
Chapter 1
Nanopackaging: Nanotechnologies
and Electronics Packaging

James E. Morris

1.1 Introduction

Level one electronics packaging is traditionally defined as the design and production
of the encapsulating structure that provides mechanical support, environmental
protection, electrical signal and power I/O, and a means of heat dissipation for the
Si chip, whether digital or analog, processor, or memory. Level two packaging is
then the integration of these packaged chips into a board-level system that similarly
provides mechanical support, power and signal delivery and interconnections, and
thermal dissipation. Of course, nowadays the chip is often mounted directly on the
board (chip-on-board, direct chip attach, flip chip), and the packaging process
actually begins with the chip fabrication (wafer-level packaging), e.g., with solder
bumping. The underlying principles of the field are covered in textbooks [1–3], and a
multitude of others, e.g. [4], are more research focused. The field is inherently
multidisciplinary with electrical, mechanical, and thermal design at its core, with
all of these subject to reliability studies and material selection. Figure 1.1 shows the
history of the electronics package from the vacuum tube to a multi-chip “system in a
package” (SiP). The package has always been the limiting factor to system perfor-
mance, i.e., the Si chip can operate at higher frequencies than the package.

Current issues facing the electronics package designers include:

• Thermal dissipation
• High temperature and power applications. (This is driving transient liquid-phase

soldering/sintering (TLPS) joining, which enables high-temperature intermetallic
compound (IMC) alloy joints from low-temperature processing of low melting
point materials.)
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• Embedded passives. (Traditionally, most of the printed wiring board (PWB)
surface is taken up by many passive components. Embedding them inside the
PWB would release surface area for more active Si-integrated circuits (ICs).)

• 3D system integration. (Chip stacking drives through silicon via (TSV) technol-
ogy (Fig. 1.2).)

• Heterogeneous system integration. (More than Moore implies the integration of
unlike technologies, e.g., random logic, memory, microelectromechanical sys-
tems, optical and RF communications, etc., in a SiP enabled by chip stacking.)

• Flexible electronics includes both wearable and robotic systems.
• No-Pb solder. (The prevalent no-Pb solder is Sn-Ag-Cu (SAC), which melts at

higher temperatures than traditional eutectic Sn-Pb solder, exacerbating electro-
mechanical stresses in the package and failures, creating interest in lower-
temperature solders and sintering.)

Fig. 1.1 The evolution of electronic assembly. (Joe Fjelstad, with permission)
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Fig. 1.2 The concept of
TSVs for 3D chip stacking

2 J. E. Morris



It often seems that the promise of nanotechnology’s impact on everyone’s quality
of life is as over-hyped as past promises of endless cheap energy from cold fusion
and high-temperature superconductivity. But there are two major differences. While
the term “nanotechnology” has caught the attention of industry, legislators, and
research funding agencies, in most cases the technologies in question are rooted in
steady research progress in the field in question, as fabrication and characterization
techniques have steadily conquered ever smaller dimensions, with the parallel
development of theory to explain and model the new phenomena exposed. Further-
more, nanotechnologies have already yielded everyday consumer benefits beyond
stain-resistant clothing and transparent sunblock. So it is hardly surprising to dis-
cover active research and development programs in nanotechnology applications to
electronics packaging, with special nanotechnology sessions at electronics packag-
ing research conferences and research journal papers demonstrating the range and
progress of these applications.

The definition of nanotechnology is usually taken to be where the size of the
functional element falls below 100 nm or 0.1 μm, and with 10 nm node CMOS
devices upon us, we are already well into the nanoelectronics era. Furthermore, with
metallic grain sizes typically below this limit, one might also argue that solder has
always qualified as a nanotechnology, along with many thin-film applications. So,
the requirement that the specific function depends upon this nanoscale dimension is
conventionally added to the definition. According to this caveat, MOSFET technol-
ogy, for example, would not qualify by simple device shrink but would at dimen-
sions permitting ballistic charge transport.

New nanoscale characterization techniques will be applied wherever they can
provide useful information, and the atomic force microscope (AFM), for example, is
relatively commonly used to correlate adhesion to surface feature measurements.
More recently, confocal microscopy has been applied to packaging research [5], but
it is especially interesting to note the development of a new instrument, such as the
atomic force acoustic microscope [6], which adapts the AFM to the well-known
technique for package failure detection.

1.2 Computer Modeling

The use of composite materials is well established for many applications, but while
overall effective macroscopic properties are satisfactory for computer modeling of
automotive body parts, for example, they are clearly inadequate for structures of
dimensions similar to the particulate sizes in the composite. The modeling of such
microelectronics (or nanoelectronics) packages must include two-phase models of
the composite structure, and this general principle of inclusion of the nanoscale
structural detail in expanded material models must be extended to all aspects of
package modeling [7]. The extended computer models can be based on either the
known properties of the constituent materials (and hopefully known at appropriate
dimensions) or the measured nanoscale properties (e.g., by a nano-indenter [8, 9] or
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AFM [10]). Molecular dynamics modeling software has been particularly useful in
the prediction of macroscale effects from the understanding of nanoscale interactions
[11]. Computer modeling is covered in more detail in Chaps. 2, 3, 4, and 5.

1.3 Nanoparticles

1.3.1 Nanoparticles: Introduction

Nanotechnology drivers are the varied ways in which material properties change at
low dimensions. Electron transport mechanisms at small dimensions include ballistic
transport, severe mean free path restrictions in very small nanoparticles, various
forms of electron tunneling, electron hopping mechanisms, and more. Other physical
property changes going from the bulk to nanoparticles include:

• Melting point depression, i.e., the reduction of metal nanoparticle melting points
at small sizes [12], although this is unlikely to be a factor in packaging applica-
tions with even 10% reductions typically requiring dimensions under 5 nm [13]

• Sintering by surface self-diffusion, which is thermally activated, with net diffu-
sion away from convex surfaces of high curvature [14]

• The Coulomb blockade effect, which requires an external field or thermal source
of electrostatic energy to charge an individual nanoparticle and is the basis of
single-electron transistor operation [15]

• Theoretical maximum mechanical strengths in single grain material
structures [16]

• Unique optical scattering properties by nanoparticles one to two orders smaller
than the wavelength of visible light [17]

• The enhanced chemical activities of nanoparticles, which make them effective as
catalysts, and other effects of the high surface-to-volume ratio

Chapter 6 considers nanoparticle properties in more detail.

1.3.2 Nanoparticles: Fabrication

Noble metal nanoparticles have been fabricated by an ultrasonic processing tech-
nique [18] and Ag/Cu with “polyol” [19]. Alternatively, a precursor may be used,
e.g., AgNO3 for Ag nanoparticles, and there are techniques to control the particle
shapes, e.g., spherical, cubic, or wires [20]. Good dispersion and smaller
nanoparticles are achievable with ~60 MHz ultrasonic agitation [21]. Nanoparticle
fabrication is reviewed in Chap. 7 and specifically Ag nanoparticle fabrication
in [22].
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1.3.3 Nanoparticles: Embedded Capacitors

For a planar capacitor of dimensions Lx, wy, and tz in the x, y, and z directions,
respectively, the capacitance, C, between metal contact plates of area Lx x wy at
z ¼ 0 and z ¼ tz (for tz << Lx, wy) is C ¼ ε(Lx x wy)/tz where ε is the dielectric
constant. In microelectronic systems, substrate area is precious, even when one can
move passive components from the PWB surface. To increase C for a given area (lx x
wy), one must shrink the thickness tz. As tz approaches the nanoscale, any particles in
a composite dielectric must be smaller still.

The move toward embedded passive components at both on-chip and PWB levels
has also prompted a search for high dielectric constant materials for low area
capacitors. High dielectric constants can be achieved by the inclusion of high
dielectric constant particulates and minimal thickness. The latter requirement pushes
one toward nanoscale particulates, with examples of the former covering ceramic
[23–26], silicon [27], and metal [28–32]. The ceramic particles are generally barium
titanate, e.g., applied to organic FETs with composite k around 35 [24]; in such
materials, the particle surface energy must be reduced to avoid aggregation [25].

The target k is 50–200, and while k~150 has been achieved, it is at the expense of
high leakage (dielectric loss.) Similar structures have been studied in the past as
“cermets,” (ceramic-metal composites,) for high-resistivity materials for on-chip
resistors [33], which conduct by electron tunneling between particles. At low fields,
the nanoparticles can act as Coulomb blocks to minimize DC leakage if they are
sufficiently small [27], but still do not eliminate it at finite temperature [34]. It is the
AC performance which is more important, however, and inter-particle capacitance
will bypass the block unless pseudo-inductive effects develop at capacitor thick-
nesses which permit even short nanoparticle chains [35].

An alternative approach to leakage is to use aluminum particles, to take advantage
of the native oxide coating [30], with k~160 achieved [31]. Ag/Al mixtures have also
been studied [32].

Design, fabrication, and testing of commercial BaTiO3-based embedded capac-
itors are described in [36], while [37, 38] describe two alternative techniques for
embedding the BaTiO3 particles in the polymer. In [37] hyperbranched polymer
shells are formed around the nanoparticles with methyl methacrylate added to
enhance cross-linking between them, and in [38] the composite is formed by
electrospinning polymer fibers containing the BaTiO3. (Electrospinning is described
in Chaps. 12 and 21). In [39] the BaTiO3 is in the form of nanorods. Smaller BaTiO3

nanoparticles (~6 nm) exhibit higher breakdown strengths and lower loss factors
than larger ones (~90 nm) but with lower dielectric constants [40].

See also Chap. 8.
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1.3.4 Nanoparticles: Embedded Resistors

See also Chap. 9.
For the same dimensions as specified for the capacitor above, the resistance, R, of

an embedded resistor is R ¼ ρ.Lx /(wy x tz), where ρ is the resistivity, often written
R¼ (ρ/tz) x.(Lx /wy), where ρ/tz is termed the surface resistivity in Ω/square and Lx /
wy is the number of “squares” along the length Lx of the resistor. Again, to minimize
the x-y area, the thickness tz is driven down to the nanoscale for high surface
resistivities with a low (ideally zero) temperature coefficient of resistivity (TCR)
being also required. Thin-film resistor materials include alloys (e.g., Ni/Cr, Ni/P),
polymer or ceramic/metal composites (cermets) (e.g., C/epoxy, Cr/SiO2),
conducting polymers (e.g., coating various filler nanoparticles [41]), and others
such as TaN [42, 43]. The ratio of TaN to Ta3N5 can be controlled by the N2 in
the sputter deposition chamber, affording some control of the TCR <0. Most cermet
films balance the positive TCR of a continuous metallic percolating cluster phase
against the negative TCR of an electrostatically activated tunneling process between
isolated nanoparticles. In a Ag/Ta3O5 cermet [44], a large negative Ta3O5 TCR is
transformed into a near-zero positive TCR by the Ag content, apparently even as
isolated nanoparticles.

Note that thermally conductive materials have very similar structural require-
ments to the passive components, with metallic or SiC nanoparticles as fillers [45].

1.3.5 Electrically Conductive Adhesives

The addition of smaller μm diameter silver powder to 10 μm silver flakes in isotropic
conductive adhesives (ICAs) reduces resistance by inserting bridging particles
between the flakes. The simple addition of nanoparticles does not improve conduc-
tance, due to mean free path restrictions and added interface resistances, and the
same principles limit the performance of alumina-loaded thermal composites
[46]. The addition of silver nanoparticles does achieve dramatic reductions, how-
ever, by sintering wide area contacts between flakes [47], a principle also applicable
to via fill [48, 49]. Filler nanoparticle sintering can also improve anisotropic con-
ductive adhesive performance [50], aided by contact conductance enhancement by
the addition of self-assembly molecular surface treatments [47, 51, 52]. Sintering
effects have also been shown to improve contacts in materials with sufficiently low
filler content as to be regarded as non-conductive adhesives [53]. When silica
nanoparticles are added to a Cu-powder/Cu-epoxy ICA [54], they can inhibit crack
propagation and improve adhesive strength. Ink-jet printable adhesives [55] would
be another significant step forward, possibly achievable with nanoscale fillers that
are less likely than micro-flakes to clog nozzles.

Nanoparticles in ICAs and anisotropic conductive adhesives (ACAs) are consid-
ered further in Chaps. 11 and 12.
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1.3.6 Nanoparticles: Sintered Interconnect

Surface electrical interconnect for board and package levels can be achieved by
screen printing and sintering nanoscale metal colloids in suspension [56–58], and
now ink-jet-printed conductors are relatively routine, especially for flexible polymer
substrates [59–61]. Electrical continuity is established by sintering, e.g., of 5–10 nm
silver particles [62–65], and sintering may be accomplished at room temperature
[66–68], by laser [69] microwave [60] or oven heating, or by plasma immersion
[59]. Resistivities as low as around 4–6 μΩ.cm are achievable by annealing at
200–300 �C [70, 71]. Lower-temperature processing is important for polymer/flex
substrates [72, 73] but results in higher porosity [74, 75], which translates to higher
resistivities [61]. The changing electrical and mechanical properties as the sintered
material is aged or stressed have been correlated with changing pore sizes and shapes
[76–79].

Stretchable circuits are more than just flexible and are directed more to wearable
applications but can still find applications in packaging. Ag nano-ink can be stamped
on a stretchable substrate in conductive horseshoe chain patterns that can stretch like
a concertina [80] with less than 10% resistance increase at 50% strain. The tradi-
tional bimodal Ag flakes and nanoparticle filler are compared with nanowire and
dendrite fillers in polyurethane in [81].

Sintered Ag nanoparticles can also be used for die-attach [82] or thermal inter-
faces [83–85]. In the last example, 10 nm Ag nanoparticles nucleate on the surface of
Ag-oxalate microparticles and bond by sintering, achieving thermal conductivity of
100 W/mK [85]. As a variation, magnetic composite films (e.g., of Co/SiO2 in BCB
and Ni/ferrite in epoxy) have been screen-printed for antennas [86]. Sn/Ni bumps
have also been grown on Sn from a nanometer Ni slurry [87]. Ag nano-ink deposited
on a stepped via [88] has proven to be more resistant to shrinkage and cracking than
in a simple barrel via [89].

With maturity of the nano-Ag technologies, attention has switched to the possi-
bility of sintered copper interconnects, which offer a cheaper alternative to Ag, but
with the problem of oxidation, since unlike the silver oxides, the copper oxides are
insulating. Again, the emphasis is on flexible polymer substrates [72, 73], and the
research extends, for example, to Ag-coated Cu nanoparticles [71]. Generally, the
oxide problem is avoided by nanoparticle fabrication in solution and processing in
controlled inert atmospheres [90, 91] or by using the surface oxide as a temporary
protective coating [92]. In other cases, e.g. [93], the solution chemistry can provide a
protective organic coating automatically. As with ICAs, a bimodal distribution of
copper nanoparticles and microparticles can yield lower resistivities than either alone
[94, 95].

With copper interconnect prevalent on-chip, and growing interest in 3D chip
stacking, copper nanoparticles are finding application in direct Cu-Cu bonding, with
sintered nanoparticles bonding to each face [96–100]. Silver nanoparticles have also
been used for Cu-Cu bonding [101, 102] but of course run the risk of Kirkendall
voids.
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An innovative interconnection technology based on nanoporous materials is
described in [103, 104]. In these papers, the Ag is etched out of an Au/Ag alloy
leaving a porous sponge-like structure of Au behind. Two such porous contacts can
bond at low pressure (10 MPa) and low temperature (200 �C) with “a similar
characteristic as sintering processes” [103]. More recently, the concept has been
extended to nanoporous Cu contacts synthesized from a Cu/Si alloy which is
sintered in a N2 atmosphere [105].

The field of sintered nanoparticle interconnect has been reviewed recently in
[106] and in Chaps. 13 and 14.

1.3.7 Nanosolder

Often, “nanosolder” papers turn out to be about sintered interconnects, but there are
examples on nanosolder in the literature, based on true melting point
(MP) depression. Second-order effects include shape dependence of the decreased
and increased coefficient of thermal expansion (CTE) at smaller nanoparticle sizes
[107, 108]. For the case of a disk-like nanoparticle of radius rd and thickness t of
equal volume to a sphere of radius rs, the shape factor, defined as the ratio of the
projected surface areas of the disk and sphere (to normalize the ratio ¼ 1 for the
sphere), is rs/3 t. Clearly, the minimum particle dimension controls the MP reduction
because of the disordered surface layer thickness. For a disk of thickness t ~ rs/
5~5 nm, the disk MP reduction is 25% rather than 10% for a 5 nm radius spherical
particle. For similar reasons, the CTE of a 2.5 nm diameter spherical Fe particle
increases by about 60% with further increases for shape factors >1.

The MP depressions of solder alloys follow the same trends as for metals
[109]. Solder alloy nanoparticles have been fabricated and the MP and other proper-
ties determined [110–113], generally agreeing with theory at 5 nm and 20 nm radii.
Interestingly, the solidification temperature for a nanoparticle of given size is less
than the MP, and the variation with size is less marked [114]. In a dynamic
nanosoldering operation though, with a paste containing multiple nanosolder parti-
cles, coalescence increases both the solidification and melting temperatures as the
particles increase in size. Koppesa et al. [115] demonstrates the process as the
temperature is raised in steps. It is not clear that there is anyMP depression advantage
in this case or in [116]. Ideally, one should be able to take advantage of the shape
factor MP depression to use solder nanowires as a low-temperature solder source
[117, 118], but at 50 nm diameter [119], there is still unlikely to be much MP
depression advantage. However, in this case the temperature was raised by Joule
heating, which could provide a different advantage for solder nanowires.

As an alternative to soldering, transient liquid-phase sintering/soldering (TLPS)
has been demonstrated for joining Si wafers for 3D integration by a Cu nanorod/Sn/
Cu structure [120–122] with a fundamental process study in [123]. In this process,
solid-state diffusion leads to a high-temperature Sn/Cu IMC. Ag-nanowire bonding
has been demonstrated by solid-state wetting and subsequent atomic diffusion
between the nanowires [124].
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1.3.8 Nanoparticles in Solder

The addition of Pt, Ni, or Co nanoparticles to no-Pb Sn-Ag-based solders [125, 126]
eliminates Kirkendall voids, reduces intermetallic compound (IMC) growth, and
reduces IMC grain sizes, significantly improving drop-test performance [127]. Sim-
ilarly, Ni or Mo nanoparticles promote finer grain growth, increased creep resistance,
and better contact wetting [128]. Nanoparticles in the grain boundaries also inhibit
grain boundary sliding and thermomechanical fatigue, but a similar function can be
provided by 1.5 nm SiO1.5 polyhedral oligomeric silsesquioxane structures with
surface-active Si-OH groups [129]. One hundred nanometer Zn nanoparticles were
added to non-conductive films employed in Sn-Ag soldering of Cu pillars to lower
intermetallic compound (IMC) formation [130], but note that Amagai found no IMC
reduction with Zn addition to solders [127, Chap. 15].

Other nanoparticles added to solder include Ag and TiO2 for improved substrate
wettability and adhesion [131–133], alumina [134], silica, diamond, Bi2Te3, and
La2O3 for mechanical strength [135–138]. The TiO2, diamond, and Bi2Te3 also
inhibited IMC formation, while the La2O3 also improved wettability and
thermomechanical reliability, as demonstrated by resistance to thermal shock. The
silica was bound to the solder matrix with POSS trisilanol [135]. Ag nanoparticles
can precipitate out of the solder matrix, degrading the solder joint over time
[139]. The effects of nanoparticles in solder have been reviewed in [140].

1.3.9 Nanoparticles: Nanocomposites

The key advantage of nanoscale silica particles in flip-chip underfill formulations is
that they resist settling [141]. They also scatter light less than the larger traditional
fillers, permitting UV optical curing and providing a dual photoresist function from a
single material [142] and other advantages of optical transparency [143]. The higher
viscosity of the nano-filled material can be reduced by silane surface treatments
[144]. Further improvement is possible with a subsequent second layer
[145]. Mesoporous silica, where the μm scale aggregates are characterized by a
high nanoscale surface-to-volume ratio, has also been shown to be better than
similarly sized solid particles [146]. One hundred nanometer silica particles have
also been incorporated into a non-conductive film, which effectively serves as an
underfill [147]. Underfills also serve as thermally conductive paths, and the thermal
conductivity can be raised an order of magnitude by the addition of 10 nm Ag
nanoparticles to underfill with 10–40 μm silica, BN, or diamond fillers to provide
enhanced thermal contact between the larger particles [148]. Fabrication involves
nanoparticle self-assembly to create the inter-particulate necks.

Nanoparticle-filled composites can be used as encapsulants. The addition of a
bimodal dispersion of 8–10 μm bentonite with 12 nm SiO2 to epoxy slows moisture
absorption in a humid environment significantly [149]. Two to six nm nanoparticles
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of TiO2 in a silicone LED encapsulant increase the refractive index and reduce the
internal reflection light at the GaN/encapsulation interface [150]. A silica bimodal
distribution of 1 μm SiO2 powder and �50 nm nanoparticles has been laminated
with a resin film to form circuit boards that outperform the traditional FR-4 in CTE,
storage, and flexural moduli and warpage [151].

1.4 Carbon Nanotubes (CNTs)

1.4.1 CNTs: Fabrication

CNT growth can be accomplished for both electrical and thermal applications by
chemical vapor deposition [152], with satisfactory solder wetting of the CNTs for
electrical contacts. One usually requires bundles of aligned CNTs, whether large or
small diameter SWCNTs (single-wall CNTs) or MWCNTs (multiwall CNTs.) The
bundles morph from SWCNTs to MWCNTs as one increases the catalytic particle
sizes to grow larger diameter SWCNTs, and small diameter SWCNTs need low
growth rates [153]. Similarly, bundle densities are limited at the low end by
alignment limitations and at the high end by achievable catalytic particle densities
[153]. 950 �C is usually quoted as the minimum growth temperature for SWCNTs,
with lower values quoted for MWCNTs. In fact, SWCNTs can be grown at lower
temperatures (down to 365 �C [154]) but at the expense of greater defect densities.

One approach to minimizing CNT bundle resistance and maximizing current
density, given the practical constraints above, is to densify the bundles post-growth.
This is usually accomplished by some sort of organic liquid/vapor [155–158], but
deposited solid-phase materials have been demonstrated too [159].

Most fabrication techniques yield vertical z-axis interconnect bundles, but for
horizontal (x- or y-axis) interconnects, one can either realign a vertical bundle by
liquid surface tension [160] or grow the bundle in a horizontal electric field at the
outset [161].

CNT synthesis and characterization are covered in Chaps. 17 and 18.

1.4.2 CNTs: Composites

CNT/polymer composites have potential electrical, mechanical, and thermal appli-
cations in electronics packaging [162]. The key to achieving the target properties in
such composites is effective random CNT dispersion, requiring a suitable choice of
liquid agent [163], ultra-sonication [164], MHz sonication with an AC electric field
[165], or similar techniques. The primary result of such composites is an improve-
ment in Young’s modulus [164] and other mechanical properties [166], but the
combination of CNTs with carbon microfibers can be much more effective [167].
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For electrical applications of randomly dispersed CNT/polymer composites, one
needs good electrical contacts between the cylindrical CNT surfaces [168]. Modeling
can include CNT volume fraction, diameters, and lengths to determine the percola-
tion threshold [169], but it has been shown that CNT flexibility must be taken into
account [170]. Also, the CNT-CNT contact resistance is typically unknown in such
simulations. Experimentally, the CNTs can be coated with Ag, for example, to
reduce this resistance [171]. When CNTs are added to a conventional Ag-loaded
ICA, electrical and thermal conductivities and reliability lifetime can all improve
[172]. Acid etching the CNTs to introduce surface defects before mixing to form a
CNT/alumina composite further improves the mechanical properties [173], and the
same effect is expected with polymers with the defects improving CNT-matrix
bonding.

CNTs have also been mixed with carbon black in PDMS to provide low-resistance
flexible electrodes (up to ~80% strain) for wearable microsystems [174].

If an aligned CNT/polymer composite is required, the polymer would have to be
infiltrated around the CNTs of a previously grown bundle. Studies have shown that
capillary forces can buckle the CNTs if the bundle is too long, or the CNTs are too
close together, or the (MWCNT) walls are too thin [175].

There is growing interest in CNT/metal composites for a variety of applications
[176, 177]. These include random CNT distribution within, for example, copper
interconnects for increased resistance to electromigration [178], which should work
for solder too. Another source of interest lies in the possibility of reducing the
coefficient of thermal expansion (CTE) of metals in the package, especially of
electrical interconnections of various types [179]. A major cause of package failures
is due to the thermal mismatch between the silicon chip and both metals and
polymers. CNTs (and graphene) have negative CTEs around 300 K, depending on
chirality and diameter, with different figures for axial and radial CTEs [180]. The
inclusion of randomly dispersed or aligned CNTs within a polymer, or more likely at
higher densities within a metal conductor, has the potential to reduce the CTE
mismatch to Si significantly, possibly even achieving a match.

Most of the interest in CNT/metal composites is for copper, but Ag/CNT com-
posites have been made for interconnects on highly flexible substrates by the
heterogeneous nucleation of Ag nanoparticles on CNTs [181]. Further growth of
the Ag bonds the CNTs together, retaining the flexibility to survive longer flex
cycling at lower resistances than conventionally deposited Ag films. Similar pro-
cesses, e.g., electroless deposition, have been used to metallize CNTs to form hybrid
CNT/Cu nanowires [182–184]. Printed Ag/CNT composites (Ag flakes-/Ag nano-
particle-decorated CNTs) have been demonstrated for conformally coated contacts
and TSV fillers [185].

In CNT/Cu composites, the mechanical properties are regularly improved [186–
189], but both decreases [187] and increases [188, 189] in electrical and thermal
resistivities have been reported.

The addition of carbon nanotubes (CNTs) to solder can also have beneficial
effects, e.g., 30–50% improvements in tensile strength [126, 190] and a 40%
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increase in reliability lifetime with an aligned CNT structure [191]. Both increased
[192] and decreased [132] wettabilities have been observed.

Aligned CNT/Cu composites are attracting interest for 3D TSV interconnections
for chip stacking; this topic is explored below.

1.4.3 CNTs: Thermal

The high thermal conductivity of CNTs is being exploited for microelectronics chip
cooling both directly in conductive cooling and indirectly in convective cooling
systems [193, 194]. It appears that aligned CNTs offer the best hope for an order of
magnitude improvement over current thermally conductive materials [195]. The
thermal properties of vertically aligned CNT systems are being studied [196–
198]. For conductive systems, the key is to establish CNT alignment [190], since
the thermal conductivities of random arrays (of CNTs and carbon fibers alike) fall far
short of expectation, showing no advantages over conventional materials, often also
because of CNT fracture at the substrate [199]. In one of the most advanced
techniques, vertical CNTs are first grown on both the aluminum heat sink and silicon
chip surfaces, which are then positioned ~μm apart in a CVD furnace, enabling the
CNTs from the two surfaces to grow further and connect with each other [190]. Com-
posites incorporating CNTs have also been studied for thermal interface materials,
e.g., CNT/carbon-black mixtures in epoxy resin [200]. The use of a liquid crystal
resin matrix can impose structural order on the CNT alignment to yield a sevenfold
improvement in thermal conductivity [201]. Electrospun polymer fibers filled with
CNTs, or with SiC or metallic nanoparticles, have shown advances in both mechan-
ical and thermal properties [202, 203].

So far, convective CNT cooling has been limited to the use of μm-scale clusters of
vertically grown nanotubes [204–206]. These clusters define micro-channels for
coolant flow which look very much like the metal or silicon cooling fins they aim
to replace (Fig. 7 in Chap. 24) with similar thermal performances. The problem is
that the flowing coolant is only in contact with the outermost CNTs of the clusters,
and the internal CNTs are separated from each other. The system has been modeled
[193], and one solution is to spread the CNTs apart to permit coolant contact with
each one [204], but another is to thermally connect the CNTs by secondary lateral
CNTs [207] or graphitization [208]. The problem then is whether individual CNTs
can withstand the coolant flow pressure without detaching from the substrate. There
is also a high thermal resistance between the CNT and the epoxy used for the CNT
transfer process [209, 210]. The choice of the cooling thermo-fluid is also important,
with suspensions of CuO [211], alumina [212], CNTs [213, 214; Cheng Z, SMIT
Center, Shanghai University, 2008, Personal communication], and plasma-treated
CNTs [215] in water all being tried. In the last case, the plasma treatment promotes a
hydrophilic CNT surface. [211] analyzes CNT fin geometries. An air-jet-cooled
CNT fin array is described in [216] with the mechanical reliability of the CNTs in
this structure examined in [217].
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A potentially revolutionary cooling system is described in [218], requiring three
closed-end CNTs aligned end-to-end. Hot electrons, e.g., above the Fermi level,
tunnel across a gap from the heated CNT to the “barrier” CNT where they lose
energy before tunneling again to the third CNT which acts as a heat sink. In this way,
energy is transferred from the heated CNT to the heat sink CNT via the barrier CNT.
The principle is described in [219] and [220], and an alternative setup is proposed in
[221]. The practical challenge would be the precise alignment and support of
the CNTs.

1.4.4 Carbon Nanotubes: Electrical

The fundamental concepts of quantum conduction in CNTs are reviewed in [222].
An important development has been the ability to open CNTs after growth

[168, 223, 224], since the open ends permit better wetting by Sn/Pb (and presumably
other metals) for improved electrical contact. Au and Ag incorporation into CNTs
and fullerenes has also been studied for electrical contacts with minimal galvanic
corrosion [225]. Metal- and carbon-loaded polymers have long been used for high-
frequency conductors in electromagnetic shielding, and both carbon fibers [226] and
multi-walled CNTs have been studied in polymer matrices for the purpose [227–
229], but CNT replacement of metal filler in isotropic conductive adhesives [230–
232] does not even match the electrical conductivity of standard materials
[232, 233]. However, 10–50 μm long Ag/Co nanowires of 200 nm diameter can
be maintained in a parallel vertical orientation by a magnetic field, while polymer
resin flows around them [234], to form an anisotropic conductive film for z-axis
contacts [235–237]. CNT interconnection schemes are also under intense study
[238–241], with μm-scale CNT bundles successfully developed as flip-chip
“nanobumps” [242–244]. The expectation is that CNT bumps will outperform solder
by being stress-free with no reflow step, by the absence of electromigration and by
being more flexible. The mechanical reliability of CNTs as bumps and other forms of
interconnect has been studied [217]. A “Velcro” form of CNT-to-CNT interconnect
has been demonstrated [207], between CNT bundles on a flip chip and
corresponding bundles on the circuit board, resistivities of 0.05–0.1125Ω.cm having
been achieved. Further in the future, RF wireless interconnect has been proposed
using CNT antennas [245].

In a modeling paper [246], it has been shown that the increase in MWCNT
conduction channels with temperature can offset the increased electron scattering
to yield a negative temperature coefficient of resistance (TCR) for shorter MWCNTs
up to ~1 to 10 μm long, depending on diameter.

A number of performance comparisons of CNT interconnects with Cu (and
graphene) [247] have been made. The broad conclusion is that CNT interconnects,
either MWCNTs or tight bundles of SWCNTs, are only competitive with Cu
conductivity at longer lengths where the CNT ballistic length exceeds the electron
mean free path in Cu [238, 248, 249] and for signal delay at �50–100 μm. These
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conductivity comparisons are typically made at DC, and it is the high-frequency
performance that is more important for signal transmission.

Due to the high kinetic inductance, there is negligible redistribution of current at
high frequencies, i.e., negligible skin effect, and the CNT bundle resistance does not
increase at high frequencies as it does for Cu [250–252]. High-frequency CNT (and
graphene) modeling is reviewed in [253] and [254] which also describe CNT
implementations of capacitors and inductors.

A continuing problem with CNT interconnects, e.g., in TSVs, is the interfacial
resistance to metallic conductors, which may make up 80% of the total interconnec-
tion resistance [255, 256]. The basic problem is that even a metallic CNT forms a
Schottky barrier with the metal [168, 257] which may still provide an acceptable
contact between high work function metals to p-type CNTs or low work function
metals to n-type CNTs. Other techniques include deposition of graphene on the CNT
as a graphitic interfacial layer [258] or rapid thermal annealing, possibly by Joule
heating [259]. An AuPd alloy reportedly matches the CNT work function to achieve
a low interface resistance [260]. A high resistance to Ti is attributed to oxidation,
which is avoided by substituting TiN, achieving 0.59 Ω, but the deposition of Ti
between the CNT and Cu apparently presents no problem as a top contact
[261]. Ti/TiN is also used in [262] with an Al top contact. Ag, Au, and Pt contact
resistances are reported in [263], which states that Ti, Cr, and Fe are better than Au,
Pd, or Pt because of the work functions. In another work, Cr/Ni/Cu is sputtered on to
the CNT ends, which then form a strong thermocompression bond to a Cu substrate
[264]. The CNT resistance to Au can be reduced by about 11% by the electron beam-
induced deposition of W [265], and the CNT can be welded on to a favorable metal
for wetting the CNT, e.g., Ni, with the metal wetting the CNT, so C atoms are
effectively embedded in the metal [266].

Most of the CNT interconnect studies above have been on free-standing vertical
bundles, but these can also be encased in deposited silicon oxide or nitride with no ill
effects [267]. There are also obvious benefits to encasing a vertically aligned CNT
bundle in a metal, e.g., Cu, but also possibly Ni, Co, Fe, or Ag. After conformal
deposition of pyrolytic graphite to stabilize the bundle, it is infused with a metal salt,
which is reduced with H2 [268].

With the current focus on packaging for 3D integration and chip stacking, it is a
short hop from vertical CNT bundles for electrical connections to the more specific
application in TSVs [269–272]. CNT TSVs (Fig. 1.3) [273] have been fabricated by
various techniques [273–280]. The process generally follows a sequence of ion
etching a blind via in the Si substrate with the subsequent deposition of a seed
layer, usually of Fe nanoparticles, on the bottom of the via. The CNT bundle then
grows on the seed nanoparticles by CVD from a suitable hydrocarbon gas. For
SWCNTs, the diameter is controlled by the nanoparticle size. The top surface is then
typically metallized or planarized, while the Si substrate is thinned from the back to
provide access to the bottom of the CNTs. One of the most dramatic pictures in the
literature is of a single 15 nm diameter MWCNT in a 35 nm via [281].

To compete with Cu TSVs’ electrical properties, the CNT bundles need to be
densified to provide as many CNTs per unit area as possible. In addition, CNT
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growth in the blind via as described above limits the growth temperature and
introduces unwanted defects into the CNTs. To combat both of these problems,
CNTs have been grown as free-standing bundles, which were then densified and
transferred to the target wafer by inserting them into the pre-etched vias [157, 158,
282–285].

There is no lack of electrical modeling of CNT TSVs [250, 286–293]. Some
model a TSV pair as a transmission line [288–290], some present results in terms of
scattering parameters [287, 291–293] while others focus on delay time and fre-
quency response [290], but only a few address skin effect in the CNT TSV context
[250, 287]. As mentioned above, the absence in CNTs of the high-frequency

Fig. 1.3 CNT vias at
various magnifications. (a)
and (b) show CNT bundles
in the vias, while (c) shows
the CNTs in a bundle.
(Reproduced from Xu et al.
[273], with the permission
of AIP Publishing)
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resistance increase in metals due to skin effect is a major advantage, besides which
CNTs have demonstrated high current stability [154] due to the absence of
electromigration. Electrically, the CNT TSV may not perform much differently
than Cu- or W-filled TSVs, but there are further advantages from higher thermal
conductivity and thermal stability [289]. This latter point comes from the issue in
metal-filled TSVs of metal “pumping” (Fig. 1.4 [294]) which can open the via to
moisture or fracture metal contacts at the ends, a problem due to the extreme CTE
mismatch between Si and metals, and mitigated by CNTs’ closer match to Si. It has
been shown that stress at the surface of Cu TSVs is the result of this CTE mismatch
and is largely absent in CNT TSVs [295].

The Cu-CNT composite TSV seems to be a logical step to combine the advan-
tages with a vertically aligned CNT bundle embedded in Cu. The two main fabri-
cation approaches, both by electroplating the Cu into pre-grown CNT bundles, are
represented by [296] and [297]. In [296], the CNTs are grown in a blind via, and an
electroplating solution is added after CNT densification, which promotes accessibil-
ity of the solution to the CNTs. In [297], the CNTs are grown and the TSVs etched
separately; the CNT bundles are sputtered with Ti (10 nm) and Au (20 nm) before
being threaded into the TSVs for electroplating. There was no densification step in
order to preserve the CNTs’ pristine state for the sputter deposition and Cu nucle-
ation. In the first case [296], the TSV resistances were all greater than for the
equivalent Cu TSV, possibly indicating incomplete Cu plating along the entire
length of the via, although the Cu seemed to be as intended at both ends. In the
second case, [297], the resistance was as calculated, with the Cu reducing the CNT
bundle resistance.

In theoretical modeling of the high-frequency performance, the Cu still provides a
skin effect, which is reduced by increasing CNT content [298]. The TCR is reduced
in comparison with a Cu TSV, as expected, as is the CTE [297], with an order of
magnitude less stress in the silicon. It has been shown that the axial CTE can exactly
match silicon’s, for zero Cu pumping, at 29% CNT content by volume [294]. At
29%, the radial CTE is also reduced to about 2/3 of the Si CTE. It has also been
shown that for a similar Cu/CNT structure, but in thin-film form, the current-carrying
capacity is increased by the CNTs to 100x the Cu value [299].

A slightly different Cu/CNT TSV was used in [300] to model its mechanical
properties, namely, with a Cu cylinder surrounding a separate CNT bundle, under

Fig. 1.4 Copper “pumping” in a TSV: as fabricated at temperature T0; copper extrudes from the
TSV at temperature T > T0 due to the Si-Cu CTE mismatch; gap appears between the copper and
silicon when the temperature returns to T0 [294]
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bending and thermal cycling. Another variation in the form of a tapered via has been
proposed as more effective in the Cu electroplating step [301] and has been shown to
provide a reduced delay over the cylindrical geometry, presumably due to the lower
average capacitance, although the delays are slightly different depending on signal
direction.

The electrical properties of CNTs (and graphene) are covered extensively in
Chap. 27, and further coverage can be found in [302–310].

1.4.5 Nanowires

Nanowires are covered in Chap. 21 and in Chap. 22, which focus on anisotropic
conductive film (ACF) applications and carbon nanofibers (CNFs) in [311]. CNFs
cannot compete with CNT properties but have the advantage of lower synthesis
temperatures. Applications include as ICA fillers [236, 237, 312–314] and for z-axis
connections within ACFs [234, 315].

Ni nanowires have also been employed in a reusable test probe system [214]
where a nanowire bundle is shown to have less contact resistance than a simple
planar pad.

1.5 Graphene

1.5.1 Graphene: Introduction

Graphite has long been used as a lubricant, an electrical conductor (e.g., for the
carbon arc in old movie projectors) and as a thermal conductor (e.g., in pastes) as
well as in the ubiquitous “lead” pencils, and children learn in grade school that it
lubricates because the single layers of carbon atoms can slide over each other. It was
the painstaking exfoliation of those 2D planes of C atoms down to a single atomic
layer that spawned the still expanding area of graphene research. In nanopackaging,
there are three main application areas that exploit three main attributes: mechanical
strength (mainly in composites) and high thermal and electrical conductivities. In
addition, its impermeability provides possible applications as a diffusion barrier,
e.g., to prevent the galvanic corrosion of Cu in contact with Ag-ICA [316].

Once graphene had opened up the concept of 2D atomic monolayers, the search
began for others, most noticeably 2D Si (silicene), Ge (germanene), P
(phosphorene), hexagonal-BN (h-BN), MoS2, and (recently) Si2BN [317]. Some
of these are truly 2D, while others are buckled, i.e., the monolayer atoms are not
actually coplanar.

See Chaps. 24 and 25 for more on graphene synthesis and characterization.
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1.5.2 Graphene: Nanocomposites

The properties of graphene/polymer composites are reviewed in [318] and compared
with CNT and silica nanoparticle (and nanoclay) polymer composites in [166] which
are focused on mechanical properties. An intriguing concept is the application of
dilute-functionalized graphene nanosheets as “self-healing” agents in a graphene/
polymer composite to repair cracks and other defects under infrared laser
irradiation [319].

1.5.3 Graphene: Thermal

The thermal properties of graphene are compared with those of other carbon
allotropes in [320], which highlights the wide range of data in the literature. The
paper notes that pyrolytic graphite challenges single crystal diamond’s thermal
conductivity at room temperature and above and leads one to conclude that graphite
should not be ignored as a lower-tech lower-cost candidate for efficient electronics
cooling. At 4000–6000 W/mK, graphene seems to display the most impressive
potential, but these results, obtained for a single suspended sheet, are not maintained
in contact with another material, even other graphene sheets. The results for
suspended few-layer graphene (FLG) degrade to high-quality graphite’s values
(~2000 W/mK) at between three and four monolayers and to standard graphite
values (~1000 W/mK) at eight monolayers, which is not surprising given that
graphite is multilayer graphene. Single and FLG values range ~50 W/mK at
0.7 nm thickness to 1000 W/mK at 8 nm when sandwiched between dielectric layers
as they would be in an on-chip or SiP heat-spreading scenario, i.e., less than
graphite’s 2000 W/mK.

It is noted in passing that the thermal conductivity of graphene with a reduced
content of the 13C allotrope (0.1% vs. the natural 1%) is increased by ~35% [321].

The conventional thermal dissipation pathways are metal, e.g., lead, tracks, vias,
heat sinks, and thermal ladders, so it would be logical to try to improve their
performance by adding graphene. The effects of oriented lamellar and randomly
oriented single-layer graphene (SLG) and multilayer graphene (MLG) in Cu have
been calculated, for both along and perpendicular to the graphene sheets in the lamellar
case [322]. The effects are positive only for the lamellar SLG case along the graphene
layer direction and for oriented SLG andMLGparticulates. Themechanical properties
and contact angle are improved by the addition of graphene sheets (decorated with Ni
nanoparticles) to solder [323], as for CNT additives [Chap. 20, 132, 192].

Graphene sheets decorated with Ag nanoparticles have been added to Ag/epoxy
ICAs with Ag flake/powder fillers to enhance the ICA thermal conductivity,
reaching ~8 W/mK at 12wt.% graphene/Ag [324] and 3 wt.% graphene [325].

Porous heterostructures have also been developed. In one, conducting graphene
and insulating h-BN foams are compared [326]. The foam is seated between the chip
and circuit board and compressed to 1–2 μm thickness. The advantage of the
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nanoscale porous features and the compression is that excellent contact is possible at
both surfaces, accommodating asperities and achieving thermal conductivities
~80 W/mK. In another approach, graphene is deposited on the surfaces of porous
Cu, yielding ~210 W/mK [327] to ~230 W/mK [328].

Most predictions of graphene’s function in chip/package cooling assume it will be
in 2D heat spreaders for hotspot mitigation [329, 330]. In [331] and [332], silane-
functionalized graphene oxide is inserted between the package hotspot and the
graphene-based film to improve thermal contact. Graphene and h-BN heat spreaders
are compared in [333]. The reader is referred to Chap. 27 for more details.

Graphene can be controlled as p-type or n-type depending on the polarity of a
back-gate bias, so an effective PN junction can be created. With a PN junction, the
possibility of thermoelectric cooling by the Seebeck effects becomes possible, as
proposed in [334]. The thermoelectric figure of merit, ZT, is given by:

ZT ¼ S2T

ρKt
,

where S is the thermoelectric power, T is the absolute temperature, ρ is the electrical
resistivity, and Kt is the thermal conductivity. The problem is that Kt is high in
graphene and also that ρ can be high due to surface scattering, both reducing ZT. It
turns out that ZT.Kt is greater in graphene on h-BN (e.g., on a 10 nm h-BN spacer)
than on SiO2, and the feasibility of Peltier cooling has been demonstrated [335]. The
active cooling boosts the passive cooling of the structure by 10%.

Porous heterostructures have also been developed. In one, conducting graphene
and insulating h-BN foams are compared [326]. The foam is seated between the chip
and/or circuit board and compressed to 1–2 μm thickness. The advantage of the
nanoscale porous features and the compression is that excellent contact is possible at
both surfaces, accommodating asperities and achieving thermal conductivities
~80 W/mK. In another approach, graphene is deposited on the surfaces of porous
Cu, yielding ~210 W/mK [325] to ~230 W/mK [328].

Chapter 27 covers the application of graphene in microelectronics cooling in
more detail.

1.5.4 Graphene: Electrical

The theory behind the electrical properties of both CNT and graphene nanoribbon
(GNR) interconnects is reviewed in [253] and [336, 337]. Theoretically the mean
free path (ballistic length) of a GNR is λGNR� 450w, where w is the GNR width, but
in practice λGNR ~1 μm due to defect scattering, but even for λGNR ~5 μm, single-
layer GNRs could not compete with Cu interconnect. Moving on to multilayer GNRs
(MLGNRs), there is the problem that they degrade to graphite for more than few
layers. The solution is that the graphene layers must be kept apart in an intercalated
structure. AsF5 [253, 336, 337] and FeCl3 [158, 338, 339] are mentioned. The
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in-plane resistivity of AsF5-intercalated graphite is quoted as 1.6μΩ.cm, or a little
less than Cu’s with λGNR ¼ 1.03 μm [253], with 21.45μΩ.cm for FeCl3 [339]
(or 20 Ω/square as a transparent electrode) [338]. The arguments pertaining to the
kinetic inductance and skin effect mimic those for CNTs.

Graphene-wrapped Cu interconnects have been proposed with tri-layer graphene
deposited on one, two, and all four sides of a square Cu conductor [340]. The current
flows mainly in the central Cu at the ends due to higher graphene-Cu contact
resistance than Cu-Cu but mainly in the graphene along most of the interconnect
length, reducing the current density in the Cu and reducing the chances of
electromigration failure. The graphene also conducts heat away from the Cu, further
increasing reliability.

There are proposals in the literature for all carbon interconnects with MLGNR x-y
plane tracks and CNT vias [158, 341]. Such a system would require making reliable
low-resistance contacts from the CNTs to the graphene sheet, possibly by introduc-
ing defects into the graphene surface, e.g., by removing C atoms or depositing seed
nanoparticles, and growing the CNTs from there. The electrical and thermal perfor-
mances of such a MLG/CNT via system are simulated in [341] and compared
with Cu.

At the “low-tech” application end, surface resistivities as low as 80 Ω/□ have
been obtained by direct writing MLG flakes in quick-drying isooctane [342].

The electrical properties of graphene (and CNTs) are covered extensively in
Chap. 27.

1.6 Nanoscale Structures

The incorporation of nano-diamond particles into an electroless Ni film coating on
an electrothermal actuator [343] can improve cantilever performance by changing
the thermal and mechanical properties. Sometimes one can get to the nanoscale by
just continually shrinking existing technology, and in a truly impressive develop-
ment, the micro-spring contacts originally developed at PARC-Xerox have been
downsized to 10-nm-wide cantilevers, still 1 μm long, for biological sensing [344]
(Fig. 28.14 in Chap. 28). Nano-imprinting technology is also being used to fabricate
optical interconnect waveguides in organic PCBs [345].

1.7 Nano-interconnects

The “nano-interconnect” terminology is applied to interconnect structures which are
clearly μm-scaled [346–353]. The ITRS Roadmap called for 20–100 μm pitch
interconnects for nanoelectronics systems of feature size under 100 nm [349],
which has prompted studies of nano-grain solders [346] or copper [348], nanocrys-
talline copper and nickel [349], and nanoscale via fillers [347], all for applications at
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around 30–35 μm pitch [346, 348]. Some nano-interconnect options are reviewed in
reference [351]. Other technologies can be included in this group, too, e.g., metal-
coated polymer posts on a similar scale [351] and embedded micro- or nano-
electrodes for biological flow sensing [353]. Control of the interfacial surface charge
on the nano-electrode in contact with the fluid can be used to control the flow
[353]. Since the ITRS roadmapping program ceased, the IEEE Electronics Packag-
ing Society (EPS, formerly CPMT) has undertaken responsibility for the electronics
packaging roadmap with the Heterogeneous Integration Roadmap:

https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
There are many ways to fabricate metallic nanowires for interconnections, but

one of the newest is to utilize DNA as a framework. The DNA is activated by
metallic cations, and metallic nanoparticles are added by electroless deposition to
form conducting Cu or Au nanowires of ~20 nm diameter [354, 355].

Skin effects are canceled for high-frequency interconnects by balancing ferro-
magnetic and non-ferromagnetic conductors within the contact [356]. A polymer
doped with ferromagnetic material (e.g., Co, Ni, etc.) is electrospun onto a substrate
seeded with Cu, and after suitable lithographic patterning, Cu is electroplated into
the structure to form a porous contact.

1.8 Plasmonic Interconnects

As nano-CMOS circuits and devices shrink on-chip, so do the metal interconnection
lines, increasing the resistance, R, and the RCgate time constant becomes the limiting
factor in circuit speeds rather than the transmission line delay. As a result, surface
plasmon polariton transmission is being studied as an alternative to electronic
conduction interconnects [357–359], since the wave rides on the metal surface
(or at the metal-insulator interface) [360]. Even though interconnect cross section
areas are greater at the package level than on-chip, the same problem is developing
due to longer line lengths. Of course, with transmission lengths on the order of
10 μm before the signal needs a boost, the need for pumping/amplification [361] will
be greater at the package level than on-chip. Nevertheless, if the technology is
adopted on-chip, it will likely migrate to the package when mature. It is interesting
to note that surface plasmon currents have been stimulated and observed in discon-
tinuous nanoparticle films [362].

Plasmon/nanoparticle interactions are already being employed in electronics
packaging [363]. If one of a number of fine-pitch pads or solder joints must be
re-worked, it is decorated with Au nanoparticles on a graphene sheet carrier. These
nanoparticles will be heated by the surface plasmons excited by laser irradiation,
heating that specific pad/joint but leaving the neighbors unaffected.
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1.9 Miscellaneous

A relatively new development is the application of biotechnologies to electronics
packaging. Nanocellulose has been shown to be a suitable electronics substrate
material, especially for flexible applications or where transparency is required
[364]. The substrates have a smoother surface than the competitors’, and the material
assists in recycling components by being biodegradable, combustible, and readily
disintegrates in water. Biosynthesis of Ag nanoparticles from AgNO3, for example,
can be accomplished by bacterial, fungal, or plant extract interactions, possibly
assisted by microwaves, sonication, or heating [365]. In a third example, Ag+ ions
on polyimide are nucleated into nanoparticles by laser-assisted reduction in a
mineral extract from spinach leaves in ethanol [366].

The Internet of Things (IoT) is projected to be the primary source of massive
growth of the microelectronics industry in the near future. By and large, the system
packaging technologies that will be employed here will be the same as those that are
used in other applications, whether in the home, automobile, aircraft, industrial, or
others. However, the IoT will push the development of nano-sensors which will have
unique packaging challenges. But one of the recognized IoT challenges will be the
proliferation of radio signals for reporting and control with an attendant risk of
interference. So many system packages will need protection from electromagnetic
interference by unwanted frequencies, e.g., by an array of ink-jet-printed and
sintered nano-Ag band-reject antennas [367].

1.10 EHS: Environment, Health, and Safety

Much of the material being used in nanopackaging is nano-Ag, which has been used
in various antibacterial and medical applications for centuries [365, 368], but the
argument that therefore there should be no concerns about its growing use in other
areas has been challenged [369]. Concerns are focused on the demonstrated toxicity
to aquatic life and especially to embryonic fish and others at the bottom of the food
chain [22, 370–372] although there is also concern about cellular effects in humans
[373]. An industry perspective is found in [374]. Ag is not the only source of
concern; a broader range is covered in [372], and nano-TiO2 liver damage has
been reported in [375].

CNTs have also been the subject of much study, again with concerns on cellular
effects and the impact on aquatic life [376]. In this case, however, the similarities to
asbestos mesothelioma are too obvious to be ignored, and pulmonary effects are the
most studied [377], and following that analogy, distinctions must be drawn between
the microphage ability to enclose and mitigate short CNTs or compact CNT bundles
and the longer CNTs which cannot be surrounded [378].

See also Chap. 32.
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1.11 Conclusion

The importance of nanoelectronics and “electro-nanotechnologies” in the future is
sufficiently well recognized to have become the subject of industrial and government
policy roadmaps [379]. Similarly, the academic world is responding with both
undergraduate and graduate level courses and with textbooks. As for electronics
packaging, the field requires students to be “subject multilingual” [380].

One of the surprising observations to come out of this survey, in full agreement
with prior comment [381], has been that there is almost no work reported on the
development of packaging for next-generation nanoelectronics technologies. The
“nano-interconnect” work is directed toward continued Moore’s law shrinkage of
silicon (More Moore) or heterogeneous integration (More than Moore.) Candidate
next-generation nanoelectronics technologies (e.g., single-electron transistors, quan-
tum automata, molecular electronics, etc.) are generally hypersensitive to dimen-
sional change, if based on quantum-mechanical electron tunneling, and this is just
one example of how appropriate packaging will be essential to the success or failure
of these technologies [382]. Packaging strategies must therefore be developed in
parallel with the basic nanoelectronics device technologies in order to make
informed decisions as to their commercial viabilities.

There has been a veritable explosion of research in the nanopackaging area since
the first edition of this book appeared, and it is impossible to include it all here.
Hopefully, the interested researcher can move backward and forward in time on a
specific topic from the references in a specific paper and its later citations. There was
a brief update to the first edition published [383], so most of its content has not been
duplicated here. For future information in the field, the annual IEEE Electronic
Components and Technology Conference (ECTC) and the nanopackaging sessions
in the IEEE International Conference on Nanotechnology (NANO) and the IEEE
Nanomaterials and Devices Conference (NMDC) are recommended.
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