
Fingers-on Geometry: The Emergence
of Symmetry in a Primary School
Classroom with Multi-touch Dynamic
Geometry

Sean Chorney and Nathalie Sinclair

Abstract In this chapter, we describe a research project with first grade children
using a multi-touch dynamic geometry sketch. We approach our analysis through
the lens of inclusive materialism (de Freitas & Sinclair, 2014), which considers the
intra-actions involved in the child-device-geometry assemblages and thus to the
way in which new mathematical ideas emerge in this assemblage. Drawing on the
design experimentation methodology (de Freitas, 2016), we analyse the assemblage
in order to study how concepts such as symmetry arise. We therefore seek to
investigate the way digital technology can become a device for producing new
concepts. We focus particularly on how the multi-touch environment, in which
geometry objects can be continuously dragged with fingers, occasions new gestures
and body motions that provide the basis for emerging geometrical ideas.

Introduction

In this chapter, we experiment with the concept of symmetry in a grade one
classroom where students interact with a dynamic geometry environment (DGE) on
multi-touch tablets. In mathematics, a concept, in general, is seen as a robust,
cohesive idea that represents all of its manifestations. For example, if the concept of
symmetry is understood ‘fully’, a person should be able to apply, answer questions,
and understand symmetry in all its instantiations. We believe this reductive
approach to learning mathematical concepts relies too heavily on knowing as
‘stored’ mental knowledge. This perspective ignores the relevance that both tools
and activities have on what it means to know a mathematical concept. Some

S. Chorney (&) � N. Sinclair
Simon Fraser University, Burnaby, Canada
e-mail: sean_chorney@sfu.ca

N. Sinclair
e-mail: nathsinc@sfu.ca

© Springer International Publishing AG, part of Springer Nature 2018
N. Calder et al. (eds.), Using Mobile Technologies in the Teaching and Learning
of Mathematics, Mathematics Education in the Digital Era 12,
https://doi.org/10.1007/978-3-319-90179-4_12

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90179-4_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90179-4_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90179-4_12&amp;domain=pdf


researchers have challenged the representationalist view of knowledge, arguing for
a more performative practice of knowing, which happens in time, in context and
through action (e.g., Pickering, 1995). That is, rather than interpreting experimental
results in an abstract way, inductively drawing out a “schema” that a given child has
constructed, they refuse the dichotomising of action and thought, focussing instead
on the multiple ways in which bodies and materials engage in knowing. We
challenge the idea that symmetry is a concept that is slowly developed and
acquired, then schematised in a stable way in the brain. Instead we use the theo-
retical framework of inclusive materialism (de Freitas & Sinclair, 2014) which
draws attention to the material nature of mathematical concepts, and thus to the
concept as indeterminate, mobile and imbricated with the activities of children with
tools. Following this set of assumptions, we also utilize a method of diffractive
analysis (Barad, 2007, 2010, 2012; de Freitas, 2016), which will be described in
more detail in a subsequent section of the chapter.

The Importance of Symmetry in the Curriculum

Symmetry is an important mathematical topic that supports spatial reasoning and
patterning. The topic appears in different forms in various curricula typically
starting at a reasonably young age. In our jurisdiction, symmetry appears in the
curriculum in grade 4 with line symmetry followed by two-dimensional shape
transformations in grade 5, and then again, later in grade 9 with line and rotational
symmetry. These stand-alone topics in grades 4, 5 and 9 are not the only time
symmetry is addressed. Although symmetry is formalised in each of these grades,
the word ‘symmetry’ is referenced in other mathematical areas such as problem
solving and also in working with two- and three-dimensional objects. Other topics
that draw on symmetry include analog clocks, direction, graphs, and working with
parallel and perpendicular lines.

In primary school, children usually encounter symmetry as a property of shapes.
They maybe asked, for example, whether a given shape (a butterfly, a square, etc.)
is symmetric. Folding is frequently used as a means to determine whether a given
shape is symmetry. In this study, in which we used a dynamic geometry envi-
ronment, we used a more transformational approach involving motion, in which
symmetry is the result of a reflection. The act of reflecting is an isometric trans-
formation that ‘reflects’ a pre-image from one side of a line of symmetry to the
other. In such a transformation, the image and the pre-image are equidistant to the
line of reflection; and, the line joining the image and pre-image is perpendicular to
the line of symmetry. These properties remain invariant as the pre-image is dragged
on the screen.

Prior research has shown that children have a great deal of knowledge about
symmetry long before they learn about it formally in geometry classes. For
example, children spontaneously construct symmetrical figures during informal
play at the pre-school age (Seo & Ginsburg, 2004). However, the importance of this

214 S. Chorney and N. Sinclair



implicit understanding has been under-utilized in mathematics education as well as
under-represented in the research literature. Even when studied, the research has
focused on “the development of children’s ability to tell symmetrical figures apart,
not to understand the relation between them” (Bryant, 2008, p. 34). For example,
Bornstein and Stiles-Davis (1984) link the developmental progression of 4–
6-year-olds with types of line symmetry. Namely, they found that 4-year-olds
discriminated only vertical line symmetry, 5-year-olds, vertical and horizontal line
symmetry, and 6-year-olds, vertical, horizontal and oblique symmetry. However,
their study focussed exclusively on the visual identification of symmetry, rather
than on the relationship between the various elements involved, such as the line of
symmetry, the relationship of equidistance between the line of symmetry and both
the pre-image and the image.

Based on their research of mathematics learning in the early years, Clements and
Sarama (2004) propose that children should work with symmetry in the pre-K
through to grade-2 years. They offer a developmental trajectory in which children
begin at the pre-K level to create shapes that have line symmetry, then work in
kindergarten and grade one to identify symmetry in 2-D objects. In grade two,
children identify the lines of symmetry of various shapes. This trajectory also
focusses more on identification than on properties of symmetry and relations
between the pre-image and the image in reflectional symmetry, which, following
Duval (2005), we see as significant parts of geometric thinking that can be engaged
even at the early years.

In their study involving children in grades 2/3, Ng and Sinclair (2015) found that
the use of a dynamic geometry environment developed dynamic and embodied
ways of thinking about symmetry after engaging in teacher-guided explorations of a
pre-constructed sketch called the “Symmetry Machine”. In this sketch, which is
also used in the present research, symmetry is preserved as different components of
a diagram are moved, including the line of symmetry. While that research was
conducted in a whole classroom setting using an interactive whiteboard, the present
study also included as an addition the use of a classroom set of iPads, so that each
student had the opportunity to directly manipulate the sketch.

As we will develop in the next section, we take symmetry to be a concept that
cannot be separated from the tool, nor the user with which it is instantiated. In this
study, when we speak of the concept of symmetry, we do not abstract it from the
movement of fingers, eyes, bodies of students, nor the iPads, sketches and class-
room dynamics. This choice is based on the idea of intra-actions (Barad, 2007) and
the notion of assemblage.1

1Assemblage is a notion introduced by Gilles Deleuze and Félix Guattari, and later used both by
Bruno Latour and Karen Barad. The article on Deleuze in the Stanford Library of Philosophy
glosses it as follows: “‘assemblages’, that is to say, an emergent unity joining together hetero-
geneous bodies in a ‘consistency’” (http://plato.stanford.edu/entries/deleuze/).
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Theoretical Framework

In this chapter, we integrate post-humanist and new materialist perspectives into
both how we see and analyse mathematics teaching and learning. These perspec-
tives, essentially, attempt to de-centre the human as the primary—or, indeed, only
—agent in the learning process and to find ways of accounting for how matter
matters in that process. These perspectives are rooted in broader philosophical
developments associated with ‘the ontological turn’ that has emerged from feminist
studies (see Barad, 2007; Braidotti, 2013; Haraway, 2008). Within the context of
mathematics education, these perspectives have been adapted and refined to the
context of educational research, in the form of inclusive materialism (de Freitas &
Sinclair, 2014), which looks closely at the material specificities of mathematical
experiences. This approach positions itself “within a tradition in which abstract
thought and materiality are assumed to be entwined” (p. 3).

de Freitas and Sinclair draw primarily on the work of Barad and her concept of
intra-action. Barad (2007) contrasts intra-action with interactions, where the latter
assumes the coming together of entities that have pre-defined properties and
characteristics. In intra-action, entities can be seen to be emerging from activity,
that is, activity occurs first, and that activity creates and integrates the ‘bounded’
entities such as the iPad, the child and the mathematics. Combined with the
post-humanist view, there is a shift away from individuating the student as an
independent and well-defined body and how she is acquiring knowledge. Instead,
the fixed boundaries of that body are disrupted in order to attend to the evolution of
a tool, child and mathematics assemblage. Inclusive materialism, consequently,
takes mathematical concepts to be material and emergent from particular
intra-actions. Because the concept is material, and because—as Barad argues based
on her analysis of experiments in physics, such as the two-slit experiment,2 matter
is indeterminate, concepts as well partake of the indeterminacy of matter. This
challenges the traditional view of individuals abstracting conceptual knowledge
from engaging with material objects. Rather than focussing on epistemological
concerns, those related to what is learned by the student, inclusive materialism
attends to ontological concerns, that is, what is the emergent material assemblage
that gives rise to meanings.

In an inclusive materialist framework, mathematical concepts arise out of
intra-actions between student and material and activity. In particular, we expand
traditional approaches that see symmetry as a distinct idea or concept. We challenge
the common pedagogical approach whereby different tools and different tasks will
move students closer to the bigger picture of symmetry. Symmetry is not a form that

2Specifically, two slit experiments appeared to show that light was a particle or a wave, depending
on the experimental apparatus that scientists used. Instead of seeing particles and waves as
ontologically antithetical, as in classical (non-quantum) models of physics, Barad suggests that
light, and therefore matter more generally, is ontologically indeterminate. It takes on a specific
ontological form—it becomes determinate—through intra-actions with the measurement apparati.
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is somehow buried fait accompli in matter and waiting to be conjured or evoked.
We see symmetry as an emergence of different meanings from an entanglement of
tool, task and student. Because of this view of symmetry, as a mathematical con-
cept, the questions we can ask about teaching and learning are different. We avoid
questions that assume strict boundaries between students, mathematics and tools,
and that position mathematical concepts as fixed ideas waiting to be abstracted from
experience. Our question is more ontological in nature since we will be concerned
with what happens to an assemblage over time, how it changes, ruptures or renews.

Methodological Framework

In this chapter we explore a diffractive methodology that draws on Barad’s agential
realism (2007, 2010, 2012). A diffractive analysis involves the reading of data
through multiple theoretical insights in such a way to gain unpredictable and
productive emergences; for example, Barad read Neils Bohr, the physicist, through
Jacques Derrida, the philosopher. A diffractive analysis is thus less concerned with
reflecting objectively a particular event and instead seeks to offer, in the words of
Haraway (1992), “a mapping of interference” (p. 300). In the context of educational
research, Lenz Taguchi (2012) uses the method of diffractive analysis to interpret
data gathered from discussions she had with a boy who had made a bark boat. Her
goal is to “make visible new kinds of material-discursive realities that can have
transformative and political consequences” (p. 265).

What distinguishes Barad’s diffractive analysis from that of Lenz Taguchi is that
Barad’s approach includes an experimental device, or an apparatus. Indeed, in her
case, the apparatus is a machine used in physics laboratories that interferes with the
environment (in the example she provides, light) and produces a new phenomenon
(patterns on a screen). Experiments using this apparatus enable Barad to explore
new ontologies, such as: What is light? What is matter? She sees the experimental
interventions that she studies—with theoretical physics—as delving into the inde-
terminacy of matter, while also being ‘the condition’ of determinate meaning.

de Freitas (2016) has suggested that as educational researchers, we too, could
conduct experiments that involve a diffractive apparatus. Such an experiment
would be designed to explore new ontologies and to better understand the relations
between matter and meaning that emerge in a particular classroom situation, for
example. Imagine, as will be the case in this chapter, that the apparatus not only
includes a particular educational digital tool, but also students’ bodies and move-
ments. A diffractive apparatus experiment would differ from methods based on
theories of tool use in mathematics education research because of the way in which
the apparatus is not simply taken as a mediator of learning (as in the theory of
semiotic mediation elaborated by Bartolini Bussi and Mariotti (2008)), or a tool that
students use in order to learn particular concepts (as in the theory of instrumental
genesis (Artigue, 2002)). Instead, the tool is part of a diffractive apparatus that
produce effects that help us see how meanings about the concept of symmetry and
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how it is entangled with the physical. This may sound surprising, given that
symmetry is not exactly a new concept and that it is usually considered to be
characterised by logical determination. And yes, what a diffractive analysis might
show, in an experiment, is that the indeterminate nature of matter, which is a
fundamental assumption of Barad’s, entails indeterminacy about symmetry as well.

We thus use de Freitas’s (2016) mobilisation of Barad’s diffractive model in her
elaboration of how an experimental device ‘interferes’ with the environment. Barad
is exploring the indeterminacy of matter and de Freitas elaborates that the inde-
terminacy results partly from these devices that are part of experiments and con-
sequent data collection. This diffractive methodology offers ways of exploring new
ontologies and insight into the relationship between matter and meaning. In this
chapter, our diffractive apparatus included DGE sketches that were designed in
Web Sketchpad and used both in a whole classroom setting with a projector, and in
pairs, with iPads. Given our theoretical framing, we assume that a concept is never
a singular representation, nor is it an essence or form. Rather, in our diffractive
apparatus, symmetry is indeterminate and will take on a specific ontological form in
intra-action with the dynamic geometry apparatus (and other parts of the material
surroundings). As such, our question becomes, what determinations of symmetry
arise from our experimental setting? We invite the reader to consider the following
as a thought experiment that tries to imagine what it would mean to adopt the
theoretical perspectives we have outlined. We recognise that given the novelty of
the methodological approach, there is bound to be some tension between our tra-
ditional focus on individual children and their actions with tools and on concepts,
and our new attempt to focus on intra-actions. Nevertheless, we contend that a
consideration of symmetry from this perspective will open opportunity for alter-
native, yet productive insights.

Research Setting

At the start of 2016, from January to April, as part of a research project, we visited a
grade one classroom in a public French-Immersion elementary public school in a
North American west coast school. (Since this is the first year that the children are
learning French, they often speak in English during class, and the teacher also
sometimes addresses them in English.) We went every week and spent just over one
hour working very closely with the regular teacher in organizing activities, dis-
cussing curriculum directions, and taking turns to teach. Nathalie (the second
author) taught the class almost every time we visited. Sean also participated in
teaching but was more often working with individual students during group work.
Typically we went in the mornings before lunch. The classroom had a carpeted area
in the front of the room where students often gathered as a group, there were also
five tables set up around the room, to the sides and back of the room, where
students could sit and work. Six students could sit at a table. Every session began in
a whole classroom interaction, with the students at the carpet and an overhead
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projector connected to an iPad on which designed sketches were shown. This would
be followed by pairwise explorations on the iPads, at the tables.

All classroom activities were videotaped, in the whole class gatherings, when
students were sitting on the floor. The camera captured what was on the projected
screen, all the children and the teacher. When students worked in pairs on the iPad
around the room the video was focussed on one pair, and sometimes two, if the
students were close enough to each other.

The Apparatus and Sketch Design

The apparatus we look at in this chapter is a web-based variation of The Geometer’s
Sketchpad (Jackiw, 1991, 2001) that is used on the iPad. Different sketches with
various functionalities were designed (available at www.sfu.ca/geometry4yl/). The
sketches are open and exploratory in that there are no instructions explicitly given.
In this chapter we work with the discrete Symmetry Machine sketch. In this sketch,
there is a vertical line in the middle of the screen, which is the line of symmetry. On
either side of the line are six coloured squares, two blue, two red, and two purple
(Fig. 1a). When a coloured square is touched on the screen and moved, its image
square moves so as to preserve the reflectional symmetry of the diagram as a whole.
These squares move discretely on a square grid background. Dragging any square
on one side of the line of symmetry will also move the corresponding square on the
other side of the line of symmetry (see Fig. 1a, b). The discrete motion, as well as
the use of the grid, was intended to help the children attend to the distance between
a square and the line of symmetry. The line itself can be moved, right or left, which
will move six of the squares in order to maintain symmetry. The line has a red point
on it and when that point is dragged, the line can be rotated around so as to create
diagonal or horizontal lines of symmetry (Fig. 1c).

Outline of the Lesson (53 min)

The lesson we report on in this chapter was our first lesson using the Symmetry
Machine. At the beginning of the lesson, the Symmetry Machine was projected on
the front screen, the students were seated together on the floor in front of the screen
and Nathalie was towards the back of the room with the iPad. Nathalie engaged the
students in some questions relating to the sketches. The later part of the lesson had
students working in pairs on the iPad at individual tables. Students were given set
Symmetry Machine diagrams on paper and asked whether they could re-create the
diagrams using the Symmetry Machine on the iPads. Not all of the diagrams were
symmetric.
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Becoming Symmetry

As per our stated methodology, our analysis of the video data follows the concept
of symmetry as it becomes manifested through the experimental device of the iPad
and the movement of the children. Below we present snapshots of that evolution.
There are three main ones in the first ten minutes, while in the whole classroom
configuration. Recall that this was the first time that the students were being for-
mally introduced to the word ‘symmetry’ and were engaging in mathematical
activity focussed on creating and manipulating symmetric shapes. Indeed, the first
lesson was designed in order to introduce the students to symmetry by investigating
its behaviour on the iPad, and not through a description or static example of it.

Symmetry as Twoness, Movement and Holes

The first visible effects of the diffractive analysis are that ‘symmetry’ was seen as
something that involves twoness.3 In the first lesson, the students were gathered
together as a group on the floor while Nathalie projected the image of the Symmetry
Machine on a screen at the front of the classroom. There were six coloured blocks
on either side of the vertical line. At first, many finger puppets were made on the

Fig. 1 a The discrete symmetry machine; b after dragging one block away from the line; c after
rotating the line of symmetry using the point visible near the bottom of the line of symmetry

3Readers may find that their own conceptions of symmetry also involve some kind twoness as
well. It is also implicit in more traditional ways of working with symmetry with young children
where one evokes folding (so one side matches the other side, there being two sides) or mirroring
(where what’s in the mirror is the same as what is being mirrored, thereby also involving two
things). We argue that in these situations, the emphasis is on sameness rather than on twoness. This
is because attention is usually focussed on one side of the symmetry line, rather than on symmetry
as a transformation of one shape to another. Since our goal is to study the determinacies of
symmetry in this experimental setting, we examine the emergence of any and all such determi-
nacies, whether they seem familiar, or not.

220 S. Chorney and N. Sinclair



projected screen, but as soon as Nathalie moved the top, right-most square (which
was red) to the right (which of course moved the corresponding red square on the
other side of the line) the sound of student gasping was heard (see Fig. 2a).

4:20 Nathalie: What happened when I moved the red square?
4:21 Jonathan: Deux (Two) (two fingers up in the form of a peace sign (see

Fig. 2b, left). Deux (Two).
4:22 Nathalie: Deux. Qu’est-ce que tu veux dire Jonathan? (Two. What do you

mean Jonathan?)
4:27 Jonathan: Deux carrés bougent (Two squares are moving).

Fig. 2 a Students gasp; b deux: two fingers up; c two red squares up; d peace: two fingers
extended

Fingers-on Geometry: The Emergence of Symmetry … 221



4:34 Nathalie: Weston?
4:37 Weston: Deux carrés blancs. (Two white squares.)
4:40 Nathalie: Deux carrés blancs. Ah oui, il y a deux carrés blancs maintenant!

(Two white squares. Oh, yes, there are two white squares now!)
Nathalie then moved the same red square up (see Fig. 2c) and several voices said

“wow!” She asked what happened when the red square was moved towards the
top. One voice said “deux carrés bancs”, then several voices said “trois” (three) and
then several other voices said “quatre” (four). When the same red square was
moved towards the right, several “wow” exclamations were heard again as well as
several numbers, including “four”, “five” and “six”.

Over the course of this period of time (1 min 22 s), two ideas emerged in relation
to symmetry. The first is the notion of twoness, which occurs both in language and
in gesture. Recall that the students were not looking at Nathalie’s finger on the iPad,
so they would just be able to see the squares move on the overhead screen. And that
motion happened in pairs. Had they seen a finger move one square, as might be the
case on an interactive whiteboard, they might have focussed less on the square
being moved and more on what was happening to the image square. The idea of
twoness emerges several minutes later, when the children begin working in pairs on
the iPads (see Fig. 6a, where Ava is explaining how to move the squares). The
students seemed to want to fill in the white spaces on the top row and Ava turns
around, kneeling, and put her right arm up with two fingers extended (Fig. 2d), as
in the peace gesture.

While the first comment “deux carrés bougent” addresses the motion of the
squares, without saying anything specific about the way the motion happens (such
as, moving away from the line), the next verbal comments focus less on what’s
moving than on what gets left behind. The two white squares are the empty squares
that appear once the red square has moved. The movement of the red square leaves
a kind of hole, which is like the negative space of the sketch. This hole is also
characterized by its parity, first in the two white squares, then in the four white
squares and finally in the six white squares. Interestingly, there are many more than
two or even six white squares in the sketch, so the parity seems to focus specifically
on the space created by the moving squares. It is worth remarking that had the
squares not moved, holes could not have formed, so the iPad as an apparatus
enables the discrete motion of squares to intervene in the concept of symmetry in a
novel way.

Symmetry as Bringing Together

In the initial activity, when the students were seated on the carpet as a group and
Nathalie was moving the squares, she asked what would happen when she moved
one of the purple squares (right-most square in the second row of Fig. 2a) upward.
There was an approximate two-minute length of time during which the students
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struggled to predict what would happen. Although there was a lot of mumbling, no
one said anything that could be heard in the videotape recording. Nathalie moved
the purple square (as shown in Fig. 3a) and then asked the students to predict what
would happen if she moved the blue square (right-most square in the third row of
Fig. 2a). One voice said, “it will make a white square”. Michael’s response was
inaudible, but it was accompanied by a two-handed gesture in which his palms face
each other and the thumb and fingers on each hand are a mirror image of each other
(see Fig. 3b). After making this gesture, he began clapping his hands (and knees).
He clapped once with his hands, once on his knees, four times on his hands, once
on his knees, once on his hands, once on his knees, three times hands, one knees, he
brings his hands together and rubs them, once on his knees and finally he brought
his hands together and rubbed them.

Michael was sitting on a chair at the back of the room, while everyone else is on
the floor, so the other students could not see what he was doing. The initial gesture,
and then the more dynamic gesture of clapping (but without sound), both express

Fig. 3 a What will happen; b thumb and finger gesture; c top row; d Ava’s gesture
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the sense of twoness seen before, as well as the motion in the two hands coming
together. Symmetry has moved from the projector screen to his own two hands.
This shift of symmetry from the screen to Michael’s own space, is a movement of
symmetry, visual to physical, discrete to continuous, technology to body. The
students then directed Nathalie to move the purple and blue squares up. Then,
despite not being able to see Michael’s gestures, Jessica made a clapping gesture as
she explained that she wanted Nathalie to “put them both together”, in order to fill
in the white spaces on the top row of Fig. 3c. Several other children were asking for
the same thing, but also mentioning the blue, purple and red squares. Ava made the
same gesture shown in Fig. 3d and then brought her other arm up and moved her
two hands together, as in a clapping gesture. She was speaking as she made the
gestures, but her voice could not be heard above the other voices.

Ava’s sequence of gestures combines the ideas of twoness and of bringing
together (which includes the motion). But it also echoes the gestures of both Jessica
and Michael, even though it is not at all evident that she had seen them. The
bringing together does not just describe the way in which the coloured squares on
either side of the line move, but in both Jessica and Ava’s interventions, it also
describes the filling of the white spaces. Furthermore, the point of contact of the two
hands clapping can be seen as actualising the line of symmetry—that is, bringing
forth an object (the line of symmetry) that was not previously present. Indeed, when
the two squares touch, like when the hands touch, they do so right on the line of
symmetry. Although that line is visible on the sketch, it has not been referred to yet.

Symmetry as Making Recognizable Shapes

After a few squares had been moved on the screen, including the red one (twice) and
the purple one (up) (see Fig. 4a), Nathalie again asked what had happened. Several
children shouted out numbers, then Jonathan turned around and said “I” (identifying
it as a recognizable letter). Jonathan continued by saying, “it’s cutting the I” and
lifted his hand and moved it down vertically. When asked what would happen if the
purple square was moved up, another boy said, “it looks like a creeper”. After
moving more squares, as in the configuration shown in Fig. 4a, Nathalie moved the
blue square on the bottom row to the right and someone said, “it’s a T”. Several
children then began to ask Nathalie to move the blue square up so that it would reach
the top row, eventually obtaining the diagram shown in Fig. 3c. At that point, several
students said “whoa” and also shouted out “un T” (a T). Once there, as reported in
the previous section, the students wanted Nathalie to move the squares so as to fill in
the top row. Once the three squares had been moved into position, several students
said, “that’s a T” and one student said “awesome”. Over the next few minutes, the
children came up one by one to move other squares. Each time they did so, the other
students commented on what “it looks like”. For example, when the configuration in
Fig. 4c was made, one child said, “it looks like a Chinese temple”.
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From a focus on the local, that is, on individual squares and how and where they
move, there’s now a shift to seeing the collection of 12 squares as a whole, to a
more global perception. The global perception of symmetry is typically the first one
that students encounter, when they are asked to consider the symmetric nature of a
heart, for example. In this case, it is only when the squares are moved into a certain
configuration, that the children begin to talk about one whole shape, referring to it
as a letter of the alphabet and a Chinese temple. This idea of the Symmetry Machine
producing letters initiated the recognition of a T-like shape and the subsequent
movement of the square to produce Fig. 4b. Thereafter, the talk was focussed on
what the configuration looked like rather than on the number of white squares
or the twoness.

Over the next ten minutes, the children worked on the task of trying to create a
diagram that has been taped to the whiteboard using the Symmetry Machine. In
turn, they explained where the squares should move. They described moving
squares on the left as well as squares on the right. Throughout, they focussed on the
overall, global configuration. They got several of the squares into place, but some
children began to engage in other activities, so the classroom teacher decided that it
was time to move to the pairwise activities with the iPads.

Symmetry as Joint Movement

In the pairwise activity, the children were asked to reproduce a series of symmetric
diagrams that were given to them on a piece of paper. Alik and Ava were given the
diagram shown in Fig. 5a (bottom of the figure). Alik initially said that they could
not make it and pointed to a square that is not symmetric with its corresponding
square, saying “that square should be here” (pointing to the purple square to the
right of the line of symmetry and then to the white square to its right). Nathalie
urged them to try anyway. Ava put her finger on the purple square to the left of the
line and moved it down, towards the line. Then Alik put his finger on the purple
square to the right of the line and started moving it towards and away from the line

Fig. 4 a Two reds and a purple moved; b a ‘T’; c Chinese temple
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(see Fig. 5a). He then put his thumb on the square (Fig. 5b) and moved both his
thumb (left hand) and his index finger (right hand). He ended up moving the line of
symmetry and translated all the squares on the left of the line one unit away from
the line of symmetry (see Fig. 5c). Both Ava and Alik were surprised. He then used
two index fingers to move the purple squares towards each other and Ava did the
same with the two blue squares. They each moved the purple square several times,
towards and away from the line and concur that they could not make the diagram.
Alik said to Nathalie, “when we move one, it just …” and then moves the purple
square towards the line. He then pointed to the two purple squares on the piece of
paper and explained that it’s not symmetric because “that one (pointing to the
purple square to the left of the line) is here” and “that one (pointing to the purple
square to the right of the line) is on the line”. Alik then went back to the Symmetry
Machine and used one index finger, moving one purple square repeatedly back and
forth. He then said, “there’s supposed to be one there and one there” pointing to the
right and to the left of the line.

Symmetry as Lining up

Nathalie then offered a new diagram (Fig. 6a) and Alik and Ava each moved one
square. They then paused and Alik said, “it’s not symmetric”. When asked why,
Alik pointed to the purple square at the top left of the piece of paper. Ava pointed to
that square too, then to the other purple square on the top right of the piece of paper
(Fig. 6b). Nathalie asked “you can’t make it?” and Ava shook her head and said,
“because those two (placing one side of her hand on the page to form a diagonal
line between the two purple squares) are supposed to be” (placing her two hands to
form a line perpendicular to the line of symmetry (see Fig. 6c).

This sequence gives rise to yet new symmetry concepts. While it is tempting to
see in the students’ reasoning about the Symmetry Machine that they are showing
awareness of the equidistant property and the perpendicularity property, it is evident
from their actions, and especially their gestures, that the Symmetry Machine

Fig. 5 a Paper sketch; b thumb and index finger; c line of symmetry translated
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intervenes to give rise to new properties. In the first case, there is a shift from
one-handed to two-handed dragging, then back again to one-handed dragging. In
the first shift, Alik seems to want to force the squares to move in non-symmetric
ways and when he sees that this is not possible (it just moves the line of symmetry),
he goes back to the one-handed dragging, repeatedly making the squares come
towards the line or move away. Therefore, it is less about the distance away from
the line, which would emerge from a static configuration, than about the joint
movement towards and away from the line. That the joint movement can be con-
trolled by one square only emerges in the shift from the two-finger back to the
one-finger dragging.

In terms of the perpendicularity, Alik and Ava barely move any of the squares
from the Symmetry Machine before deciding that the diagram in Fig. 6a is not
symmetric. Alik’s continued pointing to the top left purple square suggests that he
thinks it is out of place. The subsequent double pointing of Ava, which goes from
one square to the other creates a virtual line that she then actualizes with her
gesture. That line is not perpendicular to the line of symmetry (nor to the other
‘lines’ joining corresponding squares). With her second gesture, Ava shows what
the correct line should look like, not necessarily in terms of the perpendicularity,
but in reference to the pair of red squares that are already there.

Discussion and Conclusion

Reiterating our objective of this chapter, we are not addressing epistemological
issues of what was learned or how learning takes place, for this infers the concept
either to be a priori, independent of context and tools or to be the result of the
mediation of tools (which might subsequently become expunged from knowledge).
Instead we focus on the Web Sketchpad as part of an experimental apparatus that
can highlight the indeterminacy of material engagement.

We used a diffractive apparatus because it helps us see how meanings about
symmetry are not only entangled with the physical, but can also be considered
intrinsically indeterminate. As noted in the highlighted episodes, symmetry takes

Fig. 6 a New diagram; b pointing; c perpendicular to line of symmetry
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different actualisations and meanings at different times. It is the varying material
effects that allow us to follow the concept and not individual understandings. For
example, when Jonathan moved his hand up and down along the line of symmetry
saying “it’s cutting the I”, this gesture initially emerges from his observation of the
projected sketch. His gesture is also aligning with the line of symmetry on the
screen so that when he is moving his hand up and down he is expressing, and in
fact, materially actualising a line of symmetry. The intra-action of his gesture and
the sketch confirm each other and become an assemblage of meaning making of
symmetry. While the focus on the concept of symmetry enabled us to carry out the
diffractive analysis, we found it more difficult to write about the assemblage.
Indeed, our writing, following conventional style, evoked individual children doing
individual actions (gesturing, dragging, speaking). More methodological innovation
will be required in future work in order to adequately follow the entailments of our
theoretical perspectives.

Nonetheless, through using Web Sketchpad as part of a diffractive apparatus,
new meanings of symmetry emerged. The space provided by the Symmetry
Machine created new ways of instantiating symmetry. The concept of symmetry
was expressed in numerous ways, as reflected in the subsection titles of the previous
section: as twoness, as making holes, as bringing together, as making recognisable
shapes, as joint movement, as well as lining up. In each case, students were
intricately tied to the Symmetry Machine and the activity by forming gestures and
body motions (e.g., like clapping) expressing symmetry in both a material and
indeterminate way. In the clapping gesture of Ava, Jessica and Michael, the line of
symmetry is actualised in bringing their hands together. Symmetry is seen as
instantiated in movement, in alignment and in bringing together. Our analysis,
which focused on the shifting nature of the concept of symmetry, enabled us to
attend more carefully to the gestures that emerged (from movements of objects on
the screen, as well as from child to child) over the course of the lesson. We connect
these gestures to Michel Serres’ (2011) assertion that “there is nothing in knowl-
edge which has not been first in the entire body, whose gestural metamorphoses,
mobiles postures, very evolution imitate all that surrounds it” (p. 70). Serres is
suggesting that the origin of knowledge is not understanding, which is about
explanation and inference, but instead, is in the building of memory in the body,
through gestures and movement. The mobility of the DGE can thus be seen as
crucial to the changing ways in which the children moved and the continued new
meanings for symmetry that emerged.

We are interested in challenging the a priori notion of symmetry and drawing
attention, in particular, to the mobile device and how it influences and makes
symmetry in different ways. We do not tie things up succinctly. Indeed, wrapping
up this study with a cohesive conclusion is to contradict the very assumptions we
began our study with. We merely tend to the assemblage of the diffractive apparatus
and embrace the new and becoming of symmetry. By focussing on these new
meanings, we did not track the ruptures and losses of meanings that resulted from
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the changing assemblage, such as the slipping away of the numerical value of two
associated with the initial movements of the squares. In future work, more attention
could be paid to this aspect of changing assemblages, to highlight the continuation
of the mobility of symmetry.
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