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Abstract. The arrival of head mounted displays (HMDs) to the contemporary
living room extends the need for producing content that works for the television
and companion screen devices. In this work we introduce a set of three tools that
can be used for the production and delivery of synchronous multi-device content,
across the TV, companion screens and HMDs. The production tool is imple‐
mented as a custom Adobe Premiere Pro plugin. The publication and delivery
process is implemented as an online service controlled through a web application.
The content playout is implemented with a multi-device video player that
combines video decoding and playout. In this article we introduce the design
choices guiding our software development and the different tools we developed
to realize it. We also detail some basic measures of system performance on
different devices, and propose further steps towards the easy production and
delivery of multi-device content.

Keywords: Multi-device synchronization · Multi-device content · Virtual reality
Omnidirectional video

1 Introduction

The majority of TV consumers now watch TV programs in a multi-display environment
[9]. Companion screens - most often smartphones - are generally used to check infor‐
mation not directly related to the events in the TV content being watched, or to interact
in social media on topics related to the broadcast [4], sometimes at the expense of local
social interaction [5]. Broadcasters have tried to orchestrate these different platforms,
and there is reason to believe this contributes to user engagement [11]. Traditionally,
companion screen applications have been developed ad hoc, and only very recently the
industry has considered the need for specific production tools and production processes
adapted to the reality of multi-device consumption [8]. In this context, it remains chal‐
lenging to create and deliver synchronized video across the TV and companion screens,
particularly when the goal is to match user expectations and preferences [1].

The arrival of virtual reality devices to the living room introduces more possibilities,
but also further challenges. Since traditional video was not conceived to support
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interactive rendering techniques, the solution generally adopted in the audiovisual
industry is the delivery of an omnidirectional video stream. Omnidirectional video is
quite different from traditional video: the rendering process requires the image to be
projected, typically, on a sphere or on a cube, and only a small portion of the image is
rendered, depending on the head orientation of the user, as detected by the HMD (see
Fig. 1). As a consequence, an image of much higher quality has to be transmitted to
render the same effective quality on the end-user screen.

Fig. 1. Traditional and omnidirectional video formats. Top: an image typical of a traditional TV
showing a football match. An insert informs the consumer that content is also available for tablets
and HMDs. Bottom: a capture of an omnidirectional video with inserts of traditional cameras.
This content is delivered synchronized with the main TV stream. Image courtesy of Lightbox
(www.lightbox.pt).
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In this article we introduce our efforts to enable the easy creation and delivery a new
form of broadcast multi-device video within the European H2020 ICT project Immer‐
siaTV [19]. The main challenge addressed is to streamline the creation and delivery of
a video-based synchronous experience across displays, including TV, companion
screens such as tablets and smartphones, and HMDs. An additional challenge addressed
is that we want the content delivered to be device-specific both in terms of video format
(omnidirectional or traditional) and on how it supports interactive input (or lacks inter‐
action support, for the case of the TV). For TV, this means that content can be consumed
simply by sitting on the couch and watching, without further input, and that the audio‐
visual language used follows established conventions. For tablets and smartphones, it
means that user input works seamlessly with the specificities of each device (head
movements for HMDs, or finger-based input for smartphones or tablets).

To address these requirements, we have designed and implemented an end-to-end
production, delivery and rendering pipeline for offline content production which specif‐
ically addresses these needs. In the following sections we further outline the design
principles adopted (Sect. 2), the modules developed and the performance of the critical
ones (Sect. 3), and summarize our conclusions, and the next steps we want to pursue
(Sect. 4).

2 Design Principles and Related Work

2.1 Synchronous Multi-platform Playout

Typically, people watch TV in their living room. Often, they do so while doing other
activities. These can range from engaging in conversation, playing with kids, social
interaction on mobile phones, but can also span a myriad different activities. It is there‐
fore unlikely that end-users will be actively engaged in trying different devices for media
consumption, and checking what is possible at every time. On the contrary, it seems
more likely that they will switch their attention to a particular content or device alter‐
natively with other activities. We must therefore create content that provides experiences
which allow for such limited attention span, and which allow the end-user to switch
freely between devices.

In addition, if we want end-users to switch to particular devices in particular moments
of the experience, we must indicate so across media. This is easy to do by adding overlays
within the videos being delivered. For example, at a certain moment in the TV content,
a small icon appears to indicate there is additional content available on HMDs. However,
to enable such novel applications we must guarantee certain coherence across the overall
experience, which seems only possible if we can deliver synchronous playout across
devices.

In other terms: to create content for all devices, we need to create content that is
adapted to each of them, and play it synchronously [9, 11, 18]. To play synchronized
content, we have adapted emerging standards [20] and Gstreamer’s version of the Preci‐
sion Time Protocol (IEEE 1588) [21], as done, for example, in [17]. We have also
embraced the use of omnidirectional video for HMDs and smartphones, in order to allow
the user to visualize the scene in different directions. To further facilitate user adoption,
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we have also extended synchronized playout to a web-based player. This allows deliv‐
ering synchronized experiences also with web browsers.

Through the different devices the audience is still able to watch TV sitting on their
couch, or tweet comments about it. However, the audience can also use immersive
displays to feel like being inside the audiovisual stream, or use tablets and smartphones
to explore these omnidirectional videos, or even, in the future, to zoom in, or share
portions of it through social media.

2.2 Portals

In the context of streaming omnidirectional video, we introduce the idea of portals as
video inserts that can be rendered in the HMD. The idea of portals is inspired from the
homonymous and famous videogame Portal [22]. In the context of video streaming,
these portals can be portions of other omnidirectional videos, which allows introducing
basic interactive storytelling techniques such as scene selection or forking paths. Portals
can also be inserts of traditional or directive videos. Traditional video inserts also allow
reintroducing classical audiovisual language that is not possible to render solely with
omnidirectional videos, such as close-ups, slow motion, shot-countershot, etc. (see also
Fig. 2).

These strategies will not avoid the necessary precautions needed for shooting omni‐
directional video [12]. Omnidirectional video requires thinking very carefully about how
the end-user’s attention is guided within the scene, and has a relatively narrow range of
distances where the action is actually perceived clearly. If the action is too close, it will
feel very flat, or deformed, and it can rapidly feel appalling for the end-user. If the action
is too far, it will be difficult to see by the content consumer. Since omnidirectional video
does not allow typical video techniques such as zooming in, or shooting close-ups, we
believe it is likely that video inserts can facilitate the portraying of relevant details within
the omnidirectional scene.

Actually, video inserts allow reintroducing the entire set of conventions of classic
audiovisual language. In addition to close-ups, we believe that classical shooting strat‐
egies such as shot-countershots can be adapted to deliver a richer experience in omni‐
directional video and help the user transition from traditional media to such emerging
formats.

Portals also open the door for richer interaction, either inside the HMD or, since a
portal can render the content available on another device, interact between devices. For
example, it would be possible to present a video insert that is actually a transition towards
another omnidirectional video scene. This enables the easy integration of branching
narratives within audiovisual scenes based on omnidirectional video.

Last but not least, an additional reason to consider video inserts as portals is that
such metaphor can also work for more immersive media. To understand why this is
relevant we must step back, and consider the fact that virtual reality experiences work
better when they support sensorimotor correlations [14]. For the case of rendering visual
stimuli, this means that when the end-user changes his head position or orientation, the
rendered content updates the rendered perspective accordingly. Despite omnidirectional
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CAMERA 2

CAMERA 1

CAMERA 1

CAMERA 2

Fig. 2. The recording setup. Top: a camera setup to record traditional and omnidirectional video
simultaneously. Bottom: a schematic diagram of possible directive inserts located within the
omnidirectional video. Image courtesy of Lightbox (www.lightbox.pt).
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video supports head rotations, it still falls very short at delivering sensorimotor corre‐
lations.

In this context, we must consider emerging formats such as free viewpoint video
(FVV). Despite free viewpoint video was introduced several years ago [2, 15, 16], and
improvements on the ease of production and delivery of such content appear regularly
[3, 7], to the best of our knowledge currently there is no easy and cheap commercial
solution that enables the intuitive creation of FVV. However, since such formats would
radically improve the quality of the virtual reality experience, it is not impossible that
the rise of virtual reality displays also comes together with a novel generation of FVV
production techniques. In this perspective, the introduction of portals as a means to
reintroduce classical audiovisual conventions or branching narratives is particularly
promising, due to the fact that portals allow preserving at all times the capability of the
content to adapt the perspective to the end-users actions. This is true even for the content
rendered in the portal. In this way, were FVV made available for production, we could
introduce conventions of classical audiovisual language, as well as branching narratives,
while preserving place illusion, i.e., the feeling of being there. This might seem far-
fetched, but given the current pace of media evolution in relation to VR, and the benefits
FVV can bring to it, in relation to supporting sensorimotor correlations, it is not
completely impossible that such format will have wider industrial adoption.

All in all, from our current perspective, which is focused on trying to identify good
design principles to build meaningful multi-device experiences, these different argu‐
ments suggest that the consideration of video inserts as portals to be rendered within an
omnidirectional scene is a good design choice.

3 An End-to-End Pipeline

Designing and implementing a broadcast audiovisual production chain is challenging
due to the diversity of processes, technologies and production practices that it requires.
In this section we outline the main solutions, either adopted or implemented, for our
purpose, with content examples.

3.1 Capture

The creation of content that is both omnidirectional and traditional requires shooting
simultaneously in both content formats. Preliminary tests with separate shootings for
omnidirectional and traditional cameras revealed it was unfeasible to synchronize two
different shootings, even when the actors in the scene were repeating the same actions.

The solution found by the production team was to use two BlackMagic Micro Studio
Camera 4k micro-cameras for the traditional shooting, which could be hidden or, if
visible, removed in post-production with a reasonably small amount of effort. This
combined with an omnidirectional capture rig, which was either composed of 6 GoPro
3 Black Rig cameras, or 3 of them with fish-eye lenses (see Fig. 2) allowed capturing
simultaneously traditional and omnidirectional footage. However, for a joint shooting,
we must address the fact that omnidirectional cameras capture the whole visual field,
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and therefore would show the traditional camera and the film crew behind it. This is not
problematic for sports or music events, but it goes strongly against the conventions of
fiction or documentary.

3.2 Edition

Dedicated stitching tools such as Video-stitch studio by Video-stitch [23], or Autopano
by Kolor, allow stitching video footage captured with camera rigs in order to create
omnidirectional video. Tools for omnidirectional video edition, such as CaraVR [24]
and Mettle’s suite [25] allow further post-production. However, we are not aware of an
editing tool targeting synchronous rendering across devices. To address this fact, we
have designed and implemented a plugin for Adobe’s Premiere Pro. The ImmersiaTV
Premiere Pro plugin (Fig. 3) allows defining the inserts that are placed within an omni‐
directional scene, and how they should behave relative to the movements of the user.
For example, they can either be static on the screen, or static on the omnidirectional
scene. They can also trigger transitions between different omnidirectional videos.

Fig. 3. Video editing tool for multi-platform content. The Adobe Premiere ImmersiaTV panel,
shown at the center, allows defining omnidirectional and directive (i.e., traditional) tracks, as well
as which devices does each track target. The inserts added to the omnidirectional view, shown at
right, can be edited with the ImmersiaTV Portal Effect, whose widgets are shown at the left. Image
courtesy of Lightbox (www.lightbox.pt).

The ImmersiaTV Premiere Pro plugin also allows selecting which tracks should be
rendered in each of 3 possible devices (TV, tablet or HMD). It works both with Mac
and Windows, and has been tested with a variety of video editors.

Since this is the main element allowing creative minds to make design choices in the
experience created by multi-device content, we have invested a considerable amount of
effort to make sure we integrated with existing features of video edition software, and
in particular with Premiere Pro. An example of such features is the use of interactive
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transitions which are triggered to introduce or conclude a particular video insert. These
transitions mimic exactly the behavior and user interface of traditional Premiere Pro
transitions, but they are only triggered by the end-users input. Another example is the
possibility of using nested sequences to combine different edits, something which has
shown extremely useful to combine different tracks in a coherent edit, and then use it in
different ways in different devices.

3.3 Encoding

The media encoding uses readily available tools for encoding in H.264 and AAC
encoding formats. Adaptive bitrate streaming is based on MPEG-DASH (ISO/IEC
23009-1:2014). Encoding is implemented as a cloud service, running on a Linux server
using the Dockers virtualization tool as well as MP4Box from Gpac’s MP4Box for
MPEG-DASH multiresolution encoding [26]. Video decoding uses the Gstreamer
library [27]. The additional metadata required for playout, which relates audiovisual
streams with devices (i.e., allows selecting different streams for TVs and tablets), as
well as to define interaction and media orchestration requirements, follows closely the
format of MPEG-DASH manifests, and its XML specification is publicly available [28].
Content publication is performed through a custom built website (Fig. 4) which allows
triggering media conversion, as well as monitoring progress on media encoding and
publishing content generating a list of content parsed at the delivery stage.

Fig. 4. The web app allowing to control to trigger the transcoding of the different assets, as well
as their publication for consumption.

3.4 Delivery

To combine universality, ease of use and flexibility, we combine an app-based solution
together with a player based on web technologies. In both cases, metadata parsing is
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done with a custom parser, which also generates the appropriate geometry and provides
the DASH player with the appropriate DASH manifests.

The web player is based on WebGL and MPEG-DASH, implemented in a module
for the generation and reproduction of the contents, and based on three.js and dash.js
standard libraries. A second module synchronizes the contents following the DVB-CSS
standard. Our web-based solution allows scene rendering without third party players or
native applications. It can be served from a Content Delivery Network (CDN), allowing
automatic updates of both the contents and the player. In addition, since it is based on
web standards, it can be easily adapted to HbbTV solutions. In practice, this solution
can reproduce up to 4096 × 2048, with 15 Mbps of bitrate and 30 frames per second.
However, web-based solutions are intrinsically limited by the web browser stack to
support communication and streaming technologies. For our use case, this has limiting
implications for performance, codec constraints and hardware integration.

As an alternative, to facilitate the integration of video rendering with user input on
native apps, the simplest option seemed to combine GStreamer, the reference library for
multimedia pipelines, and Unity3D, the most accessible game engine for videogame and
virtual reality developers. We designed and implemented the GStreamer Unity Bridge
(GUB) to realize precisely this. The GUB has three parts. The GStreamer part receives
the video and decodes it. This process is based on the GStreamer component playbin,
and allows playing at least .mov, mp4 and MPEG-DASH. The texture passing is a key
technical element: each frame decoded in GStreamer is passed to Unity3D as a hardware
texture, and is suitable for rendering in the standard game engine environment. Specific
code for windows (Direct3D 9) and Android (OpenGL-ES 2.0) has been developed for
texture passing.

In addition, since copying full textures between system memory and the graphics
processing unit (GPU) can have prohibitive performance costs at certain resolutions,
particularly in low-end devices such as Android mobile phones, in the Android pipeline
we have implemented a Rendering to Texture solution based on a Frame Buffer Object.
This allows rendering a frame decoded in Gstreamer without leaving the GPU, which
brings significant boost in performance. Despite the overhead of handling a 3D Engine
like Unity3D, the GUB can play resolutions that are competitive with commercial
players (see Table 1). However, we also need to consider that rendering for mobile-
based HMD, either cardboard or Samsung GearVR, imposes a double rendering process
(one for each eye), which further decreases performance. Therefore, despite we can
currently reproduce synchronously video up to 4096 × 2048, bitrate of 50 Megabits per
second (Mbps) and 30 frames per second on a Samsung Galaxy S6, this resolution drops
to 1024 × 512, bitrate of 2.3 Mbps and 25 frames per seconds when VR rendering is
required.

To facilitate user adoption, we have made it publicly available under a LGPL license
[29], raising considerable interest (In the first 10 months since it was published, we have
had an average of over 250 downloads per month).
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4 Conclusions and Future Work

We have introduced two simple design principles which, when combined, seem appro‐
priate to address the challenge of creating experiences that integrate TVs, companion
screens and HMDs in a coherent experience.

To demonstrate the feasibility of this approach we have developed an end-to-end
solution to enable the production and delivery of video-based multi-device synchronous
and, at some extent, interactive experiences, with a performance that is comparatively
equivalent to standard commercial video players. Performance tests show that the limit
in delivered quality is determined by hardware processing load, rather than bandwidth
limitations. Further work will be needed to optimize the media quality delivered, partic‐
ularly for VR-based content, which requires separate renderings for each eye. For this
purpose, tiling strategies [10, 13] seem a good direction to explore. For mobile devices,
we are also considering a more heterodox DASH client which considers additional
factors, beyond bandwidth, to select the most appropriate encoded quality [6].

On the content creation side, further development of content examples exploring
more exhaustively the interaction possibilities enabled by inter-device synchronization
is a different but complementary work that we would also like to pursue. In this direction,
further work to refine and expand the possibilities given by the Premiere Pro plugin here
introduced is desirable, particularly regarding the definition of interactive functionality,
such as how the consumer’s input affects the media being rendered and the overall
experience. Its usage with video editors, has showed that, although intuitive, these tools

Table 1. Performance measurements for different test vectors. We show Frames per Second and
a subjective estimate of a Mean Opinion Score by one user. Test vectors are: Hd (1980 × 1080),
Bitrate: 3 Mb/s, Framerate: 25, Codec: H264, 2K (2560 × 1440), Bitrate: 3,5 Mb/s, Framerate:
25, Codec: H264; 4K (3840 × 2160), Bitrate: 5 Mb/s, Framerate: 25, Codec: H264 PC is Processor:
Intel Core i7-6500U CPU @ 2.50 Ghz, Ram: 16 Gb, Graphics card: Intel Graphics 520, SO:
Windows 10 Home edition 64 bits

Device Test vector FPS MOS
Samsung S6 4K 25 5

2K 25 5
HD 25 5

Samsung S7 4K 20 4
2K 25 5
HD 25 5

Galaxy Tab S 4K – 0
2K 20 4
HD 25 fps 5

PC 4K 25 5
2K 25 5
HD 25 5
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present many limitations, particularly for interactive content. Adopting the fixed time‐
line characteristic of video, and central to the interaction metaphors on which video-
editing software is based, rapidly feels quite limiting when we want to explore richer
interactivity. It is therefore possible that, in order to expand the interactive possibilities
we must stop using the fixed timeline metaphor, and switch to a node-based software,
as typically found in sophisticated post-production solutions.

Globally, the integration of HMDs within the living room consumption habits is still
a matter open to speculation. In this context, the evolution of innovative video formats
such as FVV, together with the increasing ease with which we can produce mesh-based
three dimensional content, as typically found in videogames, raises questions on content
format which are difficult to answer beyond trying different options, and studying what
works best. In this work we have demonstrated an end-to-end toolset based on simple
design choices, and showed it can work in practice.

All in all, we believe the two simple design principles - synchronous playout and
portals, and particularly their combination, provide a good starting point from which to
design, produce and deliver multi-device experiences. However, the question of whether
these principles should be implemented on a video-based pipeline, or an entirely
different media format, is one which is still difficult to answer, given the speed of evolu‐
tion and the variety of formats that are currently being used for VR production.
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