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CHAPTER 5

A Macro-Based Process for Actively 
Managing Sovereign Bond Exposures

Jacob Bjorheim, Joachim Coche, Alex Joia, 
and Vahe Sahakyan

5.1    Introduction

The success of any active management approach, that is, any approach that 
aims at generating outperformance relative to a benchmark, depends cru-
cially on the quality of expectations about the excess returns (the return 
over and above the short rate) of the managed assets. Only if expected 
excess returns are fair estimates of subsequently realised excess returns, is 
added value from active management possible.

To derive expectations on the excess returns of sovereign bonds of dif-
ferent maturities, we propose a macro-based yield-curve model in which we 
assume that current bond yields are determined—amongst other factors—
by expected macroeconomic developments and their future values can be 
estimated by projecting these macro expectations forward. The link 
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between macroeconomic variables and bond yields is evident by decompos-
ing the yield into two components:

•	 The short-rate expectations component. This part of the yield on a 
long-dated bond reflects the expected return from rolling invest-
ments in the short rate through to the maturity of the long bond. As 
argued below, this component is closely related to macroeconomic 
conditions; and

•	 The term premium component. This part is the remainder, or the 
actual yield on the long-dated bond less the short-rate expectations 
component. The term premium reflects the additional return that 
investors demand for investing in the long-dated bond over and 
above the expected return from rolling investments in the short rate.

The sovereign short rate is assumed to be the monetary policy rate of 
the central bank, which in turn is assumed to be set in reaction to prevail-
ing and expected macroeconomic developments. The central bank sets its 
policy rate based on its policy objectives, for example, full employment 
and price stability for the US Fed. Policy makers would tend to reduce the 
rate if consumer price inflation or employment is expected to undershoot 
their targets and increase the rate if inflation or employment is expected to 
overshoot. The conduct of monetary policy therefore ensures a link 
between the yields of long-dated bonds (notably the short-rate expecta-
tions component) and macroeconomic developments. We model this link 
through a modified Taylor (1993) rule.

In the aftermath of the Great Financial Crisis, the so-called zero lower 
bound, which describes the situation in which the central bank is unwill-
ing or unable to set a negative policy rate, resulted in the policy rate being 
maintained at a level above where it would ideally be based purely on the 
inflation and employment objectives of the central bank. This introduces 
an additional challenge in the modelling of the policy rate as the policy 
rate is insensitive to improvement/deterioration in macroeconomic vari-
ables in the short run. This challenge is addressed by the introduction of 
a shadow short rate that can be negative while the actual policy rate 
remains above or at zero. The shadow short remains responsive to changes 
in macroeconomic conditions, while the actual monetary policy rate 
remains at its lower bound. Eventually, after sufficient improvement in 
macroeconomic conditions, the shadow short rate will increase sufficiently 
to allow the actual policy rate to “lift-off” from its lower bound.
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Over the past few years, a rich literature on zero-lower-bound model-
ling has emerged; see among others Bauer and Rudebusch (2016), 
Christensen and Rudebusch (2014), Feunou et  al. (2015), Krippner 
(2013, 2014, 2015b), Wu and Xia (2016) for the US market, and Lemke 
and Vladu (2016) for the Euro area. Loosely speaking, this literature 
adopts the concept of a shadow short rate, in the spirit of Black (1995), as 
an unconstrained random variable that maps to the observed short rate via 
a static truncation function. These approaches are static with regard to the 
applied truncation function that does not depend on the state of the econ-
omy. This has often led empirical studies to uncover a somewhat counter-
intuitive time-series trajectory for the shadow short rate process on US 
data (see, e.g. Krippner 2014, 2015a). For example, the estimated US 
shadow short rate path has been difficult to reconcile with survey- and 
market-based expectations of the policy rate path generally agreed among 
investment professionals, where the Fed eased or tightened policy stance 
through unconventional programmes (i.e. forward guidance and large-
scale asset purchase programmes). These discrepancies motivated Krippner 
(2014) to advocate the use of two-factor models, instead of the more 
commonly applied three-factor models (Wu and Xia 2016).

We use a flexible three-factor model proposed by Coche et al. (2017b) 
that produces an economically intuitive shadow short rate path before, 
during, and after the zero-lower-bound period. This approach rests on a 
flexible truncation function, where the mapping from the unobserved 
shadow short rate to the observed short rate depends on the state of the 
economy, via the term structure of the yield curve.

The remainder of this chapter is organised as follows. Section 5.2 intro-
duces the model set-up and Sect. 5.3 presents the data and discusses the 
estimation technique. A detailed assessment of the model’s excess return 
predictability is presented in Sect. 5.4. Section 5.5 discusses the relevance 
of possible sources of excess return predictability and offers some thoughts 
on the application of the proposed model for real-world portfolio man-
agement. Section 5.6 concludes.

5.2    Model Set-Up

The macro-based yield-curve projections are based on a variation of the 
widely used dynamic Nelson-Siegel model proposed by Diebold and Li 
(2006), with three modifications. First, instead of the factor-loading 
structure of the original model of Nelson and Siegel (1987), we use a 

  A MACRO-BASED PROCESS FOR ACTIVELY MANAGING SOVEREIGN BOND… 



106 

rotated version with the first factor being the short rate. Second, in order 
to better capture the dynamics of this factor near the effective lower 
bound, we use a shadow rate concept. Third, we model the dynamics of 
the shadow short rate factor using a modified version of the Taylor rule. 
These modifications are discussed below in detail.

Equation 5.1 shows the rotated loading structure for yield-curve fac-
tors βt as proposed by Nyholm (2015). Consequently, the estimated fac-
tors proxy the short rate, slope, and curvature of a yield-curve structure yt 
at a time t opposed to the long-term rate, slope, and curvature in the 
classical Nelson-Siegel loadings. We deviate from Nyholm (2015), in 
assuming the functional relationship between factors and yields in the 
shadow rate space rather than in the observed-rate space. Thus yields yt  
and factors βt  represent shadow values. τ denotes maturity, and we 
set parameter λ to 0.71:
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(5.1)

The link between the observed space and the shadow space is provided 
by the flexible truncation function in Eq. 5.2, with parameter A depen-
dent on the curve’s slope and curvature. Here yt τ( )  denotes the esti-
mated observed yields and yL is the assumed effective lower bound.
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(5.2)

We base our model choice of A on the premise that once the observed 
rate is close to the effective lower bound, the shadow rate goes deeper into 
negative territory with a flattening of the observed curve as longer-
maturity yields get pushed down against the lower bound in the expecta-
tion that the short rate will remain at the zero bound for an extended 
period (factor βt, 1 decreasing) and lower observed curvature (βt, 2 decreases) 
and vice versa. This premise is reflected in Eq. 5.3 using the product of 
two hyperbolic tangent functions. Consequently, parameter A is allowed 
to fluctuate between K and K + 4 as a function of slope and curvature as 
illustrated in Fig. 5.1. The exact nature of the dependence is controlled in 
addition by parameters p1, p2, q1, and q2.
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(5.3)

In Eq. 5.3, the observed slope is proxied by the sum of the lower-bound 
constrained shadow short rate and the shadow slope (  β βt t Ly, ,min ,1 0 0+ −( ) ).

The set-up in Eqs. 5.1 to 5.3 follows closely the model proposed in 
Coche et al. (2017b), which provides the arbitrage-free version of the above 
specifications, and also shows that the implied shadow rate dynamics are 

Fig. 5.1  Illustration of parameter A

Illustration of how parameter A fluctuates as a function of observed slope and cur-
vature given p1 = 1, q1 = 3, p2 = 1, and q2 =  − 3. The x-axis shows possible values of 
the observed slope in the range between −2 and 8, and the y-axis values for the observed 
curvature in the range between −8 and 4. Different pairs of slope and curvature val-
ues, in combination with the short rate being anchored to the effective lower bound, 
imply different yield-curve shapes, four of which are depicted in inset figures. In addi-
tion, the coloured areas indicate the values that parameter A takes as a function of 
slope and curvature. The corresponding numerical values can be read from the legend 
on the right
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broadly in line with the rate dynamics of the Krippner (2014) two-factor 
model as long as the rates are close to the effective lower bound but that 
under normal yield-curve environments, the three-factor Nelson-Siegel 
specification has a superior fit to observed yields.

With regard to the time-series dynamics of the shadow short rate, we 
deviate from the autoregressive specification in Diebold and Li (2006) by 
assuming a modified Taylor rule (Eq. 5.4 below) with a contemporaneous 
dependence of the short-rate factor on inflation expectations π t

e−  relative 
to a target inflation π∗ and output gap xt as well as a policy inertia term 
( d t0 1 0
β − , ).

	
 β βt
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(5.4)

While Eq. 5.4 represents the choice of the short-rate dynamics for the 
US market (with a similar specification for Japan), the US shadow short 
rate is introduced as an additional explanatory variable in the short-rate 
dynamics of the German and UK markets.
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(5.4a)

where superscripts UK and EA are omitted for simplicity.
For the slope factor, we assume an autoregressive model with exoge-

nous variables (ARX) specification with the output gap xt as an explana-
tory variable (Eq. 5.5), and for the curvature factor, we assume it follows 
a simple autoregressive process (Eq. 5.6).

	
 β βt t t ta c x d, , ,1 1 1 1 1 1 1= + + +− 

	
(5.5)

	
 β βt t ta d, , ,2 2 2 1 2 2= + +− 

	
(5.6)

As there are contemporaneous relationships between the first two fac-
tors and the output gap and inflation, projections of these macro variables 
are required. Either judgement-based or model-based projections for these 
macro variables can be used. The model-based projection of inflation is 
based on an autoregressive process of order p on monthly inflation rates 
from which expectations on year-on-year inflation rates π t

e−  are derived.
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The model-based projection of the output gap xt = GDPt/PGDPt − 1 
assumes separate processes for the growth rates of GDP and potential 
GDP. That is, we assume that the GDP growth rate follows again an 
autoregressive process of order p. The growth rate of potential output 
Rt,PGDP is modelled as an exponentially smoothed average of actual 
realised GDP growth rates Rt-1,GDP and the previous period’s output gap 
(Eq. 5.7).

	
R w R w R v xt PGDP t PGDP t GDP t, , ,= −( ) + +− − −1 1 1 1 	

(5.7)

An illustration of this stepwise approach to the projection of yield-curve 
factors is provided in Fig. 5.2.

Fig. 5.2  Illustration of factor projection
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5.3    Data and Estimation

Table 5.1 summarises the data sources for growth, inflation, and the yield 
curve used for the model estimation. In order to obtain long data histo-
ries, various sources are combined for some of the series. Combined series 
are in particular used for the euro area where German inflation and growth 

Table 5.1  Data sources

Country Type Source and start dates

United 
States

Sovereign 
bond yields

US Federal Reserve Board (H.15) from 03/1953 and 
Bloomberg Curve I111 from 01/2000

Inflation US PCE Personal Consumption Expenditures Ex Food and 
Energy Deflator SA (US Bureau of Economic Analysis)

GDP Real Gross Domestic Product, Billions of Chained 2009 
Dollars, Seasonally Adjusted Annual Rate (US Bureau of 
Economic Analysis)

Industrial 
Production

Industrial Production Index (Board of Governors of the 
Federal Reserve System)

United 
Kingdom

Sovereign 
bond yields

Bank of England from 01/1970 and Bloomberg Curve I22 
from 01/2012

Inflation UK CPI EU Harmonized NSA (UK Office for National 
Statistics)

GDP UK Real GDP Seasonally Adjusted (UK Office for National 
Statistics)

Industrial 
Production

UK Industrial Production SA Real (UK Office for National 
Statistics)

Euro area Sovereign 
bond yields

German government bond yields based on Bundesbank data 
from 08/1974 and Bloomberg Curve I16 from 01/2012 
onwards

Inflation ECB Harmonised Consumer Price Index SA, prior to 1995 
German CPI (ECB, Eurostat, BBK, German Statistics Office)

GDP Euro area Real GDP SA, prior to 1995 German GDP 
(Eurostat, Bundesbank), German Statistics Office)

Industrial 
Production

Eurozone Industrial Production ex Construction SA 2010 
Prices, prior to 1995 German Industrial Production 
(Eurostat, Bundesbank, German Statistics Office)

Japan Sovereign 
bond yields

Ministry of Finance (Japan) from 09/1974 and Bloomberg 
Curve I18 from 01/2012

Inflation Japan CPI Nationwide General (Ministry of Internal Affairs 
and Communications)

GDP JP Real GDP Seasonally Adjusted (Economic and Social 
Research Institute Japan)

Industrial 
Production

Japan Industrial Production SA Real (Ministry of Economy 
Trade and Industry Japan)
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data are used as proxies prior to 1995. Furthermore, the German govern-
ment yields are used as proxy for euro-area yields.

As the model is estimated on the basis of monthly data, frequency 
adjustment of quarterly GDP data is performed using industrial produc-
tion as an instrument variable. As shown in Eq. 5.8, the proxied monthly 
GDP growth rates rGDP

M  correspond to the monthly growth rates of indus-
trial production rIP

M  plus an adjustment term which ensures that the aggre-
gated monthly GDP growth rate corresponds to the observed quarterly 
growth rate rGDP

Q .

	
r r

r r
GDP
M

IP
M GDP

Q
IP
M

= +
−∑
3 	

(5.8)

The shadow rate curves (Eqs. 5.1 to 5.3) are estimated statically—thus for 
each month individually—by minimising the sum of squared deviations of 
estimated yields yt τ( )  from observed yields yt(τ). For this, we assume a fixed 
set of parameters p1 = 1, q1 = 3, p2 = 1, q2 =  − 3 and K = 0. The effective 
lower bound yL is set to the minimum observed short rate minus 0.25. The 
resulting estimates of shadow rate factors are shown in Fig. 5.3.

The model equations governing the time-series dynamics (Eqs. 5.4 to 
5.6) are estimated individually using maximum likelihood estimation on 
the full data history. For the estimation of the modified Taylor rule (Eqs. 
5.4 and 5.4a), we omit the explicit policy targets π∗, which thereby are 
assumed to be reflected in the estimated intercepts. Table 5.2 provides the 
estimated parameters.

5.4    Excess Return Predictability

In this section, we perform an assessment of the model’s excess return 
predictability, which goes beyond the standard criteria typically used for 
the assessment of yield-curve models such as root-mean-squared errors 
and mean absolute deviations (e.g. Diebold and Li 2006; Johannsen and 
Mertens 2016). Notably, we first analyse predictability over time, that is, 
the extent to which a signal St derived from the model at time t predicts a 
bond’s excess return realised over the subsequent 12 months. Second, we 
analyse the model’s cross-sectional properties by constructing portfolios 
of US, German, UK, and Japanese bonds using bond rankings based on 
the model signals.
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Two signals are extracted from the model. The first is the expected 
return for different (constant) maturity zero-coupon bonds calculated 
based on the projected evolution of the yield curve.1 The second is the 
term premium estimated from the prevailing yield at a given maturity and 
the projected short rate over the maturity. We compare the predictive 
power of these signals to the carry signal, which has been shown to imply 
predictive power for a number of markets including government bonds 
(e.g. Koijen et al. 2016). Carry is calculated as the yield plus the return 
component from rolling down an unchanged yield curve.

Table 5.2  Coefficient estimates governing the time-series dynamics (Eqs. 5.4  
to 5.6)

Intercept π t
e− xt

βt
x
−1 0,

βt
US
,0 R2

US
 �  βt

US
,0 −0.019 0.048*** 0.019*** 0.969*** 0.98

(0.030) (0.013) (0.005) (0.007)
 �  βt

US
,1 0.099*** −0.023*** 0.948*** 0.95

(0.026) (0.005) (0.010)
 �  βt

US
,2 −0.020 0.903*** 0.82

(0.043) (0.016)
UK
 �  βt

UK
,0 0.100** 0.027*** 0.031*** 0.902*** 0.091*** 0.97

(0.057) (0.010) (0.011) (0.016) (0.017)
 �  βt

UK
,1 0.075** −0.039*** 0.929*** 0.91

(0.038) (0.011) (0.015)
 �  βt

UK
,2 −0.338*** 0.833*** 0.70

(0.094) (0.023)
Euro area
 �  βt

EA
,0 0.080** 0.053*** 0.061*** 0.899*** 0.064*** 0.98

(0.041) (0.020) (0.012) (0.014) (0.009)
 �  βt

EA
,1 0.021 −0.032*** 0.965*** 0.95

(0.029) (0.011) (0.010)
 � βt

EA
,2 −0.311*** 0.860*** 0.74

(0.074) (0.022)
Japan
 �  βt

JP
,0 0.066*** 0.011 0.016*** 0.953*** 0.99

(0.021) (0.017) (0.004) (0.011)
 �  βt

JP
,1 0.140*** −0.008*** 0.921*** 0.94

(0.028) (0.003) (0.015)
 �  βt

JP
,2 −0.346*** 0.841*** 0.71

(0.072) (0.024)

***p<0.01, **p<0.05, *p<0.1
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The model performance is analysed under two macro assumptions: 
first, that inflation and GDP growth are mean reverting, and second, 
under the assumption of perfect foresight on these macro variables. For 
the mean-reverting macro assumption, inflation and GDP growth revert 
to equilibrium values in an autoregressive process. For the perfect fore-
sight macro assumption, we use the subsequently realised 12-month-
ahead inflation and GDP growth.

We backtest asset-return predictability both in sample and out of sam-
ple. For the in-sample backtest, we use a long data history going back to 
1953 for the US and to 1970 for the German, UK, and Japanese markets. 
Subsequently, we assess the bias of the in-sample results by successively 
re-estimating model parameters in an out-of-sample setting starting in 
1990.

5.4.1    In-Sample Backtesting

For the in-sample assessment of the model, we estimate the parameters 
making use of the full data history.

To analyse the model properties with regard to predicting the excess 
return over time, we present regression statistics in Table 5.3. For this, a 
regression of signal Si, t  —either the term premium or expected excess 
return—for bond i is performed on the excess returns Ri, t → t + k earned by 
the bond over the subsequent k = 12 months.

	
R a b Si t t k i t t t k, ,→ + → += + × +

	
(5.9)

In the calculation of t-statistics, the Hansen and Hodrick (1980) cor-
rection is applied to account for overlapping data windows. In addition, 
accuracy and F1 score measures are reported to assess the quality of the 
approach to correctly predict the sign of excess returns. Accuracy is defined 
as the ratio of correctly forecasted signs (i.e. forecasted and realised excess 
return either both positive or both negative) to total observations. The F1 
score (Rijsbergen 1979) considers both the forecast precision P (defined 
as true positives as a percentage of predicted positives) and recall R 
(defined as true positives as a percentage of actual positives). Based on 
this, the F1 score is defined as 2PR/(P + R).2

Table 5.3 shows the regression statistics for both macro assumptions. 
Under the assumption of mean-reverting macro, the expected return signal 
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produces R2s in the range between 4% and 21%. The weakest results are 
observed for the German curve and the strongest results for Japan. The 
regression coefficients are statistically significant for the UK and Japan 
curves, weakly significant for the US curve, and not significant for the 
German curve. Switching the signal to term premium implies generally 
higher R2s and higher significance levels.

Under the assumption of perfect macro foresight, the model shows 
substantially increased explanatory power and statistical significance. The 
regression coefficients are significant at high confidence levels consistently 
across maturities and markets, and R2s increase to between 11% and 53%. 
Also accuracy and F1 scores improve for all maturities. Under this assump-
tion, the term premium and expected return signals show broadly compa-
rable characteristics.

Table 5.4 offers a comparison of the model’s properties to the carry 
signal. Over the full period and across all markets and maturities (left panel 
of Table  5.4; period consistent with the in-sample period used for 
Table 5.3), carry has a signal quality comparable with the model under the 
mean-reverting macro assumption. However, under the perfect macro 
foresight assumption, the model clearly shows superior properties in terms 
of significance levels and R2s. Also the model shows generally better 
Accuracy and F1 scores (with the exception of Japan). It is noted here that 
the results for the model are subject to in-sample bias, while the model-
free carry signal is not. To correct for this, we perform below (see 
Table 5.7) a proper out-of-sample analysis, to be compared with the right 
panel of Table 5.4.

To test the model’s cross-sectional properties and the model’s fitness to 
serve as a basis for portfolio construction, we assess the effectiveness of a 
number of duration-neutral strategies. To this end, the model is used to 
choose from 10 bonds, with maturities ranging from one to ten years for 
each of the four government bond markets, a universe of 40 bonds in 
total. In each month over the full sample, the 40 bonds are ranked using 
one of the term premium, the expected return, or the carry signal. On the 
basis of this ranking, five portfolios—representing distinct investment 
strategies—are constructed:

•	 Three quantile portfolios that comprise the lower third of the ranked 
bonds (Portfolio P1), the middle third (P2), and the upper third 
(P3).3 The bonds within each quantile portfolio are equally weighted. 
As the bonds are duration adjusted, each quantile portfolio has dura-
tion equal to one.

  J. BJORHEIM ET AL.
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•	 One long-short difference portfolio of the highest signal quantile 
portfolio (P3) minus the lowest signal quantile portfolio (P1). This 
long-short portfolio has zero duration.

•	 One long-short factor portfolio similar to Asness et al. (2013), where 
the weight wi, t of bond i is determined according to its signal rank. 
With this portfolio, the sum of the long positions is 1 and the sum of 
the short positions is −1 and the sum of all weights is zero. This 
long-short portfolio has zero duration.

	

w
rank S rank S N

rank S rank S N
i t

i t i ti

i t i ti

,

, ,

, ,

/

/
=

( ) − ( )
( ) − ( )




∑
∑ ∑ / 2

i 	

(5.10)

Bonds in these portfolios are duration adjusted to have duration equal 
to one. For example, the duration-adjusted two-year bond has a 50% 
weight to the two-year bond and a 50% weight to cash, while the duration-
adjusted five-year bond has 20% weight to the five-year bond and an 80% 
weight to cash. As a result, and noting that cash has zero excess return, the 
excess return on (say) the five-year duration-adjusted bond is 20% of the 
excess return on the five-year unadjusted bond.

Each portfolio is re-constructed on a monthly basis based on signals for 
the 40 bonds at the end of each month. Based on the re-constructed port-
folios at the end of the month, the returns for the five portfolios/strate-
gies is determined for the subsequent month.

The performance of the five portfolios/strategies is compared with an 
equally weighted benchmark of all 40 bonds. The benchmark is also used 
to estimate the portfolio’s alphas and betas and to calculate tracking error 
and the information ratio. For the monthly rebalancing of the five portfo-
lios as well as the benchmark, transaction costs of 2.5 basis points are 
assumed on each round trip (buy and sell).

Each portfolio is comprised of bonds denominated in different curren-
cies. Assuming hedging costs reflect short-rate differentials, the excess 
return a bond earns over the short rate in its domestic currency is the 
excess return that a foreign exchanged (FX)-hedged investment in that 
bond will earn reflected in any base currency. The excess returns presented 
below reflect FX-hedged returns.

There is evidence of excess return predictability across all signals. Tables 
5.5 and 5.6 show increasing excess return with signal strength, with the 
mean excess returns of P3 portfolios consistently higher than those of P2 

  J. BJORHEIM ET AL.
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portfolios that in turn are consistently higher than those of P1 portfolios. 
At the same time, the P3 portfolios appear to be riskier with higher vola-
tilities, Sharpe ratios, and higher betas in regressions of excess returns on 
the benchmark. The quantile portfolios based on the expected return sig-
nal show the greatest spread in betas with 0.7 for the P1 and 1.3 for the 
P3 portfolio. The P3 portfolios based on the term premium signal (under 
both the mean reverting and perfect macro foresight scenarios) and 
expected return signal (under the perfect macro foresight scenario) show 
significant positive alphas.

Also the results for long-short portfolios, the difference portfolios 
(P3 − P1) and the factor portfolios, indicate excess return predictability, 
with statistically significant mean excess returns and significant, positive 
alphas. At the same time, despite these being zero-duration portfolios, all 
long-short portfolios show significant, positive betas. Compared with the 
carry signal, the term premium signal with mean-reverting macro variables 
implies higher levels of alphas and betas and higher significance levels.

Results under the perfect macro foresight assumption indicate the 
scope for further improvements in alpha and risk-adjusted returns based 
on accurate macroeconomic forecasts. The alphas of the difference portfo-
lio are higher by 12 and 16 basis points, respectively, for the expected 
return and term premium signals. The information ratios increase from 
0.28 to 0.44 and from 0.48 to 0.58 for the expected return and term pre-
mium signals, respectively.

Figure 5.4 shows the evolution of the cumulative excess return of the 
factor portfolio over time. This portfolio shows a meaningful increase in 
the cumulative excess return after 1970 (the point in time when data on 
all four markets is available; prior to this, only US data is available). In 
contrast, the cumulative return of the carry-based strategy shows a con-
tinuous increase only from the early 1980s onwards, possibly coinciding 
with start of the secular decline in interest rates (see Coche et al. 2017a).

5.4.2    Out-of-Sample Backtesting

To better assess the suitability of the model to support real-world decision-
making, we repeat the analysis of time-series properties by successively 
re-estimating model parameters in an out-of-sample setting. That is, start-
ing in January 1990, monthly re-estimations of the model parameters are 
performed, and expected returns and term premia are calculated on the 
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basis of market information available at that point in time.4 As before, the 
projection horizon to derive the return expectations is the subsequent 
12 months. Results of this analysis are shown in Table 5.7.

The properties of the term premium signal in the out-of-sample setting 
are broadly in line with the in-sample forecasts over the same period. 
Comparing Tables 5.7 and 5.8 of the Annex with in-sample statistics start-
ing in 1990, we find that the level and significance of coefficients in the 
regressions of the term premium on excess returns are of similar magni-
tude, both for mean reverting and perfect foresight macro. Further, R2s, 
accuracy numbers and F1 scores are comparable. However, the statistical 
significance and explanatory power of the expected return signal appears 
to be weaker in the out-of-sample setting.

Compared with the carry signal (right panel of Table 5.4), the expected 
return and the term premium signals both under the mean reverting and 
under the perfect foresight macro scenarios show higher significance levels 
and higher explanatory power.
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5.5    Discussion

Asset prices are driven by a wide range of factors. The role of the active 
portfolio manager is to develop a good understanding of these return driv-
ers in order to understand and manage the risks embedded in the portfolio 
and to seek to add value (outperformance) relative to the benchmark.

Macroeconomic cycles—with fluctuations in inflation and the output 
gap—and future prospects for the economy have a fundamental influence 
on bond prices. Data relating bond prices to the macroeconomic state of 
the economy is available over many decades—and this relationship is cap-
tured by the model we have presented.

We have shown that with perfect foresight on macro developments, the 
model can generate statistically significant excess returns. Nevertheless, 
the model also generates significant excess returns with a naïve (AR1) 
projection of macro variables—this is less expected and while the back-
tested results of the model are very encouraging, we need to guard against 
being overconfident in the ability of generating excess returns solely on 
the basis of a model. We should recognise that financial markets in gen-
eral—and G7 government bond markets in particular—are likely to be, to 
a high degree, informationally efficient, with a large number of sophisti-
cated players seeking to maximise profit. Thus, there should be no easy 
opportunities to outperform. This leads us to question the excess return 
generated by the model in our out-of-sample backtesting. We contemplate 
three possible explanations:

	(1)	 Data mining—that is, we have changed the model specification 
until we found one that “works”;

	(2)	 The model has identified risk factors that can be exploited for gen-
erating higher return by earning the risk premiums associated with 
these factors; and

	(3)	 The model has identified inefficiencies in the market that can be 
exploited for generating excess return without additional risk.

A model that only works because of data mining is a useless model as it 
will stop working going forward. The economic rationale underpinning 
the model specifications adopted in this chapter (e.g. a Taylor rule 
approach for the short rate) and the fact that the “no-model” carry signal 
also generates excess return provide considerable confidence that data 
mining is not the dominant source of excess return predictability.
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It is healthy to be sceptical of the suggestions that we have found a 
formula to generate excess returns without assuming additional risk in the 
very efficient government bond markets we are analysing. We would 
therefore lean towards the suggestion that the model exploits one or mul-
tiple risk premiums in generating excess returns.

Risk premiums are time-varying and not perfectly correlated across dif-
ferent markets. A signal (such as carry or the model expected return) that 
picks up on the size of the risk premium can then be used to take on addi-
tional (duration) risk when such risk is most rewarded and shed risk when 
it is poorly rewarded. We note the counter-cyclical nature of this strategy 
as more exposure is taken at a time when other investors shy away from 
assuming such exposure.

The results of backtesting the model show that excess returns could 
have been generated if we had had perfect foresight on macroeconomic 
developments. This is reassuring as it confirms that macro fundamentals 
are one driver of bond prices. Unfortunately, real-world portfolio manag-
ers do not have perfect foresight, and accurately forecasting the future 
state of the economy may be as challenging as accurately forecasting future 
bond prices. While portfolio managers will have developed their own view 
on the evolution of the economy, the market will already have “priced-in” 
some form of consensus view of future macroeconomic development into 
current bond prices, making outperformance difficult even with a well-
informed outlook on the macro economy.

In using the model, we also need to recognise that the relationship 
between the state of the economy and bond prices may have evolved over 
time. Over the past 30 years we have witnessed a dramatic fall in yield levels 
in developed markets, it is believed that the real neutral rate has also fallen 
over this period.5 Furthermore, the recovery following the 2007–2008 
financial crisis has been particularly shallow and government bond markets 
have been distorted by large-scale purchases of longer-maturity bonds, 
with the specific objective of reducing long-term financing costs (i.e. reduc-
ing long-term yields and compressing the term premium).

For the above reasons, the model will always remain only one input to 
our active investment decision-making process—with the final decision 
ultimately being a judgement call made by the portfolio manager.6 While 
model signals are not automatically implemented, the model signal pro-
vides a valuable indicator of current over- or under-valuation of bonds in 
a historical context and serves as a cornerstone for the financial market 
discussion and the investment decision-making that follows.
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Beyond forecasting the return on bonds of different maturity, the 
shadow short rate modelling framework can provide the portfolio man-
ager with some insight into the normalisation or “lift-off” of the policy 
rate, as progress towards the central bank’s macroeconomic policy 
objectives results in the shadow short rate approaching the lower bound 
(from below) and eventually in an increase in the actual policy rate.

In this chapter, we focused on the application of the macro-based yield-
curve model to support active decision-making within and across govern-
ment bond markets. For the cross-market positions, we assumed that 
currency hedging costs are closely matched by short-rate differentials. The 
model could be extended to account for deviations from the covered 
interest rate parity in which the currency hedging cost differs from short-
rate differential. The model could also be extended to model currency 
movements—which are in part conditioned by the evolution of short-rate 
differentials that is already modelled.

5.6    Conclusions

Active portfolio management is a difficult task, in particular, if it aims at 
outperforming a benchmark of securities in deep, liquid, and well-
researched fixed-income markets. While current bond prices are observ-
able, their future values are not. Expectations about the horizon value of 
bonds are thus required. In this chapter, we propose a model that estimates 
these future values by connecting a modified Taylor rule with a rotated 
Nelson-Siegel yield-curve model. This set-up evaluates a central bank’s 
interest rate target in response to economic and inflation developments. 
Furthermore, the chosen approach allows for modelling a negative “shadow 
short rate” even when the actual policy rate is restricted by the zero lower 
bound. From the estimates of the monetary policy rate, the yield-curve 
model dynamically constructs the level, slope, and curvature of future term 
structures. By comparing the current bond prices with the future projec-
tions of these prices, return and term premium estimates are developed.

We show that there is value to be had from using the model’s expected 
return and term premium signals to guide portfolio construction even 
under the naïve mean-reverting macro data assumption. The value of using 
the model to guide portfolio construction increases significantly with per-
fect foresight on the evolution of macro data. This result supports the inte-
gration of macro forecasts into the investment decision-making process.
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Table 5.8  In-sample backtest (1990 to 2016)

Instrument Mean-reverting macro Perfect foresight macro

b t(b) R2 Accuracy F1 
score

b t(b) R2 Accuracy F1 
score

Expected return
US 2Y 1.61 (3.16)*** 0.19 0.78 – 1.82 (7.97)*** 0.50 0.82 0.24
US 5Y 1.56 (3.42)*** 0.18 0.75 0.31 1.98 (6.68)*** 0.41 0.81 0.32
US 10Y 1.51 (3.76)*** 0.20 0.66 0.45 1.73 (4.61)*** 0.29 0.79 0.44
DE 2Y 0.77 (1.53) 0.08 0.47 0.38 1.17 (5.78)*** 0.57 0.83 0.68
DE 5Y 0.98 (2.85)*** 0.11 0.58 0.31 1.60 (7.09)*** 0.51 0.83 0.56
DE 10Y 0.83 (2.39)** 0.10 0.61 0.44 1.33 (4.58)*** 0.27 0.79 0.58
UK 2Y 1.23 (4.08)*** 0.28 0.60 0.51 1.01 (3.71)*** 0.40 0.68 0.50
UK 5Y 1.06 (3.73)*** 0.22 0.66 0.53 1.15 (5.63)*** 0.37 0.74 0.43
UK 10Y 0.90 (4.26)*** 0.19 0.58 0.52 0.91 (6.12)*** 0.20 0.75 0.55
JP 2Y 1.29 (4.85)*** 0.51 0.75 – 1.41 (5.91)*** 0.58 0.83 –
JP 5Y 1.04 (5.31)*** 0.44 0.70 – 1.12 (6.30)*** 0.49 0.79 0.09
JP 10Y 0.77 (5.17)*** 0.32 0.63 0.31 0.80 (5.30)*** 0.35 0.69 0.28

Term premium
US 2Y 1.36 (1.85)* 0.11 0.76 0.14 2.05 (3.83)*** 0.27 0.81 0.23
US 5Y 2.31 (2.92)*** 0.18 0.76 0.16 3.24 (7.62)*** 0.42 0.79 0.20
US 10Y 2.84 (3.23)*** 0.16 0.73 0.29 3.18 (3.90)*** 0.28 0.78 0.30
DE 2Y 0.84 (1.22) 0.07 0.56 0.40 2.19 (6.58)*** 0.40 0.69 0.50
DE 5Y 1.53 (2.77)*** 0.12 0.52 0.35 2.79 (7.98)*** 0.56 0.80 0.57
DE 10Y 1.46 (1.90)* 0.07 0.57 0.44 1.97 (4.25)*** 0.25 0.75 0.52
UK 2Y 1.28 (4.16)*** 0.33 0.66 0.43 1.50 (6.22)*** 0.52 0.69 0.46
UK 5Y 1.66 (4.15)*** 0.26 0.66 0.50 1.80 (6.14)*** 0.40 0.75 0.54
UK 10Y 1.88 (3.45)*** 0.16 0.61 0.53 1.56 (4.54)*** 0.17 0.71 0.49
JP 2Y 2.15 (5.01)*** 0.56 0.74 0.02 2.41 (5.98)*** 0.66 0.75 –
JP 5Y 1.86 (5.50)*** 0.47 0.70 – 2.09 (6.48)*** 0.54 0.75 0.07
JP 10Y 1.71 (5.10)*** 0.32 0.66 0.15 1.89 (5.12)*** 0.35 0.75 0.24

***p<0.01, **p<0.05, *p<0.1

Annex

Notes

1.	 Determined by geometrically linking monthly returns of zero-coupon 
bonds of the target maturity (from one- to ten-year) at the start of the 
month.

2.	 The F1 score is applied to distinguish the assessed approaches from a simple 
strategy, which always assumes a positive excess return. The latter strategy 
would actually show good accuracy in an environment where negative excess 
returns are less frequent than positive excess returns, as this was the case for 

  A MACRO-BASED PROCESS FOR ACTIVELY MANAGING SOVEREIGN BOND… 



128 

the major bond markets since the early 1980s. However, the F1 score of 
such strategy would approach zero due to poor recall performance.

3.	 More precisely, P1 comprises bonds ranked 28 to 40 (13 bonds), P2 com-
prises rank 15 to 27 (13 bonds), and P3 comprises the first 14 ranked bonds.

4.	 The out-of-sample backtest is based on GDP data as available at the time. As 
GDP estimates are regularly revised and today’s GDP estimates differ from 
estimates available at the time of decision-making, the out-of-sample back-
test may be biased in this respect. However, the perfect foresight scenario is 
anyway seen as hypothetical ceiling analysis aimed at assessing improvements 
in the model’s excess return predictability from having better macro 
forecasts.

5.	 In the practical application of the model presented in this chapter, we revise 
the estimated parameters of the modified Taylor rule to lower the implied 
real neutral rate of interest below historical values.

6.	 Having said this, we note that at some asset managers, investment decisions 
are almost entirely rule based, with, for example, the portfolio systematically 
tilted to higher carry instruments.
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