prediction.
Instead, simply having low level features from the class seems to be sufficient to
predict a category with high certainty.

The “fooling images” show very clearly that despite high scores on the ImageNet
benchmark, neural networks do not “see” in the same way that humans do. It is
natural to assume when we see a neural network working correctly that the network
perceives and reasons as we do. Critical cases such as the “fooling images” reveal
glimpses of the semantic mappings that the network has learned.

The “fooling images” are powerful because they break our natural assumption that
performing a complex task with low error means thinking like a human. They desta-
bilise the default anthropocentric notion of seeing. This semantic non-equivalence is
likely a property of neural networks in general and gives grounds for scepticism of
any neural network that appears to be acting like a person.

7.3.5 DeepDream

DeepDream is a method for visualising the internal representations of neural net-
works developed by Mordvintsev, Tyka, and Olah (2015) [30]. It is also likely the
best known neural network visualisation, having reached viral status.

DeepDream approaches visualisationwith the same basic aim as the optimal stim-
ulus images of Le (2013) [26]; to visualise the semantic representations encoded by
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Fig. 7.6 Image produced by DeepDream — by Mordvintsev, Tyka, and Olah (2015) [30]. Used
under Creative Commons Attribution 4.0 International: https://creativecommons.org/licenses/by/
4.0/legalcode

Fig. 7.7 DeepDream’s compound animals — by Mordvintsev, Tyka, and Olah (2015) [30]. Used
under Creative Commons Attribution 4.0 International: https://creativecommons.org/licenses/by/
4.0/legalcode

a network. The algorithm was modified from the research of Simonyan, Vedaldi, and
Zisserman (2014) [36] and others but provides two notable variations on existing
work. First, instead of maximising a single neuron or class representation, Deep-
Dream reinforces whatever is activating the highest to begin with. In doing so, it can
hold the representations of hundreds of classes in a single image. These need not be
distinct or complete and morph seamlessly from one to another (Fig. 7.7). Second,
DeepDream applies its activations at different “octaves” creating a visual repetition
of self-similar forms at many scales (Fig. 7.6).

In describing their work the authors make use of the language of conscious human
experience. The networks are said to be “dreaming” perhaps in reference to the Phillip
K. Dick novel. Later, the process and its emergent images are described as being like
children watching clouds [29].

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
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DeepDream’s emergent structures bear similarities to the drawings ofMCEscher.
Labyrinths grow out of thin air and form strange loops or seemingly infinite layers.
Like Escher’s tessellation works, representations morph from one to another, or
change in scale. The eye can trace a path around the image and end up back where
it started, or in a vastly different representation or a different scale. Representations
morph from one to another but at every stage appear locally coherent.

The key point here is that like Escher’s work, the DeepDream images are locally
coherent but are globally incoherent. The images support the implication of the
“fooling images”, that semantic representation in neural networks does not depend
on the global form.

The authors are careful to encourage the spread of their work. Alongside the
published source code, readers are encouraged to make their own and share them
with the hashtag #deepdream. It is also clear that the authors are cognisant of wider
cultural implications of the images.

[we] wonder whether neural networks could become a tool for artists — a new way to remix
visual concepts — or perhaps even shed a little light on the roots of the creative process in
general. [29]

Unlike the algorithms it was based on, which visualise the representation of a
single class or neuron, DeepDream combines any number of representations in the
image. Because of this it is not possible to learn about particular features of a given
class, or to understand how features relate to one another. DeepDream is arguably not
a technical image but a cultural one. It is a picture of the strangeness and inconsistency
of neural networks. Although it uses the language of conscious human experience it
presents an uncanny image of neural networks that bears little resemblance to dreams
or seeing.

7.3.6 Pix2Pix and FaceApp

Pix2pix (P2P) by Christopher Hesse is an online interface to a neural network that
converts images of one kind to another. Thework is an implementation of the Pix2Pix
neural network designed by Isola et al. (2016) [22]. The interface allows for user-
driven exploration of the trained network.

P2P is a behavioural visualisation like the “fooling images” in the sense that it
does not directly represent information about the network itself but rather facilitates
comparison between input and output. Unlike the “fooling images”, it does not pro-
vide a curated list of inputs. In fact the initial state provided by the demo is rather
unremarkable. It is the interaction here that is most central to the work’s explanatory
power. Users, over successive attempts, can test the limits of the network’s semantics.

Figure7.8 shows a P2P demo which converts an outline drawing of a cat to a
photographic image based on that outline. With their outline, the user can explore
representations. Users can follow their own line of inquiry to learn about the network.
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Fig. 7.8 Schematic drawing of Christopher Hesse’s edges2cats interface https://affinelayer.com/
pixsrv/ Users are afforded simple drawing tools to produce a black and white line drawing. This
is then processed by a server that uses a pix2pix network to produce an image with photographic
qualities, inferring form, colour and texture from the line drawing

Can the cat have more than two eyes? How is a body distinguished from a head?
What happens if I don’t draw a cat at all?

The interface allows the user to intelligently explore the space of possibility of the
network. Though the interface enables individual sense-making, it is on social media
that the images have been most successfully interpreted. On Twitter and other social
networks curious, bizarre and revelatory images are selected for. Images that create
the most interest are transmitted the farthest. In comments users share discoveries
and attempt to make sense of the system collectively.

A similar pattern of collective sense-making can be seen in the response to
FaceApp [18]. The app uses neural networks to transform a face in intelligent ways.
It provides filters that make the subject smile, change gender or age, and increase
“attractiveness”. Again, the interface allowed users to experiment with the network
and seek out patterns, and again themost successful sense-making happened on social
networks, which allow revelatory behaviours to spread quickly. Users of social net-
works quickly discovered that the filter intended to make users more attractive was
turning skin white [15].

By allowing the network to infer its own semantics from the training set, it falsely
equated beauty with white skin. With this unfortunate pattern in mind, it is possible
to post-rationalise the existence of this bias in the training data. Datasets of this kind
are labelled by people and thus imbibe the biases of the people who create them.
Neural networks are not immune to this kind of bias, in fact it is almost impossible
to prevent it. As universal approximators, neural networks make use of any salient
patterns in data, including cultural patterns. If the application of labels such as beauty
are correlated with whiteness, the network will learn to reproduce that pattern.

How is it possible that a powerful pattern of cultural bias that is completely obvious
to users was invisible to those who developed the network? This pattern surprised

https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
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FaceApp because the design of a network does not produce the behaviour, the data
does. Cultural biases are easily learned and repeated by neural networks when we
take data uncritically; as an objective representation of what is.

In contrast, despite being completely estranged from the neurons and synapses of
the network itself, and without requisite knowledge of how neural networks function
or learn, the users of social networks were able to discover and make sense of this
pattern.

Interfaces that enable exploration and socially mediated interpretation are a pow-
erful explanatory method. There is an opportunity here for researchers to design for
collective sense-making, to make it easy for users to share curious behaviours of
networks and facilitate collective interpretation.

7.4 Summary

In this section, we summarise the ideas raised in the case studies as a list of takeaways
for researchers engaging in this area.

7.4.1 Structure Does Not Explain Behaviour

The structure of a neural network does not explain its behaviour. The shape of a
neural network is a design consideration, it has an effect on learning, but not learned
behaviour. Instead, behaviour is latent in the training data and approximated by the
network.

It is not true that structure is irrelevant. Thinking about structure can help
researchers to design better networks, increase capacity for abstraction and restrict
overfitting. But these choices do not explain a network’s output.

In comparison, it is demonstrable that users can infer patterns in the network
without any knowledge of the network itself or even a technical understanding of how
neural networks function. Simply presenting inputs alongside outputs for comparison
can allow viewers to spot patterns.

7.4.2 We Understand Better When Things Break

We learn more about how neural networks work when they fail. When neural net-
works do what we expect, it’s easy to assume that they are thinking like a person. In
the absence of a usefulmetaphor for how neural networks thinkwe imagine ourselves
performing the task. Given the extraordinary results achieved in benchmarks such
as ImageNet, where neural networks have equalled or surpassed human accuracy,
we tend to assume that the network uses the same features to identify images as
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we do. Indeed, it is difficult to comprehend how a system could achieve human or
superhuman ability for a given task without thinking like a human. However, critical
cases like the “fooling images” break this assumption.

Examples that break with expectations force the viewer to question their under-
standing of the system. By comparing input and output, the viewer can reason about
which features produced the result and form a new theory for how predictions are
made.

7.4.3 Interfaces for Exploration

Interfaces such as Pix2Pix and FaceApp allow users to learn about a network by
experimenting with it. These interfaces allow users to control input easily and see
output immediately. This is a powerful pattern because it allows users to seek out
critical cases. Users are able to continually adjust their mental model of how the
network behaves by testing their hypotheses immediately.

7.4.4 We Understand Better Together

The visual representations we have discussed, if created for a user at all, have been
designed for individuals. Many of these, notably DeepDream, Pix2Pix and FaceApp,
have been interpreted significantly on social media. Social networks enable collec-
tive sense-making, inspiring users to try similar things and add their results to the
conversation. In comments users put into words their questions and theories about
the system, where they can be discussed with others. Social networks also select for
interesting or surprising content. This allows critical cases to be spread further.

It is possible to design for collective sense-making in neural network interfaces.
An interface for collective sense-making might allow users to bookmark and share
surprising behaviours and provide a place for users to discuss the content, share
explanations and theories. It could also recommend recently viewed and commented
bookmarks to encourage users to engage with one another.

7.5 Conclusion

The black box problem remains an ongoing challenge for researchers. Visual rep-
resentation has proved to be a powerful tool with which to manage complexity
and an important means of interpreting neural networks. Researchers in this space
are making progress in extracting semantic encodings, developing interactive inter-
faces, discovering critical cases and negotiating the cultural conception of neural
networks, however there is still much work to be done. The interdisciplinary interest
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in ML underscores the consequences of this technology beyond computer science
and the importance of finding explanatory methods. The visual representation of
neural networks crosses disciplinary boundaries. In this chapter we have outlined
some emerging critical challenges for this research and demonstrated that they can
be understood in the context of existing scholarship from disciplines considered far
removed from computer science. Solving the black box problem will require critical
as well as technical engagement with the neural network.
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Chapter 8
Explaining the Predictions
of an Arbitrary Prediction Model:
Feature Contributions and
Quasi-nomograms

Erik Štrumbelj and Igor Kononenko

Abstract Acquisition of knowledge from data is the quintessential task of machine
learning. The knowledge we extract this waymight not be suitable for immediate use
and one or more data postprocessing methods could be applied as well. Data post-
processing includes the integration, filtering, evaluation, and explanation of acquired
knowledge. Nomograms, graphical devices for approximate calculations of func-
tions, are a useful tool for visualising and comparing prediction models. It is well
known that any generalised additive model can be represented by a quasi-nomogram
– a nomogram where some summation performed by the human is required. Nomo-
grams of this type are widely used, especially in medical prognostics. Methods for
constructing such a nomogram were developed for specific types of prediction mod-
els thus assuming that the structure of the model is known. In this chapter we extend
our previous work on a general method for explaining arbitrary prediction models
(classification or regression) to a general methodology for constructing a quasi-
nomogram for a black-box prediction model. We show that for an additive model,
such a quasi-nomogram is equivalent to the one we would construct if the structure
of the model was known.

8.1 Introduction

The field of nomography was invented at the end of the 19th century by Maurice
d’Ocagne [8]. Up to the final quarter of the 20th century, nomograms were widely
used as graphical computers for tasks such as navigation, projectile trajectories, and

E. Štrumbelj (B) · I. Kononenko
Faculty of Computer and Information Science, University of Ljubljana,
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Fig. 8.1 We used the Orange data mining software [7] to produce this quasi-nomogram for the
Naive Bayes model on the well known Titanic data set. A survival prediction for a specific instance,
for example, an adult male travelling first class, is constructed in the following way. First, we
mark the value of each input variable on its corresponding axis (three topmost dots) and read their
points-contribution on the Points axis (vertical dashed lines). The summation of the three points-
contributions ismarked on the Total axis (−0.6 − 0.05 + 1.25 ≈ 0.6). By drawing a straight vertical
line, we can convert the sum into a probabilistic prediction. In this case, approximately 45%. Note
that the range of the Points scale is determined by the minimum and maximum possible point
contribution across all input variable values, while the range of the Total scale is determined by the
minimum and maximum possible sum of point contributions across all input variables. The Points
and Total axes need not be aligned, because the point summation has to be done manually

other tasks that require the computation of complex formulas. For more information
see Doerfler’s survey of classical nomography [9].

In this chapterwe focus on a specific type of graphical representation (see Fig. 8.1).
Unlike a classical nomogram, Fig. 8.1 does not facilitate graphical-only computation
(using a straightedge and a pencil), but requires additional summation. In recent years
there has been a resurgence of interest in such graphical representations, especially
in medical diagnostics and prognostics [6, 10, 15, 16, 24].1 Note that nearly all
related publications simply refer to such graphical representations as nomograms
(sometimes as Kattan nomograms), although they do not completely fit the classical
definition of a nomogram. In this chapter we promote a clear distinction between the
two types of graphical representations and refer to Fig. 8.1 as a quasi-nomogram - a
nomogram that requires some additional (non-graphical) computation.

Quasi-nomograms serve a dual purpose. First, they are a tool for producing
“offline” predictions. And second, they provide the human with information about

1www.sciencedirect.com currently lists 1393 research papers that feature the word “nomogram” in
the title, keywords, or abstract and were published between 2006 and 2015. Most of them are from
the medical field.

www.sciencedirect.com
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the model and the effect of the predictor variables on the target variable. As such,
they are a useful tool for decision support and for providing non-experts, for exam-
ple, patients in a hospital, with insight into their diagnosis and prognosis. Further-
more, quasi-nomograms can also be used by data mining practitioners as a model
visualisation and inspection tool. As with other model-visualisation techniques, the
informativeness and usefulness of the quasi-nomogram visualisation decreases as
the number of input variables increases. However, in practical applications, such as
medical prognostics, the number of input variables rarely exceeds 10.

Any generalised additive model can easily be visualised with a quasi-nomogram,
which has motivated several model-specific approaches for constructing a quasi-
nomogram. In this chapter, however, we show how a quasi-nomogram can be con-
structed for any (generalised) additive model in a uniform way and, with possible
loss of prediction accuracy, for any prediction model. The main idea is to decom-
pose the (unknown) model function into generalised additive form and then estimate
each input variable’s contribution function on a point-by-point basis. This is made
possible by the fact that we do not need the analytical form of these functions to pro-
duce a quasi-nomogram. Instead, we only need to plot the functions in some finite
resolution.

The remainder of the paper is as follows. The next Section describes our previous
work and other related work in the broader area of explaining prediction models and
the particular case of using nomograms to visualise models. In Sect. 8.3, we describe
the construction of a nomogram for a black-box prediction model. Section8.4 illus-
trates the use of the method on several data sets and models. Section8.5 concludes
the paper.

8.2 Explaining the Predictions with Feature Contributions

Predictionmodels are an integral part of knowledge discovery. Howwe choose a pre-
diction model for a particular task strongly depends on the problem area. Sometimes
we are primarily interested in prediction accuracy, on other occasions, interpretability
is equally, if not more important.

Better interpretability is easily achieved by selecting a transparent model. How-
ever, more transparent models are usually less accurate than more complex models,
often to an extent that we would rather consider making the latter more interpretable.
As a result, numerous model-specific and general post-processing methods that pro-
vide additional explanationhavebeenproposed (see [2, 22, 29, 35–37] and references
therein).

Generating a nomogram for an arbitrary model is directly connected to devel-
oping a general (black-box) approach to explaining or increasing the interpretabil-
ity of a prediction model. We illustrate this problem with a simple linear model
f (x1, ..., xn) = f (x) = β0 + β1x1 + ... + βnxn . If we standardise the input features,
we could interpret the coefficient βi as the i−th feature’s global importance (in
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statistical literature, variable importance). Note that using the features’ global impor-
tance to select only a subset of features is analogous to a filter method for feature
selection.

While the global importance reveals which features are more important, it does
not tell us how features influence individual predictions. The difference between
what the i−th feature contributes when its value is xi and what it is expected to
contribute:

ϕi (x) = f (x) − E[ f (x)|i − th value unknown] =
=βi xi − βi E[Xi ], (8.1)

gives us such a local contribution. Equation (8.1) is also known as the situational
importance of Xi = xi [1].

Because our model is additive, the local contribution of Xi = x is the same across
all instances where Xi = x , regardless of the values of other features.

The above illustrative example is simple, with a knownmodel that is also additive.
However, in our problem setting, we want a general method. The model has to be
treated as a black-box - no assumptions aremade other than that themodelmaps from
some known input feature space to a known codomain. Therefore, we are limited to
sensitivity analysis - changing the inputs and observing the outputs.

General (black-box) approaches are at a disadvantage - not being able to exploit
model-specifics makes it more difficult to develop an effective and efficient method.
However, being applicable to any type of model also has its advantages. It facilitates
comparison of different types of models and, in practical applications, eliminates the
need to replace the explanation method when the underlying model is changed or
replaced.

Previously developed general approaches [21, 32, 39] tackle the problem in a
similar one-feature-at-a-time way. That is, the contribution of a feature is

ϕi (x) = f (x1, ..., xn) − E[ f (x1, ..., Xi , ..., xn)] (8.2)

Equation (8.2) is the difference between a prediction for an instance and the expected
prediction for the same instance if the i−th feature is not known.

In practice, expression Eq. (8.2) can be efficiently approximated (or computed, if
the feature’s domain is finite). Additionally, if f is an additive model, Eq. (8.2) is
equivalent to Eq. (8.1), so we do not lose any of the previously mentioned advantages
associated with explaining an additive model.

However, when the features interact, as is often the case, the one-feature-at-a-time
approach gives undesirable results. For example, observe the model f (x1, x2) =
x1 ∨ x2, where both features are uniformly distributed on {0, 1}. When computing
the contribution of the first feature for f (1, 1) = 1, we see that perturbing its value
does not change the prediction - the first feature’s contribution is 0. The same holds
for the second feature. Therefore, both features get a 0 contribution, which is clearly
incorrect.

This example shows that perturbing one feature at a time gives undesirable results.
All subsets have to be taken into account to avoid such issues.
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In our previouswork,wedeveloped an alternative general approach that tackles the
disadvantages of other general approaches described above [35–37]. To summarise
the main ideas of the approach, let X = [0, 1]n be our feature space and let f :
X → � represent the model that is used to predict the value of the target variable
for an instance x ∈ X . To avoid the shortcomings of other general methods, we
observe the contribution of each subset of feature values. For this purpose, Eq. (8.2)
is generalised to an arbitrary subset of features:

fQ(x) = E[ f |Xi = xi ,∀i ∈ Q], (8.3)

where Q ⊆ S = {1, 2, ..., n} represents a subset of features. This allows us to define
the contribution of a subset of feature values:

ΔQ(x) = fQ(x) − f{}(x). (8.4)

Equation (8.4) can be interpreted as the change in prediction caused by observing
the values of a certain subset of features for some instance x ∈ X .

To obtain each individual feature’s local contribution, we map these 2n terms onto
n contributions, one for each feature’s value. First,we implicitly define interactions by
having the contribution of a subset of feature values equal the sum of all interactions
across all subsets of those feature values:

ΔQ(x) =
∑

W⊆Q

IW (x), (8.5)

which, together with I{}(x) = 0 (an empty set of features contributes nothing),
uniquely defines the interactions:

IQ(x) = ΔQ(x) −
∑

W⊂Q

IW (x). (8.6)

Finally, each interaction is divided among the participating feature values, which
defines the i−th features local contribution:

ϕi (x) =
∑

W⊆S\{i}

IW∪{i}(x)
|W | + 1

. (8.7)

Figure8.2 shows two example explanations for an instance from the monks1 data
set (binary class has value 1 iff the value of the 1st feature equals the 2nd feature
or the 5th feature’s value is 1). The Naive Bayes model, due to its assumptions
of conditional independence of input features, cannot model the importance of the
equivalence between attr1 and attr2. Despite this limitation, it correctly predicts the
class value, because for this instance, attr5 = 1 is sufficient. The artificial neural
network correctly models both concepts.



144 E. Štrumbelj and I. Kononenko

(a)

(b)

Fig. 8.2 Two visualisations of local contributions for two different models and the same instance
from the monks1 data set. The top of each visualisation shows information about the data set,
model, prediction and the actual class value for this instance. The features’ names and values for
this instance are on the right- and left-hand side, respectively. The value of each feature’s local
contributions is shown in the corresponding box and visualised

The proposed method correctly reveals which features contribute. On the other
hand, one-feature-at-a-time approaches would assign a 0 contribution to all features
in the artificial neural network case. Perturbing just one feature does not change the
model’s prediction.
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Equation (8.7) is shown to be equivalent to the Shapley value [33] of a coalitional
game, where features are considered players and the generalised contribution is the
worth of a coalition of features. This implies several desirable properties (see [35]
for a more detailed and formal treatment):

• the local contributions sum up to the difference between the prediction and the
expected prediction if no features are known,

• if two features have a symmetrical role in themodel, they get the same contribution,
and

• if a feature has no role, its contribution is 0.

This also facilitates a game-theoretic interpretation of the shortcoming of existing
methods. By not correctly taking into account all interactions they violate the first
property and can divide among features more (or less) than what their total worth is.

Computing the proposed local contribution has an exponential time complexity,
which limits its practical usefulness. We use an alternative formulation of the Shap-
ley value to derive an efficient sampling-based approximation, which allows us to
compute the contributions in polynomial time [35]. The algorithm is extended with
an online estimation of the approximation error. This provides a flexible mechanism
for trade-off between running times and approximation error. The approximation
algorithm is also highly parallelisable - it can be parallelised down to computing a
single prediction.

We also considered two improvements that reduce running times (or approxima-
tion errors). First, the use of low-discrepancy or quasi-random sequences can improve
the convergence of Monte Carlo integration [13]. We used Sobol quasi-random
sequences. And second, not all features are equally important and, intuitively, less
important features require fewer samples. We derive the optimal way of distributing
a finite number of samples between features to minimise the expected approximation
error across all n contributions. Empirical results show that non-uniform sampling
substantially improves convergence, while quasi-random sampling results in a rela-
tively small improvement. Note that the overall time complexity of generating our
nomogram is O(c · n · M(n)), where n is the number of input variables, M(n) is
the time complexity of generating a single prediction (depends on the model), and
c is a number-of-samples-per-feature constant that depends on the desired error and
resolution of the nomogram lines (or number of distinct values, for features with a
finite number of unique values), but not on the number of input variables n (that is,
it does not increase with the number of features).

Generalised additive models are, by definition, written as a sum of the effects
of individual input variables, transformed by some link function. Therefore, it is
relatively straightforward to visualise any generalised additive model with a quasi-
nomogram (see Sect. 8.3 for details). This has led to several model-specific methods
for explaining several different types of statistical and machine learning models
typically used for prediction: Support Vector Machines [5, 14, 38], the Naive Bayes
classifier [20, 23], logistic regression [40]. The proposed approach, however, decom-
poses an individual prediction among features in a way that takes into account the
other features’ values. For each feature and its value, we can compute the mean local



146 E. Štrumbelj and I. Kononenko

(a) (b)

Fig. 8.3 Both models learn the concepts behind the data and the plotted average contribution func-
tions (black) reveal where the individual features’ contribution changes from negative to positive.
The grey horizontal line represents the root feature importance of the feature

contribution when the feature has that value [36]. This produces, for each feature,
a marginal effect function, which is similar to the marginal effect functions used in
the construction of nomograms. In fact, we can show that if the underlying model
is additive, this will produce equivalent results and this will be the basis for our
construction of a nomogram for an arbitrary prediction model (see Sect. 8.3).

Figure8.3 shows a pair of marginal effect visualisations for two different models
on the same cDisjunctN data set. Out of the five features, only the first three are
relevant. The class value equals 1 if (and only if) A1 > 0.5 or A2 > 0.7 or A3 < 0.4.
The visualisation reveals the difference between the step-function fit of the decision
tree and smooth fit of the artificial neural network. It also reveals that the artificial
neural network slightly overfits the two irrelevant features.

A feature’s importance - the variance of its local contributions - can also be
efficiently computed using a similar sampling-based approach. In combination with
any learning algorithm the global importance can be used as a filter for feature
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selection. This approach is similar to the in-built feature importance of Random
Forests [4] and related to the LMG variable importance method for linear regression
models [11].

Note that the practical advantages of explaining model predictions with feature
contributions have been established with two applications. Firstly, an application to
breast cancer recurrence predictions [34], where it was shown that in 95%of the cases
the oncologist agreed with both the direction and the magnitude of the contribution.
Furthermore, oncologists found the explanations a beneficiary tool and helpful in
increasing their trust in the model’s predictions. And second, a survey which showed
that providing an explanation significantly improves the humans’ predictions and
also increases confidence [37]. The usefulness of such an explanation method as a
tool for machine learning practitioners is further supported by several documented
uses by other researchers in different areas. These include maximum shear stress
prediction from hemodynamic simulations [3, 28], coronary artery disease diagnosis
from medical images [18, 19], businesses’ economic quality prediction [27] and the
use of the explanation method to explain the PRBF classification network [30, 31].

8.3 Constructing the Quasi-nomogram

Take a response randomvariableY and a set of predictor variables X1, X2, ..., Xn . In a
standard prediction setting, we are interested in how the response variable depends on
the values of the predictor variables.Wemodel this relationship with a model f , such
that f (x1, x2, ..., xn) = E(Y ). Usually, f is trained (inferred, estimated,...) using a
set of labelled training instances {(xi,1, xi,2, ..., xi,n, yi ) ∈ [0, 1]n × [0, 1]}Ni=1. With-
out loss of generality, we assumed that the predictor variables’ domain ω is a
n-dimensional unit cube.

Transparent models, such as the linear regression model f (x1, x2, ..., xn) = β0 +
β1x1 + ... + βnxn are self-explanatory.2 When dealing with less transparent models,
we often employ explanation methods and techniques that make the model easier to
understand and use. Quasi-nomograms are one such method. They make the model
more transparent and can be used for the computation of the model’s predictions.

Generalised additive models are a family of models that we can effectively repre-
sent with quasi-nomograms similar to one in Fig. 8.1. A generalised additive model
can be written as

f (x1, x2, ..., xn) = F−1

(
n∑

i=1

fi (xi ) + β0

)
= E(Y ), (8.8)

where F is a smooth and bijective link function which relates the expectation to the
predictor variables. That is, we try to fit the effect functions fi , such that

2Linear regression is, of course, just a special case of generalised additive model with identity link
function and linear effect functions
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F(E(Y )) =
n∑

i=1

fi (xi ) + β0.

Because a generalised additive model can be written as a sum of functions of individ-
ual predictor variables, we can plot each effect function fi separately. To reconstruct
a model’s prediction for a particular instance, we read and sum the values of fi , for
each i (and β0). Finally, we transform the sum with F−1, which can be done with a
simple conversion scale (“Total and Probability” in Fig. 8.1).

The described procedure is simple and effective, but assumes that the structure
of the (generalised additive) model f is known. Now we describe a method that can
be used to produce a nomogram for any prediction model f . Given a model f and
a link function F , we define a set of functions

gi (x) = E (F( f (X1, X2, ..., Xi = x, ..., Xn)) − F( f (X1, ..., Xn))) ,

for each i = 1..n. The value gi (x) can be viewed as the expected change in the
model’s output if the i−th predictor variable is set to x . Observe the model

g(x1, ..., xn) = F−1

(
n∑

i=1

gi (xi ) + E(F( f (X1, ..., Xn))

)
. (8.9)

Themodel in Eq. (8.9) transformsmodel f into a generalised additivemodel, without
assuming the structure of f . The following useful property can be shown.

Theorem 8.1 If f is a generalised additive model and F the corresponding link
function then g(x1, ..., xn) = f (x1, ..., xn), for all (x1, ..., xn) ∈ X1 × ... × Xn.

Proof Taking into account the theorem’s assumptions:

g(x1, ..., xn) = F−1

(
n∑

i=1

gi (xi ) + E(F( f (X1, ..., Xn))

)
=

= F−1

(
n∑

i=1

E( fi (xi ) − fi (Xi )) +
n∑

i=1

E( fi (Xi )) + β0

)
=

= F−1

(
n∑

i=1

fi (xi ) −
n∑

i=1

E( fi (Xi )) +
n∑

i=1

E( fi (Xi )) + β0

)
=

= F−1

(
n∑

i=1

fi (xi ) + β0

)
= f (x1, x2, ..., xn)

(8.10)

That is, the predictions obtained from g will be the same as the original models’
predictions, conditional to f being an additive model or a generalised additive model
with known link function F .
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To compute the transformed model g, we require functions gi and

E(F( f (X1, ..., Xn)).

The latter E(F( f (X1, ..., Xn)) = ∫
ω
F( f (...))dP can be efficiently approximated

with simple Monte Carlo integration

E(F( f (X1, ..., Xn)) ≈ 1

M

M∑

j=1

F( f (x j,1, x j,2, ..., x j,n)),

where the realisations x j,k are obtained by generating a sequence of random samples
(that is, instances) according to some distribution P of the input variables’ domain
ω. Each point gi (x) can be estimated in a similar way

gi (x) ≈ 1

M

M∑

j=1

(F( f (x j,1, ..., x j,i = x, ..., x j,n)) − F( f (x j,1, ..., x j,n))).

Theorem 8.1 holds for any probability distribution. Therefore, we can choose a
distribution that is more convenient for sampling, such as a uniform distribution or
a distribution where predictor variables Xi are independently distributed. Note that
in general the estimation converges towards the actual value independently of the
number of dimensions n. Furthermore, for faster convergence, quasi-random sam-
pling can be used instead of pseudo-random sampling [25, 26]. In our experiments,
we used the Sobol low-discrepancy quasi-random sequence [13].

The primary application of the proposed approach is to (generalised) additive
models. However, in practice it can also be applied to a potentially non-additive
model. In such cases, we are interested in how close the transformed model g is to
f and how good the prediction accuracy of g is. The farther away g is from f the
less useful the quasi-nomogram is in terms of providing insight into f . It is also
possible that g is not close to f but has a better prediction accuracy. In such cases,
we should consider using g instead of f , because it is both a better predictor and
easier to interpret.

Given a set of N labelled instances, we used the root mean squared error to
estimate the model’s prediction accuracy

eg,y =
√√√√ 1

N

N∑

i=1

( f (xi,1, xi,2, ..., xi,n) − yi )2

and the distance between the original model f and the transformed model g

e f,g =
√√√√ 1

N

N∑

i=1

(
f (xi,1, xi,2, ..., xi,n) − g(xi,1, xi,2, ..., xi,n)

)2
.
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8.4 Illustrative Examples

We start with a simple toy data set with three input variables A1, A2, and A3 with con-
tinuous domains [0, 1] and uniformly distributed values. Let the relationship between
the input variables and the target variable Y be linear: Y = 0.5A1 − 1.5A2. We gen-
erated 1000 instances from this data set at random, labelled each instance using
the aforementioned linear relationship, and used the instances to train a multilayer
perceptron artificial neural network model.

Let f be this multilayer perceptron model. The structure of f is unknown, but
we can access its value for any point. We used the procedure described in Sect. 8.3
to generate the quasi-nomogram shown in Fig. 8.4a. The quasi-nomogram consists
of three effect functions (one for each input variable) and a conversion scale. Each
individual effect function graph is used to convert the input variable’s value into a
point-contribution. This is done by first drawing a straight vertical line that connects
the input variable’s value to the plotted effect function and then a horizontal line
that connects this point to the vertical Points scale, where the points-contribution
of this value can be read. The sum of all three variables’ points is selected on the
left-hand side of the conversion scale and the prediction is readily available to be
read on the right-hand side of the conversion scale. Large dots and corresponding
lines in Fig. 8.4a illustrate this procedure for the instance (0.6, 0.8, 0.2).

The relationship between the procedure from the previous paragraph and the
equations in Sect. 8.3 (Eq. (8.9) in particular) is as follows. Each input variables’
effect function is plotted separately, one point at a time. The estimated value gi (x)
corresponds to the value of the i-th input variable’s effect function at x . Therefore,
horizontal and vertical lines are used to obtain the effect functions’ values. The sum-
mation part of the procedure produces the sum inEq. (8.9). The values on the left-hand
side of the conversion scale range from the minimum to the maximum possible sum
of the effect functions. What remains is to add the expectation E(F( f (X1, ..., Xn))

and in the case of a non-identity link function F , apply the inverse of the link func-
tion F−1. Because F is a bijective and smooth function, both operations are realised
simultaneously and themapped values are written on the right-hand of the conversion
scale, where the human can read the final value. Note that the Total to Probability
conversion scale from the nomograms generated in Orange (see Fig. 8.1) serves the
same purpose as the conversion scale.

Notice that the quasi-nomogram in Fig. 8.4a is for the multilayer perceptron
model, which is not necessarily additive. In this case the model was close to addi-
tive and the additive transformation in Fig. 8.4a was more accurate than the original
model (e f,y = 0.013, eg,y = 0.009, e f,g = 0.007). For comparison, linear regres-
sion, which is well-suited for the linear problem, produces the following results
(e f,y ≈ eg,y = 5.8 × 10−11). With an additive model such as the linear regression
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Fig. 8.4 Quasi-nomograms for two different types of models and the same linear problem data set.
For this illustrative data set the input variable A3 is irrelevant to the target variable, which is clear
from its flat effect function

model, the transformation g is, at least to a practical precision, the same as the
original model (e f,g = 1.1 × 10−11). The quasi-nomogram for the linear regression
model is shown in Fig. 8.4b and can be used to compare the two different models.
Because the structure of the model is not known, A3 is included in the nomogram,
despite being irrelevant. However, the irrelevance of input variable A3 results in a
flat effect function.

Note that input variables with finite domains (see Figs. 8.1 or 8.5b) can be visu-
alised in a more compact way. That is, listing the variable’s values on a single axis,
as opposed to a 2-dimensional plot. The same applies to continuous input variables
for which a visual inspection reveals a linear (or monotonic) effect function (see
Fig. 8.4b, input variable A2, or Fig. 8.6, several variables). For such variables, we
can reduce the visualisation by projecting the labelled values onto the x axis as it is
clear how to interpolate the effect of in-between values.

Quasi-nomograms are useful even when the effect of input variables is not linear.
Consider the second toy data set with two input variables A1 and A2 with continuous
domains [0, 1] and uniformly distributed values. The target variable is defined as
Y = sin(2π A1) + A2. Again, we generated 1000 instances from this data set and
used bagging to train an ensemble of regression trees. The ensemble gave the follow-
ing results (e f,y = 0.048, eg,y = 0.041, e f,g = 0.034). For comparison, the results
for linear regression were (e f,y ≈ eg,y = 0.43, e f,g = 6.2 × 10−16). Therefore, the
transformed bagging model (see Fig. 8.5a) is more accurate than linear regression,
while still easily represented with a quasi-nomogram.
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Fig. 8.5 Quasi-nomograms for two different types of models and data sets. The non-linear toy
data set has continuous input variables and a continuous target variable. Step effect functions are a
characteristic of tree-based models. The Titanic data set has discrete input variables and a binomial
target variable

Finally, Fig. 8.5b shows the quasi-nomogram for the Naive Bayes classifier and
the Titanic data set. It is equivalent to the quasi-nomogram from the introduction
(see Fig. 8.1) that we produced with Orange [7]. That is, the predictions obtained
from the two quasi-nomograms for the same instance are equal. For example, if we
revisit the adult male travelling first class from Fig. 8.1, but use the quasi-nomogram
from Fig. 8.5b instead, we obtain a sum of −0.56 (−1.15 for being male, −0.44
for an adult, and +1.03 for travelling first class). Using the conversion scale this
sum converts to approximately 45%, which is the same as the prediction obtained
from Fig. 8.1. The two nomograms also offer the same insight into the influence of
the input variables on survival. For example, being female or travelling first class
contributed more towards survival.

8.4.1 Predicting the Outcome of a Basketball Match

For a more realistic illustration of what data-mining practitioners encounter in prac-
tice, we performed the following experiment. For each basketball match of the
2007/08 NBA (National Basketball Association) season, we recorded the winner
and the following three summary statistics, for both competing teams: effective field
goal percentage (EFG), turnover percentage (TOV), and offensive rebounding per-
centage (ORB). For a more detailed description of these summary statistics see [17].
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Fig. 8.6 A quasi-nomogram for predicting the win probability of the home team in an NBA
basketball match. It is clear from the visualisation that the win probability of the home team
increases with its shooting efficiency and decreases with the shooting efficiency of the away team.
The remaining four input variables are visualised in a more compact way
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This gave us a total of 958 matches with 6 predictor variables and a binomial
target variable (match outcome) each.We hypothesised that this data could be used to
construct amodelwhich could predict the outcomeofNBAbasketballmatches.Using
10-fold cross-validation, we evaluated several classification models and obtained
the following results: multilayer perceptron (e f,y = 0.4554, percentage of correct
predictions = 68.5), Naive Bayes (e f,y = 0.4513, percentage of correct predictions =
68.7), bagging (e f,y = 0.4565, percentage of correct predictions = 67.3), and logistic
regression (e f,y = 0.443, percentage of correct predictions = 69.4). Note that the
relative frequency of home team win was 0.6, so all four models outperform this
default prediction for home team win probability.

Out of all the models, logistic regression gave the best results. Because this model
is a generalised additive model (with a log-odds ratio link function F(x) = ln( x

1−x )),
its transformation g is an accurate representation of the original model (e f,g = 2.7 ×
10−16). The resulting quasi-nomogram is shown in Fig. 8.6. It can be used both to
predict the winner of future matches and to inspect the effect of individual summary
statistics on the outcome of a basketball match.

All the learning algorithms we used in our experiments were from the Weka data
mining Java library [12], with the exception of the Naive Bayes that we used for
Fig. 8.1.

8.5 Conclusion

In our previous work, which we described in Sect. 8.2, we have proposed a method
for explaining an arbitrary prediction model in the form of contributions of individ-
ual features. In this chapter we extended that work by showing how such a black-
box approach to explanation is closely connected to visualising the model in the
form of a nomogram or quasi-nomogram. We proposed a method for constructing a
quasi-nomogram for a black-box prediction model, only by changing the inputs and
observing the changes of the output. This is convenient in situations when working
with and comparing several different types of models, when we wish to avoid imple-
menting a model-specific method for constructing a quasi-nomogram, or when such
an implementation is not possible (only the model might be available or we want to
avoid investing the time and effort necessary for modifying third-party code).

These quasi-nomograms can also be viewed as prediction curve plots (one for
each variable) - plots of how the effect of the variable depends on its value. The only
difference is that the values of other variables are not fixed, but varied in a way that
captures interactions among all subsets of variables (see Sect. 8.2). If the prediction
curve is monotonic (strictly increasing or decreasing) or the variable has only a few
values, it can be collapsed onto a single axis, as was shown in some of the examples.

As shown in the illustrative examples, the procedure can be applied to classi-
fication and regression tasks, discrete and continuous input variables. For models
which are known to be of the generalised additive type, the method is interchange-
able with any model-specific method, as it produces equivalent quasi-nomograms,
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and therefore generalises them. The approach is useful for non-additive models as
well, especially when the task is additive or when the resulting loss in prediction
accuracy is small or outweighed by the benefits with respect to the interpretability
offered by the quasi-nomogram. Additionally, non-additivity is straightforward to
detect from the variability and it would be possible to visualise the most important
pairwise interaction, further improving how the nomogram represents the model.
Three-way or higher level interactions become problematic, however, due to the
difficulties of effectively visualising, or representing in some other way, three (and
higher) dimensional data and for the human to understand such representations.
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Chapter 9
Perturbation-Based Explanations
of Prediction Models

Marko Robnik-Šikonja and Marko Bohanec

Abstract Current research into algorithmic explanation methods for predictive
models can be divided into two main approaches: gradient-based approaches lim-
ited to neural networks and more general perturbation-based approaches which can
be used with arbitrary prediction models. We present an overview of perturbation-
based approaches,with focus on themost popularmethods (EXPLAIN, IME, LIME).
These methods support explanation of individual predictions but can also visual-
ize the model as a whole. We describe their working principles, how they handle
computational complexity, their visualizations as well as their advantages and dis-
advantages. We illustrate practical issues and challenges in applying the explanation
methodology in a business context on a practical use case of B2B sales forecasting
in a company. We demonstrate how explanations can be used as a what-if analysis
tool to answer relevant business questions.

9.1 Introduction

Machine learning models play an increasingly large role in many applications, prod-
ucts, and services. Their outcomes are part of everyday life (e.g., entertainment
recommendations), as well as life-changing decisions (e.g., medical diagnostics,
credit scoring, or security systems). We can expect that reliance on technology and
machine learning will only increase in the future. It is only natural that those affected
by various automated decisions want to get feedback and understand the reason-
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ing process and biases of the underlying models. Areas where model transparency
is of crucial importance include public services, medicine, science, policy making,
strategic planning, business intelligence, finance, marketing, insurance, etc. In these
areas, users of models are just as interested to comprehend the decision process, as
in the classification accuracy of prediction models. Unfortunately, most of the top
performing machine learning models are black boxes in a sense that they do not
offer an introspection into their decision processes or provide explanations of their
predictions and biases. This is true for Artificial Neural Networks (ANN), Support
Vector Machines (SVM), and all ensemble methods (for example, boosting, random
forests, bagging, stacking, and multiple adaptive regression splines). Approaches
that do offer an intrinsic introspection, such as decision trees or decision rules, do
not perform so well or are not applicable in many cases [23].

To alleviate this problem two types of model explanation techniques have been
proposed. The first type, which is not discussed in this chapter, is based on the internal
working of the particular learning algorithm. The explanation methods exploit a
model’s representation or learning process to gain insight into the presumptions,
biases and reasoning leading to final decisions. Two well-known models where such
approachworkswell are neural networks and random forests. Recent neural networks
explainers mostly rely on layer-wise relevance propagation [6] or gradients of output
neurons with respect to the input [32] to visualise parts of images significant for
particular prediction. The random forest visualisations mostly exploit the fact that
during bootstrap sampling, which is part of this learning algorithm, some of the
instances are not selected for learning and can serve as an internal validation set.
With the help of this set, important features can be identified and similarity between
objects can be measured.

The second type of explanation approaches are general and can be applied to any
predictive model. The explanations provided by these approaches try to efficiently
capture the causal relationship between inputs and outputs of the givenmodel. To this
end, theyperturb the inputs in the neighbourhoodof a given instance to observe effects
of perturbations on the model’s output. Changes in the outputs are attributed to per-
turbed inputs and used to estimate their importance for a particular instance. Exam-
ples of this approach are methods EXPLAIN [29], IME [35], and LIME [27]. These
methods can explain the model’s decision for each individual predicted instance as
well as for the model as a whole. As they are efficient, offer comprehensible expla-
nations, and can be visualised, they are the focus of this chapter. Other explanation
methods are discussed in the background section.

Another aspect we try to address is how explanations of prediction models can
be put into practical use. We are interested in the integration of explanations into
a complex business decision process and their support of continuous organisational
learning. Users of knowledge-based systems are more likely to adhere to automatic
predictions, when, besides the predictive performance of models, explanations are
also available [4]. In order to apply prediction models, users have to trust them first,
and the model’s transparency is a major factor in ensuring the trust. We illustrate
an application of explanation methodology to a challenging real-world B2B sales
forecasting [11]. A group of sales experts collected historical B2B sales cases to
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build a machine learning prediction model. The explanations of past and new cases
enabled cognitive evaluation of themodel. Based on the new insights, provided by the
explanations, experts can update the data set, propose new features, and re-evaluate
the models. We discuss several issues arising and how they can be addressed with
the explanation methodology.

The objectives of the chapter are twofold. First, to explain how general
perturbation-based explanationmethodswork, and second, to demonstrate their prac-
tical utility in a real-world scenario. The first aim is achieved through an explanation
of their working principle and graphical explanation of models’ decisions on a well-
known data set. Two types of explanations are demonstrated, individual predictions
of new unlabelled cases and functioning of the model as a whole. This allows inspec-
tion, comparison, and visualisation of otherwise opaque models. The practical utility
of the methodology is demonstrated on the B2B sales forecasting problem.

The structure of the chapter is as follows. In Sect. 9.2 we present a taxonomy of
explanationmethodologies andpresent backgroundand relatedworkonperturbation-
based approaches. In Sect. 9.3 we present methods EXPLAIN, IME, and LIME,
their similarity and differences. Explanations in a business context are discussed in
Sect. 9.4 through B2B sales forecasting. In Sect. 9.5 we present conclusions.

9.2 Background and Overview of Perturbation Approaches

True causal relationships between dependent and independent variables are typically
hidden except in artificial domains where all the relations, as well as the probability
distributions, are known in advance. Therefore only explanations of the prediction
process for a particular model is of practical importance. The prediction accuracy and
the correctness of explanation for a given model may be orthogonal: the correctness
of the explanation is independent of the correctness of the prediction. However,
empirical observations show that better models (with higher prediction accuracy)
enable better explanations [35]. We discuss two types of explanations:

• Instance explanation explains predictions with the given model of individual
instances and provides the impact of input feature values on the predictions.

• Model explanation is usually an aggregation of instance explanations over many
(training) instances, to provide top-level explanations of features and their val-
ues. This aggregation over many instances enables identification of different roles
attributes may play in the classifications of instances.

Belowwe list several properties ofmachine learning explanations. They stem from
criteria for evaluation of rule extraction methods from neural networks introduced
by [2] and later extended by [18]. Some items were proposed by [21, 27], and some
are the result of our work.

1. Expressive power describes the language of extracted explanations: proposi-
tional logic (i.e. if-then rules), nonconventional logic (e.g., fuzzy logic), first-
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order logic, finite state machines (deterministic, nondeterministic, stochastic),
histograms, decision trees, linear models, a limited form of natural language etc.

2. Translucency describes the degree to which an explanation method looks inside
the model. It can be decompositional (decomposes internal representation of
the model, e.g., in neural networks meaning of individual neurons), pedagogical
(treating the model as a black box), or eclectic (combining both compositional
and pedagogical types).

3. Portability describes howwell the technique covers the range of different models
(e.g., limited to convolutional neural networks, suitable for additive models,
general, etc.).

4. Algorithmic complexity deals with the computational complexity of algorithms
producing explanations.

Quality of explanations is another very important aspect, which groups several prop-
erties of explanation methods:

5. Accuracy: the ability that explanation of a given decision generalises to other
yet unseen instances. For example, if explanations are in the form of rules, are
these rules general and do they cover unseen instances.

6. Fidelity: howwell the explanations reflect the behaviour of the predictionmodel.
Local fidelity expresses how well the explanations reflect the behaviour of the
prediction model in the vicinity of predicted instances. Local fidelity does not
imply general fidelity (e.g., features that are important in a local context may
not be important in the global context of the model).

7. Consistency: the degree to which similar explanations are generated from dif-
ferent models trained on the same task. For example, while similar models may
produce very similar predictions, the explanations of similar instances may vary
due to the variance of certain explanation methods.

8. Stability: the degree to which similar explanations are generated for similar
instances. Different to consistency, which covers several models, this criterion
deals with explanations generated from the same model. As for consistency,
while predictions of similar instances may be the same, the explanations may
vary due to the variance of certain explanation methods.

9. Comprehensibility: readability of explanations (might depend on the audience,
e.g., experts or the general public) and size of explanations (e.g., number of rules,
number of items shown on a bar chart, number of words, number of factors in
linear model etc.).

10. Certainty: are explanations reflecting certainty of a model about its predictions?
For example, a classifiermay be very certain of its prediction, but the explanation
may or may not reflect it.

11. Degree of importance: are explanations reporting the degree of importance for
each returned item (e.g., the importance of explained features, or importance of
returned rules)?

12. Novelty: is a form of certainty and tells if explanations would reflect the fact that
explained instance is from a new region, not contained or well represented in the
training set (the model may be unreliable for such instances).
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13. Representativeness: are explanations representative of the model? For example,
a model explanation may cover behaviour of the whole model, or just a part of
it.

In a typical data science problem setting, users are concerned with both predic-
tion accuracy and the interpretability of the prediction model. Complex models have
potentially higher accuracy but are more difficult to interpret. This can be allevi-
ated either by sacrificing some prediction accuracy for a more transparent model
or by using an explanation method that improves the interpretability of the model.
Explaining predictions is straightforward for symbolic models such as decision trees,
decision rules, and inductive logic programming, where the models give an overall
transparent knowledge in a symbolic form. Therefore, to obtain the explanations of
predictions, one simply has to read the rules in the corresponding model. Whether
such an explanation is comprehensive in the case of large trees or large rule sets is
questionable. Reference [24] developed criteria for decision trees and performed a
user study, which showed that the depth of the deepest leaf that is required when
answering a question about a classification tree is the most important factor influ-
encing the comprehensibility.

For non-symbolic models, there are no intrinsic explanations. A lot of effort
has been invested into increasing the interpretability of complex models. For SVM,
[16] proposed an approach based on self-organising maps that groups instances
then projects the groups onto a two-dimensional plane. In this plane, the topology
of the groups is hopefully preserved and support vectors can be visualised. Many
approaches exploit the essential property of additive classifiers to provide more com-
prehensible explanations and visualisations, e.g., [19, 25].

Visualisation of decision boundaries is an important aspect ofmodel transparency.
Reference [9] present a technique to visualise how the kernel embeds data into a high-
dimensional feature space. With their Kelp method, they visualise how kernel choice
affects neighbourhood structure and SVM decision boundaries. Reference [31] pro-
pose a general framework for visualisation of classifiers via dimensionality reduction.
Reference [15] propose another useful visualisation tool for classifiers that can pro-
duce individual conditional expectation plots, graphing the functional relationship
between the predicted response and the feature for individual instance.

Some explanations methods (including the ones presented in Sect. 9.3) are gen-
eral in a sense that they can be used with any type of prediction model that returns a
numeric score (either probability of a class or numeric prediction) [20, 27, 29, 34].
This enables their application with almost any prediction model and allows users to
analyse and compare outputs of different analytical techniques. [20] applied their
method to a customer relationship management system in the telecommunications
industry. The method which successfully deals with high-dimensional text data is
presented in [22]. Its idea is based on general explanation methods EXPLAIN and
IME and offers an explanation in the form of a set of words which would change
the predicted class of a given document. Reference [13] adapt the general expla-
nation methodology to a data stream scenario and show the evolution of attribute
contributions through time. This is used to explain the concept drift in their incre-
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mental model. In a real-life breast cancer recurrence prediction, [33] illustrate the
usefulness of the visualisations and the advantage of using the general explana-
tion method. Several machine learning algorithms were evaluated. Predictions were
enhanced with instance explanations using the IME method. Visual inspection and
evaluation showed that oncologists found the explanations useful and agreed with
the computed contributions of features. Reference [26] used traditional modelling
approaches togetherwith datamining to gain insight into the connections between the
quality of organisation in enterprises and the enterprises performance. The best per-
forming models were complex and difficult to interpret, especially for non-technical
users. Methods EXPLAIN and IME explained the influence of input features on the
predicted economic results and provided insights with a meaningful economic inter-
pretation. The interesting economic relationships and successful predictions come
mostly from complex models such as random forests and ANN. Without proper
explanation and visualisation, these models are often neglected in favour of weaker,
but more transparent models. Experts from the economic-organisational field, which
reviewed and interpreted the results of the study, agreed that such an explanation and
visualisation is useful and facilitates comparative analysis across different types of
prediction models.

Many explanation methods are related to statistical sensitivity analysis and uncer-
tainty analysis [30]. In that methodology, the sensitivity of models is analysed with
respect to models’ input. A related approach, called inverse classification [1], tries
to determine the minimum required change to a data point in order to reclassify it
as a member of a different class. An SVM model based approach is proposed by
[8]. Another sensitivity analysis-based approach explains contributions of individual
features to a particular classification by observing (partial) derivatives of the clas-
sifiers’ prediction function at the point of interest [7]. A limitation of this approach
is that the classification function has to be first-order differentiable. For classifiers
not satisfying this criterion (for example, decision trees) the original classifier is first
fitted with a Parzen window-based classifier that mimics the original one and then
the explanation method is applied to this fitted classifier. The method was used in
practice with kernel-based classification method to predict molecular features [17].

Due to recent successes of deep neural networks in image recognition and nat-
ural language processing, several explanation methods specific to these two appli-
cation areas emerged. Methods working on images try to visualise parts of images
(i.e., groups of pixels) significant for a particular prediction. These methods mostly
rely on the propagation of relevance within the network, e.g., layer-wise relevance
propagation [6], or computation of gradients of output neurons with respect to the
input [32]. In language processing, [5] applied layer-wise relevance propagation to a
convolutional neural network and a bag-of-words SVM classifier trained on a topic
categorisation task. The explanations indicate howmuch individual words contribute
to the overall classification decision.
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9.3 Methods EXPLAIN, IME, and LIME

General explanationmethods can be applied to any classificationmodel whichmakes
them a useful tool both for interpreting models (and their predictions) and comparing
different types of models. By modification of feature values of interest, what-if
analysis is also supported. Suchmethods cannot exploit anymodel-specific properties
(e.g., gradients in ANN) and are limited to perturbing the inputs of the model and
observing changes in the model’s output [20, 29, 34].

The three presented general explanation methods provide two types of expla-
nations for prediction models: instance explanations and model explanations (see
Sect. 9.2). Model explanations work by summarising a representative sample of
instance explanations. All three methods estimate the impact of a particular feature
on the prediction of a given instance by perturbing similar instances.

The key idea of EXPLAIN and IME is that the contribution of a particular input
value (or set of values) can be captured by “hiding” the input value (set of values)
and observing how the output of the model changes. As such, the key component of
general explanation methods is the expected conditional prediction - the prediction
where only a subset of the input variables is known. Let Q be a subset of the set of
input variables Q ⊆ S = {X1, . . . , Xa}. Let pQ(yk |x) be the expected prediction for
x , conditional to knowing only the input variables represented in Q:

pQ(yk |x) = E(p(yk)|Xi = x(i),∀Xi ∈ Q). (9.1)

Therefore, pS(yk |x) = p(yk |x). The difference between pS(yk |x) and pQ(yk |x) is a
basis for explanations. In practical settings, the classification function of the model
is not known - one can only access its prediction for any vector of input values.
Therefore, an exact computation of pQ(yk |x) is not possible and sampling-based
approximations are used.

In model explanations, to avoid loss of information due to summarisation of
instance level explanations, in the presented visualisation the evidence for and against
each class is collected separately. In this way, one can, for example, see that a par-
ticular value of an attribute supports specific class but not in every context.

9.3.1 EXPLAIN, One-Variable-at-a-Time Approach

The EXPLAIN method computes the influence of a feature value by observing its
impact on the model’s output. The EXPLAIN method assumes that the larger the
changes in the output, the more important role the feature value plays in the model.
The shortcoming of this approach is that it takes into account only a single feature
at a time, therefore it cannot detect certain higher order dependencies (in particular
disjunctions) and redundancies in the model. The EXPLAIN method assumes that
the characterisation of the i-th input variable’s importance for the prediction of
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the instance x is the difference between the model’s prediction for that instance
and the model’s prediction if the value of the i-th variable was not known, namely:
p(yk |x) − pS\{i}(yk |x). If this difference is large then the i-th variable is important. If
it is small then the variable is less important. The signof the difference revealswhether
the value contributes towards or against class value yk . This approach was extended
in [29] to use log-odds ratios (or weight of evidence) instead of the difference in
predicted class probabilities.

To demonstrate behaviour of the method, an example of an explanation is given.
We use a binary classification problem with three important (A1, A2, and A3) and
one irrelevant attribute (A4), so the set of attributes is S = {1, 2, 3, 4}. Let us assume
that the learned model correctly expresses the class value as the parity (xor) rela-
tion of three attributes C = A1 ⊕ A2 ⊕ A3. The correct model would classify an
instance x = (A1 = 1, A2 = 0, A3 = 1, A4 = 1) to classC = 0, and assigns it prob-
ability p(C = 0|x) = 1. When explaining classification for this particular instance
p(C = 0|x), method EXPLAIN simulates the lack of knowledge of a single attribute
at a time, so one has to estimate pS−{1}(C = 0|x), pS−{2}(C = 0|x), pS−{3}(C = 0|x),
and pS−{4}(C = 0|x).Without the knowledge about the values of eachof the attributes
A1, A2, and A3, the model cannot correctly determine the class value, so the
correct estimates of class probabilities are pS−{1}(C = 0|x) = pS−{2}(C = 0|x) =
pS−{3}(C = 0|x) = 0.5 The differences of probabilities pS(yk |x) − pS−{i}(yk |x)
therefore equal 0.5 for each of the three important attributes, which indicate that
these attributes have positive impact on classification to class 0 for the particular
instance x. The irrelevant attribute A4 does not influence the classification, so the
classification probability remain unchanged pS−{4}(C = 0|x) = 1. The difference of
probabilities pS(C = 0|x) − pS−{4}(C = 0|x) = 0 so the explanation of the irrele-
vant attributes impact is zero.

The produced explanations, i.e. conditional probabilities of Eq. (9.1) computed
for each feature separately with EXPLAIN method can be visualised with a form
of quasi-nomograms. The positive and negative impacts of each feature for a given
class value are presented separately. We present an example of this visualisation in
Sect. 9.3.4.

9.3.2 IME, All-Subsets Approach

The one-variable-at-a-time approach is simple and computationally less-intensive
but has some disadvantages. The main disadvantage is that disjunctive concepts
or redundancies between input variables may result in unintuitive contributions for
variables [35]. A solution was proposed in [34], where all subsets of values are
observed. Such procedure demands 2a steps, where a is the number of attributes,
and results in the exponential time complexity. However, the contribution of each
variable corresponds to the Shapley value for the coalitional game of a players. This
allows an efficient approximation based on sampling.
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9.3.3 LIME, Optimisation of Explanations

LIME (Local Interpretable Model-agnostic Explanations) [27] efficiently calculates
explanations also for very large data sets in terms of a number of instances and
number of features. It uses perturbations in the locality of an explained instance to
produce explanations (e.g., in a fashion of locally weighted regression). It defines
explanations as an optimisation problem and tries to find a trade-off between local
fidelity of explanation and its interpretability. The search space is over explanations
generated by interpretable models g ∈ G, whereG is a class of interpretable models.
These are not necessary input features but can be linear models, decision trees, or
rule lists. Interpretability is quantified with the complexity of explanations Ω(g),
where complexity measure Ω can be the depth of tree for decision trees or the
number of non-zero weights for linear models. The model f being explained has to
return numeric values f : �d → �, for example probability scores in classification.
Locality is defined using a proximity measure π between the explained instance x
and perturbed points z in its neighbourhood. Local fidelity L( f, g, π) is a measure
of how unfaithful the explanation model g is in approximating the prediction model
f in the locality defined by π(x, z). The chosen explanation then minimises the sum
of local infidelity L and complexity Ω:

e(x) = argmin
g∈G L( f, g, π) + Ω(g) (9.2)

The approach uses sampling around explanation instance x to draw samples z
weighted by the distance π(x, z). The samples form a training set for a model g
from an interpretable model class, e.g., a linear model. Due to locality enforced by
π , the model g is hopefully a faithful approximation of f . In practice, [27] use linear
models as a class of interpretable models G, the squared loss as a local infidelity
measure, number of non-zero weights as complexity measure Ω , and choose sample
points in the neighbourhood of explanation instance x according to the Gaussian
distribution of distance between x and sampled point z.

To explain text classification tasks, LIME uses bag-of-words representation to
output a limited number of the most locally influential words. In image classifica-
tion, it returns a list of the most influential image areas (super-pixels) for particular
prediction.

By presenting explanation as an optimisation problem, LIME avoids the exponen-
tial search space of all feature combinations which is solved by game-theory based
sampling in IME.However, LIMEoffers no guarantees that the explanations are faith-
ful and stable. Using neighbourhood around explanation instance, it may fall into a
curse of dimensionality trap, which is fatal for neighbourhood-based methods like
kNN in high dimensional spaces. The problem of feature interactions is seemingly
avoided by using approximating function from a class of interpretable explanation
but the problem is just swept under the carpet, as the interpretable explanation class
may not be able to detect them (e.g., linear functions). Further investigation of this
question is needed and we suggest a combination of IME and LIME components as



168 M. Robnik-Šikonja and M. Bohanec

a further work. An idea worth pursuing seems to be integration of game theory based
sampling from IME and explanations as optimisation used in LIME.

9.3.4 Presenting Explanations

The explanations produced by EXPLAIN and their visualisation are illustrated on
the well-known Titanic data set (we used the version accompanying the Orange
toolkit [14]). The task is to classify survival of passengers in the disaster of the
HMS Titanic ship. The three input variables report the passengers’ status during
travel (first, second, third class, or crew), age (adult or child), and gender (male or
female). We have chosen this data set due to its simplicity but note the similarity of
the problem with many business decision problems, such as churn prediction, mail
response, insurance fraud, etc. As an example of an opaque prediction model, we
use random forest (rf) classifier. This is an ensemble of many (typically hundreds),
almost random, tree models. While this approach typically produces models with
good predictive performance (on the Titanic problem the classification accuracy is
78%), the models are incomprehensible.

We demonstrate explanations extracted from the random forest model. Figure9.1a
shows an example of an instance explanation for the prediction of the instance with
id 583 (a second class adult female passenger). The text at the top includes the
predicted value (“survived = yes”), instance id (583), and model name (rf). Below
the graph, there is information on the explanation method (EXPLAIN, using the
weight of evidence), the model’s prediction (P(“survived = yes”) = 0.86), and the
actual class value of the instance (“survived = no”). The input variables’ names are
shown on the left-hand side (sex, age, and class) and their values for the particular
instance are on the right-hand side (female, adult, and second class). The thick dark
shaded bars going from the centre to the right or left indicate the contributions
of the instance’s values for each corresponding input variable towards or against
the class value “survived = yes”, respectively. The longer the bars the stronger
the contributions of the corresponding feature values. The scale of the horizontal
axis depends on the explanation method. For the EXPLAIN method and weight of
evidence (WE) shown inFig. 9.1a, the horizontal axis shows the log-odds transformed
difference of probabilities (see Sect. 9.3.1). The thinner and lighter bars above the
thick dark bars indicate average contributions of these values across all training
instances. For the given instance, one can observe that both “sex = female” and
“status = second class” speaks in favour of survival (therefore the model is pretty
sure of survival with probability 86%), while being an adult has a tiny negative
influence. Thinner average bars above them reveal that being a female is on average
beneficial, while a second class can have both positive and negative impact. Being
an adult has on average a tiny negative impact. Note that the same visualisation can
be used even if some other classification method is applied.

A more general view of the model is provided by averaging the explanations over
all training set instances. This summary form visualisation shows the average impor-
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Fig. 9.1 An instance explanation (on the left-hand side) and amodel explanation (on the right-hand
side) for the random forest model classifying the Titanic data set

tance of each input variable and its values. An example of such model explanation
for the Titanic data set is presented in Fig. 9.1b. On the left-hand side, the input
variables and their values are shown. For each value, the average negative and the
average positive contributions across all instances is displayed. Note that negative
and positive contributions would cancel each other out if summed together, so it is
important to keep them separate. The lighter bars shown are equivalent to the lighter
bars in the instance explanation on Fig. 9.1a. For each input variable, the average
positive and negative contributions for all values and instances are shown (darker
bars). The visualisation reveals that travelling in first class or being a child or female
has a strong positive contribution towards survival, travelling in third class has a pre-
dominately negative contribution, while other statuses have smaller or mixed effect
in the random forest model. For more complex data sets with many attributes the
visualisation of model explanationmay become cluttered, so we can set the threshold
and only visualise the most important values.

The presented visualisations are produced by the function explainVis fromRpack-
age ExplainPrediction [28], which has many parameters controlling the computation
of explanations and their visualisation. The most important parameters controlling
computation of explanations are the type of explanation (EXPLAIN, IME), which
class value shall be explained, and parameters specific for EXPLAIN (how the lack
of information about certain feature is simulated) and IME (allowed error and the
maximal number of iterations). The parameters controlling visualisation are the type
of graphical output (e.g., jpg, eps, or png), the selection of attributes to be shown, the
threshold of importance for displayed attributes, text shownon the graph, colours, etc.

9.4 Explanation in Business Context: A Case of B2B
Sales Forecasting

Reference [3] reviewed the academic work in the field of sales forecasting and con-
cluded that due to sophisticated statistical procedures and despite major advances
in forecasting methods, the forecasting practice has seen little improvement. Our
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practical use case demonstrates that this need not be the case. We show that explana-
tions can successfully support data-based decision process in a real-world business
context [11, 12].

We use a publicly available real-world data set describing the sales history of a
medium-sized company providing software solutions to clients in international B2B
markets [10]. The data set consists of 22 predictive attributes describing different
aspects of the B2B sales process (e.g., a type of offered product, the authority of a
contact person at the client, size of the company, seller’s id, etc.). The class variable
is boolean indicating if a deal was won or lost. The data set promotes research
in understanding factors impacting the outcome of the sales process. To construct
the dataset, the sales team analysed 448 open opportunities with the help of an
external consultant. The predictions, as well as the final outcomes, were recorded
and analysed with machine learning prediction models. To gain knowledge about the
properties of the decision process, the sales team used general explanation methods
EXPLAIN and IME. The analysis included explanations of individual decisions as
well as the whole model. For new (open) cases, decision makers were supported with
the explanations to assess various scenarios with explanatory what-if analysis. We
discuss two interesting use cases, the effect of updates as a result of new information
and adaptation of the model to the specifics of new customers.

Figure9.2a shows instance explanation for a new sale opportunity, with values of
all 22 attributes shown (the importance threshold is not set). The prediction model
explained is a random forest. During the sales team’s discussion, it was observed that
value of the attribute Competitors was recorded incorrectly and should be corrected
to “No”. Furthermore, the sales managers wanted to assess the impact of assigning a
different seller with more expertise in Product D. This is reflected in the change for
the attribute (note the change of Seller from “Seller 2” to “Seller 10”). The team could
immediately investigate the effect of these two updates, which is visible in Fig. 9.2b,
where the likelihood of a successful outcome increases from 0.52 to 0.68. We show
only the most relevant attributes by setting the appropriate importance threshold (to
value 3).

The participating company wanted to get insight into how to address a slowdown
in the acquisition of new clients. To respond to this request, from the initial business
data set, only instances related to new clients were selected (158 instances). This
new data set was assessed with the same approach as the initial, complete business
data set. By selecting only instances involving new clients, the learning outcome
was intentionally biased. The resulting model and its explanations are not generally
applicable but can help in distinguishing successful and unsuccessful deals involving
new clients.

The model explanation is presented in Fig. 9.3. We applied the importance thresh-
old (value of 3) to discard features with low impact. The strongest positive impact
comes from the attribute Partnership with value “Yes”, which indicates a recom-
mendation to form partnerships with companies when bidding for new business.
Positive statements about the vendor have a positive impact, as well as when sales
opportunities stem from participation in an event (e.g., booth at a conference). For
this specific segment of new clients, some attributes have marginal or no impact
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(e.g. Up_sale, Cross_sale). This is in-line with reality – only existing clients qualify
for up sale or cross sale. We can observe different impacts of products; some have
positive and other have a negative impact. The rest of the values have impact below
the set threshold of 3. Such a compact view enables a more targeted discussion when
building a company’s sales strategy.

One can conclude that the explanation methodology presented is a useful tool
for many different problems. It is especially important for problems where predic-
tion performance has to be supplemented with models transparency or knowledge
discovery.

9.5 Conclusion

We presented three general methods for explanations of prediction models. The
methods allow explanation of individual decisions as well as the prediction model
as a whole. The methods can be efficiently computed and visualised, EXPLAIN
and LIME work efficiently even for very large data sets. The explanations reveal
how the individual input variables influence the outcome of otherwise completely
opaque models, thus making them transparent and comprehensible. The general
methods allow users to compare different types of models or replace their existing
model without having to replace the explanation method. The explanation methods
EXPLAIN, IME, and LIME exhibit the following properties:

• Instance dependency: different instances are predicted differently, so the explana-
tions will also be different.

• Class dependency: explanations for different classes are different, different
attributes may have a different influence on different classes (for two-class prob-
lems, the effect is complementary).

• Model dependency: the methods explain a given model, so if the model is wrong
for a given instance, the produced explanations will reflect that.

• Capability to detect strong conditional dependencies: if the model captures strong
conditional dependencies, the explanations will also reflect that.

• Visualisation ability: the generated explanations can be graphically presented in
terms of the positive/negative effect each attribute and its values have on the clas-
sification of a given instance.

• Local fidelity: the perturbation based approaches perturb instances in the neigh-
bourhood of explanation instance, therefore they are sensitive to the model’s func-
tioning in the local context.

• Efficiency: methods EXPLAIN and LIME can be efficiently used with a large
number of instances and features, while current implementation of IME is limited
to a relatively low number of features (up to 100).

• Fair contributions: only for the IME method, the explanations in the form of
attribute-value contributions have a theoretical guarantee that the computed con-
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tributions to the final prediction are fair in the sense that they represent Shapley
values from coalitional game theory.

• Availability: the software implementation of the explanationmethodology is avail-
able as the open-source R package ExplainPrediction [28]. Furthermore, the real-
world B2B sales forecasting data set is publicly accessible [10].

We can list the following limitations which can spur further improvements:

• EXPLAINmethod is unable to detect and correctly evaluate the utility of attributes’
values in instances where the change in more than one attribute value at once is
needed to affect the predicted value. IME method samples the space of feature
interactions and therefore avoids this problem.

• IMEsuffers from relatively large computational load required to reachprobabilistic
guarantees of its performance. The explanations would have to be pre-computed
in order to be used interactively in a discussion session and computations may be
too slow for high dimensional problems.

• While efficient in high dimensional spaces, LIME offers no guarantees that the
explanations are faithful, and ignores the required number and nature of obtained
samples. By using uniform sampling in the proximity of explanation instance, it
may be susceptible to problems of neighbourhood-based methods like kNN in
high dimensional spaces. The problem of possible feature interactions is also not
adequately solved.

• The interactions between attributes are captured but not expressed explicitly in the
visualisations; therefore, the user has to manually discover the type of interdepen-
dencies with interactive analysis.

In a business context, we presented an extract from the successful grounded appli-
cation of machine learning models coupled with general explanation methodology.
On the complex real-world business problem of B2B sales forecasting, we show how
powerful black-box MLmodels can be made transparent and help domain experts to
iteratively evaluate and update their beliefs. For new (open) cases, we demonstrated
interactive support for decisionmakers, assessing various scenarios with explanatory
what-if analysis. We presented flexibility of the methodology to address a specific
business request (weak performance in one segment). The explanations of the pre-
diction models and what-if analysis proved to be an effective support for B2B sales
predictions. The presented methodology enhanced the team’s internal communica-
tion and improved reflection on the team’s implicit knowledge.

The simplicity and elegance of the perturbation-based explanations coupled with
efficient implementations and visualisation of instance- and model-based explana-
tions allow application of general explanation approaches to many areas. We expect
that broader practical use will spur additional research into explanation mechanisms
and improvements in the visual design of explanations.Machine learning based auto-
matic decisions have already spread to many areas of life and attracted attention of
the general public and law-makers, who demand its better transparency. This makes
model explanation a much needed and attractive research and application topic.
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Chapter 10
Model Explanation and Interpretation
Concepts for Stimulating Advanced
Human-Machine Interaction with
“Expert-in-the-Loop”

Edwin Lughofer

Abstract We propose two directions for stimulating advanced human-machine
interaction in machine learning systems. The first direction acts on a local level by
suggesting a reasoning process why certain model decisions/predictions have been
made for current sample queries. It may help to better understand how the model
behaves and to support humans for providing more consistent and certain feedbacks.
A practical example from visual inspection of production items underlines higher
human labeling consistency. The second direction acts on a global level by addressing
several criteria which are necessary for a good interpretability of the whole model.
By meeting the criteria, the likelihood increases (1) of gaining more funded insights
into the behavior of the system, and (2) of stimulating advanced expert/operators
feedback in form of active manipulations of the model structure. Possibilities how
to best integrate different types of advanced feedback in combination with (on-line)
data using incremental model updates will be discussed. This leads to a new, hybrid
interactive model building paradigm, which is based on subjective knowledge versus
objective data and thus integrates the “expert-in-the-loop” aspect.

10.1 Introduction

Machine learning and soft computing models are essential components in today’s
supervision, prediction and decision support systems for highly automatised indus-
trial and biomedical (engineering) processes — see, for instance, [25, 47, 60, 67]
for various concrete applications in the fields of web mining [126], supervision of
human’s behaviour, predictive maintenance [68], healthcare systems, texture percep-
tionmodeling [32] and visual inspection systems [36, 122].Unlike “old-school” fixed
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coded decision rules [50], either obtained through analytical laws and mathemati-
cal derivation or by explicitly formulated expert knowledge, resulting in so-called
expert systems [2], machine learning models are typically established more or less
automatically based on data recorded at the system [123]. This leads to a significant
reduction in development time of the decision, prediction and supervision models
[95], thus saving human expert/operator effort and costs for companies and industrial
facilities, see recent newsletters.1,2

In many applications, machine learning models are nowadays used as embed-
ded, in-line or on-line component(s). Embedded means that they are operating fully
autonomouslywithout any interactionwith humans and provide their outputs directly
to the neighbouring components, environments etc. on machine level (in-line usage).
Typical examples are (i) intelligent and smart sensors [13, 105], where compact
machine learning models are deployed for their in-line execution within restricted
resources, (ii) production process lines or factories of the future,3 where ML models
are used for predictive and proactive maintenance [27] towards full process optimi-
sation [100, 127] with some self-healing capabilities4 [31].

In some cases, the machine learning models need to be updated based on
newly recorded on-line data, in order to account for dynamically changing system
behaviours, new operationmodes not included in the initial batch data set fromwhich
the models have been learnt. In other cases non-stationary environmental changes
occur [110], which may arise even unexpectedly. In other fields of applications, such
as health-care systems or social media platforms, the patient’s or agent’s behaviour
may change due to different moods and daily constitutions (small, abrupt changes)
[30, 47] or due to a shift in the mainstream fashion and communication style (bigger,
gradual long-term changes) [48, 97]. This also requires the update of embedded data
stream models or decision support systems [45].

Techniques from the fields of evolving intelligent systems [10, 53], incremental
machine learning methods [29, 110] and adaptive soft computing and control [61,
69] can be applied to guarantee fast updates to these changes. This is accomplished
and realised through the following concepts, which are ideally operated in single-
pass manner (no past data revisited) to keep computation time for model updates on
a low level:

• Recursive parameter adaptation to adapt to permanent process changes and to
increase model significance and accuracy.

• Evolution of newmodel components on the fly in order to account for variations in
the process such as new operations modes, system states, [10, 110] which requires
an expansion of the knowledge of the model to new territories in the feature space.

• Deletion of obsolete and merging of redundant model components to assure com-
pactness of themodels, thus to prevent over-fitting and to reduce computation times

1https://mapr.com/blog/reduce-costs-and-improve-health-care-with-big-data/.
2https://arimo.com/machine-learning/2016/manufacturing-downtime-cost-reduction-predictive-
maintenance/.
3http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html.
4http://whatis.techtarget.com/definition/self-healing.

https://mapr.com/blog/reduce-costs-and-improve-health-care-with-big-data/
https://arimo.com/machine-learning/2016/manufacturing-downtime-cost-reduction-predictive-maintenance/
https://arimo.com/machine-learning/2016/manufacturing-downtime-cost-reduction-predictive-maintenance/
http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html
http://whatis.techtarget.com/definition/self-healing
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for model updates — the latter is especially important in the case of high-speed
processes.

• Increasing themodel flexibility for (quickly) drifting system behavior [54] through
down-weighing older learned relations.

Central questions then arise in the following directions:

• Are the updated models still trustful? can we guarantee fully automatic model
updates with high performance and no quality deterioration over time?

• How can the humans be persuaded that updated models are still valid by still repre-
senting valid interrelations between inputs and outputs from a physical, chemical
and/or biological point of view?

• How can the humans benefit from the models and the models benefit from the
humans (knowledge)? - this raises the question what may stimulate an enhanced
communication between humans and machines which may furthermore bring
knowledge gains for humans as well as performance boosts for the machines
likewise?

Such challenges have been generically formalised and addressed under the umbrella
of the human-inspired evolving machines (HIEM) concept [70] and are also discussed
in the research communities under the umbrella of expert-in-the-loop (EIL) [33] or
human-in-the-loop paradigms [40]. However, they have been only loosely realized
in particular fields of real-world applications so far [17, 81, 121].

Mostly, the current situation is that humans communicate with machine learning
tools either on a puremonitoring level or inminimal form on a good-bad reward level,
qualifying the model outputs so that the model can improve itself. Communication
on a deeper, structural level, for instance, enabling human manipulation of structural
components or decision boundaries, is currently (almost) missing. Such communi-
cation, however, may also help us to achieve a deeper, evidence-based understanding
of how people can interact with machine learning systems in different contexts and to
enrich models by combining objective data with subjective experience. Figure10.1
shows a generic work-flow for a possible human-inspired evolving machines concept
with some more advanced components stimulating advanced interaction rather than
naive feedbacks.

An essential point of such communication-based machine learning tools is the
establishment ofmodelswhich can be interpreted andwhose outputs can be explained
linguistically, eye-catching and plausible to the human. Otherwise, humans may
become incurious, distracted or not reallymotivated to communicatewith the system.
Thus, this chapter is dedicated to this particular issue: under this scope, it will propose
and describe several concepts for

1. Model explanation on a local level, i.e. reasons for model outputs (in the form
of classification statements, predictions, quantifications) are provided to humans
in a readable and understandable form (handled in Sect. 10.2) — this may be
intrinsically important for providing a feedback on the quality of the outputs
(in the form of good/bad rewards, for instance) or for the purpose of on-line,
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Fig. 10.1 Framework for enhanced human-machine interaction based on machine learning mod-
els (human-inspired evolving machines (HIEM)) with the integration of Expert-in-the-Loop (EIL,
denoted by the sheriff); the components highlighted in bold font are addressed in this chapter

interactive sample annotation and labelling (to improve model significance on-
the-fly) [86].

2. Model interpretation on a global level, i.e. models are prepared in a way such that
their components can be linguistically interpreted easily towards the complete
understanding of what the model represents and actually does (Sect. 10.3) — this
may be intrinsically important for supervision purposes in industrial installations,
i.e., that humans can check whether the model is still plausible and reliable (e.g.,
in a physical, chemical or biological sense) after being autonomously updated
with on-line samples [7].

Additionally, the chapterwill address the continuation ofmodel learning and teaching
in the context of enriched human-machine interaction and expert-in-the-loop. Thus,
methods will be suggested how to integrate enhanced human feedback in various
forms and how to properly handle human-defined model components or changes in
themodel structure in the context of further data-drivenmodel adaptation (Sect. 10.4).

Choice of Appropriate Model Architecture

According to these ambitious goals discussed above, it is essential to focus on
machine learning model architecture(s) which support per se any form of interpreta-
tion and component explanation, and therefore offer the possibility of an enhanced
communication with the human (user) in a ‘natural way’. This makes, for instance,
(deep learning) neural networks, support vector machines and/or various forms of
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evolutionary algorithms less attractive than any form of rule-based models such as
decision trees [104], patterns trees [111] or fuzzy systems [99], see [46] for a detailed
discussion about the comprehensibility of rule-based model types.

Fuzzy systems offer linguistically readable rules in IF-THEN form and also allow
uncertainty feedback in the model decision through the concepts of conflict and
ignorance, which they can resolve in a natural way [43]. So, they have the natu-
ral capability to offer enhanced model output explanation, which cannot be so easily
established for decision and pattern trees. The inherent fuzziness in their rules allows
their knowledge to be expressed in the formof vague statements using linguistic terms
[119], which may accord with a human’s experience. Furthermore, they are able to
provide a reasonable tradeoff between readability and accuracy due to their universal
approximation capability [20], especially when being equipped with specific com-
pactness and transparency improvements techniques during or after model learning
from data [18, 28, 75] — which we will also partially discuss in Sect. 10.3. Due to
all these nice properties, fuzzy systems are tendentially the most prominent candi-
date (and hence our focus) for a comprehensible rule-based model architecture, to
meet model explanation and interpretation issues and thus enriched interactions with
humans as discussed above.

General Notation and Definition of Fuzzy Rule Bases

In a general context, linguistically readable rules have the form [62]:

IF (a set of conditions is satisfied) THEN (the set of consequences can be inferred)

The consequences are typically some actions which are performed based on the
fulfillment (degree) of the antecedents comprised by a set of conditions, connected
through AND and OR operators. These conditions often describe the characteristics
of objects, events, systems states and behaviours etc.

In real-world applications, several types of uncertainty may arise during mod-
eling, e.g. due to noisy data and/or uncertain knowledge of humans about process
behaviours, which leads to vagueness in their feedback or knowledge formulation
[112, 119]. Usually, the antecedents can then no longer be defined as crisp statements,
and using fuzzy instead of Boolean rules for describing the class space relations
becomes more promising. A fuzzy rule can be defined as:

Rulei : IF x1 IS μi1 AND . . .AND x p IS μi p THEN li (x) = Φi . (10.1)

where p is the dimensionality of the feature space andμi1, . . . , μi p are the linguistic
terms (such as, e.g., HIGH, INTENSE, WARM), formally represented by fuzzy sets
[125]. These terms provide a coarse granulation of the input features into different
local regions, where each region is represented by a membership function associated
with a fuzzy set.

Fuzzy sets are thus assigning arguments from a corresponding range of some
input feature to a membership degree, which may take any value in [0, 1]. A fuzzy
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Fig. 10.2 Topology of a fuzzy rule base with C rules and how the inference of new queries is
conducted

set is usually described by a modal value (its centre c), where its membership degree
receives 1, a core range of influence (σ ) (subject to an α-cut level [51]), a concrete
shape and a linguistic term typically assigned by the expert. It is usual that several
fuzzy sets, each one referring to a different linguistic term, are assigned to a single
input feature (variable). Those fuzzy sets together form a so-called fuzzy partition of
the input feature. The fuzzy partitions of all input variables are the core components
of a fuzzy system in order to express uncertainty (e.g., due to noise) and vagueness
(e.g., due to human thinking, perception, feelings) in a possibilistic manner [99]. In
particular, according to the rule definition in (10.1), each antecedent part describes
a fuzzy condition containing a linguistic term, which is activated for new query
instances subject to a certain degree (0 if not activated at all).

Φi denotes the consequent functions and can be of different forms: fuzzy sets as
in the case of Mamdani fuzzy systems [91], hyper-planes or higher-order polynomi-
als as in the case of Takagi–Sugeno(–Kang) fuzzy systems [116], multi-dimensional
Mercer kernels, wavelet or even auto-regressive functions [1]. In case of classifica-
tion, Φ is either represented by a singleton class label (classical case) [58] or by a
whole confidence vector with confidence levels for each class [9].

A collection of i = 1, . . . , C fuzzy rules as defined in (10.1) forms a so-called
fuzzy rule base F . Based on this fuzzy rule base, an overall output is inferred for new
query points, e.g., in the form of a classification or regression statements, by using
the topology as shown in Fig. 10.2. The following steps are carried out:

1. Fuzzification of the p-dimensional input vector x = {x1, . . . , x p}: this is done
by sending each single vector entry into the corresponding fuzzy partitions and
evaluating the membership degrees to all fuzzy sets: μn j (x j ) for j = 1, . . . , p,
with n j the number of fuzzy sets defined for the j th input x j .

2. Eliciting the firing levels of all rules by combining the membership degrees μi j

for all C rules, i.e. for i = 1, . . . , C , with Ai j the fuzzy set appearing in the
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j th antecedent part ( j ∈ n j ) of the i th rule and μi j its activation degree for the
current sample. The combination is achieved through a t-norm (default: product
or minimum) [55].

3. Eliciting the set of active rules, i.e. those ones with activation level μi > 0.
4. Amalgamation of the consequents of the active rules through a t-conorm [34]

(default: maximum).
5. Defuzzification of the amalgamated consequents in order to obtain a crisp value.

The last step depends on the concrete consequent type functions chosen, see [101]
for possibilities, and produces a numerical output value (classification, prediction
statement). Typically, a kind of weighted average or a centre (maximum) of gravity
is used.

Hierarchical rule bases may help to reduce the length of the rules which may
become unreadable in case of a higher number of inputs [107], where also rule
explosion takes place when considering most of the fuzzy set combinations as proper
rule antecedents. In hierarchical rule bases, smaller rule bases are constructed based
on subsets of features, and their outputs used as inputs for subsequent rule bases,
leading to a chain of rule bases. Each smaller rule base is easier to interpret for its
own, and the output connections can be interpreted on a more global level, achieving
some insights into feature links etc.

10.2 Model Explanation Concepts (On Local Level)

Model explanation concepts on the local level,means that for each newquery instance
xpassing through the fuzzy rule base not only the output (in the formof a classification
or prediction statement) is inferred, but also an advanced explanation is provided as
to why this output has been produced, and the certainty and intrinsic reason behind it.
Uncertain output can be treated with more care by humans and not trusted so easily.
The explanation of model decisions may become an essential aspect to stimulate
human feedback, especially when reasons are provided for the decisions [14] and
features most influencing the decisions are highlighted [115]. Then, when the model
seems to be wrong from human users’ first glance, by looking at the reason and
induced features, she/he may be persuaded to change her/his opinion or she/he may
be confirmed in her/his first intuition. In the latter case, she/he can directly associate
the rule leading to the reason shown and thus may change or even discard it. This in
turn means that the model is enriched with knowledge provided by the human and
thus can benefit from it (becoming more accurate, more precise in certain regimes,
parts).

The following concepts are addressed in this section tomake (fuzzy)model outputs
understandable to humans:

• The reason for model decisions in linguistic form (addressed in Sect. 10.2.1): the
most active fuzzy rule(s) for current query instances is (are) prepared in transparent
form and shown to the human as reason.



184 E. Lughofer

• The certainty of model decisions in relation to the final output and possible alter-
native suggestions (Sect. 10.2.2). This indicates the degree of ambiguity, i.e. the
‘clearness’ of a model output.

• The feature importance levels for the current model decision (Sect. 10.2.4) are
provided: (1) to reduce the length of the rules (=reasons) to show only the most
essential premises and thus to increase their readability, (2) to get a better feel-
ing about which features and corresponding conditions in the rules’ antecedents
strongly influenced the decision.

• The coverage degreeof the current instance to bepredicted/classified (Sect. 10.2.3):
this is another form of certainty, which tells the human how novel the content in
the current sample is. In the case of high novelty content (equivalent to a low
coverage), the human may pay additional attention to provide his feedback, which
may be in some cases even highly recommended (e.g., to encourage her/him to
define new fault types, new classes or new operation modes).

In sum, such an advanced explanation of models’ decisions should help the humans
to better understand them and also allow them to provide more consistent feedback,
e.g. in formof good/bad rewards, definition of new event types (e.g., fault classes) and
description of local behaviour, or sample annotations. The latter will be addressed
in a concrete case study (Sect. 10.2.6) within the context of an image-based event
classification system for surface inspection problems: it will be shown that advanced
(linguistic) explanations of model decisions can improve the consistency and cer-
tainty of sample labellings.

10.2.1 Reasons for Model Decisions

The reasons for model decisions can be best explained when taking into account
the geometric and linguistic interpretation of fuzzy rules. In the case of data-driven
extraction of fuzzymodels, the fuzzy rules represent possibilistic distributionmodels
for the local data clouds in the feature space. The form of the rule shapes depends
on the functions chosen for modelling the fuzzy sets in the partitions or, in the case
of generalised rules [84], on the chosen high-dimensional kernel functions.

Once the fuzzy rules have been learned from data by any type of clustering or
machine learning techniques [69, 99], the rules typically represent partial depen-
dencies of variables/features within local regions of the feature space — e.g., local
correlations and partial local trends (regression case) or local descriptors for shapes
of class clouds (classification case). A concrete example of a geometric interpretation
for a two-dimensional classification case (with three classes) is shown in Fig.10.3.

There, the rules have ellipsoidal contours which result from multi-dimensional
Gaussian kernels for achieving arbitrarily rotated positions. The fuzzy sets shown
along the axes (HIGH,MEDIUM, LOW) can be obtained by projection of the higher-
dimensional rule contours onto the single axes, see, e.g., [84].
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Fig. 10.3 Geometric interpretation of fuzzy classification rules as extracted from data samples
containing three classes (their contours shown as dotted ellipsoids)

Also shown in Fig. 10.3 are four query point cases whose classification interpre-
tation can be seen as follows:

• Query 1 (circle, shaded): In the case of this sample, only one rule (Rule (1) fires
significantly, and it is therefore sufficient to show this rule to the human (opera-
tor/user) (in IF-THEN form) as a reason for the final model output. In our example,
Rule 1 reads as:
Rule 1: IF Width is MEDIUM AND Grey Level is MEDIUM, THEN Class #1
with (con f1 = 0.98, con f2 = 0.02, con f3 = 0.0).
Thus, the reason why Class #1 has been returned is that the width of the object
is MEDIUM (around 35 units) and its (average) grey level is MEDIUM (i.e.,
somewhere around 127 when assuming a range of [0, 255]).

• Query 2 (rectangular, shaded): Rule 3 fires most actively, but also Rule 1 fires
significantly, so the induced linguistic IF-THEN forms of both are to be shown
to the human, as the classification response will depend mainly on the weighted
scoring of these two rules.

• Query 3 (circle, non-shaded): this query point lies in between Rules 1, 2 and 3, but
it is significantly closer to Rules 1 and 3; thus, their induced linguistic IF-THEN
forms are to be shown to the human; the novelty content of this query is moderate.

• Query 4 (rectangular, non-shaded): this query point indicates high novelty content,
as it lies far away from all extracted rules; since Rule 1 is by far the closest,
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its induced linguistic IF-THEN form will be shown to the human. This type of
uncertainty is not covered by the weighted output scoring, as it remains on the
“safe” side of the decision boundary, shown as a dotted line. Thus, it should be
separately handled by the concept of coverage.

Linguistic terms can only be understood if the human knows exactly what they
mean: for instance, in the case of image classification, it is obvious that a “VERY
HIGH Grey Level” means that the object is bright and thus “eye-catching” in an
image. However, this is not necessarily the case for all types of feature in general
real-world applications, where some features may be less expressive. In such cases,
it may be beneficial to show the core part of the (firing) fuzzy set in terms of c ± σ ,
with c being the centre value and σ the core range of influence. This provides a more
concrete indication of the local region within which the corresponding input feature
value of the current sample falls.

In the case of the rule example above in Fig. 10.3 (Rule 1), the reason for Query
#1 would then become:

The reason why Class #1 has been returned is that the width of the object is
MEDIUM (35 ± 10) and its (average) grey level is MEDIUM (127 ± 25).

In the case of regression problems, the reasoning can be constructed in a similar
manner, with themajor difference that rules represent partial local trends of thewhole
approximation (regression) surface— also termed as piecewise local predictors [76],
which can be exploited for local stability analysis of controllers and models [63].
Such trends can be expressed well with the usage of hyper-planes or higher order
polynomials in the consequents [116]. Then, each rule describes the local correlation
between variables represented through the hyper-plane (or higher-order polynomi-
als), whereas ‘locality’ is yielded by the range of the rule defined through the rule’s
antecedent (e.g., ellipsoid contours). Figure10.4 provides a geometric interpretation
example for the regression case.

Each of the three local trends contained in the approximation curve (shown as a
solid regression line going through the samples) is represented by one rule (contours
as ellipsoids), whereas the certainty of the curve varies from rule to rule due to varying
local noise levels (spreads) of the samples — the certainty is thereby expressed by
so-called error bars modelling confidence intervals which are shown as red dotted
lines surrounding the approximation curve.

According to the positioning of the two queries, the reason for the two queries
adopted to the regression case then becomes:

Query 1: The reason why a prediction value for Energy of 38.5has been returned
is that the temperature is LOW (around 10 ± 4).
Query 2: The reason why a prediction value for Energy of 90.7has been returned
is that the temperature is HIGH (around 30 ± 5).
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Fig. 10.4 Geometric interpretation of rules in fuzzy regression models as extracted from data
samples containing three partial local trends of the approximation curve; their contours shown as
dotted ellipsoids, the regression curve as a solid dark line; surrounding confidence intervals (error
bars) are shown as red dotted lines, indicating the uncertainty in model outputs due to noise in the
data

10.2.2 Certainty of Model Decisions

According to the rule representation as demonstrated in Sect. 10.2.1, certainties in
relation to classifier responses can be directly associated with the class confidence
levels in the most active rule(s), i.e. rules with highest membership degrees μ.(x),
where μ.(x) = T p

j=1 μ. j (x) or μ.(x) = K .(x) in case of generalised rules. If it is
a single rule (i.e., obtained by argmaxi=1,...,Cμi (x)), it corresponds to the winner-
takes-all classification strategy widely used in the fuzzy community [58, 94]. If
more rules are taken into consideration for producing the classification statements,
advanced concepts such as the inverse gravitation concept [85] or the weighted
voting concept [49] can help to improve classification accuracy. In both cases, class
confidence levels can be embedded in the rule consequents Φi (see (10.1)) by

Φi = [Classi = 1(con fi1),Classi = 2(con fi2), . . . ,Classi = K (con fi K )], (10.2)

and thus amalgamated when producing the classification statement [85]. con fik rep-
resent the confidence of the i th rule in the kth class, with K classes in sum. In case
of winner-take-it-all classification, the certainty for output class L is calculated by

certaintyL = max
j=1,...,K

(con fi∗ j ) i∗ = argmaxi=1,...,Cμi (x). (10.3)

According to the example shown in Fig. 10.3, Query #1 can be safely classified as
belonging to Class #1. Thus, the explanatory text about the certainty of the classifier
decision reads as
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“The sample is classified as ‘Class 1’. The certainty is VERY HIGH (≈100%)”.

In contrast, the decision is less clear-cut for Queries #2 and #3, and the confidence
in the output class is therefore similar to that in another class. In this case, it may be
helpful to offer an alternative class suggestion to the human. This also then gives rise
to the clearness of the decision in one particular class among the second most certain
class. In this sense, an additional linguistic explanation for a possible alternative class
can be foreseen. In the case of Query #3 in Fig. 10.3, this reads as:

“The sample is classified as ‘Class 3’. The certainty is LOW (≈55%).
The sample might also be ‘Class 1’ with a LOW certainty (≈45%)”.

In the case of regression problems, the certainty of fuzzy model outputs heavily
depends on the density, the model bias and noise level of the data in the local parts
where the most active rules are defined. Error bars are an appropriate methodology
to track the uncertainty of model output. These are shown as surrounding red dashed
lines around the real functional trends in Fig. 10.4. The wider the error bars become,
the higher the uncertainty in the model output, as a larger band of responses is
statistically possible. This means predictions have to be taken with more care in
case of large error bars and the human may be motivated to sharpen the most active
rule(s) per manual input or even delete the rule(s) if no reasonable conclusion from
the prediction can be drawn at all.

Typically, error bars serving as confidence intervals are calculated based on esti-
mations of the parameter uncertainty, which arose during the regression fit. The most
prominent choice is the Fisher information matrix I , whose cell (i, j) includes the
derivative of the model with respect to the parameter pair (i, j) in the current sam-
ple. In the case of linear (regression) models, the Fisher information matrix becomes
equivalent to the Hessian matrix X T X , thus the fit quality falls together with the
parameter sensitivity of the model. In case of hyper-planes in the consequents, each
rule can be seen as a local linear model, modelling local correlations between the
input variables and the output. Thus, error bars con fy for model outputs y, have been
defined by using X T Qi X with Qi the membership degrees of the samples to the
i th rule and amalgamating these over all C rules through weighted averaging [78]
and/or quantization through student’s distribution and associated quantiles [114]. In
all cases, they define the statistical significance interval of a model output y for a
query instance x:

y ± con fy(x), (10.4)

with con fy(x) = g(X T Qi X, x) ∈ [miny, maxy] as a function g of weighted Fisher
informationmatrix.Hence, certainty can be percentually expressed by dividing con fy

through the range (or interquartile range) of y:

certaintyy = 1 − con fy

(inter)rangey
. (10.5)
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This can be embedded in the linguistic description and shown to the human similarly
as in the case of classification, but in relation to the range of the target (100−% of
the range covered by the error bar) thus:

Query 1: the sample is predicted as 38.5. The certainty is LOW% (approx
50%).
Query 2: the sample is predicted as 90.7. The certainty is HIGH% (approx
85%).

10.2.3 Query Coverage

Another viewpoint on model prediction certainty is to consider how well the current
sample is covered by the current model, that is, how close it is to the past training
samples and to the rules they induced. For instance, in Fig. 10.3, Query #1 is well
covered by the contour of Rule #1, and can thus be safely classified as belonging
to Class #1, whereas Query #4 falls within an “empty” space, i.e., an extrapolation
region. Such situations should be handled with care by humans, as the model has
no real definition space where the sample occurs and these may produce any output.
A human feedback in such cases would be even more desirable than in safe cases
(safely predicted outputs), especially when taking into account that such samples
may denote anomalies, outliers or in extreme cases failure modes, which should not
be included in subsequent model adaptation cycles [77].

In the context of fuzzy models, the concept of coverage was developed in [44] for
the batch and in [73] for the on-line case (there within the context of ignorance). It
can be expressed in a natural way, because the fuzzy rules represent local models of
local regions by partitioning the feature space into local granules. The distance of a
query point to the local regions can then be directly associated with the degrees of
membership of the corresponding fuzzy rules describing the local regions, which are
always normalised to [0, 1]: 1 denotes full coverage and 0 no coverage. Obviously,
the maximum membership degree over all fuzzy rules is a reliable indicator of the
coverage of the current query x:

coverage = max
i=1,...,C

μi (x), (10.6)

withC being the number of fuzzy rules in themodel andμi themembership of the i th
rule in x. A linguistic term can be assigned to this value according to a fuzzy partition
for ‘coverage’ pre-defined over the range [0, 1] to retrieve a linguistic explanation
text, for instance, in the form (e.g. cf. Query #4 in Fig. 10.3):

“The coverage of the sample by the current classifier is BAD (around 5%)”.
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10.2.4 Feature Importance Levels (Instance-Based)

The rule antecedent parts forming the reason formodel decisions can become lengthy
if a high number of input features is used to explain the classification problem/process
(resulting in many AND-connections). This yields reasons (rules) which are incom-
prehensible, i.e., cannot be described in a compact form. Lengthy explanations may
lead to human frustration rather than stimulating feedback and input. Furthermore,
a sorting of the rule antecedent parts would be favourable for humans, where the
parts closer to the IF-statement can be seen as having a higher impact on the final
model output than parts occurring in latter conjunctions. A cutoff threshold can then
be established to show only the M most important antecedents to the humans. This
threshold may be user-defined or based on percentual feature contributions to the
final model output.

Feature contributions can be established through the design and calculation of
so-called feature importance levels. Such levels indicate how important each of the
features is for obtaining the current model output. Themost prominent way in current
literature to do this is to realise how sensitive the model output becomes whenever a
specific feature changes its value around the actual value in the current instance, see,
e.g. [12, 86, 106, 115]. This is because the sensitivity reflects the degree of change
of the model output with respect to changing feature values: e.g., in a case when
changing a feature over its complete range, always the same (or very similar) output
is obtained, then it means that the model behaves pretty constantly with respect to
this feature. Hence, the feature does not have any influence on the output, and thus
can be seen as unimportant. On the other hand, whenever there is a significant change
in model output when a single feature changes its value slightly, it means that the
feature highly impacts the model output, thus can be seen as highly responsible for
the actual output.

The basic idea in [86] is that the prediction of the current query instance L =
f (x) (i.e, the final class output by the model) containing the values of p features
(x = [x1, x2, . . . , x p]) is compared with the prediction without the knowledge of xi

(for all i = 1, . . . , p features):

impL(xi ) = pDi (x) = | f (x) − f (x/xi )|. (10.7)

If this value is >0, the feature is important, because without it another class would
be predicted; in other words, the probability/certainty in relation to the output class
L decreases significantly when feature xi is ignored. Thus, pDi can be directly
associated with the local feature importance impL(xi ) on the output class L . pDi (x)

can be calculated by a certainty estimate for the output (winning) class in case of
the current full sample x and by an average certainty estimate in the case when
xi is varied over its complete range (as a simulation of f (x/xi )), see [86] for full
formulas. In the regression case, this idea can be adopted by using the absolute
value of f (x) − f (x/xi ) as an approximation of the overall change in output when
omitting variable xi . The importance degree of variable xi should be normalised by
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the sum of the importance degrees of all features to retrieve a relative importance for
all features lying in [0, 1], thus:

impi = | f (x) − f (x/xi )|
∑p

j=1 | f (x) − f (x/x j )| . (10.8)

The importance degree of each feature can be reported to a human both, on instance
level and over time based on development plots of feature importance levels— as e.g.
suggested in [14]. In the latter approach, the feature contributions are calculated by
a random sub-sampling approach, i.e. exchanging some coordinates of x randomly
chosen with corresponding values from other samples drawn from the data set, one
time including x j (thus substituting it with a random value), the other time using the
actual value contained in x.

The approach in [12] is based on local explanation vectors as local gradients of the
probability function p(x) = P(L = 1|X = x) of the learned model for the positive
class (Class #1). The sign of each of the individual entries of the gradient vector
(achieved through the derivative in each direction) indicates whether the prediction
would increase or decrease when the corresponding feature of x is increased locally
and each entries absolute value gives the amount of influence in the change in pre-
diction. This idea could be also easily adopted to fuzzy models in the following
way:

• For the classification case, each multivariate rule kernel K , obtained through com-
bining the antecedent parts (most typically by t-norms [55]), represents a particular
class. Depending on the classification scheme to produce the final model output,
local gradients of the influencing rules need to be respected. For instance, in
winner-takes-all classification, only the most active rule i∗ is responsible for the
final output class L , thus the local gradient in x j becomes:

grad j = ∂Ki∗
∂x j

. (10.9)

In the case when there is a weighted voting among different rules c < C to produce
the final output class L , with weights w1, . . . , wc, then the local gradient in each
x j , j = 1, . . . , p is the weighted summand of the gradient term in (10.9) over all
c rules:

grad j (x) =
c∑

i=1

wi
∂Ki (x)

∂x j
. (10.10)

Again, each of the gradients should be normalised by the sum over all gradients,
similarly as done in (10.8) in order to obtain relative importance values imp j in
[0, 1].

• For the regression case, the local gradient is influenced by both, the multi-
dimensional kernels in the rule antecedents and the associated rule consequents
(defined through hyper-planes, polynomials or more complex structures). In any
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case of rule consequent functions, the defuzzified output is usually obtained by
[69, 101]:

f (x) =
C∑

i=1

li (x)Ψi (x) Ψi (x) = Ki (x)
∑C

j=1 K j (x)
, (10.11)

thus respecting all C rules in the rule base. Hence, the local gradient in x after x j

is calculated after the product chain rule as

grad j (x) =
C∑

i=1

(

li (x)
∂Ψi (x)

∂x j
+ Ψi (x)

∂li (x)

∂x j

)

, (10.12)

where ∂Ψi (x) is obtained through the quotient rule for derivatives applied on the
multi-dimensional rule kernel defined through Ki (x) = μi (x).

Finally, sorting the values of imp(xi ) = pDi (x) across all features i = 1, . . . , p
and using only the M highest, leads to a reduced as well as sorted representation of
AND-connections in the rules and associated reasons.

Other types of feature importance level calculations (such as LIME, DeepLIFT
etc.) can be found in the recent article [89], where the authors favoured expected
Shapley (ES) values in combination with functions in additive form (and showed
some unique determination of several important factors/parameters).

10.2.5 Rule-Based Similarity and Expected Change
Visualisation

So far, the advanced model explanation concepts were rooted in and based on the
components embedded in the current model — from these, the necessary informa-
tion has been extracted and polished up for humans as users. Additionally, in certain
applications it may be interesting to confirm or overrule model outputs by showing
the human past similar query samples which were classified into the same class resp.
which produced similar prediction values. This may be probably most helpful in the
case of (human-understandable) context-based data such as image, videos or audio
signals. Then, the reasoning text would receive another cute touch in the form of:

The reason why Prediction X has been returned is that there appeared sev-
eral very similar samples before for which the same prediction was produced
by the model, namely X1, X2, ...

(and then visually show the context-based data of X1, X2, ..., also in comparison
with the current query).
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This indeed requires the usage of a history sample bufferwhichmay slowdown the
on-linemodel adaptation process, but could be omitted when using representatives of
themost active rules (e.g., their centres) for current queries (compressed information).

Expected change visualisation addresses the important issue to still guarantee
human confidence in the model, also in the case when the model may change sig-
nificantly its parameters/components/structure, most often due to significant novelty
content contained in newdata (requiring a knowledge expansion of themodel). Based
on our experience whenworking with several company partners and industrial instal-
lations, often the humanoperators/expertsworkingwith the on-line (ML) systemmay
wish to get a feeling about the extent of the model change expressed by its expected
change in performance — this is because they are already used to a particular per-
formance and behaviour of the model (‘humans are creatures of habit’). Assuming
that all stream samples have been stored in a history buffer Hist together with their
real target values, then such a buffer can be used for re-calculating model accuracy,
to observe how it develops whenever the model structure/components change or are
evolved, see [85] for a fast stream-based solution in the case of integrating new
classes.

10.2.6 A Case Study on the Impact of Explaining Model
Decisions on Human’s Annotation Behavior

Here, we present a case study in the context of an image vision based surface inspec-
tion system for micro-fluidic chips used for sample preparation in DNA sequencing
[86]. The inspection of the quality of the chip is indispensable in order to avoid
non-functioning chips and thus complaints by customers to whom the chips are sold.
Several different event types (10 classes) may occur on chips and may reduce the
quality. The original classifier for the existing inspection system was based on a
rudimentary hard-coded rule base which is established manually and operates on
features extracted from the regions of interest.

In order to establish machine learning classifiers for a fully automated inspection,
a significant amount of real-world recorded sample images must be annotated and
labelled by experts in order to guarantee a high performance of the classifier [42,
81] — especially, in the case of a significant system dynamics, human feedback
in the form of labels have to be provided from time to time, ideally during on-
line usage of the classifier. Based on this feedback, the classifier is able to update
its parameters and structures and thus to keep pace with (intended) changes and
drifts in the system [54]. The annotation and labeling process is time-intensive and
typically affected by concentration problems due to fatigue, boredom, tiredness of
the humans; this typically leads to inconsistent and uncertain labelings, which affect
the classifier performance when being used in its update. Therefore, the aim was
to support the humans with linguistic model explanations in order to reduce this
undesired effect [86].
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Fig. 10.5 GUI for labeling events with linguistic explanation: four lines of text below the event
image and the basic information, following the concepts discussed throughout Sects. 2.1–2.4

For (off-line and on-line) sample annotation purposes, a graphical user interface
(GUI) was designed, that is able to visualise the current events (objects) as well as
the output information provided by the current classifier. As shown in Fig. 10.5, the
GUI consists of two main panels:

• On the left-hand side, the possible class labels for the current application are
presented in a list: there are nine types of potential defects; the human user may
also provide a label if the event cannot be recognised (termed as ‘Unknown’).

• In the middle part, the human user can find the next event to be labelled. This
event is represented by the image of the event, the event information and — if
configured — the linguistic explanation of the classifier prediction, provided by
the classifier instance.

The basic event information underneath the image includes two lines of text. The
first line is coded in the feature vector and represents the position of the event on the
micro-fluidic chip. The second event information is the actual classifier prediction
for the event shown. The third event information shows 4 lines of advanced model
explanations in the formas discussed earlier sections (reasoning, certainty, alternative
suggestions, feature importance due to sorting and coverage). It can be configured
in an ini-file to be switched on or off.

6 people were asked to provide their labellings on the same larger stream com-
prising several thousands of image samples, as taken directly from the real on-line
production process: 3 people were obliged to perform the labellings without any
advanced model explanations in two consecutive runs, 3 other people performed
the labellings in the second run with the advanced model explanations. Thus, we
were able to check whether better labellings and thus higher performant classifiers
(or not) could be really achieved because of the advanced explanations and not just
because the people saw the same stream of samples a second time. An initial set of
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Table 10.1 Statistical preference analysis using the results from all-pairs fuzzy classifier (Fuzzy
AP), ‘0’ indicates no preference for the human operator’s run listed in the row over that one
mentioned in the column; ‘+’ means a preference with a significance level of 0.95 = 1 − 0.05 and
‘++’ a stronger preference with a significance level of 0.975 = 1 − 0.025; the diagonal entries
underlined are the most important, as they compare the two runs from one operator

Op A/1 Op B/1 Op F/1

Op A/2 ++ ++(+) ++

Op B/2 0 + 0

Op F/2 + ++ +

Op C/1 Op D/1 Op E/1

Op C/2 0 + +
Op D/2 0 0 0

Op E/2 – 0 0

200 samples has been labelled by a ‘super-operator’ with extraordinary experience,
based on which an initial fuzzy classifier was trained to start with.

The main interest layed in the change in the degree of uncertainty of the human
operators in relation to their labellings between two consecutive runs. In the con-
text of a multi-class classification problem, human certainty can be estimated using
the accuracies of the classifiers that were extracted based on the human’s labelling,
because the feature vectors were the same for all human operators and thus appeared
at the same positions in the high-dimensional feature space. Hence, higher classifier
accuracies indicate a better ability to distinguish between the classes (i.e., a smaller
class overlap), which in turn points to a greater consistency and thus higher certainty
of a human’s labelling. A reliable estimator of the expected accuracy of a classifier
is the 10-fold cross-validation (CV) procedure, see also Chap.7 of [35] for a detailed
analysis. Thus, it was applied to all labelled sets from all 6 human operators achieved
in the two runs, and this by using different types of classifiers such as support vector
machines [118], decision trees (CART approach) [15], and an all-pairs fuzzy clas-
sifier approach (fuzzy-AP) [80] among other famous approaches [86]. These three
delivered the best CV accuracies on average over all human operators. A statistical
significance analysis was carried out in order to obtain whether there is a preference
of classifier accuracy achieved through human labels obtained in the second run over
those obtained in the first run.

Table10.1 shows the results in the case using Fuzzy AP, the first and second parts
show the matrices for human operators (A, B, F) with and for human operators (C,
D, E) without linguistic explanation support, respectively; the diagonal entries are
the most important ones, as they compare the two runs from one operator. Obviously,
there is a clear preference of all second over the first runs in the case when linguistic
explanation is switched on (human operators A, B and F), whereas this is not the
case when it is not switched on.

Similar pictures with similar preference levels in the diagonal entries could be
obtained in case of SVMs and decisions trees. Summarising the preference analysis
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Table 10.2 The numbers of non-fulfillments (before the slashes) versus fulfillments (after the
slashes) of the helpfulness (NH/H), compatibility (NC/C) and understanding (NU/U) of the expla-
nations mentioned in questions Q2, Q3 and Q5 of the interview sheet

Human/Ling./Question Q2 (NH/H) Q3 (NC/C) Q5 (NU/U)

Human A Run 1 (wo) 3/0 3/0 3/0

Human A Run 2 (with) 0/3 0/3 2/1

Human B Run 1 (wo) 6/0 5/1 6/0

Human B Run 2 (with) 3/1 3/1 3/1

Human C Run 1 (wo) 0/2 0/2 0/2

Human C Run 2 (wo) 0/2 0/2 0/2

Human D Run 1 (wo) 0/2 2/0 0/2

Human D Run 2 (wo) 0/2 0/2 0/2

Human E Run 1 (wo) 2/0 2/0 0/2

Human E Run 2 (wo) 1/1 2/0 0/2

Human F Run 1 (wo) 4/0 4/0 0/4

Human F Run 2 (with) 2/2 0/4 0/4

Human A, B, F Run 1 (wo) 11/0 12/1 9/4

Human A, B, F Run 2 (with) 5/6 3/8 5/6

Human C, D, E Run 1 (wo) 2/4 4/2 0/6

Human C, D, E Run 2 (wo) 1/5 2/4 0/6

results over all methods, there finally could be recognised a 7:2 (≈80%) chance to
improve labelling certainty in a second run with and only a 1:8 (≈10%) chance to
improve it without linguistic explanations (thus by only seeing the samples a second
time). As these numbers are underlined by a statistical preference analysis, it can be
concluded that a significant overall difference in terms of about 80 versus about 10
percentage chance for improvement of the humans’ labelling behaviour takes place.

Another interesting analysis was the human subjective perception of model expla-
nations on a cognitive level. Therefore, the humans were asked to fill out an interview
sheet with some essential questions about the helpfulness, compatibility with the
shown image and understanding of the explanations after each labelling cycle com-
prising 200 samples. They should subjectivelymake crosses whether these properties
were fulfilled ‘hardly ever’, ‘sometimes’, ‘often’ or ‘almost always’. The evaluation
of the sheets led to the picture as shown in Table10.2. Remarkably, from the first
to the second run, the helpfulness (H), the compatibility with the shown image (C)
and the understanding of the explanations (U), improved significantly when model
explanations were used (human operators A, B, F), but much more marginally when
they were not used. The exception is the property ‘understanding’: the human oper-
ators of the second group already had a good understanding from the plain classifier
feedback (in form of model outputs) alone.
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10.3 Model Interpretation Concepts (On a Global Level)

Improved transparency and interpretability of machine learning models on a global
level, i.e. tomake thewholemodel understandable as such and especially to express in
a better way to humans what it really does and which interrelations and dependencies
in the system it describes, is typically very challenging in real-world applications —
especially in those,

1. where the humans intend to gain a deeper understanding of the interrelations and
dependencies in the system — e.g., for improving automatisation, productivity
and efficiency in the future design of hard- or software components [21] or
for being able to properly react in case of system failures and product quality
downtrends [88, 98], i.e. as a support of predictive maintenance actions [66];
and,

2. where the encouragement of richer human-machine interactions is a central goal
for increasing productivity, knowledge exchange and quality [23, 57, 81].

In the latter case, improved transparency and interpretability is necessary, because
only by understanding the model components and model behaviour, can the humans
provide reliable, meaningful and contradiction-free enhanced feedback; e.g., in the
form of defining shapes and outlooks of new upcoming classes, behaviour of new
operation modes and system dynamics or even changes or add-ons in the decision
boundaries or approximation surfaces — as will be discussed in Sect. 10.4.

Fuzzy systems (EFS) and rule-based models are a powerful tool of addressing
these demands as they offer fuzzy logic model architectures and systems that include
components with a clear, linguistically interpretable meaning [18, 28] — unlike
many other machine learning and soft computing models which rely on black box
model architectures such as neural networks or support vector machines and are thus
un-interpretable per se. This is also the reason, apart from several advantages over
these architectures regarding model explanation (see previous section), why we have
chosen fuzzymodels as a basis for stimulating advancedhumans’ feedback.However,
when fuzzy systems are trainedwith data (as is the case in amachine learning system),
they may loose some of their interpretability [5], especially in a case where learning
is conducted in an incremental, evolving manner based on stream samples: rules and
fuzzy sets, originally necessary for an appropriate partitioning of the feature space,
may move together, thus becoming overlapping and finally redundant due to the
nature of streams (samples in the future are not really foreseeable); this goes against
the simple and compact nature for understanding a fuzzy rule base, and sometimes
may even lead to contradictory rules, which in turn may lead to the loss of human
trust.

The loss in interpretability can be diminished by applying specific improvement
and assurance techniques, either already during the training stages or in an a posteriori
manner with post-processing techniques [75, 128]. Here, we provide a summarised
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description of the basic criteria for guiding fuzzy models to a higher level of inter-
pretability and especially consider the applicability of these criteria during on-line
(stream-based) processes. According to the position paper in [75], there are the fol-
lowing central aspects responsible for a readable and understandable rule base:

• Distinguishability and Simplicity
• Consistency
• Coverage (global) and Completeness
• Feature and Rule Importance Levels (global)
• Interpretation of Consequents
• Interpretability of Input-Output Behaviour
• Model-Based Reliability
• Knowledge Expansion

including both, high-level (rule-based) and low-level (fuzzy-set) interpretation spirits
[28, 128]. In the subsequent paragraphs, we will discuss the most important ones in
the context of stimulating enhanced human communication with the model.

Distinguishability and Simplicity

While distinguishability requires structural components (rules, fuzzy sets) that are
clearly separable as non-overlapping and non-redundant, simplicity goes a step fur-
ther and expects models with a trade-off between low complexity and high accuracy.
From the mathematical point of view, distinguishability can be defined as follows:

Definition 10.1 Distinguishability is guaranteed whenever

�i, j,k (S(Ri , R j ) > thr) ∨ (S(Aik, A jk) > thr), (10.13)

with S the similarity ∈ [0, 1] between two rules Ri and R j resp. two fuzzy sets Aik

and A jk appearing in the same antecedent part of rules Ri and R j (k = 1, . . . , p with
p the input dimensionality of the feature space).

In literature, there exist several similarity measures S between two fuzzy sets or
rules, ranging from inclusion measures through geometric aspects to kernel-based
metrics, see [24, 65, 93]. The threshold thr governs the degree of similarity allowed
between two components and may depend on the chosen similarity measure. Gen-
erally, without loss of generality we can say that a value of S close to 1 points to a
high similarity, whereas a value of S close to 0 points to a low similarity.

From a practical viewpoint, distinguishability ensures that rules and fuzzy sets
are not becoming significantly overlapping and thus redundant. In the case of
two- or three non-distinguishable rules or fuzzy sets, the whole rule base or fuzzy
partition may indeed be still comprehensible, but when this number increases, the
interpretability for humans typically severely suffers. An example for highly over-
lapping, redundant fuzzy sets is shown in Fig. 10.6a. In this example, it is obviously
very hard (or impossible) to provide a semantic meaning and unique linguistic terms
to all these sets: this leaves the antecedent parts of some rules unreadable for human
experts and users, which also negatively affects the reasoning process based onmodel
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Fig. 10.6 a weird fuzzy partition for rotation speed at an engine modelling task, the fuzzy sets are
not distinguishable, thus no clear semantic meaning in the form of linguistic terms can be assigned
to them; b interpretable fuzzy partition with 5 distinct entities (fuzzy sets)

explanations (see previous section). Figure10.6b demonstrates how a fuzzy partition
should ideally look like: here, it is possible to assign linguistic terms (from very
low to very high), thus to assure readability of the AND-connections in the rule
antecedent parts.

From the mathematical point of view, simplicity can be defined as follows:

Definition 10.2 Let F1 be a fuzzy system fully evolved from a data stream. Then,
maximum simplicity of this system meets the following criterion:

min{|F ||(|F1| > |F |) ∧ (acc(F) ≥ acc(F1) − ε)}, (10.14)

with acc the accuracy of the fuzzy system and |F | the number of components (rules,
fuzzy sets) in the simplest possible, yet accurate enough model F . ε is expressing the
allowed loss in accuracy and is application dependent, i.e. usually set by the human
according to a maximal allowed model error.
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Fromapractical viewpoint, various forms of complexity reduction steps are proper
techniques for assuring distinguishability and increasing simplicity. They typically
employ somemerging procedures [65, 82, 113]: if two rules may (start to) overlap to
a degree greater than thr , merging is conducted as a way of assuring the condition in
(10.13); in the case of high redundancy, the merged system F usually meets (10.14)
(only superfluous information is discarded).

Furthermore, simplicity might be also addressed by deleting rules which became
obsolete and thus superfluous due to changing system dynamics, for instance. The
concepts of rule age and rule support, measuring the addressability of rules during
the recent process(ing) period, offer nice strategies in this direction [6, 8]. During the
construction of fuzzy models from data, simplicity might be addressed by specific
constraints or learning constructs which emphasize simpler models over more com-
plex ones, also by tending to keep the model error on a low level. Some techniques
perform a top-down construction of fuzzy systems, where a larger number of rules
is initialized in the rule base which is then ‘out-sparsed’ as much as possible, subject
to an error criteria (joint optimisation of the number of rules and the model error),
see e.g. [87, 90]. Others put constraints on the movement of focal and knot points on
fuzzy sets directly during the optimisation cycles to omit overlaps and out-of-bounds
sets [16, 26].

Consistency

Inconsistency of the rule base may arise whenever two rules significantly overlap
in their antecedents (due to overlapping fuzzy sets as shown in Fig. 10.6), but little
or not at all in their consequents. In fact, within a data-driven learning context, this
case may point to either a high noise level or to an inconsistently learnt output
behaviour. Apart from a low interpretability level, different consequents of equally
firing rules may lead to highly blurred outputs, thus even affecting the accuracy of the
predictions. From a practical point of view, such inconsistencies should be resolved
as the human may get confused when such rules are shown to him: in fact, mostly
both rules would be shown to her/him as both are almost equally firing, but both are
pointing to different predictions or class outputs — so, which rule (and associated
reason for the model output) should she/he trust?

Formally, the inconsistency between the two rules R1 and R2 can be defined in
the following way:

Definition 10.3 Rule R1 is inconsistent to Rule R2 if and only if Sante(R1, R2) ≥
Scons(R1, R2) with Sante(R1, R2) ≥ thr .

with Sante the similarity degree in the antecedent parts and Scons the similarity degree
in the consequent parts. No matter which similarity measure is used, a value of Sante

close to 1 always can be assumed to point to a high similarity and of Sante close to 0
to a low similarity. This is obviously an extension to the inconsistency condition for
crisp rules.

In [79], in order to resolve inconsistencies among two rules, a merging concept of
rule consequents is proposed. It respects the inconsistency level between two over-
lapping contradictory rules, which is measured in terms of an exponential function:
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Cons(R1, R2) = e
−

(
Sante (R1 ,R2)

Scons (R1 ,R2)
−1

)2

( 1
Sante )

7

(10.15)

and assures that a low value of Sante (<0.4) always achieves a high consistency close
to 1, as the denominator in the exponential function gets overly high. This is natural
as the antecedent parts do overlap only a little in this case. The merging to one
joint consistent rule (consequent) is achieved by following the idea of participatory
learning [124], which results in the following formula:

wnew = wR1 + α · Cons(R1, R2) · (wR2 − wR1), (10.16)

where α = kR2/(kR1 + kR2) and kR1 the support (=significance) of rule R1 (e.g.,
based on data samples forming this rule in the past). In this sense, the consequent
vector of the merged rule is more influenced by the more supported rule R1 when
the consistency degree is lower, thus increasing the belief in the more supported rule
R1. Interestingly, this approach can be easily applied in a posteriori manner without
requiring external input or data. A successful application of this measure leading to
contradictory-free and transparent rule bases for two real-world application scenarios
has been carried out in [82].

Coverage (Global) and Completeness

Coverage on a global level is a generalisation of the local (per query) coverage
handled in Sect. 10.2.3 to the overall model definition space. Thus, coverage refers to
the specific characteristics of amachine learningmodel that does not allow undefined
input states, i.e. it is well-defined over the complete range of the feature space. In the
case of fuzzy models, this means that sufficient fuzzy partitions and rules should be
ideally extracted from data, covering the whole feature space well. In a data-driven
learning context, coverage may, however, suffer as usually rules are only extracted
in regions of the feature space where samples actually appear.

Humans may be interested in the model coverage to get a glance of the expected
trustworthiness of model outputs for query instances appearing within the ranges of
the input features: if the coverage is (too) low, the inclusion of additional knowledge
(data, user-defined rules) in the model is indispensable to guarantee a model with
sufficient performance. This is because typically fuzzy models and machine learning
models in general tend to produce incorrect and uncertain outputs in extrapolation
regions (=regions with low or no coverage) [41]. Thus, human input, e.g., in the form
of expert-based rules or additional data based on which the model can be expanded
to regions uncovered so far, is urgently requested in low coverage cases. Figure10.7
exemplarily shows two rule bases, where the left one induces a low coverage of the
samples space (many holes appear there) and the right one a high coverage (only a
few small holes appear).

The overall model coverage degree of the input space can be objectively measured
(and reported to humans) by calculating themaximal membership degrees to all rules
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Fig. 10.7 Left: loose rule partitioning with low coverage of the feature space; right: crowded
partitioning with almost perfect coverage

for a collection of representative samples in the feature space (according to (10.6))
and performing some statistics on these degrees (mean, variance, number of samples
below a certain degree of maximal membership, etc.). As this space is often a high-
dimensional one, statistical sample generation techniques such as Latin hypercube
sampling [92] are of great help to guarantee a widely spread and well-covering data
set. A good idea is to calculate coverage degrees over various partial regions of
the input feature space — then the human becomes an impression in which regions
additional knowledge is required.

Completeness in fuzzy systems is also often referred to as ε-completeness with
ε ∈]0, 1] [75, 108]. It can be seen as a specification of coverage by guaranteeing
a minimal coverage with degree ε over the entire feature space. The definition on
fuzzy set level is as follows:

Definition 10.4 A fuzzy partition for feature Xi containing the fuzzy sets A1, . . . ,

AM is said to be ε-complete whenever there is no point x ∈ [min(Xi ), max(Xi )]
such that μAi (x) < ε, with ε > 0 a small positive number.

Extending this to rule level, requires a rule base μ1, . . . , μC such that maxi=1,...,C μi

(x) > ε for all points x in the input feature space, i.e. for all points (samples) at least
one rule fires with a significant degree. Taking into account that each fuzzy set is
used in at least one rule, the ε-completeness of rules can be directly associated with
the ε-completeness of sets through the applied t-norm T : as T (x1, x2, . . . , x p) ≤
min(x1, x2, . . . , x p), the following holds

(∀x ∃i (μi = T
j=1,...,p

(μi j ) > ε)
) ⇒ (∀x ∃i (∀ j μi j ≥ T

j=1,...,p
(μi j ) > ε)

)
,

(10.17)
with μi j the membership degree of fuzzy set A j appearing in the j th antecedent part
of the i th rule and p the rule length. In this sense, assuring ε-completeness on rule
level automatically ensures ε-completeness on fuzzy set level.
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In [75], two approaches for approaching ε-completeness in fuzzy models are
demonstrated:

• The first acts on the fuzzy partition level and is based on heuristic adjustments
of the ranges of influence of those fuzzy sets which were updated during the last
incremental learning step(s). The adjustment should not be too large in order to
stay within the model error limits.

• The second one acts on the rule level and employs an enhanced incremental opti-
misation procedure for non-linear antecedent parameters in rules. Thereby, a term
representing model coverage degree is embedded into the least squares objec-
tive function in order to trigger synchronous optimisation of both. This has been
realised within a top-down sparse fuzzy model training procedure (termed Sparse-
FIS) [87] and successfully tested on various real-world data sets, outperforming
various SoA fuzzy modelling methods in terms of improved coverage degrees
while achieving similar model errors.

Nevertheless, in both approaches, ε-completeness is only approached, but cannot be
assured, such that checking the whole model coverage and reporting it to the human
(as described above) is still important.

Feature and Rule Importance Levels (Global)

The role of feature importance (on model predictions) has been discussed in
Sect. 10.2.4 on a per query instance (local) level. On a global model level, it serves
three purposes: (i) to provide the human with the information as to which features
are more important than others over the entire range of the model definition space;
(ii) to reduce the lengths of all rules contained in the rule base, thus to increase the
readability of the whole rule base and (iii) to reduce the curse of dimensionality effect
in subsequent model updates (based on incremental learning with new samples).

(i) and (ii) are essential aspects for humans to understand which features are
important for modeling the process (problem), and to ensure compact rule bases. In
order to address the global feature of importance problematic, approaches in [71,
103] (for classification) and [4, 84] (for regression) have proposed the concepts of
(incrementally) calculating so-called feature weights, which denote how much they
contribute to the (i) discriminatory power of the model in the classification case and
(ii) how much they contribute to the model output (error) in the regression case. The
sample-wise update mechanisms of feature weights in these approaches guarantee
a smooth, continuous change of feature importance over time. Thus, features may
become down-weighted at an earlier stage and then reactivated at a later stage of
the on-line (modelling) process without ‘disturbing’ or abruptly changing the (con-
vergence of the) model structure and parameters. Furthermore, the feature weights
are integrated into the model adaptation process in order to diminish the effect of
unimportant features in the rule evolution criteria. This decreases the likelihood that
unnecessary rules are evolved due to the violation of the stability condition caused
by unimportant features, which in turn decreases over-fitting. The output of all these
methods is a feature weight vector, which can be visualised as a bar chart and shown
to the human.
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Rule importance levels, representable in the form of rule weights, may serve
as important corner stones for a smooth rule reduction during learning procedures.
Rules with low weights can be seen as unimportant and may be pruned or even re-
activated at a later stage in an on-line learning process. This strategymay be beneficial
when, e.g., starting with an expert-based system, where originally all rules are fully
interpretable (as designed by human experts/users), however some may turn out to
be superfluous over time for the modelling problem at hand. Rule weights can be
integrated into the fuzzy model inference process shown in (10.11) by

f (x) =
C∑

i=1

li (x)Ψi (x) Ψi (x) = ρi Ki (x)
∑C

j=1 ρ j K j (x)
. (10.18)

Thus, rules with low weights ρ. also contribute little to the overall model output. In
this sense, the rule weights are appearing as additional non-linear parameters, which
may be optimised and updated within incremental data-driven procedures such as
recursive gradient descent (RGD) [96], recursiveLevenberg–Marquardt (RLM) [120]
or recursive Gauss-Newton as applied in [52].

Rules receiving low weights ρi may then be ignored in an interpretation stage
when the human expert/user inspects the fuzzy model, subject to having contributed
in a low manner to the final model outputs (prediction) on the stream samples seen
so far. The connection with a low contribution is necessary, as hidden rules (due to
low weights) could have a reduced effect but still be perceived by an expert. The
relative contribution level of a rule Ri to the model output over N past data samples
can be calculated as:

contribi = 1

N

N∑

k=1

Ψi (xk). (10.19)

Thus, those rules can be ignored when showing the fuzzy system to the human, for
which contribi < ε ∧ ρi < ε.

Rule Chains for Tracking the Changing Behaviour of Fuzzy Systems
over Time:

Visual interpretability refers to an interesting alternative to linguistic interpretability
(as discussed above), namely to the representation of a model in a graphical form. In
our context, this approach could be especially useful if models evolve quickly, since
monitoring a visual representation might then be easier than following a frequently
changing linguistic description. Under this scope, alternative “interpretability crite-
ria” may then become interesting to discover which are more dedicated to the timely
development of the evolving fuzzy model — for instance, a trajectory of rule centres
showing their movement over time, or trace paths showing birth, growth, pruning
and merging of rules. The first pioneering attempts in this direction have been con-
ducted in [37], employing the concept of rule chains. These have been significantly
extended in [38] by setting up a visualisation framework with a grown-up user fron-
tend (GUI), integrating various similarity, coverage and overlap measures as well
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Fig. 10.8 An example of a
rule chain system as
occurred for a specific data
stream: each rule is arranged
in a separate row, its progress
over time shown
horizontally; each vertical
(circular) marker denotes a
data chunk. We can see that
in the second data chunk a
new rule is born, which died
out later in the 9th data
chunk

as specific techniques for an appropriate catchy representation of high-dimensional
rule antecedents and consequents. Internally, it uses the FLEXFIS++ approach [72]
as an incremental learning engine for evolving a fuzzy rule base.

An example of a typical rule chain system is provided in Fig. 10.8. The size
of the ellipsoids indicates the similarity of the rules’ antecedent parts between two
consecutive time instances (marked as ‘circles’), the rotation degree of the small lines
indicates the similarity of the rules’ consequent parts in terms of their angle between
two consecutive time instances: a high angle indicates a larger change between two
time instances, thus the rule has been intensively updated during the last chunk. This
may provide the human with an idea about the dynamics of the system. Also, when
several rules die out or are born within a few chunks, the human may gain some
insight into the system dynamics and this may stimulate her/him to react properly.
Furthermore, rules which are highly fluctuating, thus changing their antecedents and
consequents much with back-and-forth, may be taken with care and even removed
by a human.

An example of a successful application of some interpretation and assurance
concepts discussed throughout this section can be found in [83]. This has been
achieved within a real-world application scenario of premise price prediction, espe-
cially with the usage of simplicity and distinguishability assurance concepts, but also
with the support of consistency assurance and out-sparsing the initial rule base in
a top-down manner. Compact fuzzy partitions (containing maximal 4 fuzzy sets in
each dimension) and nine transparent and consistent rules could be finally achieved.

10.4 Enhanced Human Feedback and Integration Concepts

Wewill discuss several possibilities of human feedback to transparent and explainable
ML models. We realised these as the most widely accepted ones according to our
long-term experience in various industrial installations. Each feedback variant will
be described in a single section, and an appropriate integration in the form of a
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homogenization with ongoing data-driven model update schemes will be discussed
along the feedback variants.

10.4.1 Plain Feedback Based on Good/Bad Rewards
and/or Sample Annotation

The most naive feedback the human may give is in the form of a plain feedback on
the outputs produced by the model. This feedback may either comprise a good/bad
reward, indicating whether the model output was plausible for her/him or in a more
extended versionwith amore detailed value, e.g., in the form of a concrete annotation
response. The latter case has been discussed within the case study of classifying
events in a visual inspection system included in Sect. 10.2.6. There, it could be
demonstrated that advanced model explanations discussed throughout Sect. 10.2 in
fact can improve the feedback annotation (=class label) quality and consistency,
where appropriate visualisation of the explanations to the user in a GUI frontend was
essential.

Now, the question arises how this plain humans’ feedback can be ideally integrated
into the model. This is especially important in a case when the model output is not
confirmed. Then, ideally the model should be improved in order to increase its pre-
diction quality on new samples which are similar to the current (badly predicted) one.
The improvement can be established by an incremental adaptation of the model with
such new sample(s). Two typical cases which may arise in the case of classification
problems are visualised in Fig. 10.9 for a simple 2-D example. The upper row shows
the case when the decision boundary between new classes requires an adjustment in
order to correctly classify the new sample (lying on the wrong side of the boundary
and thus having been wrongly classified) and further samples lying close to it. Such
a case can also be seen as a refinement of model’s response surfaces. The upper right
image shows the updated model based on human feedback (overruled class), leading
to an expansion/deformation of the rule representing the circular class (indicated
by the dotted ellipsoid). The lower row shows the case when the model requires
an expansion to a new region of the feature space so far unexplored — induced by
three new samples. Such a case can also be seen as a knowledge expansion of the
model. The lower right image shows the expanded model based on human feedback
on the three new samples, leading to the generation of a new rule representing the
rectangular class (indicated by an ellipsoid). This also induces a significant change
in the decision boundary.

Techniques from the field of incremental (machine) learning [29, 110] are able to
update themodel (parameters) in a single-pass, stream-wisemanner in order to induce
changes in themodel response surfaces as shown in the upper right image. Techniques
from thefield of evolving (intelligent) systems [10, 53] are additionally able to change
their structure and thus to perform real expansion of the model and its knowledge to
new (undiscovered) regions of the feature space— as shown in the lower right image
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Fig. 10.9 a Original class distribution, decision boundary and rule contours (solid ellipsoids); b
incorrectly classified sample (to rectangular class) overruled by a human to belong to the circular
class → updated decision boundary and updated rule contour based on human’s feedback shown
in dashed lines; c same as in a; d three new samples incorrectly classified, overruled by a human
to belong to the circular class → evolution of a new rule (shown as dotted ellipsoid) required in
order to extend the decision boundary and to reduce the version space (the concept version space
has been proposed in [44])

inFig. 10.9. In the concrete case of fuzzy systems andclassifiers, a large collection and
comparison of more than 40 EFS (evolving fuzzy systems) approaches can be found
in [69, 76]. Principally, almost all of the techniques include the following single-
pass learning concepts as mentioned on p. 3 (itemisation points). EFS have been
successfully applied in many real-world application and on-line processes whenever
real target values have been made available (either through automatic measurements
or human’s feedback), see [76].

Human input may be handled differently when interacting with the same machine
learning systems, based on the level of expertise and past experience of the humans.
Intuitively, feedback by humans with lower expertise may be handled with more
care, and thus less weight when integrating it into the model, than feedback by long
term experts. In some other cases, the same human may be more or less confident
about his feedback (and thus may choose a confidence level between [0, 1], e.g.,
by button press, as feedback in addition to the sample annotation — see Fig. 10.10
which shows an example from a GUI (in one of our past projects) [81] where humans
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Fig. 10.10 An example
from an image classification
GUI, where the human can
specialise his feedback in the
form of good/bad rewards
with certain confidence
levels (20, 40, 60, 80 and
100%)

can give feedback on classified images in the form of good/bad rewards, together
with their belief in their confidences of the chosen reward.

Both cases can be treated with the integration of so-called sample weights reflect-
ing the uncertainty in human feedbacks: experienced users may be reflected in higher
sample weights when updating the model and unconfident feedbacks may be pun-
ished with lower samples weights. The sample weights then influence the degree of
update. For instance, in the example in Fig. 10.9b, whenever the class label of the
new sample is overruled with a low confidence (high uncertainty), the movement of
the decision boundary will be less intense. This may result in an updated model still
classifying the new sample to the rectangular class, but now with lower confidence
than before. Then when a new similar sample (lying close to this sample) comes
in and the classifier response is overruled again with low confidence, the decision
boundary will be again moved slightly, and so on. This finally has the desired effect
that low confidences in human feedback require more confirmations to have an actual
effect on the model responses.

Although the uncertainty in human feedback can be easily parameterised within
an interaction frontend (see Fig. 10.10) and appropriately handled in adequate model
update schemes, it would be more efficient to influence the human’s cognition in a
way to ‘make’ her/him more certain about his feedback. A strategy to accomplish
this is to show the human samples similar to the current query, collected and stored
in a history buffer which have been used for annotation during past (on-line) learning
cycles or which are available in an external historic data base fromwhich information
can be gathered [36, 122]. This is only reliably accomplishablewhenever the samples
have contextual, understandable meaning for humans, e.g., images or textures, for
instance. The similar samples may help the human user to provide a more certain
feedback on new queries (e.g., confirmation of class labels she/he had already in
mind). The similarity can be expressed by employing similaritymeasures [11], where
usually a similarity value of 0 indicates no similarity at all and a similarity measure
of 1 full equivalency.
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10.4.2 Structural Feedback by Human-Defined Rules

Depending on the human’s experience and knowledge, she/he may also go a step
further and not only provide her/his plain feedback on model output level, but may
specify a more detailed description about specific relations and dependencies within
the system she/he is aware of. This can have its motivation due to the following
situations:

• The human sees some model components (in our case fuzzy rules and sets) mis-
placedor embedding inadequate consequences—these can arise due to insufficient
data, high noise levels in the data or inexperienced humans defining erroneous rules
[75].

• New operations modes [22, 64] or new events (expressed by new classes [39, 85])
may arise on the fly of which the model so far unaware.

The former can be only stimulatedwhen employing advanced concepts for improving
model interpretability and understandability, as intrinsically discussed throughout
Sect. 10.3 (otherwise, the human may not be able to realise ‘misplaced’ rules etc.). In
the latter case, human input is very welcome for the early increase of the significance
of new modes/events in the model, thus avoiding any deteriorating performance.
Decision boundaries and approximation surfaces can thus be extended and sharpened
much earlier and predictions for the new modes/event can be made more accurate
and reliable. Often, such human knowledge is available in the form of a linguistic
description provided by the domain expert [56, 117]. More specifically, by using
the natural language to express the required knowledge, the expert uses a number
of IF/THEN rules. If she/he does not explicitly state the rules in such forms, mostly
her/his linguistic description can be transferred and coded in the form of rules [2]
(see also Sect. 10.4.4). This was one major reason for building the model explanation
and interpretation concepts on the basis of fuzzy systems as model architecture, as
these naturally express IF-THEN constructs.

The open question is then, how to continue the update of the model with newly
arriving samples, whenever human-defined or human-changed rules have been inte-
grated. This also belongs to the case where a whole expert system has been designed
comprising a larger set of rules — as established during interviews, for instance, see
Sect. 10.4.4. In order to underline this problematic issue, we exemplarily show a two-
dimensional example (Fig. 10.11) in a case where a human defines a new event class
in the form of a rule, either by linguistically defining it through AND-conjunctions
of fuzzy sets (see text in the image) or by drawing the rule contour directly into the
feature space using an appropriate interacting frontend. The human-defined rule for a
new class is shown as a solid ellipsoid,whereas new arising data samples belonging to
the new class (dark circular dots) turn out to be shifted away from the human-defined
rule. So, there is a conflicting situation between subjectively defined positioning of
a new class and the objectively measured (real occurring) positioning.

So, the question arises as to which type of input should the ML system trust
more, resp. how should both input types (human knowledge and data) be fused in
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Fig. 10.11 A human-defined rule (solid ellipsoid in black colour) for a new class (dark dots), which
appears to be misplaced subject to the data defining the new class; possible weighting strategies
for updating the human-defined class are shown by dashed red ellipsoids — note that, depending
on the preferred human’s choice, the rule for the new class can be either defined by linguistically
formulating the IF-THEN conditions, by drawing the ellipsoidal contour directly in the feature
space or by prototypical specification of the new class (based on which the rule contour can be
shaped out)

an appropriate way to assure a consistent model? An approach which tackles this
problematic issue is presented in [74] for the case of updating a complete fuzzy expert
system with new data collected during post parcel services (in order to assess the
dispatch risk of parcels). The authors suggest a weighted update scheme of human
defined rules with those new samples lying closest to a rule. This means that for each
sample x j , j = 1, . . . , M in a new data chunk containing M samples, the closest
rule subject to a distance metric d, i.e. i∗ = argmini=1,...,C d(Ri , x j ) (respecting
the type of rule shape), is elicited and the sample stored into the buffer Bi∗. Then,
the update of the centre ci of the human-defined rule Ri (=the focal point where the
membership degree is maximal (1) is conducted by a weighted averaging:

ci (new) = wdataμi + whumanci

wdata + whuman
, (10.20)

with μi the mean value of the samples in Bi (those which are closest to the human-
defined rule). wdata and whuman represent the weights for the sample-based mean
and the human-based rule centre, respectively. A promising option would be to
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include the uncertainty of the human feedback into theweights, which can either stem
from her/his experience level or by her/his active confidence feedback (see previ-
ous section). Then, wdata = 1 − whuman with whuman = con fhuman. Another important
factor uses the number of samples for ‘forming’ μi : a higher number increases the
certainty that the human-defined rule is misplaced and thuswdata should be increased,
nomatter how confident the humanwaswhen defining his rule or changing an already
available one. The update of the range of influence σi of the human-defined rule Ri

along each direction (dimension) with the samples rule range σ∗i can be conducted
with the usage of recursive variance formula including rank-1 modification (see also
[74] for motivation), thus:

σi (new) =
√

whumanσi

whuman + wdata
+ (ci − ci (new))2 + (ci (new) − μi )

2

whuman + wdata
+ wdataσ∗i

whuman + wdata
.

(10.21)

Another form of structural human input could be that she/he extends one or more
of the current fuzzy partitions in order to increase their granularity level (for input
explanation) or to expand their definition ranges. For instance, in the context of the
example shown in Fig. 10.11, a partitioning of the grey level into INTENSE (close
to 255) and WEAK (close to 0) may be too insufficient in order to characterise
(object/image) classes which may only occur at a medium grey level (around 127)
— then, a fuzzy set describing the range of influence of aMEDIUM grey level would
be a preferred human input. On the other hand, due to weak expertise, the human
may not be able or may not dare to formulate whole rules including the new fuzzy
set MEDIUM. In this case, such rules have to be automatically constructed by data
(either off-line stored or new on-line data). The difference in a regular data-driven
rule construction, however, is that they should not be ‘shaped out’ from scratch, but
by respecting the human-defined fuzzy set(s) input.

An idea to accomplish this is to set up all possible combinations of a newly defined
fuzzy set with existing fuzzy sets in other input partitions in order to form various rule
antecedents (all fuzzy sets are connected byAND), leading to a so-calledall-coverage
approach. This procedure follows the spirit that every possible fuzzy set combination
could in principle form a valuable relation for explaining the dependencies between
inputs and the output. However, this usually leads to an explosion of the number of
rules, especially when the number of inputs is not very small. This is because the
increase of the number of rules with the number of inputs is exponential. Hence,
in a second step, the idea is to perform a kind of rule out-sparsing concept. Based
on available data, rule weights ∈ [0, 1] denoting the importance levels of rules, are
configured within a numerical optimisation procedure. In other words, those rules
(fuzzy set combinations) which are not required are out-sparsed, i.e. their weights
decreased towards 0, over multiple iterations of the optimisation process. In order to
keep the rule base compact, it is favourable to out-sparse as many rules as possible.
Thus, the optimisation criterion is ideally defined as a combination of the least squares
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error (accounting for the quality of the predictions) and the number of rules with a
significant weight ρ > 0 (accounting for model complexity):

min
ρ,w

J (w, c, σ, ρ) such that
N∑

i=1

|ρi | ≤ K , (10.22)

with

J (w, c, σ, ρ) =
N∑

k=1

(yk −
C∑

i=1

li (xk)Ψi (xk))
2 (10.23)

and Ψi the normalised membership degree as defined in (10.18). Interestingly, the
rule weights play a similar role here to those discussed in Sect. 10.3, Paragraph ‘Fea-
ture and Rule Importance Levels’ — there, the focus layed on providing compact
rule bases to humans (by omitting the rules with low weights), here the focus is to
again establish a rule base as compact as possible. The difference is that here rules
are enforced to be outweighed and thus omitted during the optimisation process.
The optimisation problem in (10.22) can be solved by an iterative projected gra-
dient descent algorithm including regularized Lagrange multipliers; this can even
be achieved by respecting a minimal coverage ε of the feature space [87], meet-
ing the coverage demands discussed in Sect. 10.3, paragraph ‘Coverage (global) and
Completeness’.

10.4.3 Extensions/Change of Model Boundaries
by Human-Defined Limits

In some cases, the human is neither able to define a vague description of a new
operation mode nor a rule defining the relation/dependency among features in cer-
tain classes and/or local regions. However, often humans are aware of minimal and
maximal bounds in which certain events or modes may occur and vary. For instance,
in [36] various types of fault occurrences on die-cast parts have been specialised
through the definition of upper and lower bounds on the input features; or in [64],
human operators define fault modes in control valves for servo motors by specifying
border constructs on the features.

Such hard boundaries can be integrated in fuzzy rule bases by defining crisp
sets over the input features most responsible for the mode/event from the human’s
perspective. For instance, in the context post parcel management and services [74],
the human may define for a new class (‘very save parcels’) that the country as well as
the dispatch risk to lie inbetween 0 and 0.2; or, she/hemay define that an inacceptable
post parcel happens when the country risk is above 0.9. Both occurrences lead to
rectangles (in the generalised high-dimensional case hyper-boxes) as shown striped
in Fig. 10.12. And which can be represented easily by the following rules:
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Fig. 10.12 Human-defined rules and data samples in the case of post parcel services; the two
shaded rectangles describe rules according to the definition of upper and lower limits of humans to
characterise not accepted parcels (right most area) and very safe parcels (lower left area); another
ellipsoidal rule has been defined in the middle by drawing, which however requires adjustment
due to new data samples a bit shifted from this ellipsoid (see previous section how to handle such
occurrences)

• IF Country Risk is Very LOW AND Dispatch Risk is Very LOW THEN Parcel is
Very SAFE.

• IF Country Risk is Very HIGH AND Dispatch Risk Don’t Care THEN Parcel is
INACCEPTABLE.

Then, upon receiving new incoming data, such (boundary-based) rules can be
adapted with the same concepts as discussed in the previous section, also respecting
possible contradictions between the data and the human-defined rules.

10.4.4 Relational Feedback Based on Humans
Experience/Knowledge

In an advanced knowledge exchange context, the human may also provide input in
the form of her/his long-term expertise working with the system, rather than giving a
response in the form of ad-hoc rules according to the current situation at the system.
The advanced exchange typically leads to broader design, formulation and coding
phases of human knowledge into so-called expert systems [19], usually conducted
within off-line backstage cycles as requiring deep knowledge acquisition cycles (e.g.,
interviews, discussions, …). An expert system can be inspected as an ‘intelligent
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Fig. 10.13 Knowledge acquisition and formalisation work-flow from experts to expert systems to
be embedded in machine learning (ML) systems; interaction concepts with the human and the data
highlighted in bold font

computer program that uses knowledge and inference procedures to solve problems
that are difficult enough to require significant human expertise for their solution’ [3].
It is also imaginable that the funded human knowledge serves as a starting point for
establishing a (initial) model, which is then further updated with machine learning
techniques (again in a kind of hybrid modelling scheme).

According to [2], there exist three basic components of human knowledge:

• Facts: they represent sets of raw observation, alphabets, symbols or statements:
e.g., ‘every crane has a ladder stage’.

• Rules: they encompass conditions and actions,which are alsoknownas antecedents
and consequences. These basically follow the same structure as linguistically read-
able rules used in fuzzy systems and handled in several examples above.

• Heuristics in a more general, arbitrary form: they are the way to represent
problem-solving experienceswithin the knowledge base, typically solutionswhich
humans employed in a similar situation. Thus, they are often stored in the minds
of humans (in the form of ‘past experience’).

The picture in Fig. 10.13 shows an overview on the basic activities which may be
taken into account during a knowledge acquisition design phase in communication
with humans (expert’s view). Knowledge acquisition techniques may range from
(structured and unstructured) interviews and discussions, through protocols (inter-
views with loud thinking included), observations (what the human does during his
work, how he communicates with the system, which form of knowledge he brings
in etc.) and concrete questionnaires to diagram-based techniques (e.g., conceptual
maps). No matter which knowledge acquisition technique is used, an appropriate
knowledge representation and coding and formulation phase is requested by experts,
which finally results in a kind of expert system.

The expert system can then be embedded within a machine-learning oriented
system upon the extraction of a (core) rule base. This is usually possible, because
human knowledge can be expected to be mostly available in some linguistically
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expressible form [56, 117]. There are three possible ways to integrate a knowledge-
based fuzzy rule base into a ML system:

• Initial rule base: no model is available so far and the predictions and classifications
are started with the initial rule base which may be further updated with new data.

• Additional rule base: a rule base has already been established, either by data
or through the expertise and past experience from a different human user/expert
working with the system; the new rule base established can be used in parallel to
the current rule base, standing as a model for its own, to improve its prediction
within a kind of ensembling scheme, or to overrule predictions produced by the
other rule base.

• Merger with an existing rule base: similarly as in the previous point, a rule base
has already been established, but here the new rule base is directly merged with
the old one to form a new homogenous rule base. In this sense, it is an extended
form of defining one or two additional rules (in the current model) for specific cir-
cumstances such as new events and operation modes (as discussed in Sect. 10.4.2).

An initial rule base is the case where the expert does not want to start with a pure data-
driven model from scratch, but she/he feels experienced enough to provide her/his
knowledge in advance — or, in the case when an initial knowledge-based model
is already present (e.g., within an historic data base), such that its exploitation is
probably beneficial for the system, to start already with good quality predictions.

An additional rule base becomes apparent when the human is disappointed by
the current ML system, feels that it does not work properly etc., or also when there
are different viewpoints from different humans, each one telling her/his own ‘story’
based on past experiences. In the latter case, a fusion technique within a model
(rule base) ensembling concept is required to appropriately resolve contradictory or
inconsistent outputs among them, see e.g., [59, 102, 109].

Merger is the most conventional one, as it can be seen as an extension of the on
the fly component and plain feedback integration discussed throughout the previous
sections. So, the human simply feels very motivated to provide more of her/his
knowledge to the ML system (than is actually necessary) — so, she/he probably
likes the system, but sees some necessary extension to improve predictive quality
and to expand the model to new system states she/he is aware of, but which have not
been embedded into the model so far. Merging can be achieved by direct integration
of the rules with the application of consistency and distinguishability checks as
discussed in Sect. 10.3, to again assure a transparent and interpretable rule base, or
by specific merging operations on the model level. The latter has been, to our best
knowledge, not addressed so far in literature and would thus be a promising future
research topic.
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10.5 Conclusion

The idea of this chapter was to demonstrate several concepts for improved model
output explanation and model component interpretation, such that humans feel stim-
ulated and motivated to provide enhanced feedback to the machine learning system.
The concepts range from output reasoning via feature contributions to the assur-
ance of simplicity and consistency of machine learning models, basically with the
usage of fuzzy systems architecture. Several possible directions for integrating var-
ious forms of enhanced user feedback have been outlined, showing how machine
learning models and humans can benefit from each others’ knowledge.

Case studies indeed show strong potential of the concepts demonstrated to be
applied in on-line application scenarios. However, still, there are some open research
challenges regarding how humans and machines can interact in a more automatised
and economic way, i.e. more on a cognitive context by recording and interpreting
human thoughts or even feelings about ML systems and their outputs (rather than
requiring active manipulations), and translating these to become “understandable”
and thus further processible for machines.
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Chapter 11
Revealing User Confidence in Machine
Learning-Based Decision Making

Jianlong Zhou, Kun Yu and Fang Chen

Abstract This chapter demonstrates the link between human cognition states and
Machine Learning (ML)with amultimodal interface. A framework of informed deci-
sion making called DecisionMind is proposed to show how human’s behaviour and
physiological signals are used to reveal human cognition states inML-based decision
making. The chapter takes the revealing of user confidence in ML-based decision
making as an example to demonstrate the effectiveness of the proposed approach.
Based on the revealing of human cognition states during ML-based decision mak-
ing, the chapter presents a concept of adaptive measurable decision making to show
how the revealing of human cognition states are integrated into ML-based decision
making to makeML transparent. On the one hand, human cognition states could help
understand towhat degree humans accept innovative technologies. On the other hand,
through understanding human cognition states during ML-based decision making,
ML-based decision attributes/factors and even ML models can be adaptively refined
in order to make ML transparent.

11.1 Introduction

With the rapid advancement of “Big Data” and data science technologies, we are
continuously coming across different intelligent systems that seem to work (or have
worked) surprisingly well in practical scenarios (e.g. AlphaGO’s beating with pro-
fessional GO players in 2016 and 2017, and the self-driving cars for deciding to
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Fig. 11.1 ML-based data analysis pipeline

choose among different road conditions). Much of Machine Learning (ML) research
is driven by such intelligent systems. Despite the recognised value of ML tech-
niques, ML technologies are currently still facing prolonged challenges with user
acceptance of delivered solutions as well as seeing system misuse, disuse, or even
failure. Furthermore, in most cases data science applications are implemented as an
aid to human decision making, such as in intelligent systems [41]. Such intelligent
systems are inherently about humans — providing information to humans and get-
ting feedback from humans. Therefore, the human factors play significant roles in
the success of the intelligent system, and thus also are indispensable components of
data science solutions. Scantamburlo [41] suggested that by considering the outline of
some potential risks underlying theML process, theMLmethod requires an in-depth
analysis of the human factors involved throughout the whole implementation of the
system. Watanabe [48] suggested that the judgement of ML resulting as “right” or
“wrong” is an activity that comes after apprehension, and which needs a very human
intervention [41]. As a result, human-in-the-loop Machine Learning (ML) is getting
increasing attention from both the technical and business communities [5, 6].

For many non-technical users, an ML-based intelligent system is like a “black-
box” (see Fig. 11.1), to which they simply provide their input data and (after selecting
some menu options on screen) colourful viewgraphs and/or recommendations are
displayed as output. This “black-box” approach has obvious drawbacks: it is difficult
for the user to understand the complicated ML models, such as what is going on
inside theMLmodels, and how to accomplish the learning problem [56]. It is neither
clear nor well understood how trustworthy is this output, or how uncertainties are
handled/manipulated by underlying algorithmic procedures. The user is more or less
unconfident in the ML model output when making predictive decisions, and thus
also unconfident in the ML methods themselves. In a word, significant barriers to
widespread adoption ofML approaches still exist in the areas of trust (ofML results),
comprehension (of ML processes), as well as confidence (in recommended courses
of action or decision making) by users. As a result, the User Experience involved in
real world ML applications has been more recently identified as an area requiring
research and development (innovation) [47, 53, 54].

Moreover, decision making is an active research topic in Human-Computer Inter-
action (HCI) with the fast growing use of intelligent systems. Making decisions is
one of the most complex cognitive processes and much work has been done on the
relations between human neural activities and decision making. Nonverbal informa-
tion such as physiological information and human behaviours is increasingly parsed
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and interpreted by computers to interactively construct models of humans’ cognition
states in order to understand the decision making process [13, 14, 44, 55]. Physi-
ological signals are also interpreted allowing users to perceive the quality of their
decisions [57]. Besides neurophysiological information, research found that human
behaviour can also reflect humans mental state, such as cognitive load and trust [8].

These motivate us to investigate the revealing and modeling of human cognition
states during ML-based decision making based on physiological and behavioural
responses. Bymodelling human cognition states, it is possible to automatically adapt
ML parameters and even ML models for optimal decision performance. Therefore,
we strongly argue that the revealing of human cognition states during ML-based
decision making could provide a rich view for both ML researchers and domain
experts to learn the effectiveness of ML-based intelligent systems. On the one hand,
human cognition states could help understand in what degree a human accepts inno-
vative technologies. On the other hand, through understanding human cognition
states during data analytics-driven decision making, ML-based decision attributes
and even ML models can be adaptively refined in order to make ML understandable
and transparent. The current ML-based decision making systems do not take the
human cognition states into consideration, which significantly affects the impact of
ML technologies in real-world applications.

This chapter demonstrates the link between human cognition states and ML tech-
nologies with a multimodal interface during ML-based decision making. A frame-
work of informed decision making called DecisionMind is proposed to demonstrate
how humans’ behaviour and physiological signals are used to reveal human cogni-
tion states in ML-based decision making. Based on the framework, the chapter takes
the revealing of user confidence in ML-based decision making as an example to
demonstrate the effectiveness of the proposed approach in making ML transparent.

11.2 Related Work

This section first investigates the relations between human physiological/behavioural
signals and human cognition states.Decisionmaking especially the physiological and
behavioural indicators for decision making are then reviewed. Such investigations
motivate the informed decision making afterwards.

11.2.1 Human Cognition States

Extensive research has found the physiological correlations to human cognition
states.Moll et al. [32] reviewed evidence on brain regions identified during functional
imaging of cognition activities irrespective of task constraints. It was demonstrated
that the investigation ofmechanisms of cognition-emotion interaction and of the neu-
ral bases is critical for understanding of human cognition. van Gog et al. [15] used
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an interdisciplinary approach combining evolutionary biological theory and neu-
roscience within a cognitive load theory framework to explain human’s behaviour
during observational learning. Different human physiological signals are used to
measure cognitive load, e.g. heart rate and heart rate variability, brain activity (e.g.
changes in oxygenation and blood volume, Electroencephalography (EEG)), Gal-
vanic Skin Response (GSR), and eyes [8]. Besides cognitive load, Aimone et al. [1]
investigated the neural signature of trust. The results showed that the anterior insula
modulates trusting decisions that involve the possibility of betrayal. Hahn et al. [18]
showed that a person’s initial level of trust is determined by brain electrical activity
acquired with EEG.

Besides physiological correlations, much work has been done on the investigation
of human behaviours as indicators of human cognition states. For instance, Gütl et
al. [16] used eye tracking to observe subjects’ learning activities in real-time by
monitoring their eye movements for adaptive learning purposes. Others have used
mouse clicking and keyboard key-pressing behaviour to make inferences about their
emotional state and adapt the system’s response accordingly [2]. In addition, features
of mouse movement behaviour such as movement distance, slope, and movement
count also show different patterns under different trust conditions during a task
[27]. Research also suggested that eye movements such as duration, sequence, and
frequency of fixations can be used as indicators of trust [24].

Theseworks suggest that human cognition states can be effectively communicated
with physiological and behavioural signals. Based on such communications, it is
possible to adapt cognitive task options for optimal human cognition states.

11.2.2 Decision Making

Making decisions is one of the most complex cognitive processes and there is a
long history of investigation in different domain areas. For example, Morgado et al.
[34] reviewed the impact of stress in decision making and found that this complex
cognitive process involves several sequential steps including analysis of internal
and external states, evaluation of different options available and action selection.
Making good decisions implies an estimate not only of the value and the likelihood
of each option but also of the costs and efforts implied in obtaining it. Kahneman et
al. [25, 46] suggested that people make a variety of errors when making decisions
(or solving problems) involving probability. The Subjective Expected Utility (SEU)
model suggests that the decision weights people attach to events are their beliefs
about the likelihood of events [26].

Researches have been investigated to find connections between physiological
responses and decision making. Heekeren et al. [19] reviewed findings from human
neuroimaging studies in conjunctionwith data analysis methods that can directly link
decision making and signals in the human brain. Smith et al. [42] used functional
Magnetic Resonance Imaging (fMRI) to investigate the neural substrates of moral
cognition in health resource allocation decisionmaking.White et al. [49] investigated
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the physiological correlates of confidence and uncertainty by means of fMRI. It was
found that different brain regions correlate to confidence and uncertainty. Much
work has also been done on using physiological responses such as pupil dilation
and skin conductance to understand humans decision making process. For example,
an investigation [14] shows that the pupil dilation increases over the course of the
decision making. Pupil dilation and GSR are also used to index confidence and
decision quality in decision making [57].

Much work has also been done on using behavioural information such as
eye movement to understand humans’ decision making process [38]. Fiedler and
Glockner [12] utilised eye-tracking to analyse dynamics of decision making in risk
conditions. It shows that attention to an outcome of a gamble increases with its proba-
bility and its value and that attention shifts toward the subsequently favoured gamble
after two thirds of the decision process, indicating a gaze-cascade effect.

These observations motivate us to investigate human cognition states during ML-
based predictive decision making. Such investigations not only help to understand
the effectiveness of ML approaches from human responses, but also motivate ML
researchers to refine ML models to improve human attitudes to ML based decision
making.

11.3 A Framework of Informed Decision Making

The review in the previous section shows that human physiological and behavioural
signals closely correlate to both decision making and human cognition states. This
section proposes DecisionMind as a framework of informed decision making to
incorporate human cognition states into an ML-based decision making scenario. In
this framework, human cognition states in ML-based predictive decision making
are revealed with physiological and behavioural signals. Through revealing human
cognition states, a feedback loop is set up to adaptively improve both effectiveness
of ML approaches and human attitudes to ML approaches.

A typical ML-based decisionmaking process can be illustrated as a loop as shown
in Fig. 11.2. As shown in this figure, when an ML-based intelligent system is used
for decision making, a human usually has a mental model on decisions firstly. The
human then makes decisions based on different cues including different decision
alternatives. At the same time, human cognition during decision making is evaluated
and is used as feedback in order to refine the decision making.

Based on this decision loop shown in Fig. 11.2, we present a framework of
informed decision making—DecisionMind (see Fig. 11.3). In this framework, when
a humanmakes decisions with anMLmodel-based intelligent system, signals related
to human cognition states are recorded at the same time with different modalities.
Human cognition states during decision making are then derived from the recorded
signals. If the human’s cognition is not in an acceptable state and the human is not
satisfied with the decision quality, feedback is sent to the decision system to refine
decision attributes and evenMLmodels and a new decision process is started until the
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Fig. 11.2 A typical ML-based decision making process in a feedback loop

Fig. 11.3 Framework of informed decision making – DecisionMind

human is satisfied with the decision performance with appropriate cognition states.
During this informed decision making process, human’s cognition states are tracked
and revealed explicitly to help the human refine decisions. DecisionMind therefore
evaluates human cognition and allows human cognition to be quantitatively visible
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during ML-based decision making, imagining that a human perceives his/her cogni-
tion states during decision making, and further imagining that the decision attributes
and even ML models could be adaptively refined based on the estimated cognition
states. The examples of human cognition states include cognitive load, trust, confi-
dence, etc. They are revealed with multimodalities such as skin conductance with
GSR sensors, eye activity with eye-tracker, etc.

Based on this framework, the following sections demonstrate the effectiveness
of the proposed framework by revealing user confidence and factors affecting user
confidence.

11.4 User Confidence in ML-Based Decision Making

As reviewed in the previous sections, user confidence is one of the significant human
cognition states during ML-based decision making. It is generally described as a
state of being certain that a chosen course of action is the best or most effective
during decision making. Lee and Dry [30] showed that user confidence in decision
making does not depend solely on the accuracy of the advice, it is also influenced
by the frequency of the advice. Considering that decisions are often made based
on probability evaluations of which users are not entirely sure, Hill [20] developed
a decision rule incorporating users’ confidence in probability judgments. A formal
representation of the decision maker’s confidence is also presented in [20]. Moran et
al. [33] argued that a critical property of decision confidence is its positive correlation
between confidence and decision correctness. In otherwords, with greater confidence
the decider is more likely to be correct in his or her decision. In a typical decision
making scenario, once the problem scenario along with supplementary material is
presented, several other factors can come into play as well. One such group of factors
is individual differences that were investigated by Pallier et al. [35]. Differences in
experience, motivation, attitudinal predispositions etc. can have an impact on the
decision making process.

In anML-based decision making scenario, different factors may affect user confi-
dence in decision making, for example, ML performance, uncertainty of ML results,
correlation between attributes of data set. However, it is important to learn what
are the factors and how these factors benefit user confidence in ML-based decision
making. While decision making has become an important topic in various areas of
HCI research in recent years [43], this section firstly understands ML-based decision
making from an HCI perspective and then demonstrates how different factors affect
user confidence in ML-based decision making.
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Fig. 11.4 Interactive data analytics: an HCI perspective

11.4.1 Interactive Data Analytics from An HCI Perspective

The multimodal interface trend in HCI [8] tries to build interfaces intelligent enough
to actively incorporate a human’s intuitions and load. In hte case of ML-based inter-
active data analytics, the key HCI research questions would be (see Fig. 11.4): (1)
what aspects of data would humans like to see on screen? (2) how could the desired
data aspects be best visualised? and (3) how much control can be transferred for
the human to adequately manipulate the visualised data? This section is concerned
mainly with the first two questions. More specifically, the effects of uncertainty and
correlation on user confidence in ML-based decision making are investigated in this
section.

11.4.2 Effects of Uncertainty on User Confidence

As shown in Fig. 11.1, “uncertainty” is inherent in an ML-based data analytics
pipeline. It can be defined in many ways. For a user, uncertainty can be a psy-
chological state in which the decision maker lacks knowledge about what outcome
will follow fromwhich choice, where uncertainty is considered as “risk”. Risk refers
to situations with a known distribution of possible outcomes (probabilities) [37].
“Ambiguity” is the other kind of uncertainty, where outcomes have unknown prob-
abilities and research in neurosciences [22] indicates that decision making under
ambiguity does not represent a special, more complex case of risky decision making.
Decision making under uncertainty is widely investigated in decision theory [45],
where uncertainty is usually considered as probabilities in utility functions. Beller et
al. [4] showed that the presentation of automation uncertainty helped the automation
system receive higher trust ratings and increase acceptance. When humans make
decisions under uncertainty, it was thought that they prefer to bet on events they
know more about, even when their beliefs are held constant, i.e. they are averse
to ambiguity [7]. However, this was shown to be otherwise by [21] in their study
responding to degrees of uncertainty. Their experiments and corresponding neuro-
logical observations showed that humans are more willing to bet on risky outcomes
than ambiguous ones.
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Furthermore, uncertainty information is typically presented to users visually,most
commonly in graphical format [23]. Edwards et al. [10] compared different graphical
methods from presenting quantitative uncertainty in decision making tasks. The
representation of uncertainty can have a significant impact on human performance.
It was shown that when the representation of uncertainty for a spatial task better
matches the expert’s preferred representation of the problem even a non-expert can
show expert-like performance [28].

These findings motivate us to account for both risk (i.e. uncertainty due to known
probabilities) and ambiguity (i.e. uncertainty due to unknown probabilities) while
investigating variations in user confidence due to uncertainty in ML-based decision
making. In a case study of ML-based decision making scenario, Zhou et al. [51]
introduced three uncertainty conditions (without uncertainty, risk, and ambiguity)

Fig. 11.5 Performance of predictive models: a without uncertainty, bwith non-overlapping uncer-
tainty (risk), c with overlapping uncertainty (ambiguity)
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Fig. 11.6 Average
subjective ratings of user
confidence in decision
making tasks under different
uncertainty conditions
(Control: without
uncertainty, OLUT:
overlapping uncertainty
(ambiguity), Non-OLUT:
non-overlapping uncertainty
(risk))

into a predictive decision making as shown in Fig. 11.5, and investigated their effects
on user confidence in decision making. In Fig. 11.5, the ML model performance
is presented as a curve, which is the functional relationship between the input and
its successful predictions. Fig. 11.5 shows the comparison of performances of two
models which are represented with green and purple respectively. The tasks in the
case study were to ask participants to make a decision targeting for a smaller input
and a higher output.

Regarding user confidence in decision making under three uncertainty condi-
tions (see Fig. 11.6) [51], it was found that users were significantly more con-
fident in tasks under risk uncertainty than in tasks under ambiguity uncertainty
(Z = 79.0, p < .001). The result suggests that when uncertainty was presented to
users, non-overlapping uncertainty made users more confident in decision mak-
ing than overlapping uncertainty. However, there were no significant differences
found between tasks without uncertainty presentation and tasks under ambiguity
uncertainty or between tasks without uncertainty presentation and tasks under risk
uncertainty.

11.4.3 Effects of Correlation on User Confidence

Statistical correlation is often used in feature selection and plays significant roles
in data analytics (also see Fig. 11.1) [17]. Furthermore, good decision-making often
requires a human to perceive and handle a myriad of statistical correlations [11].
However, Eyster and Weizsacker [11] found that humans have limited attention and
often neglect correlations in financial decision making. Ye [50] used the weighted
correlation coefficients to rank the alternatives and get the best alternative in multi-
attribute decision making. Liao et al. [31] used correlation coefficients of hesitant
fuzzy linguistic terms set in the process of qualitative decision making in traditional
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Fig. 11.7 Correlation and performance of model output share the same trend

Chinesemedical diagnosis.All thesemotivate us to investigate the roles of correlation
in user confidence in ML-based decision making. Moreover, domain experts are
usually good at utilising experiences in their decision making, while correlation
from input data reflects statistic summaries of historical facts. We strongly argue that
the revealing of a correlation between features and target values would significantly
affect user confidence in decision making.

As shown in Fig. 11.1, from the input data perspective in anML-based data analyt-
ics pipeline, correlation can describe how much target values are related to features
in input data of the model. The correlation may affect humans’ decision making
based on their domain experiences, e.g. domain experts may have experiences that
the older the pipes are, the higher the failure rate is. In the same case study as shown in
Sect. 11.4.2, the correlation is introduced to investigate its effect on user confidence
in ML-based decision making.

As shown in Fig. 11.1, correlation is not associated with a model, but associated
with input data. Correlation in this case study refers to the correlation between one
feature and the target variable in historical records. The correlation is often described
by a correlation coefficient. Correlation coefficient illustrates a quantitative measure
of correlation and dependence, meaning statistical relationships between two ormore
random variables or observed data values. The correlation can be displayed as 2D bar
charts with the horizontal axis being features and the vertical axis being the correla-
tion coefficients (e.g. Fig. 11.7 left). For example, in Fig. 11.7 left, the feature “Size”
and “Laid Year” (Year) have a correlation coefficient of 0.75 and 0.45 respectively
with the target variable (failure rate), meaning that “Size” is more related to the fail-
ure rate than “Laid Year”. The relations between model performance and correlation
can be divided into two groups:
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Fig. 11.8 Correlation and performance of model output do not share the same trend

• Correlation and performance of model output share the same trend (see Fig. 11.7).
That is, the correlation between a feature and the target variable is high and the
associated model performance is also high, or the contrary.

• Correlation and performance of model output do not share the same trend (see
Fig. 11.8). That is, the correlation between a feature and the target variable is high,
but the associated model performance is low, or the contrary.

Regarding user confidence in decision making under different correlation condi-
tions (see Fig. 11.9) [52], it was found that there was a significant difference between
tasks without correlation presentation and Same Trend tasks (Z = 167.5, p = .008).
It suggests that revealing correlation between features and target values helped users
be more confident in predictive decision making. However, there was no signifi-
cant difference found between tasks without correlation presentation and Non-Same
Trend tasks. Such results suggest that the pattern between correlation and perfor-
mance of model output affected user confidence in predictive decision making. It
was also found that participants were significantly more confident in Same Trend
tasks than in Non-Same Trend tasks (Z = 105.0, p < .001). It suggests that when
correlation and performance of model output shared the same trend (i.e. the corre-
lation between a feature and the target variable was high and the associated model
performance was also high, or the contrary), users were more confident in predic-
tive decision making. This was maybe because of the “grounding communication”
referred to by psychologists [9]. Because of grounding, confidence in decision mak-
ing was resolved through a drive towards a mutual understanding or common ground
(correlation has the same trend with the performance) in the process.
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Fig. 11.9 Average
subjective ratings of users’
confidence in decision
making under different
correlation conditions
(Control: without correlation
presentation, Non-Same
Trend: correlation and model
performance do not share the
same trend, Same Trend:
correlation and model
performance share the same
trend)

11.5 User Confidence and Human Physiological Responses

As reviewed in Sect. 11.2, human physiological and behavioural responses have close
relations with decision making. This section investigates the connection between
human physiological responses and predictive decision making. In the same case
study as shown in Sect. 11.4.2, GSR and Blood Volume Pulse (BVP) devices from
Pro-Comp Infiniti of Thought Technology Ltd were used to collect skin conductance
responses and BVP signals of subjects respectively. BVPmeasures the blood volume
in the skin capillary bed in the finger with photoplethysmography (PPG) in BVP
sensors [36], which reflects the emotional state of humans. Both GSR and BVP are
often used as indicators of affective processes and emotional arousal. Figs. 11.10 and
11.11 show examples of GSR signal and BVP signal during a decision making task.

Fig. 11.10 An example of GSR signal during an ML-based decision making task
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Fig. 11.11 An example of BVP signal during an ML-based decision making task

By analysing GSR features during decision making, it was found that ambiguity
uncertainty made GSR features such as GSR sum of duration Sd (Sd = ∑

Sdi , the
duration Sdi is defined as in Fig. 11.10) values increased significantly. Therefore,
lower confidence level tasks made a GSR feature such as GSR Sd values significantly
higher.

Similarly, it was also found that ambiguity uncertainty made BVP features such
as ΔTp (delta time precedent, see Fig. 11.11) and ΔT f (delta time following, see
Fig. 11.11) values increased significantly. However, both ambiguity uncertainty and
risk uncertainty made BVP max features such as Tmax (time at the extrema point
with the maximum amplitude, see Fig. 11.11) and Amax (maximum amplitude at the
extrema point, see Fig. 11.11) values decreased significantly. As a result, BVP fea-
tures show significant differences among tasks with different confidence levels, e.g.
lower confidence level tasksmade BVP features ofΔTp andΔT f values significantly
higher.

These findings suggest that both GSR and BVP features can be used as indicators
of user confidence in decision making tasks.

11.6 Decision Performance in ML-Based Decision Making

In addition to user confidence, decision performance also plays significant roles in the
human’s attitude to an intelligent systemofML-based decisionmaking.Decision per-
formance refers to the measurement of whether humans choose the most favourable
alternative among multiple alternatives. Various approaches for evaluating decision
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performances were proposed [3, 39]. For example, decision performance is defined
as the degree of confirmation to specifications of activities in relation to one or more
of their desired values [39].

In an ML-based travel route decision making study, Zhou et al. [57] evaluated
ML-based decision performance with the use of decision utility widely investigated
in decision theory [29, 40]. In [57], the user’s decision performance is measured
based on the following steps: (1) Compute utilityUi of each decision alternative; (2)
Decide the best alternative which has the highest utility. This can be regarded as the
ground-truth of decisions; (3) Compare the user’s decision with the best alternative.
If the user’s decision matches the best alternative, the user’s decision performance is
marked as 1. Otherwise, it is marked as 0. This value is defined as decision quality
score. The decisions which have high scores are defined as high quality decisions.

The investigation in [57] found that when more ML-based decision factors were
introduced into decision making, the decision quality was increased significantly.
This result suggests that it is necessary to control the number of decision factors
in decision making in order to get decisions of high quality. It was also found that
different types of ML-based decision factors (e.g. predicted congestion rate and
predicted incident rate in travel route decision making) affected decision quality
differently. [57] also demonstrates that decision qualities can be indexed with human
physiological and behavioural signals.

11.7 Adaptive Measurable Decision Making

As reviewed in the previous sections, different factors affect user confidence aswell as
decision performance inML-based decision making and these effects can be indexed
with physiological and behavioural signals. In order to incorporate these findings in
real-world applications, the user interface for an ML-based decision making appli-
cation may include the following components from the HCI perspective:

• Components which collect users’ physiological and behavioural signals unobtru-
sively during decision making;

• Components which allow updating of different factors (e.g. uncertainty, decision
factors) automatically based on user confidence and decision performance;

• Present user confidence and decision quality in real-time.

Such a user interface can help users make higher quality decisions confidently.
By using physiological and behavioural sensors such as GSR devices during deci-
sion making, the user confidence and quality of each decision may be measured
and displayed in real-time. The real-time feedback of user confidence and quality
of decisions allows the users or system to adjust factors impacting their decisions
adaptively, in order to balance the user confidence and decision quality during the
decision making process. Such a framework is called adaptive measurable decision
making.
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Fig. 11.12 The framework of adaptive measurable decision making

Figure11.12 illustrates the loop of using adaptive measurable decision making in
an application. In this loop, the adaptivemeasurable decisionmaking engine ismainly
composed of the physiological and behavioural signal processing component, clas-
sifiers for user confidence and decision quality, as well as decision factor adaptation.
Raw physiological and behavioural signals from the user are input into the adaptive
measurable decision making engine. The user confidence levels and decision quality
are derived from the signals. If the user is not satisfied with the user confidence levels
and decision quality, the decision factors are refined (e.g. add/remove some decision
factors, change uncertainty information) and a new decision process is performed
based on the updated decision factors. This process is iteratively performed until the
user is confidently satisfied with the decision performance.

The proposed framework integrated parsing and interpretation of physiological
and behavioural information of humans with computational algorithms that, in turn,
fed into processes that adapt the interface for ML-based decision factors to enhance
the user performance in decisionmaking. The examples of interface adaptations in an
intelligent interface that onemay consider include: (1) addition or deletion of decision
factors; (2) changing values of decision factors; (3) changing the visualisation of
uncertainty or correlation; (4) addition or deletion of signal channels used to measure
user’s physiological and behavioural information.

Following the framework of adaptivemeasurable decisionmaking, users are aware
of which ML models produce ML results for confident higher decision quality. As
a result, ML models can be evaluated not based on ML results directly, but based
on user confidence and decision quality which are more acceptable by both ML
researchers and domain experts. Therefore, this framework provides an applicable
approach to make ML transparent for both ML researchers and domain experts by
revealing user’s confidence. More generally, human’s other cognition states such as
trust and cognitive load can be revealed in real-time during the ML-based decision
making to make ML transparent.
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11.8 Conclusion

Despite the recognised value of machine learning techniques and high expecta-
tion of applying ML techniques within various applications, significant barriers to
widespread adoption and local implementation of ML approaches still exist in the
areas of trust (of ML results), comprehension (of ML processes) and related work-
load, as well as confidence (in decision making based on ML results) by humans.
This chapter proposed that the revealing of human cognition states with amultimodal
interface during ML-based decision making could provide a rich view for both ML
researchers and domain experts to learn the effectiveness of ML technologies in
applications. On the one hand, human cognition states could help understand to what
degree users accept innovative technologies. On the other hand, through understand-
ing human cognition states during ML-based decision making, ML-based decision
attributes/factors and evenMLmodels can be adaptively refined in order to makeML
transparent. Based on the revealing of human cognition states, this chapter presented
a framework of adaptive measurable decision making to show how the revealing of
human cognition states are integrated into an ML-based decision making to make
ML transparent.
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Do I Trust a Machine? Differences in
User Trust Based on System Performance
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Abstract Trust plays an important role in various user-facing systems and applica-
tions. It is particularly important in the context of decision support systems, where
the system’s output serves as one of the inputs for the users’ decision making pro-
cesses. In this chapter, we study the dynamics of explicit and implicit user trust in a
simulated automated qualitymonitoring system, as a function of the system accuracy.
We establish that users correctly perceive the accuracy of the system and adjust their
trust accordingly. The results also show notable differences between two groups of
users and indicate a possible threshold in the acceptance of the system. This impor-
tant learning can be leveraged by designers of practical systems for sustaining the
desired level of user trust.
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12.1 Introduction

Trust is a critical factor that impacts interpersonal relationship, and it used to be estab-
lished via face-to-face communications between people until technologies made
human-machine communications possible. The extensive usage of internet every-
where in theworld has boosted the information revolution, underwhich circumstance
the human alone is not capable of processing the vast amount of information which
is booming exponentially over time, so people may resort to computers for help
now and then. However, switching from a smiling colleague to a cold emotionless
machine, the human does need time and experience to build up trust with the new
partner, although it can conductmany tasks that are beyond the capability of a human.
In this context, it is particularly important for systems where users are required to
make decisions based, at least partially, on machine recommendations. For instance,
consider a medical decision support system or an e-commerce recommender system.
In both cases, a user decides on the course of actions — be it medical treatment for
a patient or product to purchase — in uncertain conditions and based (in part) on
the system’s suggestions. Since in both cases there is something at stake, i.e., there
are possible negative implications for incorrect decisions, the lack of user trust may
deter the user from following these suggestions and be detrimental to the uptake of
the system.

Trust in automation, and, in particular, in decision support information technolo-
gies, has been the focus of many studies over the last decades [5, 7]. It has mainly
been studied in the context of task automation and industrial machinery. In one of the
seminal works in this field, Muir et al. [13] found a positive correlation between the
level of user trust and the degree to which the user delegated control to the system.
Furthermore, McGuirl and Sarter [11] found similar responses specifically within
an automated decision support system. Note that both works highlighted the impact
of establishing and maintaining trust on user reliance on system suggestions, and,
indirectly, on the uptake of the system.

Although much work has been devoted to the impact of system performance [18]
and transparency [21] on user trust, less attention has been paid to the temporal
variations of trust, and to individual differences of such dynamic aspects. In this
chapter, we discuss our investigations on the fine-grained dynamics of trust in an
experiment that simulates an Automated Quality Monitoring (AQM) system that
alerts users to the existence of faulty items, in a fictional factory production line
scenario. In the experiment, every one of the 22 participants interacted with four
AQM systems each exhibiting a different level of accuracy. After each trial (30 per
AQM system), the users reported their perceived level of trust in the system, which
we refer to as explicit trust. In addition, we also measured implicit trust through
reliance, quantified through the proportion of times the user followed the AQM’s
suggestion. It should be noted that for any decision made by the user, reliance for a
single task is a binary feature, since it captures whether the user followed (or not)
the system’s advice.



12 Do I Trust a Machine? Differences in User Trust Based on System Performance 247

Three hypotheses guided our examinations:

• H1: Learned trust, i.e. the trust gained after some experience and collaboration,
would stabilise over time to a level correlated with the systems’ accuracy;

• H2: Users would exhibit thresholds of acceptable accuracy for a system, under
which reliance would drop;

• H3: Differences would exist for acceptable accuracy in terms of trust and stereo-
typical user profiles will still be able to be constructed.

This chapter will address our work which experimentally validates these hypothe-
ses and draws practical conclusions that can help system designersmaintain user trust
in systems. In the following sections, we first present related work on user-system
trust, followed by a detailed description of the experimental protocol.We then present
and discuss the results, and finally conclude with a discussion on practical steps that
might be taken to sustain user trust.

12.2 Background

Human-machine trust has generated an extensive body of literature since it was
originally investigated within the context of industrial automation systems in the
1990s. Although multiple definitions, frameworks and decompositions of trust exist,
there is convergent evidence about its central characteristics. We adopt the definition
proposed by Lee and See [8] where trust can be defined as the attitude that an agent
will help achieve an individual’s goals in a situation characterised by uncertainty
and vulnerability. This succinctly encapsulates the primary sources of variance (the
user, the system, the context) and identifies a key aspect of this relationship, that
of vulnerability. Similar definitions exist by Rousseau et al. [15], Mayer et al. [10]
and Hoff and Bashir [5]. Trust is a hypothesised variable that has been shown to
be a key mitigating factor in system use/disuse (reliance) [7, 20]. It can be inferred
from both self-report and behavioural measures [10], and importantly, is dynamic,
with acquisition and extinction curves, subject to the users’ experience of system
performance.

Trust has been proposed to be a multi-dimensional construct with a number of
models existing in the current literature, each with slightly different proposed com-
ponent subscales. We have adopted Hoff and Bashir’s model [2], which he based on
an empirical research overview of existing literature in the area. This model is also
nicely applicable to our research focus in that it includes variables important to HCI
contexts such as ‘design features’ as well as encompassing a number of important
situational factors and individual differences such as culture, age, gender and per-
sonality. Hoff and Bashir also base their work on the Lee and See’s definition of trust
as mentioned above.

In specific, this model proposes that three conceptual types of factors influence
user-system trust. Dispositional trust reflects the user’s natural tendency to trust
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machines and encompasses cultural, demographic, and personality factors. Situa-
tional trust refers, to more specific factors, such as the task to be performed, the
complexity and type of system, user’s workload, perceived risks and benefits, and
evenmood. Lastly, learned trust encapsulates the experiential aspects of the construct
which are directly related to the system itself. This variable is further decomposed
into two components. One is initial learned trust, which consists of any knowledge
of the system acquired before interaction, such as reputation or brand awareness.
This initial state of learnt trust is then also affected by dynamic learned trust which
develops as the user interacts with the system and begins to develop experiential
knowledge of its performance characteristics such as reliability, predictability, and
usefulness. The relationships and interaction between these different factors influ-
encing trust are complicated and subject to much discussion within the literature. In
our work we focus on how trust changes through human-machine interaction and
therefore seek to manipulate experimental variables thought to influence dynamic
learned trust, whilst keeping situational (and initial learned) variables static, and
allowing for variation in individual differences via factors affecting dispositional
trust.

Individual differences in trust response are a key focus of our research. In the orig-
inal body of work on human-human trust, Rotter [14] established that trust (human-
human) was a stable character trait and developed an instrument that detected varia-
tions in propensity to trust between people. Extending this, Scott [16] demonstrated
that trust was composed of at least two factors, one being situational, and the other
being a stable, trait based factor (equivalent to Hoff’s dispositional trust). When
extending the original human constructs into the realm of humans and machines,
Singh et al. [17] operationalised the construct of ‘complacency’ in automation,
which included a subscale on ‘trust’ and found reliable, and stable variations between
people. Lee and Moray [7] found differences between people’s likelihood in using
automation when error rates are held constant.

When comparing human-human to human-machine trust, Madhavan and Wieg-
mann’s [9] review outlines a number of important differences. Jian et al. [6] found
that people’s ratings are less extreme towards other humans than towards machines.
Earley [4] found that people evaluated system estimations as more trustworthy than
human equivalents, but in contrast, Dietvorst et al. [2] found that people were more
likely to under-rely on an automated aid in decision making even when shown that
the machine performed more accurately than their own efforts and even when there
was a financial stake involved. On the other hand, Dzindolet et al. [3] notes that
human machine trust sometimes begins at a higher level than human-human trust
and is characterised by more dramatic collapses when trust is proven to be mis-
placed. To explain this phenomena he suggested that some individuals harbour a
‘Perfect automation schema’ where expectations of system performance are unre-
alistically high. Such expectations result in differential reactions to system-failures,
where those who possess this schema exhibit higher loss of trust on system failure
than those who do not.

However, as Lee and See [8] and Hoff et al. [5] have claimed, individual differ-
ences are likely to be overcome by the experiential effects of steady state machine
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behaviour resulting in less variance between users after exposure to the machine.
The experiment we outline below contradicts this finding to some extent. We have
found that clustering users into two groups uncovers two patterns of trust behaviour
where one group exhibits greater variance in trust ratings than the other. We use this
finding to single out users, whose trust in the systemmay be at risk and take proactive
steps to sustain their trust.

12.3 Methodology

12.3.1 Context

The scenario of the experiment was a typical production factory quality control
task. This simulated task consisted of checking the quality of drinking glasses on a
production line, with the assistance of a decision support system called an Automatic
Quality Monitor (AQM). However, the AQM was not always correct, i.e., it would
occasionally exhibit false positives (suggesting failing a good glass) and misses
(suggesting passing a faulty glass).

12.3.2 Trials

Each trial required the participant to make a decision about whether to pass or fail
a glass, with no other information about the glass other than the AQM’s suggestion.
Trials were presented sequentially, providing a time-based history of interaction with
a given AQM. At each trial, the participant could trust the AQM or override it and
make their own decision. A simple graphical user interface coded in Python and
running on a 64-bit Windows operating system was used, as shown in Fig. 12.1.

Each trial starts with the AQM providing a suggestion for a new glass, by illu-
minating a red warning light-bulb if it predicts the glass to be faulty. Otherwise the
warning light remains off. It should be noted that the status of the AQM light and
the possible quality of the glass are both binary features to help generalise results,
as mentioned above.

The participant must then decide whether to pass the glass by clicking the Pass
button, or conversely to fail the glass by clicking the Examine button. The actual
glass is then displayed, so the participant receives direct feedback on their decision,
as shown in Figs. 12.2 and 12.3. Furthermore, we gamified the experiment in an
attempt to increase motivation and attention: each time the participant made a cor-
rect decision, i.e., examined a faulty glass or passed a good glass, they earned a
fictional $100 reward. However, each incorrect decision cost them a fictional $100
loss. The total earningswere updated after each decision and displayedwithin the user
interface. The rewards and the fines were used for gamification purposes only, and no
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Fig. 12.1 The trial starts with an AQM recommendation, with two buttons (examine/pass) for users
to make a decision

Fig. 12.2 Upon decision from the participant, the actual glass is shown and score updated
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Fig. 12.3 Awrong decision leads to decreased score, and red text indicating the outcome of a glass

actual remuneration was offered to the participants. Exemplary interfaces showing
that the user has made correct and incorrect decisions are shown in Figs. 12.2 and
12.3 respectively.

We operationalised a binary decision making task in our experiment for two rea-
sons. Firstly, any complex decision process can be arguably decomposed into a series
of binary decisions. The decision-trust relationship thus can be easily generalised to
complicated decision-making problems. Secondly, the simplified decision making
protocol we implemented, similar in effect to the ‘micro-worlds’ discussed by Lee
and See [8], makes it convenient to map trust levels to decisions without the inter-
ference of other parameters [19].

12.3.3 AQM Accuracy and Blocks

The experiment session was separated into four blocks, and participants were
instructed that a different AQM was used for each block. The accuracy of each
of the four AQMs presented was manipulated by varying the average rate of false
positives and false negatives exhibited by each system. These errors were presented
in a randomised order within the 30 trials presented for each participants and each
AQM.
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Table 12.1 AQM accuracies

AQM accuracy (%) False positives + negatives (%)

100 0

90 10

80 20

70 30

Weused four differentAQMaccuracies, as shown inTable12.1. In order to capture
a trust baseline for each participant, each experiment session systematically started
with the 100% accuracy AQM, followed by the other three AQMs in random order.
Each block consisted of one AQM that was used for 30 task trials. The AQM made
errors randomly over the trials, but in a way that the mean AQM accuracy over the
block was as defined for that AQM. For instance, the 80% AQM would make, on
average, 6 errors over the 30 trials (on average, 3 false positives and 3 false negatives).

12.3.4 Participants

Twenty-two participants took part in the 45 minute experiment. Twenty of the par-
ticipants were university students and the remaining two were IT professionals. No
specific background or requirements were required to complete the task. Recruitment
and participation were conducted in accordance with the University-approved ethics
plan for this study. No reward or compensation was offered for taking part in the
experiment.

12.3.5 Information logging

For each trial, we collected:

• The participant’s binary decision (pass or examine);
• The AQM suggestion (light on or light off);
• The actual glass condition (good or faulty);
• The time required to make the decision, i.e., the time elapsed between the AQM
light being presented to the participant and the Pass/Examine button being clicked;

• The subjective trust rating, collected after the actual state of the glass is revealed.
This rating is collected using a 7-point Likert scale ranging from 1: distrust to 7:
trust. In the instructions issued at the outset of the experiment we explained that a
rating of 4 meant neutral, or no disposition in either direction.
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One of the participants consistently rated the trust at extreme levels (either 1 or 7)
of the 7-point scale across the four sessions, and hence his datawas excluded from the
examination. Considering the individual differences, the trust data was normalised
to the range of 0–1 on an individual basis, for all the trials conducted on the four
AQMs. The binary decision of the participants was further quantified in terms of a
reliance score Rs , i.e. the ratio between the number of decisions consistent with the
AQM recommendation and the total decisions for a set number of consecutive trials,
and thus the value of the reliance score falls between 0 and 1.

Rs = Nr

Nr + Nn
(12.1)

where Nr and Nn refer to the number of decisions consistent and inconsistent with
the AQM recommendation respectively for all the previous trials on it.

12.4 Results

In this section we present and discuss the results of our user study in the light of our
hypotheses.

12.4.1 Trust Correlation to System Accuracy

We start with the investigation of acquisition and extinction of trust, as observed
over the course of user interactions with the AQMs. The level of trust is measured
subjectively after each trial, as described earlier. Since the AQM errors were ran-
domised over the 30 trials for each AQM, and given the number of participants, trust
variations for each trial exhibit a number of local variations. We address this issue by
applying a simple low-pass filter, specifically a 5-trial sliding window, reducing our
data to 25 points per AQM. That is, Tn , the level of trust after trial n, was computed
as the average trust across the last 5 trials (n-4–n). Figure12.4 shows the aggregated
normalised trust for all 21 participants, for all four AQMs.

Tn =
∑4

i=0 tn−i

5
(12.2)

where tn is the trust rating for trial n.
At first, trust in all AQMs seems uniform as would be expected since participants

know that each new AQM is different from the others they may have encountered,
and the order is randomised. Trust in the 100% AQM appears to be above the other
AQMs.
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Fig. 12.4 Mean trust for all
participants, all AQMs

An analysis of variance showed that the effect of the AQM accuracy on the first
trust point (trust mean over the first five trials) was significant for all participants,
F(3, 80) = 6.463, p < 0.001. Post hoc Tuckey tests showed there was a significant
difference between the 100% AQM and both the 80 and 70% AQMs. We think this
may be linked to two possible factors. Firstly, since we use a sliding window to
capture trust, the participants will have started to form a preliminary trust judgement
on each AQM by the time of the first trust point (recall that the first point is actually
after 5 trials). Secondly, it is possible that individual differences between participants
combine in a way that creates such a wide initial variation in trust. We investigate
this second possibility in later sections of this chapter, by grouping participants and
then revisiting their initial trust assessment.

As a side note, the test of homogeneity (Levene’s) for the first reliance point was
significant, hence violating ANOVA’s assumption of equal variances. However, the
sample sizes being equal, this statistic should be robust. Hence, we accept the results.

Looking at the temporal fluctuations of the trust values, we observe that these
stabilise with important differences between the AQMs. As expected, trust in the
100% AQM stabilises at 1 after only 13 trials. Also the 90% AQM converges to
reasonably high levels of trust from trial 19. The 80% AQM is initially stable but
exhibits a slight increase in trust starting from trial 15, while the trust in the 70%
AQM steadily declines after fewer than 10 trials and eventually drops as low as 0.33.

An analysis of variance showed that the effect of the AQM accuracy on the last
trust point (trust mean over the last five trials) was significant for all the participants,
F(3, 80) = 27.03, p < 0.001. Post hoc Tuckey tests show there is a significant dif-
ference between the 100%AQM and both the 80 and 70%AQMs, as well as between
the 90% AQM and the 70% AQM, and again between the 80% AQM and the 70%
AQM.

It should be noted that the final order of the trust ratings corresponds to that of
the AQM accuracies. That is, the 100% AQM stabilises at the highest trust level,
followed by the 90, 80, and 70% AQM, in this order. This finding supports our H1
hypothesis that learned trust would stabilise over time to a level correlated with the
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Fig. 12.5 Mean reliance for
all participants, all AQMs

systems’ accuracy. However, we will later examine what role individual differences
may play in this process.

In addition, sincewe only selected a small set of discrete accuracies for ourAQMs,
it can be interesting to analyse our results from the perspective of a rank-ordering
problem. Indeed, this would provide an indication of whether the reported trust rank-
ing aligns to such discrete accuracy levels. A Friedman’s test shows significant dif-
ferences between the trust levels (Friedman’s χ2(20, 3) = 45.31, p < 0.001), with
mean ranks of 3.8, 2.9, 2.0 and 1.3 for AQMs of accuracy 100, 90, 80 and 70%
respectively. These statistics suggest that trust ratings correlate with increased levels
of AQM accuracy, when considered as discrete values (here 10% increments), again
supporting our H1 hypothesis.

12.4.2 Acceptable Accuracy and Reliance

We now examine the dynamics of reliance, which we regard as an objective measure
of trust. Recall that reliance is measured implicitly during each trial, as described
earlier. Again, we apply a simple low-pass filter, but this timewe use a 10-trial sliding
window, reducing our data to 20 points per AQM. The reason for this larger window
is mainly because reliance is a binary feature (at every trial the participant either did
or did not follow the system suggestion). Hence, local variations tend to add weight
to the reading for a small window size. Figure12.5 shows the aggregated reliance
for all the 21 participants and all four AQMs.

We observe that despite the larger sliding window of 10 interactions, the reliance
curves are less stable than the trust curves. We believe that the reason for this obser-
vation is two-fold. Firstly, the effect of a binary feature on smoothing is strong and
could require a wider slidingwindow size, but this wouldmean losing temporal accu-
racy in our analysis of reliance dynamics. Secondly, we think that while participants
exhibit relatively uniform trust trends, they have different strategies to deal with it,
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Fig. 12.6 First reliance
point variance for all
participants

as per our H3 hypothesis of individual differences. We will explore this aspect in the
next sections.

Qualitatively, the AQMs exhibit different reliance patterns. These differences are
not linked to the order in which AQMs are presented to the participant, because
it is randomised. It is possible that, by way of randomisation, the AQMs in each
subset behaved similarly over the first few trials, which would then be picked up
as different levels by the sliding window. However, this explanation seems unlikely
given the number of participants.

All curves, except for the 70% AQM, demonstrate slight (and often unstable)
increases and their final levels are in the range of 0.95–0.98. The 100 and 90%
AQMs seem to converge strongly, while the 70% AQM exhibits a steady decline
in reliance. The 80% AQM seems close to the 100% AQM baseline. This could
indicate that the acceptable level of accuracy for a system is around 80%, possibly a
bit above since the AQM 80% is slightly lower. An analysis of variance showed that
the effect of the AQM accuracy on the first reliance point was not significant for all
participants, F(3, 80) = 1.597, p = 0.197 n.s. That is, the apparent reliance pairs
observed are not significant in viewof the variance, further demonstrated byFig. 12.6.
This means that the participants interacted with all four AQMs with a comparable
level of dispositional trust, as comes through the implicit reliance measure.

Focussing on the last reliance observed after 30 trials, an analysis of variance
showed that the effect of the AQM accuracy on the last reliance point was signif-
icant for all participants, F(3, 80) = 4.182, p = 0.008. The test of homogeneity
(Levene’s) was significant, but again the sample sizes are equal. Due to the binary
notion of reliance, we can test our hypothesis of acceptable level of accuracy by
comparing all the AQMs to the 100% AQM baseline, in order to determine where
the threshold for accuracy may lay. To do so, we applied a simple contrast in the
ANOVA for the last reliance point, and obtained significance only for the pair 100%
AQM versus 70% AQM. This means that the 80% AQM, while being visually apart
from the 100 and 90% AQMs, is actually not significantly different. However, the
AQM70% is significantly different from the other threeAQMs. These results support
our hypothesis H2 that users have thresholds of acceptable accuracy for a system,
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under which the reliance drops. Since there is no significant difference between the
AQMs in terms of the initial reliance levels, participants start interacting with the
AQMs free of pre-disposition. But later on we observe a specific behaviour only
for the 70% AQM, whereby the reliance of the participants on that AQM declines
significantly compared to other AQMs. This indicates that a threshold of acceptable
accuracy in our AQM for the cohort of our participants lies somewhere between
70 and 80%. Having said that, the high values and narrow range of reliance values
should be highlighted. Over the course of thewhole experiment, reliance curves of all
the four AQMs remain fairly compact and above the 0.9 mark. This behaviour is not
surprising, however, and can be explained by the relatively high accuracies chosen
for all the AQMs. Even the poorest AQM operating at 70% accuracy can correctly
classify a glass 7 times out of 10, which is well above chance. We believe that the
participants rightfully perceived this benefit of the AQM over pure random choice.
Hence they decided to follow the AQM’s suggestions, leading to very high levels
of reliance. However, examining individual differences and grouping users can help
understand the substantial reliance drop observed for the 70% AQM.

12.4.3 Clustering of Participants

While individual user profiles can be appealing for high-precision applications, itmay
not be justifiable in the context of trust, which as a construct has broadly defined
metrics. In addition, the number of participants in our experiment would not allow us
to generate fine grain profiles, if they were to exist. So, we endeavoured to partition
the participants into two groups using clustering.

The participants were clustered using the reported trust for the last five trials of
each AQM, with a K-means method. The trust ratings for the last five trials of each
AQMwere used becausemost participants approached stable trust during these trials.
Weclustered the participants into twogroups due to the limited number of participants
involved in this study, and ended upwithGroup 1 including 13 participants andGroup
2 with the remaining 8 participants.

Initially, we set out to examine the stability of the clusters. For this, we considered
the final clustering produced after the 30 trials as the ground truth and evaluated the
relative accuracy of the clusters as they could have been generated at earlier stages of
interaction. That is, we executed the above clustering method after a smaller number
of trials, say 20, and measured the proportion of users that are correctly mapped to
their ground truth cluster. The results of this analysis are shown in Fig. 12.7. Since
the clustering is based on the trust levels calculated with a 5-trial sliding window, no
clustering can be done for the first 5 trials. The relative accuracy of the clustering
increases between trials 5 and 11, as more user information becomes available, and
stabilises thereafter above the 0.9 mark. That is, the clusters become stable after 11
trials, after which less than 10% of users are incorrectly mapped to the other cluster.

The curves marked Group1 or Group2 error provide details about users mapped to
the incorrect cluster. We observe that the majority of these come from Group 2 users
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Fig. 12.7 Clustering performance. TheGroup2 error indicates the participants that belong toGroup
1 but are incorrectly clustered to Group 2, and the Group1 error indicates the participants that belong
to Group 2 but are incorrectly clustered to Group 1. The clustering accuracy indicates the overall
rate of participants correctly assigned to the final two groups

mistakenly mapped to Group 1. Beyond several initial incorrect mappings, Group 1
users were reliably identified and mapped to the right cluster.

Having clustered the participants, we repeated the above analyses of trust and
reliance dynamics, but this time for each group separately. The trust curves for the
four AQMs observed for Group 1 and Group 2 are shown in Figs. 12.8 and 12.9
respectively. Since clustering was based on trust levels, we expect to find differences
in trust between the two groups. Notably, the curves for the 100% AQM are similar
in both groups, which can be expected based on H2, since a 100% accuracy AQM
is very likely to be acceptable to all users, regardless of their sensitivity. Therefore,
we focus the rest of the analysis on differences between groups with regards to the
other three AQMs.

Qualitatively, the Group 1 curves are much more spread out than those of Group
2. The initial trust levels of the 90, 80, and 70% AQM in Group 1 are in the range
of 0.5–0.63, whereas in Group 2 they are in the range of 0.55–0.77. Despite this, the
range of final trust is fairly different: it ranges 0.08–0.73 for Group 1 versus 0.70–
0.94 for Group 2. It should also be highlighted that the three trust curves are clearly
separable for Group 1, while the differences are less pronounced for Group 2. Also
note that the order of the curves for Group 2 does not correspond to the accuracy
levels of the AQMs.

An analysis of variance showed that the effect of the AQM accuracy on the
first trust point was significant for Group 1, F(3, 48) = 7.267, p < 0.001. Post hoc
Tuckey tests have identified the significant difference between Group 1’s trust on
the 100% AQM and all the remaining AQMs. For Group 2, no significant difference
has been found for the first trust point F(3,28)= 0.820, p = 0.494. The test of
homogeneity (Levene’s) for the two groups’ first reliance point was not significant.

Examining the last trust point now, an analysis of variance showed that the
effect of the AQM accuracy on the last trust point was significant for Group 1,
F(3, 48) = 48.51, p < 0.001 and also for Group 2, F(3, 28) = 7.510, p < 0.001.
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Fig. 12.8 Mean trust for Group 1, all AQMs

Fig. 12.9 Mean trust for
Group 2, all AQMs

In terms of pairwise post hoc comparison, Group 1 showed significantly different
trust for any pair of AQMs, while for Group 2, significant difference was observed
between three pairs of AQMs, i.e. 100 and 80%, 100 and 70%, 90 and 80%. The test
of homogeneity (Levene’s) for both groups last reliance point was significant, but
can be ignored because of the equal sample sizes.

In order to address hypotheses H2 and H3 of acceptable levels of accuracy, it is
necessary to compare all the AQMs to the baseline 100%AQM. To do so, we applied
a simple contrast in the ANOVA for the last trust point for Group 1, and obtained
significance only for the pair 100%AQM versus 70%AQM. This finding means that
the 80% AQM, while being slightly apart is not significantly different. However, the
70% AQM was indeed found to be significantly different from the other AQMs, and
we argue that this AQM falls below the threshold of acceptable accuracy postulated
in our hypothesis.

These results support the hypothesis H3 that individual differences exist for
acceptable accuracy, but typical user groups may be constructed, where Group 1
demonstrates significant difference in terms of trust on different AQMs, however
Group 2 doesn’t show significant trust difference.
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Fig. 12.10 Mean reliance
for Group 1, all AQMs

Fig. 12.11 Mean reliance
for Group 2, all AQMs

As observed earlier, the differences between the AQMs in terms of reliance level
are less clear than the differences in trust. The reliance curves of the four AQMs
observed for Group 1 and Group 2 are shown in Figs. 12.10 and 12.11 respectively.

Qualitatively, the two groups exhibit distinct patterns. Group 1 starts with a fairly
uniform level of reliance across theAQMs,which can be expected, since the accuracy
of each AQM is not known to the participants at the start. Conversely, the reliance
in Group 2 is initially split into two ranges: the 90 and 70% AQMs hover above
the 0.95 mark, while the 100 and 80% are much closer to 0.9. This result is in line
with our earlier observations of reliance using all the participants. An analysis of
variance showed that the effect of the AQM accuracy on the first reliance point was
not significant for Group 1, F(3, 48) = 0.441, p = 0.725 n.s. and also not significant
for Group 2, F(3, 28) = 1.584, p = 0.215 n.s. This means that the apparent subsets
observed for Group 2 are not significant in view of the variance, as demonstrated by
Fig. 12.12.

Examining the last reliance point, we observe that the reliance levels in Group 1
correctly reflect the order of the AQM accuracies. Also note that the curves of the
100, 90, and 80% AQM obtain high reliance scores of almost 0.95 or greater than
this, while the 70% AQM is clearly placed below the others. This indicates that in
Group 1 the acceptable level of accuracy for a system is around 80% (possibly a bit



12 Do I Trust a Machine? Differences in User Trust Based on System Performance 261

Fig. 12.12 First reliance
point variance for Group 2

above that), since the reliance on the 80%AQM is slightly lower than on the 100 and
90% AQM. For Group 2, all the curves converge around the 0.95 mark, although the
70% AQM is slightly lower than the others. An analysis of variance showed that the
effect of the AQM accuracy on the last reliance point was significant for Group 1,
F(3, 48) = 4.532, p = 0.007 and not significant for Group 2, F(3, 28) = 0.153,
p = 0.927, n.s. The test of homogeneity (Levene’s) for the last reliance point inGroup
1 was significant, but the variances were equal for all the other analyses above.

Again, we applied a simple contrast in the ANOVA for the last reliance point for
Group 1, and obtained significance only for the pair 100% AQM versus 70% AQM.
Just as for trust in Group 1, this means that the 80% AQM while being slightly
apart is not significantly different from the 100 and 90% AQMs. However, the 70%
AQM is significantly different from the other levels, arguably because it is under the
threshold of acceptable accuracy postulated in our hypothesis. Similarly to subjective
trust, these results support our hypothesis H3 that Individual differences exist for
acceptable accuracy, but typical user profiles may be constructed. Both groups start
interacting with the AQMs free of pre-disposition, but Group 1 later on exhibits a
threshold of acceptable accuracy in the range of 70–80%. Group 2 again seems to
be more resilient or have a lower threshold of acceptable accuracy.

Seen from a rational behaviour perspective, the behaviour of Group 1 is not
optimal, since adhering to the AQM’s recommendations would provide a 20% better
than chance outcome. We conjecture that one possible explanation for this may
be that the AQM accuracy perceived by the participants is lower than the actual
AQM accuracy, i.e., participants in Group 1 may perceive the 70% AQM as being
worse than chance. It should be noted, however, that our experiment does not allow
us to establish the exact cause of the observed behaviour, as this would require a
substantially different experimental set-up.
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12.5 Discussion

In this chapterwe discussed the fine-grained dynamics of user-system trust, an impor-
tant construct of human interaction with a decision support system. We specifically
focused on an automated quality monitoring (AQM) simulation, which provided
indication of faulty glasses being produced. In our study, each user interacted with
four AQMs and out of these interactions we populated the explicit trust and implicit
reliance scores.

We analysed the temporal dynamics of both trust and reliance, as well as their
dependence on the accuracy exhibited by the AQM. It was found that the reported
trust levels aggregated across the entire cohort of users, stabilised over time and, at
large, corresponded to the accuracy of the AQMs. Somewhat surprisingly, we dis-
covered that the implicit reliance levels were very high and comparable across the
four AQMs. We attribute this finding to the relatively high accuracy of the AQMs in
our experiment. Following this, we conducted an additional analysis of individual
user differences in trust and reliance. For this, we split the users into two clusters
and compared the trust and reliance scores obtained in these clusters. This analy-
sis discovered differences in the dynamics of user trust in the two clusters and also
some differences in user reliance on the low-accuracy AQMs. Hence, the obtained
experimental results support the hypotheses raised at the beginning of this chapter.
Firstly, we observe that the learned user-system trust stabilised over time and gen-
erally correlated with the level of accuracy exhibited by the system. Secondly, our
findings indicate that at reasonably high levels of system accuracy, user reliance is
high, whereas once the system accuracy falls below an acceptance threshold, the
reliance may deteriorate as well. Thirdly, we show that these acceptance thresholds
are dynamic and user-dependent, and we successfully manage to separate users into
two groups with different trust profiles and reliance patterns.

These observations brought to the surface an important practical question referring
to the implications of our work on the sustainability of user-system trust. Due to the
low transparency but complex structure of most machine learning systems, users
are mostly unable to understand their internal working mechanism or parameters,
however there is a possibility to improve the users’ performance, based on their
interaction history. Once the system recognises that certain users are in the ‘risk
group’ and the performance exhibited by the system is not up to their expectations,
additional steps may need to be taken in order to sustain the trust of these users.
For instance, the system may show its historical performance to these users, thus
increasing the experience of these users, or revealing some details of the internal
machine algorithmwhich allows for further understanding of the users. Alternatively,
system designers may want to enrich the interactions of these users, e.g., through
additional explanations of the suggested actions or through implanting persuasive
messages strengthening user trust [1].

Another intriguing question refers to identifying the users at risk. In our study,
we conduct a posterior clustering of the participants and split them into two groups.
However, a more relevant task would be to identify the type of users and their system
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acceptance at the beginning of the interaction or, even, before the interaction. The
analysis of our clustering shows that the clusters were stable and little changes of
cluster were observed at late stages of interaction, possibly indicating stable accep-
tance preferences. One possible predictor of this preference could potentially be the
user’s personality or behavioural traits, which can be derived, for example, from the
user’s past interactions with other systems. Prior research shows that trust correlates
to some personality characteristics [12], and this information can be extracted and
leveraged in order to sustain user trust. This research is beyond the scope of our
work.

In addition, we should note that our findings are based on a fairly limited cohort
of participants, all of which had reasonably short interactions with the system. Val-
idating our findings with a larger set of users (and, possibly, with a different target
system) is a natural future extension of our work. Also, we would like to increase
the length of interactions on the account of reducing the frequency of users reporting
their explicit trust. For example, we could collect the explicit trust level every second
interaction, allowing us to double the length of interactions without over-burdening
the users. This would allow us to collect a more solid empirical evidence and better
support our hypotheses.

Finally, more work is needed to address the fine-grained dynamics of trust acqui-
sition and extinction. In our work, we assumed a stable level of accuracy of every
system. This, however, may vary over the course of user interaction. Hence, it is
important to validate the evolution of user trust as a function of the user’s initial trust
disposition, observed system performance, and temporal aspects of this performance
(e.g., initial failures vs. failures when the trust was already formed). We highlight
the importance of these research questions, but leave this work for the future.

12.6 Conclusion

This chapter examines the relationship between system performance, a user trust
and reliance on the system. We observe that users correctly perceive the accuracy
of the system and adjust their trust and reliance accordingly. We have successfully
segmented the users into two groups who showed different patterns in trust dynamics
and reliance with different AQM systems. This important learning can be leveraged
by designers of practical systems for group-focused interaction systems. Further-
more, we have established a possible threshold in the acceptance of the system.
These findings taken together, have dramatic implications for general system design
and implementation, by predicting how trust and reliance change as human-machine
interaction occurs, as well as providing new knowledge regarding system perfor-
mance that is necessary for maintaining a user’s trust.
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Chapter 13
Trust of Learning Systems:
Considerations for Code, Algorithms,
and Affordances for Learning

Joseph Lyons, Nhut Ho, Jeremy Friedman, Gene Alarcon
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Abstract This chapter provides a synthesis on the literature for Machine Learning
(ML), trust in automation, trust in code, and transparency. The chapter introduces
the concept of ML and discusses three drivers of trust in ML-based systems: code
structure; algorithm performance, transparency, and error management – algorithm
factors; and affordances for learning. Code structure offers a static affordance for
trustworthiness evaluations that can be both deep and peripheral. The overall per-
formance of the algorithms and the transparency of the inputs, process, and outputs
provide an opportunity for dynamic and experiential trustworthiness evaluations.
Predictability and understanding are the foundations of trust and must be considered
in ML applications. Many ML paradigms neglect the notion of environmental affor-
dances for learning, which from a trust perspective, may in fact be themost important
differentiator between ML systems and traditional automation. The learning affor-
dances provide contextualised pedigree for trust considerations. In combination, the
trustworthiness aspects of the code, dynamic performance and transparency, and
learning affordances offer structural, evidenced performance and understanding, as
well as pedigree information from which ML approaches can be evaluated.
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13.1 Introduction

With the advent of autonomous (and semi-autonomous) cars, big data analytics,
and sophisticated tools for speech recognition, Artificial Intelligence (also known
as AI) has anecdotally become both panacea and scapegoat in discussions of future
technology’s promise. It’s true, just ask Alexa, Siri, Cortana, or Google Home. AI is
evident when we search Amazon or Netflix, when we search for romance online, and
even when programming our thermostats thanks to the Nest system. AI is already
part of our lives, yet many of the pundits of AI have suggested that it has yet to really
make an impact on society. In fact, AI has a long way to go before it reaches its
full potential. How will it get there one might ask? Two words – machine learning.
Machine learning offers amechanism for advanced technology to dowhat it does best
ingest, process, and learn from data. Machine learning offers great promise in terms
of technology innovation and performance, yet it also offers a parallel problem that
may eventually lead to its demise in that the more complex (and potentially useful)
machine learning can become, the less understandable, and hence less palatable, it
can become for humanswhowill choose to use it or not. This chapterwill examine the
domain of machine learning and propose methods for infusing user understanding
into the inevitable complexity that comprises machine learning techniques. User
understanding can arise from structural features of the code, evidenced performance
and understanding, and pedigree.

As noted by [8] there are several challenges that learning systems pose to human
acceptance:

1. The behaviour of the learning system may be difficult to anticipate or predict.
2. Errors by the system may be difficult to detect (or actions may be erroneously

interpreted as erroneous when they are not) due to the human’s lack of under-
standing of how the technology works.

The subtle simplicity and yet omnipresent nature of change that humans expe-
rience in every interaction is a challenging concept when applied to machines.
Machines are believed to be constant, reliable and invariable, yet the concept of
learning injects the idea that machines encountered at one point in time will be dif-
ferent than that at a future time. As such, the AI community needs to seek ways to
make AI more predictable.

Explainability will be a key to the future of AI [23]. “Just as society is built upon
a contract of expected behaviour, we will need to design AI systems to respect and fit
with our social norms. If we are to create robot tanks and other killing machines, it is
important that their decision-making be consistent with our ethical judgment” [23].
As humans,we need to understand theAI in order to accept it. The current chapterwill
discuss threemethods for enhancing the predictability ofmachine learningby shaping
the structure of code, the interactive features of the algorithm, and by considering
additive transparency features to include an understanding of the learning affordances
from which the algorithm is based. We first begin with a brief review of the machine
learning literature.
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13.2 Machine Learning Background

Machine Learning is the process by which an automated system uses data from past
experiences to make predictions about the future or to improve some measure of
future performance. This is done algorithmically and sometimes it does not rely on
human interaction or assistance [11, 34]. The creation and optimisation of these
algorithms has become a popular field of theoretical and applied research, joining
together fields of computer science and statistical mathematics [11].

Machine learning is closely related to both data mining and AI. With the former,
it shares methods of interpreting data as well as recognising ingrained patterns and
correlations. With the latter, it shares the goal of facilitating machine-driven problem
solving without the need of human intervention. Machine learning builds on these
fields by adding the capability for a machine to train itself from existing datasets
to more effectively solve problems [45]. Research in machine learning also draws
from cognitive sciences, such as neuroscience and psychology, which examine how
humans learn and make decisions; and from social and behavioural sciences, which
attempt to apply human theories of explanation and attribution to design more trans-
parent algorithms [33]. Some machine learning techniques have also been derived
through bio-inspired concepts such as neural networks.

In addition to receiving interest in the research sphere, machine learning has found
its way into several highly impactful applications. Websites have been designed to
learn from their users’ behaviours to customise marketing experience, categorise
search results, and identify credit card fraud [6, 9]. Email clients have used algorithms
that learn to block spam [9]. Robots have been trained to utilise cameras and computer
vision to develop increasingly accurate visual identification and visual simultaneous
localisation andmapping (SLAM) capabilities [22, 37]. In general, machine learning
has been proven to be a powerful tool for applications in which massive amounts of
data can be used to make accurate predictions [43, 44].

There have been numerous works on machine learning detailing algorithms span-
ning multiple decades of research. Though not all can be covered here, the following
paragraphwill provide an overview of different styles of machine learning and exam-
ples of some of the most popular algorithms being used.

Supervised learning is a style which involves training using a labeled set of data
[4]. Support Vector Machines (SVM) are a broad category of supervised learning
algorithm which uses decision planes to locate decision boundaries within classified
and labeled data [10]. Regression Algorithms are a type of supervised learning algo-
rithm which uses the statistical relationships between dependent and independent
variables for prediction. Examples include Linear Regression, Logistic Regression,
Stepwise Regression, Ordinary Least Squares Regression (OLSR), and Multivariate
Adaptive Regression Splines (MARS) [11]. Instance-based Algorithms are a type
of supervised learning algorithm which stores instances of training data and replace
themwith better fits as more data is acquired. Each new problem encountered is anal-
ysed against the existing instances to try and make a prediction. Examples include
Learning Vector Quantization (LVQ), and Locally Weighted Learning (LWL) [11].
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Unsupervised learning is a style for which the data used for training is unla-
beled. This algorithm deduces existing patterns in the data and determines relation-
ships between data [4]. Clustering Algorithms are a type of unsupervised learning
algorithm which use existing patterns, or clusters, in data to classify and label new
data. Examples include K-Means, K-Medians, Affinity propagation, and Spectral
Clustering [11].

Semi-supervised learning is similar to both unsupervised and supervised learn-
ing, in that it deduces clusters in data, then uses those patterns to label the data, as
well as for prediction [4, 11]. Decision Tree Algorithms are a type of supervised
or semi-supervised learning algorithm which solves problems and makes predic-
tions based on branched decision trees which represent multiple possible solutions
and constraints. Examples include Classification and Regression Tree (CART) and
Chi-squared Automatic Interaction Detection (CHAID) [11].

Reinforcement learning involves training to find the action or value which
maximises a reward function, allowing learning through trial-and-error [4, 11].
Greedy algorithms choose actions based on achieving the highest reward per action.
Examples include the interval exploration method, exploration bonus method, and
curiosity-driven exploration method. Randomised algorithms are similar to greedy
algorithms but include the possibility of random choices to expand the algorithm’s
knowledge of different action rewards. Interval-based algorithms further encour-
age exploration of possible actions by storing statistics about each previous action’s
reward and making choices using confidence ratings [20].

Several popular algorithms can utilise different learning styles or utilise multiple
styles of learning concurrently. Bayesian Algorithms use Bayes’ Theorem of Con-
ditional Probability to classify data. Examples include Nave Bayes, Gaussian Nave
Bayes, and Bayesian Belief Network (BBN) [11]. Artificial Neural Network Algo-
rithms (ANN) utilise non-linear models based on human and animal neural networks
to identify relationships between data sets. They often utilise supervised, unsuper-
vised, and reinforcement learning. Examples include Perceptron, Back-Propagation,
and Radial Basis Function Network (RBFN) [11]. Deep Learning Algorithms are
similar to Artificial Neural Network Algorithms, but they make use of the abun-
dance of big data available today. They have been shown to have groundbreaking
results, however, they are some of the most opaque algorithms in use. Examples
include Deep Boltzmann Machine (DBM), Deep Belief Networks (DBN), and Con-
volutional Neural Networks (CNN) [37]. Ironically, it is with some of these most
sophisticated techniques that show great promise that significant user resistance may
be experienced due to the lack of understanding of the complex algorithms. Unfortu-
nately, when it comes to many contemporary machine learning techniques “You just
can’t look inside a deep neural network to see how it works.” [23]. The same holds
true for many other modern day machine learning paradigms, they are simply too
complex for humans to dissect, and hence, fully understand. Herein lies the problem.
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13.3 Trust Considerations for Learning Systems: Code
Structure, Algorithm Performance, and Affordances
for Learning

While machine learning algorithms have been applied widely and successfully, there
are still numerous unsolved problems in the field of machine learning. From a tech-
nical perspective, as mentioned, machine learning requires availability of massive
amounts of data, which are not always obtainable. Further, many types of algo-
rithms require that the data be pre-labeled to be effective. This means that extensive
preprocessing, often employing multiple machine learning algorithms at once, can
make solving certain problems very difficult [7, 47]. Further, machine learning can
be biased by the data set that it learns from, leading to instances of demographic
bias in systems designed to generate advertising, which is concerning considering
the growing responsibilities being given to machine learning systems [44]. From a
human factors perspective, many of the most powerful machine learning algorithms
have outputs that are opaque to human observers and this lack of transparency can
lead to disuse or misuse, especially in situations where humans and automations
are needed to make decisions collaboratively [6]. Although it is expected that the
development of machine learning systems which can explain themselves will help
alleviate this problem, it is not yet clear what such an explanation ought to contain
[6, 13]. These problems are some of the reasons that the World Economic Forum
Global Risks Report lists AI as “the emerging technology with the greatest poten-
tial for negative consequences over the coming decade” [44]. Thus, it is the goal of
researchers across machine learning-related fields to develop methods for learning
and problem solving in the most efficient, responsible, and safest way.

With rising technology advancements, researchers have witnessed a concomitant
increase in research on the concept of trust. This is logical given an increased role
of the machine in making judgements, taking actions, and filtering information for
humans in contexts spanning the gamut from benign to dangerous. In such cases, it
is critical that humans evaluate whether or not to rely on the technology. Trust rep-
resents one’s willingness to be vulnerable to the actions and intent of another entity
[31]. A key ingredient in this notion is the idea that higher trust results in increased
reliance on technology in situations of heightened vulnerability [25, 27]. In other
words, trust is most important in the context of risk, where humans must decide
whether or not to rely on technology. This is a significant research issue because as
humans we may fail to adopt appropriate reliance strategies, and as such, research
has shown that technologies with the highest levels of automation pose the greatest
risks to performance degradations when they err [35]. There are at least three trust-
relevant domains to consider for the use of learning systems: code structure, algorithm
performance, and transparency of learning affordances (see Fig. 13.1). These three
domains provide a non-orthogonal set of factors that interact when considering trust
of learning systems. Further, the domains offer a set of features for gauging trust-
worthiness using structural components, evidenced performance and understand-
ing components and environmental components that allow users to understand the
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Fig. 13.1 Trust factors for machine learning systems

pedigree of the algorithms. Each of the domain areas will be discussed in the follow-
ing sections.

13.3.1 Code Structure

The cognitive processes behind how programmers perceive software code has been
increasing in interest across disciplines. In the computer science field eye tracking
has been used to determine how programmers perceive code [42]. The trust domain
has also been expanded to computer code in recent years. A recent cognitive task
analysis identified reputation, transparency, and performance as key factors that influ-
ence perceptions of code trustworthiness [3]. Reputation is information obtained via
professional networks and research. Transparency is the comprehensiveness of the
code by viewing it. Lastly, performance is the capability of the code to meet project
requirements. In addition, environmental factors are posited to moderate the rela-
tionship of the factors with perceived trustworthiness [1, 3]. For example, software
utilised in high risk environments will be scrutinized more than software utilised in
low risk environments due to the consequences of failure being greater in the former.
Indeed, Alarcon et al. [2] found programmers trusted server code less if it was from
an unknown source and spent less time reviewing the code.

The transparency construct has been reviewed the most in regards to trust in
code.Walter et al. [46] explored readability, organization and source as influences on



13 Trust of Learning Systems: Considerations for Code … 271

perceptions of code trustworthiness. They found code thatwas degraded in readability
led to decreased trustworthiness assessments and less time was spent reviewing the
code. In contrast, highly organised code led to lower trustworthiness assessments,
but longer time spent on the code. Alarcon et al. [2] replicated the main effects of
[46] and also explored the interaction effects to determine why code that was less
organised was trusted more. The three-way interactions indicated if code was from
a reputable source but degraded in organisation participants were willing to spend
more time on the code, which in turn made the participants more familiar with the
code and thus increased trustworthiness. In contrast, if the codewas from an unknown
source when organisation was degraded, programmers distrusted the code and spent
less time on the code as they abandoned the code. Similar processing results were
found for comments in code.

Commenting is another aspect of code that influences transparency. Comments are
a description of the code that does not influence the operation of the code. Comments
are placed in the code file to act as headers to describe the overall functional expec-
tations of code [19] or decompose the code into logical segments [48]. Research has
demonstrated commenting influences the perceptions of the code, even if the source
code has not been changed [2]. Specifically, they manipulated comment placement,
style and validity. Validity led to increased trustworthiness and less time spent on the
code. In contrast, placement had a reverse effect leading to less trust and less time
spent on the code, as organisation did in the study mentioned above. If comments
were improperly placed but valid, programmers spent more time on the code and
became more familiar with the code, leading to higher trustworthiness. However, if
comments were not valid and improperly placed, programmers abandoned the code
quickly. The results of these studies indicate transparency is an important factor
in how programmers perceive computer code. However, the relationship is not as
straightforward as one might expect.

Machine generated code offers unique research areas for trust and particularly
trust of system-generated code like that of a learning system. Computer generated
code has been available for some time, however programmers are reticent to use
computer-generated code due to the lack of transparency [3]. The cognitive task anal-
ysis discussed above only referred to computer generated code that was static, i.e. not
autonomous. However, current research is exploring how to implement autonomous
code that changes itself or a larger architecture without the human in the loop (e.g.,
[15]. Future issues with autonomous programs will focus on transparency as the
types of changes made by the autonomous program are not intuitive to programmers
due to the algorithms the programs use to make changes. Rather than changing the
algorithms of the autonomous system, human factors engineers will be faced with
attempting to make the program changes more transparent for software engineers
reviewing the changes.

With regard to learning systems, the technology may begin to “write” code on its
own. Based on the above literature, it will be important for that output to be struc-
tured in ways to foster both human engagement with the code (i.e., organised code
from reputable sources) and trust (transparent code). Engineers of learning systems
need to provide opportunities for humans to feasibly review code, particularly code
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that is system-generated. This code will need to be structured in a way that fosters
understanding of the code and traceability between actions and decisions. Learning
systems will pose novel challenges to software engineers not just from a coding cre-
ation perspective but also from the perspective that the code must be interpretable to
humans to facilitate understanding, and hence predictability of the learning system.
Software engineers should develop a commenting template structure/architecture
for the learning system to convey things like decisions, rationale, goals, which may
manifest as a signal for “intent” from the code perspective. Research has shown that
added rationale for automated system recommendations can improve trust [28], thus
improving the organisation, transparency, and commenting features of code may
enable better understanding of learning systems from a structural perspective.

13.3.2 Algorithm Performance

Despite the best efforts of the designers, machines can make errors or have imper-
fect reliability; the same will be true of learning systems hence they will have the
“opportunity” to learn. As noted above, it is critical for a human working as a team
with learning systems to have appropriate trust and reliance. In fact, previous research
suggests that machine error is amajor factor affecting trust (e.g., [39]). If themachine
makes an error, a human teammate might either under-trust or over-trust its capa-
bilities (i.e., trust miscalibration) depending on whether the error is noticed and, if
noticed, how it is perceived. The resulting trust miscalibration can lead to reliance
miscalibration and, consequently, misuse or disuse of the machine [36].

The effects of error types on trust can be grouped into three major categories
including error rates, error types, and error severity. An error rate is defined as
frequency of errors committed by the machine during a fixed performance period.
Previous research suggests that error rates are negatively correlated with trust and
reliance (e.g., [5]. Moreover, even a single error can negatively impact trust resulting
in under-trust [38].While error rates have a somewhat straightforward effect on trust,
error type effects are more contradictory and appear to be asymmetrical. Dixon and
Wickens [12] suggest that false alarms (FA) and misses differentially affect human
behaviour. In their study, the participants showed more of verification behaviour
when interacting with a FA prone system and reacted more to a miss prone system.
Additionally, [14, 40] showed that FAs committed by an automated system are more
detrimental to trust when compared to misses, although the number of errors was
equated. On the other hand, [16] found that misses decreased reliance (which is
thought of as a behavioural outcome of trust) more when compared to FAs. Finally,
in addition to the error rate and error type, error severity has shown an impact on trust.
For example, [16, 21] showed that more severe errors decreased trust more than less
severe errors. Additionally, a system committing “easy” errors was found to produce
a larger decrement in trust and reliance [30]. Overall, isolated errors (e.g., false
alarms) in laboratory tasks produce somewhat predictable effects on trust. However,
in realistic task environments a machine might commit, for example, in one situation
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a single false alarm and in another situation multiple misses requiring more research
focused on exploring interactions between error categories.

The implications of algorithm performance for learning systems are the follow-
ing. First, designers need to be ready for users to reject learning systems if they
make easy errors, particularly if they occur earlier in the interactive process. System
performance remains the most robust predictor of trust in robotic systems [17] and
automation [41]. Learning systems will need to ensure that users experience reliable
performance if they are to be trusted by users. Second, designers also should under-
stand errors that occur in one facet of the systemmay be attributed to other aspects of
the technology as specified in system-wide trust theory [14]. This is important since
learning systems may apply knowledge acquired from one domain to applications in
a different domain. Users of these systems may apply distrust of a system acquired
through an error experienced in one domain to an application in another domain.
In contrast, users may apply trust earned in one domain to another domain albeit,
perhaps inappropriately. Third, designers should understand that different kinds of
errors (e.g., FAs ormisses; severe and not severe) have different impacts on user inter-
actions and these effects may not be symmetrical. In fact, leveraging a novel model
of Situation awareness-based Agent Transparency (see [32]) designers of learning
systems may explain errors such that the systems provide (a) awareness of errors,
(b) understanding for why they occurred, and (c) projection of why these errors will
not be encountered in the future. Finally, given the above issues, users should be
given the opportunity to experience the learning in a variety of contexts which vary
in complexity. This will ensure that the user has experienced multiple domains in
relation to the learning system, and hopefully, will be armed with more accurate
trustworthiness information from which to base future reliance decisions.

13.3.3 Affordances for Learning

Educational institutions represent opportunities for learning, yet not all such institu-
tions are equal nor do they each provide the same degree of opportunity for learning.
While AI systems will not be attending Harvard or Yale, it is important to consider
the types of learning opportunities they have encountered as a means for better trust
calibration. This information can be used to evaluate the pedigree of the algorithms.
Learning is only as good as the constraints from which we learn from - in other
words what opportunities for learning exist in our training environments. For exam-
ple, Machine A can perform left hand turns with 100% accuracy and right hand
turns only with 30% accuracy. The reason for this was because Machine A’s training
course had nine left-hand turns and only one right hand turn, so is that the fault of
the algorithm or the limitation of the structure of the learning environment for the
system? Machine A simply had greater affordances for learning left-hand turns rela-
tive to right-hand turns. The above example is a very simplified idea of the impact of
learning affordances but if one endorses the latter as a probable cause of performance
differences, then researchers should be called to emphasise the role of environmental
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affordances as a key influence on trust of learning systems. The following section
will attempt to flip existing ML paradigms into greater consideration of the role of
learning affordances in terms of data, content, and environmental constraints when
making trust attributions of learning systems.

When considering the impact of learning affordances on trust for learning systems,
the following factors may be relevant: the types of data used in training, the types of
content used in training, the types of environmental constraints the system is exposed
to during training, and the frequency of exposure. These features become one aspect
of the transparency information provided to the user about the technology to help
the user establish shared awareness and shared intent with the technology [26]. This
added transparency will help the user in judging the suitability of the learning system
in future situations.While logical and perhaps an intuitive aspect of learning systems,
highlighting the learning affordances provided to the system is not currently viewed
as a key transparency feature for learning systems.

13.3.3.1 Types of Data

Many machine learning systems are dependent on labelled training data as in the
case for supervised learning techniques, and these cases the data used for training
matter. Users of these systems need to understand the assumptions of using one kind
of data over another.What are the limitations of the data, what are their intended uses,
where are they valid or invalid. These are important questions that users of learning
systems may need to consider. Sometimes data are artificially injected or replaced
as in the case of instance-based algorithms and users need to understand what data
were replaced and why. As a recommendation, designers of learning systems need
to provide a way for users to understand the following: (1) the type of data used
for training, (2) the limitations of the data, (3) the desired application domains for
that data, (4) if data were artificially introduced and why, (5) the amount of data
used. While this is only a piece of the larger picture of learning affordances it is an
important feature particularly for machine learning techniques such as supervised
learning.

13.3.3.2 Types of Content

Humans train in specific areas, such as medicine, law, psychology, education, to
name a few. Knowledge acquired in one domain may carry little utility when applied
to a novel domain. For instance, one might not expect a well-trained doctor to fully
understand the intricacies of the law profession. Vice versa, one would likely not
want a lawyer to perform a life threatening surgical procedure. In this sense, the
domain in which one has trained matters. Yet, with machine learning there is some
level of assumption that the system will need to extrapolate knowledge acquired
in one domain and apply it in novel situations. In the case of statistical machine
translation, machine learning techniques may utilise content from one domain that
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is readily available with the explicit intent to apply the learning to a novel domain
[18, 24]. The very utility of learning systems is contingent on the ability of the
system to apply knowledge acquired from one domain into a novel domain, this is
the essence of learning and the pinnacle of an AI enthusiasts. As such, knowing the
pool of potential knowledge that the system’s extant capabilities are derived from
is a useful piece of information for a user when making reliance decisions on the
learning system.

Greater variety of content used in the training phase may help to create a more
robust learning system. Returning to the case of the statistical machine translation
system, the greater the domain diversity used to train the system should lead to greater
robustness when the system is applied to a novel domain. Users would benefit from
knowing the system had trained with more versus fewer domain areas, yet this kind
of information may reside predominantly with the engineers who built and trained
the system. For instance, users may favour a machine translation system that had
trained using data from the domains of news, baseball, hockey, and literature when
making inferences about its capabilities for translating golf content. Whereas if the
system had only trained on hockey, users may be less inclined to trust the system due
to the limited domain training. The key point in this section is that users may benefit
from this information as it will make the behaviour, performance, and robustness of
the system more predictable.

13.3.3.3 Environmental Constraints

The difficult and complexity of the conditions through which machine learning sys-
tems are trained is also very relevant and should be conveyed to users of the systems.
SLAM algorithms that are trained on nominal terrain should be juxtaposed against
those trained on austere terrain. This becomes a piece of information that a user
can evaluate when making reliance decisions. As discussed in [29], instructional
scaffolding could be used as a technique to modify the conditions under which the
technology is exposed varying difficulty and complexity. As systems demonstrate
successful performance in one level of difficulty, the stakes and complexity could
be raised in an iterative fashion. Learning systems may need to be subjected to
an accreditation/certification process to demonstrate achievement to some thresh-
old [29]. When systems use techniques such as reinforcement learning, users should
fully understand the conditions under which the system’s behaviour has been shaped.
In other words, what features were used as the conditions for rewards/punishment?
Once users begin to understand the conditions through which a system was trained,
and there is an understanding of how robust those conditions were, the user will be
better armed to make informed reliance decisions. The same principles hold true
when making reliance decisions on humans. Many professionals are granted swift
trust due to their credentials, as humans infer both competence and intent from the
prior experiences of the individual.
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13.3.3.4 Frequency of Exposure

Generally more training is better. In the case of machine learning, users need to have
an understanding of the extent to which training has occurred, the length [or quan-
tity] of training, and the number of different scenarios used. Many extant policies
regarding activities such as verification and validation require that systems evidence
deterministic behaviour [29], yet for learning systems this invariance is a certainty.
Instead, what the field may need is “assurance” that the system will operate pre-
dictably [29] and this assurance should emerge through repeated tests of the system
in a variety of situations. Users should be made aware of the breadth, or lack thereof,
from which the learning system has been tested.

13.4 Conclusion

Machine learning will be an important driver of the success of failure of AI systems.
Yet, the nature of learning, and hence change, creates challenges for user acceptance
of such systems. As noted in [29], humans and learning systems should comprise a
team where one backs up the other yet this is only possible given predictability of
each teammember. The current chapter discussed three ways to help to foster appro-
priate trust of learning systems with implications for code structure, algorithm per-
formance, and making affordances for learning more transparent to the users. These
domains offer structural, evidenced performance and understanding, and pedigree
mechanisms for gauging trustworthiness of machine learning approaches.
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Chapter 14
Trust and Transparency in Machine
Learning-Based Clinical Decision
Support

Cosima Gretton

Abstract Machine learning and other statistical pattern recognition techniques have
the potential to improve diagnosis in medicine and reduce medical error. But tech-
nology can be both a solution to and a source of errors. Machine learning-based
clinical decision support systems may cause new errors due to automation bias and
automation complacency which arise from inappropriate trust in the technology.
Transparency into a systems internal logic can improve trust in automation, but is
hard to achieve in practice. This chapter discusses the clinical and technology related
factors that influence clinician trust in automated systems, and can affect the need
for transparency when developing machine learning-based clinical decision support
systems.

14.1 Introduction

The recent realisation ofMachineLearning (ML) techniques such asArtificialNeural
Networks (ANNs) as a viable technology outside academia has opened new areas of
human activity to automation. In healthcare, where human error is a significant cause
of morbidity and mortality, these new approaches have revived interest in building
intelligent Clinical Decision Support Systems (CDSS). Intelligent CDSS is intended
as an advanced cognitive or perceptual tool to support clinicians in making sense of
large amounts of data, or detecting abnormalities in complex images.

The potential applications forMachine Learning-based Clinical Decision Support
(ML-CDSS) are manifold: studies have shown ANNs perform above clinicians at
tasks involving interpretation of clinical data, such as diagnosing pulmonary emboli
or predicting which patients are at high risk for oral cancer [23, 40]. ANNs are par-
ticularly effective in image recognition and have been applied to several radiological
imaging methodologies, such as early detection of breast cancer in mammograms,
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with accuracy as high as 97% [35]. Humans perform particularly poorly at this task,
making it ideal for automated support: some studies estimate human error rates in
radiological image interpretation to be as high as 30% [4].

But technology plays a role both in preventing and unfortunately contributing to
medical error [3]. New technologies impact the user and the entire system of care
by altering workflows, processes, and team interactions [10]. In fast-paced inpatient
environments, where multiple teams visit and give opinions on a patient, a false
diagnosis by a decision support system can take on diagnostic momentum. Subse-
quent teams are less likely to question the information and will continue an already
initiated treatment course [8]. This is particularly true of technologies that fully or
partly automate human tasks, inducing phenomena in human operators known as
automation bias and automation complacency [17]. This is the propensity for the
human operator to favour the decision made by the system over their own internal
judgement, or the presence of contradictory information.

ML-CDSS may be particularly at risk for inducing automation bias, posing the
threat of new, unintended errors. In part this is because these models often lack
transparency into their internal logic, rendering them impervious to inspection or
understanding of root cause. Second, suchmodels often find new insights and patterns
in super-human amounts of data, which may prevent clinicians from evaluating the
veracity of their output because the insights are novel. This has meant that despite
hubris from industry there is much hesitation amongst clinicians to adopt these
systems [23].

Given the current scale of medical error this is hardly surprising. In the US esti-
mates range from 44,000 to as high as 251,454 deaths per year [25, 33], placing
medical error as the third leading cause of death in the US. There is much contro-
versy surrounding these estimates, and the lack of clarity only serves to highlight
the inadequate reporting of errors in clinical medicine [49, 52]. In a system of such
complexity and risk, the introduction of new technologies must be carefully consid-
ered.

There are several clinical and technology factors that can increase the likelihood of
automation bias, including lack of transparency. But transparency is hard to achieve
with some ML approaches and may lead to more confusion in a non-technical user.
Given the challenges in developing transparent ML, optimising other clinical and
technology factors may reduce the risk of automation errors and thereby the degree
of transparency needed. This chapter discusses automation bias and complacency
and proposes a conceptual model for the factors influencing the appropriate use of
an ML-CDSS as a basis for further research.

When discussing CDSS, this chapter focusses on point-of-care systems defined as
“computer systems designed to impact clinician decision making about individual
patients at the point in time that these decisions are made”[6]. Machine learning
approaches have great potential in public health and reimbursement applications
but these are not considered in this chapter since they do not drive point-of-care
decision-making.
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14.2 Learning from History: Trends in Clinical Decision
Support

Attempts to build clinical decision support systems date back half a century and
provide rich insight into contextual constraints facing newML-CDSS. The first paper
on mathematical models for medical diagnosis was published in 1959 and since then
attempts to automate aspects of clinical practice have followed summers and winters
of artificial intelligence research [28].

Initial approaches focused on developing ‘expert’ diagnostic systems. These sys-
tems provided only one suggestion that the clinician was expected to follow. They
focused on providing the right information at the right time: such as drug allergy
alerts, guideline suggestions or diagnostic screening reminders. The rules on which
they were based were relatively simple and human-understandable. For example, a
colon cancer screening reminder generated when consulting a patient over a speci-
fied age [43]. The systems comprised of a knowledge base with IF/THEN rules, an
inference engine with which to combine the knowledge base with patient specific
data and a communication mechanism to relay the output to the clinician [50].

But in the early 1980s developers realised physicians were not interested in using
these Greek oracle-like expert systems: they valued their own expertise and auton-
omy as decision makers. From this emerged decision support, a more collaborative
approach in which a list of options is presented to the clinician. This remains the
dominant approach today [38].

The decision support systems of the last century relied on an internal knowl-
edge base. These have since evolved into non-knowledge based systems that employ
machine learning or other statistical pattern recognition techniques [6, 36]. These
new approaches have several advantages. Decisions in clinical practice are often
made based on incomplete information. Previous knowledge-based systems perform
poorly with incomplete data, but based on their training machine learning algorithms
can infermissing data points and perform under uncertainty [34]. Additionally, rather
than having a knowledge base derived from medical literature in need of constant
updating, such systems derive associations from patient data to generate a diagnosis
[6]. While this is clearly an advantage these approaches can be subject to their own
unique performance limitations, which can present interpretation challenges for the
clinician.

14.3 Over-Reliance and Under-Reliance in Automated
Systems

As all humans, clinicians are not often aware of their own propensity for thinking
errors known as cognitive biases, and have been shown to suffer fromover-confidence
in their abilities [5].
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Table 14.1 Interaction between system performance and user response

User response System performance

True positive False positive True negative False negative

Agree Appropriate
reliance

Commission
errors

Appropriate
reliance

Omission errors

Disagree Under-reliance Appropriate
reliance

Under-reliance Appropriate
reliance

As much as clinicians fail to recognise their own internal thinking errors, they
also fail to detect the influence that technology or system design can have upon
their behaviour. Technology can change behavior and induce error by occupying
valuable cognitive resources through poor user interface design, poor adaptation to
the clinician’s workflow, or inducing automation bias [12].

Of specific relevance to ML-CDSS is automation over-reliance, a phenomenon
that occurs when a human places inappropriate trust in an automated system. This
takes two forms: a commission error known as automation bias, where the human
acts upon a system‘s incorrect diagnosis, and an omission error known as automation
complacency, where the system fails to make a diagnosis, and the clinician fails to
spot the miss [12]. Automation bias and complacency result from the interaction of
system performance and user response (see Table 14.1). There are several examples
from traditional CDSS in the literature. Lyell and colleagues found that even simple
e-prescribing decision-support led to automation bias. Although a correct sugges-
tion by the CDSS reduced omission errors by 38.3%, when incorrect it increased
omission errors by 33.3% [32]. Similar results were found in a study of Computer-
Aided Detection (CAD) of breast cancers in mammograms: human sensitivity was
significantly lower in the CAD supported condition due to errors of omission [1].

Automation under-reliance, where the human fails to trust a reliable system is
also a source of error. What is clear is that for optimal human-machine performance,
the human must know when to trust and when not to trust the system. Transparency
influences the appropriate attributionof trust byproviding insight into how the system
arrived at its decision. An expert human can then evaluate the decision against their
own internal knowledge [20, 46]. Evidence from other industries shows trust in
recommender systems and decision support systems is increased when the system
provides an explanation for its recommendation [13]. But transparency is only one
factor to influence appropriate attribution of trust, and the degree towhich it is needed
varies depending on the context. The successful adoption of ML-CDSS in clinical
practice will depend upon designing the system to elicit appropriate trust, either
through transparency or other means.
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14.4 Clinical and Technology Factors in Human-Machine
Performance

Transparency influences trust and appropriate system use by providing insight into
how the machine arrived at a decision. But full transparency is unlikely to be useful
or understandable and may worsen human-machine performance. Clinicians may
not be familiar with the statistical techniques underlying the technology and must
use these systems under time pressure and high cognitive load. Given the hetero-
geneity of clinical practice transparency may also mean different things in different
contexts and should be tailored to the specific goals of the human at that time.
This section describes clinical and technology factors important in designing ML-
CDSS for appropriate trust, and proposes a conceptual model as the basis for further
research. These factors will influence trust in the system, the degree to which trans-
parency will be important, and shape the ultimate product requirements for optimal
human-machine performance.

14.4.1 Clinical Considerations for ML-CDSS

When designing point-of-care ML-CDSS there are two important clinical factors
to consider that will affect the degree of transparency needed: clinical risk and the
availability of expert evaluation.

14.4.1.1 Clinical Risk

The clinical risk presented by an ML-CDSS decision may influence the level of
transparency needed. The United Kingdom’s National Patient Safety Agency defines
clinical risk as “the chance of an adverse outcome resulting from clinical investiga-
tion, treatment or patient care.” Clinical risk can be understood in terms of severity
of a healthcare hazard multiplied by the probability that it will occur [41]. For exam-
ple, consider an ML-CDSS that takes real-time physiological data from a patient
under anaesthesia to support the anaesthetist in titrating sedation. The impact of
an error is clearly significant (high severity). Given the time pressure and operator
cognitive load the probability that an error will go unidentified by the clinician and
ultimately impact the patient is potentially high (high probability). In this context,
system transparency around performance and the inputs on which it is basing its
decision are important to enable the clinician to evaluate its output and mitigate the
risk.

Contrast this with an algorithm that uses health record data to predict which
members of a primary care physician’s patient cohort might develop diabetes in the
next five years. The clinical risk presented by an error in this example is lower:
immediate interventions based on the information are minor and errors would have a
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low impact (low severity). The clinician also has ample time to evaluate the validity
of the decision, check orthogonal data or discuss with her colleagues. The probability
that errors will go unidentified and impact the patient is lower, the clinical risk is
lower and transparency may be less of a critical requirement.

Assessing the impact and probability of an error is important in defining the
requirements for ML-CDSS systems. Doing so requires close collaboration with the
clinicians who will ultimately be using the technology.

14.4.1.2 Expert Evaluation

The clinician plays an important role in verifying the output of an ML-CDSS and in
doing so, mitigating the risk. There are several factors, including transparency that
influence a clinician’s ability to evaluate the output of anML-CDSS: experience with
CDSS, time pressure, interruptions, the availability of orthogonal data, familiarity
with the subject matter and task complexity [17, 20, 29, 53]. Given the constraints
on achieving transparency with some ML approaches such as ANNs, designers and
developers may be able to optimise for other factors to elicit appropriate trust in their
systems.

Experience with CDSS

In a meta-analysis of effect modifiers of automation bias, experience with a CDSS
was found to decrease automation bias [20]. Repeated use of a CDSS allows a user
to understand the limits of its performance and know when to place appropriate
trust. Trust is one of the most extensively studied and strongest factors to affect
automation bias [17]. But one of the challenges inherent in healthcare as opposed
to other industries such as aviation, is the lack of reliable feedback loops. When an
error occurs it might have no immediate consequences, significant time can elapse
before it is discovered, or news of the error may never get back to the decision-maker
[14]. In human diagnostic performance, this results in a cognitive bias called the
feedback sanction and subsequent over-confidence in diagnostic performance [14].
In the context of human-machine interaction lack of feedback makes it hard for the
user to assess the performance of a system, and thereby calibrate their trust. Feedback
may vary depending on the context: in the examples above, the anaesthesiologist has
immediate feedback from the physiology of the patient. The primary care physician,
however, may not know if the system is correct for several years, meaning experience
may not improve human-machine performance.

Experience and training also help users generate correct conceptual models of
the way the system works. A conceptual model is a mental model of how a system
or device works. In the absence of correct conceptual models humans form their
own often erroneous conceptual models, leading to errors in using the device [42].
Even a highly simplified conceptual model can improve trust and appropriate use of
a technology.
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Subject matter expertise and task complexity

Familiarity with the subject matter also affects a clinician’s ability to evaluate the
output of a system: those less confident in their own abilities are more likely to be
subject to automation bias [15]. This is closely related to task complexity and work
load, which was found to be associated with automation over-reliance [21]. More
experienced clinicians are likely to cope well with more complex work-loads, and
potentially be better at evaluating the output of a CDSS.

The attraction ofML-CDSS lies in the potential to take large data sets and identify
novel associations or predictions. For example, a 2015 paper by researchers at the
Icahn School of Medicine at Mount Sinai applied a clustering algorithm to medical
record and genotype data from 11,210 individuals. They identified three sub-types
of type 2 diabetes, each susceptible to different complications of the disease [31].
But before use in clinical practice these novel associations will need to be validated,
and will continue to be unfamiliar to clinicians. This is a critical consideration when
building ML-CDSS: is the system automating current medical practice or discover-
ing new associations? The former will be easier to implement and transparency not
as essential; the clinician can compare the output with their own internal knowledge.
The latter, in addition to rigorous clinical validation,may require greater transparency
to elicit trust and gain adoption. As more domains are supported by CDSS there is a
risk of de-skilling, and as a result a reduction in the ability of clinicians to evaluate the
performance of their systems [7, 18, 19]. As an example, some electrocardiogram
(ECG) machines currently provide a suggested diagnosis, written at the top of the
printed page. But doctors are encouraged to ignore the decision-support and come
upwith their own conclusions to ensure the skill of ECG interpretation is maintained.

Time pressure

Urgency and frequent interruptions are major barriers to proper evaluation of a deci-
sion [12]. They are also universal characteristics of inpatient working conditions: a
review of the literature found that nurses can be interrupted from a task over 13 times
an hour [39]. Transparent ML-CDSS in such environments must be highly context
specific, provide simple, task relevant information to reduce cognitive load and make
it easy to return to the task after a distraction.

High urgency also removes the opportunity to consult with colleagues or assess
orthogonal data. Insufficient sampling of information has been shown to be associ-
ated with increased rates of commission errors [2]. Transparency matters too: in high
pressure situations the degree to which the CDSS can provide an explanation for its
decisions will impact the appropriate attribution of trust in the system [37]. The pri-
mary care physician described above has ample opportunity to discuss the output of
the algorithm with colleagues and decide whether to act upon its recommendations.
The anaesthesiologist does not have that opportunity: the systemmust be sufficiently
transparent for her to decide whether to trust its output without additional data or
team support.
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Individual differences

While not specific to clinical practice, individual differences in cognition and per-
sonality can also affect a clinician’s propensity for automation bias and therefore the
level of transparency that might be required [20]. Some users have a predisposition to
trust an automated system,while others aremore likely to distrust it [17]. In designing
systems to scale across multiple clinical contexts it is hard to account for individual
differences, but it is important to consider this when interpreting user feedback. Each
physician may respond differently to an ML-CDSS, making it helpful to work with
several different users.

14.4.2 Technical Considerations for ML-CDSS

In addition to clinical and contextual factors the design and performance of the
technology itself influences trust and the likelihood of error. There is an interaction
between user interface design and system performance: poor system performance
and poor user interface design create a perfect storm for the inappropriate attribution
of trust. The system performs poorly and the user is unable to identify the error [30].
But even a system with excellent performance can facilitate errors or bias physician
behaviour if the user interface design is inadequate.

14.4.2.1 User Interface Design

Human-machine interaction errors due to user interface design are likely to be more
common in healthcare than is currently known. A study of errors over a four-year
period in a tertiary care hospital in Hong Kong found that 17.1% of all incidents
reported were technology related, and of those 98.1% were socio-technological. The
errors were not due to a technology failure, but due to how the system was operated
by the user [48].

User interface design is essential for communicating system performance. Con-
sider the following example from a device designed to deliver radiation therapy, the
Therac-25, used between 1985 and 1987. It was discovered that the user interface
made it possible for a technician to enter erroneous data, but despite appearing to
correct it on the display the system would continue to deliver the wrong level of radi-
ation. The only indication the dose being delivered was incorrect was an ambiguous
‘Malfunction 54’ code [30]. During the two years that the fault remained undiscov-
ered multiple patients received lethal levels of radiation. Further software problems
were found, each alerting the clinician by similar ambiguous malfunction codes.
One technician reported 40 codes in a day, none of which enabled the clinician to
understand the underlying issue [30]. Clear communication in the user interface as
to the nature of the error would have avoided the continued use of this device, and
continued patient harm.
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User interface and information design can not only be a cause of error, but also
greatly influence clinician decision-making behaviour, for better or worse. Torsvik
and colleagues found that different data visualisations influenced medical students’
interpretation of identical clinical chemistry results, to the extent that for one of
the visualisations the results were more likely to be interpreted as within range
[51]. Another study found that user interface design can directly affect treatment
decisions. Persil and colleagues showed that simple grouping of antibiotic options
could influence whether the clinicians chose a conservative versus an aggressive
treatment for a patient with pneumonia [44]. This is important when considering
how to present the output of an ML-CDSS to a clinician. Care must be taken not to
inadvertently bias clinician decision-making.

14.4.2.2 System Performance

One path to reducing errors of omission and commission and improving human-
machine performance is to improve system performance. As shown in Table 14.1
automation bias and complacency both occur when a system under-performs. Devel-
opers and clinicians should be aware of errors particular to statistical pattern recog-
nition techniques that may impact performance. Data leakage is a phenomenon that
occurs when a variable included in the training/test set contains more information
than one would have access to in practice. The model exploits the variable, resulting
in good performance on the test set but poor performance in practice [24]. As an
example, a 2008 ML competition for detecting cancer in mammograms involved
training a model on a data set which contained amongst other data points, patient
IDs. The patient IDs had been assigned consecutively in the data sets, which meant
the IDs were relied upon to determine the source of the data and thereby increased
predictive power. But in practice, patient IDs are random and by relying on this data
in training the algorithm would perform sub-optimally in the wild [47].

A similar example is that of dataset shift: this refers to when the conditions under
which the model is trained differ from the conditions under which it is deployed. An
image recognition model trained on a set of images under controlled light conditions,
might fail when deployed in practice on images under varying light conditions [45].
To mitigate automation bias and complacency, systems should state performance
characteristics, population demographics on which the algorithm was trained, and
the conditions under which the system performs poorly [6].

14.5 The Interaction of Clinical and Technology Factors
in the Attribution of Appropriate Trust

Figure14.1 outlines a proposed conceptual model for understanding the factors that
influence appropriate system use. This model is by no means exhaustive and serves
to structure further discussion and investigation. Both an understanding of system
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Fig. 14.1 Clinical and technology factors impacting appropriate system use

performance and transparency into the system’s internal logic will help users place
appropriate trust in an ML-CDSS. Both, however, depend upon good user interface
design to communicate effectively to the user.

Clear communication of this information will enable expert evaluation. Expert
evaluation is itself determined by individual (e.g. training) and environmental (e.g.
time pressure) factors. Clinical risk is important throughout, influencing every con-
sideration fromacceptable performance characteristics to the need for regular reviews
of appropriate utilisation once the system is in routine use.

14.6 Adoption of ML-CDSS: Legal, Ethical and Policy
Implications Beyond Point-of-Care

Designing point-of-care systems with attention to the factors described may improve
system design and reduce the risk of error. But transparency into an ML-CDSS’s
internal logic is important beyond the bedside.

One of the major concerns regarding the lack of transparency, which cannot be
addressed through other means, lies in the attribution of blame in situations of med-
ical error. Technology developers often place the burden of responsibility on the
clinician [26]. The clinician must use the device within the bounds of their medical
knowledge and interpret the information in the context of the patient. The Therac-75
case highlights how poor communication and lack of transparency limits the infor-
mation available, meaning the user cannot make an informed decision [16, 30]. To
justifiably defer responsibility, the technologymust equip the clinicianwith sufficient
information tomake an informed decision. Further, transparency is essential for iden-
tifying root cause and attributing blame. This concern is reflected in a recent directive
from the European Union states that by 2018, companies deploying algorithms that
influence the public must provide explanations for their models’ internal logic [22].
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Second, from an ethical and legal standpoint transparency is needed to support
clinicians in gaining informed consent. If the physician does not understand the
logic behind a certain treatment recommendation they cannot reasonably inform the
patient and obtain consent.

Finally, true adoption in medicine depends on obtaining clinical utility data and
updating medical guidelines. For algorithms that generate novel associations trans-
parency may be needed in order for policy makers and medical societies to trust the
findings and invest in costly clinical trials or health economic studies.

14.7 Conclusion

Clinical decision support in medicine has a rich history and is undergoing a renais-
sancewith the advent of newmachine learning techniques. But new technologies face
the same challenges as the previous approaches. The inappropriate attribution of trust
is one of the major barriers to widespread adoption and leads to medical error in the
form of omission and commission errors. Lack of transparency is an issue for clinical
practice as it prevents physicians from evaluating decision-support outputs against
their own internal knowledge base. But full transparency, given the conditions under
which clinicians work, is hard to achieve and may negatively impact trust. Different
degrees of transparency may be needed depending on clinical risk and the ability
of the expert to evaluate the decision. Designing with an appreciation of real-world
practice constraints such as time pressure, combined with good user interface design
to enable expert evaluation can facilitate appropriate use. Early engagement with
clinicians in the design, development and implementation of new technologies will
reduce risks and improve system adoption [27]. Given the potential for new errors
and work-arounds, continued monitoring of technologies as they enter common use
is important to ensure patient safety [9].

These practical, ethical and legal constraints on ML-CDSS may mean that devel-
opers are forced to take different approaches if ML-techniques are unable to provide
the required transparency [11]. But medicine is highly heterogeneous and local col-
laborations between clinicians and technologists will identify niche areas where risk,
transparency and utility align and ML-based approaches can provide value.
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Chapter 15
Group Cognition and Collaborative AI

Janin Koch and Antti Oulasvirta

Abstract Significant advances in artificial intelligence suggest that we will be using
intelligent agents on a regular basis in the near future. This chapter discusses group
cognition as a principle for designing collaborative AI. Group cognition is the ability
to relate to other group members’ decisions, abilities, and beliefs. It thereby allows
participants to adapt their understanding and actions to reach common objectives.
Hence, it underpins collaboration. We review two concepts in the context of group
cognition that could inform the development of AI and automation in pursuit of
natural collaboration with humans: conversational grounding and theory of mind.
These concepts are somewhat different from those already discussed in AI research.
We outline some new implications for collaborative AI, aimed at extending skills
and solution spaces and at improving joint cognitive and creative capacity.

15.1 Introduction

The word ‘collaboration’ is derived from the Latin col- (‘together’) and laborare (‘to
work’). The idea of a machine that collaborates with humans has fired the imagina-
tion of computer scientists and engineers for decades. Already J.R. Licklider wrote
about machines and humans operating on equal footing and being able to ‘perform
intellectual operations much more effectively than a man alone’ [60].

If there is a shared tenet among the visionaries, it is that the more complex the
activities become – consider, for example, planning, decision-making, idea genera-
tion, creativity, or problem-solving – the more beneficial collaboration is. However,
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although collaboration has received attention from research on automation, robotics,
Artificial Intelligence (AI), and Human-Computer Interaction (HCI), it can be safely
said that most technology is not yet collaborative in the strong sense of the term.
Humans are mainly in a commanding role or probed for feedback, rather than parties
to a mutually beneficial partnership. There is much that could be done to better use
human abilities in computational processes, and vice versa.

The topic of this chapter is group cognition: the ability to bring about a common
understanding among agents; relate to other agents’ decisions, abilities, and beliefs;
and adapt one’s own understanding toward a common objective [82]. This goes
beyond the common notion of a computer ‘understanding’ human intents and actions,
and highlights the necessity of contextual awareness, the ability of communicating
reasoning behind actions to enable valuable contributions [51]. This, we argue, would
result in human–machine collaboration that not only is more efficient but also is more
equal and trustworthy.

We find group cognition particularly promising for re-envisioning what AI might
need to achieve for collaboration, because itmesheswith a strong sense of the concept
of collaboration. Group cognition emerges in interaction when the group members
involved, humans or computers, share knowledge and objectives and also dynami-
cally and progressively update their understanding for better joint performance. This
captures one aspect of the essence of machines that can be called collaborative.

Group cognition points towards various abilities necessary for collaboration. In
this chapter we ask which of these abilities are needed for collaborative AI’s. Among
the many fields one might consider in the context of collaborative behaviour, man-
agement psychology presents an extensive body of research on how team mem-
bers collaborate to solve common problems together [46], while developmental
psychology has looked more closely at collaboration as an evolving behaviour in
humans [32]. By comparison, AI and HCI research has looked at collaboration from
the principal–agent perspective [65], in terms of dialogue and initiative [5], and as
computer-mediated human–human collaboration [35]. Perhaps the most significant
advances related to algorithmic principles of collaboration in the field of computer
science have been made in the field of interactive intelligent systems [9, 81] and
human–robot interaction [77]. However, on account of its roots in psychology and
education, the concept of group cognition is rarely referred to within computational
and engineering sciences.

To this end,weprovide definitions, examples, and discussion of implications of the
design of such an AI, where ‘AI’ refers mainly to machine learning-based intelligent
systems though not being limited to that sense. We further discuss two key aspects of
group cognition, by borrowing the concepts of conversational grounding and theory
of mind. Even though these concepts overlap somewhat with each other, their use in
combination does not map onto any existing concept in AI research.

Recent advances in AI have shown capabilities that are clearly relevant for group
cognition, such as intent recognition [59], human-level performance in problem-
solving [23], and cognitive artificial intelligences [90]. However, these capabilities
do not trivially ‘add up to’ a capability of group cognition. In contrast to previ-
ous thought, wherein machines have often been described as extended minds or
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‘assistants’, we hold that a system capable of group cognition would better under-
stand human actions as part of a joint effort, align its actions and interpretations with
the interpretation of the group, and update them as the activity evolves. A sense of
dependability and common cause would emerge, which would improve the trustwor-
thiness of such collaboration. In this way, a system capable of group cognition could
participate in more open-ended, or ill-defined, activities than currently possible.

15.2 Definitions of Collaboration

We start by charting some definitions of collaboration. This groundwork serves as
a basis for reflecting on group cognition as a theory of social behaviour. In social
sciences and philosophy, the key phenomenon in collaboration is called intersub-
jectivity. Intersubjectivity refers to how two or more minds interrelate: understand
each other and work together from their individual cognitive positions [83]. Some
well-known social theories related to intersubjectivity are mediated cognition [87],
situated learning [56], knowledge building [45], and distributed cognition [42];
D.J. Wood and B. Gray present an overview of differences among these perspectives
[91]. We illustrate these differences with reference to a small selection of commonly
accepted definitions.

Collaborative work has been defined within the domain of organisational work
as ‘a mutually beneficial relationship between two or more parties who work toward
common goals by sharing responsibility, authority, and accountability for achieving
results’ [18]. This definition is used to understand collaboration in companies and
other organisations, and the focus has been mainly on the outcome and values of
team collaboration. Knowledge discovery in problem-solving is emphasised in the
definition of collaboration as ‘a continued and conjoined effort towards elaborating
a “joint problem space” of shared representations of the problem to be solved’ [7]. A
third definition we wish to highlight focuses on differences among the contributing
actors. Here, collaboration is ‘a process through which parties who see different
aspects of a problem can constructively explore their differences and search for
solutions that go beyond their own limited vision of what is possible’ [38].

In this chapter, we build on a fourth definition, from Roschelle et al., who define
collaboration as ‘a coordinated, synchronous activity that is the result of a continued
attempt to construct and maintain a shared conception of a problem’ [72]. This
definition builds on the notion of collaboration as a cognitive action but also includes
aspects of the previouslymentioned definitions. The latter definition originated in the
field of collaborative learning. Some empirical evidence exists that such collaborative
learning enhances the cognitive capabilities of the people involved, allowing them
as a team to reach a level of cognitive performance that exceeds the sum of the
individuals’ [7].

Collaboration also has to be distinguished from co-operation, a notion that is
at times used to characterise intelligent agents. Roschelle et al. suggest that co-
operative work is ‘accomplished by the division of labour among participants, as an
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activity where each person is responsible for a portion of the problem-solving’ [72],
whereas collaborative learning involves the ‘mutual engagement of participants in a
coordinated effort to solve the problem together’ [72].Co-operation and collaboration
differ also in respect of the knowledge involved and the distribution of labour. To
co-operate means at least to share a common goal, towards whose achievement each
participant in the group will strive. But this is compatible with dividing the task
into subtasks and assigning a specific individual (or subgroup) responsibility for
completing each of these. We can conclude, then, that ‘to collaborate’ has a stronger
meaning than ‘to co-operate’ (in the sense of pursuing a goal that is assumed to be
shared). The former involves working together in a more or less synchronous way,
in order to gain a shared understanding of the task. In this sense, co-operation is a
more general concept and phenomenon than collaboration.

Collaboration is a specific formof co-operation: co-operationworks on the level of
tasks and actions, while collaboration operates on the plane of ideas, understanding,
and representations. In light of these definitions, research on group cognition can be
viewed as an attempt to identify a necessary mechanism behind humans’ ability to
collaborate.

15.3 Group Cognition: A Unifying View of Collaboration

The core research goal on group cognition has been to shed light on cognitive abilities
and social phenomena that together enable what is called ‘collaboration’. The widely
cited definition of group cognition alluded to above points out three qualities: (1) an
ability to converge to a common understanding among agents; (2) an ability to relate
to other agents’ decisions, abilities, and beliefs; and (3) an ability to adapt one’s own
understanding toward a common objective during collaboration [82].

Research on group cognition has focused mostly on learning and ideation tasks in
small groups (of people). A group’s shared knowledge is claimed to be constructed
through a process of negotiating and interrelating diverse views of members. Par-
ticipants learn from each other’s perspectives and knowledge only by accepting the
legitimate role of each within the collaboration. This distinguishes group cognition
from concepts such as extended cognition [36], wherein other participants are vehi-
cles for improving or augmenting the individual’s cognition rather than legitimate
partners. The implication for AI is that, while a system for extended cognition would
allow a person to complete work more efficiently by lessening the cognitive load
or augmenting cognitive abilities, a ‘group-cognitive system’ would complement a
human partner and take initiative by constructing its own solutions, negotiating, and
learning with and for the person. It would not only improve the cognitive abilities of
the human but enhance the overall quality of joint outcomes.

In group cognition, participants construct not only their own interpretations but
interpretations of other participants’ beliefs [82]. This distinguishes group cogni-
tion from previous concepts of collaboration such as conversational grounding [20].
Group cognition is not so much the aggregation of single cognitions as the outcome
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of synchronisation and coordination of cognitive abilities among the participants,
cohering via interpretations of each other’s meanings [86]. It has been argued that
groups that achieve this level feel more ownership of the joint activity [24, 63]. This
observation has encouraged studies of group cognition in childhood development,
work, and learning contexts [3, 13].

In contrast to isolated concepts traditionally used in HCI and AI today, group
cognition may offer a theoretical and practical framing of cognitive processes under-
pinning human-with-human collaboration. For machines to become collaborative
participants, their abilities must be extended toward the requirements following from
attributes of group cognition. This would allow machines to expand their role from
the current one of cognitive tools toward that of actual collaborating agents, enabling
the construction of knowledge and solutions that go beyond the cognition of each
individual participant.

In this chapter, though, we consider mainly dyadic collaboration, involving a
human–machine pair. Even though this restricts our scope to a subset of the phenom-
ena encompassed by group cognition, larger groups require additional co-ordination,
which is not addressed within the constraints of this chapter.

Taking the definition of group cognition as a foundation for our analysis, we can
identify twomain aspects of successful human–machine collaboration: (1) the ability
of recurrently constructing mutual understanding and meaning of the common goal
and interaction context and (2) the ability to interpret not only one’s own reasoning
but also the reasoning of other participants. In order to discuss these requirements
in more detail, we make use of recognised theories from cognitive science and col-
laborative learning – namely, conversational grounding and theory of mind. Both
theories contribute to a comprehensive view of group cognition. Though the two
have considerable overlap, both are necessary if we are to cover the fundamental
aspects of group cognition [7, 82].

In the following discussion, we briefly introduce these theories and explain their
relation to group cognition. Proceeding from this knowledge, we then present key
requirements and explain their potential resolution. Then, in Sect. 15.6, we present
current realisations of systems addressing these requirements, identify limitations,
and present ideas for future research.

15.4 Conversational Grounding

‘Grounding’ refers to the ability to create a shared base of knowledge, beliefs, or
assumptions surrounding a goal striven toward [8]. Whilst taking grounding to be a
complete explanation of collaborative behaviour has been questioned, the concept’s
explanatory power for constructing meaning in small-scale, dyadic collaboration has
been demonstrated in several studies [82].

The term is used in the sense employed by Clark et al. within the tradition of
conversational analysis [20]. They argue that common ground and its establishment
are the basis for collaboration, communication, and other kinds of joint activity.
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Especially within dyadic interactions, it has informed various theoretical frame-
works, even in AI. Among the most prominent are the collaborative model [19],
the Mixed-Initiative (MI) framework [5], and theories of collaborative learning [8].
Grounding highlights the necessity for efficient communication to ground the col-
lective understanding by ensuring not only clear expression of the contributions to
the collaboration but also correct reception by the addressees. It is thus a basic con-
stitutive activity in human–human communication and collaboration.

It has been claimed that two factors influence success in grounding: purpose and
medium [20]. Purpose refers to the objective, desire, or emotion that should be con-
veyed within a collaborative undertaking. Themedium is the technique to express the
current purpose,which includes the cost its application requires. Clark et al. introduce
the concept of the ‘least collaborative effort’ [20], according to which participants
often try to communicate as little as possible – but as much as necessary – with the
most effective medium to allow correct reception. From this perspective, work on
mixed-initiative interaction has addressed mainly the co-ordination of communica-
tion, when to communicate. Grounding could inform MI and other AI frameworks
with regard to how reciprocal understanding among participants could be achieved.
To this end, we can identify four key requirements:

(1) Expressing one’s own objectives: Grounding is based on successful expres-
sion of one’s objectives, requirements, and intents that define the purpose of the
conversation in the collaborative activity [20]. Achieving this with a computer is not
trivial. In amanner depending on themedium, a system has to divide information into
sub-elements, which can then be presented to other group members (e.g., a concept
into sufficiently descriptive words). Among examples that already exist are dialogue
systems applying Belief–Desire–Intention models [48] and theoretical models for
purposeful generation of speech acts [21] to construct meaningful expressions of
objectives. Also, there is a growing body of research exploring the potentials of con-
cept learning [25, 53], which would enable a machine to combine objectives and
communicate or associate them with existing concepts.

(2) Selecting the most effective medium: To collaborate, a participant has to select
the medium that can best convey the purposes of the conversation. In human-to-
human conversation, a purpose can be expressed in various ways, including verbal
and non-verbal communication. The choice of medium depends on the availability
of tools, the effort it requires to use the medium, and the predicted ability of the
collaborator to perceive the purpose correctly. Tools in this context are all of the
means that help to convey the purpose – e.g., speech, pointing, body language, and
extendedmedia such as writing or drawing. The effort of using a medium depends on
skills and the ability to apply them. In the case of drawing, the effort would include
getting a pencil and paper as well as having the ability to draw the intended purpose.
Finally, the selection of the medium depends also on the ability of other participants
to perceive it correctly. This is related to the ability to physically perceive themedium
(for example, hand gestures’ unavailability during a phone call) and to the predicted
ability to understand the medium. The ability of an intelligent system to select a
medium is obviously limited by its physical requirements. While embodied robots
share the same space and the same media as a human and can engage in pointing,
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eye movement, or use of voice [62], virtual agents possess limitations in addressing
physical elements when referring. On the other hand, virtual agents’ enhanced skills
with visual, animated, or written representations of information can be exploited as
a comparatively strong expressive medium.

(3) Evaluating the effort of an action: H.H. Clark and D. Wilkes-Gibbs introduce
the principle of least collaborative effort as a trade-off between the initial effort of
making oneself understood and the effort of rephrasing the initial expression upon
negative acknowledgement, as in the case of misunderstanding [19]. Previous work
on least effort has examined short and precise communication efforts, which favour
unique wording as optimal strategy. In contrast, Clark and Wilkes-Gibbs show that
least collaborative effort does not necessarily follow the same pattern. On account
of the joint effort of understanding within collaboration, the interpretation of least
effort can be relaxed and groups can also acceptwordingswith internal references that
are not necessarily unique to the given context. This presents both an opportunity
and a challenge for machines. The conversation structure of most conversational
agents, such as Siri [47], follows the least effort principle, by providing short and
specific answers. Extending this to a least-collaborative-effort strategy would imply
the ability to connect knowledge with previous and general expressions. N. Mavridis
presents ‘situated language’ to overcome these issues and enable a machine to extend
its communication ability to time- and place-dependent references [62].

(4) Confirming the reception of the initial objective: For successful conversa-
tional grounding, the group member expressing knowledge not only must find the
right medium and dimension for expression but also has to verify correct reception
by other members through evidence [20]. This allows the group to create mutual
understanding within the process. Evidence for understanding may be positive, indi-
cating that the receiving participant understood, or negative. People often strive for
positive evidence of correct reception of their expression, which can be provided
either through positive acknowledgement, such as nodding or ‘mmm-hmm’, or via
a relevant next-turn response, which may be an action or expression building on
the previous turn(s). Naturally, the reaction to the expression might differ with the
medium used. Enabling a machine to evaluate understanding by other group mem-
bers, therefore, entails new research into not just natural-language processing in
relation to natural interaction [11] but also handling of non-verbal behaviour [29].

While grounding refers to the ability to communicate and receive knowledge to
find ‘common ground’, group cognition goes beyond that. It additionally requires
reciprocal interpretation of thoughts and intentions, for relation to other group mem-
bers’ decisions and beliefs [7]. In order to highlight this, we borrow from theory of
mind as a basis for our analysis in the next part of the chapter.

15.5 Theory of Mind

The ability of interpreting one’s own knowledge and understanding as well as inter-
preting other collaborators’ understanding is crucial for successful collaboration
in group cognition [31]. Theory of mind is a topic originating from research on
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cognitive development. It focuses on the ability to attribute mental states to oneself
and others and to recognise that these mental states may differ [15].
Mental states may be beliefs, intentions, knowledge, desires, emotions, or per-
spectives, and understanding of these builds the basis for grounding. The ability to
interpret others’ mental states allows humans to predict the subsequent behaviour
of their collaborators, and it thereby enables inferring the others’ aims and
understandings.

Whilemost research on theory ofmind has focused on developmental psychology,
a growing body of literature backs up its importance for group behaviour [2] and
group cognition [83], suggesting the importance of the concept for human–machine
collaboration [15]. Human–machine interaction nevertheless is often limited by the
level of ability to interpret the ‘mind’ ofmachines, on account of their different, some-
times unexpected, behaviour. People still approach new encounters with technology
similarly to approaching other human beings, and attribute their own preconceptions
and social structures to them [15, 34]. For reason of machines’ inability to interpret
their own mental state and that of others, prediction of the behaviour of humans in
line with preconceptions often fails.
Three abilities stand out as vital for the development of collaborative AI in this
context:

(1) Interpreting one’s own mental states: Enabling an intelligent machine to inter-
pret its ownmental states requires a computational notion of and access to intentions,
desires, beliefs, knowledge, and perspectives. At any point during collaboration, a
mental state with regard to another group member may depend on the content of the
discourse, the situation, and the information about the current objective.

Most AI applications have been limited to specific tasks, to reduce the complexity
of the solution space by decreasing the number of objectives, requirements, and
intents involved.However, this also reduces themachine’s ability to adapt to changing
contexts as found in a discourse, wherein it is necessary to extend the predefined
belief space. Recent approaches in collaborative machine learning have constituted
attempts to overcome the limitation of single-purpose systems [55]. These allow
various information sources, such as sensors, to be integrated into a larger system,
for broader knowledge. However, these sources have to be well integrated with each
other if they are to create coherent knowledge about a situation [36].

(2) Interpreting others’ mental states: Humans constantly strive to attributemental
states to other collaboration participants, to enable prediction of the others’ subse-
quent reactions and behaviours [15]. Such reasoning enables conversations to be
incremental. Incremental conversation refers to the ability to follow a common chain
of thoughts and forms the basis of any argumentation and subsequent discussion (as
in brainstorming). A large body of work on machine learning and AI is related to
identifying and predicting human intention [28, 66] and actions [29, 88, 89]. How-
ever, this requirement is reciprocal and implies the same needs related to human
understanding of the AI mind.

(3) Predicting subsequent behaviour: Similarly to interpretation of another’smen-
tal state, prediction of later behaviour can be considered from two sides: Humans
apply a certain set of underlying preconceptions to interactions with intelligent



15 Group Cognition and Collaborative AI 301

systems, which often leads to disrupted experiences that arise from unexpected
behaviour of the system [15, 77]. Scholars are attempting to identify the information
needed for predicting behaviour of machines. In A. Chandrasekaran et al.’s study
of human perception of AI minds [15], humans were not able to predict the sub-
sequent behaviour of the AI even when information about the inner mental states,
like certainty and attention, of the machine was presented. In contrast, research into
machines’ prediction of human behaviour has a long history and has already yielded
promising results [67, 73].

Group cognition is an interactive process among group members and requires
participants to reason about decisions and actions taken by others in order to find
common, agreeable ground for progress in the collaboration. While theory of mind
explains the former underlying cognitive principles well, it does not explain how
this common ground is built. For this reason, we have combined the two theories for
our discussion, to elaborate a more comprehensive list of abilities necessary for AIs’
engagement in collaboration.

15.6 Challenges for Collaborative AI

The group cognition angle may pinpoint mechanisms necessary for collaborative
interaction between humans and artificial agents. In this context, we have high-
lighted two key concepts – conversational grounding and theory of mind. In sum-
mary, group cognition requires both the ability to internalise and constantly update
knowledge in line with one’s interpretation, as described in theory of mind, and a
mutual understanding of the collaboration’s purpose, provided through grounding.
In the following discussion, we reflect on how these two concepts tie in with current
research on AI, highlighting which capabilities may already be achievable by means
of existing methods and which still stand out as challenges for future research.

15.6.1 Identify One’s Own Mental States

Human–human collaboration is based on the assumption that participants are able to
identify their own objectives, knowledge, and intents – in other words, their mental
states. Extrapolating intentions fromone’s ownknowledge based on the collaboration
interaction and the mutual understanding of the goal is crucial.

Two limitations stand out. Firstly, although there is increasing interest in self-
aware AI, most work on the inference of mental states has considered inference of
people’s mental states while ignoring the necessity of interpreting the machines’
‘mental states’ [15]. Secondly, because ‘common sense’ is still out of reach for AI,
most (interactive) machine learning and AI systems address only narrow-scoped
tasks. This limits their ability to form a complete picture of the situation, inferring
and constructing human-relatable intents.
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15.6.2 Select the Communication Medium
and Express Objectives

If it is to express objectives and intents, a machine has to select the most efficient way
to express them, as suggested in our discussion of grounding. There is a trade-off
between the effort it takes for the machine to use a certain communication medium
and the chances of the communication being received incorrectly.

Themedium of choice formost interactive virtual agents is text. Examples include
interactive health interfaces [33, 71] and industrial workflows [39], along with dia-
logue systems such as chat bots [41] and virtual personal assistants [57]. In recent
virtual assistants, text is often transformed into spoken expression. However, the sys-
tems usually apply stimulus–response or stimulus–state–response paradigms, which
does not suffice for natural speech planning or dialogue generation [62]. Another
medium is visual representation via, for example, drawing, sketching, and/or pre-
senting related images. Even if it requires further effort to translate the objectives of
a conversation to visual representation, people are especially good at understanding
drawings of concepts, even when these are abstract [19]. While virtual agents are
starting to use graphics such as emoji or more complex images to convey emotions
[30], communication through visual representations, overall, represents an under-
researched opportunity in human–machine collaboration. The field of human–robot
interaction, meanwhile, has looked at more natural conversational media for express-
ing objectives or intents [62]. Here, verbal communication is combined with non-
verbal communication, such as gaze-based interaction [93], nodding [79], pointing
[74], and facial gestures.

However, more studies are needed before we will be able to exploit the poten-
tial of gestural and gaze behaviour, along with more graphical representations at
different abstraction levels. That work could result in a more efficient medium for
communication to humans than is observable in human interaction today.

15.6.3 Confirm the Reception and Interpretation
of Objectives

Communication, according to the grounding theory, is successful when a mutual
understanding is created.This requires successful receptionof theobjective expressed.
Reception – and acknowledgement of it to the communication partner – is necessary
for understanding of mental states and objectives within a group. We can borrow
the principle of evidence for reception [20] to state that machines should expect and
work with the notion of positive or negative evidence.

Here, negative and positive evidence have a more specific meaning than in the
sense of negative and positive feedback familiar from machine learning. Clark et
al. identify two possible ways of giving positive evidence, next-turn responses and
positive acknowledgement [20]. Next-turn responses are evaluated by looking at the
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coherence between one’s own inference and the group member’s next-turn responses
as well as the initial objectives of the conversation. A.C. Graesser et al., for example,
present an intelligent tutoring system that emphasises the importance of next-turn
response that is based on learning expectations instead of predefined questions [37].
When interacting with a student, it ‘monitors different levels of discourse structure
and functions of dialogue moves’ [37]. After every answer, it compares the response
with the objectives by applying latent semantic analysis, then chooses its commu-
nication strategy accordingly. This allows the system to reformulate the question or
objective when it perceives that the response does not match expectations. Further
examples of such systems are presented by B.P. Woolf [92].

In open-ended tasks such as brainstorming, however, the next-turn responsemight
not have to do with the initial objective so much as with extension or rejection
of the intent behind it. In such contexts, humans often fall back to positive and
negative acknowledgements. Recognising social signals such as nodding, gaze, or
back-channel words of the ‘uh-huh’ type as positive acknowledgement plays an
important role in human interaction and hence is an important ability for a fully
collaborativemachine.Within thefield of human–robot interaction, recognising these
signals has been an active research topic for some time [69, 94]. D. Lala et al.
have presented a social signal recognition system based on hierarchical Bayesian
models that consider nodding, gaze, laughing, and back-channelling as social signals
for engagements and acknowledgement [54] with promising results. This approach
allows determining which social cues are relevant on the basis of judgements of
multiple third-party observers and includes the latent character of an observer as a
simulation of personality. The detection of social signals, acknowledgements, would
allow a machine to adapt its behaviour and reactions to the other group members.

15.6.4 Interpret the Reasoning of Others

If they are to contribute efficiently to a collaborative effort, group members have
to understand the reasoning of the other participants. We use ‘reasoning’ to mean
not merely mental states but also the logic and heuristics a partner uses to move
from one state to another. This is necessary for the inclusion and convergence of
thoughts, intentions, and perspectives in group cognition. While there is a large body
of research on human intent recognition [50, 64] and cognitive state recognition
[10], researchers have only recently acknowledged the importance of the reciprocal
position, that humans need to understand the computer’s reasoning. We review the
topic only briefly here and refer the interested reader to chapters of this book that
deal with it more directly.

Transparent or explainable machine learning is a topic of increasing interest.
Stemming mainly from the need to support people who apply machine learning in,
for example, health care [14] or finance [96], the need for understanding the internal
states of machines is relevant also with regard to collaborative machines. Z.C. Lipton
[61] points out, in opposition to popular claims, that simple models – such as linear
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models – are not strictly more interpretable than deep neural networks, because
it depends on the notion of interpretability employed. The complexity of neural
networks through different acting layers and raw input data increases the realism
of presented results relative to human expectations; this supports interpretability of
the machine’s actions. In contrast, linear models rely on hand-engineered features,
which can increase the algorithmic predictability but can render unexpected results,
which are less expressible themselves.

T. Lei et al.’s approach of rationalising neural networks provides insight into the
explainability of internal states on the basis of text analysis [58].By training a separate
neural network on subsections of the text, they highlighted those parts likely to have
caused the decision of the main network. Another example of explaining deep neural
networks is presented by L.A. Hendricks et al. [40]. They used a convolutional neural
network to analyse image features and trained a separate recurrent neural network
to generate words associated with the decision-relevant features. While this method
provided good results, the explanatory power is tied to the structure of the network.
In a third example, M.T. Ribeiro contributed his LIME framework, a technique to
explain any classifier prediction, by learning a proxy interpretable model for certain
locally limited predictions [68]. While the above-mentioned work focuses on the
explainability of machine learning and AI output, a promising framework presented
by T. Kulesza et al. describes some tenets for self-explainable machines [52]. In their
work, a system was able to explain how each prediction was made and allowed the
user to explain any necessary corrections back to the system, which then learned and
updated in line with that input.

Most of today’s approaches rely on separate training or manually added informa-
tion, which limits the scope of these systems to carefully selected and limited tasks.
In contrast, with more open-ended tasks, the potential context to be considered might
not be manually pre-determined. We note that for group cognition it may not be nec-
essary to explain to the user the reasoning that produced the outcome as opposed
to a selected set of belief states. Their relevance is determined, in contrast, by the
collaboration situation and themental state of the communication partner. That poses
a challenge for future work.

15.6.5 Predict Collaborative Actions of Others

Proceeding from their own knowledge and the reasoning of other group members,
participants can predict others’ behaviour. Again, this should be interpreted as a
reciprocal process including all members of the group. While previous research has
focused primarily on the prediction of human behaviour [67, 73], some recent work
has looked at prediction of machine actions by a human [15].

Chandrasekaran et al. evaluated the modalities necessary to enable humans to
create a ‘Theory of AI Mind’ [15]. In their study, participants were asked to infer the
AI’s answer with regard to a given image for questions such as ‘Howmany people are
in this image?’, with or without additional information presented alongside the AI’s
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response for the previous item. The users’ answers could be seen as the behaviour
expected of the AI. The modalities tested were a confidence barchart of the five best
predictions; and an implicit and explicit attention map provided as a heatmap for the
image. After the prediction, users were provided with instant feedback in the form of
the system’s answers. Users who had been presented with additional modalities too
were shown to have results with equal or lower accuracy in comparison to users who
received only the instant feedback. However, an increase in prediction accuracy after
only a few trials indicates that users learned to predict the machine’s behaviour better
through familiarisation than via additional information about internal processes. The
additional information seemed to encourage users to overadapt to system failures,
which resulted in worse overall prediction. Further studies are needed to evaluate
other potential sources of improved behaviour prediction. However, these first results
might indicate that, to understand and predictAI, humansmay needmore information
than that referring to reasoning alone.

The concept of group cognition comes from the discipline of collaborative learn-
ing, which has emphasised the necessity of each participant continuously learning
and updating said participant’s knowledge, concepts, and ideas. Having their origins
in psychology, the notions behind collaborative learning assume human-level under-
standing, communication, and learning capabilities. In the context of collaborative
machines, these traits do not exist yet and will have to be explicitly implemented.
We will next consider some opportunities for such implementations.

15.6.6 Update Knowledge for Social Inference

During collaboration, the group members must integrate inferences of other partic-
ipants with their existing knowledge. An extensive set of methods exists that may
achieve this. Among these are inverse reinforcement learning [1], Bayesian belief
networks [17], and variants of deep neural networks [22]. Results have been pre-
sented for social inference in special tasks, as language learning [17] and learning
through presentation [1, 6]. However, these approaches assume for the most part that
the human provides input for the machine to learn from, and they do not integrate
the human more deeply into the loop.

Interactive machine learning adds the human to the loop but has mainly been
applied for purposes of enriching data or boosting unsupervised or supervised learn-
ing [70]. P. Sinard et al. define interactive machine learning as machine learning
wherein the user can provide information to the machine during the interaction pro-
cess [80]. Meanwhile, A. Holzinger [43] considers interactive machine learning as
a type of collaboration between algorithm and human [70]. He points out that not
all input presented to a machine can be trained for, and that the machine has to
be able to adapt to such situations. He presents an approach using an ant-colony
algorithm to solve a travelling-salesman problem [44]. The algorithm presents the
optimal path found thus far and allows the user to alter this path, in line with the
contextual knowledge he possesses. Holzinger’s results illustrate that this approach



306 J. Koch and A. Oulasvirta

speeds up the discovery of the optimal path in terms of iteration when compared to
machine-only optimisation. Even though this approach allows the machine and the
human to work on a mutual goal, the common objective is fixed at the outset of the
task.

Another line of research relevant in this context is that into multi-agent systems
[84]. Work on multi-agent systems often refers to critical tasks such as disaster-
response control systems [75] or autonomous cars [27], wherein the aim is of ‘a
mixture of humans performing high level decision-making, intelligent agents coor-
dinating the response and humans and robots performing key physical tasks’ [75].
For a review of multi-agent systems, we direct the reader to Y. Shoham and K.
Leyton-Brown [78]. In general, research on human-in-the-loop multi-agent sys-
tems has focused on the task, the activity, and the role each agent should have in
order to contribute to reaching the defined goal [12]. For example, A. Campbell and
A.S. Wu highlight the criticality of role allocation, where a role is ‘the task assigned
to a specific individual within a set of responsibilities given to a group of individuals’,
for designing, implementing, and analysing multi-agent systems [12]. They further
present computational models for various role-allocation procedures in accordance
with a recent review of multi-agent methods. Role allocation, according to them,
grows ‘more important as agents become more sophisticated, multi-agent solutions
become more ubiquitous, and the problems that the agents are required to solve
become more difficult’ [12]. While most multi-agent research looks at machine
agents, as found in sensor–networks [4], some concepts and principles for the co-
ordination of collaboration and for how roles within a group can be allocated in the
most efficient way could be used for collaborative AI. However, in the strong sense
of the word ‘collaboration’, most of the multi-agent methods do not foster interactive
behaviour on common ground so much as favour individual task allocation. Never-
theless, experiences from these models can aid in understanding how roles influence
this interaction.

15.6.7 Apply New Types of Initiative in Turn-Taking

While learning in groups is a shared task with a common goal, in open-ended interac-
tion the goal depends on the current topics and can change as soon as new ideas start
being explored. Hence, there is a need for understanding which knowledge most
efficiently contributes to the current collaboration, and when. J. Allen et al.’s [5]
well-known mixed-initiative interaction framework provides a method for inferring
when to take initiative. Since Allen proposed it, this framework has been applied
in various contexts of interactive systems, among them intelligent tutoring systems
[37], interactive machine learning [16], and creative tools [26].

On the other hand, the decision on what to contribute presents a trade-off
between context-aligned recommendations (following the current chain of thoughts)
and exploratory recommendation (diversion from the current ideas). Contextually
aligned reactions, analogously with value-aligned interactions [76], may take less
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effort to communicate and react to, for reason of existing context and already
shared references. While these reactions are more likely to be understood by other
group members, they do not necessarily explore new possible solution spaces.
What could be called ‘exploratory initiatives’, on the other hand, bring with them
the problem that future topics are partly unknown and that, accordingly, selec-
tion of the ‘right’ idea path to follow can be a thorny problem. This unknown
solution space presents a challenge for selection, encouraging, and elaboration of
new ideas. Perhaps the trade-off of initiatives that explore versus exploit new top-
ics could be modelled in a manner paralleling that in optimisation. However, the
first solutions for acting and learning in partly non-observable environments, known
mainly as a partially observable Markov decision process (POMDP), are promising.
Already, POMDPs are being used for decision-making and selection in human–robot
interaction [49, 85, 95]. In T. Taha et al.’s work, for example, a POMDP guides the
communication layer, which facilitates the flow and interpretation of information
between the human and the robot [85]. Applying this information, the robot makes
its action plan, while the current task, status, observed intention, and satisfaction are
used to model the interaction within the POMDP. The paper’s authors highlight that
with a minimum amount of input the system was able to change the action plan or
add corrective actions at any time.

While current research on interactive systems offer various approaches to co-
ordinate, engage in, and facilitate interactions, none of them cover all the neces-
sities for collaborative behaviour in the sense of group cognition. However, these
approaches do present the prerequisites for future developments of such systems.

15.7 Conclusion

We have discussed cognitive abilities necessary for collaborative AI by building on
the concept of group cognition. We reviewed some promising current approaches,
which reflect that some aspects of these abilities are already identifiable and partially
addressed. However, more research needs to be done. The main topics we have iden-
tified for future research are related to the expressiveness of machines, the ability to
understand human interaction, and inherent traits of the behaviour of machines. We
have highlighted in this context the necessity of extending and enhancing potential
communicationmedia ofmachines for purposes ofmore human-like communication,
including social signal recognitionwithin collaborative processes. Scholars research-
ing collaborative machines could draw from previous experiences of human-robot
interaction and adapt the findings to the particular context at hand. Another limitation
of current approaches is related to the explainability of machine reasoning. In order
to construct a ‘Theory of AIMind’, as framed by Chandrasekaran et al. [15], a human
has to be able to understand the reasoning behind an action, so as to recognise the
machine’s intent andmost probable behaviour.We have presented several approaches
to resolving this issue; however, the question of what best explains the reasoning of
a machine remains. Finally, we must reiterate the necessity of extending current
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approaches in machine learning and interactive machine learning to act under the
uncertainty conditions typical of human collaboration. This would enable machines
to make suggestions and act in open-ended collaboration such as discussions and
brainstorming, for which the idea space is not defined beforehand.
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Chapter 16
User-Centred Evaluation for Machine
Learning

Scott Allen Cambo and Darren Gergle

Abstract Activity tracking wearables like Fitbit or mobile applications like Moves
have seen immense growth in recent years. However, users often experience errors
that occur in unexpected and inconsistent ways making it difficult for them to find
a workaround and ultimately leading them to abandon the system. This is not too
surprising given that intelligent systems typically design the modelling algorithm
independent of the overall user experience. Furthermore, the user experience often
takes a seamless design approach which hides nuanced aspects of the model leaving
only the model’s prediction for the user to see. This prediction is presented optimisti-
cally meaning that the user is expected to assume that it is correct. To better align the
design of the user experience with the development of the underlying algorithms we
propose a validation pipeline based on user-centred design principles and usability
standards for use in model optimisation, selection and validation. Specifically, we
show how available user experience research can highlight the need for new eval-
uation criteria for models of activity and we demonstrate the use of a user-centred
validation pipeline to select a modelling approach which best addresses the user
experience as a whole.

16.1 Introduction

Activity tracking systems such as wearable devices like Fitbit and Jawbone or mobile
applications like Moves and Google Fit have seen extraordinary growth in commer-
cial activity over the past several years. Yet, a common problem with these sys-
tems is early user abandonment – shortly after initial adoption many users stop
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engaging with the tracked information or even stop using the system entirely. To
better understand why this is happening, researchers have begun to survey users of
activity trackers [10, 27], conduct detailed user interviews [23], and synthesise feed-
back from online product reviews [27]. Across these studies, users often report that
inaccuracy and errors play a big role in their decision to abandon their activity track-
ers [10, 23, 27] and that they are uncomfortable with activity tracking performance,
system behaviour and overall user experience.

To address these challenges, user experience researchers have recommended inte-
grating interactive elements into activity tracking systems that permit the users to
better understand errors and play a more active role in calibrating the system. Some
health tracking systems researchers have gone a step further to argue that manual
calibration could actually aid the user to better understand their tracked and inferred
data [7, 10, 23, 27]. However, there is a gap in our understanding that exists between
the design of these interactive aspects of the user-experience and the performance of
underlying algorithms and models of activity tracking systems. In particular, com-
putational techniques such as model personalisation and active learning—which are
inherently suited to the integration of user interaction—tend to be developed and
evaluated with a focus on model accuracy instead of considering the broader impli-
cations of performance and how it relates to the user experience and interaction with
the activity tracking system.

In this chapter, we show how a user-centred approach to the evaluation of model
personalisation techniques could help bridge the gap that exists between the way we
research and develop the user interaction and the way we research and develop the
underlying model. User-centred evaluations like those we describe in this chapter
can lead to designs and technical implementations that better enable users to have a
richer and more fulfilling interactive experience with their activity tracking systems.
In Sect. 16.2, we contrast the technical performance perspective of model evaluation
with the user experience perspective derived from research on why people abandon
activity trackers. We use research in health technology design and health behavior
change to motivate the need to identify seamful design opportunities in the system’s
underlying algorithms. In Sect. 16.3, we use these principles to define a validation
algorithm that provides an individualised view of model performance and demon-
strate how it can be used in model optimisation, validation, and selection. Then we
identify seamful design presentations of model confidence which can help address
the user challenges described in Sect. 16.2. Finally, in Sect. 16.4, we describe how
these principles of usability along with the user-centred validation process help us
make model selection decisions that address the whole user experience and not just
the model validation. Throughout this chapter we discuss approaches that may sup-
port better visibility by making model behaviour more salient to the user and better
transparency by aiding the user’s understanding of model behavior. We further see
visibility and transparency as prerequisites for users to gain the trust needed to use
systems for sustained behavioural change.
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16.2 Background

16.2.1 A Technical Performance Perspective on Evaluation

A common evaluation approach used in much of the technical literature examining
activity tracking systems is to treat model performance as a binary construct (i.e.,
correct or incorrect) and to minimise errors at the aggregate level in an effort to
optimise activity tracking performance for the user base as a whole. Consider the
case of a wearable device used to infer activity from a stream of motion sensor
(accelerometer) data. In building such a system, researchers collect examples of
accelerometer data associated with the activities they are interested in and then build
a model using a supervised machine learning technique. In order to measure how
well the resulting model recognises the correct activity from the accelerometer data,
each incorrect prediction is recorded as an error. Researchers then assess model
performance by examining the overall error rate or its inverse, accuracy. Using this
measure, they can decide between competing modelling approaches and determine
which will work best for their given activity recognition application. Subsequent
iterations and refinements of these algorithms may be optimised based on this same
measure – but a question exists as to whether this binary and aggregate view of errors
is descriptive enough when considering the entire user experience.

16.2.2 A User Experience Perspective on Evaluation

Whilemany technically oriented approaches to errors in the context of activity recog-
nition focus on minimising errors and optimising accuracy, it’s important to keep in
mind that the larger goal of these systems is often to help users track their behavior in
such a way that patterns will emerge to help them make better decisions concerning
their activities and health related behaviors. One way to focus model evaluation on
this more user-centred goal is to go beyond the simple binary treatment of errors and
consider more graded measurements such as prediction likelihoods for individual
users and corresponding confidence measures. These metrics can serve a dual pur-
pose which is to provide more detail about model performance and to provide more
clarity to the users about how or why a given model prediction may be off.

It’s also important to go beyond a single aggregate measure of performance and
think carefully about the distribution of performance scores and how a given model
affects individuals or groups of users. As an example, consider two models with
similar accuracies - the first with an overall accuracy of 80% and the second with
an overall accuracy of 70%. The first model may seem the easy choice based on
aggregate performance. However, if the distribution in the first model is unimodal
and falls within a narrow range (e.g., [77–83%]), and the second model is bi-modal
with two narrow ranges (e.g., [43–47%] and [93–97%]), the decision becomes much
more complex. Other aspects of the performance distribution may also affect what
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is considered “the best” model depending on the user goals. Should researchers pick
the model that does the best (on average) for everyone or one that ensures the worst
performance for an individual is still above a certain threshold? The correct answer to
such questions requires looking closely at the distribution and likely depends on the
particular application and the user’s intended goals and tasks. Once the technology
moves beyond proving that an algorithm is capable of learning the target concept to
proving that it can help humans improve their health, errors become more complex
than a simple binary construct of correct or incorrect and optimisation isn’t as simple
as choosing the best aggregate performance measure.

User Expectations and Perceptions of Errors

In addition to the ways in which wemeasure errors and consider model performance,
it’s also important to consider users’ expectations and their perception of errors when
using activity tracking systems. Users begin forming their expectations from activity
tracking systems with marketing and advertisement materials such as Fitbit’s slogan
“Every Beat Counts” and as a result they often initially expect near perfect accuracy.
As soon as users begin interacting with their activity trackers, they begin developing
a mental model of the underlying algorithm formed by both correct predictions and
errors [10, 23, 27]. These errors do not immediately cause users to abandon their
activity trackers; instead, users take this to be a limit of the technology’s capabilities
and consider new behaviours or workarounds, which allow them to continue getting
value from the activity tracker. One example of a workaround comes from a partic-
ipant in Harrison et al.’s interview study [10], “I was trying to figure out where I
could put my Fitbit to get what I thought was a good amount of steps. I was yknow,
putting it in my sock, putting it in my pants pocket, tying it to the cuff of my pants
[…] I was also pedalling backwards whilst going down hills”.

Users also test their understanding of the system by trying to replicate correct and
incorrect predictions which should align with their understanding of the boundaries
of the model [23, 27]. When the performance of the system continues to violate
expectations that it will perform consistently, as advertised, or as designed, users
begin disengaging from the system until they eventually abandon it [27]. Another
way to think of this is that each violation of expectation erodes the trustworthiness of
the model. As previously alluded to, one way to help the users set better expectations
is to provide themwith richer details regarding the predictions and model confidence
– a design decision that involves consideration of technical components such asmodel
selection. These details can provide greater model transparency that help the user to
understand what they can and cannot expect from their activity trackers.

User expectations and experiences are also highly variable. Variations in individ-
ual lifestyle, physical characteristics and values for the tracked information can lead
users to different conclusions about whether the accuracy of the activity tracker is
adequate for them to derive meaningful use from it. A common conclusion users
make when they encounter errors is that the system was designed for someone else.
This point is well captured by an interviewee from Yang et al.’s study [27]: “The
[FitBit] Flex does not count steps if you are pushing a stroller or cart. This may not
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be an issue to some, but it is to me b/c I have stroller age children. Then I noticed it
was logging hundreds of steps while I was rocking my baby. Maybe something else
out there will be more accurate for my lifestyle.” In such cases, the ability of a model
to learn personal idiosyncrasies or adequately present the likelihood of being correct
or incorrect is likely to be an important evaluation criteria.

The Burden of Interaction or the Benefit of Engagement?

Up until this point in the chapter, we have mainly discussed the challenges that errors
present. However, some researchers argue that engagement with errors may actually
be beneficial for the end-users of activity tracking systems [7]. An original vision of
many ubiquitous computing technologies, such as activity tracking, focused on ways
to make the technology fade into the background, helping the user to increase focus
on the task at hand and decrease focus on the tool designed to help with that task. To
achieve this, research has pushed the boundary of what we can infer automatically
about user context from passively collected sensor data using machine learning and
artificial intelligence. In the initial vision of ubiquitous computing environments, this
is referred to as a seamless design approach in which particular technical nuances
of a tool (or model) are made invisible to the user [25]. In [17], we see this design
philosophy in action as the authors recommend a fully-automated approach to the
personalisation of an activity recognition model (semi-supervised learning) over
a semi-automated and interactive approach (active learning), even though model
performances were comparable stating that it would be too burdensome for the user
to interact with such a system.

Other researchers [10, 23, 27] have argued that the way in which users fail to
develop a working understanding of the underlying algorithms, and the way in which
users attempt to find workarounds that make the system more useful, imply that the
design of activity tracking systems should make the underlying model more visible
and include more interactive features that allow the user to calibrate the system
to their personal idiosyncrasies and requirements. Choe et al. [7] state that fully
automated tracking is not only difficult (or impossible) to achieve in some scenarios,
it ignores the potential for synergies between the user’s goal (understand and change
health related behaviour) and the goal of the activity recognition model (accurately
predict the appropriate activity label from the user’s smartphone motion sensors).
In contrast to seamless design approaches, seamful design has been proposed as a
design philosophy which aims to strategically build “seams” into the user interface.
These seams represent aspects of the model that the user can utilise to get a better
sense of the underlying algorithms. Activity trackers employing seamless design can
fail silently such that the user has no way of knowing that the knowledge generated
by the system is no longer valid until it becomes evident when the output displayed is
outside the boundaries of the user’s expectations. While seamful design complicates
the design and interaction process, it has the potential to make errors more visible
making the limitations of the system salient such that corrections can be easily
made to the tracked information. These additional opportunities for awareness and
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engagement are likely to have the positive side effect of continued use and lasting
health change as observed by [19].

Seamful design of intelligent systems such as activity trackers requires a user-
centred approach to align the underlying mechanics used to derive the “intelligence”
of the systemwith the user interface and experience. In the next section, we’ll discuss
different algorithms that have been proposed for future activity tracking systems, how
they are likely to affect the overall user experience and how we can better validate
them with respect to the user experience before implementing the entire activity
tracking system.

16.2.3 How Model Selection Affects the User Experience

To understand how seamful design may be achieved in activity recognition tech-
nologies, we discuss how the user experience research described in the previous
section can help guide us in the research and development process at the stage of
algorithm development and model selection. To help structure how to do this, we
consider various facets of common usability and user-centred design principles in
the context of model development and algorithm selection. Then, we describe the
potential modelling approaches in terms of what they afford the design of the user
interface and user experience.

User-Centred Design for Machine Learning

One of the goals of this chapter is to motivate and highlight a user-centred design
process for developing ML-driven technology in which there is more of a focus on
the final user experience at the earliest stages of research and development. We draw
inspiration from the following principles of user-centred design as specified in the
International Usability Standard, ISO 13407 and consider them in the context of
model selection and algorithm design for activity tracking:

1. The design is based upon an explicit understanding of users, task and environ-
ments.

2. Users are involved throughout the design and development.
3. The design is driven and refined by user-centred evaluation.
4. The process is iterative.
5. The design addresses the whole user experience.
6. The design team includes multidisciplinary skills and perspectives.

These principles suggest a process bywhich we iteratively incorporate knowledge
of and by the user into the design of the underlying learning algorithms and models.
The first principle encourages an initiative to understand the user’s relationship to the
technology by answering questions like: “Why will someone use this technology?”,
“What will they use it for?” and “In what context will they use it?”. For activity
recognition, we can begin to answer these questions by drawing on research into
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how people use and abandon activity tracking systems as well as research on why
tracking desirable and undesirable behavior is expected to have a positive impact
on the user’s health. The second principle aims to directly include feedback from
the user during all stages of design and development. Doing this at the algorithm
development and model selection stage is challenging, because these components
are generally decoupled from the user interface. However, we can use knowledge
of users, their tasks and their environment to develop user stories which can help
direct the development of algorithm evaluation metrics such that they better reflect
the expected model performance and user experience.1 For example, one of the users
we quoted in the previous section tells a story about how she feels that the activity
tracker was not intended for someone like her because it demonstrated that it could
not recognize the steps she took while pushing a baby stroller. This story should
indicate to the algorithm developer that the model has likely learned to distinguish
activities based on arm movement and that this arm movement is not always present
in cases of everyday walking. By looking at model accuracy from the perspective of
accuracy for an individual, we can begin to see how the model might address this
aspect of the user experience.

16.3 Experiments in User-Centred Machine Learning
for Activity Recognition

In this section, we describe how we can apply user-centred design principles to the
algorithm design and model selection stage of development even when this stage is
decoupled from the end user. Here, we demonstrate two experiments which were
designed to help us refine the modelling approach from a more user-centred per-
spective. For each experiment, we first describe the expected effect each modelling
approach will have on the user experience and what potential there is for seamful
design. Then we define an evaluation algorithm which allows us to compare mod-
elling approacheswith respect to the expected individualmodel performance and user
experience. To reflect the current research in activity recognition, which proposes
individual models of activity rather than a single general impersonal model for all,
the evaluation algorithms we define are designed so that we can analyse distributions
of model performance as opposed to aggregate measures.

1In user-centred design, the term “user stories” refers to a set of scenarios (sometimes fictional) that
best reflect common experiences of the target user in the context of their task and environment.
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16.3.1 Experiment 1: Impersonal, Personal and Hybrid
Models

For an activity tracking system to understand when a user is performing a particular
activity, it must have some model of how the sensor data relates to that activity.
Typically this model is constructed in a supervised approach where sensor data is
collected in a controlled setting so that the ground truth label can be easily observed
and recorded. The motivation for this approach is that by collecting data in the lab
for many different people, the model might learn characteristics of the relationship
between the sensor data and the activity that can be applied generally to data from
new users who were not observed in the initial data collection process. In activity
recognition, this is referred to as an impersonal model.

In contrast, personal models use only training data representing an individual
end-user obtained through manual interaction. While personal models often perform
with better accuracy than impersonal models, researchers are often reluctant to rec-
ommend the approach since the labelling task could be considered burdensome by
the user [4]. Furthermore, the models can be brittle if the user hasn’t labelled activity
cases in varying contexts or environments. Personalised or hybrid models (sometimes
called mixed models) have been proposed as a compromise in which the system is
initially deployed with an impersonal model that becomes increasingly personalised
by incorporating observations of new data that better represent the end-user.

The impersonal, personal and hybrid modelling approaches each present different
possibilities for the user interaction design. Since impersonal models are the current
commercial standard, use by consumers of the commercial product can be studied
to understand how impersonal models affect the user experience [10, 23, 27]. From
this research, we can expect that users are reasoning about errors in ways that make it
difficult for them to apply the information from activity tracking systems. Increasing
the sophistication of the learning algorithm may increase prediction accuracy from
a traditional validation perspective, but this does not necessarily result in a better
understanding of personal health behaviour that can be used to make better health
decisions.2 Alternatively, most personal and hybrid modelling approaches require
that the user manually label recorded activity data. This could take place in an initial
calibration phase or as an ongoing and dynamic process integratedwith user interface
features that are designed for the continued engagement and awareness that leads to
better health outcomes as described by [7]. In experiment 1, we aim to recreate the
experiment described in [15] and extend the analysis to achieve the following:

2There are also reasons to believe that there may be a ceiling to the accuracy of impersonal model
performance. Yang et al. suggest that one barrier to better impersonal model accuracy is inherent
in the translation of medical grade tracking equipment to the consumer market which prioritises
ergonomics, size, fashionability and many other factors over accuracy [27]. Lockhart et al. suggest
that as the number of individuals represented in the impersonal training dataset approaches 200, the
increased accuracy gained from each individual decreases and plateaus around 85% accuracy [15].
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1. Understand the distribution of expected model performance for individuals rep-
resented in the dataset instead of a single aggregate measure of model perfor-
mance.

2. Compare the expected benefits (increasedmodel performance) and expected bur-
den (increased user interaction) exhibited by either a personal or hybrid model.

A User-Centred Validation Pipeline for Experiment 1

Algorithm 1 User-Centred Validation for Experiment 1
Let D be all the labelled activity recognition data

we have available to study
D personal will represent the subset of data representing a user, u

for all u in the set of users in D
Let D personal be all data in D where D personal == u
Let Dimpersonal be all data in D where D personal ! = u

Let T personal be the subset of D personal

which was sampled through some sampling function,
s(D personal ) for training the personal model

Let T impersonal = Dimpersonal to use all
available impersonal data

Let T hybrid be the training set which combines data from both
T personal and T impersonal by joining the sets
through some function j (personal,impersonal)

Let V personal be the subset of D personal

which was sampled through some sampling function,
s(D personal ) for testing or validating all models

Let θ personal be the model trained on T personal

Let θ impersonal be the model trained on T impersonal

Let θhybrid be the model trained on T hybrid

Make predictions on V personal using θ personal and record for analysis.
Make predictions on V personal using θ impersonal and record for analysis.
Make predictions on V personal using θhybrid and record for analysis.

Algorithm 1 begins by iterating through a set of validation users. This set of valida-
tion users can be the same as the training set as long as the user is held out as would
be done in a leave-one-user-out validation process. For each iteration, we separate
the personal data, Dpersonal , from the impersonal data, Dimpersonal . Dpersonal is then
sampled through some sampling function, s(Dpersonal), to create independent train-
ing, Tpersonal and validation, Vpersonal datasets. To put a user-centred perspective on
this, Tpersonal is attempting to represent the data that the user might have labelled
during an initial calibration phase while Thybrid is attempting to represent the data
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Fig. 16.1 This figure represents the number of labels of each activity class we have in eachWISDM
dataset

that the user might have labelled during an ongoing data collection interaction. The
sampling function, s(Dpersonal), should be a representation of the process by which
the user discloses the label for a particular activity. A first validation approach might
use a random sampling function to approximate which personal training instances
get disclosed. Using the validation pipeline with enough iterations to generate stable
metrics for a stochastic process like random sampling, we can start to approximate
how the model building process affects performance for various individuals.

To demonstrate the utility of our pipeline we use it to assess the importance of
hybrid and personalised models as described by Lockhart and Weiss [15]. Specifi-
cally, we want to evaluate Lockhart and Weiss’s idea that a model, θpersonal where
the amount of personal data, Tpersonal , is much smaller than Timpersonal , is prefer-
able to both, θimpersonal , and, θhybrid , when the sampling function, s(Dpersonal), is a
function that samples at random and tries to preserve the overall class distribution in
Dpersonal . For this part of the experiment, we iterate on the sampling of the personal
data, training of themodels and testing on the validation sample four times and report
the mean accuracy for each user (Figs16.3, 16.4 and 16.5).

The Data and Modelling Approach

We use publicly available datasets by WISDM lab (Wireless Sensor Data Mining)
to perform our analysis. The first dataset, v1.1, represents a study in which data was
labelled by asking participants to perform various activities with a smartphone in
their front pocket recording all movement with a tri-axial accelerometer sampling
at 20 hertz [12]. In this study, the data were labelled by a research assistant while
the participant performed the activity. The second dataset, v2.0, represents a study
in which a modestly interactive system called ActiTracker was developed to allow
users to label their activity data in the wild using pre-determined activity labels
[16, 26] in order to create personalised activity recognition models. Fig. 16.1 shows
the distribution of labels for each class by dataset. WISDM v1.1 includes 35 users
who have labelled more than one activity type while v2.0 includes 25. For more
information on the WISDM datasets we used refer to [15, 16, 26].
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Fig. 16.2 This figure visualises the sampling, training and validation process

In the development of activity tracker systems, we need to consider how devel-
opers should go about curating the data for the impersonal dataset (Figs. 16.1 and
16.2). Many context-aware systems will do this by paying participants to perform
the activities in a setting where the ground truth activity can be easily labelled with
the intention of using the model trained on the data from an initial set of paid users
to provide a working model for the first set of unpaid users. We reflect this in these
experiments by using the WISDM v1.1 dataset as the impersonal dataset while iter-
ating through v2.0 as the personal dataset. While both datasets included the activities
“jogging”, “walking”, “sitting”, “standing” and “stairs”, the v1.1 dataset differen-
tiated “stairs” into “up stairs” and “down stairs”, while the v2.0 dataset included a
“lying down” activity label. To resolve these differences, we removed the instances
labelled with “lying down” from the v2.0 dataset and consolidated the “up stairs”
and “down stairs” classes into a “stairs” class similar to the first dataset. The final
class distribution for each dataset can be seen in Fig. 16.1.

To best replicate the work of Lockhart and Weiss, we used the Random Forest
classifier as implemented in the Scikit Learn module for machine learning in Python
[20]. For all the experiments presented in this paper, we use the parameters described
in [15] unless stated otherwise. However, Random Forest models randomly sample
the training instances to create simple decision trees (shallower depth, fewer features
to consider at each split) and then average the results tomaximise predictive accuracy
whilemitigating over-fitting. Thismeans that the predictions can be inconsistent with
the exact same input data. To ensure more consistent results we use 1000 decision
trees or more.
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In assessing accuracy we take our modelling process to be a multi-class classifi-
cation task in which each label is assumed to be mutually exclusive. To validate the
expected prediction accuracy for each user, we simply take the number of predic-
tion errors, e, from a model on a user’s validation sample, Vpersonal , subtract it from
the size of the validation sample |Vpersonal |, and finally normalize the result by the
number of validation samples.

accuracy = |Vpersonal | − e

|Vpersonal |
Since the sampling for both Vpersonal and Tpersonal is randomly sampled with

replacement, we repeat the modelling process 10 times for each user and report the
mean.

Experiment 1 Results and Discussion

Figures16.3, 16.4 and 16.5 are box plots that represent the distribution of model
accuracies among different users on the y-axis and the number of personal training
samples along the x-axis. The red, blue and green boxes represent the impersonal,
personal and hybridmodels respectivelywith dots representingmean accuracy across
random sampling iterations for each user. Similar to Lockhart and Weiss, Fig. 16.3
shows that the impersonal model has the lowest accuracy in nearly all scenarios. A
closer look on an individual basis reveals that the user receiving the best performance
is at 79%accuracy, while themodal user performance is 45%and theworst individual
performance is at 3%. The hybrid and personal models each considerably outperform
the impersonal model even with only 5 samples from the end-user’s labelled data

Fig. 16.3 These box plots represent the distribution of accuracy measurements across participants
given a Random Forest Classifier, when trained with an impersonal, personal and hybrid dataset
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Fig. 16.4 Similar to Fig. 16.3 this plot highlights those whose expected impersonal accuracies
were lowest and shows how this accuracy progresses as we increase the number of personal training
samples for a particular user. The solid lines represents the personal model and the dashed lines
represents the hybrid model. Each color represents a different user

Fig. 16.5 Similar to Fig. 16.4 but with those whose expected impersonal accuracies were highest.
The solid lines represents the personal model and the dashed lines represents the hybrid model.
Each color represents a different user

with which to use for training. With each sample being equivalent to 10s of activity
being labelled, 5 samples equates to 50s of labelled activity.

In comparing the personal and hybrid models, we see some differences when the
model is trained with 5 or 8 personal samples with a higher inner quartile range for
the hybrid model in both cases and a tighter inner quartile range (85–95%) for the
hybridmodel with only 5 training samples. However, what differences theremight be
between the personal and hybrid models appear to go away as the number of samples
increases beyond 10. This translates to approximately 100s of user labelling – which
may or may not be burdensome for the user depending on the overall fitness level
and demographic characteristics of the users. For example, a minute and a half of
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jogging for a relatively fit undergraduate student may not be very burdensome at
all. However, the same amount of required labelling activity may be excessively
burdensome for an older adult that is not used to exercising and is recovering from
knee surgery.

The distribution within a modelling technique is another aspect of model per-
formance that should be explored. By individually evaluating the expected model
performance for users, we can see that there seem to be two clusters concerning
impersonal model accuracy with one achieving higher than 40% accuracy and the
other achieving lower than 25% accuracy. To understand how individuals in each
of these groups may benefit from either a personal or hybrid model, we highlight
the eight individuals who get the worst expected performance from the impersonal
model in Fig. 16.4 and the eight individuals who get the best performance from the
impersonal model in Fig. 16.5. In Fig. 16.4 we can see that seven out of these eight
participants would have found that the model is nearly always incorrect. We also see
that whether we incorporate impersonal data or not (i.e., creating a hybrid or personal
model), the accuracy of a model quickly exceeds 90% for all but two users with only
5 labelled instances from the user making the labelling indispensable for those who
would have had terrible performance using the impersonal model. In Fig. 16.5, we
find that users who were getting better performance with the impersonal model will
likely get less of an increase in performance as they label their activity data.

Often when we discuss the potential benefit of hybrid models, it is in the context
of reducing the burden of labelling. In our experiment, we do not observe evidence
that hybrid models substantially reduce the labelling effort presented by personal
models which would present itself in Figs. 16.4 and 16.5 as a datapoint higher than
its counterpart of the same colour on the dashed line.

To quantify the concepts of “burden” and “benefit” for the purpose of algorithm
optimisation, we might consider “benefit” to be the increase in model performance
and “burden” to be the amount of additional interaction or labelled instances required.
This “benefit-to-burden” ratio for a particular personal or hybrid model should help
us make decisions at the level of algorithm design with a user-centred perspective. It
is important to note that “burden” and “benefit” as we define them here are not fully
representative of how these concepts play out in the user experience.Aswementioned
in Sect. 16.2.2, these interactions can help the user achieve the goal of changing their
health related behaviour. Rather we make this naïve reduction in order to present
a tractable algorithm optimisation metric to aid the algorithm design process. To
fully understand the dynamic between burdensome and beneficial interactions in
intelligent systems, additional user experience research is required with working
prototypes in the context of a final user interface and interaction design. Furthermore,
richer aspects of burden (e.g., those that account for physical exertion as it relates
to the intended user population and demographics) could be integrated into a notion
or measure of burden in a way that better matches the user experience goals of the
system.
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16.3.2 Experiment 2: Model Confidence for Seamful Design
and Model Personalisation

Seamful design, as described in Sect. 16.2, requires that appropriate affordances of
the underlying algorithms andmodels are identified as a potential “seam”. Thismeans
that there exists the possibility for a user interface designwhich exposes this aspect of
the model such that it can be appropriated by the user for their task without the need
for expert technical knowledge of the system. In experiment 1, we see that a small
amount of labelled personal data yields a great improvement in model performance
compared to impersonal models when these labels are chosen at random. However,
users are likely not choosing which moments to label at random. From [27] we see
that users typically begin thinking about interactions which will improve the model
performance when they observe errors in the system. In experiment 2, we aim to
demonstrate a way in which model confidence, the model’s ability to assess the
likelihood that its prediction is correct, can help guide both the user’s understanding
of the system and the user’s manual tracking behaviour. Specifically, we design
experiment 2 with the following objectives:

1. To understand the potential for model confidence to be used in the seamful design
of activity tracking.

2. To understand the potential for model confidence to aid model personalisation
through either an active learning or semi-supervised learning approach.

In integrating the concept of seamful design to algorithm evaluation, we can draw
insight from work by Chalmers et al. that has explored seamful design in the context
of presentation approaches to model certainty along the following facets [5, 6]:

• optimistic: show everything as if it were correct.
• pessimistic: show everything that is known to be correct.
• cautious: explicitly present uncertainty.
• opportunistic: exploit uncertainty.

Currently available activity trackers use an optimistic approach to the presentation
of model confidence. Pessimistic and cautious approaches can help users understand
the limitations and strengths of the model. Additionally, these approaches can give
the user a sense of moments when they should rely on their own accounting of their
activity instead of the system’s.

Opportunistic presentation of model confidence lends itself to a research topic
within machine learning called active learning in which the system attempts to
select unlabelled observations that would be most beneficial to model performance
if they were to be labelled. We can think of this as selecting the samples which
present the best benefit-to-burden ratio. One of the most common ways of deciding
which sensor observations should be labelled is least confident sampling. In theory,
least confident sampling helps the user to know which instances increase model
performance the most by informing the user when the likelihood of predicting a
sensor observation correctly is low. This is done by notifying the user of model
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Fig. 16.6 This figure shows how the confidence ranked predictions are partitioned in order to
best assess the model’s ability to be accurate when considering its most confident (MC) and least
confident (LC) predictions

confusion and a labelling opportunity. One point of caution in using least confident
sampling is that a model that does not represent the target concept (activity) well
can have the unintended consequence of performing worse than it would have using
random sampling. This can happenwhen themodel has not learned the target concept
well enough to accurately assess the confidence of its predictions. A bad model can
steer the active sampling procedure away from the kinds of observations which are
likely to be wrong (i.e., the observations we assume will improve the model the
most), because the model is overconfident. From an information retrieval point of
view, thismeans that themodel should have high recall with regard to selectingwhich
instances it will likely get wrong in order to address the areas of the feature space
which result in the most confusion for the model. For more information on theory
and application of active learning, we recommend reading [21].

Semi-supervised learning approaches can also leverage model confidence, but
they do not explicitly lend themselves to interactivity. The self-training algorithm
uses an initial model learned using all available labelled data to make predictions
on the unlabelled data. The predicted labels of instances with the highest prediction
confidence, or likelihood of having a correct prediction, are assumed to be equivalent
to ground truth. In theory, incorporating these observations and their predicted labels
into the training set and retraining the model will yield higher model performance.
With this approach, it is not the recall of the selected samples that matters, but rather
the precision. Incorrect predictionswill “pollute” the training set if selected. Formore
information on the theory and application of semi-supervised learning methods we
suggest [29]. One potential caveat of using this approach in activity recognition is
that each self-training iteration is likely to result in new model behaviours where the
patterns of correct and incorrect predictions that the user has come to expect may no
longer be valid (Fig. 16.6).
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User-Centred Validation Algorithm for Experiment 2

We can modify the validation algorithm in experiment 1 to better understand howwe
might leverage model confidence for the benefit of an activity recognition system. In
algorithm 2, we specifically seek to analyse accuracy across users, among a model’s
30 most confident (MC) predictions and 30 least confident (LC) predictions in order
to help us make system and user interaction design decisions with regard to active
learning, semi-supervised learning, or seamful design approaches.

The purpose of algorithm 2 is to help us understand the expected quality of
model confidence for each user using either a personal, hybrid, or impersonal model.
Algorithm 2 differs from algorithm 1 in twoways. First, with each user, all data that is
not part of the personal training set, Dpersonal , is added to a pool of unlabelled personal
data, Upersonal . We then record predictions and their respective model confidence on
all observations in the Upersonal dataset with the impersonal, personal and hybrid
models. The second difference is that the predictions are now ordered from most
confident to least confident predictions.Model confidence in the SciKit-Learn python
module is calculated as the mean predicted class probabilities of all decision trees
in the forest. For each decision tree, the class probability is the fraction of samples
of the same class in a leaf [20].3 We can think of model confidence as a rough
approximation of the probability that our prediction is true or p(ŷ = y) where ŷ
is our activity prediction and y is the actual activity label. With the confidence
ranked predictions for a user’s unlabelled data, Ŷθ,user = argsorty p(ŷ = y), we can
now assess accuracy with respect to seamful designs which emphasise predictions
that are most likely to be correct, ŶMC = (y0, . . . , yi ) (pessimistic presentation) or
seamful designs which emphasise predictions that are most likely to be incorrect,
ŶLC = (yn− j , . . . , yn) (cautious or opportunistic presentation). Here, i is the cutoff
in the confidence ranked predictions where predictions indexed greater than i are no
longer trusted to be correct and j is the index where all values indexed greater than
j represent the least confident samples that we are interested in evaluating.4

Experiment 2: Results and Discussion

In Fig. 16.7, we see that the inner quartile range and mode for accuracy of all models
across users shifts upward when we select only the 30 most confident examples
and downward for the 30 least confident predictions for each user. As seen in the
top panel of Fig. 16.7 while the modal accuracy for the impersonal model shifts up
to 83% from 45%, there are still many cases of poor accuracy among these most
confident predictions. When considering the results in the context of a pessimistic

3The way in which model confidence is assessed can vary in many ways. It can vary depending on
how we determine class probability from the model. For example, a K-nearest neighbors algorithm
might assess confidence as the average distance to the neighbors of a new observation while an
SVM approach might assess confidence as the distance from a new observation to the hyperplane
used to separate classes. Model confidence can vary depending on utility functions as described
in the second chapter of [21]. It can also vary depending on whether or not evidence is taken into
account [22].
4In our experiment we take i = j = 30 for ease of comparison and exposition, but in practice these
cutoff points can vary and be optimised for recall or precision as mentioned earlier in this section.
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Algorithm 2 User-Centred Validation Pipeline for Model Confidence in Activity
Recognition
Let D be all the labelled activity recognition data

we have available to study
D personal will represent the subset of data representing a user, u

for all u in the set of users in D
Let D personal be all data in D where D personal == u
Let Dimpersonal be all data in D where D personal ! = u

Let T personal be the subset of D personal
which was sampled through some sampling function,
s(D personal )

Let U personal be the subset of D personal
where all x in U personal is not in T personal to serve as
the unlabelled dataset.

Let T hybrid be the training set which combines data from both
T personal and T impersonal by joining the sets
through some function j (personal,impersonal)

Let θ personal be the model trained on T personal
Let θhybrid be the model trained on T hybrid
Let θ impersonal be the model trained on T impersonal

Using θ personal record predictions ranked by model confidence,

Ŷθpersonal ,user for each instance in U personal.
Using θhybrid record predictions ranked by model confidence,

Ŷθhybrid ,user for each instance in U personal.
Using θ impersonal record predictions ranked by model confidence,

Ŷθimpersonal ,user for each instance in U personal.

seamful design where we use impersonal model confidence as a way of signaling to
the user when they should trust the system, some users will likely benefit, but many
others will still find incorrect predictions among even themost confident examples. A
self-training approach can also yield poor results considering that many (sometimes
all) of the most confident predictions are incorrect for a user. Selecting only the
least confident examples, as a system might do in an active learning approach, or
to highlight moments of system confusion in a cautious seamful design approach,
appears to yield mostly instances which are likely to be wrong, but it is difficult to
resolve this with the overall likelihood of the model to make mistakes.

Table 16.1 focuses on likely experiences for individual users and shows those who
get the least accuracy from the 30 least confident predictions each model makes. The
users represented in rows 1, 4 and 5 of the impersonalmodel do not get any reasonable
accuracy overall orwithin themost confident examplesmeaning that the lowaccuracy
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Fig. 16.7 This figure shows model accuracy for impersonal (top), personal (middle) and hybrid
(bottom) approaches when we select only 30 most confident (MC) or 30 least confident (LC) and
compare them to themodel’s overall accuracy. Similar to previous graphs, each data point represents
a single user. The hybrid and personal models were each trained using 5 personal samples using
the same sampling function described in experiment 1

Table 16.1 Impersonal, personal and hybridmodel accuracies for all predictions, 30most confident
(MC) predictions and 30 least confident (LC) predictions, among the 5 who received the worst
accuracy from the least confident predictions of that particular model

Impersonal Personal Hybrid

All 30 MC 30 LC All 30 MC 30 LC All 30 MC 30 LC

0.00 0.00 0.00 0.66 1.00 0.26 0.94 1.00 0.00

0.45 0.82 0.00 0.50 0.80 0.29 0.66 1.00 0.20

0.55 1.00 0.00 0.69 1.00 0.36 0.79 0.99 0.21

0.027 0.50 0.00 0.74 1.00 0.38 0.49 0.83 0.27

0.14 0.20 0.00 0.71 0.86 0.50 0.93 1.00 0.47

is likely due to the model’s inability to generalize to this user. However, those users
represented in rows 2 and 3 can at least benefit from self-training or by integrating
model confidence as pessimistic or cautious seamful design. With a user-centred
perspective, we can further explore the cases that stand out to understand whether
there is potential for a system design that can at least provide model confidence
before requiring manual input from the user.
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For both personal and hybrid models, the most confident predictions are highly
accurate across users, with no single user getting less than 80% accuracy from these
predictions. This means that after a user has done about 50 s of activity labelling, an
activity tracking system should consider leveraging self-training to improve accu-
racy or pessimistic seamful design techniques to help the user understand when the
inferred information is most reliable. The least certain examples are generally more
accurate than those of the impersonal model, but this is likely due to overall accuracy
of the model meaning that even the least confident predictions are still likely to be
correct. However, this isn’t always the case. A closer look at the user who received
the lowest accuracy from the least confident predictions of the hybrid model (also
represented in the first row of the hybrid model column in Table16.1) reveals that
this user also received 100% accuracy from their most confident predictions and that
overall the accuracy was 94%. This means that the 30 least confident predictions
represent all of the incorrect predictions and would have been very helpful for an
active learning or cautious seamful design approach.

It’s important to note that we chose 30 to be the number ofmost and least confident
examples somewhat arbitrarily to simplify our analysis. In practice, thesemodels will
need to be adapted to a stream-based approach inwhich unlabelled personal instances
are observed one-by-one and a decision about whether to query the user for a label
will need to be made before the user becomes unaware of exactly what activity
they were doing during the 10-second window of time that the unlabelled instance
represents. The pool based approach we demonstrate here is representative of some
of the earlier approaches to understanding whether active learning is theoretically
possible in an activity tracking system [3, 14, 17, 24].

16.4 Discussion

User-centred evaluation has long been a central component of user interface and user
experience design. Intelligent systems which aim to provide users with new infor-
mation that can be used to make better decisions rely on complex and sophisticated
machine learning algorithms. These algorithms need to observe human behaviour
in order to model it, making them inherently dependent on the human experience
even though the algorithms themselves do not directly face the user. To evaluate an
algorithm in machine learning, we often have to reduce the expected context of the
system (many users with many different and unique styles of activity behaviour) to
a problem which is easier to evaluate and optimise. We believe user-centred eval-
uation can be integrated into the algorithm design process by adapting principles
from the International Usability Standard as stated in Sect. 16.2.3 and illustrated in
experiments 1 and 2.

During the stage of system development concerning the learning algorithm and a
model representation of activity, we can incorporate an understanding of the users,
their goals and tasks and their environments to show that not only can the concept
of activity be learned using machine learning algorithms, but that the technology
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can help users in achieving their broader goals that stem from activity tracking. To
help guide our understanding of the design challenges facing the development of
activity tracking technology, we studied the research regarding current commercial
activity trackers from the user perspective. Researchers observe that people have
varyingmotivations for using the technology includingmaintaining ahealthy exercise
routine or finding opportunities to build better health habits [10, 23, 27]. Similarly,
user lifestyles range from amateur athletes looking to challenge themselves to recent
mothers who may be pushing a stroller while exercising. When the users begin
to witness the first incorrect predictions, their task shifts from leveraging tracked
information to testing the boundaries of the system’s capabilities by creating ad-hoc
folk tests [27]. These prior studies provide detailed insight into the way users interact
with the technology, their purpose for interacting with the technology and the context
and environments in which they employ it to best understand the appropriateness of
an approach.

This enriched understanding of variability in users guided our development of an
extension to a standard leave-one-user-out algorithm that allows us to better under-
stand the variability in user experience from the model perspective. In experiment 1,
we saw that users of a system with an impersonal model fall into one of two clusters:
one which experiences less than 25% accuracy and one which experiences between
45 and 79% accuracy. With uniform probability across five potential activity classes,
the former group will experience performance that is, at best, slightly better than a
random guess. These users have the highest benefit-to-burden ratio - meaning that
they have the most to gain from their labelling interactions with the system. For the
latter group, the model performs better than chance meaning that while it may have
learned something about activity as it relates to these users, theywill frequently expe-
rience incorrect predictions making it difficult for them to utilise the information to
make decisions regarding their health. These users will still have a positive benefit-
to-burden ratio, but will experience lower gains for each label contributed than users
in the first group. In experiment 2, when we look at the group of users with the lowest
accuracy in the set of the least confident predictions, we can see two users with 45
and 55% overall impersonal model accuracy who get 82 and 100% accuracy among
the 30 most confident predictions made by the model. What this means is that while
the impersonal model may present a low benefit-to-burden ratio for a labelling inter-
action for some users, it can leverage model confidence to lower burden or increase
benefit. For example, this model can lower burden by using the self-training algo-
rithm which is likely to increase model accuracy making manual interaction less
necessary or increase benefit by leveraging seamful design approaches like the pes-
simistic presentation of model confidence which fosters greater understanding of the
model’s behaviour in the user. By simply validating with respect to individual users
we can derive much greater insight at the level of algorithm design than we can when
validation is agnostic to the individual users who are represented in the test data.

A better understanding of users also helps to address the whole user experience
(the third usability standards principle) while making decisions about the underlying
algorithmic components of the system. Impersonal models have not only shown
that they provide suboptimal accuracy, they also lack the interactivity that users
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need to calibrate the model to their personal needs, test their understanding of the
model’s behaviours, and foster the engagement and awareness of tracked information
that help users to make better health decisions. These interactive capabilities can
be thought of in the context of a calibration phase or in the context of ongoing
manual intervention. An initial calibration phase is a necessity of a personal model
and would set the expectation that the system will likely not understand scenarios
where the user has not provided examples. A hybrid model may also require an
initial calibration phase though there is the possibility that for some people the
model is at least modestly capable ofmaking predictionswithout it. Continuedmodel
personalisation that leverages model confidence could “unlock” after the system has
reason to believe that the model will perform at least adequately for the user. For
example, the data labelled during the calibration phase couldfirst be used as a personal
test set. If the model fails to meet a certain threshold of accuracy for the calibration
data, then the data can be incorporated into the training set so that the model can be
retrained and a notification for new calibration data can be made randomly at some
point in the near future. If the model exceeds a threshold for accuracy in predicting
the calibration data, then the model confidence features can be unlocked since it can
at least be confident in its ability to select observations that it is likely to predict
correctly or incorrectly.

16.5 Future Directions

While we know that users are interested in interactive design components, designing
interactions and interfaces for intelligent systems is complicated by the behaviour of
the underlyingmodel given theway it handles input from varying users. Furthermore,
dynamicmodels, such as those used inmodel personalisation which continue to learn
after being deployed to the user, will learn new discriminative patterns over time.
How users will feel about this learning process remains an open question that will be
difficult yet important to study empirically. Patterns of model behaviour that the user
noticed early in their use of the system may no longer hold after the model further
adapts to the user’s personal behaviour. Studies of intelligent user interfaces have
shown how interactive features allowing the user to do things like roll back model
changes can give the user the level of control they need to maintain a reasonably
working system [11].

From a modelling perspective, we know that physical activity tends to be fairly
consistent over short periods of timemeaning that the likelihood ofwalking at time, t ,
is heavily dependent onwhether wewere walking at time t − 1.Much of the research
that we cite and conduct in this paper does not take this into consideration and this
is mostly because of the added level of complication it adds to analysis. That said, it
is an important aspect of activity recognition that should be studied in context with
model personalisation and interactive approaches to activity tracking system design.
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[1, 2, 18] are examples of research that we know of in activity recognition that are
studying active learning in a stream-based temporal context.5

To address the shortcomings of impersonal models, some researchers are studying
the “population diversity” problem in which impersonal datasets can include a wide
variety of activity behaviour, much of which is irrelevant to the activity behaviour
of many individual users. With a better understanding of the population diversity of
impersonal datasets and how the data can better complement personal data, we may
be able to better utilise the impersonal data when combining it with personal data for
a hybridmodel. For example, [13] have devisedmethods for comparing an individual
end-user’s data to the individuals in the impersonal dataset in an effort to filter other
users who have data which is likely to be beneficial to the end-user’s hybrid model.
[9] aim to address population diversity by combining the instances of a particular
class from the impersonal and personal datasets which were found to be similar
through a clustering approach. This can also be thought of as a transfer learning task
in which some of the knowledge learned from training a model on impersonal data
(e.g., clusterings of which users have similar activity behaviors can be transferred to
a personal model). Future work should consider using neural network algorithms for
transfer learning which learn lower level features that are more likely to generalise
accurately to new users in a transfer learning task [28]. For a comprehensive survey
of transfer learning research in the activity recognition space refer to [8].

Additionally, we can expect a kind of “concept drift” where activity behaviour
changes either suddenly due to injury or slowly due to aging causing the discrimina-
tory patterns learned by the model at one point in time to lose its predictive accuracy.
Whether adaptive modelling approaches alleviate or exacerbate this effect is an open
question. Future work should seek to apply user-centred evaluation to understand
how models of activity recognition which are adaptive, temporal and stream-based
could be used in interactive and seamfully designed activity tracker systems and how
they will behave over extended periods of time.

16.6 Conclusion

Designing intelligent systems often begins with themost novel component, the learn-
ing algorithm, independent from other components like the user interface. As a result,
the objective when optimising the algorithm (e.g., to minimise errors as much as pos-
sible) is often misaligned with the user’s goal (e.g., to understand patterns in active
behaviour in the case of activity trackers). We demonstrate how user experience
research can help inform model optimisation and selection so that evaluation pro-
cesses which are more user-centred can be developed and integrated into the devel-
opment process. These user-centred evaluation methods can highlight problematic
patterns which help with selecting a model which addresses the whole user experi-

5The temporal component also introduces the added complexities addressed by the online learning
and incremental learning research within machine learning.
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ence. User-centred evaluation can also highlight opportunities for seamful design.
Using this process we found impersonal models for activity recognition to be prob-
lematic because they present poor model accuracy (<25%) for many and mediocre
model accuracy (45–79%) for the rest. Additionally, we define a benefit-to-burden
ratio metric as the ratio of the amount of expected benefit to the user and their system
(mostly, but not exclusively with respect to model performance) to the amount of
expected burden to the user (mostly, but not exclusively with respect to the amount
of interaction). Using this, we find that most models for activity recognition (based
on random forest regression trees) which perform with better than 45% accuracy
are capable of leveraging model confidence, appear capable of selecting predic-
tions which are likely to be incorrect and predictions which are likely to be correct.
This representation of model confidence can be leveraged for model personalisa-
tion approaches such as self-training and active learning as well as seamful design
features such as those that present predictions pessimistically (only those which are
likely to be correct) or cautiously (only those which are likely to be incorrect).
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Chapter 17
Evaluation of Interactive Machine
Learning Systems

Nadia Boukhelifa, Anastasia Bezerianos and Evelyne Lutton

Abstract The evaluation of interactive machine learning systems remains a difficult
task. These systems learn from and adapt to the human, but at the same time, the
human receives feedback and adapts to the system. Getting a clear understanding of
these subtle mechanisms of co-operation and co-adaptation is challenging. In this
chapter, we report on our experience in designing and evaluating various interactive
machine learning applications from different domains. We argue for coupling two
types of validation: algorithm-centred analysis, to study the computational behaviour
of the system; and human-centred evaluation, to observe the utility and effectiveness
of the application for end-users. We use a visual analytics application for guided
search, built using an interactive evolutionary approach, as an exemplar of our work.
Our observation is that human-centred design and evaluation complement algorith-
mic analysis, and can play an important role in addressing the “black-box” effect
of machine learning. Finally, we discuss research opportunities that require human-
computer interaction methodologies, in order to support both the visible and hidden
roles that humans play in interactive machine learning.

17.1 Introduction

In interactive Machine Learning (iML), a human operator and a machine collaborate
to achieve a task, whether this is to classify or cluster a set of data points [1, 11], to
find interesting data projections [5, 9, 13], or to design creative art works [36, 43].
The underlying assumption is that the human-machine co-operation yields better
results than a fully automated or manual system. An interactive machine learning
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system comprises an automated service, a user interface, and a learning component.
A human interacts with the automated component via the user interface and provides
iterative feedback to a learning algorithm. This feedback may be explicit or inferred
from human behaviour and interactions. Likewise, the system may provide implicit
or explicit feedback to communicate its status and the knowledge it has learnt.

The interactive approach to machine learning is appealing for many reasons
including:

• to integrate valuable experts knowledge that may be hard to encode directly into
mathematical or computational models;

• to help resolve existing uncertainties as a result of, for example, bias and error that
may arise from automatic machine learning;

• to build trust by making humans involved in the modelling or learning processes;
• to cater for individual human differences and subjective assessments such as in art
and creative applications.

Recent work in interactive machine learning has focused on developing working
prototypes, but less on methods to evaluate iML systems and their various com-
ponents. The question of how to effectively evaluate such systems is challenging.
Indeed, human-in-the-loop approaches to machine learning bring forth not only
numerous intelligibility and usability issues, but also open questions with respect
to the evaluation of the various facets of the iML system, both as separate compo-
nents and as a holistic entity [40].Holzinger [28] argued that conductingmethodically
correct experiments and of iML systems is difficult, time-consuming, and hard to
replicate due to the subjective nature of the “human agents” involved. Cortellessa
and Cesta [19] found that the quantitative evaluation of mixed-initiative systems
tended to focus either on problem-solving performance of the human and what they
call the artificial solver, or the quality of interaction looking at user requirements
and judgment of the system. This statement also applies to iML systems, where
current evaluations tend to be either algorithm-centred to study the computational
behaviour of the system, or human-centred focusing on the utility and effectiveness
of the application for end-users [7–9].

The aim of this chapter is to review existing evaluation methods for iML systems,
and to reflect upon our own experience in designing and evaluating such applications
over a number of years [3, 6, 32, 34, 36, 46, 47]. The chapter is organised as
follows: First we provide a review of recent work on the evaluation of iML systems
focusing on types of human and system feedback, and the evaluation methods and
metrics deployed in these studies. We then illustrate our evaluation method through
a case study on an interactive machine learning system for guided visual search,
covering both algorithm-centred and human-centred evaluations. Finally, we discuss
research opportunities requiring human-computer interactionmethodologies in order
to support both the visible and hidden roles that humans play in machine learning.



17 Evaluation of Interactive Machine Learning Systems 343

17.2 Related Work

In this section, we review recent work that evaluates interactive machine learning
systems. We consider both qualitative and quantitative evaluations. Our aim is not
to provide an exhaustive survey, but rather to illustrate the broad range of existing
methods and evaluation metrics.

17.2.1 Method

Wesystematically reviewedpapers publishedbetween2012–2017 from the following
venues: IEEE VIS, ACM CHI, EG EuroVis, HILDA workshop, and CHI HCML
workshop. We downloaded then filtered the proceedings to include papers having
the following keywords: “learn AND algorithmAND interact AND (user OR human
OR expert) AND (evaluation OR study OR experiment)”. We then drilled down
to find papers that describe an actual iML system (as defined in the introduction)
with an evaluation section. In this chapter, we focus on studies from the fields of
visualisation and human-computer interaction. Our hypothesis was that papers from
these domains are likely to go beyond algorithm-centred evaluations. In total, we
reviewed 19 recent papers (Table 17.1), from various application domains including
multidimensional data exploration [5, 9, 20, 26, 48], data integration [2], knowledge
base construction [21], text document retrieval [27], photo enhancement [31], audio
source separation [12], social network access control [1], and category exploration
and refinement [35].We examined these evaluations in terms of the machine learning
tasks they support, the types of user feedback, the nature of system feedback, and
their evaluation methods and metrics.

17.2.2 Human Feedback

Broadly speaking, human feedback to machine learning algorithms can be either
explicit or implicit. The difference between these two mechanisms stems from the
field of Information Retrieval (IR). In the case of implicit feedback, humans do
not assess relevance for the benefit of the IR system, but rather to fulfil their own
task. Besides, they are not necessarily aware that their assessment is being used
for relevance feedback [30]. In contrast, for explicit feedback, humans indicate their
assessment via a suitable interface, and are aware that their feedback is interpreted for
relevance judgment. Whereas implicit feedback is inferred from human interactions
with the system, explicit feedback is directly provided by humans.

The systems we reviewed either use implicit (7 papers), explicit (8 papers), or
mixed (4 papers) human feedback. In the case of mixed feedback, the system tries
to infer information from user interactions to complement the explicit feedback.
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Implicit Human Feedback

Endert et al. [22, 38] developed semantic interaction for visual analytics where
the analytical reasoning of the user is inferred from their interactions, which in
turn helps steer a dimension reduction model. Their system ForceSpire learns from
human input, e.g., moving objects, to improve an underlying model and to produce
an improved layout for text documents. Similarly, UTOPIAN [18] supports what the
authors describe as a “semantically meaningful set of user interactions” to improve
topic modelling. These interactions include keyword refinement, and topic splitting
andmerging. Implicit feedback may also be gathered from user interactions with raw
data. For example, Azuan et al. [2] developed a tool where manual data corrections,
such as adding or removing tuples from a data table, are leveraged to improve data
integration and cleaning.

Interactive machine learning systems may infer other types of information such
as attribute salience or class membership. Wenskovitch and North implemented the
Observation-Level Interaction technique (OLI) [48], where the importance of data
attributes is inferred from user manipulations of nodes and clusters, and is used to
improve a layout algorithm. The ReGroup tool [1] learns from user interactions and
a faceted search on online social networks, to create custom on-demand groups of
actors in the network.

In the previous examples, the system learns from individual users. In contrast,
Dabek and Caban [20] developed an iML system that learns from crowd interac-
tions with data to generate a user model capable of assisting analysts during data
exploration.

Explicit Human Feedback

Often explicit human feedback is provided through annotations and labels. This
feedback can be either binary or graduated. TheViewSpace Explorer [5] for instance,
allows users to choose and annotate relevant or irrelevant example scatter plots.Gao et
al. [23] proposed an interactive approach to 3Dmodel repository exploration, where a
humanassigns “like” or “dislike” labels to parts of amodel or its entirety.RCLens [35]
supports user guided exploration of rare categories through labels provided by a
human. In a text document retrieval application [27], humans decide to accept, reject
or label search query results. Similarly, but for a video search system [33], users can
either accept or reject sketched query results.

A richer and more nuanced approach to human feedback is proposed by Brown
et al. in their Dis-function system [11], where selections of scatterplot points can
be dragged and dropped to reflect human understanding of the structure of a text
document collection. In this case, the closer the data points in the projected 2D
space, the more similar they are. Ehrenberg et al. [21] proposed the “data program-
ming” paradigm, where humans encode their domain expertise using simple rules,
as opposed to the traditional method of hand-labelling training data. This allows the
generation of a large amount of noisy training labels, which the machine learning
algorithm then tries to de-noise and model. Bryan et al. [12] implemented an audio
source separation system where humans annotate data and errors, or directly paint
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on a time-frequency or spectrogram display. In each of these cases, human feedback
and choices are taken into consideration to update a machine learning model.

Mixed Human Feedback

To guide user exploration of large search spaces, EvoGraphDice [6, 9] combines
explicit human feedback regarding the pertinence of evolved 2D data projections,
and an implicit method based on past human interactions with a scatterplot matrix.
For the explicit feedback, the user ranks scatterplots from one to five using a slider.
The system also infers view relevance by looking at the visual motifs [49] in the
ranked scatterplots. For example, if the user tends to rank linear point distributions
highly, then this motif will be favoured to produce the next generation of scatterplots.
Importantly, theweights of these feedback channels are set to equal by default, but the
user can choose to change the importance of each at any time during the exploration.

Healey and Dennis [26] developed interest-driven navigation in visualisation,
basedonboth implicit and explicit human feedback.The implicit feedback is gathered
from human interactions with the visualisation system, and from eye tracking to
infer preferences based on where the human is looking. Their argument is that data
gathered through implicit feedback is noisy. To overcome this, they built a preference
statement interface, where humans provide a subject, a classification, and a certainty.
This preference interface allows the human to define rules to identify known elements
of interest.

Another example is the SelPH system [31], which learns implicitly from a photo
editing history, and explicitly from the direct interaction of a human with an optimi-
sation slider. Together, these two feedback channels help to exclude what the authors
call the “uninteresting” or “meaningless” design spaces.

17.2.3 System Feedback

System feedback goes beyond showing the results of the co-operation between the
human and the machine. It seeks to inform humans about the state of the machine
learning algorithm, and the provenance of system suggestions, especially in the case
of implicit user feedback.

System feedback can be visual: Boukhelifa et al. [6] used colour intensity and a
designated flag to visualise the system’s interpretation of the mixed user feedback
regarding the pertinence of 2D projections. Heimerl et al. [27] implemented a visual
method and text labels to show the classifier’s state, and the relevance of the selected
documents to a search query. Legg et al. [33] visualised the similarity metrics they
used to compute a visual search.

System feedback can be uncertain: Koyama at al. [31] indicated the system’s
confidence in the estimation of humans’ preferences with respect to colour enhance-
ment. Behrisch et al. [5] provided a feature histogram and an incremental decision
tree. These meta visualisations also communicate the classifier’s uncertainty. Lin et
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al. [35] showed visualisation of rare categories using their “category view”, and a
glyph-based visualisation to show classification features as well as confidence.

System feedback can be progressive: Dabek and Caban [20] discussed the impor-
tance of choosingwhen to propose something to the human. Their approach consisted
in providing feedback when the human is in need of guidance. They established a
number of rules to detect when this occurs. UTOPIA [18] visualises intermediate
output even before algorithmic convergence. Ehrenberg et al. [21] showed “on-the-
spot” performance feedback using plots and tables. They claimed that this allows the
user to iterate more quickly on system design and helps navigate the key decision
points in their data programming workflow.

For the majority of the iML systems we reviewed, system feedback was provided.
It appears that this feedback is an important feature, perhaps because it helps humans
better interpret the results, and allows them to correct any mistakes or areas of
uncertainty in the inferred user model. The challenge, however, is to find the right
level of feedback without having to fully expose the inner workings of the underlying
models and their parameters.

17.2.4 Evaluation Methods and Metrics

In total, for the systems we reviewed, there were nine papers with case studies and
usage scenarios [5, 18, 21–23, 26, 33, 35, 48], ten user studies [1, 2, 9, 11, 12,
20, 23, 27, 31, 33] and two observational studies [6, 38], in addition to surveys,
questionnaires and interviews (seven papers). Although a number of papers included
some form of a controlled user study, it was however acknowledged that this type of
evaluation is generally difficult to conduct due to the various potential confounding
factors such as previous knowledge [33]. Indeed, evaluating accuracy of an iML
system is not always possible as ground truth does not always exist [1].

Objective Performance Evaluations

One way to evaluate how well the human-machine co-operation performs to achieve
a task is to compare the iML system with its non-interactive counterpart, i.e. no
human feedback, or to an established baseline system. Legg at al. [33] conducted a
small-scale empirical evaluation with three participants using three metrics inspired
from content-based information retrieval: time, precision and recall. The idea was to
manually identify five video clips as the ground truth, then to compare an iML video
search system with a baseline system (a standard video tool with fast-forward) for a
video search task. They found that participants performed better in the iML condition
for this task. In a user study with twelve participants, Amerish et al. [1] compared a
traditional manual search to add people to groups on online social networks (using an
alphabetical list or searching by name), to an interactive machine learning approach
called ReGroup. They looked at the overall time it took participants to create groups,
final group sizes, and speed of selecting group members. Their results show that the
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traditional method works well for small groups, whereas the iMLmethod works best
for larger and more varied groups.

Another way to objectively evaluate the success of the human-machine co-
operation is to look at insights. In the context of exploratory data visualisation,
Endert et al. [22] and Boukhelifa et al. [6] found that with the help of user feedback,
their respective iML systems were able to confirm known knowledge and this led to
new insights.

Other evaluations in this category compared the iML application with and without
system feedback. Dabek et al. [20] proposed a grammar-based approach to model
user interactions with data, which is then used to assist other users during data
analysis. They conducted a crowdsourced formal evaluation with 300 participants to
assess how well their grammar-based model captures user interactions. The task was
to explore a census dataset and answer twelve open-ended questions that required
looking for combinations of variables and axis ranges using a parallel coordinates
visualisation. When comparing their tool with and without system feedback, they
found that system suggestions significantly improved user performance for all their
data analysis tasks, although questions remain with regards to the optimal number
of suggestions to display to the user.

A number of studies looked at algorithmic performance when user feedback was
implicit versus explicit. Azuan et al. [2] who used a “pay-as-you-go” approach to
solicit user feedback during data integration and cleaning, compared the two human
feedbackmethods for a data integration task. They found that user performance under
the implicit condition was better than for the explicit feedback in terms of number
of errors. However, the authors noted some difficulties in separating usability issues
related to the explicit feedback interface from the performance results.

Finally, some authors focused on algorithm-centred evaluations, where two or
more machine learning methods are compared. For instance, in the context of topic
modelling, Choo et al. [18] compared latent Dirichlet allocation and non-negative
matrix factorisation algorithms, from the practical viewpoints of consistency of mul-
tiple runs and empirical convergence. Another example is by Bryan et al. [12] who
chose objective separation quality metrics defined by industry standards, as objective
measures of algorithmic performance for audio source separation.

Subjective Performance Evaluations

The subjective evaluations described in Table 17.1 were carried out using surveys,
questionnaires, interviews, and informal user feedback. They included evaluation
metrics related to these aspects of user experience: happiness, easiness, quickness,
favourite, best helped, satisfaction, task load, trust, confidence in user and system
feedback, and distractedness. Moreover, the observational studies [6, 38] that we
reviewed provided rich subjective user feedback on iML system performance. Endert
et al. [38] looked at semantic interaction usage, to assess whether the latter aids the
sensemaking process. They state that one sign of success of iML systems is when
humans forget that they are feeding information to an algorithm, and rather focus on
“synthesising information relevant to their task”.
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Other evaluations looked at human behavioural variationswith regards to different
iML interfaces.Amerish et al. [1] compared two interfaces for adding people to online
social networks, with and without the interactive component of iML. They looked at
behavioural discrepancies in terms of how people used the different interfaces and
how they felt. They found that participants were frustrated when model learning was
not accurate.

Koyama et al. [31] compared their adaptive photo enhancement system with the
same tool stripped of advanced capabilities, namely the visual system feedback, the
optimisation slider functions, and the ordering of search results in terms of similar-
ity. Because photo enhancement quality can be subjective, performance of the iML
system was rated by the study participants. In this case, they were satisfied with the
iML system and preferred it over more traditional workflows.

In summary, there are many aspects of interactive machine learning systems that
are being evaluated. Sometimes authors focus on the quality of the user interaction
with the iMLsystem (human-centred evaluations), or the robustness of the algorithms
that are deployed (algorithm-centred evaluations), and only in a few cases is detailed
attention drawn to the quality of human-machine co-operation and learning. These
studies use a variety of evaluation methods, as well as objective and subjective
metrics. Perhaps our main observation from this literature review, is that for the
majority of the reviewed papers, only a single aspect of the iML system is evaluated.
We need more evaluation studies that examine the different aspects of iML systems,
not only as separate components but also from an integrative point of view.

In the next section,we introduce an interactivemachine learning system for guided
exploratory visualisation and describe ourmulti-faceted evaluation approach to study
the effectiveness and usefulness of this tool for end users.

17.3 Case Study: Interactive Machine Learning
For Guided Visual Exploration

Exploratory visualisation is a dynamic process of discovery that is relatively unpre-
dictable due to the absence of a priori knowledge of what the user is searching for
[25]. The focus in this case is on organisation, testing, developing concepts, find-
ing patterns and definition of assumptions [25]. When the search space is large, as
is often the case for multi-dimensional datasets, the task of exploring and finding
interesting patterns in data becomes tedious. Automatic dimension reduction tech-
niques, such as principal component analysis and multidimensional scaling, reduce
the search space, but often are difficult to understand [42], or require the specifica-
tion of objective criteria to filter views before exploration. Other techniques guide
the exploration towards the most interesting areas of the search space based on infor-
mation learned during the exploration, which appears to be more adapted to the free
nature of exploration [9, 11].



350 N. Boukhelifa et al.

Fig. 17.1 The Evolutionary Visual Exploration Framework (EVE). Raw data dimensions (from the
data space) are fed into an evolutionary loop in order to progressively evolve new interesting views
to the user. The criteria for deciding on the pertinence of the new views is specified through a com-
bination of automatically calculated metrics (from the computational space) and user interactions
(at the user space)

In our previous work on guided exploratory visualisation [6, 7, 9, 13, 14], we
tried to address the problem of how to efficiently explore multidimensional datasets
characterised by a large number of projections. We proposed a framework for Evo-
lutionary Visual Exploration (EVE, Fig. 17.1) that combines visual analytics with
stochastic optimisation by means of an Interactive Evolutionary Algorithm (IEA).
Our goal was to guide users to interesting projections, where the notion of “interest-
ingness” is defined implicitly by automatic indicators such as the amount of visual
pattern in the two-dimensional views visited by the user, and explicitly via subjective
human assessment.

In this section, we report on our experience in building and evaluating an inter-
active machine learning system called EvoGraphDice (Fig. 17.3) using the EVE
framework. We note that existing evaluations of interactive evolutionary systems
tend to be algorithm-centred. Through this case study, we argue for a multi-faceted
evaluation approach that takes into account all components of an iML system. Sim-
ilar recommendations can be found for evaluating interactive visualisation systems.
For example, Carpendale [15] advocates for adopting a variety of evaluative method-
ologies that together may start to approach the kind of answers sought.
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17.3.1 Background on Interactive Evolutionary Computation
IEC

There are many machine learning approaches, including artificial neural networks,
support vector machines and Bayesian networks. Moreover, many machine learn-
ing problems can be modelled as optimisation problems where the aim is to find a
trade-off between an adequate representation of the training set and a generalisation
capability on unknown samples. In contrast to traditional local optimisation meth-
ods, EvolutionaryAlgorithms (EAs) have beenwidely used as a successful stochastic
optimisation tool in the field of machine learning in recent years [44]. In this sense,
machine learning and the field of Evolutionary Computation (EC), that encompasses
EAs, are tightly coupled.

Evolutionary Algorithms (EAs) are stochastic optimisation heuristics that copy,
in a very abstract manner, the principles of natural evolution that let a population
of individuals be adapted to its environment [24]. They have the major advantage
over other optimisation techniques of making only few assumptions on the function
to be optimised. An EA considers populations of potential solutions exactly like a
natural population of individuals that live, fight, and reproduce, but the natural envi-
ronment pressure is replaced by an “optimisation” pressure. In this way, individuals
that reproduce are the best ones with respect to the problem to be solved. Reproduc-
tion (see Fig. 17.2) consists of generating new solutions via variation schemes (the
genetic operators), that, by analogy with nature, are called mutation if they involve
one individual, or crossover if they involve two parent solutions. A fitness function,
computed for each individual, is used to drive the selection process, and is thus opti-
mised by the EA. Evolutionary optimisation techniques are particularly efficient to
address complex problems (irregular, discontinuous) where classical deterministic
methods fail [4, 39], but they can also deal with varying environments [50], or non
computable quantities [45].

Interactive Evolutionary Computation (IEC) describes evolutionary computa-
tional models where humans, via suitable user interfaces, play an active role, implic-
itly or explicitly, in evaluating the outputs evolved by the evolutionary computation
(Fig. 17.2). IEC lends itself verywell to art applications such as formelody or graphic
art generation where creativity is essential, due to the subjective nature of the fitness
evaluation function. For scientific and engineering applications, IEC is interesting
when the exact form of a more generalised fitness function is not known or is difficult
to compute, say for producing a visual pattern that would interest a human observer.
Here, the human visual system, together with their emotional and psychological
responses are far superior to any automatic pattern detection or learning algorithm.

Whereas current IEC research has focused on improving the robustness of the
underlying algorithms, much work is still needed to tackle human-factors in systems
where adaptation between users and systems is likely to occur [37].
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Fig. 17.2 The evolutionary
loop: user interactions can
occur at any stage including
the selection and evaluation
of individuals and the
genetic operators

17.3.2 The Visible and Hidden Roles of Humans in IEC

The role of humans in IEC can be characterised by the evolutionary component at
which they operate, namely: initialisation, evolution, selection, genetic operators,
constraints, local optimisation, genome structure variation, and parameters tuning.
This may or may not be desirable from a usability perspective, especially for non-
technical users. The general approach when humans are involved, especially for
parameter tuning, is mostly by trial-and-error and by reducing the number of param-
eters. Such tasks are often visible, in that they are facilitated by the user interface.
However, there exists a hidden role of humans in IEC that has often been neglected.
Algorithm and system designers play a central role in deciding the details of the
fitness function to be optimised and in setting the default values of system parame-
ters, and thus contributing to the “black-box” effect of IEC systems. Such tasks are
influenced by the designer’s previous experience and end-user task requirements.

Besides this hidden role in the design stage, there is amajor impact of the “human-
in-the-loop” on the IEC. This problem is known as the “user bottleneck”, i.e. human
fatigue due to the fact that the human and the machine do not live and react at
the same rate. Various solutions have been considered in order to avoid systematic
and repetitive or tedious interactions, and the authors themselves have considered
several of them, such as: (i) reducing the size of the population and the number of
generations; (ii) choosing specific models to constrain the exploration in a priori
“interesting” areas of the search space; and (iii) performing an automatic learning
(based on a limited number of characteristic quantities) in order to assist the user
and only present interesting individuals of the population, with respect to previous
votes or feedback from the user. These solutions require considerable computational
effort. A different approach and new ideas to tackle the same issue could come from
Human Computer Interaction (HCI) and usability research, as discussed later in this
chapter.
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Fig. 17.3 EvoGraphDice prototype showing an exploration session of a synthetic dataset.Widgets:
a an overview scatterplot matrix showing the original data set of 5 dimensions (x0..x4) and the new
dimensions (1..5) as suggested by the evolutionary algorithm. bmain plot view. c tool bar for main
plot view. d a tool bar with (top to bottom) favourite toggle button, evolve button , a slider to
evaluate cells and a restart (PCA) button. e the selection history tool. f the favourite cells window.
g the selection query window. h IEA main control window. i window to limit the search space. j
dimension editor operators

17.3.3 EvoGraphDice Prototype

EvoGraphDice [6, 7, 9, 13] was designed to aid the exploration of multidimensional
datasets characterised by a large space of 2D projections (Fig. 17.3). Starting from
dimensions whose values are automatically calculated by a Principle Component
Analysis (PCA), an IEA progressively builds non-trivial viewpoints in the form of
linear and non-linear dimension combinations, to help users discover new interesting
views and relationships in their data. The criteria for evolving new dimensions is not
known a priori and is partially specified by the user via an interactive interface.
Pertinence of views is modelled using a fitness function that plays the role of a
predictor: (i) users select views with meaningful or interesting visual patterns and
provide a satisfaction score; (ii) the system calibrates the fitness function optimised
by the evolutionary algorithm to incorporate user’s input, and then calculates new
views. A learning algorithm was implemented to provide pertinent projections to the
user based on their past interactions.
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17.3.4 Multi-faceted Evaluation of EvoGraphDice

We evaluated EvoGraphDice quantitatively and qualitatively following a mixed-
approach, where on the one hand we analysed the computational behaviour of the
system (algorithm-centred approach), and on the other hand we observed the utility
and effectiveness of the system for the end-user (human-centred approach).

17.3.4.1 Quantitative Evaluation

For this study [9], we synthesised a 5D dataset with an embedded curvilinear rela-
tionship between two dimensions and noise for the rest of the dimensions. The task
was to find a data projection that shows a derived visual pattern. We logged user
interactions with the tool and the state of the system at each algorithm iteration. For
log data analysis, we used both statistical and exploratory visualisation techniques.

Algorithm-Centred Evaluation

This evaluation focused on two aspects of our iML system: the robustness of the
underlying algorithm, and the quality of machine learning. To study robustness, we
conducted two types of analyses: (a) convergence analysis to assess the algorithms
ability to steer the exploration toward a focused area of the search space, and (b)
diversity analysis to assess the richness and variability of solutions provided by the
algorithm. These two analyses are relevant because they relate to two important
mechanisms in evolutionary algorithms, exploitation and exploration [4], where on
the one hand users want to visit new regions of the search space, and on the other hand
they also want to explore solutions close to one region of the search space. In terms of
objective metrics, we used the number of generations and task outcome to measure
algorithmic performance andmean visual pattern differences (using scagnostics [49])
to assess diversity. To evaluate the quality of learning,we used the rate of concordance
between user evaluation scores, and the “predicted” values as calculated by the
algorithm.

Our analysis showed that on average the interactive evolutionary algorithm fol-
lowed the order of user ranking of scatterplots fairly consistently, even though users
seemed to take different search and evaluation strategies. For example, some partici-
pants tended to lump evaluation scores into fewer levels, others used the five provided
score levels, whereas the rest alternated between the two strategies at different stages
of the exploration.Moreover, these results indicated a possible link betweenuser eval-
uation strategy, and outcome of exploration and speed of convergence, where users
taking a more consistent approach converged more quickly. The diversity analysis
showed that, in terms of visual pattern, the IEA provided more diverse solutions at
the beginning of the exploration session before slowly converging to a more focused
search space.
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Human-Centred Evaluation

The user-centred evaluation of EvoGraphDice focused on two different aspects
related to human interactionswith the iML system. First we performed a user strategy
analysis to understand the different approaches users took to solve a data exploration
task. The evaluation metrics we used here were the type of searched visual pattern,
and stability of the exploration strategy. Second, we looked at user focus to highlight
hot spots in the user interface and assess user evaluation strategies. In this case, our
evaluation metrics were related to the user view visitation and evaluation patterns.

In terms of results, the user strategies analysis showed that EvoGraphDice allows
for different types of exploration strategies that appear to be relevant for the study
task. In the case of a two-curve separation task, these strategies centred around three
dominant types of scagnostics: skinny, convex and sparse. We also found that the
stability of the exploration strategy may be an important factor for determining the
outcome of the exploration task and the speed of convergence, since successful explo-
ration sessions had a more consistent strategy when compared to the unsuccessful
ones, and they converged more quickly on average.

From the user visitation and evaluation analyses, we found that users were more
likely to visit scatterplots showing dimensions relevant to their task. Moreover, these
plots were on average ranked highly by the user. Since for this game task, the main
dimensions relevant to the task appeared on the top left side of the proposed cells,
users intuitively started navigating that way. What we saw in these results was prob-
ably a mixture of task-relevance and intuitive-navigation, as the relevant original
dimensions are placed in a prominent position in the matrix.

17.3.4.2 Qualitative Evaluation

To assess the usability and utility of EVE, we conducted another user study [6]
where we tried to answer these three questions: is our tool understandable and can it
be learnt; are experts able to confirm known insights in their data; and are they able
to discover new insight and generate new hypotheses. We designed three tasks: (a)
a game-task (similar to the task in the quantitative evaluation above) with varying
levels of difficulty to assess participants abilities to operate the tool; (b) we asked
participants to show in the tool what they already knew about their data; and (c) to
explore their data in light of a hypothesis or research question that they prepared. This
sequence of tasks assured that experts became familiar with the tool and understood
how to concretely leverage it by looking for known facts, before looking for new
insights. This evaluation approach sits between an observational study and an insight-
based evaluation, such as the one proposed by Saraiya et al. [41].

The study led to interesting findings such as the ability of our tool to support
experts in better formulating their research questions and building new hypotheses.
For insight evaluation studies such as ours, reproducing the actual findings across
subjects is not possible as each participant provided their own dataset and research
questions. However, reproducing testing methodologies and coding for the analy-
sis is. Although we ran multiple field studies with domain experts from different
domains, with sessions that were internally very different, the high-level tasks, their
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order and the insight-based coding were common. Training expert users on simple
specific tasks that are not necessarily “theirs” also seemed to help experts become
confident with the system, but of course comes at a time cost.

17.4 Discussion

We conducted qualitative and quantitative user studies to evaluate EVEwhich helped
us validate our framework of guided visual exploration. While the observational
study showed that using EVE, domain experts were able to formulate interesting
hypothesis and reach new insights when exploring freely, the quantitative evaluation
indicated that users, guided by the interactive evolutionary algorithm, are able to
converge quickly to an interesting view of their data when a clear task is specified.
Importantly, the quantitative study allowed us to accurately describe the relationship
between user behaviour and algorithms response.

Besides interactive machine learning, guided visualisation systems such as EVE
fall under the wider arena of knowledge-assisted visualisation and mixed-initiative
systems [29]. In such cases, where the system is learning, it is crucial that users
understand what the system is proposing or why changes are happening. Thus, when
evaluating iML systems with users, we need to specifically test if the automatic state
changes and their provenance are understood. It would be interesting, for example,
to also consider evolving or progressive revealing of the provenance of system sug-
gestions. This way, as the user becomes more expert, more aspects of the underlying
mechanics are revealed. When creativity and serendipity are important aspects, as is
the case in artistic domains and data exploration, new evaluation methodologies are
required.

Research from the field of mixed initiative systems describes a set of design prin-
ciples that try to address systematic problems with the use of automatic services
within direct manipulation interfaces. These principles include considering uncer-
tainty about a user’s goal, transparency, and considering the status of users’ attention
[29]. We can be inspired by the extensive experience and past work from HCI, to
also consider how user behaviour can in turn adapt to fit our systems [37].

During the design, development and evaluation of EVE, we worked with domain
experts at different levels. For the observational study, we worked with data experts
from various disciplines, which allowed us to assess the usefulness, usability and
effectiveness of our system in different contexts. In particular, we largely benefited
from having one domain expert as part of the design and evaluation team. This expert
explored multidimensional datasets as part of her daily work, using both algorithmic
and visual tools. Involving end-users in the design team is a long-time tradition in the
field ofHCI as part of the user-centred designmethodology.This is a recommendation
we should considermore, both as a design and as a systemvalidation approach.While
HCI researchers acknowledge the challenges of forming partnerships with domain
experts, their past experiences (e.g., [17]) can inform us on how to proceed with the
evaluation of iML systems.
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17.5 Research Prospects

We report on observations and lessons learnt from working with application users
both for the design and the evaluation of our interactive machine learning system,
as well as the results of experimental analyses. We discuss these below as research
opportunities aiming to facilitate and support the different roles humans play in iML,
i.e. in the design, interaction and evaluation of these systems.

Human-centred Design: during the design, development and evaluation of many
of our tools, we worked with domain experts at different levels. For EvoGraphDice,
for instance, we largely benefited from having a domain expert as part of the design
and evaluation team. However, this was carried out in an informal way. Involving
end-users in the design team is a long-time tradition in the field of HCI as part of
the user-centred design methodology. Participatory design, for instance, could be
conducted with iML end-users to incorporate their expertise in the design of, for
example, learning algorithms and user models. This is a recommendation we should
consider in a more systematic way, both as a design and as a system validation
approach.

Interaction and visualisation: often the solutions proposed by the iML systems
are puzzling to end-users. This is because the inner workings of machine learning
algorithms, and the user exploration and feedback strategies that lead to system sug-
gestions are often not available to the user. This “black-box” effect is challenging
to address as there is a fine balance to find between the richness of a transparent
interface and the simplicity of a more obscure one. Finding the tipping point requires
an understanding of evolving user expertise in manipulating the system, and the task
requirements. Whereas HCI and user-centred design can help elicit these require-
ments and tailor tools to user needs over time, visualisation techniques can make the
provenance of views and the system status more accessible.

At the interaction level, HCI can contribute techniques to capture rich user feed-
back without straining the user, that are either implicit (e.g., using eye-tracking); or
explicit such as using simple gestures or interactions mediated by tangible objects to
indicate user subjective assessment of a given solution. Here, our recommendation is
to investigate rich and varied interaction techniques to facilitate user feedback, and
to develop robust user models that try to learn from the provided input.

Multifaceted Evaluation: the evaluation of iML systems remains a difficult task
as often the system adapts to user preferences but also the user interprets and adapts
to system feedback. Getting a clear understanding of the subtle mechanisms of this
co-adaptation [37], especially in the presence of different types and sources of uncer-
tainty [10], is challenging and requires consideration of evaluation criteria other than
speed of algorithm convergence and the usability of the interface.

In the context of exploration, both for scientific and artistic applications, creativity
is sought and can be characterised by lateral thinking, surprising findings, and the
way users learn how to operate the interactive system and construct their own way
to use it. For IEC, our observation is that augmented creativity can be achieved with
the right balance between randomness and user-guided search. What is important to
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consider for evaluating iML systems in the context of creativity, are the exploration
components. Our recommendation in this respect is two-fold: first, to work towards
creating tools that support creativity (something that the HCI community is already
looking into [16]); and second, to investigate objective and subjective metrics to
study creativity within iML (e.g., to identify impacting factors such as optimisation
constraints, user engagement and the presence or absence of direct manipulation).
Some of these measures may only be identifiable through longitudinal observations
of this co-adaptation process.

17.6 Conclusion

User-driven machine learning processes such as the ones described in this chapter,
rely on systems that adapt their behaviour based on user feedback, while users them-
selves adapt their goals and strategies based on the solutions proposed by the system.
In this chapter, we focused on the evaluation of interactivemachine learning systems,
drawing from related work, and our own experience in developing and evaluating
such systems. We showed through a focused literature review that despite the mul-
tifaceted nature of iML systems, current evaluations tend to focus on single isolated
components such as the robustness of the algorithm, or the utility of the interface.
Through a visual analytics case study, we showed how coupling algorithm-centred
and user-centred evaluations can bring forth insights on the underlying co-operation
and co-adaptation mechanisms between the algorithm and the human. Interactive
machine learning presents interesting challenges and prospects to conduct future
research not only in terms of designing robust algorithms and interaction techniques,
but also in terms of coherent evaluation methodologies.
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Chapter 18
Water Pipe Failure Prediction: A
Machine Learning Approach Enhanced
By Domain Knowledge

Bang Zhang, Ting Guo, Lelin Zhang, Peng Lin, Yang Wang, Jianlong Zhou
and Fang Chen

Abstract Drinking water pipe and waste water pipe networks are valuable urban
infrastructure assets that are responsible for reliable water resource distributions and
waste water collection. However, due to fast growing demand and aging assets, water
utilities find it increasingly difficult to efficiently maintain their pipe networks. Pipe
failures - drinking water pipe breaks and waste water pipe blockages - can cause sig-
nificant economic and social costs, and hence have become the primary challenge to
water utilities. Identifying key influential factors, e.g., pipes’ physical attributes, envi-
ronmental features, is critical for understanding pipe failure behaviours. The domain
knowledge plays a significant role in this aspect. In this work, we propose a Bayesian
nonparametric machine learning model with the support of domain knowledge for
pipe failure prediction. It can forecast future high-risk pipes for physical condition
assessment, thereby proactively preventing disastrous failures. Moreover, compared
with traditional machine learning approaches, the proposed model considers domain
expert knowledge and experience, which helps avoid the limit of traditional machine
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learning approaches - learning only from what it sees - and improves prediction
performance.

18.1 Introduction

Pipe networks are valuable urban infrastructure assets that are responsible for reli-
able water resource distributions and waste water collection. However, as urbanisa-
tion trends continue and urban populations rise, water utilities find it increasingly
difficult to meet growing water demand with ageing and failing water pipe networks.
Water pipe failures, which can cause tremendous economic and social costs have
become the primary challenge to water utilities. In order to tackle the problem in a
financially viable way, preventative risk management strategies are widely adopted
by water utilities to prevent disastrous failures. The basic idea of the strategies is
to proactively identify high-risk pipes and renew them in time to avoid potential
failures. Meanwhile, replacement of pipes that are still in healthy condition is to be
avoided. Accordingly, the strategies consist of two main steps: (1) high-risk pipe pri-
oritisation, in which pipes are ranked based on their risk of failure, and (2) physical
condition assessment, in which physical inspections are conducted on highly rated
pipes to confirm their actual condition for replacements. The pipes, which are not
identified as high-risk pipes at the prioritisation step, will only be renewed reactively.
Hence, the success of the strategies relies heavily on the prioritisation step. To make
accurate selections of high-risk pipes, the prioritisation step requires a failure pre-
diction method that can give a precise estimation of pipe failure likelihood, based on
which the estimated failure cost and renewal cost can be readily obtained.

The problem of estimating water pipe failure risk has been studied for many
decades. There are two main methodologies for tackling the problem, namely data-
driven modelling and domain knowledge-driven modelling.

For domain knowledge-driven physical modelling, a variety of models has been
proposed for explaining and predicting the deterioration processes of water pipes.
They usually consider an individual aspect of the problem based on the domain
knowledge in the related area, such as pipe-soil interaction analysis, residual struc-
tural resistance, or hydraulic characteristics modelling. A comprehensive review can
be found in [14]. For data-driven statistical machine learning-based modelling, it
assumes that pipes with similar intrinsic attributes share similar failure patterns, and
that failure patterns which have appeared before are likely to reappear in the future.
The patterns can be learnt from the available factors and data sets.

Both methodologies have limitations. For domain knowledge-based physical
models, they often just consider one aspect of the problem, e.g., corrosion, and
lack the ability to learn knowledge from heterogeneous features. While, for data-
driven statistical machine learning-based models, they usually learn from what they
see, i.e., learning from the provided basic features, and lack the ability to identify
and include the informative features that only domain experts are aware of, e.g., a
significant proportion of the waste water pipe failures (blockages) are caused by tree
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Fig. 18.1 Traditional machine learning versus machine learning with domain knowledge. Tradi-
tional machine learning methods suffer the limit of learning only from what they see. Domain
knowledge can help avoid such limit via transferring the knowledge into machine learning models

root penetration. Therefore, in this work, we suggest and demonstrate that the incor-
poration of domain knowledge into machine learning methods could significantly
improve the model performance. Figure18.1 illustrates the difference between tra-
ditional machine learning methods and the machine learning methods considering
domain knowledge.

For the modelling perspective, in order to improve high-risk pipe prioritisation
for large-scale metropolitan pipe networks, we propose a Bayesian nonparametric
statistical approach, namely theDirichlet processmixture of hierarchical beta process
model, for water pipe failure prediction. Unlike parametric approaches, the structure
and complexity of the proposed model can grow as the amount of observed data
increases. It makes the model invulnerable to faulty assumptions of model forms and
adaptable to various failure patterns, thereby leading to more accurate predictions
for different application scenarios.

It is worth noting that water pipe failure data is extremely sparse in reality. Very
few pipes have failure records during the observation period. Such sparsity makes
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Fig. 18.2 Water supply networks in the selected regions

traditional failure predictionmethods incompetent for accurate pipe failure prediction
since most pipes do not have failure data for training. The proposed approach deals
with this issue by sharing failure data via a flexible hierarchical modelling of failure
behaviours. The key component of the hierarchical modelling is a flexible grouping
scheme. It clusters similar pipes together for modelling so that failure data can be
shared by similar pipes for training.

Additionally, domain experts’ experience, i.e., helping identify potential useful
features for building the model and rejecting false correlated features, also helps
tackle the data sparsity challenge.

The proposed method has been applied to the pipe network of an international
metropolis that has a total population of near five million people. In this work, three
representative regions are selected from the metropolis for comparison experiments.
The regions and the networks are shown in Fig. 18.2. As we can see, the water
supply network is constituted of two main categories of water pipes, critical water
main (CWM) indicated by red lines and reticulation water main (RWM) indicated
by blue lines. CWMs have larger diameters (300mm and above), and RWMs have
smaller diameters (smaller than 300mm). Each water pipe is composed of a set of
pipe segments connected in series. Failure records can be precisely matched with
pipe segments, allowing the proposed method to model failure behaviours of pipe
segments.

The rest of the chapter is organised as follows. Section18.2 reviews the related
work. Section18.3 describes the details of the proposed method. Empirical studies
and the importance of the domain knowledge are shown inSect. 18.4. The conclusions
are drawn in Sect. 18.5.

18.2 Related Work

In the past decades, a large number of statistical approaches have been proposed for
water pipe failure prediction with significant success. However, most of them need
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to pre-define the form of the model, hence lack the flexibility of modelling com-
plex situations, where the recent Bayesian nonparametric machine learning strategy
can readily solve the model selection problem. In this section, we briefly review
the related work on statistical water pipe failure prediction methods and Bayesian
nonparametric approaches.

18.2.1 Statistical Failure Prediction Methods

In recent decades, many statistical models have been proposed for water pipe failure
prediction. In the early stages, various methods were developed for modelling the
relationship between pipe age and pipe failure rate. For instance, the work in [15]
proposed a time-exponential model, which formulates the number of failures per
unit length per year as an exponential function of pipe age. Similarly, time-power
model [12] and time-linearmodel [9]were developedwith comparable performances.

Later, multivariate probabilistic models were suggested. They make predictions
based on a variety of pipe attributes, such as age, material, length and diameter.
One of the most popular multivariate approaches is the Cox proportional hazards
model [3]. It is a semi-parametric method, in which the baseline hazard function
has an arbitrary form and the pipe attributes alter the baseline hazard function via
an exponential function multiplicatively. The Weibull model and its variants [2, 8]
are also widely adopted in practice. They utilise either a Weibull distribution or a
Weibull process for modelling pipe failure behaviours.

Recently, a ranking-based method [18] was proposed for predicting water pipe
failures. It treats failure prediction as a ranking problem. Pipes are ranked based on
their failure risk. The method performs failure prediction via a real-valued ranking
function rather than an estimation of failure probability.

18.2.2 Bayesian Nonparametric Approaches

All the aforementioned methods are parametric or semi-parametric, which means
the forms of the methods are predefined and fixed during the training process. If
the assumptions made on the model form are not satisfied, accurate predictions
cannot be achieved. In contrast, Bayesian nonparametric approaches do not make
assumptions about the model structure. Instead, their model complexities grow as the
amount of observed data increases, endowing Bayesian nonparametric approaches
with flexibility for modelling complex real-world data.

The Beta process [5] and the Dirichlet process [4] are two Bayesian nonparamet-
ric approaches that were developed recently with tremendous success in a variety
of domains. They have become the cornerstones for building more sophisticated
Bayesian nonparametric models.
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The Beta process was originally developed for survival analysis on life history
data. It was utilised as a prior distribution over the space of cumulative hazard func-
tion. Later, the work in [17] extended the Beta process to more general spaces for
different applications, such as factor analysis [13], image reconstruction [20, 21],
image interpolation and document analysis [17]. One of its variants was also applied
to water pipe failure prediction [10, 11].

The Dirichlet process [4] is a flexible Bayesian nonparametric prior for data
clustering. It does not set any assumptions on the number of clusters. Instead, it
allows the number of clusters to grow as the number of data points increases. It is the
foundation of many nonparametric mixture models, and has been widely adopted in
various applications, such as document analysis [16], musical similarity analysis [6]
image annotation [19] and DNA sequence analysis [7].

18.3 The Proposed Method

The proposed Dirichlet process mixture of an hierarchical beta process model con-
sists of two main components working with each other interactively: a hierarchical
representation of water pipe failure behaviours and a flexible pipe grouping scheme.
The grouping scheme generates a set of groups, on each of which the hierarchical
representation can be constructed. The hierarchical representation provides a precise
modelling of each group’s failure behaviours, hence acts as the basis of grouping.

The two main components are described in Sects. 18.3.1 and 18.3.2 respectively.
The details of the proposed model are given in Sect. 18.3.3.

18.3.1 Hierarchical Modelling of Water Pipe Failure
Behaviours

The hierarchical beta process is adopted in this work as the hierarchical modelling of
water pipe failure behaviours. We first briefly introduce the beta-Bernoulli process
for modelling failure event and failure probability in Sects. 18.3.1.1 and 18.3.1.2.
Then the details of the hierarchical modeling are given in Sect. 18.3.1.3.

18.3.1.1 Beta Process

On a measurable space Ω , a beta process H is defined as a positive Levy process,
a positive random measure whose masses on disjoint subsets of Ω are independent.
It is parameterised by a positive concentration function c and a base measure H0,
which is also defined on spaceΩ . In simplified cases, where function c(ωi ) becomes
a constant, we call c concentration parameter.
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For disjoint infinitesimal partitions of Ω , the beta process can be generated as:

H(Bk) � Beta(cH0(Bk), c(1 − H0(Bk)), (18.1)

where Bk indicates a partition, and k ∈ {1, · · · , K } is the index. The process can be
denoted as H � BP(c, H0).

When the base measure H0 is discrete and has a set function form of H0 =∑
i piδωi , H turns to have atoms at the same locations as H0’s and can be written in

a set function form accordingly as:

H(ω) =
∑

i

πiδωi (ω)

πi � Beta(cqi , c(1 − qi ))
(18.2)

where δωi (ω) = 1 when ω = ωi and 0 otherwise.
As defined in a general space Ω , the Beta process provides us a flexible Bayesian

nonparametric prior for water pipe failure events which themselves can be modelled
by the Bernoulli process.

18.3.1.2 Bernoulli Process

For a Bernoulli process BeP(H), each of its draws X j is again a measure on space
Ω . j represents the draw index. H indicates a beta process on Ω , as defined before.
It acts as the prior of the Bernoulli process. A draw of the Bernoulli process can also
be represented via a set function form as:

X j (ω) =
∑

i

xi jδωi (ω)

xi, j � Bernoulli(πi )

(18.3)

where δωi corresponds to the same atom location of H . The random variable xi j
is generated from a Bernoulli distribution parameterised by πi which is defined as
Eq. 18.2. With xi j as its elements, an infinite binary column vector, also denoted by
X j , can be used for representing a draw of the Bernoulli process. Then the draws of
the Bernoulli process can form an infinite binary matrix X , with X j representing a
column and j representing the column index. Each row of the matrix corresponds to
an atom location δωi .We can see that the beta process appears to be a proper Bayesian
nonparametric prior for such infinite binary matrices.

It is worth noting that the Beta process is a conjugate prior of the Bernoulli
process. Given a beta process prior H � BP(c, H0), and a set of m observations
drawn from a Bernoulli process X j � BeP(H), the posterior is again a beta process,
with parameters updated as follow:
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Fig. 18.3 Binary failure matrices for pipes and pipe segments

H |X1,··· ,m � BP

⎛

⎝c + m,
c

c + m
H0 + 1

c + m

m∑

j=1

X j

⎞

⎠ (18.4)

The conjugacy significantly simplifies the inference procedure for parameter estima-
tion.

18.3.1.3 Hierarchical Modelling

With the aid of a Beta-Bernoulli process, a hierarchical representation can be devel-
oped for modelling water pipe failure behaviours. Firstly, failure events can be mod-
elled by aBernoulli process BeP(H). Let an infinite binarymatrix X , as illustrated in
Fig. 18.3 (1), represent failure records of pipes. Eachof its columns, X j , can be treated
as a draw from the Bernoulli process BeP(H). It is an infinite binary column vector
with the i-th element xi, j generated from xi, j � Bernoulli(πi ). xi, j = 1 means pipe
i failed in year j , and xi, j = 0 otherwise. Then the beta process, H � BP(c, H0),
defined as a positive Levy process on pipe space Ω , can be used as a prior of failure
events, namely failure probability. Its set function form is defined as Eq. 18.3.
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With beta process H as a prior, each row of the matrix X corresponds to an atom
location δωi in the pipe space Ω , which can be infinitely large. We assume that two
pipes share the same failure patterns if they have the same intrinsic attributes and
environmental factors. Hence, we treat such two pipes as the same in the pipe space
Ω . Considering all the possible combinations of pipe attributes and environmental
factors, the number of “unique” pipes in the pipe space becomes infinite. Therefore,
each column of thematrix X is an infinite binary vector that is drawn from aBernoulli
process. The beta process H is then a conjugate prior of the infinite binary matrix
X . It models the failure probabilities of pipes via πi .

While the Beta-Bernoulli process is capable of modelling failure behaviours as
described above, there are two issues of adopting it in practice. Firstly, the number of
failures is extremely small comparedwith the number of pipes, especially for CWMs.
Only a small portion of CWMs have failure records since most of the CWMs did not
fail during the observation period. Thus, the majority of CWMs have no failure data
for model training. Secondly, in addition to pipe failure histories, pipe attributes and
environmental factors are also crucial for estimating failure probabilities. However,
they are not properly considered in the Beta-Bernoulli process. The fact that the pipes
with similar intrinsic attributes and environmental factors often share similar failure
patterns is ignored by the Beta-Bernoulli process.

In order to address these issues, the hierarchical beta process (HBP) model [11,
17] can be adopted as a hierarchical modelling of water pipe failure behaviours.
Given a water pipe grouping, e.g., grouping by intrinsic attributes, one more beta
process can be added into the model hierarchy for modelling the failure behaviours
of groups. The new beta process is on top of the existing beta process, serving as the
prior of its mean parameter. The graphical model in Fig. 18.4 (1) illustrates the HBP
model. It can also be described as the followings:

qk � Beta(c0q0, c0(1 − q0)), k ∈ [1, · · · , K ],
πi � Beta(ckqk, ck(1 − qk)), i ∈ [1, · · · , N ],
xi, j � Bernoulli(πi ), j ∈ [1, · · · ,mi ],

(18.5)

where πi and xi j are defined as before, modelling the failure probability of pipe
i and failure history of pipe i in year j respectively. qk and ck are the mean and
concentration parameters for group k. qk can be regarded as modeling the failure rate
of group k. q0 and c0 are the hyper parameters.

By adding onemore hierarchy level, theHBPmodel estimates failure probabilities
through the inferences on both group level and pipe level. Group level inference
estimates the group failure rate qk , and pipe level inference estimates the pipe failure
probability πi . Failure data can be shared by the same group of pipes for estimating
group failure rate qk . It helps to solve the failure data sparsity problem. The failure
patterns that are shared by similar pipes are captured at the group level since the
pipes within the same group share the same qk . At the pipe level, the pipe failure
probability πi is estimated by considering not only the failure observations xi j , but
also the group similarity through the group failure rate qk .
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18.3.2 Flexible Water Pipe Grouping

Real world data is complicated and often demonstrates multi-modality property,
which is the case for water pipe failures. Consequently, single-modality models
become insufficient in such circumstances for modelling the whole data corpora.
Mixture model is a widely adopted probabilistic approach for modelling the data
arising from different modalities. It assumes that the final model consists of a set of
mixture components, each of which can accurately model a portion of data.

For conventional parametric mixture models, the number of mixture components
is required to be known in advance, which is unrealistic for many real world applica-
tions, such as water pipe grouping. Therefore, we adopt the Dirichlet process (DP),
a nonparametric approach, for pipe grouping. It serves as a flexible prior for data
partitioning and sets no assumptions on the number of partitions. Correspondingly,
the Dirichlet process mixture model, which is built based on the Dirichlet process,
can comprise a countably infinite number of components and adjust itself for fitting
observed data.

In order to adopt DP as the prior of pipe grouping, we use the Chinese restaurant
process (CRP) [1] as the constructive representation of DP. It exhibits the clustering
property of DP via the following metaphor. Suppose there is a Chinese restaurant
that has an infinite number of tables. A sequence of customers enters and select a
table to sit. The first customer sits at the first table. The following customers sit at
tables with a guide:

p(zl = r |z−l, α) ∝
{

nr
n−1+α

if r � k
α

n−1+α
if r = k + 1.

(18.6)

zl indicates a customer, z−l denotes all the customers that appeared before zl , r
indicates a cluster index, and k represents the current number of clusters. nr is the
number of customers in cluster r and α is the concentration parameter for CRP,
controlling the probability that a customer is assigned to an unoccupied table.

The CRP offers an exchangeable distribution over the table assignments zl . The
joint distribution is invariant to the order of customers. The procedure of assigning
a table for a customer can be performed as he or she is the last customer entering
the restaurant. As described by Eq. 18.6, the i-th customer sits at an occupied table
with a probability proportional to the number of customers who are already sitting
at that table. He or she sits at an unoccupied table with a probability proportional to
the concentration parameter α. In this metaphor, customers correspond to data points
and tables correspond to clusters. Fig. 18.4 (2) shows the Dirichlet process mixture
model with the CRP as the constructive definition. Each data point xi is drawn from
a component of the mixture model. zi is the component indicator for xi . θk represents
the parameter for component k.

With the aid of theCRP,wecangrouppipes adaptively forfittingdata observations.
As a result, pipes with similar failure behaviours are grouped together. Moreover,
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the CRP helps to integrate the grouping process and the failure modeling process for
achieving accurate performance.

18.3.3 Dirichlet Process Mixture of Hierarchical
Beta Process

In this section, we give the detailed description of the proposed Dirichlet process
mixture of the hierarchical Beta process (DPMHBP) model for water pipe failure
prediction.

For the proposedDPMHBPmodel, a water pipe is treated as a set of pipe segments
that are connected in series. The failure probability of a pipe segment is modelled
by a beta process. It is different from the HBP model [11] where the Beta process is
used for modelling failure probabilities of pipes.

Pipe length is an important attribute for estimating failure probability. The intuition
is that longer pipes tend to have higher failure probabilities if other attributes and
external factors are the same. However, the HBP model ignores the impact of the
length attribute when estimating failure probabilities. It only focuses on pipe age
attribute and failure histories. The significant variance of pipe lengths is neglected.
In order to tackle the problem, the proposed approach suggests modelling the failure
probabilities of pipe segments whose lengths are relatively constant with a very small
variance.

Another difference between the HBP model and the proposed DPMHBP model
is that the HBP model groups pipes based on heuristic domain information e.g.,
pipe age. Its grouping is predefined and fixed during the inference process. The
number of the groups is also required to be set beforehand, which can be heuristic.
In contrast, for the proposed DPMHBP method, the grouping process is integrated
with the inference process via the DP mixture model. They interact with each other
to achieve an optimal model. The number of groups is not fixed and can grow as the
size of the training data increases.

Considering all the issues mentioned above, the DPMHBP model can finally be
given as follows:

qk � Beta(c0q0, c0(1 − q0)), k ∈ [1, · · · , K ],
zl � CRP(α), zl ∈ [1, · · · , K ],
ρl � Beta(czl qzl , czl (1 − qzl )), l ∈ [1, · · · , L],

yl, j � Bernoulli(ρl), j ∈ [1, · · · ,ml],

πi = 1 −
si∏

l=1

(1 − ρl), l ∈ [1, · · · , si ].

(18.7)

The failure probability estimation is conducted on three levels: segment group level,
segment level and pipe level. The failure events are recorded for segments rather
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than pipes. The grouping is performed on segments via the CRP, as illustrated by
Fig. 18.3 (2). At segment group level, qk denotes the failure rate of segment group
k. zl represents the group index for segment l. At segment level, ρl indicates the
failure probability of segment l. Once the segment level estimation is obtained, pipe
failure probability πi can be readily computed via the failure probability of a series
of connected segments. Figure18.4 (3) shows the graphical model of the DPMHBP
model.

It isworth noting that theBernoulli process ismore suitable formodelling segment
failures than modelling pipe failures because it is very rare for a segment to fail twice
in a year.

Regarding the inference of the model parameters from the training data, since no
analytical solution is available for the proposedmodel, we use aMarkov chainMonte
Carlo (MCMC) sampling algorithm for inference. Gibbs sampling is the MCMC-
based method that has been widely used for DP mixture models when conjugacy
exists between prior and likelihood. However, for the DPMHBP model, such con-
jugacy is broken by the extra hierarchy of the HBP model. Therefore, we choose to
utilise a Metropolis-within-Gibbs sampling method for inference.

18.4 Experiments

In this section, we conduct comparison experiments on themetropolitanwater supply
network data to demonstrate the superiority of the proposed DPMHBP model. We
first introduce the pipe network data and the failure data in Sect. 18.4.1. The features
that are suggested by domain experts and used in the experiments are explained in
Sect. 18.4.2. Then the compared methods are listed in Sect. 18.4.3. Finally, we give
the comparison results and discuss the impact of the proposedmethod in Sect. 18.4.4.

18.4.1 Data Collection

Three representative regions from the metropolis are selected to perform the experi-
ments. RegionA is a local government area with a population around 210,000, which
is one of the most populous local government areas in its state. Its population density
is 629 people per km2. Region B is a local government area with a high population
density of 2,374 people per km2. Its population is about 182,000. Region C is a low
density suburban local government area, which has a population of 205,000 and a
population density of 300 people per km2.

For each region, both network data and failure data are collected. Network data
consists of pipe IDs, pipe attributes, pipe locations and environmental factors. Pipe
location is represented as a set of connected line segments, each ofwhich corresponds
to a pipe segment. Failure data contains pipe IDs, failure dates and failure locations.
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Fig. 18.4 Graphical models for 1 Hierarchical Beta process, 2 Dirichlet process mixture model
(with Chinese restaurant process as the constructive definition), 3 Dirichlet process mixture of
hierarchical beta process

Table 18.1 Summary of pipe network data and pipe failure data

# Pipes # Failures Laid years Observation
period

Region A All 15189 4093 1930−1997 1998−2009

CWM 3793 520 1930−1997 1998−2009

Region B All 11836 3694 1888−1997 1998−2009

CWM 2457 432 1888−1997 1998−2009

Region C All 18001 4421 1913−1997 1998−2009

CWM 5041 563 1913−1997 1998−2009

Pipe amount, failure amount, laid year range and observation period are sum-
marised for different pipe types in Table 18.1. As we can see, CWMs only take a
small portion of the network, 24.97% for region A, 20.76% for region B, and 28.00%
for region C. The ratio between CWM failures and all the failures is even smaller,
12.71% for region A, 11.70% for region B, and 12.74% for region C.

The observation period covers 12 years, spanning from 1998 to 2009. It is short
compared with pipe life span which can be more than 100 years as shown in
Table 18.1. The majority of the pipes did not fail or just failed once during the
observation period. If considering pipe segment failures, the failure events are even
more sparse. Hence, the sparsity assumption holds for the proposed approximated
sampling algorithm.

Failure locations are used for matching failures with pipe segments. It enables
the proposed DPHBP model to work on pipe segment level for estimating failure
probabilities.
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Table 18.2 Pipe attributes and environmental factors

Property and factors Description

Pipe attributes Protective coating Categorical value indicating
the type of coating

Diameter Continuous value indicating
pipe diameter

Length Continuous value indicating
pipe length

Laid date Laid date for pipe

Material Categorical value indicating
the type of pipe material

Environmental factors Soil corrosiveness
Soil expansiveness
Soil geology
Soil map

Categorical value indicating
soil property for the
corresponding soil factor

Distance to traffic intersection Continuous value indicating
the distance between pipe
segment and the closest traffic
intersection

As mentioned before, we focus on CWMs for comparison experiments since both
physical condition assessment and proactive replacement are conducted for CWMs.
For comparing the performances of different approaches, we use the first 11 years’
failure records as training data and the last year’s failure records as testing data. All
the compared methods have the same setting for fair comparison.

18.4.2 Considered Features - The Importance of Domain
Knowledge

In this section, we describe the pipe attributes and the environmental factors that we
used in the experiments. As mentioned before, by considering the domain experts’
knowledge, informative features can be readily identified and considered in the
model. Without the support of domain knowledge, important features could be
ignored by the model and false correlated features could be incorporated into the
model, in which case, the model performance would be significantly reduced.

For drinking water pipe, there are five pipe attributes utilised in the experiments
including protective coating, diameter, length, laid date, and material. Two types of
environmental factors are considered in the experiments. One is the surrounding soil
condition, and the other is the distance between pipe segment and its closest traffic
intersection. These features are summarised in Table 18.2.

For pipe attributes, protective coating and material are categorical features indi-
cating the type of coating and material. Typical protective coatings are a polyethy-
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lene sleeve and tar coating. Typical materials are cast iron cement lined (CICL) and
polyvinyl chloride (PVC). Diameter, length, and laid date are continuous features.

Surrounding soil condition is one of themost complex and important environmen-
tal factors for water pipe failure prediction. It directly impacts on the pipe degradation
process. In the experiments, four different soil features are considered including soil
corrosiveness, soil expansiveness, soil geology and soil map. They depict different
perspectives of soil characteristics.

Soil corrosiveness describes the risk of pipe pitting (metal corrosion) which is
essentially an electrical phenomenon and can be measured by a linear polarisation
resistance test. Soil expansiveness describes the a shrinking and swelling of expansive
clays in response to moisture content change. It is a phenomenon that affects clay
soil and can be measured by shrink swell test. Soil geology depicts the information
of rocks, e.g., sandstone and shale. A soil map represents the landscape information,
e.g., fluvial, colluvial and erosional. It also includes information on the soil types
that are associated with different landscapes.

Each soil factor is a categorical feature containing several distinct values. The
selected local government areas are partitioned into small regions according to the
distinct values of soil factors. Pipe segments falling into the same region share the
same soil factor value.

A large portion of CWMs are buried underneath roads. It makes the change of road
surface pressure another important environmental factor for estimating water pipe
failures. It has been shown that frequent pressure changes can lead to high failure rate.
One of the main sources causing road surface pressure change comes from traffic
intersections due to the frequent vehicle starting and stopping. In order to measure
the impact of road surface pressure change, we calculate the distance between each
pipe segment and its closest traffic intersection. The obtained continuous value is
regarded as a feature of the pipe segment for predicting its failure probability.

For the waste water pipes, tree root coverage percentage, soil evaporation and
soil moisture are also considered based on domain experts’ knowledge. A key cause
of waste water pipe failures is the intrusion of tree roots. Roots have three basic
functions; they anchor the plant and hold it upright, store food, and absorb water
and nutrients. The extent of the tree root system is dependent on the species, the age
of the tree, the nutrient availability from surrounding decaying organic matter and
the physical limitations of the surrounding soil (soil depth, soil density/pore size,
oxygen and moisture content). A constant soil temperature and adequate moisture
availability lead to horizontal growing roots, in day soil condition tends to lead
to vertical growing roots. In temperate conditions, tree root growth is most active
during spring and autumn. In this work, we use tree canopy area (obtained by satellite
image recognition) as the estimation of the tree root area. Figure18.5 illustrates the
relationship between tree root canopy coverage and the waste water pipe failures.
Figure18.6 demonstrates the relationship between soil moisture andwastewater pipe
failures.

As we can see in Figs. 18.5 and 18.6, both tree canopy coverage and soil moisture
have a strong positive correlation with waste water pipe blockage. It demonstrates
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Fig. 18.5 The relationship between tree canopy coverage and waste water pipe failure (choke)

Fig. 18.6 The relationship between soil moisture and waste water pipe failure (choke)

that domain experts’ knowledge can help identify important factors and later improve
model performance.

18.4.3 Compared Approaches

In order to evaluate the proposed approach, four state-of-the-art methods are com-
pared in the experiments including the Cox proportional hazard model, the Weibull
model, the HBP model and a support vector machine (SVM) based ranking method.
Additionally, different grouping methods are used with the HBP model as com-
parisons for demonstrating the advantage of the grouping scheme of the proposed
approach.
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The Cox proportional hazard model [3] is one of the most popular approaches for
survival analysis. It is a semi-parametric approach, in which the form of the baseline
hazard function can be arbitrary, and the explanatory features put impacts on the
baseline hazard function via an exponential function multiplicatively. Formally, the
Cox proportional hazard model can be described as:

h(t, z) = h0(t)e
bT z, (18.8)

where h0 indicates the baseline hazard function, z indicates the explanatory features
of water pipe, and b is the parameter vector that can be learned from training data
via a partial likelihood maximisation procedure.

For theWeibull model [2, 8], water pipe failures aremodelled as a set of stochastic
events governed by a time dependent stochastic process, namely theWeibull process.
It can be regarded as a nonhomogeneous Poisson process whose intensity varies as
time changes. The intensity function can be formally given as:

λ(t) = αβtβ−1, (18.9)

where t represents pipe age, α and β are parameters that need to be learned from
training data. Similar to the Cox proportional hazard model, the explanatory features
can also be utilised via an exponential function multiplicatively.

Analogous to the method proposed in [18], an SVM-based ranking approach is
compared. This approach formulates pipe failure prediction as a ranking problem.
It ranks pipes according to their failure risks without estimating their actual failure
probability. It learns a real-valued ranking function H that maximises the objective
function:

∑

z∈P,z′∈N

I (H(z) > H(z′))
|P| · |N | , (18.10)

where P and N represent the positive class dataset (failure dataset) and negative class
dataset respectively. I (·) is the indicator function. |P| and |N | indicate the numbers
of data points in the positive and negative class datasets respectively.

The HBP model proposed by [11] is also compared. In order to evaluate the
grouping scheme of the proposed approach, three different grouping methods are
integrated with the HBP model for comparison. They group pipes based on pipe
attributes according to domain expert suggestions. Specifically, pipes are grouped
based on material, diameter and laid year.

For fair comparison, the features described in the previous section are used for all
the compared methods. For HBP and DPMHBP, the features are applied multiplica-
tively similar to the Cox proportional hazard model and the Weibull model. A linear
kernel is used for the SVM-based ranking approach.
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Fig. 18.7 Failure prediction results for the selected regions by different models

Table 18.3 AUC of different approaches. The second row shows the AUC when 100% of CWMs
are inspected. The third row shows the AUC when 1% of CWMs are inspected

Region A Region B Region C

DPM
HBP
Cox

HBP
SVM

Weibull DPM
HBP
Cox

HBP
SVM

Weibull DPM
HBP
Cox

HBP
SVM

Weibull

AUC
(100%)

82.67%
66.91%

77.05%
56.45%

68.44% 74.51%
65.53%

72.56%
61.90%

65.20% 78.37%
64.50%

73.54%
69.48%

55.84%

AUC
(1%)

8.09‱
4.67‱

5.64‱
4.32‱

5.84� 4.21‱
2.46‱

3.60‱
3.41‱

2.70‱ 5.11‱
2.50‱

2.48‱
1.73‱

2.98‱

18.4.4 Prediction Results and Real Life Impact

In this section, we compare the prediction results to demonstrate the superiority of
the proposed approach. As mentioned before, the historical failure data from 1998
to 2008 is used for training and the failures which occurred in 2009 are used for
testing. Water pipes are ranked by different methods based on their estimated failure
risks. The failure prediction results are shown in Fig. 18.7. The x-axis represents
the cumulative percentage of the inspected water pipes, and the y-axis indicates the
percentage of the detected pipe failures.

Additionally, we calculate AUC for measuring the performances of different
approaches. The results are shown in Table 18.3. Statistical significance tests, partic-
ularly the one-sided paired t-test at 5% level of significance, are performed on AUC
to evaluate the significance of the performance differences. The results are shown in
Table 18.4. For Tables 18.3 and 18.4, only the results from the best groupings are
shown for the HBP model.

As we can see from Fig. 18.7 and Table 18.3, the proposed DPMHBP model
consistently gives the most accurate prediction for all the three regions, whereas the
other methods only perform accurately for some of the regions. It demonstrates the
adaptability of the proposed approach to the diversity of failure patterns. The signif-
icance test results, listed in Table 18.4, show that the proposed model significantly
outperforms the other methods.
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Fig. 18.8 The detection results with 1% of pipe network length inspected

Table 18.4 Statistical significance test (t-test) results for the proposed method and the others. The
second row shows the results when 100% of CWMs are inspected. The third row shows the results
when 1% of CWMs are inspected

Region A Region B Region C

versus HBP versus
Weibull

versus HBP versus
Weibull

versus HBP versus
Weibull

versus Cox versus SVM versus Cox versus SVM versus Cox versus SVM

AUC 2.56(= 0.08) 9.37(<0.05) 3.12(= 0.05) 22.01(<0.05) 7.83(<0.05) 43.55(<0.05)

(100%) 10.58(<0.05) 18.88(<0.05) 21.17(<0.05) 30.11(<0.05) 26.08(<0.05) 15.63(<0.05)

AUC 44.29(<0.05) 40.46(<0.05) 1.26(<0.05) 4.64(<0.05) 65.90(<0.05) 53.43(<0.05)

(1%) 62.44(<0.05) 69.01(<0.05) 5.53(<0.05) 1.99(<0.05) 65.43(<0.05) 61.72(<0.05)

In addition to the comparison studies shown above, we also demonstrate the
real-life impact of the proposed method by showing its improvements in its real-
world application. Different from the standard performance measurement, domain
experts often adopt evaluation criteria that can reflect the constraints encountered in
reality. In the context of water pipe failure prediction, as mentioned before, only a
small portion of the pipes can be physically inspected each year. Specifically, due to
budget constraint, only 1%of the total CWMs can be inspected every year. Therefore,
we show the performance curves with 1% of CWMs inspected in Fig. 18.8. AUC
and significance test results are also given in Tables 18.3 and 18.4 for the situation
of inspecting 1% of CWMs. As we can see, the proposed approach significantly
outperforms the other methods for all the three regions. In region C, the proposed
approach nearly doubles the number of detected failures compared with the second
best method.

A risk map, as shown in Fig. 18.9, is another widely used method for visualising
real-life impact. As illustrated in the figure, the prioritisation of pipes is coded by
different colours. For instance, red lines indicate the top 10% high-risk pipes pre-
dicted by our method. Black stars in the figure denote the failures which occurred
in the testing year. As we can see, many failures could be prevented and significant
economic and social savings could be brought to the water utility if the proposed
method were applied.
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Fig. 18.9 Risk maps for the selected three regions

18.5 Conclusion

In this work, we present the Dirichlet process mixture of the hierarchical beta process
model for water pipe failure prediction. The model demonstrates high adaptability to
the diversity of failure patterns. Its structure and complexity cangrowas thenumber of
data points increases. It tackles the sparse failure data problem by sharing failure data
through pipe grouping. An efficient Metropolis-within-Gibbs sampling algorithm is
also proposed for handling large-scale datasets. The empirical studies conducted on
the real water pipe data verify the superiority of the proposed approach. The domain
expert knowledge also gave significant impact on the model development and the
informative factor identification. It would be extremely difficult, if not impossible,
to discover the key informative factors without the support of domain knowledge.
Besides, the incorporation of domain experts’ knowledge and experience can help
enhance domain users’ trust in the model as it improves their understanding of the
model and makes them trust the basis of the model development.
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Chapter 19
Analytical Modelling of Point Process
and Application to Transportation

Le Minh Kieu

Abstract This chapter aims to explain the inference mechanisms of the expected
number of passengers arriving at transit stops. These questions are crucial in tactical
planning and operational control of public transport to estimate the impact and effec-
tiveness of different planning and control strategies. The existing literature offers a
limited number of approaches for these problems, which mainly focus more on the
prediction of aggregated passenger counts. We propose two analytical models to
model the arrival of passengers: The first model is a non-homogeneous Poisson Pro-
cess (NHPP); the second model is a time-varying Poisson Regression (TPR) model.
Finally, numerical experiments and a case study show the performance of the pro-
posedmodels using simulated data. The analysis of the estimatedmodel’s parameters
using domain knowledge also provides good insights into the factors that impact the
patronage level of buses in New South Wales, Australia.

19.1 Introduction

Passenger demand plays an essential role in tactical planning and operational control
in transportation, especially in public transport, because transit vehicles have to
stop for passengers boarding and alighting. Transit tactical planning and operational
control, as defined in [9], concerns the decisions to design the exact transit services,
e.g. frequency of services and timetables; and the decisions to control the operating
service, especially in real time. The questions of modelling the expected number of
passengers arrival at transit stops are essential for these studies. For instance, the
total or mean waiting time is often used as the main objective function for public
transport tactical planning and operation studies [3, 8–10], which in turn is estimated
using a knowledge of passenger demand.
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The expected number of passenger arrivals can be explicitly linked to the esti-
mation of aggregated passenger counts within a time period. Literature currently
offers two major lines of research for this problem, one for long-term and the other
for short-term passenger demand estimation. Long-term demand estimation models
aim to complement long-term transit planning practice, such as in four-step demand
modelling [19], route planning and frequency setting [9]. These models are devel-
oped to anticipate the approximation of passenger demand in the long-term for transit
strategic planning, rather than the tactical planning and operational control problem
discussed in this chapter. The other line of research, a short-term demand estima-
tion model, that favours the use of data-driven and black-box methods, mainly aims
for predictions. Examples of them include Neural Network [4, 20], Support Vector
Machine [23] and the time-series analysis models [18]. While these methods showed
their accuracy and robustness, the majority of them aim to provide predictions rather
than an analytical connection between passenger demand and explanatory variables.
For transit tactical planning and operational studies, data-driven models for short-
term prediction may not be as useful as analytical models, because analytical models
can be a part of an holistic framework, where researchers can estimate the passenger
demand given the changes in explanatory variables. Existing data-driven methods
generally use aggregated counts at previous time steps to predict the count at the next
time step by relying on the underlying dynamic relationship between adjacent time
steps.

One question which is of interest is how passengers arrive at transit stops. Trans-
port researchers are generally interested in modelling and simulating the exact pas-
senger arrival times at transit stops. This information is helpful for various purposes,
for instance, to estimate the total travel time for passengers from the moment of
arrival at transit stops to the moment of alighting from a transit vehicle. Existing
studies in transit planning and operational control usually assume a known passen-
ger arrival rate, which is the number of passengers arriving at a transit stop per
time unit. The arrival rate allows a convenient simulation of passenger arrivals under
one of two approaches: (a) deterministic or (b) stochastic point process. The deter-
ministic approach assumes that passengers arrive uniformly to transit stops, so that
the number of boarding/arrived passengers is simply the product of the passenger
arrival rate and the time headway between consecutive vehicles. The approach has
been used in many earlier studies such as [10, 13]. References [6, 7] also use a
variation of this approach, where a dimensionless parameter is used to represent the
marginal increase in vehicle delay resulted from a unit increase in headway. The
stochastic point process approach assumes that passengers arrive randomly at stops
with a stable arrival rate. In the majority of existing studies, this point process is an
Homogeneous Poisson Process (HPP), which aims to model the passenger arrival
times using only the arrival rate and the time interval between consecutive arrivals,
regardless of the interval starting time. HPP is widely used to model systems with
stochastic events, such as modelling the presence of connected vehicle in traffic [25]
or traffic incidents [1]. An emerging number of existing studies in public transport
have also adopted this stochastic approach, such as [12, 17, 24]. There is consid-
erable evidence that assumptions of stochastic HPP process for passenger arrivals
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is reasonable for high-frequency services, such as those with scheduled headway
to 10–15 min [9]. At longer headways, there is another line of research concerning
passengers who time their arrivals with the schedule and service reliability [2, 11].
In this study, we assume that passengers do not consult the schedule prior to arrival
at transit stops, thus the use of a stochastic point process such as HPP remains valid.

In literature, existing stochastic processes of public transport assume a stable pas-
senger arrival rate or an intensity that does not change over time.A common approach
to include time into consideration is to define exogenous time intervals. In each inter-
val, the passenger arrival rate is constant. This approach has limited accuracy, because
the passenger arrival process is not fully continuous time-dependent, but rather mul-
tiple independent HPP superimposed [22]. The non-homogeneous Poisson Process
(NHPP), which allows the arrival rate to be continuous time-dependent, is a substan-
tial advance from the HPP in terms of versatility and accuracy to themodel passenger
arrival process. NHPP models are not popular in public transit studies, but have been
used elsewhere, such as software reliability [14] and finance [5].

This chapter proposes two analytical methods to model expected arrival rate of
passengers arriving at transit stops. After the literature review, the first part of the
chapter concerns the modelling of exact passenger arrival times using a time-varying
Point Process model. Another aspect of the chapter concerns that of the modelling
of aggregated counts of passenger demand, using a time-varying Poisson Regression
model. This model aims to count how many passengers will be at a stop in a specific
time period under certain conditions. Only aggregated counts of passenger demand
are required to train this model. Finally, we also show the model calibration process
using synthetic simulated data.

19.2 Modelling Exact Arrival Times with Point Process

In this section,webriefly recap the fundamentals of point processes and the celebrated
Poisson process, which would be used to ’count’ and further evaluate the passenger
demands. The following section serves as the building block for realistic modelling
of passenger demands in later sections, to include periodicities in demands.

19.2.1 A Representation of Point Processes

A point process is a mathematical construct to record times at which event happens,
which we shall denote by T1, T2, . . .. For example T1 represents the time when pas-
senger 1 arrives at a bus stop, T2, represents the following passenger arrival and so
on. Tk can usually be interpreted as the time of occurrence of the kth event, in this
case - the kth arrival. In this chapter, we refer to Ti as event times. Formally, we
define a counting process Nt as a random function defined on time t ≥ 0, and taking
integer values 1, 2, . . .. We define N0 = 0. Nt is piecewise constant and has jump
size of 1 at the event times Ti . The Poisson process can be defined as follows:
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Definition 19.1 (Poisson process) Let (Qk)k≥1 be a sequence of independent and
identically distributed Exponential random variables with parameter λ and event
times Tn = ∑n

k=1 Qi . The process (Nt , t ≥ 0) defined by Nt := ∑
k ≥1 1{t≥Tk } is

called a Poisson process with intensity λ.

Memoryless Property

Note that the sequence of Qk are known as the inter-arrival times, and it can be
interpreted as follows in terms our modelling context: the first passenger arrives at
time Q1, the second arrives at Q2 after the first, so on and so forth. One can show
that this construct means that each passenger arrives at an average rate of λ per unit
time, since the expected time between event times is 1

λ
. Suppose we were waiting for

an arrival of an event, say another bus passenger arrival to a bus stop, the inter-arrival
times of which follow an Exponential distribution with parameter λ. Assume that r
time units have elapsed and during this period no events have arrived, i.e. there are
no events during the time interval [0, r ]. The probability that we will have to wait a
further t time units is given by

p(Q > t + r | Q > r) = p(Q > t + r , Q > r)

p(Q > r)

= p(Q > t + r)

p(Q > r)
= exp(−λ(t + r))

exp(−λr)

= exp(−λt) = p(Q > t). (19.1)

Equation (19.1) is said to have no memory and it is one of the special properties
of the Poisson process. Usually memorylessness is a property of certain distribution
rather than a process. It usually refers to the waiting time distribution until a certain
event; and does not depend on how much time has elapsed already.

Moment Generating Functions

We now look at a particular kind of transformed average. The moment generating
function ϕ of a random variable X , is defined as ϕX (s) := E[esX ]. We now compute
the moment generating function of a Poisson distribution X ∼ Pois(λ):

ϕX (s) = E[esX ] =
∞∑

k=0

esk p(X = k) =
∞∑

k=0

eske−λλk

k! = e−λ

∞∑

k=0

(λes)k

k! = eλ(es−1).

(19.2)

The moment generating functions are important because each distribution pos-
sesses a unique moment generating function. This means that we can infer the dis-
tribution from the moment generating function. In addition, the moment generating
function of a sum of independent random variables is the product of the moment
generating function of the individual random variables.
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19.2.2 Non-homogeneous Poisson Process

The Poisson process, as we defined it so far, is simply characterised by a constant
arrival rate λ. It is equivalent to an assumption, for example, that public transport
passengers arrival rate to stops is the same regardless of the time being mid-night or
peak periods. It is more useful to extend the Poisson process to a more general point
process in which the arrival rate varies as a function of time. Note that the intensity
usually depends on the arrival time, not just on the interarrival time. We can define
this type of process as non-homogeneous Poisson process (NHPP).

Definition 19.2 Thepoint process N is said to be an inhomogeneousPoisson process
with intensity function λ(t) ≥ 0 with t ≥ 0, if

p(Nt+h = n + m | Nt = n) = λ(t)h + o(h) if m = 1,

p(Nt+h = n + m | Nt = n) = o(h) if m > 1,

p(Nt+h = n + m | Nt = n) = 1 − λ(t)h + o(h) if m = 0. (19.3)

Note that if the point process N be a NHPP with intensity function λ(t), then
N (t) follows a Poisson distribution with parameter

∫ t
0 λu du, i.e. p(Nt = n) =

1
n! exp

(
− ∫ t

0 λu du
) (∫ t

0 λudu
)n
. One can also show that the number of points

in the interval [s, t] follows a Poisson distribution with parameter
∫ t
s λu du, i.e.

p(Nt − Ns = n) = 1
n! · exp

(
− ∫ t

s λu du
) (∫ t

s λudu
)n
.

We can see that the exact event times are needed to calculate moments in the
NHPP setting. This next section proposes a public transport demand model and aims
to simulate the dynamic and stochastic arrival process of public transport passengers.

19.2.3 The Proposed Time-Varying Intensity Function
for Dynamic and Stochastic Passenger Arrival Process

We propose a parametric form for the rate of demand of passengers:

λt = pcp t p−1 + ε, (19.4)

where c > 0 and p ∈ R. The parameter ε is usually taken to be fixed and acts as a
parameter such that the rate never goes negative (bounded away from zero), since a
negative rate of demand is non-sensical. Note that this function is rich enough for
several reasons. When the parameter is p = 1, it reduces to a constant and we know
from above that this specifies the parameter for the Exponential random variables.
If this is respected then the data follows a Poisson process. If on the other hand,
under the case that p < 1, this gives a decreasing curve (see plot). We interpret this
as a decreasing rate of demand. Finally, our choice of intensity function can also
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Fig. 19.1 A proposed NHPP model with time-varying intensity function

handle the case when p > 1 - this corresponds to the increasing rate of demand. We
summarise the following description below:

• it reduces to a constant when p = 1, and hence is able to recover Poisson process
should the data respects this,

• when p < 1, the rate of demand is decreasing,
• when p > 1, the rate of demand is increasing.

Figure 19.1 shows a plot of this intensity. It can be easily noted that this is a gener-
alisation of the HPP, where the rate can be constant (similar to HPP) or varies over
time.

19.2.4 Likelihood Function for Nonhomogeneous
Poisson Process

One of the main problems in modelling a nonhomogeneous Poisson process is infer-
ring its parameters given data so that we have a calibrated model for the demand
of passenger arrivals. Let Nt be a counting process on [0, T ] for T < ∞ and let
{T1, T2, . . . , Tn} denote a set of event times of Nt over the period [0, T ]. Then the
data likelihood L (see [21] for instance) is a function of parameter set θ :

L(θ) =
n∏

j=1

λ(Tj )e
− ∫ T

0 λx dx . (19.5)
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Let Θ be the set of parameters of the modulating of the nonhomogeneous Pois-
son process. The maximum likelihood estimate can be found by maximising the
likelihood function in Eq. 19.5 with respect to the space of θ ∈ Θ . Concretely, the
maximum likelihood estimate θ̂ is defined to be θ̂ = argmaxθ∈Θ l(θ). It is customary
to maximise the log of the likelihood function:

l(θ) = log L(θ) = −
∫ T

0
λx dx +

N (T )∑

j=1

log λ(Ti ) (19.6)

This negative log-likelihood can then be minimised with standard optimisation pack-
ages.

19.3 Modelling Aggregated Passenger Demand
with Time-Varying Poisson Regression

In this section, we argue that a collective point process framework can also be formu-
lated as a time-varying Poisson Regression model to estimate the count of arriving
passengers to public transport stops. Aggregated counts of passengers are assumed
to follow a Poisson distribution, which is consistent with the collective assumption in
a Poisson Process (Definition19.2). We then further propose a time-varying formu-
lation of Poisson Regression to model the aggregated passenger counts at different
time of the day.

19.3.1 A Representation of a Generalised Linear Model:
Poisson Regression

One of the most common type of regression, the ordinary least squares assumes
that the dependent variable Y is normally distributed around the expected value,
and can take any real value, even negative values. Another type of regression, the
Logistic Regression assumes a binary 0-or-1 dependent variable. These models are
often unsuitable for count data, such as aggregated passenger counts, where the data
is intrinsically non-negative integer-valued.

Poisson Regression is widely considered as the benchmark model for count data.
It assumes the dependent variable Y has a Poisson distribution, and assumes the log-
arithm of Y can be modelled by a linear combination of X . It is a type of Generalized
LinearModel (GLM). Let k be the number of independent variables (regressors). X is
a 1-dimension vector X = (X1, X2, Xk), which can be both continuous or categorical
variables. Poisson Regression can be written as a GLM for counts:
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log(μ) = β0 + β1x1 + β2x2 + · · · + βk xk = xTβ (19.7)

The dependent variable Y has a Poisson distribution, that is yi ∼ Poisson(μi ) for
i = 1, . . . , N . The Poisson distribution has only one parameter μ that decides both
conditional mean and variance. The conditional mean E(y|x) and conditional vari-
ance Var(y|x) are equal in the Poisson regression model. The following exponential
mean function can be written:

E(y|x) = μ = exp(xTβ) (19.8)

Under the GLM framework and assuming an n independent sample of pairs of
observations (yi , xi ), the regression coefficient β j can be estimated using Maximum
Likelihood Estimation (MLE). It is worth reiterating that MLE aims to find parame-
ters thatmaximise the probability that the specifiedmodel has generated the observed
sample. Given the observed data, we can define the joint probability distribution of
the sample as the product of individual conditional probability distributions.

f (y1, . . . , yN |x1, . . . , xN ;β) =
N∏

i=1

f (yi |xi ;β) (19.9)

As per the previous section, Eq.19.9 is often called likelihood function, which is
often written in a shorter form:

L = L(β; y1, . . . , yN , x1, . . . , xN ) (19.10)

MLE aims to maximise this likelihood function with regard to parameters β̂:

β̂ = argβ max L(β; y1, . . . , yN , x1, . . . , xN ) (19.11)

It is often more convenient to maximise the logarithmic transformation of this
likelihood function, as it replaces products by sums and allows the use of the central
limit theorem. We define the log-likelihood function of Poisson Regression as:

�(β; Y, X) = log
N∏

i=1

f (yi |xi ;β)

=
N∑

i=1

log f (yi |xi ;β)

=
N∑

i=1

− exp(x ′
iβ) + yi x

′
iβ − log(yi !)

(19.12)



19 Analytical Modelling of Point Process and Application to Transportation 393

The estimated regression coefficient β j that maximizes the value of the log-
likelihood function, is found by computing the k first derivatives of the log-likelihood
function with respect to β1, β2, . . . , βk and setting them equal to zero.

sN (β; y, x) = ∂�(β; y, x)
∂β

=
N∑

i=1

[yi − exp(x ′
iβ)]xi (19.13)

We define β̂ as the value of β that solves the first order conditions:

sN (β̂; y, x) = 0 (19.14)

The system of k equations in Eq.19.13 has to be solved using a numerical iterative
algorithm due to the non-linearity of β. There are a number of existing algorithms
in literature that have been well implemented in various statistical packages, such
asNewton-Raphson,Broyden-Fletcher-Goldfarb-Shanno (BFGS),Nelder-Mead and
Simulated Annealing method.

19.3.2 Time-Varying Poisson Regression Model

As we are concerned with the time dimension in the passenger arrival process,
the arrival patterns can be considered as a time series Yt . Autoregressive-based
approaches for time-series, such as [18], or Neural Network based [4] approaches
show high accuracy and robustness, but focus on short-term demand prediction,
rather than developing an analytical formulation which is more useful for statistical
studies. This section focuses on proposing an analytical model for public transport
planning and operational control. Thus we introduce here a time-varying formulation
of Poisson Regression to capture the variations of passenger arrivals to transit stops.
We call this model the Time-varying Poisson Regression (TPR) model.

We are interested in modelling the counts of passenger demand throughout the
time of the day. One can observe from aggregated passenger demand data that this
count variable has a periodic sinusoidal pattern with two demand peaks at AM and
PM rush hours, while gradually reducing to a plateau during off-peak periods. This
bimodality distribution of passenger demand is well observed and analysed in liter-
ature [15]. A natural modelling approach to capture this sinusoidal pattern is to use
a Fourier series:

f (x) = 1

2
a0 +

∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx), (19.15)

where

a0 = 1

π

∫ π

−π

f (x)dx, (19.16)
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an = 1

π

∫ π

−π

f (x) cos(nx)dx, (19.17)

bn = 1

π

∫ π

−π

f (x) sin(nx)dx . (19.18)

Here we assume the dependent variable Y is both Poisson distributed and time
dependent, that is yt ∼ Poisson(μt )where t = 1, . . . , N are a time-of-day variable.
The time-varying formulation of our Poisson Regression model can be written as:

log(λt ) = α0 +
K∑

k=1

[

βh cos

(

k
2π

T
t

)

+ γh sin

(

k
2π

T
t

)]

(19.19)

The harmonic terms sin(k 2π
T t) and cos(k 2π

T t) are added to capture the daily
demand patterns. K is the number of harmonics, in which larger K would gen-
erally increase the accuracy, but also the complexity of the model. If t is in minutes,
T equals 24*60 min.

We further increase the adaptability of the model to observed passenger demand
data by adding time-invariant independent variables into the model in Eq.19.19.
These variables do not have a time-varying formulation. Many variables in practice
can be classified into this group, such as weather, day-of-the-week, events or travel
cost. For generality, The TPR model can be formulated as:

log(μt ) = α0 +
H∑

h=1

[

βh cos

(

k
2π

T
t

)

+ γh sin

(

k
2π

T
t

)]

+
V∑

v=1

ξv xv (19.20)

where V is the number of time-invariant independent variables. Larger V would
generally increase the model complexity. The question whether a time-invariant
variable xi is used in the model is to be decided by considering its correlation to other
variables, and its contribution to the prediction of the dependent variable log(μt ).

TheTPRmodel inEq.19.20 has both time-varying and time-invariant independent
variables. The next section will discuss the parameter estimation procedure of this
model using MLE.

19.4 Simulated Experiments

In this section, we describe the numerical experiments of NHPP and TPR models
using synthetic simulated data. We first generate the synthetic data using predefined
parameters, and then fit this simulated data to the proposed NHPP models. The
models perform well if they can get back the predefined parameters.
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19.4.1 Non-homogeneous Poisson Process (NHPP)

This subsection discusses the simulation of data from NHPP with predefined param-
eters as well as the parameter estimation process for NHPP.

Simulation of a Nonhomogeneous Poisson Process Using Predefined
Parameters

Given predefined parameters, we briefly explain how we can apply the thinning
method [21] to simulate a NHPP. Thinning is a method to imitate the trajectory
of the counting process over time. Given a NHPP with time-dependent intensity
function λt , we choose a constant λ∗ such that

λt ≤ λ∗, for all t, 0 ≤ T, (19.21)

for some maturity T < ∞. We then simulate a homogeneous Point process with
the designated rate λ∗ through a sequence of independent and identically distributed
exponential distributed random variables, each having a theoretical mean of (λ∗)−1.
We then look at simulated event times of the homogeneousPoisson process and assign
some of these to be the event times of the nonhomogeneous Poisson process with
intensity function λt . We let an event time at a particular time t in the homogeneous
Poisson process be also an event time in the nonhomogeneous Poisson process with
probability λ(t)

λ∗ , independent of the history up to and including time t , and assign no
event time otherwise. Hence, the set of event times of the nonhomogeneous Poisson
process constructed is a subset of the event times from the homogeneous Poisson
process. The resulting pseudo-algorithm reads as follows:

1. Set T0 ← 0 and T ∗ ← 0 where T ∗ denotes the event times of homogeneous
Poisson process with intensity λ∗

2. For j = 1, 2, . . . , n : generate an exponential random variable E with mean
(λ∗)−1 and set T ∗ = T ∗ + E (λ∗). We then generate a unit uniform random vari-
able and accept the event time (Ti = T ∗) ifU < λ(T ∗)

λ∗ , and reject otherwise. The
sequence Ti generated from this algorithm is the event times from a nonhomoge-
neous Poisson process with rate λt .

Numerical Experiments

We set our parameters for the NHPP model in Eq.19.4 as in Table 19.1 as follows:
The aforementioned thinning simulation is therefore performed for the inten-

sity function λt = 0.304 · t−0.25 + ε. The simulated arrival times are then used to
estimate the parameters for the proposed NHPP model in Eq.19.4. The calibrated

Table 19.1 Parameters for
NHPP

Variables Value

p 0.75

c 0.3
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Fig. 19.2 Calibrated and true trajectory of the proposed NHPP intensity function

parameters should be as close as possible to the predefined parameters in Table 19.1.
Figure 19.2 shows the calibration results. The calibrated parameters are very similar
to the predefined parameters.

19.4.2 Time-Varying Poisson Regression (TPR)

This sub-section describes the generation of synthetic simulated data and the param-
eter estimation process for time-varying Poisson Regression model

Data Generation Process

TheTPRmodel has 1 + 2 × K + V parameters,where K is the number of harmonics
and V is the number of time-invariant independent variables. The complexity of the
model depends on the values of K and V . In this section, we generate the synthetic
data using 3 harmonics (K = 3) and 3 time-invariant variables (V = 3). The time-
invariant variables xi are normally distributedwith zeromean, and standard deviation
of 0.1, 0.2 and 0.3, respectively. Table 19.2 shows the chosen parameters for the
synthetic simulation.

We simulate 100 days of data, with the time varying from 4AM to 10PMeveryday
and each sample is an aggregated passenger count for a 15-min interval. Figure 19.3
shows the simulated passenger demand for the first 3 days. The x-axis is the passenger
count and the y-axis is the every time window for the first 3 days of the dataset.

We use this synthetic simulated data to estimate the parameters for 4 TPRmodels,
from simple to complex model. The details for each model are as follows:
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Table 19.2 Parameters for
synthetic simulation data

Variables Value Note

α0 1 Intercept

β1 −1 Harmonic 1

γ1 1 Harmonic 1

β2 −1 Harmonic 2

γ2 1 Harmonic 2

β3 1 Harmonic 3

γ3 −1 Harmonic 3

ξ1 0.5 x1 ∼ N (0, 0.1)

ξ2 0.5 x2 ∼ N (0, 0.2)

ξ3 0.5 x3 ∼ N (0, 0.3)
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Fig. 19.3 Synthetic simulated data of passenger demand

• H1V1

The first model is a simple model with 1 level of harmonic and 1 time-invariant
variable.

log(λt ) = α0 + β1 cos

(
2π

T
t

)

+ γ1 sin

(
2π

T
t

)

+ ξ1 x1 (19.22)

Table 19.3 shows the parameter estimates for Model 1.
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Table 19.3 Estimated parameters for Model 1

Coefficients Estimate Std. error z value Pr(>|z|)
α0 2.4169 0.0043 564.761 <2E-16 ***a

β1 −0.0316 0.0062 −5.139 2E-07 ***

γ1 0.8776 0.0047 185.005 <2E-16 ***

ξ1 0.4064 0.0322 12.628 <2E-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

Table 19.4 Estimated parameters for H0V3

Coefficients Estimate Std. error z value Pr(>|z|)
α0 2.5691 0.0033 787.4 <2E-16 ***a

ξ1 0.2484 0.0321 7.739 1E-14 ***

ξ2 0.5940 0.0161 36.824 <2E-16 ***

ξ3 0.4111 0.0106 38.607 <2E-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

• H0V3

The second model ignores the effect of the harmonics. This model only includes 3
time-invariant variables.

log(λt ) = α0 +
3∑

v=1

ξv xv (19.23)

Table 19.4 shows the parameter estimates for H0V3.
• H3V0

The third model ignores the effect of the time-invariant variables. This model only
includes the 3 harmonic levels.

log(λt ) = α0 +
H∑

h=1

[

βh cos

(

k
2π

T
t

)

+ γh sin

(

k
2π

T
t

)]

(19.24)

Table 19.5 shows the parameter estimates for H3V0.
• H3V3

The last model includes 3 harmonic levels and 3 time-invariant variables.

log(λt ) = α0 +
H∑

h=1

[

βh cos

(

k
2π

T
t

)

+ γh sin

(

k
2π

T
t

)]

+
V∑

v=1

ξv xv (19.25)

Table 19.6 shows the parameter estimates for Model H3V3.
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Table 19.5 Estimated parameters for H3V0

Coefficients Estimate Std. error z value Pr(>|z|)
α0 0.63622 0.03264 19.5 <2e-16 ***a

β1 −1.65975 0.05754 −28.84 <2e-16 ***

γ1 1.26252 0.0208 60.7 <2e-16 ***

β2 −1.27614 0.03227 −39.55 <2e-16 ***

γ2 1.27385 0.02118 60.15 <2e-16 ***

β3 0.92572 0.01676 55.22 <2e-16 ***

γ3 −0.83519 0.01336 −62.54 <2e-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

Table 19.6 Estimated parameters for H3V3

Coefficients Estimate Std. error z value Pr(> |z|)
α0 0.64099 0.03144 20.39 <2e-16 ***a

β1 −1.61123 0.05556 −29 <2e-16 ***

γ1 1.24552 0.02028 61.43 <2e-16 ***

β2 −1.25812 0.03142 −40.04 <2e-16 ***

γ2 1.24861 0.02058 60.67 <2e-16 ***

β3 0.93607 0.01662 56.34 <2e-16 ***

γ3 −0.85728 0.01304 −65.73 <2e-16 ***

ξ1 0.50175 0.03191 15.72 <2e-16 ***

ξ2 0.50383 0.01596 31.56 <2e-16 ***

ξ3 0.50248 0.01076 46.68 <2e-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

Table 19.7 Goodness-of-fit of the proposed models

Model Degree of freedom AIC

H1V1 4 135816.44

H0V3 4 173589.48

H3V0 7 26920.61

H3V3 10 23441.78

Model Comparison

The results from Table 19.3, 19.4, 19.5 and 19.6 show the model performance. It
is clear that H3V3 has the closest parameters to the actual parameters for synthetic
simulation.We further evaluate the goodness-of-fit of eachmodel by comparing their
Akaike Information Criterion (AIC) statistics in Table 19.7.

As expected, H3V3 shows the best fit among the proposedmodels. This is because
the model incorporates all the determinants in the data, including 3 harmonics and 3
time-invariant variables. H1V1 andH0V3 have significantly lower fits due to the lack
of harmonic variables, in which H1V1 has a slightly better fit compared to H0V3 due
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Fig. 19.4 Comparison of different Poisson Regression model performance on simulation data

to the inclusion of one harmonic. The time-invariant variables further increase the
goodness-of-fit of modelling. One can see this fact by comparing the AIC statistic
of H3V0 and H3V3 because the only difference between them is the time-invariant
variables.

We also simulate one day’s worth of new aggregated data to evaluate the per-
formance of each Poisson Regression model. The data is simulated using the same
parameters in Table 19.2 for 73 time periods of 15min each. The new simulated
data is used in H1V1 to H3V3 to predict the value of Counts. Figure 19.4 shows the
new data and the estimation results from H1V1 to H3V3. One can easily see that
H0V3 does not capture the sinusoidal pattern of the data. Model 1 captures some
pattern with limited accuracy, such as the fact that the demand in earlier time peri-
ods are larger than those in later time periods. H3V0 captures the sinusoidal pattern
of the data, even the difference between two peaks periods around 8:00 and 16:00.
Only H3V3 captures both the sinusoidal pattern and the deviation of the sinusoidal
pattern introduced by time-invariant variables. In fact, H3V3 provides a very close
estimation to the simulated data.

19.5 Case Study

This section describes a case study where the proposed models are implemented
using an observed dataset. We use domain knowledge in Transportation to decide
the explanatory variables and to process the data for the models.
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19.5.1 Case Study Site and Dataset

This chapter uses an aggregated Smart Card data from New South Wales (NSW),
Australia for the case study. Smart Card is a microchip card, typically the size of
a credit card, which has been widely used for ticketing purposes around the world.
Examples of Smart Card in public transport are the Oyster Card in London, Opal
Card in Sydney, or Myki Card in Melbourne. This chapter uses a 14-day Smart
Card data. The data consists of over 2.4 million Smart Card transactions over large
metropolitan areas in NSW, including Sydney, Newcastle andWollongong City from
February to March 2017. The data consists of all bus transactions in the aforemen-
tioned metropolitan areas. Each data record contains the following fields:

• CardI D: the unique Smart Card ID, which has been hashed into a unique number
• Ton: the time when the passenger with CardI D boards a bus
• Tof f : the time when the passenger with Card I D alight from a bus
• Son: the stop/station ID of Ton
• Sof f : the stop/station ID of Tof f .

We only focus our case study on estimating aggregated passenger counts using
the Time-varying Poisson Regression (TPR) model proposed in Sect. 19.3 because
the timestamps in the Smart Card are the boarding and alighting times of a passenger
to a bus, rather than the passenger arrival times that are required for the model
in Sect. 19.2. The objective is to estimate an aggregated count of passengers per
time period for each travel choice between a pair of origin and destination. Transit
providers can use this proposed TPR model to estimate the change in passenger
demand given the changes in explanatory variables such as travel time or transfer
time.

The next few subsections describe the required steps to process the input data for
the proposed TPR model.

19.5.2 Journey Reconstruction Algorithm

For each Smart Card record from each individual passenger, the first step is to recon-
struct the full public transport journey with transfers from origin to destination from
individual Opal card transactions. This step is essential because Smart Card data only
includes the tap-on and tap-off, while we are interested in modelling a completed
journey between an origin and a destination. A completed journey would naturally
give us the following explanatory variables for the TPR model:

• Travel time t t : the time gap between the first tap-on and the last tap-off of a journey
• Transfer time t f : the time gap between a tap-off from a bus to a tap-on to another
bus to continue the journey

• Travel distance d: the Euclidean distance between the first tap-on and the last
tap-off
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• Distance from the origin to CBD do: the Euclidean distance from the origin to the
Sydney CBD

• Distance from the destination to CBD dd : the Euclidean distance from the desti-
nation to the Sydney CBD

The journey reconstruction algorithm is based on the time and distance gap
between individual tap-on and tap-off. Figure 19.5 shows the proposed journey recon-
structing algorithm that is based on [16]. We revise the algorithm proposed in [16]
by adding the distance gap Δd, which is set to be 500m. Δd is added to ensure that
the transfer time will only be spent on walking and waiting, rather than any other
side activity using a private vehicle.

The time gap Δt is defined to be less than 60 min, because in Sydney passengers
will receive a discount if they make a transfer within 60 min from the last tap-off,
so the majority of passengers would continue their journeys within this time frame.
The following steps describes the trip reconstruction process.

• Step 1: Query all the Opal transactions of an individual passenger i . A binary
indicator RID is assigned as zero.

• Step 2: For each transaction in the above database, the corresponding transaction
is discarded if it is a tap-on reversal, where tap-on and tap-off are at the same
location

• Step 3: If RID equals zero, a variable Origin Location is defined and set as equal
to the current tap-on. We also assign a new unique Journey ID, change RID to one
and move to the next transaction. Otherwise we move to Step 4.

• Step 4: Now with RID equals one, the current transaction will be assigned the
current Journey ID if it satisfies three conditions: (1) time gap between the current
tap-on and the last tap-off δt is less than 60 minutes, (2) the distance gap δd is less
than 500 m, and (3) the current tap-off is different to Origin Location. Otherwise,
we assign a new Journey ID and set RID equals zero.

• Step 5: The journey reconstruction process for the passenger i is finished after the
last transaction of the day, otherwise we move to the next transaction.

19.5.3 Data Processing

After journey reconstruction, the remaining data processing in preparation for the
inputs forTPR is self-explanatory.Variables t t, t f, d, do anddd are directly calculated
from each completed journey. We then aggregate the completed journeys according
to their start time and their AlternativeI D to produce passenger demand counts.
The AlternativeI D is an indicator of the route choice. It has been defined in a way
such that passengers from the same area who make similar choices will have the
same AlternativeI D. Table 19.8 shows an example of the data used for the case
study.
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1

0

∆∆

Fig. 19.5 Journey reconstruction algorithm

The AlternativeI D, as shown inTable 19.8, has been coded in the format: [Origin
Zone ID, Destination Zone ID, Mode, Route of the first tap-on, Zone of the first tap-
on, Zone of the first tap-off, Route of the last tap-on, Zone of the last tap-on, Zone
of the last tap-off]. The Count is total number of passengers who travelled within the
same time period, and made the same travel decision as shown in AlternativeI D.
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19.5.4 Case Study Modelling Results

We use the five explanatory variables, as described in Sect. 19.5.1, as the time invari-
ant variables of the TPR model, as described in Sect. 19.3. The dataset is randomly
divided into the training dataset, which includes 90% of data points, and the testing
dataset, which includes the remaining 10%. We develop TPR models with 3, 4, 5
harmonics and 5 time-invariant variables. Thus the models are named H3V5, H4V5
and H5V5, similar to Sect. 19.4.2. We then compare them using Root Mean Square
Error (RMSE) as the criteria, which can be calculated as follows:

RMSE =
√
√
√
√ 1

D

D∑

i=1

(ci − c̄i )2 (19.26)

where ci and c̄i are the actual and estimated count, respectively. D is the total number
of data points in the testing dataset. Thus RMSE measures the mean error of our
prediction compared to the observed value. The models are trained using the training
dataset, and then tested using the testing dataset (Table19.9).

H5V5 shows better performance than H3V5 and H4V5. Table 19.10 shows the
estimated parameters of H5V5. Most of the parameters are significant.

The values and especially the signs of the explanatory variables do, dd , d, t t and
t f provide insights into the bus passenger demand in NSW, Australia. The positive
sign of do and d show that the further passengers are from the Sydney CBD and
the longer the travel distance, the more likely that a journey by bus will be made.
Similarly, the negative sign of dd shows that if the journey ends near the CBD, the
less likely that a journey by bus will be made. This is because the Sydney CBD is
well serviced by other public transport modes such as train, light rail and ferry, so
bus travels are more for distant areas. The negative signs of travel time t t and transfer
time t f show that passengers care about these factors. If transit providers can provide
services with shorter travel time and transfer time, bus patronage will be increased.
Passengers are concerned most about distance of travel and transfer time, which is
shown by the fact that the estimated coefficients d and t f are significantly larger than
others.

Table 19.9 Estimation errors
with different TPR models

Model RMSE

H3V5 7.29

H4V5 6.84

H5V5 6.67
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Table 19.10 Estimated parameters for H5V5

Coefficients Estimate Std. error z value Pr(> |z|)
α0 1.6030 0.0038 418.9300 <2e-16 ***a

β1 −0.2198 0.0059 −37.3720 <2e-16 ***

γ1 −0.0262 0.0038 −6.9340 <2e-16 ***

β2 −0.1925 0.0027 −72.6250 <2e-16 ***

γ2 −0.0043 0.0054 −0.7850 0.4330

β3 0.1262 0.0025 50.9330 <2e-16 ***

γ3 0.1108 0.0049 22.7230 <2e-16 ***

β4 −0.0882 0.0027 −33.2090 <2e-16 ***

γ4 0.2382 0.0032 75.6170 <2e-16 ***

β5 −0.0938 0.0016 −57.8180 <2e-16 ***

γ5 0.0456 0.0015 30.2900 <2e-16 ***

do 0.0017 0.0001 24.0960 <2e-16 ***

dd −0.0015 0.0001 −22.2250 <2e-16 ***

d 0.0365 0.0001 281.0640 <2e-16 ***

t t −0.0071 0.0000 −147.7890 <2e-16 ***

t f −0.0226 0.0001 −194.6990 <2e-16 ***
aSignificant codes: *** 0.001 ** 0.01 * 0.05

19.6 Conclusion

The inference of the expected number of passengers arrivals at transit stops are
essentially important for transit tactical planning and operation control studies. We
propose a non-homogeneous Poisson Process (NHPP) framework to model the exact
records of passenger arrival times. Simulation and calibration for this model are
discussed. To estimate the aggregated count of passengers arriving at transit stops, this
chapter proposes a time-varying PoissonRegression (TPR)model, given the time and
other explanatory variables. This model uses aggregated counts of passenger demand
within a time period and several other variables to estimate the passenger counts. The
numerical experiments using synthetic simulated data show the calibration process
for parameters of both NHPP and TPR.

We also use domain knowledge to implement the TPRmodel on a case study using
observed Smart Card data in New SouthWales, Australia. The transportation domain
knowledge is used to define the important explanatory variables for the TPR model,
and to process the data. The variables of travel time, transfer time, and distance are
the most important to explain bus passenger demand. Domain knowledge has also
been used to obtain great insights into the factors that impact the patronage level of
buses in NSW, Australia. By analysing the values and signs of variables do, dd , d, t t
and t f , we have found that passengers are more likely to use a bus when the journey
is long, and starts further from the Sydney CBD. They are less likely to use a bus if
the travel time or transfer time are large; and if the journey is also serviced by other
modes of transport such as train, light rail or ferry.
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The proposed analytical models are useful as a part of a transit tactical planning
and operational control framework to estimate the passenger demand at transit stops.
Futurework includes the use of observed data, amore involved formulation forNHPP
model and possibly an inclusion of the autoregressive term for the TPR model.
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Chapter 20
Structural Health Monitoring Using
Machine Learning Techniques and
Domain Knowledge Based Features

Nguyen Lu Dang Khoa, Mehrisadat Makki Alamdari,
Thierry Rakotoarivelo, Ali Anaissi and Yang Wang

Abstract Structural Health Monitoring (SHM) is a condition-based maintenance
technology using sensing systems. In SHM, the use of domain knowledge is essen-
tial: it motivates the use of machine learning approaches; it can be used to extract
damage sensitive features and interpret the results by machine learning. This work
focuses on two SHM problems: damage identification and substructure clustering.
Our solutions to address them are based on machine learning techniques and robust
feature extraction using domain knowledge. In the first problem, damage sensitive
features were extracted using a frequency domain decomposition, followed by a
robust one-class support vector machine for damage detection. In the second prob-
lem, a novel clustering technique and spectral moment feature were utilised for
substructure grouping and anomaly detection. These methods were evaluated using
data from lab-based structures and data collected from the Sydney Harbour Bridge.
We obtained high damage detection accuracies andwere able to assess damage sever-
ity. Furthermore, the clustering technique was able to group substructures of similar
behaviour and detect spatial anomalies.
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20.1 Introduction

Most structural and mechanical system maintenance is time-based, i.e. an inspec-
tion is carried out after a predefined amount of time. Structural health monitoring
(SHM) is a condition-based approach to monitor infrastructure using sensing sys-
tems. SHM systems promise significant safety and economic benefits [21], and thus
they have been the focus of several studies and activities with sometime real-world
deployments [21, 24, 62].

One of the key problems in SHM is damage identification, which can be classified
into different levels of complexity [49]:

• Level 1 (Detection): to detect if damage is present in the structure.
• Level 2 (Localisation): to locate the position of the damage.
• Level 3 (Assessment): to estimate the extent of the damage.
• Level 4 (Prediction): to give information about the safety of the structure, e.g.
remaining life estimation. This level requires an understanding of the physical
damage progression in the structure.

A typical engineering approach in SHM adopts a physic-based model of the struc-
ture, usually based on finite element analysis. The differences betweenmeasured data
and the data generated by the model are used to identify any damage [18]. However,
a numerical model may not always be available in practice and does not cater well
to uncertainties due to changes in environmental and operational conditions. This
challenge motivates the use of a data-driven approach which establishes a model
by learning from measured data and then makes a comparison between the data
model and new measured responses to detect damage. This approach normally uses
techniques in machine learning [62].

Farrar and Worden defined the SHM process in terms of a four-step statistical
pattern recognition paradigm [21]: (1) operational evaluation; (2) data acquisition,
normalisation and cleansing; (3) feature extraction and information condensation; (4)
statistical model development. Among the four, feature extraction and information
condensation in Step 3 is an important step to help the statistical modelling using
machine learning in Step 4 to identify damage.

Feature extraction is a process of extracting meaningful indicative information
from the measured response to determine the structural health state of the system
and identify the presence, location and severity of any possible damage. Features
may or may not have explicit physical meaning. However, the features that represent
the underlying structural physic are preferred for SHM from the point of view that
they can provide more effective insight into the condition of the structure. An ideal
feature should be sensitive to damage and correlated with the severity of damage but
insensitive to environmental and operational effects. The reason is that in real-world
SHM applications the effect of environmental and operational changes on features
might camouflage damage-related changes and also alter the correlation between the
magnitude of changes in the features and associated damage levels [51], and this is
one of the main challenges in SHM [21].
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All the aforementioned challenges highlight the role of domain experts in solving
SHM problems and in this chapter domain knowledge is used in all stages of the data
analysis. First, domain knowledge shows data-driven machine learning approaches
are suitable for forming an SHM problem. Second, it shows robust feature extraction
techniques using domain knowledge are essential in order to extract damage sensitive
features. Last, domain knowledge is also used to explain the results found bymachine
learning techniques.

This work is part of our ongoing efforts to apply data driven SHM to the Sydney
Harbour Bridge (SHB), one of the iconic structures in Australia. We tackle two dif-
ferent problems faced by a civil infrastructure: damage detection and substructure
clustering. Our approaches to these problems are based on machine learning tech-
niques and robust feature extraction using domain knowledge. The first problem is
identifying damage in components of a structure over time. In this case, we fused
and extracted damage sensitive features from multiple sensors using a frequency
domain decomposition (FDD), and then applied a novel self-tuning one-class sup-
port vector machine (SVM) for damage detection. The second problem is detecting
similar characteristics of a structure’s components by comparing and grouping them
across locations. In this case, we extended a robust clustering technique and utilised
a novel spectral moment feature for substructure grouping and anomaly detection.
These methods were evaluated using data from controlled lab-based structures and
data collected from a real world deployment on the SHB.

The remainder of this chapter is organised as follows. Section 20.2 provides
information about the SHM system of the SHB. Section 20.3 presents a review
on feature extraction and fusion in SHM, which is based on domain knowledge.
Then the proposed approaches to extract features, to identify damage and to group
substructures are introduced in Sect. 20.4. Section 20.5 presents the results of our
proposed techniques in two case studies. Finally, there are concluding remarks in
Sect. 20.6.

20.2 A Large Scale SHM on the Sydney Harbour Bridge

The SHB supports eight lanes of road traffic and two railway lines. Lane 7 on its
eastern side is dedicated to buses and taxis. This lane is supported by 800 concrete
and steel jack arches, which may develop cracks due to the ageing of the structure
and traffic loadings on the lane. It is critical to detect such a deterioration as early as
possible. However, they are currently visually inspected once every two years and
some locations are difficult to access.

We have developed and deployed a SHM system on the SHB which acquires,
integrates, and analyses a large amount of data from about 2400 sensors distributed
underneath Lane 7 of the infrastructure [48]. Our SHB system is composed of four
layers, as described in Fig. 20.1. First at the Sensing and Data Acquisition layer, we
have deployed three tri-axial accelerometers on each of the 800 jack arches. These
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Fig. 20.1 Overview of the SHM system deployed on the SHB

sensors are low-cost MEMS (Microelectromechanical systems) and they record the
vibrations of the structure.

At the Data Management layer, we have smart nodes and gateways, which con-
centrate the data from the sensors. Vibration data are captured at 250Hz from the
three sensors on a given jack arch, when a vehicle drives over it. Each node also
collects continuous ambient vibration at midnight for 10 min at 1500Hz. The data
are transmitted and used by the next Data Analytics layer.

At the third Data Analytics layer, we can deploy several algorithms to derive
actionable information from the data. Some algorithms are online and in production,
i.e. they operate on real-time data to produce information for the bridge manager
and engineers. Other algorithms are offline and in research phase, i.e. they operate
on past collected data for a research purpose.

Finally at the Service layer, we developed a secure web-based visualisation dash-
board, which allows the bridge manager and engineers to monitor all the jack arches
in real time so that they can optimise the maintenance schedule.
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20.3 Feature Extraction Using Domain Knowledge:
A Review

As a result of damage occurrence in the structure, the physical characteristics of
the structure (e.g. stiffness, mass or damping) change, which consequently induces a
change to the dynamic response [39]. Therefore, one of the key factors in a successful
implementation of any vibration-based SHM technique is an appropriate selection of
damage sensitive feature from the measured vibration response of the structure [55].
The efforts of previous researchers have been directed to damage sensitive features
in modal domain [20], frequency domain [38], time domain [11] and time-frequency
domain [43].

Examples of the early features introduced and adopted for SHM applications are
modal parameters (e.g. natural frequencies [50], damping [14], and mode shapes),
and their derivatives such as modal strain energy [53] and flexibility matrix [44].
Although successful applications of these features have been widely reported in the
literature (as discussed in [7]), the use of modal-based features to identify damage in
real-world applications has been highly debated in the last few years. Modal-based
features are suffering from several problems. Firstly, they are not broadband data and
they only provide information at limited frequency resonances. Secondly, they are
error prone by nature as they are not directly-measured data and thus complicated
modal analysis should be carried out to extract these features from the measured time
responses, which may lead to computational errors [40]. Moreover, in real-world
applications, it is not possible to capture a complete set of modal parameters from
the measurements because only a limited number of lower modes are measured and
the information related to higher modes, which is more sensitive to minor changes
in the structural integrity, is missed. Finally, it has been demonstrated that modal
parameters and in particular natural frequencies are quite sensitive to environmental
changes, which is not desirable [45]. These major shortcomings make modal-based
approaches less suitable for practical applications.

SHM schemes based on time-domain features have also attracted attention in
recent years since no domain transformation is required, which leads to faster mon-
itoring applications [11]. In such a case, damage identification is directly sought
based on discrepancies of the measured responses in time domain. Basically, time
domain-based features can be treated as data-based features rather than physics-
based features and the adopted features might not have an explicit physical meaning.
Damage is identified by comparison of a current characteristic quantity with its
baseline in a statistical sense. Statistical properties of a time series (e.g. mean and
variance) were amongst the earliest statistical frameworks employed for monitoring
the acceleration measurements in order to identify data that are inconsistent with
the past data (e.g. undamaged state) [22]. Features based on autoregressive models
have also been adopted in various SHM applications [54]. In this regard, features are
either based on the residues between the prediction from an autoregressive model
and the actual measured time history at each time interval, or they are simply based
on autoregressive model coefficients [63].
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Frequency-based features such as power spectral density (PSD) [34], frequency
response functions and their derivatives [33] can be derived from the response in
the frequency domain. Unlike modal parameters, frequency data are broadband data
which contain a wide range of frequencies [2]. Spectral-based methods in the fre-
quency domain have become another alternative to extract features in mechanical
components under stochastic loadings [8]. Applications of spectral methods in the
context of damage detection have been found in the literature [5]. Spectral-based
methods use spectral moments which can be evaluated directly from the PSD of time
responses. Spectral moments represent somemajor statistical properties of a stochas-
tic process; for example, the variance of a random process is the zero-order spectral
moment of that observation [46]. Spectral moments are useful for characterisation of
non-Gaussian signals buried in a Gaussian background such as noisy environment
[59]. The early efforts in this field were conducted by Vanmarcke to estimate modal
parameters (natural frequency and damping) from ambient response measurements
of dynamically excited structures [60]. Zero, first and second moments were applied
to identify modal parameters. Later on, some researchers used spectral moments to
predict the fatigue damage evaluation and estimate the rate of damage accumulation
in structures subjected to random processes [8]. Several researchers have applied
higher order spectral moments such as spectral kurtosis of the time series data for
health assessment of rotary structures [5].

Further, features can be extracted by time-frequency analysis of the measured
response using wavelet analysis [43]. Wavelet transform has emerged as a powerful
tool for capturing changes in structural properties induced by damage. Wavelet anal-
ysis allows the study of local data with a “zoom lens having an adjustable focus” to
provide multiple levels of details and approximations of the original signals. There-
fore, transient behaviour of the data can be retained [23]. Wavelet analysis not only
can detect any subtle differences in the signals but also can localise them in time,
and therefore it is quite useful for studying non-stationary systems. Promising appli-
cations of wavelet transform approaches to SHM have been reported in the literature
[32, 58].

In addition to feature extraction from one single sensor, data fusion which is the
process of integrating information frommultiple sensors, needs to be considered. An
appropriate fusion process can reduce imprecision, uncertainties and incompleteness
and achieve more robust and reliable results than a single source approach [26, 57].
Various data fusionmethods have been used in SHM [37, 56]. Fusion can be executed
in three levels: data-level fusion, feature-level fusion, and decision-level fusion [35].
In data-level, raw data from multiple sensors are combined to produce new raw data
that are expected to be more informative than data from a single sensor. In feature-
level, features obtained from individual sensors are fused to obtain more relevant
information [26]. Data fusion in feature-level can be performed in an unsophisticated
manner by simply concatenating features obtained from different sensors. However,
more advanced methods including Principle Component Analysis (PCA), neural
networks and Bayesian methods have been adopted at this level. Fusion at decision-
level can be achieved through various techniques such as voting or fuzzy logic to
obtain an ultimate decision based on each decision obtained from individual sensors.
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In this study, we adopt a spectral-based approach using the concept of spec-
tral moment to extract the damage sensitive feature from the measured acceleration
response. Spectral moment correlates to the energy of the signal in the frequency
domain and is computed from the PSD of a signal. Moreover, we also adopt a feature
extraction and data fusion approach using FDD to integrate frequency data frommul-
tiple sensors. The next section describes in detail our feature extraction and fusion
methods.

20.4 Damage Identification and Substructure Grouping

In this section, we discuss how domain knowledge is used to phrase a general SHM
problem as a machine learning problem and the importance of domain knowledge
for feature extraction. Then two typical problems faced by a civil infrastructure are
presented: damage detection and substructure clustering. We propose solutions for
these two problems which utilise machine learning techniques and robust features
extracted using domain knowledge. Specifically, FDD is used with a self-tuning
one-class SVM for damage identification; and a spectral moment feature is used
with k-means−− for substructure grouping.

20.4.1 Machine Learning Approach for SHM Using
Domain Knowledge

Any change in the structural integrity reflects the vibration characteristic, e.g. nat-
ural frequency of the structure. In the context of vibration-based SHM, the main
objective is thus to identify any change in these characteristics with respect to a
benchmark state. To achieve this, either a physics-based model of the structure or
a statistical-based model of the system under study is developed to build a repre-
sentative model of the structure in the benchmark state. In the first approach, finite
element method and optimisation techniques are adopted to establish and calibrate a
numerical model of the structure. Future measured response of the structure is then
compared with the numerical model prediction to identify any potential change in the
system. Although this approach is capable of providing additional useful information
about any potential change in the structure, e.g. location and severity, its capability
is quite limited to small scale structures in a controlled environment. The main rea-
son is that obtaining a detailed, reliable and calibrated model of the structure is not
straightforward, especially in the case of large infrastructures and in the presence of
practical uncertainties.

In contrast, a data-based or machine learning model relies solely on measured
data. The massive data obtained from monitoring are transformed into meaningful
information using domain knowledge as reviewed in Sect. 20.3. It is amore promising
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alternative for real-world SHM applications. Not only is establishing the model
more straightforward, but also it is capable of overcoming problems associated with
environmental and operational variability in SHM since the measured data from
many different conditions can be employed for learning the model, which is not the
case for a physics-based approach.

Most of the vibration-based SHM techniques require both input and output sig-
nals in order to identify possible structural damage. This technique is applied only
to small and moderate sized structures and often requires disruption of traffic and
human activities for structures under in-service condition. These drawbacks make
this approach less practical, specifically in the case of large infrastructures. In con-
trast, methods based on output-only dynamic test where the structure is excited by
natural or randomly varying environmental excitations such as traffic, winds, waves
or human movements are more practical for SHM applications. In this approach,
structural integrity assessment is performed based on only response measurement
data without any knowledge of the input driving forces. Hence, a smaller number
of operators and equipment is required, which makes this approach more attractive
over measured input vibration. In order to extract the vibration characteristics of the
structure, a special procedure named output-only modal identification needs to be
considered [41]. It highlights the role of domain knowledge experts in extracting the
most characteristic features from the measured response. In the following sections,
two different features have been employed based on the domain knowledge about
output-only modal identification.

20.4.2 Damage Identification

This section presents an approach to identifying damage in components of a struc-
ture over time. A flowchart of the approach is shown in Fig. 20.2. First, damage
sensitive features are extracted using FDD followed by a dimensionality reduction
using random projection. Then an adaptive (self-tuning) one-class SVM is used on
the reduced dimensional space for damage detection.

20.4.2.1 Data Fusion and Feature Extraction: Frequency Domain
Decomposition

FDD was used in this study to fuse data from a sensor network in a data-level. FDD
assumes that the vibration responses from l distinct locations within the structure are
available. From a probabilistic point of view, the response process at locations p and
q (p and q ∈ [1 : l]) can be characterised through a correlation function, Rpq , in the
time domain as [10],

Rpq(τ ) = E[xp(t)xq(t + τ)] (20.1)
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Fig. 20.2 The flowchart of the proposed damage detection and severity assessment

where E[] and τ are, respectively, the probabilistic expected value operator and the
lag operator. Rpq(τ ) function defines how a signal is correlated with the other, with
a time separation τ .

The frequency characterisation of such a random stationary process can be com-
puted using the PSD function which is calculated by taking the Fourier transform
as,

Spq(ω) =
∫ +∞

−∞
Rpq(τ ) exp−iωτ dτ (20.2)

where Spq(ω) is the cross PSD of the response at locations p and q, and frequency
ω. Once p = q, Spq(ω) is referred to as the auto-power, otherwise it is called cross-
power.

At each frequency spectra, a symmetric matrix of Sl×l(ω) can be populated using
an auto and cross power information obtained earlier for different pair-wise locations.
Matrix S can be decomposed using the singular value decomposition (SVD) as,

S(ω) = U
∑

UH (20.3)
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where U and
∑

are l × l matrix of singular vectors and diagonal matrix of singular
values, respectively, and superscript H is the conjugate transpose. Singular values
are typically in a descending order and the first singular value is the highest one.

Combining the first singular value obtained at each frequency spectra will result in
an m dimensional vector which is considered as a feature vector for further analysis,
where m refers to the number of spectral lines or attributes. In this way, information
from l signals obtained from l sensors is fused into a single feature vector.

20.4.2.2 Dimensionality Reduction: Random Projection

Dimensionality reduction aims to extract an intrinsic low dimensional information
fromahighdimensional dataset. It transforms ahigh-dimensional data set into a lower
dimensional one which represents the most important variables that can explain the
original data. This feature extraction step is required in this work since we have a
low number of observations compared to a large number of features. In [31], the
authors discussed an effectiveness of dimensionality reduction approaches in SHM
applications.

PCA [29] is one of the most popular and widely used techniques proposed for
dimensionality reduction. The main objective of PCA is to calculate eigenvalues and
eigenvectors of a covariance matrix computed from a given dataset to determine
the components where the data have a maximum variance. However, PCA has a
complexity of O(m3) due to the eigen decomposition of the covariance matrix where
m is the dimension of data. This makes it impractical to use for very high dimensional
datasets, a common issue in SHMsensing data.Moreover, its performance is sensitive
to the number of the selected components.

Random projection is an alternative and less expensive method to reduce the
dimensionality of extremely high dimensional data [1]. Using random projection,
the dimension of the projected space only depends on the number of data points
n, no matter how high the original dimension m of the data is. It is an effective
and efficient dimensionality reduction method for high-dimensional data [9]. The
rational idea of random projection is to preserve the pairwise Euclidean distances
between data points which is achieved by projecting the high-dimensional data into
a random subspace spanned by O(log n) columns [28]. Further study, carried out by
Achlioptas [1], shows that the number of dimensions required for random projection
can be calculated using:

k = log n/ξ 2 (20.4)

where k is the number of dimensions in the low-dimensional space and ξ is a small
positive number.

Given X ∈ Rn×m , ξ > 0, and k = log n/ξ 2. Let Rm×k be a random matrix where
each entry ri j can be drawn from the following probability distribution [1]:
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ri j =
{+1 with probability 1

2s
0 with probability 1 − 1

2s−1 with probability 1
2s

(20.5)

where s represents the projection sparsity. With probability at least 1 − 1
n , the pro-

jection, Y = XR approximately preserves the pairwise Euclidean distances for all
data points in X .

In practice, k is usually a small number. Venkatasubramanian and Wang [61]
suggested that kRP = 2 ln n/0.252.

20.4.2.3 Damage Detection: Self-tuning One-Class Support Vector
Machine

In practice, events corresponding to damaged states of structures are often unavailable
for a supervised learning approach. Therefore, a one-class approach using only data
from a healthy structure is more practical. In this work, we use one-class SVM [52]
as an anomaly detection method.

Given a set of data X = {xi }ni=1 extracted from the original sensor data (feature
vector) collected from a healthy structure and where n is the number of training
samples, one-class SVM maps these samples into a high dimensional feature space
using a function φ through the kernel K (xi , x j ) = φ(xi )Tφ(x j ). Then one-class
SVM learns a hyperplane that separates these data points from the origin with a
maximum margin. A feature vector is defined as a vector of m elements, and each
element is called an attribute.

The classification model is a function described by f : Rm → {−1,+1} and is
written in the form of

f (x) = sgn(w · φ(x) − ρ) (20.6)

where ‘.’ is the dot product. w and ρ are the parameters of the model and can be
learned from the training data. f (x) = +1, if (w · φ(x) − ρ) > 0 which indicates
that the structure is healthy; otherwise f (x) = −1 which means that the state of the
structure has changed.

Using the data samples, X = {xi }ni=1, the training process determines the model
parameters w and ρ by minimising the classification error on the training set while
still maximizing the margin. Mathematically, it is equivalent to the following min-
imisation problem,

min
w,ξ,ρ

1

2
‖w‖2 + 1

νn

n∑
i=1

ξi − ρ (20.7)

s.t w · φ(xi ) ≥ ρ − ξi , ξi ≥ 0, i = 1, . . . , n.
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where ξi is a slack variable for controlling the amount of training error allowed and
ν ∈ [0, 1] is a user-specified variable for controlling the balance between ξi (the
training error) and w (the margin). The problem can be transformed to a dual form
using Lagrangian multiplier as,

min
α1,α2,...,αn

n∑
i, j

αiα j K (xi , x j ) (20.8)

s.t 0 ≤ αi ≤ 1

νn
,

n∑
i=1

αi = 1.

This problem can then be solved using quadratic programming [27]. Having
obtained a learned model, the decision values for a new data instance xnew can be
computed as,

f (x) = sgn(

n∑
i=1

αi K (xi , xnew) − ρ) (20.9)

A negative decision value indicates an anomaly, which likely corresponds to a
structural damage.

Self-tuning Gaussian Kernel:

Gaussian kernel defined in Eq.20.10 has gained much popularity in the area of
machine learning and it turned out to be an appropriate setting for one-class SVM [13,
30, 36]. It has a parameter denoted σ which may severely affect the performance of a
one-class SVM. An inappropriate choice of σ may lead to overfitting or underfitting.

K (xi , x j ) = exp(−‖xi − x j‖2
2σ 2

) (20.10)

where σ ∈ R is the kernel parameter.
K -fold cross validation is often used at a training stage in order to tune σ . How-

ever, in case of a one-class learning, this technique is not possible because it selects
σ that works only on the training class data and thus it is lack of generalisation
capability (overfitting problem). Therefore, alternative approaches have been pro-
posed for tuning σ in one-class SVM. The Appropriate Distance to the Enclosing
Surface (ADES) algorithm [4] is our recent proposed method for tuning σ based on
inspecting the spatial locations of the edge and interior samples, and their distances
to the enclosing surface of one-class SVM. ADES showed successful performances
on several datasets and thus was adopted for tuning σ in this work.

Following the objective function f (σi ) described in Eq.20.11, the ADES algo-
rithm selects the optimal value of σ̂ = argmax

σi

( f (σi )), which generates a hyper-

plane that is the furthest from the interior samples and the closest to the edge samples,
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using a normalised distance function.

f (σi ) = mean(dN (xn)xn∈ΩI N ) − mean(dN (xn)xn∈ΩED ) (20.11)

where ΩI N and ΩED , respectively, represent sets of interior and edge samples in the
healthy training data points identified using a hard margin linear SVM, and dN is the
normalized distance from these samples to the hyperplane. It is defined as:

dN (xn) = d(xn)

1 − dπ

(20.12)

where dπ is the distance of a hyperplane to the origin described as dπ = ρ

‖w‖ , and
d(xn) is the distance of the sample xn to the hyperplane. It is calculated using:

d(xn) = f (xn)

‖w‖ =
∑n

i=1 αi K (xi , xn) − ρ.√∑n
i j αiα j K (xi , x j )

(20.13)

where w is a perpendicular vector to the decision boundary, αi are the Lagrange
multipliers, and ρ is the bias term. More details on the ADES method can be found
in [4].

20.4.3 Substructure Grouping

This section proposes a robust clustering technique, which uses spectral moment
features for substructure grouping and anomaly detection. The proposed approach
follows the following steps,which are further detailed in the remainder of this section:

• a structurally meaningful feature is extracted using spectral moment from the
measured acceleration for each jack arch for many time windows,

• a modified k-means−− clustering algorithm is applied to this feature data to
identify groups of similar substructures and potential anomalies,

• a multi-indices criterion is used to select the best grouping outcome,
• under the assumption that near-by substructures should have similar behaviours
and thus should belong to the same cluster groups, any substructure which is
identified as an outlier or which belongs to a one-member group, is then marked
as an anomaly.

20.4.3.1 Feature Extraction Using Spectral Moment

In this study, a frequency-based feature using spectral moments of the measured
acceleration responses is adopted as a damage sensitive feature. PSD of the response
signal is required to calculate spectral moment. For a stationary random process,
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PSD contains some major characteristics of the system that can be extracted. In a
classical Fourier analysis, the power of a signal can be obtained by integrating the
PSD, i.e., the square of the absolute value of the Fourier-transform coefficients [15].

The energy contents of a signal within a frequency band of interest can also be
quantified using PSD. The calculation of PSD is computationally efficient, as it has a
low processing cost compared to modal analysis. Moreover unlike modal data, PSD
does not suffer the lack of information and provides an abundance of information in
a wider frequency range.

The spectral moment of a random stationary signal provides some important
information about its statistical properties. They explicitly depend on the frequency
content of the original signal, whichmakes them suitable to SHM applications. Spec-
tral moment captures information from entire spectra and hence they can distinguish
any subtle difference between normal and distorted signals.

As described in Sect. 20.4.2.1, the frequency characterisation of a random station-
ary process can be computed using the PSD function as,

Sxx (ω) =
∞∫

−∞
Rxx (τ )e−iwτdτ (20.14)

For a given PSD, the nth-order spectral moment can be then computed as,

λn
x =

∞∫

−∞
|ω|n Sxx (ω)dω (20.15)

where n is the order of spectral moment. Finally, for a discretised signal x , the
nth-order spectral moment λn

x can be obtained using,

λn
x = 2

Nn+1

�N/2	∑
0

Sxx ( j)

(
j

Δt

)n

j ∈ [1 : N/2] (20.16)

where Sxx and Δt are, respectively, the discrete spectral density and the sampling
period.

The zero-th order moment refers to the area under the spectral curve which repre-
sents the significance of the response. Higher order moments assign more weight to
frequency components. Past research studies have concluded that spectral moments
with orders 1–4 provide useful information about the system, whereas higher order
moments usually do not provide further information as they are highly masked by
noise [17].
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20.4.3.2 k-means– Clustering

Clustering is a popularmethod in datamining applications [25]. Thegoal of clustering
is to partition a set of data objects into groups of similar objects based on a given set
of features. k-means is a widely used clustering algorithm, which groups data into
k clusters C = {C1, ...,Ck} with the goal of minimising the within-cluster sum of
squares, i.e.

argmin
C

k∑
i=1

∑
x∈Ci

||x − μi ||2 (20.17)

where μi is the centre of cluster i (mean of data points in Ci ). This optimisation
function can be solved in an iterative manner, which converges after no further
assignment changes between iterations.

However, the k-means method may converge to a sub-optimal partitioning, as it
is sensitive to the initial selection of cluster centres. The k-means++ algorithm [6]
is an alternative method, which uses a specific mechanism to select the initial set
of centres, before applying the original k-means steps. k-means++ only selects
one initial centre uniformly at random from all data points (as opposed to all the
initial centres for k-means). Each subsequent cluster centre is then selected from the
remaining data points with a probability proportional to its squared distance to the
closest existing centre.

Outliers in the data can skew the selection of cluster centres and thus can lead
both k-means and k-means++ to sub-optimal solutions. The recent k-means−−
alternative [12] proposes a mechanism to detect such outliers (e.g. potential anoma-
lies). In the previous methods, such anomalies were likely located in significantly
small clusters as a by-product of the iterative process. In contrast, in k-means−−,
these anomalies are explicitly detected and isolated before the iterative cluster update
process.

We propose the following extension to the original k-means−− algorithm. When
convergence is achieved, any groupwith a singlemember is removed from the cluster
set and its data point is added to the set of anomalies. This additional step prevents
biases when selecting the best cluster result, as described in the next subsection.
Our extended k-means−− is described in Algorithm 3. It follows the iterative steps
of k-means, but first selects o anomalies in the data before assigning the remaining
points into k clusters. Thus, these o data points that are furthest from their closet
centres are isolated and are not used to recompute the centres in the update step and
subsequent iterations.

20.4.3.3 Selection of the Best Clustering Result

Due to the random choice of the initial first centres in Algorithm 3, multiple runs
over the same data set will produce different clustering results. This can be addressed
by using a high number of replications, such as 50. However, different settings of
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Algorithm 3 A modified k-means−− clustering.
Input: Matrix of X data points, number of clusters k, number of anomalies o
Output: o anomalies in L , cluster ID for each data point in X − L

1: Initialisation: using k-means++ to find k initial centres
2: Assignment: assign each data point to the nearest centre, and set their cluster ID accordingly
3: Anomaly detection: find the o points, which are furthest from their cluster centres (i.e. anoma-

lies), and assign them to L
4: Update: recompute the centre for each cluster (excluding the found anomalies)
5: Iterate: repeat steps 2 to 4 until the algorithm converges, i.e. no further changes in the data point

assignments
6: Finalise: convert clusters with only one data point to anomalies

k and o will also produce different clustering results. To address this issue, we limit
the choice for k to a fixed maximum arbitrary value. In practice, this selection of the
maximum k should be guided by domain knowledge of the application at hand. In
the case of SHM such as the application of our scheme to a bridge, the maximum k
value could be set equal to the number of structural spans of a bridge. For example, k
could be set to 6 for a bridge which has 6 different structural spans. The o parameter
may remain arbitrarily low, such as less than 5.

We then propose the following mechanism to select the most informative clus-
tering and anomaly detection results. For each pair of input parameters (k, o), we
compute the values of the Silhouette [47], theDavies-Bouldin [16], and theDunn [19]
indices over the resulting cluster set. Each index measures a specific characteristic
of such a resulting cluster set. Indeed, the Silhouette index measures the averaged
dissimilarity of each point against its assigned cluster, and then compares these mea-
surements against the dissimilarity of the points within their nearest neighbouring
clusters. On the other hand, theDavies-Bouldin index reports on the compactness and
separation of the clusters, through the ratio between the similarities within a group
and the differences between groups. The Dunn index computes the ratio between the
closest points across different groups and the furthest points within groups.

We then select the (k, o) results which have extremum values for each of the
computed indices, i.e. maximum value for Silhouette and Dunn; and minimum value
for Davies-Bouldin. Within this set of results, we select the logical intersection of all
identified anomalies as the final set of anomalies, i.e. points which have instrumen-
tation issues or indicate structural damage. Any empty set of identified anomalies
is treated as the identity element for this operation (i.e. does not influence the out-
come). As the three indices report on different aspects of the cluster groups, using
their intersection may lead to a more accurate set of anomalies. This is confirmed
through experimental results in the next Sect. 20.5.
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20.5 Case Studies and Results

20.5.1 Damage Identification

20.5.1.1 Case Study: The Sydney Harbour Bridge Specimen

A concrete cantilever beam, which has an arch section with a similar geometry to
those on the SHB, was manufactured and tested, as shown in Fig. 20.3. The beam
consists of a 200UB18 steel I-Beam with a 50mm concrete cover on both ends. The
length of the specimen is 2m, thewidth is 1m and the depth is 0.375m. The specimen
was fixed at one end using a steel bollard to form a cantilever, where 400mm along
the length of the beam were fully clamped. In addition, a support was placed at
1200mm away from the tip to avoid any cracking occurring in the specimen under
its self-weight [42].

Ten PCB 352C34 accelerometers were mounted on the specimen to measure the
vibration response resulting from impact hammer excitation. Accelerometers were
mounted on the front face of the beam. The cross-section of the beam and locations
of the accelerometers are shown in Fig. 20.3. The structure was excited using an
impact hammer with steel tip, which was applied on the top surface of the specimen
and just above the location of sensor A9. The acceleration response of the structure
was collected over a time period of 2 s at a sampling rate of 8 kHz, resulting in 16000
samples for each event (i.e. a single excitation). A total of 190 impact tests were
collected from a healthy condition of the specimen.

A crackwas introduced into the specimen in the locationmarked in Fig. 20.3 using
a cutting saw. The crack is located between sensor locations A2 and A3 and pro-
gressively increases towards sensor location A9. The length of the cut was increased
gradually from 75 to 150mm, 225 and 270mm, and the depth of the cut was fixed
to 50mm. After introducing each damage case, a total of 190 impact tests were
performed on the structure in the location described earlier.

Fig. 20.3 A laboratory specimen with cracking
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Fig. 20.4 Comparison of the frequency response function (inertance) between the healthy state
and the four damage cases for sensor location A4

Table 20.1 Comparison of the first three modes of the structure in the healthy state and the four
damage cases

Natural
Fre-
quency
(Hz)

Healthy Damage case 1 Damage case 2 Damage case 3 Damage case 4

ω Δ % ω Δ % ω Δ % ω Δ % ω Δ %

ω1 45.90 – 45.90 0.00 45.90 0.00 45.90 0.00 45.50 0.87

ω2 181.6 – 181.4 0.11 181.2 0.22 180.8 0.44 180.0 0.88

ω3 265.0 – 264.6 0.15 264.4 0.23 264.2 0.30 262.4 0.98

We further investigated the impact of damage by comparing the frequency
response function (FRF) of the structure between the measured responses obtained
from the healthy case and four damage cases as shown in Fig. 20.4. It was observed
that the damage effects are more evident at high frequency, as the change between
the healthy and the damaged structure becamemore significant. Table20.1 compares
the natural frequencies for the first three modes in the healthy state and three dam-
age cases, as well as the change in frequency of each damage case relative to the
healthy state. From Table 20.1, it can be clearly seen that once the severity of damage
increases, a higher discrepancy in the first three modal frequencies with respect to
the healthy state is obtained.

20.5.1.2 Results

We have applied our proposed damage detection and severity assessment framework
(described in Fig. 20.2) onto our specimen dataset. A total of 950 samples were
collected in this experiment, where each sample is a measured vibration response of
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Fig. 20.5 Damage identification results using FDD for feature fusion and extraction

the structure with eight thousand attributes in the frequency domain (8kHz×2s ×
0.5 (considering Nyquist frequency)). We separated the data samples into two main
groups, healthy samples (190 samples) and damaged samples (760). 80% of the
healthy cases data were randomly selected for a training stage, while the remaining
20% of healthy samples and all the damaged cases were used as a test data for
validating the proposed approach. Feature extraction and fusion from ten sensors
using FDD were initially applied on the training data, and random projection was
used for dimensionality reduction. This was followed by calculating the optimal
value of σ using the ADESmethod defined in Eq.20.11 and constructing a one-class
SVM as a damage detection model.

The constructed model was then validated using the test data. Similar to the
training steps, the FDD method was initially applied to the test data followed by
dimensionality reduction algorithm. The final step was to present the test data onto
the constructed one-class SVMmodel to evaluate its performance in terms of damage
detection and severity assessment. As expected, the constructed model was able to
successfully detect the damaged cases and produced an F1-score of 0.95. A detailed
summary of the results is presented in Fig. 20.5. The figure shows the decision values
of all test data, where the black dots represent average decision values for healthy
and each damaged cases.

Only three events from the healthy samples were misclassified as damaged. On
the other hand, all the damaged samples were correctly classified except for four
events in Damage Case 1 that had positive decision values (false negative). This
suggests that the model is well generalised on unseen samples and has the ability
to detect damaged and healthy samples. It should be emphasised that the level of
damage in this case study is considerably small. Moreover, the method also shows a
capability to assess a progression of damage (as shown by decreasing decision values
for Damage Cases 1 to 4) despite variations in operational conditions. Moreover, the
obtained machine learning results match very well with the findings from domain
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Fig. 20.6 Damage identification results using a separate one-class SVM model for each sensor
location

knowledge presented in Table 20.1. A decreasing trend in the ML scores indicates
progressive damage in the structure.

To further investigate the effectiveness of feature fusion using FDD, an alternative
approach was adopted without using FDD for sensor fusion. Only the frequency
features (using FFT) of the acceleration response obtained from each sensor were
used to construct a separate damage detection model for each sensor using data from
the healthy case.

Damage identification results using this approach are presented in Fig. 20.6 for
sensors A1, A2, A3 and A4 (results for other sensors were similar). It can be realised
that this approach does not have the capability to monitor the progress of damage.
The decision values did not consistently follow the trend of the damage as shown in
Fig. 20.6b, c. Based on this, it can be concluded that FDD is robust against excitation
variations and can provide reliable information about the severity of damage in the
structure.
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20.5.2 Substructure Clustering and Anomaly Detection

20.5.2.1 Case Study: The Sydney Harbour Bridge

The goal of this study was to group substructures (i.e. jack arches) with a similar
behaviour and then identify substructures with potential anomalies. We used a set of
85 nodes over five structural sections of the SHB, i.e. five different spans of the bridge.
These spans were located on the Northern Main Span and the Northern Approach, as
illustrated onFig. 20.1. For each node,we collected 10min of continuous acceleration
data at 1500Hz over 22 days in July 2015 (as described in Sect. 20.2). We pre-
processed this data to identify a continuous 1min of ambient response, i.e. a period
where no vehicle was driving over the node. For each of these periods, we computed
the spectral moment feature as described in Sect. 20.4.3.1 for accelerations in x , y
and z direction (denoted SMx , SMy and SMz), and we averaged them for each node
over the 22 days.

We applied our extended k-means – method and its outcome selection criteria
(Sect. 20.4.3.2) to this set of spectral moment features. We varied the parameter k
(i.e. number of clusters) from 2 to 6, as the studied nodes were spread across five
structural sections, and the parameter o (i.e. number of anomalies) from 0 to 4.
Finally, we replicated this experiment 10 times. The following subsection reports
on the results related to the second order spectral moment. The first and third order
moments produced similar results and were not included here.

20.5.2.2 Results

Figure 20.7 shows the Silhouette, Davies-Bouldin, and Dunn indices for each (k,
o) pair. Using our selection criteria, we retained the pairs (k = 2, o = 3), (k = 2,
o = 4), and (k = 3, o = 0) as they corresponded to the required extremum values.
For these pairs, Fig. 20.8 shows the 3D scatterplots for the second order spectral
moment in x , y and z, and Fig. 20.8d shows the related index values. The nodes 184,
427, and 433 formed the set of anomalies resulting from the intersection of these
pairs as described in Sect. 20.4.3.2.

For (k = 3, o = 0), the nodes 184 and 427 were in a well-separated group in the
3D feature space, and node 433 was included into one of the other two clusters.
This outcome is due to the setting o = 0, i.e. the clustering algorithm had to reject
any outright outliers (i.e. by-pass step 3 of Algorithm 3). Limiting the range of o to
strictly positive integers (e.g. o ∈ [1, 4]) would result in node 433 being identified as
an anomaly. However, having o > 1may provide more false positives, as it will force
the clustering process to mark the most distant point in a dataset as an anomaly, even
if that point is well matched to a group. This may be a better decision for a bridge
manager, as it could be safer to discard a false positive after a visual engineering
inspection than letting a false negative remain undetected.
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Fig. 20.7 Silhouette, Davies-Bouldin, and Dunn indices for different (k, o) parameters
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Fig. 20.8 a, b, c Selected 3D scatter plots of spectral moments (SM) for each node, which are
coloured based on their cluster membership for specific parameters, and d their corresponding
performance index values. Cluster groups are coloured in blue, green, and grey, anomalies are
coloured in red
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Fig. 20.9 Difference
between the time interval
jitter for the data of a healthy
working node 170 and node
433
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Further engineering investigations of the nodes in the resulting set of anomalies
(i.e. 184, 427, and 433) showed that they were all having instrumentation issues
during the 22-day period of this study (i.e. sensor defect for 184 and 433, power unit
defect for 427) [3]. As an example for node 433, Fig. 20.9 presents the log-scale
ECDF of the time interval jitter between two collected data points, as compared to
the healthy working node 170. This jitter should be as close to 0 as possible, i.e.
for node 170 only 0.01% of the data points had a jitter greater than 1ms. Node 433
produced in contrast a higher jitter distribution, i.e. more than 1% of the data points
had a jitter greater than 2ms. From a hardware perspective, the cause of such a high
jitter could be a failure of the oscillator-based clock of the sensor producing the data.
This sensor was marked for replacement.

Figure 20.10 shows the boxplots of second order spectral moment values for each
direction and each node in the case of (k = 2, o = 3). The nodes are ordered on the
x-axis according to their physical location on the SHB from north (left) to south
(right). The boxplot for a node is coloured based on its group membership, with the
anomalies marked in red. This figure confirms that the nodes that are located on a
given structural section are mostly grouped into the same cluster. Indeed most of the
North Approach nodes are in the green group, whereas all the Northern Main Span
nodes are in the blue group.
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20.6 Conclusion

This work presents damage identification and substructure grouping approaches for
SHM applications using machine learning techniques and features extracted using
domain knowledge. The two approaches performed successfully in two case studies
using data from a laboratory structure and real data collected from the SHB. Domain
knowledge is used in this chapter to show how an SHM problem is formed as a
machine learning problem using domain knowledge. It also shows the importance
of domain knowledge in extracting damage sensitive features as well as interpreting
the results found by machine learning approaches.

In the first approach, a structural benchmark model was built using a self-tuning
one-class SVM on a feature space fused and extracted from multiple sensors by
FDD, followed by random projection for dimensionality reduction. Then new events
were tested against the benchmark model to detect damage. The approach detected
damage well with high accuracy and low false positives, even for a small damage
case. Moreover, this proposed approach also achieved damage severity assessment
using data fusion and decision values from the SVM. In the second approach, a
robust clustering technique was utilised on spectral moment features for substructure
grouping and anomaly detection. The technique was able to group substructures
of similar behaviour on the SHB and to detect anomalies spatially, which were
associated with sensor issues from the instrumented substructures.

This work is part of our ongoing effort to build Smart Infrastructures, which bring
together data acquisition, datamanagement, and data analytics techniques to optimise
their maintenance and services. Our future works include an implementation of the
proposed approaches on our production system on the SHB, and applying them using
data collected from other structures.
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Chapter 21
Domain Knowledge in Predictive
Maintenance for Water Pipe Failures

Zhidong Li and Yang Wang

Abstract In this chapter, the water pipe failure prediction is used as an example to
show the integration of machine learning and domain knowledge. It is crucial for the
risk management strategy of water distribution systems to minimise the water pipe
failure impacts. Prediction of water pipe conditions through statistical modelling is
an important element for the task. When applying the models to practical problems,
domain experts can provide invaluable suggestions that can be used as constraints or
informative prior knowledge. Alternatively, the models can also help domain experts
to explore more insights. The chapter uses major steps in the water pipe failure
prediction, including data review, factor analysis, prediction evaluation and practical
use, as examples to illustrate how the domain knowledge is integrated. Then the
hierarchical non-parametric model is used as an example model.

21.1 Introduction

21.1.1 Domain Knowledge in Machine Learning

Modern technology makes deploying machine learning algorithms more convenient.
For example, the complex but powerful models, such as deep neural network [7]
and random Forest [2] can be directly implemented using Python packages. Without
the obstacles of implementation, data scientists and analysts are eager to try modern
algorithms on different data problems.Data competitions,which provide various data
to their competing entrants, is a good example. In these competitions, usually the data
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arewell formatted (the data hadbeenpre-processedbydomainknowledgebefore they
were provided), evenwithoutmeaningful names for features. It has some advantages.
First, they do not require the competing entrants to have the domain knowledge so
they can proceed them directly and, as domain knowledge is not advocated in testing
competitors ability on data analysis, it also provides fairness. However, knowing
what is the impact of each feature is vital in real applications. That is why feature
engineering is still an essential step to obtain prediction accuracy in the competitions
even without using domain knowledge. While some models such as the deep neural
network can find optimum feature sets and their combinations, however the actual
feature-target relationship is hard to be explained from domain knowledge thus yet
to be fully trusted. This also hinders the machine learning algorithms to be used in
practice.

In real projects, domain knowledge can shorten the path of determining useful
features or producing new features based on the known data, which can be end-
less trials for computers to exploit. As a result, domain knowledge can either help
improve themodel performance or explain the results well. In fact, almost all the pro-
cesses in a real project involve domain knowledge. This could include project value
determination, data interpretation for pre-processing, cleaning, quality assessment,
and many more. Even in a data competition, preparing the big matrix also requires
domain knowledge. In the following section, many examples in different parts of a
standard project process are discussed. This chapter focuses on why and how the
domain knowledge is needed in different tasks of machine learning and data mining,
especially on the infrastructure data, such as the water main maintenance problem.

21.1.2 Water Pipe Failure Prediction Background

The water utilities are responsible for providing an adequate and satisfactory supply
of water (mainly for drinking or flushing) to meet the demands of the territory and
for maintaining a sound water supply system. To deliver water to consumers, water
utilities rely on the due performance of the extensive and complicated water main
network (generally buried underground). With the decades of urbanisation, most of
the territory network comprises water mains for thousands of kilometres. Some large
territories may be maintaining network over ten thousand kilometres.

As most water main systems are build more than 100 years ago. In the recent
decades, the condition of more and more mains is deteriorating and maintenance
is required. The maintenance of a considerable length of water mains approaching
the end of their service life became increasingly difficult and costly. Given the poor
condition of the water distribution network, further operations like replacement and
rehabilitation (R&R) of the aged water mains was the most effective solution to
rejuvenate the water distribution network and arrest the rapidly rising trend of main
failures (including bursting and leakage). The R&R program of water mains has been
considered by many water utilities in recent years. Because of the high cost and time
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limitation, predictive maintenance becomes urgent necessity as the water mains will
continue to age and deteriorate.

Riding on the growing power of computers, the machine learning technique has
been growing rapidly in recent years. Many water utilities are looking into the use
of the machine learning technique in prediction of pipe failure probabilities and are
planning to engage consultants to carry out a trial of water main failure prediction
models. Should the application of the water main failure prediction models to the
water distribution network be effective, they may assist in early identification and
handling of water mains in poor condition.

For water utilities, the prioritisation step requires a good understanding of the fail-
ure risk, and in particular a good estimate of the likelihood of failures, from which
potential failure costs can usually be derived easily, based on the area serviced.
The mechanisms of water pipe failure have been studied for decades, and various
physical and mechanical models, involving pipe wall thickness [4], material deterio-
ration according to environmental conditions and quality of manufacturing [11], and
hydraulic characteristics [10], have been developed to estimate the remaining pipe
life. However, non-intrusive technologies for pipe condition assessment are still very
limited and not cost effective because input parameters such as pipe wall thickness
may rely on an inspection step. That latter step, called condition assessment, often
requires excavation, the use of specialised analysis equipment, and public disruption.
To avoid that, the water utilities are engaging with machine learning scientists for
consulting water main failure analysis and prediction by carrying out projects. The
main objective of these projects is to test themachine learning based trial of advanced
water main failure prediction techniques in real water main data.

Machine learning techniques have their value in the aforementioned problem.
Generally, there are two types of models for prediction of water pipe failure: physical
models and statistical models. Physical models [6] are significantly influenced by
domain knowledge and usually designed to capture themechanisms of failures due to
certain causes, e.g., soil corrosion. But they have significant limitations, e.g. budget
restriction for experiments, when applying to a large water mains network with
complex factors. In contrast, statistical models usually require fewer resources and
can capture hidden statistical failure patterns caused by different physical reasons.
Hence, they can be applied to large-scale water main networks for guiding proactive
maintenance. The statistical machine learning models are trained by considering
historical failure records, physical characteristics of pipes and environmental factors.
The value of statistical machine learning techniques is greater if it can be interpreted
using domain knowledge. In the following sections, we will discuss why each task
needs to be influenced by domain knowledge from the example of water main failure
prediction.

This chapter is comprises of five sections, the data is discussed in Sect. 21.2,
which also includes how the knowledge is used in data understanding and why
domain knowledge is needed to transfer data into the model inputs. Why domain
knowledge is essential for data analysis is discussed in Sect. 21.3. In Sect. 21.4, we
examine why domain knowledge is important in prediction models, a quite common
machine learning task.We consider the Bayesian non-parametric model that includes
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both the prior knowledge and the flexibility to accommodate the data and evaluation
and constraints of the model are spotlighted. Our conclusion are given in Sect. 21.5.

21.2 Data Description

21.2.1 Data Understanding

In most projects, generally there are two main data sets to consider. For example,
one example of data set showing in Table21.1 corresponds to attributes of assets (i.e.
elements in water main network, usually each of them is one pipe). The other data
set in Table21.2 contains all the failure records for the assets in recent years (usually
left censored). The domain knowledge is important when dealing with such data set.

For the attributes of water mains, it is important that the data scientists understand
the meaning of the attribute values. For example, there are numeric values that do
not carry any meaningful relations between consecutive numbers (i.e. material =
2 does not mean it has double the materials of material = 1, they only represent
different types of materials). The meaning of attributes for the failure records are
also important and must be well understood. For example, failure can be caused by
a third party (Failure reason = ‘R3’) rather than corrosion of pipes, so they cannot
be combined when predicting.

Table 21.1 The attributes of
water mains

Pipe ID Material Laid year Length

1 1 1962 30

2 1 1960 30

3 2 1976 60

4 1 1980 100

5 3 2003 10

6 3 2001 30

7 1 1916 150

Table 21.2 The failure
records of water mains

Pipe ID Failure data Failure type Failure
reason

1 3/2/2010 Burst R1

1 11/8/2014 Leak R2

2 4/2/1998 Burst R2

2 15/5/2004 Leak R1

2 30/3/2008 Leak R3

5 4/4/2011 Burst R1
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Fig. 21.1 Failure rate versus laid year. Generally, older pipes are more likely to fail, here the
observation that pipes laid in 1960 have higher failure rate than pipes laid in 1920 is suspicious so
this needs to be confirmed with domain experts

Furthermore, there are censored data in that the observation only contains data
from recent years (around 5–20 years). This short period deliver uncertain infor-
mation when dealing with some water mains whose age is over 100 years. What
happened before can only be partly known and put into the model according to
domain experts. However, the information could be in fragmented form resulting in
much being forgotten or missed. In addition, the data mining and machine learning
scientists also have a responsibility to carefully observe the data and raise questions
about them, using these questions to obtain as much information as possible from
domain experts. For example, we can observe that in Fig. 21.1 more failures occurred
for water mains laid between 1950 and 1980, although these pipes are newer than
pipes laid between 1920 and 1930. The cause could be missing records, different
quality of materials, or different usage habits in the history. However, a reason needs
to be discovered and raised to domain experts to obtain more information, otherwise
the prediction can be wrong.

21.2.2 Domain Knowledge in Data Pre-processing

After data is understood, the analysts need to convert the raw data to feasible data
for further steps. The conversion is referred to as pre-processing and usually domain
knowledge is required. For example, to represent the text based unstructured data into
word vectors, the special meaning of professional terms must be considered as single
element rather than decomposing them. Some common issues in pre-processing are
reviewed in this section.
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21.2.2.1 Feature Type

Machine learning models can accept different type of features so it is important
to know the type of each feature. For example, in the decision tree regression, a
feature can be divided into different branches. If the feature is in numeric values,
it is meaningful to use the range to represent each branch, such as dividing [1, 10]
into [1, 5] and (5, 10]. However, some features, although they are represented by
numbers, are actually categorical values, such as ‘Material’ in Table21.1. In pre-
processing, domain knowledge is the only way to know the feature type. In addition,
some numeric values are not linearly arranged. If this can be pointed out by domain
experts, we can provide additional column using the sorted rank of this feature.

21.2.2.2 Data Completeness

In a given data set, it is common that not all features values are filled in for each water
main. Many of the records are described as missing records because some features
are missing. Completeness requires that a particular column, element or class of
data is populated and does not have unavailable values or missing values in place of
nulls (e.g. N/As). In our case, completeness refers to the percentage of non-empty
attributes, such as facility ID, laid year, material, size, length, failure rate.

It is important to consider the completeness of data. An option is to use a statistic
based imputation. A simple imputation is to fill in the missing features with average
or median values. However, this is unsafe as the data could be categorical but labelled
with numbers. It is thus important to communicate with domain experts and combine
domain knowledge to fill in the missing values. Here is an example of considering
data completion with the help of domain knowledge.

Before looking into the data, the analyst does not knowwhich feature is important
and will therefore need help from domain experts. In the example, domain experts
suggested the features to consider fromabig set and point out the reason or confidence
for each feature. An example in practice is that we observed that there are many
missing values for water mainmaterial, such as shown in Fig. 21.2. The actual values
of material can be verified using failure-records-matching filling from the domain
knowledge that is learned from their professional activities: for example, the failure
records for certain pipes can be determined from on site investigation, then material
of those water mains can be completed.

21.2.2.3 Data Consistent

Consistent is the data across the different records that hold copies of it. In our case,
we check how consistent the data is across water main asset data and failure records
data.

Data consistency is necessary before using machine learning algorithms. There
are many possibilities that can cause inconsistency but many of them would not be
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Fig. 21.2 An example for visualising completeness in a data set, both water main attributes and
failure records are incomplete

Fig. 21.3 The data matching for a data set, the matching is inconsistent if we only use ID. The
matching can be improved using more information such as geological distance

discovered until the trouble they caused made them obvious. In our case, first we
need to match the main failures to existing mains. Usually not all failures can be
matched to water mains. As an example, Fig. 21.3 gives an example to show the
matching quality. From the figure, we can see that many attempts are made to match
them. Some of them is based facility ID. When facility ID cannot be located, it is
suggested by the domain expert that somemains could be have been replaced and are
not in service. These need to bematched to another data set called AbandonedMains.
In addition, when facility ID is unavailable, we discussed with domain experts and
obtained the coordinators from geologists to match.
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In another example, when we perform our analysis on pipes in major materials,
however, some distinct values have the same meaning, such as ‘SS’ and ‘Stainless
Steel’. This is due to different regulations when the data are input into the database,
since sometimes the data gathering span more than 20 years. They can also be an
ambiguous meaning as well, such as Nil for external coating of water mains could
mean unknown value or no coating. These factor values need to be confirmed or
provided by domain experts before applying the machine learning models.

21.2.3 Data Review by Domain Expert

Data analysts need to make sure the data can still reflect reality after the aforemen-
tioned steps which can significantly change the data. This process is usually consid-
ered from the commencement of data understanding throughout the pre-processing
and cleaning. For example, when checking data consistency, any inconsistency must
be reviewed by the domain experts to check the reason and impact. It is important
also for the domain expert to review data that seem to be outliers as the outliers data
could contain wrong labelling or manner of collection.

Domain experts could find it difficult to review the data due to data volume. Statis-
tical machine learning techniques can be employed to summarise the review, except
in the rare case of outliers. For example, statistical moments, such as mean, vari-
ance, and skewness, can summarize the cleaned data. In addition, to show structural
information, bootstrapping can be used. When dealing with high-dimension data,
randomness or dimension reduction techniques can be employed on both features
and data samples. Other techniques, such as clustering, and sparse coding can also
be considered. Furthermore, visualisation techniques, such as parallel coordinators
line and t-SNE [9], can be deployed to show the data. In conclusion, it is important
for analysts to represent the data with meaningful or explainable features for efficient
review with domain experts.

21.3 Domain Knowledge in Factor Analysis

The purpose of factor analysis is to understand and discover the data insights to
support the decision of the domain experts. In addition, the analysis results could
be used to build models for prediction or risk analysis. As many analyses are based
on statistics, and it is easy to access statistical tools, such as SPSS, domain experts
can acquire the basic information from the data. Factor analysis therefore guides
the domain experts by providing deep insights, generally through multiple rounds
of discussions and reinforced analysis. Sometimes it is found that some discovered
insights were actually data issues and we must go back to the previous step. Some
examples of the involvement of domain experts in factor analysis are listed.
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Fig. 21.4 Parallel coordinator to show the different levels of failure rate, the feature subsets with
red lines can be the highly interested subsets

1. The factor analyses are usually carried out on all water mains, however, there
could be a huge number of categories considering the combination of features.
With only a limited budget, the domain experts aim to improving the network
performance by seeking a subset among all categories. To provide information
for selection, both feature selection and visualisation manners could be used.
Figure21.4 provides an example of parallel coordinator lines to visualise the
highly interested subsets.

2. The domain experts knowmore aboutwhich features should bemore focused and
whether additional data is needed for analysis. For example, weather data could
impact the water main failures, however, this data must be additionally extracted
from the meteorology department. Since it is not provided in the original data,
data scientists do not know this if they have not been mentioned by domain
experts.

In this section, we discuss how the domain knowledge is used when analysing
some factors, including pressure, geographic, spatial and temporal factors.

21.3.1 Pressure Data Analysis

Many factors cannot be directly applied into analysis, such as pressure. Pressure is
the main reason for pipe breaks. However, pressure varies all the time and it can
be affected by factors from multiple resources, including ground level of mains, the
ground level of reservoirs, how water is transported, such as pumped or gravity.
All these data must be pointed out and collected by domain experts so that we can
analyze based on the aggregated data. Even so, some data, like the pressure transit
which only happened in seconds, although we know it is an important reason, we
cannot use the data as they are not easily collected.
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21.3.2 Geographic Analysis

As the water mains are buried underground, it is important to analyse the geographic
information. The geographic information is collected by geologists, and must be
explained by them, combined with the interpretation from domain experts in water
utility. For example, soil corrosiveness describes the pitting of pipe (corrosion of
metal), which is essentially an electrical phenomenon. We know soil corrosiveness
can cause corrosion for uncoated water mains, so combining the data on coating is
essential to analyse the soil corrosiveness feature. In another example, soil expansive-
ness describes the shrinking and swelling of expansive clays in response to moisture
content change. From this knowledge, it is essential to combine weather data, such
as rainfall level and solar exposure, to analyse soil expansiveness.

Sometimes the soil data is quite sparse, which could lead to problems in analysis.
For example, we conducted factor analysis on soil aggressiveness. Soil aggressive-
ness describes the propensity of soil or water to dissolve concrete structures, which
is measured by a range of chemical and physical tests (including pH and resistivity).
Domain experts then labelled the ‘Aggressive’ or ‘Non Aggressive’ values according
to their domain knowledge. For a sub-region, the failure rate (number of failures per
100km per year) for ‘Non Aggressive’ is much higher than others. The reason is that
the total water main length in the ‘Non Aggressive’ area is very small (less than 1km)
and there was only one failure in the ‘Non Aggressive’ area. A small denominator
leads to a very large failure rate but misleading information.

21.3.3 Spatial and Temporal Analysis

Except for the attributes, failures on certain water mains will have an influence on
other pipes. This has also been emphasised by domain experts. This is difficult to
notice without domain knowledge since the period of influence is short. It could
cause problems if we just assume that they follow an independent Poisson distribu-
tion. This is contradicted by the general machine learning settings, which assumes
I.I.D. relationship from the observations. The analysis is then performed for this pur-
pose followed by analysis of the temporal dependent and spatial dependent between
failures.

To analyse the temporal relationship on the same asset, the intervals between
failures are calculated. However, domain experts need to verify the repeated failures
carefully as they may include different types of failures as burst versus leak. In the
analysis, it is found that the ratio for repeated failures is quite high after certain
repeated failures, such as shown in Fig. 21.5. After having them checked by domain
experts, it is noticed that the same consecutive events are due to recent maintenance
work. This must be differentiated.

For spatial analysis, domain knowledge is essential for determining the spatial
relationship. Aswe know, thewatermains are connected so there is existing influence
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Fig. 21.5 Failed at least n
times versus the
corresponding probability.
For example, about 17% of
pipes failed at least once will
fail at least twice

from the connected pipes nearby. The information of the connected network has to be
modelled by domain experts. However, the network topography is not static and the
status of valves and pumps change over time, which makes the topography dynamic
and complex. A lack of knowledge about the hydraulic system for data scientists is
a major obstacle to analysis.

21.4 Prediction Models

There are two types of models for water pipe failure predictions: physical mod-
els and statistical models. Physical models [6] are usually designed to capture the
mechanisms of failures due to certain reasons. But they have significant limitations
when applied to a large number of water mains. In contrast, statistical models usu-
ally require fewer resources and can capture hidden statistical failure patterns caused
by different physical reasons. Hence, they can be applied to large-scale water main
networks for guiding proactive maintenance. The statistical models are trained by
considering historical failure records, physical characteristics of pipes and environ-
mental factors.

Based on the previous analyses, the data on water pipe failure records show a
dramatic difference between failure rates for different categories of pipes. In some
categories, e.g., the small-size pipes, a pipe can fail multiple times during the obser-
vation period. The model should consider more on the repeated failures. While the
pipes in the category of large-size pipes, failed only once or twice during the observa-
tion period. For this reason, in the prediction model, we consider different categories
of pipes in different groups. The details are discussed in Sect. 21.4.1.

The divide-and-conquer strategy is usually adopted by the proposed methods. It
firstly divides water mains into different groups based on their physical attributes.
This can involve prior knowledge from domain experts. Then a machine learning
model is trained for each group by using physical attributes of a pipe and historical
failure records to predict future failures. The model can predict the score of pipe
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failures by discovering various failure patterns from historical data. It is of significant
assistance to water utilities in selecting high-risk pipes for preventative maintenance.

This section discusses some steps in prediction that involve domain knowledge
in the model, then an example is given. Based on the model, we show how domain
knowledge can be involved in model evaluation and practical use.

21.4.1 Grouping

Since observations are generally limited to a certain short time range compared with
the whole life span of water mains, it is difficult to record or predict failures for
individual pipes within such a short duration. Therefore, meaningful statistics must
consider a set of mains which is grouped across similar pipes. According to the
domain knowledge, that the failure patterns are dramatically different for different
categories of water mains. In some categories, e.g., the small-size pipes, a pipe can
fail multiple times during the observation period, while in some other categories, e.g.
large-size pipes, they fail only once or twice during the observation period.

There are two alternatives to determining the grouping based on data. One is based
on the attributes. The other is the grouping is based on historical failures.

For the first one, if each distinct feature combination is used as a group, groups
with a very small number of watermainsmay be created that goes against the purpose
of grouping. Furthermore, it is difficult to define metrics between attribute values if
the attribute is categorical, which can be defined with help from domain experts.
The domain knowledge can also be applied to select the most important factors
that can split the data set. When the number of attributes is high, the experts can
fetch the information quickly based on the visualisation from factor analysis, and
determine which water mains can be grouped by considering the actual operations.
For example, water mains in close regions can be grouped together so that it is
convenient for replacement work.

For the second alternative, the group diversity is undetermined. If the diversity
is low, most water mains in a group are almost the same. As the goal of grouping
is to learn parameters such as failure rate for the group, in this case, the uncer-
tainty of learned parameters can be lower than the actual uncertainty. However,
when the diversity is high, the uncertainty of learned parameters can be higher than
the actual uncertainty. Therefore, the most traditional grouping methods must be
based on domain knowledge, such as the number of groups. However, a Bayesian
non-parametric grouping may alleviate this pain as it controls the group size, number
of groups and variance based on data.
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21.4.2 Estimate Failure Rate with Bayesian Non-parametric
Models

A classic prediction model is to fit the data to a log likelihood estimation, i.e.
logL(X |θ), then determine parameter θ that maximise the log likelihood. Here the
domain knowledge can be reflected from the formulation of L(·), such as model is as
a Gaussian distribution or Poisson distribution. However, it is important to know that
sometimes there is bias in the observation X , which could lead to a wrong estimation.
To correct this, another layer of Bayesian prior distribution is used, so that θ can be
determined by the posterior:

θ ∼ P(θ |X, γ ) ∝ L(X |θ)P(θ |γ ) = L (21.1)

where γ is the hyper parameter for the Bayesian model. Bayesian prior is a typical
example of involving prior knowledge with likelihood function, so that the latent
parameters are not only determined by data, but also by the prior knowledge. To solve
(21.1) for discrete θ , all values can be tested and the one gives largest P(θ |X, γ ) can
be selected. However, for continued θ , P(X) must be considered for normalisation,
which makes most of the Bayesian models intractable. Therefore, for most prior
selections, the conjugated prior is used to obtain a closed form for P(X).

For the Bayesian models, there are still many challenges when working with
domain experts. First, in a practical problem setting, we hope to design the model as
a tractable model using conjugated prior. However, we hope to represent the domain
knowledge in the prior as well. Furthermore, the model must be familiar to domain
experts so that they know how to tune the model to reflect their knowledge. The
challenge is thus how to help the domain experts understand the model.

On the other hand, both prior and L(·) are designed to reflect domain knowledge.
Then the model emphasis the knowledge. However, given the water main failure
prediction problem, physical knowledge is not always available to predict failures
due to a complexity of factors. Furthermore, there is always a missing piece of
domain knowledge if we observe the data carefully. For example, domain knowledge
in survival analysis can assert that failures follow the Weibull process [5]. However,
it is not the usual case in reality, since we are not aware of all factors nor know about
how the factors affect the observation. The data cannot always fit the model setting.

To address these limitations, we propose the use of Bayesian non-parametric
learning to predict water pipe condition. Historical water pipe data can be incorpo-
rated and the model can grow to accommodate future data as necessary. This novel
modelling approach for pipe condition prediction has the potential to work effec-
tively across many different pipe types and local conditions worldwide. Compared
to traditional statistical modelling, Bayesian non-paramedic modelling aims to avoid
assumptions on the structure of the model at the onset. Non-parametric learning has
been applied successfully in various industries, for instance, to predict remission
times for leukemia patients, time between explosions in coal mines and weather
forecasts [5]. While the general framework of non-parametric learning can be found
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in the literature of survival analysis and topic modelling [3], to our knowledge the
flexibility of using Bayesian non-parametric methods for pipe condition prediction
has not been investigated. Our work particularly investigated the hierarchical beta
Process (HBP) [12] for the prioritisation step above. The method can be used to
predict the failure rate of each individual pipe more accurately by capturing specific
failure patterns of different water-pipe groups. Experimental results show that non-
parametric modelling outperforms previous parametric modelling for pipe condition
assessment. The main aims of this work are: (1) For sparse incident data, develop an
efficient approximate inference algorithm based on a hierarchical beta process. (2)
Apply the hierarchical beta process based method to the water pipe condition.

21.4.2.1 Hierarchical Beta Process Model for Pipe Condition
Assessment

As an example, a model developed in [8] uses the hierarchical beta process to
model the water pipe failure problem. A beta process, B ∼ BP(c, B0), is a posi-
tive random measure on a space Ω , where c, the concentration function, is a positive
function over Ω , and B0, the base measure, is a fixed measure on Ω . If B0 is dis-
crete, B0 = ∑

k qkδωk , then B has atoms at the same locations B = ∑
k pkδωk , where

pk ∼ Beta(c(ωk)qk, c(ωk)(1 − qk)), and each qk ∈ [0, 1]. An observation data X
could be modelled by a Bernoulli process with the measure B, X ∼ BeP(B), where
X = ∑

k zkδωk , and each zk is aBernoulli variable, zk ∼ Ber(pk). Furthermore,when
there exists a set of categories, and all data belongs to one of them, the hierarchical
beta process could be used to model the data. Within each category, the atoms and
the associated atom usage are modelled by a beta process. Meanwhile a beta process
prior is shared by all the categories. More details could be found in [12]. For a water
distribution system, denote πki , as the probability of failure for a pipe in the kth
group. Consider hierarchical construction for pipe condition assessment,

qk ∼ Beta(c0q0, c0(1 − q0)), where k = 1, 2, . . . , K ,

πk,i ∼ Beta(ckqk, ck(1 − qk)), where i = 1, . . . , nk,

zk,i, j ∼ Ber(πk,i )

(21.2)

Here qk and ck are the mean and concentration parameters for the kth group,
q0 and c0 are hyper parameters for the hierarchical beta process, zk,i = {zk,i, j | j =
1, . . . ,mk,i } is the history of pipe failure, zk,i, j = 1 means the pipe failed in j th year,
otherwise zk,i, j = 0.

For the hierarchical beta process, a set of {qk} are used to describe failure rates of
different groups of pipes. For each pipe group, with fixed concentration parameter
ck , our goal is to find πk,i for pipe i in group k. This can be estimated from the
observation, so we have:
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p(πk,i |zk,1:nk ) =
∫

p(qk, πk,i |zk,1:nk )dqk =
∫

p(πk,i |qk, zk,i )p(qk |zk,1:nk )dqk
(21.3)

Each term in Eq.21.3 can be represented by:

p(πk,i |qk, zk,i ) ∼ Beta

⎛

⎝ckqk +
∑

j

zk,i, j , ck(1 − qk) + mk,i −
∑

j

zk,i, j

⎞

⎠ ,

(21.4)
and

p(qk |zk,1:nk )(qk , zk,1:nk ) = p(qk)
∏

i

[∫

p(πk,i |qk)p(zk,i |πk,i )dπk,i

]

∝ qc0q0−1
k (1 − qk)

c0(1−q0)−1
∏

i

Γ (ckqk + ∑
j zk,i, j )Γ (ck(1 − qk) + mk,i − ∑

j zk,i, j )

Γ (ckqk)Γ (ck(1 − qk))

(21.5)

In the model, we can see that the group failure rate is controlled by hierarchical
level parameters c0 and q0. These two parameters can be used for domain experts
to determine the group performance without looking into individual pipes. Some
details of inference will be discussed in the next section.

21.4.3 Domain Knowledge for Inference

In the inference, if the likelihood is biased, the domain knowledge based prior is
very important, since the learned parameters are balanced by both the likelihood
and the prior. There are some models using the conjugated prior which can easily
infer the posterior of parameters, however, using conjugated prior sometimes cannot
reflect the prior knowledge. For example, beta distribution is the conjugate prior
for Bernoulli distribution but beta distribution cannot only be interpreted as n suc-
ceeds and m failures. It represent the succeeds VS failures given n + m times trials,
which is still limited as n + m (observation duration) is small in the water main
failure observations. In this manner, the concentration parameter c in HBP model
can be roughly calculated using the length of observation duration, whether the short
observation duration can reflect the whole life of water mains has to be consulted
by domain experts. This is a simplified setting for unknown parameter given domain
knowledge, however, in many real cases, the inference can be hard given domain
knowledge based prior.

Domain knowledge can also be helpful for direct inference. For example, when
the inference is to maximise the likelihood, grid search can be an option when the
parameter is not in high dimension. However, the range of parameters cannot be
infinity otherwise a grid search is not feasible. Domain knowledge can be deployed
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to determine the possible and reasonable range. In addition, the density of grids is
another important setting that can be induced by domain knowledge.

In this section, for the HBP model, some inference methods are listed and dis-
cussed.

21.4.3.1 Learning with Sparse Assumption

In the hierarchical framework, all the observations are generated by Bernoulli distri-
bution which is the likelihood function with parameter π . Then each π is generated
by a beta distribution with parameter q and c. Let us consider q here. If q is known,
the posterior is also beta distribution as they are conjugated prior. However, q also fol-
lows a distribution therefore the posterior must integrate over a Bernoulli distribution
and two beta distributions.

The main solution to inference is to use variational inference or sampling based
methods but they are complex. The complexity can be reduced by domain knowledge.
In the water network, large water mains are mainly made with strong material and
well protected. They are very unlikely to break (although leakage is more frequent,
the costs aremuch less than breakage) so the expected number of failures, q, is always
very small. That is to say, the variance of q is also limited to a small range. Based on
that, limited values {q1, q2, . . . , qt } could be tested for a grid search and then each
qt could be a determined value to be put into the posterior to test the likelihood.

21.4.3.2 Learning with Noise

Although substantial domain knowledge can be incorporated into machine learning
models, there is still a large opportunity for something unexpected to happen which
can be modelled as uncertainty into the designed model. The uncertainty could be
represented by stochastic model as the variance, however, learning the stochastic
model is non-trivial. To solve it, the compound probability distribution is generally
considered. Therefore the distribution must be carefully chosen to make sure that
the loss function is tractable, such as conjugated priors. The computational conve-
nience can violate the requirements from domain knowledge. Also in the Bernoulli
distribution, the variance is π(1 − π), so variance also relates to mean parameter π .
This raises the issue that variance is wrongly estimated if the estimation of mean is
biased. The strong assumption can be further improved using domain knowledge by
setting the variance to be different from π(1 − π).

21.4.4 Evaluation

In this evaluation, the HBP method was tested and compared with popular survival
analysis methods, namely the Cox and Weibull models. The Cox model is usually
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Fig. 21.6 Results of water
main failure prediction for an
example dataset by different
models

used to model only the first time failure for each pipe, while the Weibull model can
deal with multiple failures as same as HBP. The water mains are categorised into
different groups according to their coating, region, and laid year. For fair comparison,
the other explanatory factors act multiplicatively [1] on the hazard rate in the Cox
model or the priors in theWeibull model and the proposedmethod. Figure21.6 shows
the results of predicting pipe failures in two regions by different models. The test
curves exhibit the average performance for the most recent three years. To evaluate
the prediction of pipe failures for a given year, all failure records available before
that year are used as training data. The x-axis represents the cumulative percentage
of inspected water pipes, and the y-axis represents the percentage of detected pipe
failures.

21.4.5 Constraints

In certain circumstances, although the prediction algorithm can provide an accurate
prediction for each water main, there are still many works to do before interpreting
the results and putting them into practical use. Here, domain knowledge must be
involved to help the machine learning scientists to find the way to use the results by
providing the practical constraints.

21.4.5.1 Budget Constraints

Even when a badly ranked list can be used if the whole network could be replaced
without the restrictions of budget, so that anymodel can achieve the goal of preventing
almost 100% failures. However, in reality, the maintenance budget must be limited as
the cost of inspecting or replacing pipes is high. The focus therefore is on predicting
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Fig. 21.7 Detection results for first 1% of all water mains in the exampled dataset

the riskiest pipes. As a result, the evaluation of the prediction becomes the ratio of
detected failures and corresponding length or number of water mains. The change
of evaluation provides the opportunity for algorithms to illustrate its superiority.

Let’s now examine the practical implications of the improved prediction provided
by the HBP method over the existing models currently used in the risk management
process. The budget and resources allocated for pipe condition assessment are usually
limited, so that each year only a small fraction of the critical water mains can be
physically inspected, typically around 1% of the whole network length. It is hence
crucial that the top ranking pipes in the priority list should actually present a need
for renewal, otherwise the inspection costs, will be spent to no avail. Figure21.7
compares the various methods assuming only 1% of mains can be inspected. The
HBP outperforms the other methods by predicting almost 25% of the failures, which
when extrapolated to the whole urban network (with capital expenditure of about one
million dollars on condition assessment per year), represents a saving evaluated to
several hundred thousand dollars per year, over its Weibull counterpart. Incidentally,
this improvement in prediction accuracy also decreases the number of false negatives
for critical mains about to fail, hence avoiding a number of disastrous critical main
failures. As the financial and community cost of one critical main break ranges from
hundreds of thousands to a few million dollars, this generates estimated savings in
excess of a million dollars per year, again calculated over its Weibull counterpart.

21.4.5.2 Spatial Constraints

The most basic use of the prediction results is to make decisions on the most risky
water mains for further operations. However, the experienced domain experts have
their own interpretation on the meaning of risks and on how best to use the prediction
to evaluate the risk of pipes. However, this could be limited as the total number of
assets is too high (usuallymore than 100k) formanual selection. In this case, theywill
prefer tomake decisions onmore coarse granularity, such as zoneswhich contain a set
of pipes. Some zones are defined heuristically for experts’ operational convenience,
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while some zones are latent, which means they can be automatically exploited by
clustering algorithms. Even in the latter case, domain knowledge must be involved
to interpret the learned zones.

Alternatively, for operational efficiency, domain expertsmay select different levels
of assets for different physical maintenances. For example, pipes at higher levels
(main distributors in a block of pipes) will be selected or a condition assessment
made instead of replacement. However, a higher level unit comprises a ‘bag of pipes’,
where only a limited number of pipes are identified as high risk while the rest are
in a good condition. Therefore, there is a trade-off between prediction accuracy and
operational constraints: if we focus more on prediction accuracy, selection at the
element level performs better while operational efficiency may be lost; if we focus
more on operational efficiency, selection at the higher level is better while prediction
accuracy may be sacrificed.

To aid the domain experts to make the decision, data scientists can investigate this
trade-off, by performing amulti-level constraint based prediction at main, block area,
and element levels. At the element level we have only considered those pipes with
length equal to above the constraint, and at the higher level we have only considered
distributor mains.

21.4.5.3 Length Constraints

Evenwith the prediction results, how to plan the real maintenance is still based on the
domain expert’s decision. Usually the actual maintenance can involve many jobs so
that the minimum cost is fixed even if it is to maintain a one meter pipe. Therefore,
the length constraint is required so that the minimum length of pipes needs to be
maintained in the same work. The simple constraint is to consider long pipes only
(e.g. pipes that are longer than 200m). Amore robust constraint needs to consider the
total length of pipes in a neighbouring area. However, the neighbouring area should
cover not only for spatial neighbours but also needs to consider the above-ground
situation, such as traffic, terrain, and soil, whichmay involve various types of domain
knowledge.

21.5 Conclusion

This chapter presented howmachine learningmodels canbeusedwith domain knowl-
edge, using the data-driven water main failure prediction as an example. The domain
knowledge-based data review, factor analysis and predictions are provided and dis-
cussed.

The evaluation criteria for domain experts on specific applications can be very
different from the standard performance measurements used in the machine learning
domain. For instance, machine learning experts usually use a cut-off point or AUC
area of the ROC curve tomeasure an approach’s performance. However, in this work,
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Fig. 21.8 Estimated failure
probabilities by the proposed
method for water mains laid
from 1950s to 1970s in the
example dataset

only a small portion of the performance curve (see Fig. 21.7) is of interest, because
the number of pipes that can be inspected in practice is only a small percentage of the
whole network. Thus, the failure prediction accuracy with 1% of the pipes inspected
is the main criteria to measure performance of different approaches. Intermediate
experimental statistics are suggestive of the model design. In some sense, it helps
to avoid a biased assumption and suggest appropriate modelling. For instance, from
the statistics of the pipe failures in different year/age (see Fig. 21.8), we can see the
assumption that failure probability increases monotonically with the age of pipe is
not always true. The visualisation and presentation of the results need to adapt to
the domain experts’ habits and technical background. To domain experts, instead of
the whole performance curve, only a small portion of the curve (see Fig. 21.7) is of
interest. Categorising the data helps to identify subsets of the whole dataset which
possess very different failure patterns. It makes the modelling process simpler and
more accurate for a system affected by a large variety of factors, especially when
some of them are not ascertainable or measurable. Usually water main systems also
exhibit those characteristics because they are deployed across large scale areas with
very different environmental factors, such as traffic load, soil corrosivity, etc.
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Chapter 22
Interactive Machine Learning
for Applications in Food Science

Alberto Tonda, Nadia Boukhelifa, Thomas Chabin, Marc Barnabé,
Benoît Génot, Evelyne Lutton and Nathalie Perrot

Abstract The apparent simplicity of food processes often hides complex systems,
where physical, chemical and living organisms’ processes co-exist and interact to cre-
ate the final product. Data can be plagued by uncertainty; heterogeneity of available
information is likely; qualitative and quantitative data may also coexist in the same
process, from expert perception of food quality to nano-properties of ingredients. In
order to obtain reliable models, it then becomes necessary to acquire additional infor-
mation from external sources. Experts of a domain can provide invaluable insight in
products and processes, but this precious knowledge is often available only in the
form of intuition and implicit expertise. Including expert insight in a model can be
tackled by having humans interacting with a machine learning process, through visu-
alization or via specialists in encoding implicit domain knowledge. In this chapter,
three selected case studies in food science portray different success stories of com-
bining machine learning and expert interaction. We show that expert knowledge can
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be integrated at different stages of the modelling process, either online or offline, to
initialize, enrich or guide this process.

22.1 Introduction

When dealing with meaningful representations of food systems, several important
issues have to be considered: data can be plagued by uncertainty, particularly when
chemical, physical, and biological phenomena concur to define the process; hetero-
geneity of available information is also likely, as a vegetable involved in a process can
be characterised by more than 40,000 genes, whereas the quality of the final prod-
uct can be assessed using just a few sensory features; qualitative and quantitative
information, from expert perception of food quality, to nano-properties of ingredi-
ents, may also coexist in the same process. Consequently, when applying machine
learning to agri-food data, the user has to carefully account for variance, manage
heterogeneous data, and be able to include both qualitative and quantitative values
in the final model.

As gathering data in food science is an expensive and time-consuming process,
available datasets are often sparse and incomplete, which poses a challenge to both
humanmodelling practitioners andmachine learning algorithms. This issue has been
long acknowledged by the community, and ongoing projects have been approved to
tackle it, by defining roadmaps to achieve an e-infrastructure for open science,1 and
by fostering cooperation between food scientists and modelling experts.2 In order to
obtain reliable models, it thus becomes necessary to acquire additional information
from external sources. Experts in a specific domain can provide invaluable insight
into products and processes, but this precious knowledge is often available only in
the form of intuition and non-coded expertise. Including expert insight in a model
is not a straightforward process, but it can effectively be tackled by having humans
interacting with a machine learning process, through visualisation, or via specialists
in encoding implicit domain knowledge [17].

In the following, three selected case studies portray different ways of combining
machine learning with expert interaction, in the domain of food processing:

• first, amodel for Camembert cheese ripening is built, encompassing variables from
the micro-scale (presence of bacteria and chemical components) to the macro-
scale (sensory evaluations), relying upon experts to help design the structure of a
dynamic Bayesian network;

• a second dynamic Bayesian network model is constructed to help winemakers
assess the appropriate time for harvesting grapes, depending onweather conditions

• a graphical model based on symbolic regression is used to help experts create a
model of bacterial production and stabilisation.

1eRosa European project, http://www.erosa.aginfra.eu/.
2COST Action CA15118 FoodMC, http://www.inra.fr/foodmc.

http://www.erosa.aginfra.eu/
http://www.inra.fr/foodmc
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Fig. 22.1 Pictures of Camembert cheese during the ripening process. There are visible changes in
the cheese’s rind, colour, and aroma during the ripening

Interaction with the experts of each specific process is always mediated by visu-
alisation, complemented by the use of targeted questionnaires (first case study),
fuzzy-logic models (second case study), or human-readable equations (third case
study). In all considered cases, oriented graphs are used to provide experts with an
intuitive and transparent representation of the model under construction. While the
models’ inner working, ranging from conditional probability inference to computa-
tion of free-form equations, is mostly hidden, users can easily interact with oriented
graphs, where arcs represent correlation between variables, and modify connections
created by learning algorithms, if they are deemed incorrect. For most users, graphs
are familiar representations, andmanipulating them is intuitive.When users are deal-
ing with graphs that can be considered small, with fewer than 50 variables, node-link
diagrams are a well suited portrayal, while matrices become more appropriate for
larger or denser graphs [14].

22.2 Dynamic Bayesian Network Model for Camembert
Ripening

Cheese ripening is a good example of a process that human practitioners can achieve
with success but for which several scientific details remain poorly understood. Never-
theless, even for these processes it is possible to create effectivemodels by harnessing
knowledge from experts in the domain and coupling it with experimental data. This
can be achieved by using an appropriate machine learning framework, that is able
to take into account such heterogeneous information. The work presented in [25]
shows how the described methodology can be applied to the case of Camembert, a
popular French cheese. The desired model goes from micro-scale properties such as
concentration of lactose and bacteria, to macro-scale properties such as color and
consistency of the crust, with the goal being to describe the development of the ripen-
ing process, up to the prediction of the current phase of ripening. In Fig. 22.1, a few
pictures of the cheese ripening process are reported: experts find it useful to divide
the ripening into 4 distinct phases.

The approachused in this experiment is aDynamicBayesianNetwork (DBN) [18],
a variation on a classical Bayesian network [20]. Bayesian networks are
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Fig. 22.2 On the left, a directed acyclic graph. On the right, the parameters it is associated with.
Together they form a Bayesian network B N whose joint probability distribution is P(B N ) =
P(A)P(B|A, E)P(C |B)P(D|A)P(E)

probabilistic models widely used to encode knowledge in several different fields:
computational biology and bioinformatics (gene regulatory networks, protein struc-
ture, gene expression analysis), medicine, document classification, information
retrieval, image processing, data fusion, decision support systems, engineering, gam-
ing and law. BNs are directed acyclic graphs, where each node represents a variable
in the problem, and links encode correlations between variables. An example of BN
is reported in Fig. 22.2.

Like a BN, a DBN is a graph-based model of a joint multivariate probability dis-
tribution that captures properties of conditional independence between variables; in
the graph, nodes Xi (t), i = 1, . . . , N , represent random variables, indexed by time
t . Differently from a regular BN, a DBN is in fact able to encode dependencies
between the same variable over multiple instants of time, providing a compact repre-
sentation of the joint probability distribution P for a finite time interval [1, τ ] defined
as follows:

P(X (1), . . . , X (τ )) =
N∏

i=1

τ∏

t=1

P(Xi (t)|Pa(Xi )(t)) (22.1)

where X (t) = X1(t), . . . , X N (t), is called a slice, and represents the set of all
variables indexed by the same time t . Pa(Xi )(t) denotes the parents of Xi(t).
P(Xi (t)|Pa(Xi )(t)) denotes the conditional probability function associated with the
random variable Xi (t) given Pa(Xi )(t). The joint probability P(X (1), . . . , X (τ ))

represents the beliefs about possible trajectories of the dynamic process X (t). DBNs
are useful tools for combining expert knowledge with data at different levels and
length scales. The structure of a model (e.g. the directed graph) can be explicitly
built on the basis of expert knowledge, or automatically learned from data by an algo-
rithm [6]. In practice, a combination of the two approaches is commonly used, with
a first, automatically-learned structure subsequently corrected by humans, resorting
to graphical user interfaces such as BayesiaLab3 or GeNie [12].4 Once the structure

3http://www.bayesia.com.
4https://www.bayesfusion.com/.

http://www.bayesia.com
https://www.bayesfusion.com/


22 Interactive Machine Learning for Applications in Food Science 463

of a DBN is defined, parameters (i.e. conditional probability functions) can be auto-
matically obtained without a priori knowledge on the basis of a dataset, all through
a deterministic machine learning procedure known as parameter learning.

In this case study, data is gathered from 6 experiments on the cheese ripening
process, each experiment lasting 41 days, with a sampling every day. The informa-
tion obtained concerns the temperature of the ripening chamber (T , ◦C), relative
humidity (RH , %), and the concentration of lactose (lo, g/kg), lactate (la, g/kg),
and the bacteria Kluyveromyces marxianus (K m, cfu/kg), Geotrichum candidum
(Gc, cfu/kg), Penicillium camemberti (Pc, cfu/kg), and Brevibacterium auranti-
acum (Ba, cfu/kg). During each experiment, several Camemberts are destroyed to
be analysed, with a considerable economic investment for the producer. At the same
time, experts are interviewed to provide additional information. The study involves
two groups of experts: 4 cheesemakers with over 15 years of expertise in the industry,
and 8 scientists with a track record of over 10 years of research on cheese processes.
The questions posed to the experts are carefully constructed in order to elicit expert
knowledge, with methods ranging from open-ended questions to focus groups. Val-
ues of the variables are discretised in 2 to 12 classes each, depending on expert
judgment [1].

Following cheesemakers’ considerations on the ripening process, the globalmodel
is divided into two parts, that are built independently and then linked: M1 reproduces
the temporal links between measured experimental data, simulating how such quan-
tities vary during the ripening process; while M2 is derived almost entirely from
the expert knowledge gathered using questionnaires, and provides a more qualita-
tive assessment between sensory information such as flavour, texture, colour, and the
ripening phase. Camambert cheesemakers traditionally identify four different phases
in the ripening process. Figure22.3 shows the final structure of the DBN obtained
after the learning process. Variables between M1 and M2 are used to link variations
in measurable quantities to sensory properties of the cheese.

Figure22.4 presents an example of predictions of the dynamics in the process. It is
noticeable how the model is able to satisfyingly reproduce the dynamics of variables
tied to microbial growth, substrate consumption, and sensory properties, for different
temperature conditions. Experts ultimately assessed model simulations resorting to
classical two-dimensional plots against test data, and were satisfied with the results.

22.3 Decision-Support System for Grape Maturity
Prediction

Predicting the right moment to harvest grapes intended for wine production is a task
that traditionally is left to specialists in the field. Still, as repercussions of climate
change make local weather more unpredictable, experts can use machine learning
techniques as a decision support tool, helping them to deal with modified conditions.
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Fig. 22.3 Final DBNmodel for the Camembert cheese ripening process. The part denominatedM1
represents the variables taken mainly from experimental data, whereas part M2 represents variables
derived from expert knowledge and assessment. Grey nodes represent constraints defined by experts.
Figure redrawn from [25], with permission from Elsevier

Such decision support systems are commonly defined as interactive computer-based
systems that help organisations in decision-making activities.

In viticulture, some decision support systems are already in use, for example to
prevent mildew [23]. Grape berry maturity is analysed in [10] where the authors built
mechanistic models to predict the concentration of sugar in grapes. Other modelling
techniques based on spectroscopy predict maturity indicators [13]. These decision
support systems are based solely on experimental data, and do not integrate experts’
knowledge in order to predict grape maturity. As the human knowledge gained over
years of wine production is invaluable and often includes conditions that have not
been measured in recent times, it is only sensible to include it as much as possible
in the target framework. Expert knowledge handling was already successfully used
in the field of viticulture in [7]. Similar to our approach, their model relies on fuzzy
logic but to predict vine development with two indicators, vigour and precocity. In
order to predict grape maturity, the innovative work presented in [22] offers a good
example of how human expertise can be employed to fill the gaps in experimental
data, with the final objective of training a machine learning approach. This study
represents the basis of our current work.

For this case study, data related to 66 parcels of land in the LoireValley is collected
over the course of 27 years (1988–2015), for a total of 1,086 data points describing
weekly average temperature (T , ◦C), relative humidity (RH , %), insolation (I ns,
hours of sunlight received per day, h/day) and rainfall (Pl, mm). Further data on sugar
concentration (S, g/l) and acidity (Ac, g/l Eq H2SO4) of the grapes are collected every
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Fig. 22.4 Predictions of the Camembert cheese ripening model for the evolutions of (top row)
microbial growth (K m, Gc, Ba in decimal logarithm scale); (middle row) substrate consumption
(lo, la) and (bottom row) sensory properties (R H , Pc coat and odor). The DBNmodel’s prediction
are represented as lines, versus raw data, represented as points, for three different ripening processes,
carried out at 8 ◦C (marked with +), 12 ◦C (marked with ◦) and 16 ◦C (marked with �). Figure
reproduced from [25], with permission of Elsevier

week, when 200 berries of Cabernet-Franc randomly sampled from the parcels are
crushedwith a blender and subsequently analysed. It is important to notice again how
obtaining data is an expensive and time-consuming process, and it has to be integrated
by expert knowledge, in order to improve the knowledge base eventually used for
modelling. For this case study, human expertise is collected through a synthesis
of the available literature and industrial reports, performed by 4 scientists and 5
winegrowers working in the areas considered in the study.

As for the previous case study, a Dynamic Bayesian Network proves particularly
suited for this application, as such a techniquemakes it possible to employ qualitative
and quantitative variables, at different scales, in the same model. The network is
designed with the help of the experts, through a trial-and-error process that includes
several steps of structure visualisation, correction, and analysis of the predictions,
initially presented in [2]: the resulting structure is shown in Fig. 22.7 (top). In this
particular case study, even with an established structure, computing the parameters
of each node is not trivial. Following experts’ assessment, in fact, input is discretised
into 8 to 15 classes for sugar, acidity, sugar variation, acidity variation, insolation,
pluviometry, humidity and temperature. This discretisation, featuring a relatively
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Fig. 22.5 Example of three fuzzy sets Low, Medium, High, with μL (x): the membership degree
in the Low fuzzy set and μM (x): the membership degree in the Medium fuzzy set

Fig. 22.6 Definition of classes related to meteorological conditions defined into four classes for
sugar and acidity concentration evolution expressed in g/L. Class index 0: Bad climatic conditions;
Class index 1: Not favourable climatic conditions; Class index 2: Standard climatic conditions;
Class index 3: exceptional climatic conditions

high number of classes when compared to more traditional applications of BNs,
leads to conditional probability tables with a considerable number of combinations:
so many, that some of these combinations are not present in experimental data,
and thus probabilities for these cases cannot be straightforwardly learned; resorting
to experimental data for parameter learning, only, would leave too many gaps. A
possible solution to the issue is to resort to experts again, formalising their knowledge
of the process through fuzzy logic mathematical functions.

Fuzzy logic [30] is an extension of the binary logic, where a set is defined by its
membership function. A value, x , belongs to a fuzzy set with a membership degree
μL , with 0 ≤ μL(x) ≤ 1, see Fig. 22.5. If we take L a set of Low insolation, the
membership degree μL(x) of a given insolation value x can be defined as the level
up to which insolation x should be considered as Low.

Fuzzy sets for the fourmeteorological variables are then used to build 46 linguistic
rules, e.g. if insolation and pluviometry are Low, then the sugar increase is high.
Each rule is associated by the experts to one of the four classes of meteorological
condition, see Fig. 22.6, and is activated according to the activation degree of each
rule which define the class. Each class of meteorological condition corresponds to a
certain variation of sugar and acidity for one day. The sum of variations on 7 days
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Fig. 22.7 Proposed framework for the prediction of acidity and sugar content in grapes. (top)
Structure of the DBN designed for the prediction of acidity (Ac) and sugar content (S) of grapes.
(bottom) Parameters of DBN are updated with data produced by expert knowledge, making it
possible to learn robust conditional probability tables for the nodes

is performed to produce global variation over the week. This variation of sugar or
acidity is added as an input to the DBN.

The fuzzy logic model is created to produce data for combinations of input vari-
ables associated to equiprobability in the probability tables of the DBN; equiprob-
ability, in turn, is associated to combination of input variables never observed in
experimental data.

The complete structure of the framework, including the coupling fuzzy logic-
DBN is shown in Fig. 22.7. The first step (top) corresponds to the DBN learning
based on experimental data. This step allows the production of a probability table
necessary to perform global predictions. However, some combinations of variable
are absent from experimental data. For these specific cases, a probability table is
updated using a fuzzy model (bottom). A simulated database is created in variable
ranges of interest and variations of sugar and acidity can be produced. These data are
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included in parallel to experimental data and make it possible to define probabilities
in any meteorological conditions necessary.

In order to evaluate the benefit of adding human expertise, the predictions were
successively performed with the DBN model, the fuzzy model, and then with com-
bined DBN-fuzzy models, see Fig. 22.8. The best results are obtained by learning
from both experimental data and expert knowledge. The resulting model is able to
obtain satisfactory predictions, showing good R2 values (a statistical measure of how
close the data are to the fitted regression line) [26] for both sugar content and acidity,
with R2

S = 0.85 and R2
Ac = 0.83, respectively. In comparison, the DBNmodel alone

obtains R2
S = 0.80 and R2

Ac = 0.74 and the expert model alone obtains R2
S = 0.81

and R2
Ac = 0.83. Errors of predictions are shown in Fig. 22.8. We can see that at

extremes values, the influence of the coupling DBN-Fuzzy approach is visible with
significant improvement.

In the current context of climate change, exceptionalmeteorological conditions are
expected to become more frequent. Learning processes performed on experimental
data of past years, only, are at risk of being unsatisfactory. The building of fuzzy
models to integrate DBNs offers the possibility to enlarge the range of possible
meteorological conditions and make the model more flexible and more robust.

22.4 Interactive Symbolic Regression Modelling
for Bacterial Production and Stabilisation

Concentrates of lactic acid bacteria are widely used in the food industry for products
such as yogurt, cheese, fermented meat, vegetables and fruit beverages. The quality
of bacterial starters, defined by the viability and acidification activity of the cells,
depends on numerous control parameters across the different steps of the production
and stabilisation process, summarised in Fig. 22.9 and described in more detail by
Champagne et al. [5]. The bacteria’s levels of resistance to the processes is also
dependent on the biochemical and biophysical properties and organisation of their
membrane [28, 29] which in turn is determined by the genomic expression of the
bacteria itself. For these reasons, modelling the bacteria resistance to the process
is a complex problem due to many possible non-linear dependencies between the
different length scales and steps of the process. In addition, no models are available
for several sub-parts of the process, and even those that can be found in literature
[19] are often too simple to be included in a wider framework.

One successful approach inmodelling complex processes is to stack smaller mod-
els such that predictions are propagated between multiple layers formed by these
sub-components [8, 9]. In such cases, typically, rich datasets and vast amounts of
knowledge are available to describe the stacked components and their interactions.
When little data is available, and prior knowledge is limited, mathematical regression
techniques can be used to model these complex systems [21]. However, a multitude
of candidate models can be obtained through these techniques. Deciding which of
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Fig. 22.8 Prediction error according to class of values, for sugar (top) and acidity (bottom). For
each class, the error is reported for the DBNmodel (green), the fuzzy model (orange) and combined
model with DBN and fuzzy method (blue). The combined model clearly obtains the best results
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Fig. 22.9 Steps of the freeze-drying process. Control parameters at every point in the process chain
can influence the quality of bacterial starters

these models is the best with respect to the study domain and problem at hand,
may be carried out automatically based on a fitness criteria, or delegated to domain
experts [16]. While the former is efficient, it can result in models that do not capture
the reality of the underlying system, so may be grounded albeit time-consuming.
Similarly to Turkay et al. [27], our approach uses mathematical regression to gen-
erate candidate solutions. However, we combine automatic evaluation of candidate
models, with expert evaluations to ensure both model robustness and validity.

The dataset in this case study concerns the full process of bacteria production and
stabilisation, with 49 variables measured at 4 different steps (two steps of fermen-
tation, freezing, and storage) and at 4 different fermentation conditions (22 ◦C and
30 ◦C, with the fermentation stopped at the beginning of the stationary growth phase
and 6h later). The variables consist of transcriptomics, composition of fatty acid
membrane, acidification activity and viability [29]. Such a large number of variables
requires peculiar methods to deal with them. Using machine learning capacity to
provide automatic modelling enables us to find possible dependencies.

From a vast number of possible dependencies between the measured variables,
an automatic methodology can identify the most relevant ones, and combine them
to obtain a global model. The main problem of this approach is that the number of
variables is far superior to the number of samples in the dataset. The key idea is to
remember that experts possess invaluable process knowledge that can considerably
improve the robustness of the global model. While formalising this often-implicit
knowledge is not trivial, experts’ insights can be effectively included in themodelling
process by resorting to interactive approaches. To achieve these objectives, we pro-
posed LIDeOGraM (Life science Interactive Development of Graph-based Models),
a semi-supervised model learning framework, based on regression analysis [3, 4].
LIDeOGraM is able to obtain free-form equations for each variable in the process,
as a function of all other variables. Each equation, describing a sub-part of the global
process, can be considered a local model. Such models should fit the experimental
data, and at the same time be deemed plausible by the experts. However, when using
an automatic technique without expert guidelines, these two goals are often incom-
patible: it is always possible to find a polynomial equation that perfectly fits the data
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points, for example with a complex equation featuring as many parameters as data
points available but such an equation could overfit the dataset, failing to represent
the underlying relationship between the variables, and ultimately poorly predict the
unseen data.

To avoid this issue, every variable in LIDeoGraM is associated with a set of can-
didate equations, obtained through symbolic regression [15]. Eureqa5 [24], a com-
mercial software specialised in symbolic regression, is able to obtain a set of possible
equations for every variable in a given dataset. A local model can thus be associated
to each variable by selecting one of the equations in the set. Symbolic regression
makes it possible to effectively search the vast space of all possible mathematical
expressions, taking into account both the fitting of the equation and its complexity –
indeed, more complex equations tend to be overfitted, while simpler ones are often
unable to characterise the data. A collection of local models will then constitute the
base for a global model, built using an evolutionary optimisation algorithm [11] that
stochastically searches the space of all sets of local models for the one that best fits
the global dataset. To evaluate a candidate global model, the input nodes are set to
known experimentally-measured values, and the errors in the prediction are averaged
over all nodes, thus obtaining a global error, that the evolutionary algorithm aims to
minimise.

Human experts are then involved in the modelling process, via a graphical user
interface, showing a node-link graph visualisation of the global model, where each
node represents a variable, and each link marks a possible dependency between
two variables. This interface allows experts to visualise the results from Eureqa,
contribute with their knowledge, and finally lead the search for an efficient global
model.

For this objective, two views are available. The Local model view shows an
overall qualitative view of the equation sets given by Eureqa for each variable. This
view enables nodeswith no satisfactory equation in terms of fitting and/or complexity
to be easily spotted. The Global model view shows the predictive capability of the
current global model, for each variable. This view enables users to rapidly assess
which variables in the global model are poorly predicted, but also which ones may
be responsible for the poor predictions of their dependent nodes.

LIDeoGraM has several ways to add expert knowledge. First, it is possible to
attribute a category to each variable, and specify the available dependencies between
categories for the symbolic regression. A category of nodes can represent a step in
the process, or a scale of information. This interface is presented in Fig. 22.10.

After obtaining a set of equations for every node, experts can then filter this by
specifying that certain kinds of node-to-node dependencies are not allowed. Experts
can then manually add new equations in the set of candidate local models for a node,
and eventually restart the search for a global model after putting all their constraints
in place. With LIDeOGraM, it is possible to learn global models for the production

5http://nutonian.com/products/eureqa/.

http://nutonian.com/products/eureqa/
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Fig. 22.10 Screenshot of the interface allowing to choose the authorised links between the defined
classes. A link between two classes means that all variables associated to the parent class can be
used in the equations for all variables associated to the child class. The displayed graph represents
the selected constraints chosen for the presented results

Fig. 22.11 Screenshot of LIDeOGraM. The left side shows a graphical model representing the
mean fitness of the local models obtained by symbolic regression. The top-right part is the list of
equations proposed by Eureqa for the selected node, and the bottom-right part shows a plot of the
measured versus predicted data associated to the selected equation

and stabilisation of bacteria. Such models can then be used to better understand how
to preserve the quality of the culture during the process, foster the emergence of new
hypotheses, and design new experiments, whose data could in turn be used to further
improve the global model. These functionalities are demonstrated in Fig. 22.11.
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Fig. 22.12 Graphical model generated in LIDeOGraM representing a (optimised) global model.
Nodes are organised in 4 categories: experimental conditions, genomic scale, cellular scale, and
population scale. A Pearson correlation coefficient, calculated using the predictions from the global
model compared to the experimental measurements, is printed below each node. An edge between
two nodes means that the parent variable is used in the equation chosen to calculate the child
variable. The colour of an edge depends on the Pearson correlation coefficient, which represents
the quality of the prediction. The colour varies from red for a poor-quality prediction to green for
a satisfying one

Results obtained for the previously described dataset [29] are presented in
Fig. 22.12.

In a preliminary experiment on the presented framework, a user with 20 years of
experience on freeze-drying process is able to inject their knowledge into the opti-
misation process. Out of a total of 232 equations generated for the local models, the
expert deletes 5 equations, and 2 nodes, removing in turn 14more equations in which
the 2 deleted variables are involved. The expert then restarted symbolic regression
on 3 nodes, obtaining 12 new equations. At the end of this process, the global optimi-
sation results are better than those obtained without the expertise, with the average
error computed on all nodes being 0.801, using only the automatic approach, and



474 A. Tonda et al.

Fig. 22.13 Comparison of an experiment on the learning of the freeze-drying model, using
LIDeOGraM with and without human interaction. The term fitness here refers to the average error,
computed on all variables in the problem. The generations are the iterations of the evolutionary
algorithm used for optimising the global model

0.787 combining the automatic approach with expert interaction. Figure22.13 shows
the evolution of the mean error per node, for both the automatic and the combined
approaches. The results are still not completely satisfactory, as the prediction error
for some of the nodes remains large, but the positive influence of the expert on the
machine learning process is already substantial. In future works, more data points
will be collected, and experiments with several other experts on the freeze-drying
process are scheduled.

22.5 Discussion and Guidelines

Computational Modelling is an iterative process that comprises three main activities:
designing a model where the aim is to define a suitable representation for objects and
their relationships; exploring the model to understand its behaviour, and tuning it to
find the best or optimal parameter values to obtain good predictions. Our approach
in building interactive machine learning systems for food science and technology
focuses on involving experts of the process in one or more stages of this modelling
pipeline, facilitating their interactions with the machine learning process through
visual representations.

For the first two case studies, on modelling Camembert cheese ripening and grape
maturity prediction, expert knowledge is integrated primarily at the design stage of
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model building. Using established methodologies from the knowledge elicitation
domain (e.g. interviews, case studies, and observations), expert knowledge can be
collected, coded and formalised into a probabilisticmodel. The goal, in these cases, is
to create a knowledge representation of the process that matches the domain experts
mental model.

For the last case study, on modelling bacterial production and stabilisation,
experts’ knowledge is integrated at each stage of the modelling process. At the
design stage, to structure the relationship of variables and system constraints prior
to launching the automatic machine learning and optimisation algorithms; and post-
model learning through various user interactions via the LIDeOGraM interface. For
instance, domain experts can add or remove variables, classes and constraints. They
could filter local models, or add new equations to explore howwell they fit their data.

While interaction with experts is invaluable even with classical approaches, in the
food science domain we argue for a more user-centred design approach to machine
learning, whereby users can participate at each stage of the modelling process, from
design to exploration and tuning. This involvement not only helps domain experts
understand computational models better, but it allows them to confront their domain
knowledge and know-how with the results of machine learning, ultimately making
machine learning more transparent. Our informal evaluations and discussions with
domain experts allowed us to observe the following:

• providingvisual representations ofmachine learningmodels improves user engage-
ment and encourages feedback, especially if domain experts are involved at the
design stage and exploration stages.

• graph-based model representations are easy to understand, but multiple linked
representations are more helpful when trying to understand the model.

• experts tend to take a multi-step approach to model validation, first to verify exist-
ing knowledge (most likely to build trust in the ML algorithm), then to assess new
predictions. When doing so, they first look at the general high-level dependen-
cies between variables, before looking at detailed information such as values of
weights, or data in the conditional probability tables when DBNs are involved.

It remains to prove whether making machine learning more transparent helps
domain experts better explore and validate computational models in food science.
More research is needed to studywhether user-centred design formodelling improves
decision making and indeed helps building trust in constructed models. From our
experience, we believe this to be the case, but a more formal assessment is required
to properly evaluate our intuition.

22.6 Conclusion

In this chapter we illustrated through three case studies from the agri-food domain,
how integrating experts knowledge into computational modelling can yield promis-
ing results. These real-world case studies portrayed different ways of combining
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machine learning with experts interaction to design, explore and tune machine learn-
ing models. In the first case study, domain experts helped design the structure of a
dynamicBaysesian network to predict theCamembert cheese ripening process. In the
second case study, winemakers interacted with a dynamic Bayesian Model, to help
choose the appropriate time for harvesting grapes. In the third case study, domain
experts interacted with a symbolic regressionmodel, to help create a groundedmodel
of bacterial production and stabilisation. Based on our experience in working closely
with domain experts, we concluded this chapter with general observations and rec-
ommendations. We argue that more research in user-centred design methodologies
for machine learning is needed, to enable domain experts to truly become model
co-builders.
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