Chapter 4 )
Language Modeling for Turkish Text Shethie
and Speech Processing

Ebru Arisoy and Murat Saraclar

Abstract This chapter presents an overview of language modeling followed by
a discussion of the challenges in Turkish language modeling. Sub-lexical units
are commonly used to reduce the high out-of-vocabulary (OOV) rates of mor-
phologically rich languages. These units are either obtained by morphological
analysis or by unsupervised statistical techniques. For Turkish, the morphological
analysis yields word segmentations both at the lexical and surface forms which can
be used as sub-lexical language modeling units. Discriminative language models,
which outperform generative models for various tasks, allow for easy integration of
morphological and syntactic features into language modeling. The chapter provides
a review of both generative and discriminative approaches for Turkish language
modeling.

4.1 Introduction

A statistical language model assigns a probability distribution over all possible word
strings in a language. The ultimate goal in statistical language modeling is to find
probability estimates for word strings that are as close as possible to their true
distribution. In the last couple of decades, a number of statistical techniques have
been proposed to appropriately model natural languages. These techniques employ
large amounts of text data to robustly estimate model parameters which are then
used to estimate probabilities of unseen text.

Statistical language models are used in many natural language applications such
as speech recognition, statistical machine translation, handwriting recognition, and
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spelling correction, as a crucial component to improve the performance of these
applications. In these and other similar applications, statistical language models
provide prior probability estimates and play the role of the source model in
communication theory inspired source-channel formulations of such applications.
A typical formulation of these applications allows language models to be used
as a predictor that can assign a probability estimate to the next word given the
contextual history. Some applications employ more complex language models in
reranking scenarios where alternative hypotheses generated by a simpler system are
rescored or reranked using additional information. A typical example is the feature-
based discriminative language model where model parameters associated with many
overlapping features are used to define a cost or conditional probability of the word
sequences. Such a model then enables the selection of the best hypothesis among
the alternatives based on the scores assigned by the model.

This chapter focuses on language modeling mainly for Turkish text and speech
processing applications. First we introduce the foundations of language modeling
and describe the popular approaches to language modeling, then we explain the
challenges that Turkish presents for language modeling. After reviewing various
techniques proposed for morphologically rich languages including Turkish, we
summarize the approaches used for Turkish language modeling.

4.2 Language Modeling

Statistical language models assign a prior probability, P(W), to every word string
W = w; wy ... wy in a language. Using the chain rule, the prior probability of a
word string can be decomposed into the following form:

N
P(W)=P(wiws ... wy) = l_[P(wk|w1 e WE—1). 4.1)
k=1

Here the prior probability is calculated in terms of the dependencies of words to
a group of preceding words, wy ... wk—1, called the “history.” These conditional
probabilities need to be estimated in order to determine P(W). It is, however, not
practical to obtain the prior probability as given in Eq. (4.1) for two main reasons.
First, if the history is too long, it is not possible to robustly estimate the conditional
probabilities, P(wy|w; ... wg—1). Second, it is not entirely true that the probability
of a word depends on all the words in its entire history. It is more practical and
realistic to assign histories to equivalence classes ¥ (wj ... wig—1) (Jelinek 1997).
Equivalence classes change Eq. (4.1) into the following form:

N
P(W) = Pwi wy ... wy) = [ [ Pl ¥ (wy ... wi_p)) (4.2)
k=1
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While the equivalence classes can be based on any classification of the words in
the history, or their syntactic and semantic information, the most common approach
is based on a very simple equivalence classification which utilizes only the n — 1
preceding words as the history. This approach results in the widely used n-gram
language models, and P (W) is approximated as

N
P(W) = P(wi wy ... wy) ~ [ | P(wilwinsr ... we) (4.3)
k=1

The n-gram language model probabilities are estimated from a text corpus
related to the application domain with Maximum Likelihood Estimation (MLE).
In other words, n-gram probabilities are estimated by counting the occurrences
of a particular n-gram in the text data and dividing this count by the number of
occurrences of all n-grams that start with the same sequence of n — 1 words:

C(Wk—n+1 +.. Wr—1 Wi)
P Wkl Wkt -- - Wk—1) = " 4.4)
C(Wr—nt1 - Wk—1)

where C(-) represents the number of occurrences of the word string given in
parentheses in the text data.

If the language model vocabulary contains |V | words, then there may be up to
|V|" n-gram probabilities to be calculated—thus higher order n-grams need a much
larger set of language model parameters. Robust estimation of n-gram probabilities
with MLE critically depends on the availability of large amounts of text data.
However experience with many applications has shown that 3/4/5-gram models are
quite satisfactory and higher order models do not provide any further benefits.

The quality of the statistical language models can be best evaluated using the
performance of the applications they are used in—for example, speech recognition
or statistical machine translation. An alternative approach without including the
overall system into the evaluation is to rely on perplexity to gauge the generalization
capacity of the proposed language model on a separate text that is not seen during
model training. Formally, perplexity is defined as:

PP(wi, wy, -, wy) =2~ ~ 082 Pwrwa.wy) (4.5)

In other words, perplexity shows us how well a language model trained on a text data
does on an unseen text data. Minimizing the perplexity corresponds to maximizing
the probability of the test data. Even though a lower perplexity usually means a
better language model with more accurate prediction performance, perplexity may
not always be directly correlated with application performance.

One of the problems in n-gram language modeling is data sparseness. Any finite
training corpus contains only a subset of all possible n-grams. So, MLE will assign
zero probability to all unseen n-grams. A test sentence containing such n-grams
not seen in the training corpus will also be assigned zero probability according to
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Eq. (4.3). In order to prevent this, a technique known as smoothing is employed
to reserve some of the probability mass to unseen n-grams so that no n-gram gets
zero probability. This also means that this mass comes from the probabilities of
the observed n-grams leading to slight reductions in their probabilities. Smoothing
techniques thus lead to better language model estimates for unseen data.

Interpolation and back-off smoothing are the most common smoothing methods.
In interpolation, higher and lower order n-gram models are linearly interpolated.
In back-off smoothing, when a higher order n-gram model assigns zero probability
to a particular n-gram, the model backs off to a lower order n-gram model. Good-
Turing, Katz, and Kneser-Ney are some examples of popular smoothing algorithms.
See Chen and Goodman (1999) for a survey of smoothing approaches for statistical
language models.

In addition to these smoothing techniques, class-based n-gram language mod-
els (Brown et al. 1992) and continuous space language models (Bengio et al. 2003;
Schwenk 2007) have been used to estimate unseen event probabilities more robustly.
These approaches try to make more reasonable predictions for the unseen histories
by assuming that they are similar to the histories that have been seen in the training
data. Class-based language models group words into classes, while continuous space
language models project words into a higher dimensional continuous space, with
the expectation that words that are semantically or grammatically related will be
grouped into the same class or mapped to similar locations in the continuous space.
The main goal of these models is to generalize well to unseen n-grams.

One drawback of the conventional n-gram language models is their reliance on
only the last n — 1 words in the history. However, there are many additional sources
of information, such as morphology, syntax, and semantics, that can be useful while
predicting the probability of the next word. Such additional linguistic information
can be either incorporated into the history of the n-gram models or encoded as a set
of features to be utilized in feature-based language models.

Structured language models (Chelba and Jelinek 2000), probabilistic top-down
parsing in language modeling (Roark 2001), and Super ARV language mod-
els (Wang and Harper 2002) are some example approaches that incorporate syntactic
information into the n-gram history. The factored language model (Bilmes and
Kirchhoff 2003) is another example that incorporates syntactic as well as morpho-
logical information into the n-gram history.

Feature-based models allow for easy integration of arbitrary knowledge sources
into language modeling by encoding relevant information as a set of features. The
maximum entropy language model (Rosenfeld 1994) is a popular example of this
type, where the conditional probabilities are calculated with an exponential model,

P(wlh) = Z(lh)eZi o ®ihw), (4.6)

Here, Z(h) is a normalization term and @; (h, w)’s are arbitrary features which are
functions of the word w and the history 4. The whole sentence maximum entropy
model (Rosenfeld et al. 2001) assigns a probability to the whole sentence using the
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features @; (W) with a constant normalization term Z:
1
P(W) = Zezf %P (W), 4.7

Discriminative language models (DLMs) (Roark et al. 2007) have been proposed
as a complementary approach to the state-of-the-art n-gram language modeling.
There are mainly two advantages of DLMs over n-grams. The first advantage is
improved parameter estimation with discriminative training, since DLMs utilize
both positive and negative examples to optimize an objective function that is directly
related with the system performance. In training a DLM, positive examples are the
correct or meaningful sentences in a language while negative examples are word
sequences that are not legitimate or meaningful sentences in the language.

The second advantage is the ease of incorporating many information sources such
as morphology, syntax, and semantics into language modeling. As a result, DLMs
have been demonstrated to outperform generative n-gram language models. Linear
and log-linear models have been successfully applied to discriminative language
modeling for speech recognition (Roark et al. 2004, 2007; Collins et al. 2005). In
DLMs based on linear models, model parameters are used to define a cost, F(W),
on the word sequence

F(W) = Za,-@,-(W). (4.8)

In DLMs based on log-linear models, the cost F'(W) has the same form as the log
of the probability given by the whole sentence maximum entropy model

F(W)=>"a;®;(W) —log Z, (4.9)

1

where Z is approximated by summing over the alternative hypotheses. The details
of the DLM framework will be given in Sect. 4.6.

4.3 Challenges in Statistical Language Modeling for Turkish

In the context of language modeling, two aspects of Turkish, very productive agglu-
tinative morphology leading to a very large vocabulary, and free constituent order
make statistical language modeling rather challenging, especially for applications
such as automatic speech recognition (ASR) and statistical machine translation
(SMT).

State-of-the-art ASR and SMT systems utilize predetermined and finite vocabu-
laries that contain the most frequent words related to the application domain. The
words that do not occur in the vocabulary but are encountered by the ASR or SMT
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Fig. 4.1 Vocabulary growth curves for words and roots

system are called Out-Of-Vocabulary (OOV) words. Existence of OOV words is one
of the causes of degradation in system performance. For instance in an ASR system,
if a word is not in the vocabulary and it is uttered by a speaker, it has no chance to
be recognized correctly. Hetherington (1995) estimates that as a rule of thumb an
OOV word leads to on the average 1.5 recognition errors.

As described in earlier chapters, the very productive morphology of Turkish
yields many unique word forms, making it difficult to have a fixed vocabulary
covering all these words. Figure 4.1 illustrates the growth for unique Turkish words
and roots as a function of the number of tokens in a text corpus of 182.3M word
tokens (units) and 1.8M word types (distinct units). It can be observed that the
increase in the number of distinct units with the increasing amount of data is much
higher for words compared to roots which is an expected result for Turkish. From
the morphological analysis of these Turkish words, we have also observed that on
the average each root generates 204 words and each word is composed of on the
average 1.7 morphemes including the root.! The verb etmek “to do” accounts for
3348 unique words—the maximum number for any of the roots. The word form
ruhsat+lan+dir+il+ama+ma+si+nda+kiis an example with the maximum number
of morphemes but only occurs once in the corpus.

This significant word vocabulary growth results in high OOV rates even for
vocabulary sizes that would be considered as large for English. Figure 4.2 shows
the OOV rates calculated on a test data of 23K words, for different vocabulary sizes.
For instance, around 9% OOV rate is achieved with a vocabulary size of 60K words.

1But as noted in Chap. 2, most high-frequency words have a single morpheme so most likely
inflected words have more than 1.7 morphemes.
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Fig. 4.2 OOV rates for Turkish with different vocabulary sizes

However, with an optimized 60K word lexicon for English, the OOV rate is less
than 1% for North American business news text (Rosenfeld 1995). Other morpho-
logically rich languages such as Finnish, Estonian, Hungarian, and Czech also suffer
from high OOV rates: 15% OOV with a 69K lexicon for Finnish (Hirsiméki et al.
2006), 10% OOV with a 60K lexicon for Estonian (Kurimo et al. 2006), 15% OOV
with a 20K lexicon for Hungarian (Mihajlik et al. 2007), and 8.3% OOV with a 60K
lexicon for Czech (Podvesky and Machek 2005). Even though these numbers are
not directly comparable with each other, they indicate that high OOV rates are a
major problem for morphologically rich languages. Therefore, addressing the OOV
problem is crucial for the performance of downstream applications systems that
make use of statistical language models.

The free word order is another challenge for statistical language modeling. The
relatively free word order contributes to the sparseness data and this can lead to
non-robust n-gram language model estimates. However this is more of a problem
for speech recognition applications or processing of informal texts—in formal text
such as news the dominant constituent order is subject-object-verb but there are no
reliable statistics on the distribution of different constituent order in large Turkish
corpora. We will not be addressing this issue in the rest of this chapter.

4.4 Sub-lexical Units for Statistical Language Modeling

A commonly proposed solution for reducing high OOV rates for morphologically
rich languages is to use sub-lexical units for language modeling. In sub-lexical
language modeling, the vocabulary is composed of sub-lexical units instead of
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words. These could be letters, syllables, morphemes or combination of morphemes
or arbitrary word segments. In order to address the OOV problem, the sub-lexical
unit vocabulary should be capable of covering most of the words of a language,
and clearly these sub-lexical units should be meaningful for prediction using
language models. They should have limited confusion and avoid over-generation.
For instance, if the letters are used as sub-lexical units, only a vocabulary of 29
letters of the Turkish alphabet will cover all the words in the language. However,
letters are not logical sub-lexical unit choices since they require very long histories
for accurate language model predictions and they allow more confusable choices
in, for instance, speech recognition. Note also that the perplexities of language
models based on different units are not directly comparable due to each model
having different OOV rates and different number of tokens for evaluation. Assuming
no OOVs, perplexity of sub-lexical language models need to be normalized by the
number of word tokens for a fair comparison. However, a better way of comparing
sub-lexical and word language models is directly measuring the task performance.

Sub-lexical units can be classified as being linguistic or statistical, based on the
underlying algorithm utilized in segmenting words into sub-lexical units. Linguistic
sub-lexical units are obtained with rule-based morphological analyzers while
statistical sub-lexical units are obtained with statistical segmentation approaches
that rely on unsupervised model of word segmentation.

4.4.1 Linguistic Sub-lexical Units

In agglutinative languages like Turkish, words are formed as a concatenation
of stems and affixes. Therefore, linguistic units such as stems, affixes, or their
groupings can be considered as natural choices of sub-lexical units for language
modeling. In language modeling with linguistic sub-lexical units, the words are split
into morphemes using morphological analyzers, and then a vocabulary composed
of chosen morphological units is built for language modeling. However, there is a
trade off between using long and short units: long units, e.g., full words will result in
OOV problem while shorter units (e.g., morphemes) will require larger n-grams for
prediction and risk assigning probabilities to non-words because of over-generation.
Since morphemes might be very short, as short as a single letter, Kanevsky et al.
(1998) have suggested using stems and endings as vocabulary units as a compromise
between words and morphemes, where an ending is what is left after removing the
root from the word.

Morphemes, stems, and endings are examples of commonly used linguistic
sub-lexical units in language modeling of agglutinative languages like Turkish,
Korean, Finnish, Estonian, and Hungarian and highly inflectional languages like
Czech, Slovenian, and Arabic. Morpheme-based language models were utilized
for language modeling of Korean, another agglutinative language, and to deal
with the coarticulation problem rising from very short morphemes, frequent and
short morpheme pairs were merged before modeling (Kwon and Park 2003).
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Morpheme-based language models were also investigated for language modeling of
Finnish (Hirsiméki et al. 2006), Estonian (Alumie 2006), and Hungarian (Mihajlik
et al. 2007), all also agglutinative. These researchers also compared linguistic sub-
lexical units with their statistical counterparts for ASR. Kirchhoff et al. (2006) and
Choueiter et al. (2006) applied morphology-based language modeling to Arabic
ASR and reported better recognition results than words. Rotovnik et al. (2007) used
stem and endings for Slovenian language modeling for ASR. Additional constraints
to the ASR decoder, such as restricting the correct stem and ending order, and
limiting the number of endings for an individual stem were found to reduce over-
generation.

The main disadvantage of linguistic sub-lexical units is the need for expert
knowledge of the language for building the morphological analyzers. Thus they are
not applicable to languages lacking such morphological tools. Additionally, even if
a morphological analyzer is available, usually a fixed limited root vocabulary may
not necessarily help with the OOV problem. For instance, a Turkish morphological
analyzer (Sak et al. 2011) with 54.3K roots can analyze only 52.2% of the 2.2M
unique words in a text corpus of 212M words. However, the words that the
morphological analyzer cannot parse are usually rare words and only account for
about 3% of the word tokens in the text corpus. Hence, this limitation may not
necessarily have much impact on the statistical language model. A more important
concern is the need for morphological disambiguation of multiple analyses of words.

4.4.2 Statistical Sub-lexical Units

Statistical sub-lexical units are morpheme-like units or segments obtained by data
driven approaches, usually in an unsupervised manner. The main advantage of
statistical sub-lexical units is that they do not rely on a manually constructed mor-
phological analyzer. These segments do not necessarily match with the linguistic
morphemes, however, they are “meaningful” units in terms of language modeling.

One of the earliest works in this area, Harris (1967) posited morpheme bound-
aries in a word by using letter transition frequencies with the assumption that the
predictability of a letter will decrease at the morpheme boundaries.

The last 15 years have seen a surge in data-driven algorithms for unsupervised
morpheme discovery based on probabilistic models as well as some heuristics. One
of the algorithms with publicly available software is Linguistica (Goldsmith 2001)
that utilizes the minimum description length (MDL) principle to learn morpho-
logical segmentations in an unsupervised way, aiming to find the segmentations
as close as possible to the true morphemes. Whittaker and Woodland (2000),
motivated by the productive morphology of Russian, aim to obtain sub-lexical
units (called particles) that maximize the likelihood of the training data using a
bigram particle language model. In contrast to Linguistica, their algorithm does
not aim to find the true morphological segmentations but instead searches for
meaningful units for language modeling. Creutz and Lagus (2002, 2005) present
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Morfessor, another algorithm for unsupervised discovery of morphemes. Morfessor
was inspired by earlier work by Brent (1999) that explored word discovery during
language acquisition of young children. Brent (1999) proposed a probabilistic model
based on the MDL principle to recover word boundaries in a natural raw text
from which they have been removed. The Morfessor algorithm also utilizes the
MDL principle while learning a representation of the language in the data, as well
as the most accurate segmentations. It is better suited for highly inflectional and
agglutinative languages than Linguistica as it is designed to deal with languages
with concatenative morphology. The annual Morpho Challenge competitions,”
held since 2005, have helped the development of new algorithms for sub-lexical
units. The Morfessor algorithm itself has been used as the baseline statistical sub-
lexical approach in Morpho Challenge tracks and several different algorithms have
competed against it.

Statistical sub-lexical units have been explored in language modeling of highly
inflected and agglutinative languages. Hirsimaki et al. (2006), Kurimo et al. (2006),
Siivola et al. (2003) applied Morfessor to Finnish, while Kurimo et al. (2006)
applied it to Estonian and Mihajlik et al. (2007) to Hungarian. The performance
of morpheme-based language models was compared with the language models
built with Morfessor segmentations for Finnish (Hirsiméki et al. 2006) and Hun-
garian (Mihajlik et al. 2007) in the context of ASR. In Finnish ASR experiments,
statistical units outperformed linguistic morphemes in news reading task where the
number of foreign words that could not be handled by the morphological analyzer
was quite high. In Hungarian ASR experiments for spontaneous speech, the best
result was obtained with statistical segmentations. Hirsiméki (2009) describes the
advances in building efficient speech recognition systems with Morfessor based seg-
mentations. Kneissler and Klakow (2001) used an optimized sub-lexical approach
for Finnish dictation and German street names recognition tasks. Pellegrini and
Lamel (2007, 2009) modified the Morfessor algorithm to incorporate basic phonetic
knowledge and explored its use for ASR of Ambharic, a highly inflectional language.

4.5 Statistical Language Modeling for Turkish

This section reviews statistical language modeling units explored in Turkish text
and speech processing systems. Figure 4.3 illustrates segmentations of the same
Turkish phrase using different sub-lexical units. When applicable, the examples also
show the lexical and surface form representations and “morphs” denote statistical
sub-lexical units. In the rest of this section we will describe the details of Turkish
language models based on these units.

2 Aalto University, Finland. Department of Computer Science. “Morpho Challenge”: morpho.aalto.
fi/events/morphochallenge/ (Accessed Sept. 14, 2017).
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Words: derneklerinin Oncitiligiinde

Syllables: der -nek -le -ri -nin 6n -ci -1u -glin -de
Morphemes

Lexical: dernek +1ArH +nHn Onci +1Hk +sH +nDA
Surface: dernek +leri +nin dncii +1ig +U +nde
Stem-+Endings

Lexical: dernek +1ArH+nHn 6nclii +1Hk+sH+nDA

Surface: dernek +lerinin dncu +1iglinde

Morphs: dernek +lerinin onci +14gu +nde

Fig. 4.3 A Turkish phrase segmented into linguistic and statistical sub-lexical units

4.5.1 Language Modeling with Linguistic Sub-lexical Units

Over the last 15 years, various linguistic sub-lexical units for Turkish language
modeling have been explored in the literature. Here we first review some of the
earlier work and then summarize our work using such units.

Carki et al. (2000) were the first to investigate sub-lexical language models for
Turkish. Due to the ambiguity in morphological analyses, they utilized syllables
instead of morphemes as language modeling units and syllables were merged to
obtain longer units with word-positioned syllable classes. While this approach
addressed the serious OOV problem, it did not yield any improvements over the
word-based language model built with a 30K vocabulary. Hakkani-Tiir (2000)
proposed groupings of morphemes, called inflectional groups as language modeling
units. Mengiisoglu and Deroo (2001) explored an extension of inflectional groups
to n-gram language modeling as well as utilizing stem+ending models for Turkish.
Dutagaci (2002) presented a comparative study of morpheme, stem+ending, and
syllable language models in terms of generalization capacity of language models
and OOV handling. ASR experiment results were also reported for these sub-
lexical units, however, for a small vocabulary isolated word recognition task. This
work was extended to continuous speech recognition by Arisoy (2004), and Arisoy
et al. (2006) with a new model utilizing words, stem+endings and morphemes
together in the same model vocabulary. Such a hybrid vocabulary combined model
slightly outperformed the word model in terms of recognition accuracy when 10K
units were used in combined and word bigram language models. Ciloglu et al.
(2004) compared bigram stem-+ending model with a bigram stem model in terms of
recognition accuracy in a small vocabulary ASR task and found that the stem model
outperformed the stem+ending model when the language models were trained on
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a very small text corpus (less than 1M words). However, the stem+ending model
was shown to outperform stem model when the text corpus size was increased to
approximately 6M words (Bayer et al. 2000).

Erdogan et al. (2005) was one of the most comprehensive previous research on
language modeling for Turkish ASR. The acoustic and language models in this
work were trained on much larger amounts of data (34h of speech corpus and
81M words text corpus). They investigated words, stem+endings and syllables as
language modeling units and compared their performances on an ASR task and
reported that the stem+ending model outperformed word and syllable models in
recognition accuracy. This work also dealt with the over-generation problem of
sub-lexical units by a post-processing approach imposing phonological constraints
of Turkish and achieved further improvements over the best scoring stem+ending
model.

Arisoy and Saraclar (2009) presented another approach for dealing with the
over-generation problem of sub-lexical units, especially for statistical sub-lexical
units. This work along with Arisoy et al. (2009a) used a 200 million word text
corpus collected from the web. The Turkish morphological parser described in Sak
et al. (2011) was used to decompose words into morphemes and the Turkish
morphological disambiguation tool developed by Sak et al. (2007) was used to
disambiguate multiple morphological parses. Both the lexical and surface form
representations of morphemes, stems and endings were used as linguistic sub-lexical
units for Turkish. The details of these units are given in the following sections.

4.5.1.1 Surface Form Stem+Ending Model

Instead of using words as vocabulary items as in the word-based model, the surface
form stem+ending model uses a vocabulary comprising surface form stem and
endings and the words in the text data are split into their stems and endings. This
is done by first extracting the stem from morphological analyses and taking the
remaining part of the word as the ending.

In this approach, no morphological disambiguation was done. Instead Arisoy
et al. (2009a) investigated building language models with all the ambiguous parses,
with the parses with the smallest number of morphemes, and with randomly selected
parses for each word token and type. They found no significant difference between
the first two methods and these fared better than random choice of a parse. Sak
et al. (2010) showed that utilizing the parse with the smallest number of morphemes
performed slightly better than using the disambiguated parse in Turkish ASR. The
method of selecting the parse with the smallest number of morphemes is not only
extremely simple but also avoids more complex and error-prone approaches such as
morphological disambiguation.
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4.5.1.2 Lexical Form Stem+Ending Model

Morpholexical language models are trained as standard n-gram language models
over morpholexical units. The one important advantage of using morpholexical
units is that they allow conflating different surface forms of morphemes to one
underlying form thereby alleviating the sparseness problem. For instance, the plural
in Turkish is indicated by surface morphemes +ler or +lar, depending on the
phonological (and not morphological) context. Thus representing these morphemes
with a single lexical morpheme +IAr allows counts to be combined leading to more
robust parameter estimation. Combining lexical morphemes also naturally leads to
lexical stem+ending models (Arisoy et al. 2007).

Morpholexical language models have the advantage that they give probability
estimates for sequences consisting of only valid words, that is they do not over-
generate like the other sub-lexical models. Sak et al. (2012) have demonstrated
the importance of both morphotactics and morphological disambiguation when
producing the morpholexical units used for language modeling.

4.5.2 Statistical Sub-lexical Units: Morphs

As discussed earlier, statistical sub-lexical units obtained via unsupervised word
segmentation algorithms have been used as an alternative to linguistic sub-lexical
units. In fact, Turkish has been a part of the Morpho Challenge since 2007.3

Hacioglu et al. (2003) were the first to model Turkish with statistical sub-lexical
units obtained with the Morfessor algorithm and showed that they outperform a
word-based model with 60K word vocabulary, even though the language models
were built on a text corpus containing only 2M words. Arisoy et al. (2009a) used
statistical sub-lexical units for extensive experimentation using large corpora for
Turkish ASR.

Arisoy et al. (2009b) proposed an enhanced Morfessor algorithm with phonetic
features for Turkish. The main idea in this work was to incorporate simple phonetic
knowledge of Turkish into Morfessor in order to improve the segmentations. Two
main modifications were made to enhance Morfessor: a phone-based feature, called
“DF” for distinctive feature, and a constraint called ‘Cc’ for confusion constraint.
DF was directly incorporated into Morfessor’s probability estimates and Cc was
indirectly incorporated into Morfessor as a yes/no decision in accepting candidate
splits. Both of these modifications aimed at reducing the number of confusable
morphs in the segmentations by taking phonetic and syllable confusability into
account.

3 Aalto University, Finland. Department of Computer Science. “Morpho Challenge: Results™:
morpho.aalto.fi/events/morphochallenge/results-tur.html (Accessed Sept. 14, 2017).
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4.6 Discriminative Language Modeling for Turkish

Recent ASR and MT systems utilize discriminative training methods on top of
traditional generative models. The advantage of discriminative parameter estimation
over generative parameter estimation is that discriminative training takes alternative
(negative) examples into account as well as the correct (positive) examples. While
generative training estimates a model that can generate the positive examples,
discriminative training estimates model parameters that discriminate the positive
examples from the negative ones. In ASR and MT tasks, positive examples are the
correct transcriptions or translations and negative examples are the erroneous candi-
date transcriptions or translations. Discriminative models utilize these examples to
optimize an objective function that is directly related to the system performance.
Discriminative acoustic model training for ASR utilizes objective functions like
Maximum Mutual Information (MMI) (Povey and Woodland 2000; Bahl et al.
1986) and Minimum Phone Error (MPE) (Povey and Woodland 2002) to estimate
the acoustic model parameters that represent the discrimination between alternative
classes. Discriminative language model (DLM) training for ASR aims to optimize
the WER while learning the model parameters that discriminate the correct tran-
scription of an utterance from the other candidate transcriptions. Another advantage
of DLM is that discriminative language modeling is a feature-based approach, like
conditional random fields (CRFs) (Lafferty et al. 2001) and maximum entropy
models (Berger et al. 1996), therefore, it allows for easy integration of relevant
knowledge sources, such as morphology, syntax, and semantics, into language
modeling. As a result of improved parameter estimation with discriminative training
and ease of incorporating overlapping features, discriminatively trained language
models have been demonstrated to consistently outperform generative language
modeling approaches (Roark et al. 2007, 2004; Collins et al. 2005; Shafran and
Hall 2006).

In this section we will briefly explain the DLMs and the linguistically and
statistically motivated features extracted at lexical and sub-lexical levels for Turkish
DLMs.

4.6.1 Discriminative Language Model

This section describes the framework for discriminatively trained language models
used for ASR. The definitions and notations given in Roark et al. (2007) are modified
to match the definitions and notations of this chapter. The main components of
DLMs are as follows:

1. Training Examples: These are the pairs (X;, W;) fori = 1... N. Here, X; are
the utterances and W; are the corresponding reference transcriptions.
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2. GEN(X): For each utterance X, this function enumerates a finite set of alterna-
tive hypotheses, represented as a lattice or N-best list output of the baseline ASR
system of that utterance.

3. @(X, W): A d-dimensional real-valued feature vector (® (X, W) € 9R¢). The
representation @ defines the mapping from the (X, W) pair to the feature vector
@ (X, W). When the feature depends only on W, we simplify the notation to
@ (W) to match the notation used for other feature-based language models.

4. @: A vector of discriminatively learned feature parameters (@ € RY).

Like many other supervised learning approaches, DLM requires labeled in-
put:output pairs as the training examples. Utterances with the reference transcrip-
tions are utilized as the training examples, (X1, W) ... (Xx, Wx). These utterances
are decoded with the baseline acoustic and language models in order to obtain the
lattices or the N-best lists, in other words, the output of the GEN (X) function. Since
speech data with transcriptions are limited compared to the text data, it may not
be possible to train the baseline acoustic and in-domain language models, and the
DLM on separate corpora. Therefore, DLM training data is generated by breaking
the acoustic training data into k-folds, and recognizing the utterances in each fold
using the baseline acoustic model (trained on all of the utterances) and an n-gram
language model trained on the other k — 1-folds to alleviate over-training of the
language models. Acoustic model training is more expensive and less prone to
over-training than n-gram language model training (Roark et al. 2007), so it is not
typically controlled in the same manner.

Discriminative language modeling is a feature-based sequence modeling ap-
proach, where each element of the feature vector, @o(X, W)...®4_1(X, W),
corresponds to a different feature. Each candidate hypothesis of an utterance has
a score from the baseline acoustic and language models. This score is used as the
first element of the feature vector, @o(X, W). This feature is defined as the “log-
probability of W in the lattice produced by the baseline recognizer for utterance
X.” In the scope of this chapter, the rest of the features depend only on W and will
be denoted by @ (W). The basic approach for the other DLM features is to use n-
grams in defining features. The n-gram features are defined as the number of times
a particular n-gram is seen in the candidate hypothesis. The details of the features
used in Turkish DLMs will be explained in Sect. 4.6.2.

Each DLM feature has an associated parameter, i.e., «; for @; (X, W). The best
hypothesis under the @ model, W*, maximizes the inner product of the feature and
the parameter vectors, as given in Eq. (4.10). The values of & are learned in training
and the best hypothesis under this model is searched for in decoding.

W* = argmax {(a,®(X,W))
WeGEN(X)

= argmax (apPo(X, W) +a1@1(W) + - +ag-1Pg-1(W)) (4.10)
WEeGEN(X)
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Fig. 4.4 A variant of the Inputs: Training examples (X;,R;) fori=1...N
perceptron algorithm given Initilization: éc(l)v = (00,0,...,0)

in Roark et al. (2007). ¢; Algorithm:

represents the feature Fort=1...T

parameters after the 7th pass a0 = gV

on the ith example. R; is the F(t)r i :t]*.l‘ N

gold-standard hypothesis W* = argmax ( Gt,ifl L B(X,W))
WEeGEN(X;)
ol =o'+ D(X;,R) — P(X;, W")
Output: Averaged parameters & =Y ,;, &/ /NT

In basic DLM training, the parameters are estimated using a variant of the
perceptron algorithm (shown in Fig.4.4). The main idea in this algorithm is to
penalize features associated with the current 1-best hypothesis, and to reward
features associated with the gold-standard hypothesis (reference or lowest-WER
hypothesis). It has been found that the perceptron model trained with the reference
transcription as the gold-standard hypothesis is much more sensitive to the value of
the g constant (Roark et al. 2007). Therefore, we use the lowest-WER hypothesis
(oracle) as the gold-standard hypothesis. Averaged parameters, ¢4y g, are utilized
in decoding held-out and test sets, since averaged parameters have been shown
to outperform regular perceptron parameters in tagging tasks and also give much
greater stability of the tagger (Collins 2002). See Roark et al. (2007) for the details
of the training algorithm.

4.6.2 Feature Sets for Turkish DLM

This section describes the feature sets utilized in Turkish DLM experiments in the
context of ASR (Arisoy et al. 2012; Sak et al. 2012). In order to generate the negative
examples, we used a baseline Turkish ASR system to decode the DLM training set
utterances yielding an N-best list for each training utterance. We then extracted the
features from the correct transcriptions of the utterances together with the N-best
list outputs of the baseline ASR system. In this section we investigate linguistically
and statistically motivated features in addition to the basic n-gram features extracted
from the word and sub-lexical ASR hypotheses.

4.6.2.1 Basic n-Gram Features

The basic n-gram features consist of word n-gram features extracted from word
ASR hypotheses and sub-lexical n-gram features extracted from sub-lexical ASR
hypotheses. Consider the Turkish phrase “derneklerinin &énctltdginde”
given in Fig. 4.3. The unigram and bigram word features extracted from this phrase
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are as follows:

@; (W) = number of times “derneklerinin”is seen in W
@ ; (W) = number of times “6nctiliglinde” is seen in W
@ (W) = number of times “derneklerinin &nctltgtinde” is seenin W

We use a statistical morph-based ASR system to obtain the sub-lexical ASR
hypotheses from which we extract the basic sub-lexical n-gram features. Some
examples of the morph unigram and bigram features for the phrase in Fig.4.3 are
given as follows:

@; (W) = number of times “dernek” is seen in W
@ ; (W) = number of times “+1lerinin”is seenin W
@ (W) = number of times “6ncti +10GJnu” is seen in W

where the non-initial morphs were marked with “+” in order to find the word
boundaries easily after recognition.

4.6.2.2 Linguistically Motivated Features

This section describes the morphological and syntactic features utilized in Turkish
DLM. The rich morphological structure of Turkish introduces challenges for
ASR systems (see Sect.4.3). We aim to turn this challenging structure into a
useful information source when reranking N-best word hypotheses with DLMs.
Therefore, we utilize information extracted from morphological decompositions as
DLM features. In our work, we have used root and stem+ending n-grams as the
morphological features. In order to obtain the features, we first morphologically
analyzed and disambiguated all the words in the hypothesis sentences using a
morphological parser (Sak et al. 2011). The words that cannot be analyzed with
the parser are left unparsed and represented as nominal nouns.

In order to obtain the root n-gram features, we first replace the words in the
hypothesis sentences with their roots using the morphological decompositions. Then
we generate the n-gram features as before, treating the roots as words. The root
unigram and bigram features, with examples from Fig. 4.3, are listed below:

@; (W) = number of times “dernek” is seen in W
@ ; (W) = number of times “6nc®” is seen in W
@ (W) = number of times “dernek &nci” is seenin W

For the stem+ending n-gram features, we first extract the stem from the
morphological decomposition and take the remaining part of the word as the ending.
If there is no ending in the word, we use a special symbol to represent the empty
ending. After converting the hypothesis sentences to stem and ending sequences, we
generate the n-gram features in the same way with words as if stems and endings
were words. The stem+ending unigram and bigram features, with examples from
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Fig.4.3, are listed below:

@ ; (W) = number of times “+1lerinin”is seenin W
@ (W) = number of times “6nct +10Ggunde” is seen in W

Syntax is an important information source for language modeling due to its
role in sentence formation. Syntactic information has been incorporated into
conventional generative language models using left-to-right parsers to capture long
distance dependencies in addition to n — 1 previous words (Chelba and Jelinek 2000;
Roark 2001). Feature-based reranking approaches (Collins et al. 2005; Rosenfeld
et al. 2001; Khudanpur and Wu 2000) also make use of syntactic information. The
success of these approaches lead us to investigate syntactic features for Turkish
DLMs.

For the syntactic DLM features, we explored feature definitions similar to Collins
et al. (2005). We used part-of-speech tag n-grams and head-to-head (H2H) depen-
dency relations between lexical items or their part-of-speech tags as the syntactic
features. Part-of-speech tag features were utilized in an effort to obtain class-based
generalizations that may capture well-formedness tendencies. H2H dependency
relations were utilized since the presence of a word or morpheme can depend on the
presence of another word or morpheme in the same sentence and this information is
represented in the dependency relations.

The syntactic features will be explained with the dependency analysis given in
Fig.4.5 for a Turkish sentence, which translates as ‘“Patrol services will also be
increased throughout the city.” The incoming and outgoing arrows in the figure show
the dependency relations between the head and the dependent words with the type
of the dependency. The words with English glosses, part-of-speech tags associated
with the words are also given in the example. The dependency parser by Eryigit
et al. (2008) was used for the dependency analysis.

To obtain the syntactic features from the training examples, we first generated
the dependency analyses of hypothesis sentences. Then we extracted the part-of-
speech tag and H2H features from these dependency analyses. Here, it is important
to note that hypothesis sentences contain recognition errors and the parser generates

CLASSIFIER LOCATIVE.ADJUNCT SENTENCE

/] ! !
(genelinde) @evriye) @izmetleri) arttirllacak @
| ki

CLASSIFIER | INTENSIFIER

SUBJECT
WORD: Kent genelinde devriye hizmetleri de arttirtlacak
GLOSS: Thecity throughout patrol services also will be increased
POS: [Noun] [Noun] [Noun] [Noun] [Conj] [Verb] [Punc]

Fig. 4.5 Example dependency analysis for syntactic features
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the best possible dependency relations even for incorrect hypotheses. The syntactic
features are listed below with examples from Fig. 4.5.

* Part-of-speech tag n-gram features:
Example for the word ‘Kent’:
@ (W) = number of times “ [Noun] ” is seen in W
Example for the words ‘hizmetleri de’:
@ (W) = number of times “ [Noun] [Conj]”is seenin W

» Head-to-Head (H2H) dependencies:
Examples for the words ‘Kent genelinde’:

— dependencies between lexical items:
@ (W) = number of times “CLASSIFIER Kent genelinde”is seen in
w

— dependencies between a single lexical item and the part-of-speech of another
item:
@ (W) = number of times “CLASSIFIER Kent [Noun]”isseenin W
@;(W) = number of times “CLASSIFIER [Noun] genelinde” is seen
in W

— dependencies between part-of-speech tags of lexical items:
@ (W) = number of times “CLASSIFIER [Noun] [Noun]”isseenin W

4.6.2.3 Statistically Motivated Features

The advantage of statistical sub-lexical units compared to their linguistic coun-
terparts is that they do not require linguistic knowledge for word segmentation.
As a result, statistical morphs do not convey explicit linguistic information like
morphemes and obtaining linguistic information from morph sequences is not
obvious. One way of information extraction from morphs is to convert them into
word-like units and to apply the same procedure with words. However, this indirect
approach tends to fail when concatenation of morph sequences does not generate
morphologically correct words. In addition, this approach contradicts with the main
idea of statistical morphs—obtaining sub-lexical units without any linguistic tools.
Therefore, we focused on exploring representative features of implicit morpho-
syntactic information in morph sequences. We explored morph-based features
similar to part-of-speech tag and H2H dependency features using data driven
approaches.

The first feature set is obtained by clustering morphs. We applied two hierar-
chical clustering approaches on morphs to obtain meaningful categories. The first
one is the algorithm by Brown et al. (1992) which aims to cluster words into
semantically-based or syntactically-based groupings by maximizing the average
mutual information of adjacent classes. Brown et al.’s algorithm is proposed for
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class-based n-gram language models and the optimization criterion in clustering is
directly related to the n-gram language model quality. Utilizing n-gram features
in DLMs makes this clustering an attractive approach for our investigation. The
second approach utilizes minimum edit distance (MED) as the similarity function
in bottom-up clustering. The motivation in this algorithm is to capture the syntactic
similarity of morphs using their graphemic similarities, since a non-initial morph
can cover a linguistic morpheme, a group of morphemes or pieces of morphemes.
In our application, we modify MED to softly penalize the variations in the lexical
and surface forms of morphemes. Note that this clustering is only meaningful for
non-initial morphs since graphemic similarity of initial morphs does not reveal any
linguistic information. Therefore, we only cluster the non-initial morphs and all the
initial morphs are assigned to the same cluster with MED-based clustering approach.

Clustering is applied to morph sequences and each morph is assigned to one
of the predetermined number of classes. The class associated with a particular
morph is considered as the tag of that morph and utilized in defining DLM features.
Clustering-based features are defined in a similar way with part-of-speech tag n-
gram features, the class labels of morphs playing the role of the part-of-speech tags
of words.

The second feature set is obtained with the triggering information obtained
from morph sequences. These features are motivated by the H2H dependency
features in words. Considering initial morphs as stems and non-initial morphs as
suffixes, we assume that the existence of a morph can trigger another morph in
the same sentence. The morphs in trigger pairs are believed to co-occur for a
syntactic function, like the syntactic dependencies of words, and these pairs are
utilized to define the long distance morph trigger features. Long distance morph
trigger features are similar to the trigger features proposed in Rosenfeld (1994)
and Singh-Miller and Collins (2007). We only consider sentence level trigger pairs
to capture the syntactic-level dependencies instead of discourse-level information.
The candidate morph trigger pairs are extracted from the hypothesis sentences (1-
best and oracle) to obtain also the negative examples for DLMs. An example morph
hypothesis sentence with the candidate trigger pairs is given in Fig.4.6. Among
the possible candidates, we try to select only the pairs where morphs are occurring
together for a special function. This is formulated with hypothesis testing where
the null hypothesis (Hp) represents the independence and the alternative hypothesis

Morph hypothesis:
dernek +lerinin 6nci +14gu +nde
Candidate trigger pairs:
dernek +lerinin dernek onci dernek +1ugi dernek +nde
+lerinin Oncl +lerinin +1ugid +lerinin +nde
6ncl +1ugl 6ncl +nde
+143g14 +nde

Fig. 4.6 A morph hypothesis sentence and the candidate trigger pairs extracted from this
hypothesis
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(Hy) represents the dependence assumptions of morphs in the pairs (Manning and
Schiitze 1999). The pairs with higher likelihood ratios (log IZEZ(I) i) are assumed to be
the morph triggers and utilized as features. The number of times a morph trigger pair
is seen in the candidate hypothesis is defined as long-distance trigger features. For
instance, if among the candidate trigger pairs, given in Fig. 4.6, “6ncti +10g0u”" is
selected as a trigger pair, the feature for this pair is defined as follows:

@ (W) = number of times “6nct +10GJu” is seen in W

4.7 Conclusions

In this chapter, we summarized the language modeling research for Turkish text
and speech processing applications. The agglutinative nature of Turkish results in
high OOV rates which can be alleviated by using sub-lexical units for language
modeling. Knowledge-based linguistic methods and data-driven unsupervised sta-
tistical methods have both been used for segmenting words into sub-lexical units.
Language models based on these units have advantages of those based on words
and often result in improved performance. After many years of research, n-gram
language models are still the most popular language modeling technique. However,
in certain applications such as ASR, discriminative language models have been
shown to improve the task performance. The ASR performance of the language
models presented in this chapter is provided in Chap. 5. Despite significant progress
in the recent years, language modeling for morphologically rich languages such as
Turkish remains an active field of research.
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