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Abstract The discrete element method (DEM) is a wide family of numerical meth-
ods for discrete and discontinuous modelling of materials and systems which can be
represented by a large collection of particles (discrete elements). The DEM assumes
that the discrete elements interact with one another by contact forces. This chapter
presents basic aspects of contact modeling in the DEM. The main assumptions, theo-
retical formulation and numerical algorithm of the DEM are presented. In this work,
the DEM formulation employing spherical particles and the soft-contact approach is
considered. Basic contact models for the particle interaction are reviewed. Elemen-
tary contact mechanisms, including elasticity, plasticity, damping, friction and cohe-
sion are discussed. Selected contact models combining these effects are described.
Their performance in modelling single dynamic or quasi-static contact events is
analysed. The analysis is focused on the evolution of contact forces during single
collisions. Although the force-type interaction is mainly discussed, the moment-type
interaction is also introduced. Formulation of the DEM contact taking into account
thermal effects as well as thermomechanical coupling finishes this review.

1 Introduction

The term discrete element method (DEM) comprises a family of numerical methods
for analysis of discontinuous problems of mechanics of systems of particles (discrete
elements) interacting with one another by contact. The DEM is a relatively new
numerical method, it was introduced in the 70-s and 80-s of the 20th century in the
pioneering works by Cundall (1971), Cundall and Strack (1979) and Walton (1982,
1983). TheDEMwas further developed in the works ofWilliams et al. (1985), Bardet
and Proubet (1991), Moreau (1994) and many others. It has become a powerful
tool for predicting the behaviour of various particulate and non-particulate materials
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which can be represented by systems of particles, such as soils (Widuliński et al.
2009), powders (Martin et al. 2003), rocks (Cundall 1987; Potyondy and Cundall
2004; Rojek et al. 2011; Zubelewicz and Mroz 1983), concrete (Hentz et al. 2004;
Wu et al. 2013), ceramics (Senapati and Zhang 2010) and even metals (Fleissner
et al. 2007).

Discrete elements can be of an arbitrary shape (Rothenburg and Bathurst 1992;
Tao et al. 2014; Cundall 1988), however, spherical particles are often a preferable
choice (Cundall 1987; Widuliński et al. 2009; Plassiard et al. 2009) because of the
simplicity of the formulation and the computational efficiency of contact detection
algorithms for spherical objects. The present review will deal with the discrete ele-
ment formulation employing spherical particles.

The contact algorithm plays an essential role in the discrete element method. The
contact forces control themotion of the discrete elements and govern themacroscopic
behaviour of the particle assembly. Two different approaches to contact treatment in
the DEM can be identified, the so-called soft-contact approach (Cundall and Strack
1979; Cundall 1987; Potyondy and Cundall 2004) and the hard-contact concept
(Hong and McLennan 1992; Haff and Werner 1987; Richardson et al. 2011). The
soft-contact approach employs regularization of the contact constraints, while the
hard-contact approach uses the methods of nonsmooth analysis to solve the problem
with unilateral contact constraints.

In the soft-contact DEM formulation, a small overlap of the particles is allowed –
the contact non-penetration conditions are satisfied approximately, only. The contact
between the particles is assumed to last much longer than the time step, and the
contact force evolution is analysed.

In the hard-contact approach, particle penetration is not allowed. The change of
the particlemomentumdue to a collision is determined. The collision time is assumed
to be very short and therefore it can be neglected. The contact force variation is not
analysed.

In the present work, the soft-contact approach is considered. This approach allows
us to adopt a suitable contactmodel for single particle collisions aswell as an adequate
model to obtain a required macroscopic behaviour. The present chapter is aimed to
present basic concepts of contact modelling in the discrete element method.

The outline of the present chapter is as follows. The formulation of the discrete
element method is presented in Sect. 2. Basic assumptions, equations of motion and
time integration scheme are briefly described. Section3 is devoted to contact mod-
elling. Contact conditions are formulated, the penalty regularization of the contact
constraints is introduced. Elementary contact mechanisms included in contact mod-
els are presented. Selected more complex contact models for force-type interaction
are reviewed in Sect. 4. Their formulation and performance in simple problems are
presented. The moment-type interaction is introduced in Sect. 5. An extension of the
discrete element method on thermal and thermomechanical problems is presented
in Sect. 6. Formulation of the thermal and thermomechanical contact is briefly dis-
cussed.
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2 Discrete Element Method Formulation

2.1 Basic Assumptions

Dynamics of a system of interacting rigid cylindrical (in 2D) or spherical (in 3D)
particles will be considered. Both translational and rotational motion of the particles
will be taken into account. Initial positions and velocities (both linear and angular
ones) of the particles are assumed to be known. The particles are subjected to an
external load including point forces and moments, gravity and background damping
(due to the interaction of particles with surrounding medium). The particles are
assumed to interact by contact with one another and with other obstacles.

The problem to be solved is formulated as an initial-value problem defined by the
ordinary differential equations (equations of motion) and appropriate initial condi-
tions supplemented with contact constraints.

2.2 Equations of Motion

The motion of discrete elements (particles) is governed by the standard Newton–
Euler equations of rigid body dynamics. The translational and rotational motion of
the centre of mass of the i-th spherical or cylindrical element (Fig. 1) is described by
the following equations:

mi üi = Fi , (1)

Ji ω̇i = Ti , (2)

where ui is the element centroid displacement in a fixed (inertial) coordinate frame X :

ui = xi − X i , (3)

ωi – the angular velocity, Fi – the resultant force, Ti – the resultant moment about
the central axes, mi – the element mass, and Ji is the moment of inertia which is

Fig. 1 Motion of a discrete
element
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given by:

Ji = 1

2
mi R

2
i for a cylinder, (4)

Ji = 2

5
mi R

2
i for a sphere, (5)

Ri being the i-th particle radius. The form of the rotational Eq. (2) is valid for spheres
and cylinders (in 2D) and it is simplifiedwith respect to a general form for an arbitrary
rigid bodywith the rotational inertial properties represented by a second order tensor.
The vectors Fi and Ti are sums of:

(i) all forces and moments applied to the i-th element due to an external load, F ext
i

and T ext
i , respectively,

(ii) force- and moment-type contact interactions with neighbouring spheres and all
other obstacles, F cont

i j and T cont
i j , respectively, j = 1, . . . , nci , where n

c
i are the

number of elements being in contact with the i-th discrete element,
(iii) forces and moments resulting from external (background) damping, F damp

i and
T damp
i , respectively.

Thus, the vectors Fi and Ti can be written as follows:

Fi = F ext
i +

nci∑

j=1

F cont
i j + F damp

i , (6)

Ti = T ext
i +

nci∑

j=1

sci j × F cont
i j +

nci∑

j=1

T cont
i j + T damp

i , (7)

where sci j is the vector connecting the centre of mass of the i-th element with the
contact point with the j-th element (Fig. 2).

C

Fij

j
Ci

cont

sij
c

Tij
cont

Fig. 2 Contact interaction between two discrete elements
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2.3 Time Integration Scheme

Equations of motion (1) and (2) are integrated in time using the explicit central
difference scheme. The time integration operator for the translational motion at the
n-th time step is as follows:

ün
i = Fi

n

mi
, (8)

u̇n+1/2
i = u̇n−1/2

i + ün
i �t , (9)

un+1
i = un

i + u̇n+1/2
i �t . (10)

The first two steps in the integration scheme for the rotational motion are identical
to those given by Eqs. (8) and (9):

ω̇n
i = Ti

n

Ji
, (11)

ω
n+1/2
i = ω

n−1/2
i + ω̇n

i �t . (12)

The vector of incremental rotations �θi is calculated as

�θi = ω
n+1/2
i �t , (13)

Knowledge of the incremental rotation suffices to update the tangential contact
forces. If necessary it is also possible to track the total change of rotational position
of particles (Argyris 1982). Then, the rotation matrices between the moving frames
embedded in the particles and the fixed global frame must be updated incrementally
using an adequate multiplicative scheme (Rojek et al. 2001).

Explicit integration in time yields high computational efficiency of the solution
for a single step. The disadvantage of the explicit integration scheme is its conditional
numerical stability imposing the limitation on the time step �t . The time step �t
must not be larger than a critical time step �tcr

�t ≤ �tcr (14)

determined by the highest natural frequency of the system νmax

�tcr = 2

νmax
. (15)

Exact determination of the highest frequency νmax would require solution of the
eigenvalue problem defined for the whole system of connected rigid particles. The
maximum frequency of the whole system can be estimated as the maximum of
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natural frequencies νe
i of subsets of connected particles surrounding each particle e,

cf. Belytschko et al. (1985):

νmax ≤ νD
max , where νD

max = max
i,e

νe
i (16)

3 Contact Modelling

3.1 Contact Conditions

The contacting pairs of discrete elements are identified by different search proce-
dures. The contacting particles should satisfy contact constraints. The contact con-
straints can be expressed in terms of contact interactions and appropriate kinematic
parameters.

It is assumed that the contact is concentrated at a point called the contact point
and the contact interaction between two particles i and j consists of a concentrated
force Fcont

i j and a concentrated moment Tcont
i j applied at the contact point (Fig. 2). The

moment-type resistance will be discussed later on, here, the force interaction will be
examined.

The contact force Fcont
i j can be decomposed into the normal and tangential com-

ponents, (Fcont
n )i j and (Fcont

t )i j , respectively

Fcont
i j = (Fcont

n )i j + (Fcont
t )i j = (Fcont

n )i jni j + (Fcont
t )i j , (17)

where ni j is the unit vector normal at the contact point defined as follows

ni j = x j − xi
‖x j − xi‖ (18)

It is assumed that the normal and tangential contact can be decoupled and can be
considered separately. The Signorini conditions for the unilateral (without adhesion)
contact in the normal direction can be written as follows1:

Fcont
n ≤ 0 , g ≥ 0 , Fcont

n g = 0 , (19)

where g is the gap between the particles (see Fig. 3):

g = di j − Ri − R j (20)

di j being the distance between the particle centres

1In the next part of this section indices denoting the elements will be omitted.
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Fig. 3 Definition of geometrical and kinematical parameters in the contact of two particles
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Fig. 4 Graphs of contact laws: a unilateral normal contact, b tangential Coulomb friction contact

di j = ‖x j − xi‖ (21)

The first inequality in Eq. (19) expresses the intensility condition (no tensile force is
allowed), the second one specifies the impenetrability condition, and the third condi-
tion, called the complementarity condition, enforces the alternative, either Fcont

n < 0
and g = 0 or Fcont

n = 0 and g > 0. The unilateral normal contact law is illustrated
graphically in Fig. 4a. In the adhesive (bilateral) contact, the tensile contact force
is allowed, and the geometric inequality constraint (19)2 is replaced by the equality
constraint g = 0 (Curnier 1999). A rigorous mathematical treatment of the bilateral
contact is much more complicated than that of the unilateral contact.

The tangential interaction is typically caused by interparticle friction. The com-
plementary conditions for the frictional sliding contact in the tangential direction can
be written as follows, cf. Klarbring (1999):
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φt ≤ 0 , λt ≥ 0 , φtλt = 0 , (22)

where φt is the slip criterion and the non-negative parameter λt is defined by the slip
law:

vrt = λt
Fcont

t

‖Fcont
t ‖ . (23)

where vrt is the relative tangential velocity at the contact point:

vrt = vr − vrnni j . (24)

with vr and vrn being the total and normal relative velocities at the contact point given
by

vr = (u̇ j + ω j × scji ) − (u̇i + ωi × sci j ) , (25)

vrn = vr · ni j , (26)

where u̇i and u̇ j are the translational velocities of the particle mass centres, ωi and
ω j – the angular particle velocities, and sci j are scji – the vectors connecting the
particle mass centres to the contact points.

There are various models for the threshold of sliding, cf. Raous (1999). The most
commonly used model is the Coulomb friction model, for which the slip criterion is
given by:

φt = ‖F cont
t ‖ − μ|F cont

n | ≤ 0 (27)

whereμ is theCoulomb friction coefficient. The graph corresponding to theCoulomb
friction contact is given in Fig. 4b. The Coulomb friction coefficient is usually
assumed constant, however, it can also be taken as a variable, for instance, dependent
on the sliding velocity.

3.2 Regularization of the Contact Conditions

The discrete element method based on the soft contact approach imposes a penalty-
type regularization of the unilateral (normal) and frictional contact constraints. The
penalty regularization of the normal contact conditions is accomplished by taking

Fcont
n = kng , if g < 0 , (28)

where kn is a certain penalty parameter. The contact conditions (19)1 and (19)3 are
still valid. The impenetrability condition (19)2 is satisfied approximately, only. A
certain overlap between the contacting particles

h = −g > 0 (29)



Contact Modeling in the Discrete Element Method 185

g

cont
nF

nk

1

u

cont
tF

cont
nF ||

cont
nF ||

rt
tk

1

(a) (b)

Fig. 5 Graphs of regularized contact laws: a normal contact, b tangential Coulomb friction contact

is allowed. The penalization is exact if kn → ∞. We should remember, however,
that large penalty values lead to small critical time steps given by Eq. (15). The
penalization of the normal contact is illustrated graphically in Fig. 5a.

The regularization of the frictional constraints is carried out by introducing into
Eq. (23) a tangential penalty kt

vrt − λt
Fcont

t

‖Fcont
t ‖ = Ḟ

cont
t

kt
, (30)

Equation (30) shows that the penalty regularization of the Coulomb frictional con-
straints introduces a decomposition of the total slip velocity vrt into the reversible
and irreversible parts, vrrt and virrt , respectively:

vrt = vrrt + virrt , (31)

where

vrrt = Ḟ
cont
t

kt
, (32)

virrt = λt
Fcont

t

‖Fcont
t ‖ . (33)

The graph corresponding to the regularized Coulomb friction model is shown in
Fig. 5b, where the tangential contact force Fcont

t has been plotted as a function of
the relative tangential displacement evaluated by integrating the relative tangential
velocity

urt =
∫

vrt dt . (34)
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3.3 Physical Interpretation of the Penalty Regularization

Penalization of the normal and tangential contact constraints is equivalent to spec-
ifying additional constitutive relations on the interface. Thus, the elastic behaviour
has been introduced above for compression in the normal contact, and the frictional
contact has been reformulated as a problem analogous to that of elastoplasticity.

The overlap of the contacting particles h defined by Eq. (29) is assumed to rep-
resent an effect of a local deformation of the particles at the contact point due to the
contact interaction (Fig. 6). This assumption gives a possibility to define different
force–overlap relationships in order to represent better various deformation mecha-
nisms at the contact zone. Similarly, different force–slip relationships can be defined
for the tangential contact.

It must be remarked that it is assumed that the particle deformation due to contact
is localized and it does not affect other particle contacts. This assumption is justified
if the deformation of real particles is relatively small.

3.4 Elementary Contact Deformation Mechanisms

Contact models may take into account different deformation mechanisms and phys-
ical phenomena involved in contact. Typical elementary contact deformation mech-
anisms and associated effects are summarized below.

Elasticity
The contact force in the normal or tangential direction is given by a linear or nonlinear
function of a displacement-type variable u. A linear elastic model defines the force
through the relation

F = ku , (35)

where k is a constant stiffness parameter, and the displacement-type variable u can
represent the particle overlap or the tangential relative displacement. A nonlinear

Fig. 6 Overlap of the
contacting particles
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elastic model is characterized by a variable stiffness. The displacement in an elastic
contact model is completely reversible.

Plasticity
A linear or nonlinear force–displacement relationship is obtained from the response
of particles undergoing plastic deformation due to contact pressure. The displacement
in an ideally plastic contact model is completely irreversible. The theory of plasticity
provides a suitable framework for modelling the friction.

Viscosity
A contact force due to a viscous response at the contact interaction is defined by a
force–velocity relationship:

F = ηu̇ , (36)

where η represents viscous properties of the contact interface. It can be assumed
constant in a linear viscous model or variable in a nonlinear model. A viscous model
can be used to represent physical phenomena such as damping or creep.

Friction
Friction being a dissipation mechanism opposing the tangential relative motion of
contacting particles is sometimes called dry damping, cf. Zonetti et al. (1999), as
opposed to velocity dependent viscous damping mentioned above. The Coulomb
model is the most popular model of friction. The graph presenting the contact force
in the Coulomb model is presented in Fig. 4b.

Cohesion/adhesion
Modelling of cohesive materials such as rocks or concrete with discrete elements
requires accounting for cohesion or adhesion in the contactmodel. Cohesive/adhesive
bonds are introduced between contacting particles. These bonds transfer contact
forces opposing the separation of particles in the normal direction as well as the
relative motion in the tangential direction.

Damage
Damage represents deterioration of mechanical material properties such as stiffness
and strength caused by the development of internal cracks. Accounting for damage
effects in the contact allows us to consider a gradual deterioration of mechanical
properties represented by cohesive bonds.

Fracture
Accumulated damage can lead to a complete deterioration of the cohesive bonds. The
cohesive bonds can also be assumed to be broken in a brittle way when the strength
of the cohesive bonds is exceeded. In this way initiation and development of fracture
in the material can be modelled in the discrete element method.

Thermal effects
Contact with friction is accompanied by heat generation. The heat generated through
friction is absorbed and conducted by the particles. An increasing temperature of
contacting particles may affect mechanical contact properties such as the contact
stiffness, viscosity or friction coefficient (Shillor et al. 2004). Formulation of the
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contact model accounting for thermal effects as well as thermal and thermomechan-
ical formulation of the discrete element method will be presented further on.

Contactmodels in the discrete elementmethodusually incorporate differentmech-
anisms and effects described above which allow us to model complex behaviour of
real materials. Contact models similarly to constitutive material models are often
represented graphically by rheological schemes. The rheological schemes are built
from rheological elements representing elementarymechanisms. Typical rheological
elements are shown in Fig. 7.

Fig. 7 Rheological elements
and plots of the
corresponding constitutive
relationships: a linear spring,
b nonlinear spring, c linear
dashpot, d slider
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The linear and nonlinear springs (Fig. 7a, b) represent elastic properties in a rhe-
ological scheme, the linear dashpot (Fig. 7b) corresponds to the viscous effects
described by Eq. (36), the slider (Fig. 7d) is used for the friction, the slider alone
represents the non-regularized Coulomb friction model, when connected in series
with a spring, it can represent the regularized Coulomb friction model.

4 Selected Contact Models

4.1 Linear Viscoelastic Contact Model with Coulomb Friction

Formulation of the model

The model presented here is similar to the model proposed in the pioneering work by
Cundall and Strack (1979). The rheological scheme of the model is shown in Fig. 8.
The normal contact force is represented by the viscoelastic Kelvin–Voigt element
composed of a linear spring connected in parallel with a linear dashpot. The element
corresponding to the tangential contact force is constituted by a spring in series with
a slider.

The normal contact force Fcont
n transmitted by the Kelvin–Voigt element is com-

posed of the elastic part transferred by the spring Fe
n and the viscous damping part

transferred by the dashpot Fd
n :

Fcont
n = Fe

n + Fd
n (37)

The elastic part is evaluated according to the linear relationship analogical to Eq.
(28)

Fe
n = kng , (38)

where kn is the normal contact stiffness and g is defined by Eq. (20). The formula
(38) is used for g < 0. A negative value of g denotes a particle overlap. If g ≥ 0 the
elastic contact force is set to zero (Fe

n = 0).
The damping part is evaluated according to the linear relationship analogical

to Eq. (36)
Fd
n = cnvrn , (39)

Fig. 8 Rheological scheme
of the viscoelastic contact
model with the Coulomb
friction

kn

kt

cn
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where cn is the normal viscous damping parameter and vrn is the normal relative
velocity at the contact defined by Eq. (26).

The tangential part of the contact model presented graphically in Fig. 8 corre-
sponds to the regularized Coulomb friction model described in Sect. 3.2. The stiff-
ness of the linear spring kt corresponds to the penalty parameter introduced in Eq.
(30). The slider is blocked until the slip criterion (27) is achieved. The graph of the
tangential contact force versus relative tangential displacement is shown in Fig. 5.

The analogy of the regularized frictional contact model to the elastoplasticity
commented above, allows us to calculate the friction force employing the radial return
algorithm analogous to that used in elastoplasticity. First a trial state is calculated

F trial
t = F old

t − ktvr t�t , (40)

and then the slip condition is checked

φ trial = ‖F trial
t ‖ − μ|Fn| . (41)

If φ trial ≤ 0, we have the case of stick contact and the friction force is assigned the
trial value

F new
t = F trial

t , (42)

otherwise (slip contact) a return mapping is performed

F new
t = μ|Fn| F trial

t

‖F trial
t ‖ . (43)

Evaluation of the model parameters

There are different approaches to evaluating the contact stiffness kn in the DEM. It
can be taken as uniform in the whole discrete element assembly (Rojek et al. 2005)
or it can be calculated locally, usually assuming that it depends on the contacting
particle size (Potyondy and Cundall 2004) and it can be given by certain functions
of the particle radii Ri and R j :

kn = fk(Ri , R j ) . (44)

Different assumptions for the form of the functions fk(Ri , R j ) have been discussed
by Rojek et al. (2012). Here, one of them will be presented.

The spring modelling contact elasticity can be treated as equivalent to an elastic
bar of a non-uniform cross-sectional area (Fig. 9), consisting of two segments, with
the lengths

Li = Ri , L j = R j (45)

and the cross-sectional areas

Ai = αiπ(Ri )
2 , A j = α jπ(R j )

2 (46)
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Fig. 9 Schematic
connection of two particles
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where 0 ≤ αi ,α j ≤ 1 are the coefficients defining the areas of the segments as frac-
tions of the particle cross-sectional area.

The system of the two bar segments can be treated as two springs connected in
series. The axial force Fe transferred by the whole system is equal to the forces in
the segments i and j , Fe

i and Fe
j :

Fe = Fe
i = Fe

j (47)

The overall axial deformation of the system, assumed as equal to the overlap g
(g < 0), can be decomposed to the deformations of both segments, gi and g j

g = gi + g j (48)

The force–displacement relationships for each bar can be written in the following
form:

Fe
i = kingi (49)

Fe
j = k j

ng j (50)

where and kin and k j
n are stiffnesses of the segments i and j . Substituting Eqs. (38),

(49) and (50) into Eq. (48) and taking into account Eq. (47) we obtain the following
equation for the stiffness kn:

1

kn
= 1

kin
+ 1

k j
n

(51)

which can be transformed to the form

kn = kin k
j
n

kin + k j
n

(52)
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Expression (52) is identical to that used by Potyondy and Cundall (2004).
Using the assumptions (45) and (46) the stiffness of the segments i and j can be

expressed as follows:

kin = Ei Ai

Li
= αiπEi Ri (53)

k j
n = E j A j

L j
= α jπE j R j (54)

where Ei and E j are Young’s moduli of the materials of the segments (or of the
particles) i and j . Introducing the relationships (53) and (54) into the formula (52)
and assuming Ei = E j = E and αi = α j = α, we obtain the expression for the
equivalent stiffness K in the following form:

kn = απER∗ (55)

where R∗ is the effective radius defined in terms of the particle radii, Ri and R j

1

R∗ = 1

Ri
+ 1

R j
. (56)

For equal size particles (Ri = R j = R), Eq. (55) takes the form:

kn = 1

2
απER (57)

The value of the tangential stiffness parameter kt is, in principle, independent
of the normal stiffness parameter, however, it is usually defined with respect to it
assuming a certain ratio β of the normal and tangential stiffness

β = kt
kn

(58)

The ratio β is very important, since it has a large influence on the macroscopic
behaviour reproduced by the DEM model. Equivalent macroscopic properties, such
as the Young’s modulus or the Poisson’s ratio can be presented as functions of the
ratio kt/kn , cf. Marczewska et al. (2016).

The damping coefficient cn can be related to the critical damping Ccr of the
considered system:

ζ = cn
Ccr

(59)

where ζ is called the damping ratio. It is a non-negative dimensionless parameter (ζ ≥
0). Zero damping ratio, ζ = 0, indicates no damping, 0 < ζ < 1 – underdamping,
ζ = 1 – critical damping, and ζ > 1 – overdamping. The critical damping Ccr for
the system of two rigid bodies with masses mi and m j , connected with a spring of
the stiffness kn , cf. Taylor and Preece (1992)
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Ccr = 2
√
m∗kn . (60)

where the effective mass m∗ is defined by

1

m∗ = 1

mi
+ 1

m j
. (61)

The damping ratio ζ can be expressed in terms of the coefficient of restitution (COR)
e, cf. Nagurka and Huang (2006)

ζ = − ln e√
π2 + (ln e)2

. (62)

The coefficient of restitution e in the normal direction is defined as the ratio ofmoduli
of the relative normal velocities after and before impact, vend

rn and v0
rn, respectively:

e = |vend
rn |

|v0
rn|

. (63)

The relationship (62) is plotted in Fig. (10).
The viscous damping is used in the discrete element method as a mechanism

allowing to dissipate energy in particle collisions, and achieve different response of
the system to dynamic loading, including quasistatic response if an adequate damping
is combined with a slowly applied loading. It must be remarked, however, that the
viscous damping introduces certain inconsistencies in the contact model, which will
be discussed in the first of numerical examples below.

Numerical examples

Collision of two balls with given initial velocities

The viscoelastic Kelvin–Voigt contact model is used to simulate a collision of two
equal balls of radius R = 10mm moving along one line with equal but opposed
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Fig. 10 Relationship between the coefficient of restitution and the damping ratio
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velocities v = 10m/s. The mass density ρ = 8000kg/m3 has been assumed. The
contact stiffness kn has been evaluated according to Eq. (57) taking the Young’s
modulus E = 200GPa, and the coefficient α = 0.04. The effective contact stiffness
kn = 1.26 · 108 N/m has been evaluated. Different values of damping characterized
by coefficients of restitution (COR) e = 0.1, 0.5, 0.8 and 1 have been considered.
The value e = 1 corresponds to an ideally elastic collision.

The gap between the balls and the velocity of one of the balls during the collision
are plotted as functions of time in Fig. 11 for different damping. The duration of the
collisions corresponds to the interval with negative values of the gap (see Fig. 11a. It
can be seen Fig. 11b that after the collision the balls bounce off each other with the
velocity dependent on the damping. In the elastic collision, the velocity of the ball
after the collision is the same as before the collision. In the inelastic collisions, the
velocity of the ball after the collision is lower than before the collision. The higher
the damping is (or in other words, the lower the COR is), the lower the rebound
velocity is.

Evolution of the total contact force and its components is plotted in Fig. 12 for
different damping.The elastic, damping and total contact forces are given as functions
of time in Figs. 12a, b and c, respectively. By comparing Figs. 11 and 12, it can be
seen that the elastic force is proportional to the gap in agreement with Eq. (38), and
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of the curves represent loading and the broken ones – unloading)
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the damping force is proportional to the velocity in agreement with Eq. (39). It can be
observed in Fig. 12b that the damping force acquires a certain non-zero value at the
beginning of the collision, and it has a non-zero value at the end of the collision. This,
with the zero damping force before and after the collision, leads to discontinuity of
the damping component during the analysed period of time. Due to the discontinuity
of the viscous damping force, the total contact force Fcont

n displayed in Fig. 12c is
also discontinuous at the beginning and end of the collision while real contact forces
are continuous.

Moreover, due to the viscous damping the total contact force Fcont
n is cohesive

in the final stage of the collision (g < 0 and vrn > 0), while the contact forces in
cohesionless particle systems are always repulsive.

The inconsistencies of the linear viscoelastic contact model can be mitigated, at
least partially, by replacing the linear spring and dashpot with appropriate nonlinear
spring and damping elements as proposed by Hunt and Crossley (1975).

The curves of the total force versus gap for different damping are displayed in
Fig. 12d. In the ideally elastic case (COR = 1), the loading and unloading force–gap
relations coincide. In the damped collisions, the loading and unloading curves do not
coincide and form a hysteresis loop. The area within the loop is a measure of energy
lost during the collision (Lin and Hui 2002).

Contact of two spheres under step loading

A contact of two equal balls of radius R = 10mm subjected to step compressive
loading F = 20kN has been analysed using the linear viscoelastic Kelvin–Voigt
model. The same material properties as in the previous example have been assumed.
The initial conditions are defined by the zero gap and zero ball velocities. Effect of
the damping has been studied taking different values of coefficients of restitution
COR = 0.05, 0.5, 0.8 and 1.

Figure 13 shows the time response of the systems in terms of the gap, velocity of
one of the balls and total contact force. It can be seen that in the system with zero
damping (COR = 1) the balls oscillate with the period which is in perfect agreement
with the theoretical value

T = 2π

√
m∗

kn
= 72.6 µs .

Themean value of the gap (actually the overlap) oscillations coincides with the static
state of equilibrium under the applied force

g = Fn

kn
= −159.1 µm .

The oscillations of the systems with damping are attenuated and the quasistatic state
of equilibrium is achieved with the gap calculated above.

This shows a possibility to use the dynamic formulation to solve static problems
which is a basic principle of the dynamic relaxation method, employed both in the
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Fig. 13 Evolution of contact kinematic variables and contact forces during contact of two spheres
under step loading for different values of COR

discrete element method (Rojek et al. 2013) and the finite element method (Joldes
et al. 2011). In the elastic linear problems solved by the dynamic relaxation method,
the solution in the transient period is not important, and different values of damping
allow us to arrive at the same static solution. The dynamic relaxation method can
also be applied with certain cautiousness to path dependent problems.

Contact of two spheres under linearly increasing loading

The system of two balls, the same as in the previous example and with the same
initial conditions, has been subjected to a compressive loading increasing linearly
from 0 to 20kN in the time interval from 0 to 0.5 s. Then, for t > 0.5 s the loading
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has been kept constant. The contact of the balls has been analysed using the linear
viscoelastic Kelvin–Voigt model with different values of damping defined by the
coefficients of restitution COR = 0.1, 0.5 and 1.

Figure 14 shows the time response of the systems with different damping in
terms of the gap, velocity of one of the balls and total contact force. The solution
with zero damping (COR = 1) is characterized with oscillations. The oscillations
are attenuated in the solutions with damping. For a sufficiently high level of the
damping (low values of COR), the response in terms of the gap and contact force
is practically linear, in agreement with the linear increase of the applied force. A
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Fig. 14 Evolution of contact kinematic variables and contact forces during contact of two spheres
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Contact Modeling in the Discrete Element Method 199

-25

-20

-15

-10

-5

0

0 100 200 300 400 500 600 700 800 900

to
ta

l c
on

ta
ct

 fo
rc

e 
[k

N
]

time [μs]

COR = 0.1
Theoretical

Fig. 15 Comaprison of the numerical and theoretical contact force during contact of two spheres
under linearly increasing loading

perfect agreement of the contact force with the applied force can be observed in
Fig. 14, which confirms that the loading and response can be considered quasistatic.
This demonstrates a possibility to reproduce quasistatic conditions in an incremental
form (cf. also Fig. 15), which is important for the analysis of nonlinear and path
dependent problems.

4.2 Viscoelastic Hertz–Mindlin–Deresiewicz Model

Formulation of the model

This model combines the Hertz-type viscoelastic model for the normal interaction
with the Mindlin–Deresiewicz model of friction acting in the tangential direction.
The rheological scheme of the model is similar to that shown in Fig. 8, the difference
consisting in replacing the linear springs with nonlinear ones.

The Hertz model employs a nonlinear relationship for the evaluation of the elastic
contact force based on the analytical solution of the contact problem between elastic
spheres (Hertz 1882; Johnson 1985):

Fe
n = −KnHzh

3
2 , (64)

where h (h = −g) is the amount the particles’ overlap and the contact stiffness
parameter KnHz is given by the following formula:

KnHz = 4

3
E∗√R∗ , (65)

where E∗ is the effectivemodulus of elasticity defined in terms of theYoung’smoduli,
Ei and E j , and the Poisson’s ratios, νi and ν j , of the two contacting particles
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1

E∗ = 1 − ν2
i

Ei
+ 1 − ν2

j

E j
, (66)

and R∗ is the effective radius defined by Eq. (56). Please note that the contact force
has been defined in Eq. (64) in terms of the overlap h instead of the gap g and the
minus sign has been introduced in order to keep consistency with the earlier used
sign convention treating the compressive contact forces as negative.

In the framework of theDEM, a viscous damping is commonly added to the elastic
Hertz force in order to dissipate energy at particle collisions. A linear damping given
by Eq. (39) is sometimes taken, cf. Lee (1994). More advanced models, however,
use nonlinear damping terms in connection with the Hertzian elastic contact. Hunt
and Crossley (1975) have derived the following general form of nonlinear damping

Fd
n = ηnh

pvq
rn . (67)

Tsuji et al. (1992) have proposed the damping term as abovewith p = 1/4 and q = 1:

Fd
n = ηnh

1
4 vrn . (68)

The damping dissipation coefficient ηn used in Eq. (68) can be related to the nonlinear
spring stiffness KnHz and the coefficient of restitution e as follows (Navarro and
de Souza Braun 2013):

ηn = √
5
√
m∗KnHz

ln e√
π2 + (ln e)2

. (69)

Different analytical relationships between the damping ratio and coefficient of resti-
tution in the nonlinear viscoelastic contact model have been derived by (Jankowski
2006). Possibilities of improvements of viscous damping for the Hertz elastic contact
are still investigated (Zdancevičius et al. 2017).

The Hertzian normal contact model is commonly combined with the tangential
contact model according to Mindlin and Deresiewicz (1953). A full implementation
of the Mindlin–Deresiewicz theory leads to complex algorithms, cf. (Renzo and
Maio 2004; Kruggel-Emden et al. 2008), therefore different simplifications have
been proposed. Employing the Mindlin and Deresiewicz solution for the constant
normal force Tsuji et al. (1992) derived the formula for the tangential force:

Ft = kturt , (70)

where the tangential stiffness kt is calculated as follows:

kt = 8G∗√R∗h , (71)
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the effective shear modulus is defined in terms of the particles shear moduli, Gi and
G j , and the Poisson’s ratios, νi and ν j , by the following relationship

1

G∗ = 2 − νi

Gi
+ 2 − ν j

G j
, (72)

the effective radius R∗ is defined by Eq. (56), h is the particle overlap and the
relative tangential displacement at the contact point urt is obtained by integration of
the relative tangential velocity:

urt =
∫ t

0
vr t dt . (73)

The tangential force Ft is limited by the Coulomb condition

Ft ≤ μ|Fn| . (74)

In order to improve an agreement with the full Mindlin–Deresiewicz theory Renzo
and Maio (2004); Maio and Renzo (2005) proposed a correction to the model devel-
oped by Tsuji et al. (1992) consisting in scaling the stiffness given by Eq. (71) by
the factor 2/3.

kt = 2

3

(
8G∗√R∗h

)
, (75)

Numerical example

Collision of two balls with given initial velocities

The viscoelastic Kelvin–Voigt contact model with the nonlinear Hertzian elastic
component and the damping component evaluated according to Eqs. (68) and (69)
has been used to simulate a collision of two equal balls analysed previously with the
linear Kelvin–Voigt contact model. The same ball size (radius R = 10mm), prop-
erties (mass density ρ = 8000kg/m3, Young’s modulus E = 200GPa) and initial
conditions (velocities v = 10m/s) as previously have been assumed. The set of data
has been completed with the Poisson’s ratio ν = 0.3. Similarly as previously, differ-
ent values of damping characterized by coefficients of restitution COR = 0.1, 0.5,
0.8 and 1 have been considered.

The evolution of the gap between the balls and the velocity of one of the balls for
different damping have been plotted in Fig. 16a and b, respectively. It can be seen
that the lower the COR is, the longer the impact and the lower the rebound velocity
are.

The elastic, damping and total contact forces are plotted as functions of time in
Fig. 17a, b and c, respectively. It can be observed in Fig. 17b that the damping contact
force in the present model is no longer discontinuous on the contrary to the damping



202 J. Rojek

-250

-200

-150

-100

-50

0

50

0 5 10 15 20 25 30 35 40 45

ga
p 

[μ
m

]

time [μs]

time [μs]

COR = 0.1
COR = 0.5
COR = 0.8
COR = 1.0

-10

-5

0

5

10

0 5 10 15 20 25 30 35 40 45

ve
lo

ci
ty

 [m
/s

]

COR = 0.1
COR = 0.5
COR = 0.8
COR = 1.0

(a)

(b)

Fig. 16 Evolution of contact kinematic parameters during collision of two balls in the nonlinear
Kelvin–Voigt model for different values of COR (the solid parts of the curves represent loading and
the broken ones – unloading)

force in the linear Kelvin–Voigt contact model displayed in Fig. 12b. Therefore, the
total contact force in Fig. 17c is not discontinuous, either. The other imperfection of
the linear Kelvin-Voigt model, manifested in cohesive interaction in the final stage of
impact is not eliminated in the nonlinear Kelvin-Voigt model presented here, which
can be noticed in Fig. 17c and d. Figure12d shows the curves of the total force versus
the overlap (the negative gap) for different damping. It can be seen that similarly to
the linear model, the loading and unloading force–gap relations for the ideally elastic
case coincide, and in the damped collisions, the loading and unloading curves form
a hysteresis loop. This time, unlike in the linear model, the loading and unloading
curves are smooth functions for the zero gap.

4.3 Walton-Braun Elastoplastic Model

Formulation of the model

Viscous damping can be considered as a mechanism representing inelastic particle
deformation during particle collision. Plastic deformation is dependent on the dis-
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Fig. 17 Evolution of contact kinematic parameters and contact forces during collision of two balls
in the nonlinear Kelvin–Voigt model for different values of COR (the solid parts of the curves
represent loading and the broken ones – unloading)
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Fig. 18 Force versus
particle overlap in the
Walton–Braun model
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placement type variable, therefore rate-independent hysteretic contact models such
as the model proposed by Walton and Braun (1986) seem to be more appropriate
for modelling collisions associated with plastic deformations. The Walton–Braun
model assumes a linear force–overlap relationship, but the unloading slope (stiff-
ness) is higher than the loading slope (stiffness), which leads to a certain residual
irreversible overlap when the force drops to zero. This allows us to treat this model
as elastoplastic with elastic unloading. The force as a function of the particle overlap
is plotted in Fig. 18. Please note that although the plot is in the first quadrant of the
graph, the convention of the contact force sign (compressive contact force – negative)
has been kept by taking the negative of force for the vertical axis. The force is given
by:

F =
⎧
⎨

⎩

−kLh if h ≥ hmax (loading),
−kU (h − h0) if h0 < h < hmax (un-/reloading),
0 if 0 < h < h0 (no contact) .

(76)

The residual overlap h0 representing the plastic deformation of the contacting
particles can be easily obtained as

h0 = hmax

(
1 − kL

kU

)
(77)

The reloding path follows the unloading path until the maximum overlap is achieved
and the loading path is reactivated.

Energy is dissipated due to spring force hysteresis. The coefficient of restitution
e, given by

e =
√
kL
kU

, (78)

is independent of the impact velocity, which is in disagreement with experimental
observations. A more realistic coefficient of restitution can be obtained using a vari-
able unloading stiffness kU increasing with the maximum absolute force, Fmax , or
the maximum overlap, hmax , achieved before unloading Walton and Braun (1986),
so that:
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kU = kL + SFmax (79)

or
kU = kL + Bhmax , (80)

where S and B are certain constants. For the Walton-Braun contact model with
variable unloading, the coefficient of restitution depends on the relative velocity of
approach v0

r as follows Walton and Braun, 1986:

e =
√

ω0

Sv0
r + ω0

, (81)

where

ω0 =
√
2kL
m

. (82)

Numerical example

Collision of two balls with given initial velocities

The Walton–Braun contact model has been applied to simulate a collision of two
equal balls of radius R = 10mm and of the same density ρ = 8000kg/m3. The
loading stiffness has been assumed kL = 1.25 × 108 N/m, which is approximately
close to the average stiffness in the Hertzian model (in the considered range) used
in the numerical example in Sect. 4.2. The variable unloading stiffness has been
taken according to Eq. (79) assuming S = 101/m. The problem has been analysed
assuming different initial velocities: v = 10, 20, 30 and 40m/s. The evolution of the
gap (overlap) between the balls and the velocity of one of the balls in the analysed
cases have been plotted in Fig. 19.

The curves have been plotted for the collision time only (until the residual overlap
has been achieved during unloading at each case). The coefficients of restitution for
the analysed cases evaluated using the general formula (63) and predicted by the
specific formula (81) for the Walton–Braun model are given in Table1. It can be
observed that the values obtained in both ways coincide. It can also be observed the
values of the coefficients of restitution decrease with an increase of impact velocity,
which agrees with experimental observations.

The contact forces for different impact velocities are plotted as functions of the
time and overlap in Fig. 20a and b, respectively. It can be observed in Fig. 20a that the
highest the impact velocity is, the shorter the collision time is. Figure20b shows that
the loading stiffness for different velocities is the same and the unloading stiffness
increase with the impact velocity since higher maximum forces are achieved for
higher velocities. It is assumed that the collision endswhen the force during unloading
decreases to zero. A certain residual overlap corresponds to this instant.
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Fig. 19 Evolution of contact kinematic parameters during the collision of two balls in the Walton–
Braun elastoplastic model for different values of impact velocities: a evolution of the gap (overlap),
b evolution of the ball velocity (solid parts of the curves represent the loading and broken parts of
the curve – the unloading)

Table 1 Coefficients of restitution for the Walton–Braun model with variable unloading

v0 (m/s) v0r (m/s) vr (m/s) e, Eq. (63) e, Eq. (81)

5 10 2.8230 0.28230 0.28231

10 20 4.0744 0.20373 0.20373

15 30 5.0250 0.16750 0.16750

20 40 5.8228 0.14557 0.14557

4.4 Storåkers plastic model

Formulation of the model

The plastic deformation of the contacting spherical particles has been assumed in
the model proposed by Storåkers et al. (1997), Storåkers et al. (1999). This model
considers a general viscoplastic behaviour combining strain hardening plasticity and
creep. Here, a simplified formulation of the model without strain rate effects will
be presented. Such a model has been used by Olsson and Larsson (2012) to study
powder compaction.
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Fig. 20 Evolution of contact forces during the collision of two balls in the Walton–Braun elasto-
plastic model for different values of impact velocities: a force versus time, b force versus overlap
(solid parts of the curves represent the loading and broken parts of the curves – the unloading)

Two particles of radii Ri and R j are considered. The plastic properties of the
particles’ material are assumed to follow the Hollomon stress-strain relationship

σ = σ0ε
m (83)

where σ0 andm are material constants. The normal interaction force F in the Storåk-
ers model is given by the following equation Olsson and Larsson (2012):

F = −21−m/231−mπc2+mσ0(R
∗)1−m/2h1+m/2 , (84)

where R∗ is the effective radius defined by Eq. (56), h is the particle overlap, the
parameter c depends on the strain hardening exponent m:

c = √
1.43 exp(−0.97m) . (85)

For the ideal plasticity, when m = 0 and σ = σY , Eq. (84) is reduced to:

F p = 6πc2σY R
∗h , (86)
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Fig. 21 Force versus
particle overlap in the model
combining plastic loading
according to the Storakers
model with the elastic
Hertzian unloading
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where c2 = 1.43. The linear relationship (86) provides an expression for the stiffness:

k = 6πc2σY R
∗ , (87)

which can be used for the loading in the Walton–Braun model.
The Storåkers model has been derived neglecting elastic deformation, cf. Larsson

et al. (1996). In such amodel, the unloadingwould be governed by the rigid behaviour
(no change of deformation during the unloading). Assuming that the loading curve is
valid for an elastoplastic material Olsson and Larsson (2012) combined the Storåkers
model with the elastic unloading according to the Hertz model. The contact force
versus particle overlap for this model is plotted schematically in Fig. 21. The force
during the elastic unloading as well as for the reloading is given by the formula
adapted from Eq. (64):

F = −4

3
E∗√R∗(h − h0)

3
2 , (88)

where h0 is obtained from Eq. (88) taking Fep = Fmax and h = hmax .
Although the Storåkers model was derived for frictionless contact, it was com-

bined with the regularized Coulomb friction model by Olsson and Larsson (2012).

Numerical example

Contact of two spheres under compressive axial load

Twoequal spheres of radius R = 10mmwith plastic properties givenbyEq. (83) have
been considered assuming different values of hardening exponent m = 0, 0.05, 0.1
and 0.2. The yield stress σY = 200MPa has been assumed for the ideal plasticity
(m = 0). TheHollomon constantsσ0 corresponding to the strain hardening exponents
m have been evaluated assuming that all the curves pass through the point correspond-
ing to the yield point in the elasto-plastic model: (σY /E,σY ) (taking the Young’s
modulus E = 200GPa). Thus, the following pairs of the Hollomon constants have
been determined: (m = 0, σ0 = 800 MPa), (m = 0.05, σ0 = 1480 MPa), (m = 0.1,
σ0 = 1375 MPa) and (m = 0.2, σ0 = 2363 MPa). The corresponding stress–strain
curves are plotted in Fig. 22.
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Fig. 22 Stress–strain curves
for different strain hardening
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Fig. 23 Force versus
particle overlap in the
Storakers model in
comparison the Hertz model
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The compressive loading has been introduced by prescribing the displacements
to the particle centres. The evolution of the contact forces F predicted by Storåkers
models as functions of the particle overlap h is shown in Fig. 23 in comparison to
the Herz model.

4.5 Thornton Elastoplastic Model

Themodel proposed by Thornton (1997) considers an interaction of two spheres with
elastic-perfectly plastic properties. The interaction includes elastic and elastoplastic
loading combined with elastic unloading. The force–overlap relationship for loading
and unloading is plotted in Fig. 24.
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Fig. 24 Force versus
particle overlap in the
elasto-plastic Thornton
model

h

Fe

Fmax

h0 hmax

F

hy

Fy

Elastic loading

The contact force F at the initial stage of loading induces elastic deformation at the
contact and it is given by the Hertz law, cf. Eqs. (64) and (65):

F = 4

3
E∗√R∗h

3
2 , (89)

where h is the amount the particles overlap, E∗ is the effective modulus of elasticity
defined by Eq. (66), and R∗ is the effective radius defined by Eq. (56).

The Hertzian contact pressure distribution is given by the following relationship:

p = p0

[
1 −

( r
a

)2
] 1

2

, (90)

where a is the radius of the contact area, r is the distance from the axis of symmetry
and

p0 = 3F

2πa2
. (91)

The contact area radius a is related to the particle overlap h as follows:

a2 = R∗h (92)

It is assumed that the loading is purely elastic below a certain value Fy (Fig. 24)
corresponding to the initial yielding at the contact – when the maximum contact
pressure p0 under an increasing compressive load reaches the yield limit σy , called
the contact yield stress (Fig. 25):

p0(a = ay) = σy . (93)
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Fig. 25 Contact pressure
distribution in the
elasto-plastic Thornton
model
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Combining Eqs. (89), (91), (92) and (93) we can easily obtain the following formulae
for the limit elastic contact force Fy and corresponding overlap hy :

Fy = π3R∗2σ3
y

6E∗2 , (94)

hy = π2R∗σ2
y

4E∗2 . (95)

For the spheres of the same size and with the same properties, Eqs. (94) and (95)
have the following form:

Fy = π3R2(1 − ν2)σ3
y

6E2
, (96)

hy = π2R(1 − ν2)σ2
y

2E2
. (97)

It should be remarked that the contact yield stress σy should not be identified with
the uniaxial yield stress σY . It has been shown by Vu-Quoc et al. (2000) that

σy = AYσY , (98)

where AY is a certain parameter dependent on the material properties and yield
criterion. For theHuber–Mises criterion and Poisson’s ratio ν = 0.3, we obtain AY =
1.61, for ν = 0.4 we obtain AY = 1.74.

Elastoplastic loading

After the yielding, the contact pressure distribution with the cut-off corresponding
to the contact yield stress σy (see Fig. 25) is assumed. Given the contact pressure
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distribution shown in Fig. 25 the contact force can be obtained from the following
formula:

F = Fe − 2π
∫ ap

0
(p(r) − σy) dr , (99)

where Fe is the elastic Hertz force corresponding to the contact area a, and the inte-
gral term is defined for the area with uniform contact pressure with radius ap. After
integrating Eq. (99) with pressure distribution according to Eq. (90) and perform-
ing further transformation the linear force–displacement relationship for the plastic
loading is obtained in the following form, cf. Thornton (1997):

F = Fy + πσy R
∗(h − hy) . (100)

Elastic unloading

It is assumed that the unloading is performed according to the Hertzian law, however,
due to plastic deformation the contact curvature is smaller, and the unloading is
performed assuming a certain curvature defined by the radius R∗

p 1/R∗
p (1/R∗

p <

1/R∗). The radius R∗
p is determined from the assumption that with the contact area

developed by the actual force Fmax and the curvature 1/R∗
p is the same as it would be

obtained with the curvature 1/R∗ and the equivalent elastic force Fe, which is given
by, cf. Fig. 24:

Fe = 4

3
E∗√R∗h

3
2
max , (101)

The idea of equivalence of the contact area has been explained in Fig. 26. It can be
expressed by the following equivalence:

Fmax R
∗
p = FeR

∗ , (102)

Then, the force during unloading is given as follows:

F = 4

3
E∗

√
R∗

p(h − h0)
3
2 , (103)

The residual overlap h0 can be determined taking Eq. (103) for hmax

h0 = hmax −
(

3Fmax

4E∗√R∗
p

) 2
3

. (104)

Numerical examples

Collision of two balls with given initial velocities

Performance of the Thorntonmodel will be demonstrated in simulations of collisions
of two equal balls of radius R = 10mm.The followingproperties have been assumed:
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Fig. 26 Definition of the
curvature for the elastic
unloading in the
elasto-plastic Thornton
model
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mass density ρ = 8000kg/m3, Young’s modulus E = 200GPa, Poisson’s ratio nu =
0.3, and the contact yield stress σy = 200MPa. The problem has been analysed for
different values of velocities in two ranges – lower velocities: 0.005, 0.010 and
0.015m/s, and higher velocities: 0.5, 0.1 and 1.5m/s.

The results for the lower velocities are presented in Figs. 27 and 28, and the results
for the higher velocities in Figs. 29 and 30. The evolution of the gap between the
balls and the velocity of one of the balls for lower velocities have been plotted in
Fig. 27a and b. It can be seen that the lower the impact velocity is, the longer the
impact is. The coefficients of restitution for the analysed cases evaluated using the
general formula (63) are given in Table2. It can be observed that the values of the
coefficients of restitution decrease with an increase of impact velocity, which agrees
with experimental observations.

The contact forces for lower impact velocities are plotted as functions of the time
and overlap in Fig. 28a and b, respectively. It can be observed in Fig. 28a that the
highest the impact velocity is, the shorter the collision time is. Figure28b shows
that the loading curve for different velocities is the same for different velocities. It
can be observed in Fig. 28b that the incipient yielding occurs at a very early stage
of loading therefore a very small part of the loading is purely elastic. Most of the
loading is characterized by a linear relationship given by Eq. (99). The nonlinear
force–displacement relationship is observed for the unloading for lower velocities.
The results for higher velocities plotted in Fig. 30 show that practically the whole
range of loading is characterized by the linear force–displacement relationship, and
the unloading is very close to a linear behaviour. This shows that a linear elastoplastic
model such as theWalton–Braunmodel can be sufficiently accurate for higher impact
velocities or higher forces.
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Fig. 27 Evolution of contact kinematic parameters during the collision of two balls in the Thornton
elastoplastic model in a range of low impact velocities: a evolution of the gap, b evolution of the
ball velocity (solid parts of the curves represent the loading and broken parts of the curve – the
unloading)

4.6 Cohesive Elastic–perfectly Brittle Model

Modelling of cohesive materials such as rocks or concrete requires a model which
takes into account a tensile interaction between discrete elements. This model
assumes cohesive bonding between neighbouring particles. These bonds can be bro-
ken under load allowing us to simulate initiation and propagation ofmaterial fracture.
After decohesion, standard cohesionless contact conditions are assumed.

Contact laws for the normal and tangential direction for the elastic perfectly
brittle model are shown in Fig. 31. When two particles are bonded the contact forces
in both normal and tangential directions are calculated from the linear constitutive
relationships:

F cont
n = kng , (105)

F cont
t = kt urt , (106)

where: F cont
n – normal contact force, F cont

t – tangential contact force, kn – interface
stiffness in the normal direction, kt – interface stiffness in the tangential direction,
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Fig. 28 Evolution of contact forces during the collision of two balls in the Thornton elastoplastic
model for a range of low impact velocities: a force versus time, b force versus overlap (solid parts
of the curves represent the loading and broken parts of the curves – the unloading)

g – gap/overlap, urt – tangential relative displacement. It should be remarked that
unlike Eq. (38), formula (105) is used for both negative and positive values of the
gap g.

Cohesivebonds are broken instantaneouslywhen the interface strength is exceeded
in the tangential direction by the tangential contact force or in the normal direction
by the tensile contact force. The failure (decohesion) criterion can be written as:

F cont
n ≤ Rn , (107)

‖F cont
t ‖ ≤ Rt , (108)

where: Rn — interface strength in the normal direction, Rt — interface strength in
the tangential direction.

In the absence of cohesion the normal contact force can be compressive only
(Rn ≤ 0) and tangential contact force can be nonzero due to friction if Rn < 0 or
zero otherwise. The friction force is evaluated according to the regularized Coulomb
friction model.
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Fig. 29 Evolution of contact kinematic parameters during the collision of two balls in the Thornton
elastoplastic model in a range of higher impact velocities: a evolution of the gap, b evolution of
the ball velocity (solid parts of the curves represent the loading and broken parts of the curve – the
unloading)

5 Moment Type Interaction

Contactmodel in the discrete elementmethod except for forces can include amoment
type interaction (Wang et al. 2015). In a general case, there can be a moment inter-
action between bonded and unbonded particles. Here, the moment type interaction
between unbonded particles will be presented.

A moment type interaction allows to compensate deficiencies of the discrete ele-
ment model due to an idealized shape of spherical particles. It provides resistance to
a relative rotation of contacting particles (discrete elements). The relative motion of
two particles i and j can be described by a relative angular velocity ωr given by

ωr = ωi − ω j . (109)

The relative angular velocityωr can be decomposed into the components normal and
tangent to the contact plane, ωrn and ωrt , respectively:

ωr = ωrn + ωrs = ωrn · n + ωrs . (110)
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Table 2 Coefficients of restitution for the Thornton model

v0 (m/s) v0rel (m/s) vrel (m/s) e, Eq. (63)

0.005 0.010 0.00706 0.7060

0.010 0.020 0.01197 0.5987

0.015 0.030 0.01627 0.5424

0.5 1.0 0.2269 0.2269

1.0 2.0 0.3815 0.1908

1.5 3.0 0.51717 0.1724

The normal component can be obtained by projection of the velocity vector ωr onto
the unit normal vector n:

ωrn = ωr · n . (111)

Then, the tangent component is obtained from Eq. (110) as follows

ωrs = ωr − ω rnn . (112)

The motion defined by the tangent component ωrn is called rolling, and that defined
by the normal component ωrt is referred to as twisting.

Analogously, the contact interaction moment T c between the particles can be
decomposed into two components – normal and tangential to the contact plane, Tn i
Ts, respectively:

T c = Tn + Ts = Tn n + Ts . (113)

Models of twisting and rolling resistance can be defined analogously to sliding
friction models. Amodel of twisting resistance can be defined in terms of the angular
velocity component ωrn and the component Tn of the contact moment.

For the model of twisting resistance the Kuhn–Tucker conditions can be written
analogously to the conditions (22) as follows:

φ n ≤ 0 , λn ≥ 0 , φ nλn = 0 , (114)

where λn is defined by the non-associated rolling law:

ωrn = λn
Tn

||Tn|| , (115)

and φ n is given by the following equation:

φ n = ‖Tn‖ − anμ|Fn| , (116)
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an is a parameter which has dimension of length determining the limit moment of
twisting resistance. It has been assumed that this moment is proportional to the
normal contact force Fn and Coulomb friction coefficient μ.

Analogously, a model of rolling resistance can be defined. The Kuhn–Tucker
conditions for the model of rolling resistance can be written as follows:

φs ≤ 0 , λs ≥ 0 , φsλs = 0 , (117)

where λs is defined by the non-associated law of rolling:

ωrs = λ s
Ts

||Ts|| , (118)

and φs is given by
φs = ‖Ts‖ − as|Fn| , (119)

where the limit moment of rolling resistance. depends on the normal contact force
Fn and the parameter as which has dimension of length. This definition is consistent
with the concept of rolling friction employed in engineering, where the parameter as
is called the coefficient of rolling friction.

The conditions (114)–(116) and (117)–(119) can be regularized introducing the
penalty coefficients krotn and krots into the twisting and rolling laws (115) and (118)

Ṫn = krotn

(
ωrn − λn

Tn

||Tn||
)

, (120)

Ṫs = krots

(
ωrs − λs

Ts

||Ts||
)

. (121)

After regularization themodels of twisting and rolling resistance are similar to elasto-
plasticmodelswith non-associated plastic flow rules, and the penalty coefficients play
roles of the moduli of elasticity.

6 Discrete Element Method for Thermal and
Thermomechanical Problems

In many problems, the contact is associated with thermal effects such as heat gener-
ation through friction or heat transfer at the contact between particles with different
temperatures. The discrete element method can be extended to model thermal and
thermomechanical problems.
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6.1 Formulation of the Discrete Element Method for Heat
Conduction Problem

Thermal formulation of the discrete element method introduced here is based on the
assumption that the temperature difference inside particles is negligible and the tem-
perature can be considered uniform within particles. Following this assumption heat
conduction inside particles is neglected whereas heat transfer to and from particles
through their boundary is considered. Such a simplification of the heat conduction
problem is typical for the lumped capacitance model, also called the lumped system
analysis (Cengel 2007). This assumption is justified for the discrete element model
employing relatively small particles and it is consistent with the formulation of the
mechanical problem. Similarly as the mechanical problem is governed by the contact
interaction, the heat conduction problem is governed by the conductive heat transfer
at the particle contacts.

The schematic of the heat transfer for a single particle is shown in Fig. 32. The
thermal model is expressed mathematically by the heat balance equation, which can
be written for a single particle in the following form:

mici θ̇i = Qi , (122)

where: mi – particle mass, ci – specific heat, θi – particle temperature, Qi – heat
sources or heat fluxes per single particle. Qi includes externally supplied heat source
Qext

i , heat generated internally within the particle Qgen
i , heat conducted through the

contact interface Qcont
i j , and convective and radiative heat transfer between particles

and environment on the free surface, Qconv
i and Qrad

i

Qi = Qext
i + Qgen

i +
nc∑

j=1

Qcont
i j + Qconv

i + Qrad
i (123)

Fig. 32 Schematic of the
heat conduction problem for
a discrete element
(reproduced from Rojek
(2014))
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where nc is the number of particles being in contact with the i-th particle.

6.2 Model of Thermal Contact

When two solid bodies of different temperature come into contact heat flows from
the body with higher temperature to the body with lower temperature until a thermal
equilibrium is achieved. If we take two particles with massesmi andm j , heat capac-
ities ci and c j , and temperatures θi and θ j , and bring them into contact, if there no
heat exchange with exterior, the thermal equilibrium is achieved at the temperature
θ given by

θ = miciθi + m jc jθ j

mi ci + m jc j
(124)

The time necessary to reach equilibrium depends on the heat flux through the contact
interface Qcont

i j (in J/s). It is commonly assumed that the the heat flux through the
contact interface is proportional to the temperature jump (θi − θ j ), contact area Acont,
and a certain coefficient hcont called thermal contact conductance (Cooper et al. 1969):

Qcont
i j = −hcontAcont(θi − θ j ) (125)

The contact area Acont can be related to the local particle size

Acont = βR∗2 (126)

where R∗ is the equivalent radius defined by Eq. (56) and β is a certain dimensionless
parameter which should be calibrated for a given discrete element model.

It is sometimes convenient to express heat transfer at the contact in terms of one
parameter H cont = hcontAcont, then Eq. (125) can be rewritten as Zhang et al. (2011):

Qcont
i j = −H cont(θi − θ j ) (127)

In general case of a contact of different bodies or particles, the thermal contact
conductance is dependent on the surface roughness, material properties, interface
temperature and interface pressure (Cooper et al. 1969. In the discrete elementmodel,
however, the thermal contact conductance hcont does not represent the thermal resis-
tance of the interface, only, but it should also take into account the influence of the
thermal conductivity λ ot the particle material. It should be treated as a microme-
chanical parameter which should give required macroscopic properties of the bulk
material.
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6.3 Time Integration of the Discrete Element Method for
Thermal Problem

Heat conduction Eq. (133) can be integrated in time using the explicit forward Euler
scheme

θn+1
i = θni + Qn

i �t

mic
. (128)

The explicit time integration scheme expressed by Eq. (128) is conditionally
stable. The time integration step is limited by the critical step �t thermcr which can
be estimated by the critical value for the one-dimensional heat conduction problem
(Hughes 1987)

�t thermcr ≈ lmin

2a
, (129)

where lmin is the minimum particle centre distance and s is the thermal diffusivity

a = λ

ρc
. (130)

6.4 Formulation of the Discrete Element Method for a
Coupled Thermo-Mechanical Problem

The mechanical and thermal phenomena can be analysed jointly as a coupled
thermo-mechanical problemusing thediscrete elementmodel (Rojek2014).Thermo-
mechanical problem defined in the framework of the discrete element method by the
system of coupled equations formed by the equations of motion (1) and (2) and the
heat balance equation (122)

mi üi = Fi , (131)

Ji ω̇i = Ti , (132)

micθ̇i = Qi (133)

with appropriate initial conditions. Coupling of Eqs. (131) and (132) with Eq. (133)
can be obtained considering such effects as:

• frictional heat generation,
• thermal expansion of the particles and its effect on particle interaction (thermal
stresses),

• temperature dependence of mechanical contact parameters (due to temperature
dependence of material macroscopic properties),

• modification of the geometrical configuration of thermal problem determined by
the solution of mechanical problem.
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6.5 Thermomechanical Contact

Friction considered in themechanical problem is associatedwith heat generation. The
heat is absorbed by the particles increasing their temperature and can be conducted
to other particles by heat transfer at the contact. These coupled phenomena can
be taken into account in the contact model considered in the formulation of the
thermomechanical model. The schematic of the thermomechanical contact model is
shown schematically in Fig. 33.

Heat generation through frictional dissipation is calculated using the following
formula

Qgen = χ |Ft v
ir
rt | , (134)

where Ft is the friction force, vir
rt is the irreversible part of the relative tangential

velocity, and 0 ≤ χ ≤ 1 is the part of the friction work converted to heat. Heat
generated at the contact point is absorbed by the contacting particles

Qgen = Qgen
i j + Qgen

j i (135)

If the particles are of the same materials, it is assumed that the heat is absorbed
equally by the particles:

Qgen
i j = Qgen

j i = 0.5Qgen (136)

In a general case, when the particle thermal properties can be different, heat absorbed
by each of the contacting particles is assumed to be proportional to the thermal
effusivity of the particle materials

Qgen
i j

Qgen
j i

= αQgen

(1 − α)Qgen
= ei

e j
(137)

with the effusivity e being defined as

e = √
λρc (138)

(a) (b)

Fig. 33 Thermomechanical contact schematic for a pair of particles: a mechanical contact inter-
action, b thermal contact effects (reproduced from Rojek (2014))
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whereλ is the thermal conductivity, c is the specific heat capacity, and ρ is the density.
The heat partition coefficient α is given by the following equation

α = ei
ei + e j

(139)

Solution of Thermomechanical Coupled Problem in the Discrete Element
Method

The system of coupled equations is solved using the staggered solution scheme, in
which the mechanical and thermal problems are analysed separately.

1. Solution of the mechanical problem.
Equations (131) and (132) are integrated in time using the explicit central differ-
ence scheme. Employing the equations for the known configuration at the time
tn the solution for the time tn+1 is obtained in the following way:

ün
i = Fn

i

mi
, (140)

u̇n+1/2
i = u̇n−1/2

i + ün
i �t , (141)

un+1
i = un

i + u̇n+1/2
i �t , (142)

ω̇n
i = Tn

i

Ji
, (143)

ω
n+1/2
i = ω

n−1/2
i + ω̇n

i �t , (144)

�ψi = ω
n+1/2
i �t . (145)

Thermal expansion of the particles and resulting thermal components of the
interaction forces are considered in the solution of the mechanical problem.
In many problems, thermally induced stresses may material damage or failure
(Wanne 2009; Leclerc et al. 2018). Heat generated by friction is evaluated in
Eqs. (131) and (132) and passed to Eq. (133).

2. Solution of the thermal problem
Heat conduction Eq. (133) is integrated in time using the explicit forward Euler
scheme

θn+1
i = θni + Qn

i �t

mic
. (146)

The thermal problem is solved on themodified particle configuration determined
in the solution of the mechanical problem. Particle temperatures evaluated in the
solution of the thermal problem are passed to the solution of the mechanical
problem.

The explicit time integration scheme of the coupled thermomechanical problem
is conditionally stable. The time integration step is limited by the critical step �tcr:
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�tcr = min(�tmech
cr ,�t thermcr ) , (147)

where �tmech
cr is the critical time step for the solution of the mechanical problem

depending on the highest eigenfrequency of the discrete system �max

�tmech
cr = 2

�max
, (148)

and �t thermcr is the critical time step for the solution of the thermal problem. The
critical time step for the solution of the thermal problem can be estimated according
to Eq. (129).

Concluding remarks

A brief overview of the basic concepts of the discrete element method and most
popular contact models used in this method has been made in this chapter. Contact
models used in the DEM intend to reproduce complex phenomena associated with
contact between particles (discrete elements) using models composed of relatively
simple rheological elements reproducing elementary contact mechanisms.

Many applications of the DEM show that even with simple contact models, it
is possible to reproduce the complex macroscopic behaviour of the bulk material
modelled by a collection of discrete elements. The contact model in the DEM plays
a role of a constitutive model at the micro- or mesoscopic level. The DEM can be
used to model cohesionless granular materials as well as various cohesive materials.
The DEM in a simple way takes into account discontinuities existing in the material
or occurring under loading. The DEM is a suitable tool to model failure of materials
and structures characterized by multiple fracturing.

It must be remarked that the DEM is not a simple method for a user. The choice of
a suitable contact model and evaluation of appropriate model parameters requires a
certain experience and knowledge. The author dares hope this work will be useful to
understand the physical background and mathematical representation of the contact
phenomena in the DEM.

Acknowledgements The author would like to thankMr. Nikhil Madan for performing simulations
and preparing the plots for the numerical examples included in this chapter.
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