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Chapter 8
Genomic Roadmaps for Augmenting 
Salinity Stress Tolerance in Crop Plants

P. Suprasanna, S. A. Ghuge, V. Y. Patade, S. J. Mirajkar, and G. C. Nikalje

Abstract Serious antagonistic impacts of saline environment on plant growth, 
development, and yield are well established. In this regard, researchers and breeders 
have been utilizing many conventional as well as modern approaches to aid the pro-
cess of developing salt-tolerant crops. Biotechnological tools have made the task of 
engineering salinity tolerance in plants easier. Currently, two major annexes are 
effectively employed to develop salt-tolerant crops, first, investigation of genetic 
variation via marker-assisted selection (MAS) and second the transgenic technology. 
Sustenance of plants under dynamically growth-limiting saline environment depends 
on alterations and/or switching between multiple biochemical pathways involved in 
response. A number of key regulatory genes have been successfully identified and 
characterized in this context which can be explored to serve the purpose of alleviation 
in salt-tolerant nature of plants. Several genomics-abetted approaches have been 
reported aiming toward improvement in growth and yield of crops under saline envi-
ronment. Present chapter focuses on genomic roadmaps for augmentation of crop salt 
tolerance by various methods including MAS, transgenic breeding, manipulations in 
small non-coding RNAs, and genome editing. These approaches utilize key players 
involved in salinity-mediated plant defense mechanisms, such as ion transporters, 
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osmolytes, antioxidants, transcription factors, signaling proteins, and microRNA. 
The chapter attempts to summarize the effective targets and exploration of these key 
entities to raise salt-tolerant plants through various genomics-related tools.

Keywords Marker assisted selection · Ion transporters · Osmolytes · Antioxidants 
· Transcription factors · microRNA · Transgenics

Abbreviations

AFLP Amplified fragment length polymorphisms
AOX Alternate oxidase
APX Ascorbate peroxidase
AtNHX1 Na+/H+ antiporter
CaM calmodulin
CAT Catalase
CBL Calcineurin B-like proteins
CDPKs Calcium-dependent protein kinases
CML CaM-related proteins
GPX Glutathione peroxidase
ILs Introgression lines
MAS Marker-assisted selection
MQTL Meta-QTL
mt1D Mannitol-1-phosphate dehydrogenase
P5CS delta1-pyrroline-5-carboxylate synthetase
QTL Quantitative trait loci
RAPD Random amplified polymorphic DNA
RFLP Restriction fragment length polymorphisms
RNAi RNA interference
SNPs Single nucleotide polymorphisms
SOD Superoxide dismutase
SOS Salt overly sensitive
SSR Simple sequence repeats
STMS Sequence-tagged microsatellite site
TFs Transcription factors
TPSP Trehalose-6-phosphate synthase/phosphatase

8.1  Introduction

Among the abiotic stresses, salinity stress is one of the most important environmen-
tal factors which considerably affect plant growth and productivity. Salinity affects 
about one third of the world’s irrigated land (Munns and Tester 2008), and it 

P. Suprasanna et al.



191

negatively influences water and nutrient homeostasis within living tissues. The del-
eterious effects on agricultural crops primarily include growth reduction and yield 
loss. In this context, both the conventional and modern crop improvement approaches 
are employed to facilitate development of novel genetic resources for use in direct 
or indirect breeding for improving salinity tolerance in crop plants. Currently, a 
wide range of mutational, biotechnological, and genomics-assisted tools are avail-
able which are more or less focused on gene discovery and boosting up the process 
of novel gene introduction or modification (Nongpiur et al. 2016).

Apparently, two main approaches are used to improve and impart salinity toler-
ance in crop plants. The first is through exploring natural genetic variation, either 
through selection under stress conditions or through quantitative trait loci (QTL) 
followed by marker-assisted selection (MAS). The other one is through transgenic 
technology by modifying the expression of endogenous genes or introducing novel 
genes (of plant or non-plant origin) to impart stress tolerance. Crop improvement 
via conventional breeding approaches has yielded limited success due to complexity 
of the trait since the process is time and labor intensive and requires well-character-
ized germplasm. In this regard, genetic engineering methods have become useful to 
develop transgenic crops tolerant to abiotic stresses (Yamaguchi and Blumwald 
2005). The primary step before proceeding to make transgenics is the identification 
of functional and regulator genes serving to control different metabolic pathways, 
including ion homeostasis, antioxidant defense system, osmolyte synthesis, and 
other signaling pathways.

Salt stress increases ion toxicity and also affects uptake and movement of other 
essential nutrients such as potassium in the cell. This may occur either in a mono-
phasic or biphasic manner depending on the duration and extent of exposure to 
saline conditions. A short exposure usually leads to osmotic or oxidative stress 
which would be followed by ionic stress upon long- term exposure (Munns and 
Tester 2008). To sustain under such dynamic growth- limiting situations, plants need 
to incur switching between multiple biochemical pathways that are much more 
complex when combined with other biotic and abiotic stresses. A general view of 
plant responses to salinity stress is presented in Fig. 8.1.

Significant progress has been made in the identification of genes involved in 
plant salt-stress responses (Hanin et  al. 2016). Till date, a number of key genes 
involved in salinity tolerance have been isolated, characterized, and validated by 
using different transgenic methods. The candidate genes for salt tolerance are 
 categorized into genes with functional and regulatory role (Shinozaki et al. 2003). 
The first group includes those involved in osmolyte biosynthesis, ion transporters, 
water channels, antioxidant systems, sugars, polyamines, heat shock proteins, and 
late embryogenesis abundant proteins. The second group are involved in the regula-
tion of transcriptional and posttranscriptional machinery besides genes of signaling 
pathways. Some of these are transcription factors (TFs), protein kinases and phos-
phatases. In addition, there are several other strategies for attaining abiotic stress 
tolerance which are being tested for salt tolerance such as, using the stress-inducible 
promoters to avoid the pleiotropic effects (Checker et al. 2012), employing the pro-
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tein post-translational modifications such as ubiquitination (Lyzenga and Stone 
2012; Guo et al. 2008) and the use of halophyte gene resources.

Several state-of-the-art genomics-assisted approaches (Fig. 8.2), such as trans-
genic overexpression, RNAi, microRNA, genome editing, and genome-wide asso-
ciation studies, are being used for improving salt tolerance in crop plants (Mickelbart 
et al. 2015; Nongpiur et al. 2016). Overexpression of these genes has been shown as 
a successful strategy to improve plant tolerance to different abiotic stresses includ-
ing salinity (Türkan and Demiral 2009; Cominelli et al. 2013; Hanin et al. 2016). In 
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Fig. 8.1 Mechanistic view of plant responses to salinity stress
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this article, we present an overview of the different genomics-based molecular 
genetic approaches (marker-assisted selection and transgenic breeding) that have 
contributed to improve the salt tolerance in crop plants.

8.2  Marker-Assisted Selection for Enhancement of Crop 
Salinity Stress Tolerance

Despite of availability of broad genetic resources, the slow progress in the genetic 
improvement for salt tolerance through conventional breeding is attributed to the 
complex nature of the trait accompanied with the high environmental influence and 
requirement of huge experimental fields (Flowers and Yeo 1997; Munns 2002; 
Thomson et al. 2010; Munns and Tester 2008). Further, phenotypic screening for 

Fig. 8.2 Genomics-based roadmaps for improving plant salt tolerance
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salinity tolerance in the large sample population has remained a big challenge 
through the laborious conventional techniques (Mantri et al. 2014).

Marker-assisted selection (MAS) is a new precision breeding tool that allows the 
indirect and accurate selection for a desired trait from breeding population based on 
tightly linked molecular markers, viz., restriction fragment length polymorphisms 
(RFLP), amplified fragment length polymorphisms (AFLP), random amplified 
polymorphic DNA (RAPD), simple sequence repeats (SSR) or microsatellites, 
sequence-tagged microsatellite site (STMS), single nucleotide polymorphisms 
(SNPs), etc. It enables rapid and accurate screening for complex and polygenic 
traits which are difficult to score phenotypically through mapping or tagging of the 
trait linked quantitative trait loci (QTL). The successful applications of molecular 
marker-assisted breeding have proved its enhanced efficiency and accuracy in 
improved biotic and abiotic stress tolerance in rice and several other important crops 
(Singh et al. 2012; Ellur et al. 2016; Babu et al. 2017a, b). MAS offers advantage 
over the other genetic improvement tools as having relaxed biosafety regulations at 
development, field testing, commercial release, and import/export of the developed 
improved genotypes as well as their wider public acceptance.

Among field crops, rice being an important global staple food crop, considerable 
progress has been made for molecular breeding for improvement in tolerance to 
abiotic stresses such as salinity stress (Table 8.1). Through rigorous research on 
molecular breeding programs, the molecular marker maps for important agricultural 
crops have been constructed with varying density among the species. For develop-
ment of molecular breeding tools, sources for abiotic stress tolerance have been 
identified through rigorous screening of genotypes in various crops. Ravikiran et al. 
(2017) identified two rice genotypes, CST 7–1 and Arvattelu as source for seedling- 
stage salinity tolerance, based on screening of 192 diverse genotypes under salinity 
stress (EC ∼ 12 dS m−1) using morphophysiological markers. Screening of the gen-
otypes with SSR markers associated with Saltol region on chromosome 1 revealed 
RM 493 and RM 10793 as good candidates for marker-assisted selection of seedling- 
stage salinity tolerance. Linh et al. (2012) reported improved salt tolerance in high- 
yielding Bac Thom 7 rice cultivar through introgression of the Saltol QTL from 
donor parent FL478. The microsatellite markers, viz., RM493 and RM3412b tightly 
linked to the Saltol QTL, were used for foreground selection. The selected back-
cross lines displayed salt tolerance with agronomic performance similar to that of 
the original Bac Thom 7. The marker-assisted selection enabled rapid and efficient 
background (for the recurrent parent genome) and foreground (for target locus 
Saltol) selections in early generations with minimum linkage drag.

Another study by Babu et al. (2017a) reported use of marker-assisted backcross-
ing to transfer seedling-stage salt-stress tolerance by transferring a QTL, Saltol, into 
an elite salinity-sensitive rice cultivar Pusa Basmati 1121. RM 3412 STMS marker 
linked tightly to the QTL was used for indirect foreground selection. Back cross 
(BC) lines homozygous for the QTL were advanced to develop four improved near 
isogenic lines (NILs) of PB1121 with the salt tolerance. The field evaluation con-
firmed effect of QTL integration into the improved NILs in terms of greater salt 
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Table 8.1 Successful examples of breeding for salinity stress tolerance through marker-assisted 
selection

Sr. 
No.

Crop 
species

Type of DNA 
marker

Donor 
source QTL/Allele

Mapping 
population

Tolerance 
achieved References

1 Rice SSR FL478 qSaltol Back cross Improved salt 
tolerance in 
high- yielding 
cultivar bac 
Thom 7

Linh et al. 
(2012)

2 Rice SSR FL478 qSaltol Back cross Improved salt 
tolerance in 
BRRI dhan49

Hoque 
et al. 
(2015)

3 Soybean SSR Tolerant 
wild 
accession 
JWS156–1

Ncl Back cross Improved salt 
tolerance in 
salt- sensitive 
soybean 
cultivar 
Jackson  
(PI 548657)

Do et al. 
(2016)

4 Rice Sequence- 
tagged 
microsatellite 
site (STMS)

FL478 qSaltol NIL Salt tolerance 
in sensitive 
Pusa Basmati 
1121

Babu et al. 
(2017a)

5 Rice SNP Hasawi qSESI12.1 
and 
qSESF12.1

RIL Seedling- 
stage salt 
tolerance in 
RIL with 
IR29

Bizimana 
et al. 
(2017)

6 Rice SNP DJ15 qST1.2 and 
qST6

RIL/NIL Seedling salt 
tolerance 
enhanced in 
sensitive 
japonica rice 
variety 
Koshihikari

Quan et al. 
(2018)

tolerance at seedling stage and similar or better performance for other agronomic 
traits than the recurrent parent.

Recently, De Leon et al. (2017) utilized SSR and SNP markers to characterize 
introgression lines (ILs) of a high salinity-tolerant donor line Pokkali in an elite 
highly salt-sensitive rice cultivar Bengal and to further identify QTLs for traits con-
tributing to salinity stress tolerance. As expected, because of abundance, more num-
ber of QTLs were detected using SNP markers than the SSR. The study emphasized 
marker-assisted breeding through introgression of salt injury score (SIS) QTLs, in 
addition to other major QTLs Saltol or qSKC1, for improved salinity tolerance. The 
identified tolerant ILs can be used as donor breeding lines for selective transfer of 
salinity tolerance without any linkage drag of undesirable traits from Pokkali to 
other recipient-sensitive varieties as well as for mapping and further positional clon-
ing of the genes responsible for the trait.
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Babu et  al. (2017b) identified seedling-stage salt-tolerant indica landraces 
(Badami, Shah Pasand and Pechi Badam), Oryza rufipogon accessions (NKSWR2 
and NKSWR17) and one each of Basmati rice (second Basmati) and japonica cul-
tivars (Tompha Khau) based on phenotypic screening under hydroponics. The salt 
tolerance level was similar to that of high salt-tolerant genotypes Pokkali and 
FL478. Molecular diversity study of the diverse rice genotypes using polymorphic 
SSR markers linked with Saltol QTL revealed weak linkage disequilibrium-LD, 
suggesting its low usefulness in MAS, if the target foreground markers chosen are 
wide apart. LD mapping identified markers (RM10927, RM10871) linked with 
QTLs associated with salt tolerance traits. The study also identified Saltol marker, 
RM27, positioned on chromosome 10, associated with root Na/K ratio.

Efforts are also being made to identify novels QTLs for salinity tolerance from 
different sources in rice and other crops. The enhanced salt tolerance can be achieved 
through pyramiding of different novel QTLs in one genetic background through 
MAS. Bizimana et al. (2017) used Hasawi rice genotype, which conferred seedling- 
stage salinity tolerance due to novel QTLs other than Saltol, as a source to develop 
300 recombinant inbred lines with high-yielding salt-sensitive cultivar-IR29. 
Further for identification of QTLs linked to salinity tolerance, a genetic linkage map 
was constructed using 194 polymorphic SNP markers. The study reported identifi-
cation of 20 new QTLs on different chromosomes for salt tolerance through com-
posite interval mapping.

In addition to rice, efforts are also being made for analysis of QTLs for breeding 
salt tolerance in other crops. In cotton, Zhao et al. (2016) identified salt-tolerant and 
salt-sensitive upland cotton cultivars through screening based on seedling emer-
gence rates in response to 0.3% salt-NaCl. Seventy-four SSR markers were used to 
scan the genomes of these diverse cultivars, and eight markers associated with salt 
tolerance were identified through association analysis for further application in 
marker-assisted breeding. Similarly, Kere et  al. (2017) screened salt-sensitive- 
11439S and salt-tolerant-11411S inbred parental lines with SSR markers to identify 
the QTLs for application in MAS for breeding salinity tolerance in cucumber. The 
analysis confirmed significant association of SSR markers with salt tolerance traits 
such as survival rate, relative leaf numbers, and percent green leaves, and salinity 
tolerance was evaluated by visual scoring. Recently, Luo et al. (2017) made efforts 
to map the critical QTLs contributing to salt tolerance in field-grown mature maize 
plants using a permanent doubled-haploid (DH) population and high-density SNP 
markers. Major QTLs responsible for salt tolerance and two candidate genes involv-
ing in ion homeostasis were mapped on chromosome 1. The mapped QTLs can be 
used in breeding salt-tolerant maize varieties through MAS.

Physiological and molecular studies on tolerance to various abiotic (ionic and/or 
osmotic stresses), viz., salinity, drought, etc., have revealed stress-specific as well as 
shared stress adaptation mechanisms, highlighting the complexity of stress response 
and adaptation in plants. In view of this, meta-QTL (MQTL) for tolerance to abiotic 
stresses including drought, salinity, and water logging through meta-analysis in bar-
ley has been recently projected (Zhang et  al. 2017). The study conducted meta- 
analysis to detect and map the major QTL for drought, salinity, and water logging 
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tolerance from different mapping populations on the barley physical map. Fine- 
mapped QTL for the stress tolerance were validated on MQTLs for further success-
ful MAS in barley breeding.

8.3  Transgenic Breeding: Functional Genes Conferring 
Salinity Tolerance

8.3.1  Ion Transporters

In general, plants cannot withstand high salt concentration although the plant spe-
cies differ in their mode of responses to the external salt exposure. Several distinct 
responses are generated in the plants to avoid high-salinity-induced harmful effects. 
One of the most distinguishing responses is avoiding salinity stress by compartmen-
tation and the exclusion of detrimental ions like Na+ and Cl− from tissues that are 
very sensitive like the mesophyll and their relocation into the apoplast or vacuole 
(Sperling et al. 2014). Confinement of harmful ions within a root or apoplastic zone 
and maintainance of high K+/Na+ ratio are the major tolerance strategies for salt 
tolerance (Shabala and Cuin 2008).

Ion transporters are key players in maintaining ion homeostasis and in salt detox-
ification processes (Serrano et al. 1999; Hasegawa 2013). Various salts are present 
in soil out of which sodium chloride (NaCl) is the most significant. The Na+/H+ 
antiporter predominantly transports Na+ ion from cytoplasm to the vacuole. 
Therefore, overexpression of genes that are involved in Na+ transport was studied to 
a great extent with considerable success. Vacuolar Na+/H+ antiporter (AtNHX1) 
from the Arabidopsis was among the first and most studied gene. In Arabidopsis salt 
tolerance was conferred by overexpressing vacuolar Na+/H+ antiporter (Apse et al. 
1999). Following with this initial success, many events were reported where trans-
genic plants exhibited higher potential for vacuolar sequestration of Na+ that subse-
quently avoid its harmful buildup into the cytoplasm. For example, overexpression 
of AtNHX1 and other NHX proteins from various hosts in many other plant species 
like tomato, B. napus, wheat, and cotton has been shown to increase salt tolerance 
(Zhang and Blumwald 2001; Zhang et al. 2001; Xue et al. 2004; He et al. 2005; 
Munns and Tester 2008). Vacuolar-type H+-ATPase and the vacuolar pyrophospha-
tase are the two types of H+ pumps that are present in vacuolar membrane (Dietz 
et al. 2001; Otoch et al. 2001; Wang et al. 2001). Overexpression of genes from 
wheat (Triticum aestivum) TaNHX1 and H+-pyrophosphatase (TVP1) resulted in 
improved salinity stress tolerance in Arabidopsis (Brini et  al. 2007a). Similarly 
improved tolerance to salt stress was found in tobacco (Gouiaa et  al. 2012) and 
tomato (Gouiaa and Khoudi 2015) by overexpression of Na(+)/H(+) antiporter 
H(+)- pyrophosphatase. On the other hand, the HKT gene family has a major role in 
preventing Na+ ion toxicity in shoots by root-to-shoot partitioning of Na+. The sig-
nificant role of HKTs in Na+ transport in plants makes them promising candidates to 
enhance salinity tolerance. The identification of the wheat HKT1 (TaHKT2;1) gene 
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(Schachtman and Schroeder 1994; Rubio et al. 1995) has steered the study of many 
HKT genes from several other crops (Horie et al. 2009). Moller et al. (2009) shown 
that targeted overexpression of AtHKT1;1 in the stele enhances salt tolerance in A. 
thaliana. Lately, Do et  al. (2016) showed a close syndicate between the higher 
expression of the Ncl gene (homologous to the Na+/H+ antiporter gene family) in the 
root, the lesser buildup of Na+, K+, and Cl− in the shoot under salt stress. 
Overexpression of Ncl into a Japanese soybean cultivar Kariyutaka resulted in 
enhanced salt tolerance (Do et al. 2016).

Growing evidence was found on the role of salt overly sensitive (SOS) stress sig-
naling pathway in ion homeostasis and salinity tolerance (Sanders 2000; Hasegawa 
et  al. 2000). Most of the SOS signaling pathway was reported to be involved in 
exportation of Na+ out of the cell. The SOS signaling pathway includes three main 
proteins, namely, SOS1, SOS2, and SOS3. Plasma membrane-localized Na+/H+ anti-
porter (SOS1) is also known as NHX7 (Qiu et  al. 2002). SOS2 (serine/threonine 
kinase) activated by salt stress elicited Ca+ signals, while SOS3 protein is a myris-
toylated Ca+ binding protein (Liu et al. 2000; Ishitani et al. 2000). Arabidopsis plants 
overexpressing genes for SOS1, SOS3, AtNHX1  +  SOS3, SOS2  +  SOS3, or 
SOS1 + SOS2 + SOS3 resulted in improved tolerance to salt stress (Yang et al. 2009). 
Similarly, Kumar et al. (2009) have shown that salinity stress tolerance in Brassica 
is correlated with transcript abundance of the genes related in SOS pathway.

8.3.2  Osmolytes

Osmolytes are small organic compounds having a protective role. Osmolytes are 
important for two functional roles: osmotic adjustment at high concentrations; and 
it plays unknown protective role at lower concentrations. Under salt-stress condi-
tions, plant cell accumulates various osmolytes along with Na+ exclusion from the 
cytoplasm, to counter the osmotic pressure of harmful ions in vacuoles. Osmolytes 
like proline, glycine betaine, and sucrose accumulating upon salt stress in many 
plant species including halophytes are well studied and characterized (Flowers et al. 
1977). Table 8.2 presents some of the successful examples of transgenic plants 
developed using different osmolyte genes.

Hu et al. (2015) found experimental evidences for the accumulation of sugars 
and amino acids. Particularly, sucrose and trehalose sugar and amino acids like 
proline, valine, glutamate, asparagine, glutamine, phenylalanine, and lysine accu-
mulated under salt-stress conditions. Also, sugars like sucrose and pinitol are accu-
mulated more in leaves, while starch accumulated in roots under salinity stress 
conditions. It has been found that these sugars (pinitol and sucrose) and starch can 
also increase in nodules under salt stress (Bertrand et  al. 2015). Similarly, 
Boriboonkaset et al. (2013) found enrichment of soluble starch and soluble sugar in 
flag leaf of Pokkali genotype (salt tolerant) of rice which may have alternative role 
in osmotic adjustment in salt defense mechanism. In tomato plants, jasmonic acid 
and nitric oxide when applied exogenously, either individually or in combination, 

P. Suprasanna et al.



199

Table 8.2 Example of functional genes used in the improvement of salt-stress tolerance of crop 
plants

Possible role Gene(s) Donor
Transgenic 
plant References

Proline biosynthesis P5CS Arabidopsis Tobacco Kishor et al. (1995)

Proline biosynthesis P5CS Vigna 
aconitifolia

Tobacco Hong et al. (2000)

Proline biosynthesis P5CS Moth bean Rice Su and Wu (2004)

Proline biosynthesis P5CS Phaseolus 
vulgaris

Arabidopsis Chen et al. (2013)

Proline biosynthesis P5CSF129A Sorghum 
bicolor

Sorghum Reddy et al. (2015)

Glycine betaine 
Biosynthesis

codA E. coli Rice Sakamoto et al. (1998)

Mannitol biosynthesis mt1D E. coli Tobacco Tarczynski et al. (1992)

Mannitol biosynthesis mt1 E. coli Wheat Abebe et al. (2003)

Vacuolar sequestration 
of Na + and K+

TNHX1 and H(+)- Triticum Arabidopsis Brini et al. (2007a)

PPase TVP1 Triticum 
aestivum

Tobacco Gouiaa et al. (2012)

Vacuolar sequestration 
of Na + and K +?

Na+/H+ antiporter Arabidopsis Tomato Zhang and Blumwald 
(2001)AtNHX1

Brassica 
napus

Zhang et al. (2001)

Wheat Xue et al. (2004)

Cotton He et al. (2005)

Vacuolar H + −pyrophosphatase Cotton Pasapula et al. (2011)

Membrane-bound 
proton pump

(AVP1) AtNHX + AVP1 Arabidopsis Barley Schilling et al. (2013)

Cotton Shen et al. (2014)

Tomato Gouiaa and Khoudi 
(2015)

Homologous to NHX 
gene family

Ncl Glycine max Soybean Do et al. (2016)

Enhanced salinity 
tolerance

AtNHX1 and SOS Arabidopsis Arabidopsis Yang et al. (2009)

Tolerance against salt 
and chilling stress

Glutathione 
S- transferase(GST)

Tobacco Tobacco Roxas et al. (1997)

Glutathione peroxidase 
(GPX)

ROS-scavenging Ascorbate peroxidase 
(AtAPX)

Arabidopsis Tobacco Badawi et al. (2004)

Higher activity of SOD Cytosolic copper/zinc 
superoxide dismutase 
(CuZnSOD)

Avicennia 
marina

Rice Prashanth et al. (2008)

SOD and APX Cu/Zn sod (cytsod) Spinacia 
oleracea

Toabcco Faize et al. (2011)

Activity Cytosolic apx1 (cytapx) Pisum 
sativum

Osmoprotection Late embryogenesis 
abundant protein 
(HVA7)

Hordeum 
vulgare

Rice Xu et al. (1996)

(continued)
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helped to boost the proline, flavonoid, and glycine betaine synthesis under NaCl salt 
treatments (Ahmad et al. 2018).

Engineering plants by overexpressing the osmolytes was considered as one of 
the ways to enhance salt tolerance in plants. In Arabidopsis, knockout of the P5CS1, 
a key gene in proline biosynthesis, which encodes a delta1-pyrroline-5-carboxylate 
synthetase (P5CS), impairs proline synthesis resulting in salt hypersensitivity 
(Székely et al. 2008). P5CS transformed in tobacco and rice has shown increased 
proline production, linked with increased salt-stress tolerance (Kishor et al. 1995; 
Su and Wu 2004). Also, transgenic rice expressing the moth bean P5CS gene showed 
enhanced tolerance to higher dose of NaCl (Su and Wu 2004). Recently, mutated 
P5CS (P5CSF129A) gene was overexpressed in Sorghum and found that transgenic 
plants accumulated more proline and showed salt-stress tolerance. Moreover over-
production of proline through transfer of a P5CSF129A gene conferred protection 
of photosynthetic and antioxidant enzyme activities (Reddy et al. 2015). Glycine 
betaine is yet another important osmolyte that helps to balance the osmotic potential 
of intracellular ions under salinity. Under high salinity, glycine betaine accumula-
tion increased in lamina leaves and bladder hairs of Atriplex gmelini (Tsutsumi et al. 
2015). Overexpressing choline oxidase in rice plant showed increased levels of gly-
cine betaine and improved tolerance to salt and cold stress (Sakamoto et al. 1998). 
It was found that transgenic Arabidopsis and tobacco plants transformed with bacte-
rial mtlD gene which encodes for mannitol-1-phosphate dehydrogenase conferred 

Possible role Gene(s) Donor
Transgenic 
plant References

Ononitol production imt1 M. 
crystallinum

Tobacco Sheveleva et al. (1997)

Spermine and 
spermidine 
decarboxylase

S-adenosyl methionine Tritordeum Rice Roy and Wu (2002)

(SAMDC) production

Salt and osmotic Dehydrin (DHN-5) Triticum Arabidopsis Brini et al. (2007b)

Stress tolerance

In ABA biosynthesis 
and xanthophyll cycle; 
enhanced salt tolerance

Zeaxanthin epoxidase 
(AtZEP)

Arabidopsis Arabidopsis Park et al. (2008)

Increased proline Osmotin Tobacco Tomato Goel et al. (2010)

C-tocopherol 
production; Enhanced 
salt tolerance

γ-Tocopherol methyl 
transferase (γ -TMT)

Arabidopsis Brassica 
juncea

Yusuf et al. (2010)

Maintaining 
chlorophyll in salt 
stress

Xyloglucan endotrans- 
glucosylase/hydrolase 
(CaXTH3)

Hot pepper Tomato Choi et al. (2011)

Increase in germination, 
chlorophyll and osmotic 
constituents like sugars

Dehydration- responsive 
RD22

Vitis vinifera Tobacco Jamoussi et al. (2014)

Table 8.2 (continued)

P. Suprasanna et al.



201

salt tolerance and thereby maintained normal growth and development under high 
salt-stress growth conditions (Binzel et  al. 1998; Thomas et  al. 1995). Ectopic 
expression of bacterial gene mannitol-1-phosphate dehydrogenase (mt1D), an 
enzyme involved in mannitol biosynthesis, in tobacco successfully enhanced salt 
tolerance (Tarczynski et al. 1992). Genes for trehalose biosynthesis have also been 
employed in improving salt tolerance by developing transgenic plants for overpro-
duction of trehalose (Penna 2003; Turan et al. 2012). Garg et al. (2002) demon-
strated tolerance to salt and drought stress in rice by using tissue-specific or 
stress-inducible expression of a bifunctional trehalose-6-phosphate synthase/phos-
phatase (TPSP) fusion gene (comprising the E. coli trehalose biosynthetic genes). 
Li et  al. (2011) reported that transgenic plants overexpressing rice trehalose-6- 
phosphate synthase (OsTPS1) showed improved salinity tolerance without much 
alteration in plant phenotype. It is also suggested that stress-inducible solute accu-
mulation by using stress-specific or stress-inducible promoters may be better to 
achieve salt- specific expression of genes for osmotic adjustment.

8.3.3  Antioxidants and Protective Proteins

Abiotic stress causes the accumulation of reactive oxygen species (ROS) that can 
damage sensitive plant tissues during high salt stress by disturbing cell wall, enzymes, 
and membrane functions. Antioxidant enzymes and nonenzymatic compounds play 
a crucial role in detoxifying salinity stress-induced ROS.  Salt-stress tolerance is 
positively correlated with antioxidant enzyme activity and with the accumulation of 
nonenzymatic antioxidant compounds (Gupta et  al. 2005). Antioxidants include 
superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), ascor-
bate peroxidase (APX), glutathione reductase (GR), etc. Hence, overexpressing 
ROS-scavenging enzymes is shown to induce salinity tolerance in plants (Roxas 
et  al. 1997; Badawi et  al. 2004; Miller et  al. 2008). Overexpression of ascorbate 
peroxidase (APX) in tobacco chloroplasts enhances the tolerance to salinity and 
drought stress (Badawi et al. 2004). The alternate oxidase (AOX) pathway plays a 
role under stress conditions. Smith et  al. (2009) constitutively overexpressed an 
AOX1a gene in Arabidopsis plants and demonstrated superior salt tolerance than 
wild-type plants suggesting that genes of the AOX pathway can be useful to improve 
tolerance to stressful environmental conditions including salinity.

Other proteins like polyamines, osmotin, and LEA proteins mitigate salt stress 
by protecting macromolecules like nucleic acids, proteins, and carbohydrates from 
damages caused by ion toxicity and by drought conditions. Polyamines play a critical 
role in salinity and other abiotic stress tolerance by increasing level of polyamines 
which shows positive correlation of increased level of polyamines with stress toler-
ance in plants (Yang et al. 2007; Groppa and Benavides 2008; Gupta et al. 2013). 
Overproduction of spermidine and spermine in rice enhances salt tolerance (Roy 
and Wu 2002). Xu et al. (1996) found that HVA7, a LEA from barley, when trans-
ferred to rice, confers tolerance to drought and salinity stress. Dehydrins, another 
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LEA protein, were shown to enhance plant tolerance to various stresses (Hanin et al. 
2011). Brini et al. (2007b) found positive correlation between wheat dehydrin DHN-
5 and salt tolerance. The study showed that the expression of the wheat dehydrin 
DHN-5 in Arabidopsis led to an increase in tolerance to salt and osmotic stresses. 
Some of the transgenics where functional genes overexpressed to impart salt toler-
ance in different plant species have been shown in Table 8.2.

8.4  Transgenic Breeding: Regulatory Genes Controlling 
Salinity Stress Responses

8.4.1  Transcription Factors

Plant response to salt stress is a complex process and involves a vast array of genes 
working in different or overlapping regulatory pathways. As stress response is com-
plex process and regulated by multi-genes, it is very challenging to achieve success 
in improving plant stress tolerance with the single functional gene approach (Mittler 
and Blumwald 2010; Varshney et al. 2011). Thus, instead of manipulating single 
functional gene, engineering regulatory genes or master regulators can be potential 
strategy for controlling stress responses. Transcription factors (TFs) and signaling 
proteins are master regulators of many genes involved in stress responses; hence, 
they are possible candidates for genetic engineering to obtain salinity-tolerant crops 
(Table 8.3). Transcription factors from various families like AP2/ERF, NAC, MYB, 
MYC, DREB, Cys2/His2 zinc finger, bZIP, and WRKY have been reported to be 
involved salt- stress tolerance (Golldack et al. 2011, 2014).

NAC TF family found to be involved in abiotic stress responses along with other 
important functions in plants (Nakashima et al. 2012). Hu et al. (2008) reported that 
overexpression of SNAC1 and SNAC2 genes from NAC TF family helps the survival 
of transgenic Oryza sativa plants under high-salinity conditions. Similarly, overex-
pression of TF gene OsNAC04 leads to drought and salinity stress tolerance in O. 
sativa (Zheng et al. 2009). The AP2/ERF another family of plant-specific TFs which 
is known to play key role against various abiotic stresses (Mizoi et al. 2012). The 
transgenic plants for gene GmDREB2 from soybean showed enhanced salinity and 
drought tolerance (Chen et al. 2007). Overexpression Oryza sativa MYB2 (TF from 
MYB family) exhibited salt tolerance by variation in expression levels of various 
stress responsive genes (Yang et al. 2012).

Several groups reported a key role of WRKY TFs in responses to various abiotic 
stresses including salinity stress (Banerjee and Roychoudhury 2015). Li et al. (2013) 
reported ZmWRKY33 (WRKY TF family) enhanced tolerance to salinity stress in 
Arabidopsis while overexpressing GmWRKY54 exhibited salt tolerance, probably 
through the regulation of another TF DREB2A and STZ/Zat10 (Zhou et  al. 2008). 
bZIP is also another family of TFs having an important role in response to various 
abiotic stresses including salinity stress (Jakoby et al. 2002). Wang et al. (2010) dem-
onstrated that overexpression of ThbZIP1 gene of Tamarix hispida from TF bZIP 
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Table 8.3 Examples of regulatory genes leading to improvement of salt-stress tolerance of crop 
plants

Enhanced tolerance
Gene(s)- (TF 
family) Donor

Transgenic 
plant References

Enhanced drought and 
salinity tolerance

OsDREB2A - (AP2/
ERFBP)

Oryza sativa Rice Mallikarjuna 
et al. (2011)

Enhanced salinity 
tolerance

StDREB1 - AP2/
ERFBP

Solanum 
tuberosum

Potato Bouaziz et al. 
(2013)

Enhanced salinity 
tolerance

GmERF7-(AP2/
ERFBP)

Glycine max Tobacco Zhai et al. 
(2013)

Enhanced drought and 
salinity tolerance

TaERF3 -(AP2/
ERFBP)

Triticum 
aestivum

Wheat Rong et al. 
(2014)

Enhanced drought and 
salinity tolerance

EaDREB2 -(AP2/
ERFBP)

Erianthus 
arundinaceus

Sugarcane Augustine et al. 
(2015)

Enhanced drought and 
salinity tolerance

SsDREB - (AP2/
ERFBP)

Suaeda salsa Tobacco Zhang et al. 
(2015)

Enhanced drought and 
salinity tolerance

TaPIMP1-(MYB) Triticum 
aestivum

Tobacco Liu et al. (2011)

Enhanced drought, cold, 
salinity tolerance

OsMYB2-(MYB) Oryza sativa Rice Yang et al. 
(2012)

Enhanced drought, cold, 
salinity tolerance

MdSIMYB1-(MYB) Malus × 
domestica

Apple Wang et al. 
(2014)

Enhanced NaCl, ABA, 
mannitol tolerance

SbMYB2-(MYB) Scutellaria 
baicalensis

Tobacco Qi et al. (2015)
SbMYB7-(MYB)

Enhanced salinity 
tolerance

OsMYB91-(MYB) Oryza sativa Rice Zhu et al. (2015)

Enhanced drought, cold, 
salinity tolerance

SlAREB1 -(bZIP) Solanum 
lycopersicum

Tomato Orellana et al. 
(2010)

Enhanced drought, cold, 
salinity tolerance

ThbZIP1-(bZIP) Tamarix 
hispida

Tobacco Wang et al. 
(2010)

Enhanced salinity 
tolerance

LrbZIP -(bZIP) Nelumbo 
nucifera

Tobacco Cheng et al. 
(2013)

Enhanced salinity and 
drought tolerance

OsbZIP71-(bZIP) Oryza sativa Rice Liu C. et al. 
(2014)

Enhanced salinity 
tolerance

GhWRKY39-
(WRKY)

Gossypium 
hirsutum

Tobacco Shi et al. (2014)

Enhanced salinity and 
drought tolerance

TaWRKY10-
(WRKY)

Triticum 
aestivum

Tobacco Wang et al. 
(2013)

Enhanced salinity and 
drought tolerance

ZmWRKY58-
(WRKY)

Zea may Rice Cai et al. (2014)

Enhanced salinity and 
drought tolerance

MtWRKY76-
(WRKY)

Medicago 
truncatula

Medicago 
truncatula

Liu et al. (2016)

Enhanced salinity and 
drought tolerance

OsNAC04-(NAC) Oryza sativa Rice Zheng et al. 
(2009)

Enhanced salinity and 
drought tolerance

OsNAP -(NAC) Oryza sativa Rice Chen et al. 
(2014)

Enhanced salinity and 
drought tolerance

ONAC022 -(NAC) Oryza sativa Rice Hong et al. 
(2016)

(continued)
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contributes to salinity tolerance by enhancing the activity of antioxidant enzymes such 
as peroxidase and superoxide dismutase and by accumulating compatible osmolytes 
like soluble sugars and soluble proteins. SlAREB1 and SlAREB2 are two members of 
bZIP TF in Solanum lycopersicum. Transgenic tomato overexpressing SlAREB1 
plants showed improved salinity and drought tolerance (Orellana et al. 2010).

8.4.2  Signaling Proteins

In addition to TFs, genetic engineering of signaling proteins has also become one of 
the feasible approaches. Some of the examples of transgenics where regulatory 
genes are overexpressed to impart salt tolerance are presented in Table 8.3. Several 
studies have reported that abiotic stresses (cold, high salt, and drought) trigger rapid 
increase in plant cells calcium (Ca2+) levels (Sanders et al. 2002). Calcium signaling 
is often coupled with protein phosphorylation and dephosphorylation mediated by 

Enhanced tolerance
Gene(s)- (TF 
family) Donor

Transgenic 
plant References

Enhanced salinity 
tolerance

ShCML44 Rice Rice Xu et al. (2013)

Enhanced salinity, cold, 
and drought tolerance

ShCML44 Wild tomato Tomato Munir et al. 
(2016)

Enhanced salinity, cold, 
and drought tolerance

OsCDPK7(CDPK) Oryza sativa Rice Saijo et al. 
(2000)

Enhanced salinity and 
drought tolerance

OsCPK4(CDPK) Oryza sativa Rice Campo et al. 
(2014)

Enhanced salinity 
tolerance

CalcineurinA 
subunit

Mouse Rice Ma et al. (2005)

Enhanced salinity 
tolerance

ZmMKK4 Zea mays Arabidopsis Kong et al. 
(2011)

Enhanced salinity and 
drought tolerance

GhMPK2 Gossypium 
hirsutum

Tobacco Zhang et al. 
(2011)

Enhanced salinity, cold, 
and drought tolerance

OsMAPK5 Rice Rice Xiong et al. 
(2003)

Enhanced salinity 
tolerance

OsMKK6 Rice Rice Kumar and 
Sinha (2013)

Enhanced salinity and 
drought tolerance

MKK5 Arabidopsis Arabidopsis Xing et al. 
(2015)

Enhanced salinity 
tolerance

PtMAPKK4 Populus 
trichocarpa

Tobacco Yang et al. 
(2017)

Enhanced salinity and 
drought tolerance

OsSIK1 Rice Rice Ouyang et al. 
(2010)

Enhanced salinity 
tolerance

PtSnRK2 Poplar Arabidopsis Song et al. 
(2016)

Modified after Wang et al. (2016)

Table 8.3 (continued)
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protein kinases and phosphatases, respectively. Changes in cellular Ca2+ level are 
being mediated by different Ca2+ binding proteins like calmodulin (CaM) and CaM- 
related proteins (CML), calcium-dependent protein kinases (CDPKs), and calcineu-
rin B-like proteins (CBL) (Bouché et al. 2005). CDPK is one of the best studied 
protein kinases in the Ca2+ signaling pathway. Another family of protein kinases that 
function in stress tolerance is mitogen-activated protein kinases (MAPKs) (Zhang 
and Klessig 2001).

Overexpression of ShCML44, cold-responsive calmodulin-like gene in tomato, 
showed enhanced tolerance to salinity stress with higher germination rate and better 
growth of seedling (Munir et al. 2016). Similarly, transgenic rice overexpressing 
OsMSR2, a novel calmodulin-like gene, enhanced salinity tolerance with altered 
expression pattern of genes related to stress (Xu et al. 2013). Transgenic rice plant 
expressing calcineurin A subunit from mouse exhibited a higher level of salinity 
stress tolerance; also it has been observed that Na+ content is higher in roots of 
untransformed wild-type plants than that of transgenic roots (Ma et al. 2005).

The OsCPK4 gene is a member of calcium-dependent protein kinases in rice. 
Recently Campo et al. (2014) showed that transgenic rice plants overexpressing of 
OsCPK4 significantly enhances salt and drought tolerance. Mitogen-activated pro-
tein kinase (MAPK) cascades also play crucial regulatory roles in various stress 
responses other than plant development processes. Zhang et  al. (2011) reported 
ectopic expression of cotton GhMPK2 in Nicotiana tabacum and found elevated 
levels of proline and induced expression of several genes related to stress, and as a 
result transgenic Nicotiana tabacum exhibited enhanced drought and salt tolerance. 
Similarly, overexpression MAPK from rice (OsMAPK5) exhibited increased kinase 
activity along with increased tolerance for salinity and other abiotic stresses like 
drought and cold (Xiong and Yang 2003). Overexpression of mitogen-activated pro-
tein kinase kinase 5 (MKK5) in Arabidopsis wild-type plants improved their toler-
ance level against various salt treatments (Xing et  al. 2015). In another study 
overexpression of mitogen-activated protein kinase kinase 4 from Populus tricho-
carpa (PtMAPKK4) shows improved salt tolerance in tobacco. Specifically, under 
salt-stress condition, PtMAPKK4 overexpressing lines showed improved germina-
tion and growth and development (Yang et al. 2017). However, some MAPKs can 
also have contrary effects particularly in case of rice; overexpression of OsMAPK33 
caused increased sensitivity to salinity and drought stress compared to wild-type 
plants (Lee et al. 2011). Receptor-like kinases (RLKs), another type of kinase, also 
have an important role in stress responses. Overexpressing OsSIK1 (OsSIK1-ox), 
one of the putative RLKs, showed greater tolerance to salt stress as compared to 
control plants, gene-silenced plants by RNA interference (RNAi), knockout mutants 
sik1 in rice (Ouyang et al. 2010). Sucrose non-fermenting 1 (SNF1)-related protein 
kinases (SnRKs) is one type of well-characterized protein kinase involved in stress 
responses (Halford and Hey 2009). In one study PtSnRK2.5 and PtSnRK2.7genes 
(SnRKs from Poplar) heterologously overexpressed in Arabidopsis and found that 
overexpression of PtSnRK2 leads to enhanced tolerance level for salt stress.
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8.4.3  Manipulating the miRNAs

In the past decade, miRNAs have become major players in the regulation of plant 
response to environmental abiotic stresses (Zhang 2015, Shriram et al. 2016). There 
has been great interest in exploring regulatory roles of microRNAs against different 
stresses including salt for their exploitation in genetic engineering for higher stress 
tolerance, biomass, and yield (Zhang  and Wang 2016, Patel et al. 2018). Transgenic 
plants overexpressing miR319 showed significantly higher plant tolerance to 
drought and salinity stress in creeping bentgrass (Agrostis stolonifera) (Zhou et al. 
2013). In another study, expression of miR408 was shown to improve higher toler-
ance to salinity, cold, and oxidative stress in Arabidopsis seedlings (Ma et al. 2015). 
A rice microRNA osa- miR393 was overexpressed in Arabidopsis plant resulting in 
enhanced salt tolerance (Gao et al. 2011a; b). In several other studies, novel microR-
NAs have been identified suggesting that these well-characterized candidates could 
become targets for plant genetic engineering investigations as successful in silico 
predictions could result in finding the target genes involved in pathways of signal-
ing, ion homeostasis besides sustained plant growth under salt stress.

8.5  Halophyte Genes for Improving Salt-Stress Tolerance 
of Crops

In plants, gene expression and regulation decides the fate of plants from growth and 
development to stress tolerance. Modification/ manipulation in the regulation of 
these entities can dramatically change the fate of plant’s life. In this sense, stress 
tolerance of plants can be improved by manipulating particular genes. In terms of 
stress tolerance, it is proved that the tolerant and sensitive plants possess same set of 
genes, but their efficient regulation or subtle changes in gene sequence can make 
one plant sensitive and other plant tolerant to the same environmental condition. 
This phenomenon is also true for salt-sensitive glycophytes and salt-tolerant halo-
phytic plants. The halophytes are naturally tolerant to high salinity. Their genetic 
analysis revealed that differences in promoter activities and gene duplication in 
halophytes as compared to their glycophytic relative is responsible for their high 
salt tolerance (Nikalje et al. 2017). For example, the NHX8 showed stress-induced 
expression in Arabidopsis while in Thellungiella, it showed constitutive expression. 
However Arabidopsis possess a single copy of CBL10, while T. parvula contain 
three copies; such changes make Thellungiella more salt tolerant. In addition, the 
efficient post- translational modifications are highly efficient in halophytes (Bose 
et al. 2015), and the halophytic gene sequences are more complex with presence of 
extra transposons and intergenic sequences (Rui et al. 2007). Therefore, for genetic 
improvement of crops, it may be important to choose genes from halophytic origin. 
Overexpression of NHX1 gene of Aeluropus littoralis in soybean resulted in less 
sodium accumulation in aerial parts than underground parts, increased potassium 
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ion content under salt stress and increased salt tolerance up to 150 mM NaCl (Liu 
et al. 2014). Shabala and Potossin (2014) opined that retention of potassium ions 
under salt stress is a key factor for salt tolerance in plants and specialty of halo-
phytes. Further, Bose et al. (2015) have confirmed this by showing that maintenance 
of negative water potential because of high H+ ATPase activity is important for 
halotropism. Similarly different halophytic antiporters were overexpressed in rice, 
and the transgenic plants showed high salt tolerance. PtNHA1 and PtNHX from 
Puccinellia tenuiflora were transformed into rice, and the resulting transgenic rice 
showed improved tolerance to NaCl and NaHCO3. Transgenic rice harboring 
AgNHX1 from Atriplex gmelinii increased vacuolar antiporter activity by almost 
eightfold and improved its tolerance up to 300 mM NaCl (Ohta et al. 2002).

8.6  New Research on the Salt Pan

Genome editing tools have opened up new avenues for specific and targeted modi-
fications in the crop plants (de Wiel et al. 2017). The method enables the introduc-
tion of targeted precise genomic changes using customized nucleases (Jain 2015). 
Genes associated with salt tolerance such as those involved in signaling, ion homeo-
stasis, osmolyte synthesis, and transporters can be the suitable candidates for edit-
ing based manipulation. The plasma membrane ATPase plays a critical role in the 
regulation of ion homeostasis under salt stress and hence has been used as the target 
gene in a recent study. Osakabe et al. (2016) induced mutation of an abiotic stress 
tolerance gene encoding OPEN STOMATA 2 (OST2) (AHA1) – a major plasma 
membrane H + -ATPase via the precise site modification by using truncated gRNAs 
(tru-gRNAs) in the CRISPR-Cas9 system (Table 8.3).

High-throughput screening methods have advanced our knowledge about the 
genomes and phenomes. Plant stress biology research depends on robust screening 
methods for contrasting salt-stress-responsive phenotypes at different levels of tissue, 
organ, and whole-plant level. This branch of research, plant phenomics, is now being 
applied to facilitate efficient and reliable evaluation of stress (and salt) tolerant lines. 
Several such platforms for phenotyping are now available. Some of these include the 
High Resolution Plant Phenomics Centre (http://www.plantphenomics.org.au/
HRPPC), Plant AccelatorTM (http://www.plantaccelerator.org.au/), Jülich Plant 
Phenotyping Centre- JPPC (http://www.fz-juelich.de/ibg/ibg-2/EN/_organisation/
JPPC/JPPC_node.html) and Deep Plant Phenomics (Ubbens and Stavness 2017). 
Campbell et al. (2015) have developed a novel approach to analyze the dynamic plant 
responses to salt stress and studied the genetic basis of salt stress associated, geneti-
cally determined changes using a longitudinal genome-wide association model. This 
study highlights the use of image-based phenomics platforms combined with 
genome-wide association studies (GWAS) for dissecting the plant stress responses 
and should enable to establish liaison between expressed phenotypes with related 
genomic regions and environmental conditions. Further research into plant genetic 
manipulation via precise genetic tools will benefit from efficient phenotyping screens 
and high-throughput analysis tools.
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8.7  Conclusions

Increasing salinity severely affects crop productivity and is becoming threat to 
world agriculture. The development of several genomics-assisted approaches 
including genetically modified plants has been advocated to circumvent this prob-
lem. Toward this goal, several stress-responsive genes have been identified and suc-
cessfully introduced into other crops to create transgenic crops with enhanced stress 
tolerance. The most impressive results were obtained when manipulating transcrip-
tion and signaling factors, as they control a broad range of downstream events, 
which results in superior tolerance to multiple stresses. However, challenges still lie 
ahead before successfully improving crop yield under saline conditions as most 
methods have been limited by the problem of yield penalty. Salinity tolerance 
involves a complex of responses at molecular, cellular, metabolic, physiological, 
and whole-plant levels. The marker-assisted selection as the molecular breeding 
method has begun to deliver its expected benefits in commercial breeding programs 
for salinity stress tolerance. For this, in addition to the key loci identified for salt 
tolerance traits majorly in rice, emphasis should also be given on identification and 
validation of other new loci in rice and other crops and their pyramiding in elite 
genetic background for enhanced salt tolerance through molecular marker-assisted 
breeding. Generation of salinity-tolerant transgenic varieties should necessarily 
involve gene stacking where multiple genes need to be overexpressed using advanced 
genetic engineering tools. Furthermore, the critical step is the field trials required to 
evaluate the transgenic plants, especially focusing on their growth and tolerance in 
the whole life period. New and novel information is generated through omics meth-
ods such as metabolomics and proteomics, and it is expected to develop more under-
standing of the salt-stress responses. It is also equally important that further 
understanding how plants perceive stress signals (salt sensors, osmosensors), trans-
mit, and trigger a cascade of genetic mechanisms is necessary to develop crop plants 
that can tolerate extreme environments. With the current renewed interest in stress 
genomics, fast-forward approaches of phenomics, allele mining, and stress-metabo-
lite profiling, it is expected to gain thorough understanding of salt- adaptive diversity 
for use in crop breeding for salt tolerance. Continued research should be aimed at 
development of salt-tolerant crop germplasm to expand the utilization of saline soils 
for enhancing agricultural productivity and environmental sustainability.
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