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Abstract Two classes of contact problems are discussed, namely finite-wear and
soft-EHL problems, which go beyond the classical framework of frictional contact
problems. The focus is on the finite-deformation effects and on the computational
strategies adequate for the modelling of those problems. By finite wear we mean
here the class of contact and wear problems in which finite deformations and finite
shape changes due to wear are allowed. The soft-EHL regime of hydrodynamic
lubrication is encountered in the case of lubricated contact of compliant solids, such
as elastomers or soft tissues, when a relatively low hydrodynamic pressure suffices
to significantly deform the solid. In each case, the respective continuum formulation
is first introduced, followed by the description of the finite-element treatment and by
representative numerical examples.

1 Introduction

Contact is usually modelled by considering only two most important interaction
modes, i.e. by enforcing the non-penetration condition and by introducing friction
forces. The non-penetration condition imposes a unilateral constraint on the relative
motion of the contacting bodies in the direction normal to the contact surface, while
friction is associated with the relative motion in the tangential direction. Despite the
severe complexity of tribological interactions, friction ismost frequentlymodelled by
the classical Amonton–Coulomb friction model, which involves only one parameter,
the friction coefficient, even if more advanced friction models exist and could, in
principle, be applied in relevant situations, provided themodel parameters are reliably
determined from experiment or from micromechanical considerations.

It seems that continuum formulations of frictional contact problems have already
reached a considerable level of maturity, and efficient computational techniques
exist for this class of problems (Laursen 2002; Wriggers 2006). In this chapter, we
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discuss two classes of contact problems that go beyond the classical framework dis-
cussed above. Specifically,we focus onwear andon elasto-hydrodynamic lubrication
(EHL), in both cases with full account of finite deformations. Clearly, both wear and
EHL have already been subject of intense research, but the finite-deformation effects
(including finite shape changes in the case of wear problems) are significantly less
recognized.

Finite deformations are typical for soft solids such as polymers, including rubber-
like materials, soft tissues, some biomaterials, and others. Focusing on contact inter-
actions, we shall treat all those materials as hyperelastic solids, thus neglecting their
complex constitutive behaviour that may involve viscoelasticity, history-dependent
behaviour, multiphysics couplings, etc. This is admissible because contact formu-
lations and their computational treatment are essentially independent of the bulk
material response. Hence, the contact techniques developed can be combined with
virtually any solid model, hyperelasticity being the simplest one in the finite defor-
mation regime.

The first part of this chapter is concerned with modelling of finite wear problems.
Wear is a process of material removal from a surface that is subjected to frictional
contact interaction.Wear processes are usually slow, and thus noticeable effects result
from repeated contacts and accumulation of wear over a long period. By finite wear
we mean here a general class of wear problems in which finite deformations are
allowed as well as finite shape changes due to wear (Lengiewicz and Stupkiewicz
2012). The approach adopted here for the modelling of progressive wear belongs
to the class of incremental solution strategies. An overview and discussion of the
relevant computational strategies is presented in Sect. 4.5. Note that wear is a very
complex processwith several very distinctmechanisms. The activity of the individual
wear mechanisms heavily depends on the materials, on surface properties of the
contact pair, as well as on the actual contact conditions. The related aspects of
constitutive modelling of wear are not discussed here, and we adopt the classical
Archard wear law (Archard 1953).

The second part of this chapter is concernedwithmodelling of soft-EHL problems.
Contact in the EHL regime occurs when the contacting surfaces are fully separated
by the fluid and when the hydrodynamic pressure in the lubricant film is sufficiently
high to cause significant elastic deflections of one or both contacting bodies. The
EHL theory (Dowson and Higginson 1977; Hamrock et al. 2004) is a well developed
theory with classical applications such as gears and rolling-contact bearings, which
belong to the class of so-called hard-EHL problems. There is, however, a growing
interest in the soft-EHL regime in which the pressure is relatively low, but the elastic
deflections are significant becauseoneor both contactingbodies are highly compliant.
At the same time, the pressure is not high enough to cause significant increase of
lubricant viscosity (on the contrary, the piezoviscous effect is crucial in the hard-EHL
problems).

The chapter is organized as follows. The standard formulation of the finite-
deformation, finite-slip frictional contact problem is briefly described in Sect. 2 as a
background for further developments. In Sect. 3, theArchard-typewear law is consis-
tently formulated in the finite-deformation framework. The continuum formulation
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of the finite-wear problem is then provided in Sect. 4 followed by the discussion of the
time-integration schemes and computational strategies for modelling of progressive
wear. Selected illustrative numerical examples are reported in Sect. 5.

The second part of the chapter, Sects. 6, 7 and 8, is devoted to the soft-EHL
problems at finite deformation. Section6 introduces the Reynolds equation which
is the basic tool for the modelling of the lubricant flow in the thin channel between
the contacting surfaces. Formulation of the soft-EHL problem is provided in Sect. 7.
In particular, the EHL couplings are discussed, including the non-standard coupling
that results from the finite-deformation effects, and the finite-element treatment is
commented briefly. Finally, illustrative numerical examples are provided in Sect. 8.

2 Finite-Deformation Frictional Contact Problem

Presented below is the standard formulation of the frictional contact problem at finite
deformation and finite slip. The formulation is based on the master–slave approach
and on the notion of the closest-point projection. For the details and for a broader
overview, see themonographs byLaursen (2002) andWriggers (2006) and references
cited therein.

Consider two hyperelastic bodies B(i), i = 1, 2, that occupy domains �(i) in the
reference configuration. The boundary of �(i) is divided into three non-overlapping
parts: displacements and tractions are prescribed on �(i)

u and �
(i)
t , respectively, while

�(i)
c is the potential contact surface. Deformation of each body is described by the

corresponding deformation mapping ϕ(i),

x(i) = ϕ(i)(X(i), t), (1)

where X(i) ∈ �(i), x(i) ∈ ω(i), and ω(i) = ϕ(i)(�(i), t) denotes the current configura-
tion.

One of the contact surfaces, say �(1)
c , is selected as the slave surface, and the

contact pair is defined by projecting a point x(1) of the deformed slave surface γ (1)
c =

ϕ(1)(�(1)
c , t) onto the deformed master surface γ (2)

c = ϕ(2)(�(2)
c , t). The projection

point is denoted by x̄(2). Let us introduce parameterization of the master surface
γ (2)
c by convective coordinates ξ = {ξ 1, ξ 2} so that we have x̄(2) = x(2)(ξ̄), and ξ̄ =

{ξ̄ 1, ξ̄ 2} are the coordinates of the projection point.
The basic kinematic contact variables are the normal gap gN and the sliding

velocity vT that are defined as follows:

gN = (x(1) − x̄(2)) · n, vT = ˙̄ξατ α, (2)

wheren = n(2), the unit outer normal to themaster surface, is adopted as the normal of
the contact pair, τ α = ∂x(2)/∂ξα , α = 1, 2, is the tangent basis, and repeated indices
are implicitly summed over. Further, the spatial (Cauchy) traction vector t = t(2) is
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adopted as the contact traction that is decomposed into the normal and tangential
components tN and tT , respectively,

t = tNn + tT , tN = t · n, tT = tTατ α, (3)

where t(2) = σ (2)n, σ (2) is the Cauchy stress, and τ α is the cobasis, such that τ α ·
τ β = δα

β , where δα
β is the Kronecker delta.

The kinematic variables gN andvT and the contact tractions tN and tT are related by
the contact constraints, which can be interpreted as a kind of constitutive equations.
Specifically, the normal interaction is governed by the unilateral contact condition,

gN ≥ 0, tN ≤ 0, gN tN = 0, (4)

and the tangential interaction is assumed to be governed by the Coulomb friction
law,

‖tT ‖ + μtN ≤ 0, ‖vT ‖tT = vT ‖tT ‖, ‖vT ‖(‖tT ‖ + μtN ) = 0. (5)

Equilibrium of the two-body system is written in the form of the following virtual
work principle,

G(ϕ, δϕ) = G1(ϕ
(1), δϕ(1)) + G2(ϕ

(2), δϕ(2)) + Gc(ϕ, δϕ) = 0 ∀ δϕ, (6)

where ϕ = {ϕ(1),ϕ(2)}, and the virtual displacements δϕ(i) (test functions) vanish
on �(i)

u . Here, Gi is defined individually for each body and denotes the virtual work
of internal and external forces, excluding the contact forces, thus

Gi (ϕ
(i), δϕ(i)) =

∫
�(i)

P(i) · Grad δϕ(i)dV −
∫

�
(i)
t

T∗(i) · δϕ(i)dS, (7)

where P(i) is the first Piola–Kirchhoff stress, T∗(i) is the surface traction prescribed
on the boundary �

(i)
t , and Grad is the gradient operator relative to the reference

configuration. The virtual work Gc of the contact forces takes the following form

Gc(ϕ, δϕ) =
∫

�
(1)
c

(TN δgN + TTαδξ̄ α)dS. (8)

The contact contribution is here integrated over the undeformed slave surface �(1)
c .

The nominal contact tractions TN and TT have thus been introduced,

TN = j (1)tN , TT = j (1)tT , (9)
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such that TN and TT refer to the unit area in the undeformed configuration �(1) of
the slave body. Here, j (1) is the area transformation factor of the slave surface so that
ds(1) = j (1)dS(1).

The virtual work principle (6) constitutes the basis of the finite-element treatment.
It must be complemented by a suitable regularization technique in order to enforce
the contact conditions (4) and (5). In the examples reported below, the augmented
Lagrangian method is used for that purpose (Alart and Curnier 1991; Pietrzak and
Curnier 1999), see Lengiewicz et al. (2011) for the details of the respective AD-based
formulation and finite-element implementation.

3 Archard-Type Wear Law

3.1 Nominal and Spatial Wear Rate

Wear is a process of removal of material from a solid surface subjected to a contact
interaction. In a continuum description, the wear rate is defined as the volume (or
mass) removed per unit area and unit time. Once finite deformations of the con-
tacting bodies are allowed, the notions of volume and area must refer to a specific
configuration of the body, and hence a nominal and spatial wear rate can be defined.

The nominal wear rate Ẇ (i) refers to the undeformed configuration �(i) and is
defined in terms of the respective elementary volume dV (i) and surface area dS(i),
thus

Ẇ (i)dt = dV (i)

dS(i)
= 1

�
(i)
0

dm(i)

dS(i)
, (10)

where �
(i)
0 is the mass density in the undeformed configuration. Similarly, the spatial

wear rate ẇ(i) refers to the current configuration ω(i),

ẇ(i)dt = dv(i)

ds(i)
= 1

�(i)

dm(i)

ds(i)
, (11)

where dv(i) and ds(i) are the corresponding elementary volume and surface area,
respectively, and �(i) is the mass density in the current configuration. The following
transformation rule applies to the two wear rates,

j (i)ẇ(i) = J (i)Ẇ (i), (12)

where j (i) = ds(i)/dS(i) is the area transformation factor that follows from the Nan-
son’s formula (nds = JF−T NdS), and J (i) = dv(i)/dV (i) = det F(i) is the determi-
nant of the deformation gradient F(i) = ∂x(i)/∂X(i).
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3.2 Archard Wear Law at Finite Deformation

The classical wear law of Archard (1953) is adopted here, however, the framework
is general, and other wear laws can equally be used. In the original form of the
Archard law, the wear volume is assumed to be proportional to the normal force
and sliding distance. In the continuum formulation, this corresponds to the wear rate
being proportional to the normal pressure and sliding velocity. Assuming that the
Coulomb friction law holds, the normal contact pressure is proportional to the sliding
friction stress, hence the Archard law can be equivalently expressed in terms of the
latter.

Now, the product of the (spatial) friction stress tT and sliding velocity vT is
recognized as the frictional dissipation rate density, namely

ḋ = tT · vT , Ḋ(i) = j (i)ḋ. (13)

Here, ḋ is the spatial density of frictional dissipation rate that is referred to the area
in the current configuration ω(i), while Ḋ(i) is the nominal density that is referred to
the area in the undeformed configuration �(i), hence the area transformation factor
in Eq. (13)2.

The Archard wear law can now be formulated in terms of the frictional dissipation
rate, thus

Ẇ (i) = K (i) Ḋ(i), (14)

where K (i) is the wear coefficient. In this formulation, wear volume is proportional
to the energy dissipated due to friction, which provides an energetic interpretation of
the Archard wear law (cf. Mróz and Stupkiewicz 1994; Fouvry et al. 1996; Ramalho
and Miranda 2006). This formulation provides also a natural way to generalize the
Archard law to the case of more complex friction laws, including anisotropic friction
(e.g., Mróz and Stupkiewicz 1994).

Alternatively, proportionality between the spatial quantities can be postulated,
thus leading to the Archard wear law in the following form:

ẇ(i) = k(i)ḋ. (15)

By applying the transformation rule (12), the corresponding nominal form is the
following:

Ẇ (i) = 1

J (i)
k(i) Ḋ(i), (16)

which is not equivalent to the spatial one (14). In fact, Eqs. (14) and (16) imply
the transformation relationship k(i) = J (i)K (i) between the wear coefficients K (i)

and k(i), so that if one of them is a constant then the other one is not a constant,
as it depends on the deformation in the subsurface layer. The difference between
the two forms vanishes when the material is incompressible (J (i) = 1) or when the
deformation is small.
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Considering that the wear coefficients may, in principle, depend on contact vari-
ables, e.g., on the contact pressure, sliding velocity, temperature, etc., the choice
between the nominal or spatial form of the Archard wear law is merely free. In par-
ticular, there is no experimental evidence that would justify the choice of one or the
other form. In the following, the nominal form (14) of the Archardwear law is chosen
because, in practice, the wear volume would rather be measured in the undeformed
configuration. The nominal wear rate can thus be considered a measurable quan-
tity. Secondly, the computational treatment of the spatial form (16) is more involved
because the nominal wear rate Ẇ (i), which is used in the computational framework,
as discussed below, depends then not only on the contact quantities, but also on the
deformation in the bulk material (through J (i)).

Note that, in an alternative approach (Dragon-Louiset 2001; Peigney 2004; Stolz
2007), the wear criterion is formulated in terms of the thermodynamic driving force
for the propagation of a damage interface within the contact subsurface layer. In that
case, evaluation of the wear criterion also involves the stresses or strains in the bulk
material.

Referring to the finite-element treatment based on the master–slave approach
discussed in Sect. 2, we note that the nominal wear rate of the slave surface can be
directly determined in terms of the nominal friction traction TT , namely

Ẇ (1) = K (1) Ḋ(1), Ḋ(1) = j (1)ḋ = j (1)tTα
˙̄ξα = TTα

˙̄ξα. (17)

The nominal wear rate of the master surface is then given by

Ẇ (2) = j (2)

j (1)
K (2) Ḋ(1) = j (2)

j (1)
Ẇ (2)

∗ , Ẇ (2)
∗ = K (2) Ḋ(1), (18)

where Ẇ (2)∗ dt can be interpreted as the incremental wear volume of themaster surface
per unit area of the undeformed slave surface. It is recalled that the wear rates Ẇ (1)

and Ẇ (2) correspond to the contact pair (x(1), x̄(2)) that is defined by the closest-point
projection at the current time instant, as discussed in Sect. 2.

4 Finite-Wear Problem

4.1 Finite-Wear Kinematics: Three Configurations

In addition to finite deformation, the two contacting bodies B(i) are now assumed to
undergo finite shape changes due to wear at the contact interface. It is thus convenient
to introduce three configurations of the body B(i): the initial configuration �̂(i), the
time-dependent undeformed (worn) configuration �(i), and the current (deformed)
configurationω(i), cf. Fig. 1. The shape transformation mapping�(i) is introduced to
describe the shape change due to wear, while, as before, the deformation is described
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ϕ(i)(·, t2)
Ω̂(i)

Ω(i)(t1)

Ω(i)(t2)

ω(i)(t1)

ω(i)(t2)

Ψ(i)(·, t1)

Ψ(i)(·, t2)

ϕ(i)(·, t1)

Fig. 1 The three configurations �̂(i), �(i) and ω(i) at two time instants t1 and t2 > t1, shown for
one body only (reproduced from Lengiewicz and Stupkiewicz 2012)

by the deformation mapping ϕ(i), thus

X(i) = �(i)(X̂(i), t), x(i) = ϕ(i)(X(i), t), t ∈ [0, T ], (19)

where X̂(i) ∈ �̂(i),X(i) ∈ �(i) and x(i) ∈ ω(i). For t > 0, the initial configuration �̂(i)

plays the role of a fixed referential domain for the time-dependent undeformed con-
figuration �(i). If the initial configuration �̂(i) is a stress-free (natural) configuration
then the undeformed configuration �(i) is also stress-free.

The finite wear problem at hand comprises two subproblems. The basic unknown
in the shape-evolution subproblem is the shape transformation mapping �(i) which
is driven by the wear rate. The wear rate results from the deformation subproblem
in which the basic unknown is the deformation mapping ϕ(i) that is governed by
the equilibrium equation and constitutive relations, along with boundary and contact
conditions. As the undeformed configuration �(i), which plays the role of a material
reference configuration, evolves in time due to wear, the deformation problem is not
a standard one. However, it can be transformed into a standard frictional contact
problem, such as that discussed in Sect. 2, by introducing separation of time scales,
see Sect. 4.2 below.

As mentioned, the time evolution of the undeformed configuration �(i) results
from wear. It is governed by the following relationship, the shape evolution law, that
links the nominal wear rate Ẇ (i), see Sect. 3.1, and the time derivative of the shape
evolution mapping �(i),

�̇(i) · N(i) =
{−Ẇ (i) on �(i)

c ,

0 on ∂�(i) \ �(i)
c ,

(20)

where ∂�(i) is the boundary of�(i),�(i)
c is the potential contact surface, andN(i) is the

unit outer normal in the undeformed configuration �(i). Equation (20) is formulated
in the undeformed configuration �(i), i.e., for all X(i) ∈ ∂�(i). Accordingly, �̇(i)

denotes here �̇(i) = �̇(i)(X̂(i)(X(i), t), t), in view of the one-to-one correspondence
between X(i) and X̂(i) that is imposed by the shape transformation mapping �(i).
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In order to make the notation compact, the above convention is followed below
whenever it is convenient and unambiguous.

Note that the shape evolution law (20) prescribes only the normal component of
�̇(i) on the boundary ∂�(i). The tangential component is here free, and so is the
distribution of �̇(i) in the interior of �(i).

4.2 Separation of Time Scales

The wear process is usually very slow compared to the time scale of the deformation
problem. The rate of change of the worn configuration �(i) is thus negligible at this
time scale. In otherwords, thewear rate is negligible compared to the sliding velocity,
for instance. It is thus the accumulation of wear over a long time period that leads to a
significant change of the worn configuration and to a significant variation of contact
conditions.

Let us thus introduce two time scales, namely the τ -scale of the deformation
problem and the t-scale of the shape changes due to wear. Keeping the shape trans-
formation mapping �(i) unaltered, the deformation mapping ϕ(i) is now expressed
in the following form,

X(i) = �(i)(X̂(i), t), x(i) = ϕ
(i)
t (X(i), τ ), t ∈ [0, T ], τ ∈ [t, t + τ ], (21)

where X(i) ∈ �
(i)
t , �(i)

t = �(i)(�̂(i), t), and τ is a characteristic or representative
time of the deformation problem, for instance, one cycle of a cyclic loading program.
As long as t and τ are varied simultaneously, the deformation mapping ϕ

(i)
t (X(i), τ )

introduced above is equivalent to that specified by Eq. (19)2.
However, the separation of the two time scales can now be assumed such that

the deformation problem is analyzed at fixed t and thus for fixed �
(i)
t . As a result,

the deformation problem becomes a standard frictional contact problem, as briefly
introduced in Sect. 2, which can be formulated and solved in a standard manner.

Solving the deformation problem at a fixed slow time t yields the deformation
mappings ϕ

(1)
t (X(1), τ ) and ϕ

(2)
t (X(2), τ ) for τ ∈ [t, t + τ ], and all other quanti-

ties involved, such as the contact variables (tN , tT , vT ). Furthermore, the wear rate
Ẇ (i)

t (X(i), τ ) can be computed for all pointsX(i) = �(i)(X̂ (i), t) on the potential con-
tact surface �(i)

c using a suitable wear law, for instance, the Archard law discussed
in Sect. 3.2. Computation of the wear rate Ẇ (i)

t is merely a postprocessing task, as
all influential variables are known from the solution of the deformation problem.

The increment W (i)
t (X(i)) of wear accumulated at X(i) ∈ �(i)

c during the time
period [t, t + τ ] can then be computed by integrating the wear rate Ẇ (i)

t , thus

W (i)
t (X(i)) =

∫ t+τ

t
Ẇ (i)

t (X(i), τ )dτ, (22)
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and the average wear rate at the t-scale, denoted by Ẇ (i)
t (X(i)), can be defined as

Ẇ (i)
t (X(i)) = W (i)

t (X(i))

τ
. (23)

Upon adopting the assumption of separation of time scales, it is the average wear rate

Ẇ (i)
t (X(i)) that is used in the shape evolution law (20) instead of the instantaneous

wear rate Ẇ (i) in the original finite-wear problem.
In order to apply the assumption of time scale separation, it is required that the

shape change associatedwith thewear incrementW (i)
t accumulated over one defor-

mation cycle is sufficiently small so that its effect on the solution of the deformation
problem is negligible. The averagewear rate at the t-scale can then be determined as a
postprocessing quantity at the τ -scale, and the problemof shape evolution due towear
and the deformation problem are incrementally decoupled. In fact, this decoupling
is implicitly assumed in many simulation approaches (e.g., Podra and Andersson
1999; Oqvist 2001; McColl et al. 2004; Hegadekatte et al. 2006; Paulin et al. 2008;
Gallego et al. 2010).

Note that, in a general case, specification of the deformation problem at the τ -scale
may be nontrivial. In fact, friction is a path-dependent phenomenon, and suitable
boundary and initial conditions must thus be applied in order to properly describe
the complex evolution of stick and slip zones accompanied by thewear-induced shape
evolution. In some specific situations, the related problems are easily overcome, for
instance, when each loading cycle starts with an open contact (e.g., Paulin et al. 2008;
Gallego et al. 2010) or when gross sliding occurs during the loading cycle so that the
contact memory is erased.

4.3 Quasi-steady-state Wear Problems

A quasi-steady-state wear problem is defined such that the deformation problem
corresponding to a fixed slow time t is a steady-state frictional contact problem once
formulated in an appropriate Eulerian frame. Typical examples of quasi-steady-state
wear problems are the pin-on-disc tribological test and rolling contact. For instance,
in the former case, the reference frame would be attached to the pin, and the disc
would be analyzed in an Eulerian frame, or in an arbitrary Lagrangian–Eulerian
(ALE) frame in the case of deformable disc.

In a quasi-steady-state wear problem, the deformation subproblem and thus also
the deformation mappings ϕ(i) do not depend on the fast time τ , so that we have

X(i) = �(i)(X̂(i), t), x(i) = ϕ
(i)
t (X(i)), t ∈ [0, T ], (24)

while, as in the general case, the deformation problem is parameterized by the slow
time t of the shape evolution problem. The average wear rate at the t-scale is then
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simply equal to the actual wear rate at the τ -scale, thus

Ẇ (i)
t (X(i)) = Ẇ (i)

t (X(i)), (25)

and Ẇ (i)
t (X(i)) does not depend on τ .

In a steady-state frictional contact problem, the motion is decomposed into a
background motion which is a rigid-body motion in the undeformed configuration
(treated in an Eulerian description) and deformation (treated in a Lagrangian descrip-
tion). This corresponds to a kind of ALE formulation. As the contacting bodies are
here assumed hyperelastic, i.e., their behavior is time- and history-independent, and
the inertial effects are neglected, the Eulerian rigid-body motion does not affect the
deformation problem, except that relative sliding velocity must be properly defined.

The velocity v(i) of a material point with the position x(i) in the deformed con-
figuration ω(i) results solely from the background motion with velocity V(i) in the
undeformed configuration �(i). Specifically, we have

v(i) = F(i)V(i), (26)

where F(i) = ∂x(i)/∂X(i) is the deformation gradient. The sliding velocity vT is then
defined as the tangential component of the relative velocity,

vT = vα
T τ α, vα

T = (v(1) − v̄(2)) · τ α, (27)

where τα is the tangent basis, τ α is the cobasis, and v̄(2) = v(2)(x̄(2)) is the velocity of
the projection point x̄(2), see Sect. 2.With thismodification, formulation of the steady-
state contact problem is identical to that of the general contact problem discussed in
Sect. 2.

4.4 Time Integration of Shape Evolution Problem

In order to arrive at a feasible computational scheme, a time integration scheme must
be applied to the time-continuous shape evolution problem (20). First-order explicit
and implicit Euler schemes are discussed below. A second-order explicit scheme that
employs sensitivity analysis in order to arrive at a more accurate approximation of
wear increments has been proposed by Lengiewicz and Stupkiewicz (2012).

In the following, two subsequent discrete time instants tn and tn+1 = tn + t
are thus considered, and a subscript is used to denote the quantities evaluated at a
discrete time instant, e.g., �

(i)
n+1(X̂

(i)) = �(i)(X̂(i), tn+1). Application of the Euler
time integration scheme to the shape evolution law (20) gives

(
�

(i)
n+1(X̂

(i)) − �(i)
n (X̂(i))

)
· N(i)

n+θ (X̂
(i)) = −t Ẇ (i)

n+θ (X̂
(i)), (28)
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for X̂(i) ∈ �̂(i)
c , while the above condition can be formally extended to the whole

boundary ∂�̂(i) by setting Ẇ (i)
n+θ (X̂

(i)) = 0 for X̂(i) ∈ ∂�̂(i) \ �̂(i)
c . The explicit

forward-Euler scheme and the implicit backward-Euler scheme are obtained for
θ = 0 and θ = 1, respectively.

The incremental shape update scheme (28) prescribes only the normal compo-
nent of the increment of the shape transformation mapping. In order to completely
determine �

(i)
n+1 on the boundary, additional assumptions must be adopted concern-

ing its tangential increment on the boundary ∂�̂(i). For instance, one can assume
that the shape transformation is such that the points on the contact boundary �(i)

c
are transformed along the normal direction. This yields the following shape update
scheme:

�
(i)
n+1(X̂

(i)) = �(i)
n (X̂(i)) − t Ẇ (i)

n+θ (X̂
(i))N(i)

n+θ (X̂
(i)). (29)

The time increment t in the incremental scheme (28) or (29) is in general
independent of the characteristic time τ of the deformation problem. In fact, t
can be adopted much larger than τ , and its value is actually dictated by the desired
accuracy of the time integration scheme and possibly by its stability (see below).

Explicit forward-Euler time integration schemeAsalreadymentioned, theexplicit
scheme is obtained by setting θ = 0. Eq. (29) can be then be rewritten in the following
form

X(i)
n+1 = X(i)

n − t Ẇ (i)
n (X(i)

n )N(i)
n (X(i)

n ), (30)

whichis thebasisofasimpleandpopularshapeupdateschemethatemploysremeshing
after the contact problem is solved at each time step (e.g., Podra andAndersson 1999;
Oqvist 2001; McColl et al. 2004; Hegadekatte et al. 2006; Paulin et al. 2008). In the
context of the finite-element method, the shape update (30) is applied to the boundary
nodes. Subsequently, the positions of the interior nodes are determined in a suitable
remeshing procedure.

The explicit scheme is simple and easy to implement, but it is only conditionally
stable so that the time increment must satisfy the stability condition

t < tcr, tcr ∼ h

E
. (31)

As shown by Johansson (1994), the critical time increment tcr is proportional to
the characteristic mesh size h and inversely proportional to the elastic modulus E . In
realistic conditions, the critical time increment may be very small so that the scheme
becomes computationally expensive. Conditional stability of the explicit scheme is
illustrated by the numerical example reported below.

An approach alternative to the nodal shape update scheme resulting from Eq. (30)
has beenproposedbyLengiewicz andStupkiewicz (2012). In that approach, the shape
parametrization is independent of the finite-element discretization. Time-dependent
shape parameters are introduced for that purpose and the shape evolution law is
then enforced approximately through a minimization problem in which evolution
of shape parameters is fitted to the wear profile resulting from the finite-element
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solution of the deformation subproblem. As illustrated by Lengiewicz and Stup-
kiewicz (2012), independent shape parametrization with a reduced number of shape
parameters improves stability of the explicit scheme. To improve accuracy, it can
be combined with a second-order explicit scheme that employs shape sensitivity
analysis (Stupkiewicz et al. 2010).

Implicit backward-Euler time integration scheme In the case of the fully implicit
time integration scheme (θ = 1), the shape update schemes (28) and (29) involve the

normal N(i)
n+1 and the wear rate Ẇ (i)

n+1, both evaluated at tn+1. The former explicitly

depends on the unknown shape transformation mapping �
(i)
n+1, the latter depends

on the unknown solution ϕ
(i)
n+1 of the deformation subproblem at tn+1, and thus

it also implicitly depends on �
(i)
n+1. The two subproblems are thus coupled and

the problem must be solved simultaneously for ϕ
(i)
n+1 (displacements) and �

(i)
n+1

(shape transformation). Of course, the size of the problem increases due to additional
unknowns.

However, the benefit is that the implicit scheme is unconditionally stable, so
the time increment is limited only by the desired accuracy and not by the stability
condition. In practice, significantly larger time increments can be used as compared
to the explicit scheme, thus leading to a computationally efficient scheme.

Illustrative example: time integration schemes A numerical example, taken from
Stupkiewicz (2013), is provided here to illustrate accuracy and stability of the explicit
and implicit time integration schemes and, in particular, the influence of the elas-
tic modulus and finite-element size on the critical time increment, as predicted by
Eq. (31).

Consider a hyperelastic (neo-Hookean) pin in plane-strain conditions of the geom-
etry shown in Fig. 2. Its lateral boundaries are constrained in the lateral direction and
are free to move in the vertical direction. The pin is pressed into a moving rigid plane
by a constant uniform traction that is applied at the top surface. Frictionless contact is
considered in this example, and the wear rate is thus assumed to be proportional, with
a constant wear coefficient, to the product of contact pressure and sliding velocity.
Details concerning geometry and material and process parameters can be found in
Stupkiewicz (2013).

The Young’s modulus E is varied between 10 and 640MPa so that, for a fixed
prescribed loading, the deformation and the initial contact area are relatively small
for E = 640MPa (small deformation regime in Fig. 2) and they are relatively large
for E = 10MPa (finite deformation regime, results corresponding to E = 20MPa
are shown in Fig. 2).

Wear-induced evolution of the shape of the contact surface is presented in Fig. 3.
The shape evolution problem has been integrated using the explicit and the implicit
scheme, both with large time increments (t = 200 s, 5 time steps, solid lines) and
with small time increments (t = 5s, 200 time steps, dashed lines). It can be seen
that, in the small-deformation regime, the time increment t = 200 s is higher than
the critical one for the explicit scheme, and the corresponding results exhibit numer-
ical instability, while the instability is not observed for the smaller time increment
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Small deformation regime, E = 640 MPa

Finite deformation regime, E = 20 MPa

Fig. 2 Two-dimensional pin-on-flat problem in the small-deformation regime (top) and in the finite-
deformation regime (bottom). Finite-element mesh in the undeformed configuration and equivalent
stress σeq in the deformed configuration are shown at the initial time instant t = 0 (left) and at the
final time instant t = 1000 s (right) (reproduced from Stupkiewicz 2013)
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Fig. 3 Two-dimensional pin-on-flat problem: small-deformation (top) and finite-deformation (bot-
tom) regime. Shape evolution obtained in 5 time steps (t = 200 s, solid lines) and in 200 time
steps (t = 5 s, dashed lines) using the explicit (left) and implicit (right) time integration scheme
(reproduced from Stupkiewicz 2013)

t = 5s. At the same time, the implicit scheme is capable of accurately reproduc-
ing significant configuration changes in just 5 time steps. In the finite-deformation
regime, the explicit scheme is stable and the accuracy of both schemes is similar.
This confirms that the critical time step increases with decreasing elastic modulus,
cf. Eq. (31).

A quantitative assessment of accuracy and stability of the two time integration
schemes is presented in Fig. 4. The figure shows the solution error as a function
of the time increment t which has been varied between 1.56 s (640 time steps)
and 200s (5 time steps). Additionally, the Young’s modulus E is varied for a fixed
mesh density of 80 × 80 elements, and the mesh density is varied for a fixed Young’s
modulus E = 640MPa. The solution error has been computed as the Euclidean norm
of the difference of the final nodal positions at the contact surface with respect to the
reference solution obtained using the time increment of 0.78 s (1280 time steps).

In the case of the implicit scheme, the solution error increases with increasing
time increment in an approximately linearmanner. This is expected because the Euler
scheme is first-order accurate. Similar behavior is observed for the explicit scheme at
relatively small time increments. However, a sudden increase of the error is observed
at larger time increments. This is related to the instability of the explicit forward-Euler
scheme. When the mesh density is increased, for instance, from 20 × 20 to 40 × 40
elements so that the element size is decreased by a factor of two, the sudden increase
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Δ Δ

ΔΔ

Fig. 4 Two-dimensional pin-on-flat problem: solution error as a function of time increment t for
the explicit (top) and implicit (bottom) time integration scheme. Additionally, the elastic modulus
E is varied for the mesh of 80 × 80 elements (left) and mesh density is varied for E = 640 MPa
(right) (reproduced from Stupkiewicz 2013)

of the error occurs for a twice smaller time increment. Similar effect is observed
when the Young’s modulus is varied. Thus, in agreement with the theoretical result
of Johansson (1994), see also Eq. (31), the critical time increment is proportional to
the element size and inversely proportional to the elastic modulus.

4.5 Shape Update Strategies: Discussion

The incremental solutionprocedures reported in the literature for the progressivewear
problems are usually based on the explicit forward-Euler time integration scheme.
This is because computer implementation of the explicit scheme is considerably
simpler than implementation of the implicit scheme. The typical explicit procedure
amounts to solving the contact problem for the known current shape of the contacting
bodies. Knowing the solution of the contact problem, the wear rate can be computed
directly as a postprocessing quantity. The wear depth increment is then obtained by
multiplying the wear rate by the time increment, the shape is updated accordingly,
and the solution proceeds to the next time step. This procedure has been used in
combination with the finite-element method (Johansson 1994; Podra and Andersson
1999; Oqvist 2001; McColl et al. 2004; Hegadekatte et al. 2006; Paulin et al. 2008;
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Lengiewicz and Stupkiewicz 2012), with the boundary element method (Serre et al.
2001; Sfantos and Aliabadi 2006a; Rodriguez-Tembleque et al. 2012), and with
specialized contact solvers (Gallego et al. 2010; Andersson et al. 2011).

When finite configuration changes due to wear are considered, the shape update
necessarily involves remeshing (Podra and Andersson 1999; Oqvist 2001; McColl
et al. 2004; Hegadekatte et al. 2006; Paulin et al. 2008; Lengiewicz and Stupkiewicz
2012). Alternatively, assuming that the shape changes are small, the shape change
can be modelled by simply adding the accumulated wear depth to the initial normal
gap (Johansson 1994; Serre et al. 2001; Rodriguez-Tembleque et al. 2012).

As discussed above, the explicit scheme is conditionally stable, and the related
instabilities are commonly encountered in computational practice (Johansson 1994;
Podra and Andersson 1999; Oqvist 2001; McColl et al. 2004; Sfantos and Aliabadi
2006a; Lengiewicz and Stupkiewicz 2012). The critical time increment decreases
with increasing elastic modulus and with decreasing element size, cf. Eq. (31). It
follows that mesh refinement increases the computational cost not only due to the
increased number of unknowns but also due to the increased number of time steps
in view of the stability condition enforced on the time increment. Thus, in problems
of practical interest, the solution may be prohibitively expensive.

On the contrary, the implicit backward-Euler scheme is unconditionally stable so
that the time increment is constrained only by the desired accuracy of the solution.
Application of the implicit scheme requires that the wear increment (or shape trans-
formation resulting from wear) constitutes an additional unknown in the problem.
Since the implementation is significantlymore involved, the implicit scheme is by far
less frequently applied to progressive wear problems (Strömberg 1997; Jourdan and
Samida 2009; Ben Dhia and Torkhani 2011; Stupkiewicz 2013; Farah et al. 2017).

In the small-deformation framework adopted by Strömberg (1997), the configu-
ration changes are neglected so that the wear depth could be adopted as an additional
unknown to be added to the initial normal gap.

In the approach of Jourdan and Samida (2009), the shape transformation due to
wear is restricted to the outer layer of elements only, and the computational treat-
ment is based on the non-smooth contact dynamics method (Jean 1999). The result-
ing finite-element equations are not fully linearized so that the iterative solution
scheme is effectively a modified Newton method. In the implicit scheme developed
by Ben Dhia and Torkhani (2011), the coupled wear–deformation problem is not
fully linearized either, and the shape transformation is determined using a fixed-
point iteration method.

A fully-coupled implicit scheme applicable for quasi-steady-state wear problems
has been developed by Stupkiewicz (2013). In this scheme, the shape transformation
mapping �(i) and the deformation mapping ϕ(i) constitute the global unknowns of
the problem, the former is determined from an auxiliary elasticity problem which is
driven by wear increments on the contact boundary. As a result, a kind of an arbitrary
Lagrangian–Eulerian (ALE) formulation is obtained in which the shape transfor-
mation (i.e., the mesh motion in the finite-element context) is resolved simultane-
ously with the displacements, all in a fully-implicit monolithic manner. The resulting
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finite-element equations are solved using the Newton method, and its quadratic con-
vergence is achieved thanks to full linearization of the governing equations.

A general ALE-like scheme has been recently developed by Farah et al. (2017).
The incremental scheme is partitioned into a Lagrangian step and a shape evolution
step. The Lagrangian step corresponds to the deformation subproblem, and it is per-
formed for a fixed shape of the contacting bodies. However, wear effects within this
step are accounted for by adding the accumulated wear increment to the normal gap.
In the shape evolution step, the accumulated wear depth is, in a sense, transferred
from the normal gap to the new updated mesh. The shape evolution step employs an
auxiliary elasticity problem, similar to that used by Stupkiewicz (2013). This parti-
tioned scheme can be iterated until convergence is achieved. The implicit finite wear
framework is combined with a state-of-the-art finite-element contact formulation
employing dual mortar methods (Popp et al. 2013).

It is worth mentioning that several asymptotic or simplified approaches are avail-
able in the literature, which constitute an alternative to the direct incremental schemes
discussed above (e.g., Peigney 2004; Paczelt and Mróz 2005; Sfantos and Aliabadi
2006b; Argatov 2011; Lengiewicz and Stupkiewicz 2013; Menga and Ciavarella
2015). These are not discussed here.

5 Finite Wear: Illustrative Examples

Three illustrative examples are provided in this section. The examples are taken from
our earlier work (Lengiewicz and Stupkiewicz 2012; Stupkiewicz 2013), where the
details can be found along with an extended discussion of the results.

5.1 Reciprocating Pin-on-flat Problem

A two-dimensional problem is first considered that corresponds, in a simplified man-
ner, to the reciprocating pin-on-flat tribological test. This example is aimed at illus-
trating the concept of separation of time scales, as discussed in Sect. 4.2.

An elastic pin is pressed into an elastic block and a reciprocating motion is
enforced under constant normal force, see Fig. 5 for the geometry and finite-element
mesh used in the computations. Both the pin and the block undergo finite defor-
mations and finite configuration changes due to wear. Details concerning geometry,
frictional contact and material parameters can be found in Lengiewicz and Stup-
kiewicz (2012).

The formulation and the computational treatment rely here on the concept of
two time scales and time-scale separation. The fast time scale τ corresponds to one
loading cycle during which the pin is slid to the right and to the left with a fixed
amplitude A, starting at the center of the block. The deformation subproblem that
is solved at each slow time scale instant t includes an initial stage during which the
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(c)(b)(a)

Fig. 5 Reciprocating pin-on-flat problem: initial (unworn, top) and final (worn, bottom) unde-
formed and deformed configurations at the beginning of the initial stage (a), at the beginning of the
actual loading cycle (b), and in the right-most position after one quarter of the loading cycle (c)
(reproduced from Lengiewicz and Stupkiewicz 2012)

pin is brought to contact in the left-most position, Fig. 5a, and then it is slid towards
the center of the block, Fig. 5b. This ensures that the actual loading cycle starts in
the condition of fully developed frictional sliding. Subsequently, the pin is slid the
distance of A to the right, Fig. 5c, then the distance of 2A to the left, and finally the
distance of A to the right, which completes the loading cycle in a single deformation
subproblem.Following the assumption of scale separation, shape changes due towear
are suppressed at the fast time scale. After the deformation subproblem is solved and
the corresponding wear increment is computed, the shape evolution subproblem is
solved, here using the explicit scheme. The resulting finite shape changes are clearly
visible in Fig. 5.

A study of accuracy of the explicit time integration scheme, including also the
second-order explicit scheme that employs sensitivity analysis, can be found in
Lengiewicz and Stupkiewicz (2012).

5.2 Elastic Ball–Rigid Flat Problem

In this example, an elastic ball is slid against a rigid surface under constant nor-
mal load, see Stupkiewicz (2013) for a detailed description. The problem is thus a
quasi-steady-state wear problem, and the deformation subproblem is a steady-state
frictional contact problem in a frame attached to the ball, cf. Sect. 4.3.

The ball radius is R = 5mm, the elastic properties are specified by E = 100GPa
and ν = 0.3, and the normal force is F = 100N. Considering that the counter-body
is rigid, the reduced elastic stiffness of the contact pair is approximately equal to
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that of two elastic bodies made of steel. The Hertzian pressure is then p0 = 2.1GPa,
and the Hertzian contact radius is a = 0.15mm. These are realistic conditions that
correspond to the small-deformation regime. A finite-deformation counterpart has
also been studied by Stupkiewicz (2013)—the corresponding results are not provided
here.

Loading is applied at the mid-plane of the ball so that only one quarter of the
ball can be analyzed considering the symmetry with respect to a plane parallel to
the sliding direction. As the elastic strains are small, the undeformed and deformed
configurations are very close one to the other. Note that frictional contact is here
considered. Otherwise the problem would be axially symmetric. The initial and the
final shape of the ball are shown in Fig. 6.

The contact pressure at two instants is shown in Fig. 7. The initial pressure at t = 0
is not included in Fig. 7 because the finite-element mesh is too coarse to reasonably
reproduce the Hertzian pressure distribution (the element size in the contact area is
0.125mm, while the Hertzian contact radius is a = 0.15mm). It can be seen that
the pressure is uniform, and its value decreases as the contact area increases due to
progressive wear. This response is easily explained by observing that the counter-
surface is planar and rigid. As the elastic strains and displacements are small, the
worn contact surface is also planar, see Fig. 6b. Accordingly, wear induces a kind
of rigid-body motion of the ball in the normal direction. This rigid-body motion is
then associated with a uniform wear rate which, through the wear model, induces
a uniform contact pressure. Note that the related features of the quasi-steady-state
wear problems constitute the basis for simplified asymptotic models (e.g., Paczelt
and Mróz 2005; Lengiewicz and Stupkiewicz 2013).

The results reported above were obtained using the implicit scheme with a fixed
time increment t = 100 s (actually, at the very beginning of the process, substep-
ping was needed to achieve convergence so that 17 time steps were needed in total
to complete the simulation). By numerical experiments, the critical time increment
of the explicit time integration scheme has been estimated to be approximately equal
to tcr ≈ 0.1s. Accordingly, the explicit scheme would require about 10,000 time

Fig. 6 Elastic ball–rigid flat problem: equivalent stress σeq in the deformed configuration (the
undeformed configuration is nearly identical) at the initial time t = 0 (a) and at the final time
t = 1000 s (b) (reproduced from Stupkiewicz 2013)
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Fig. 7 Elastic ball–rigid flat problem: contact pressure (in MPa) at t = 100 s (a) and t = 1000 s
(b) (reproduced from Stupkiewicz 2013)

steps to complete the simulation. Even though the computational cost of one time
increment in the implicit scheme is higher than that of the explicit scheme due to the
increased number of global unknowns, the implicit scheme is more efficient than the
explicit one, and the gain in computational cost is significant (about two orders of
magnitude).

5.3 Rigid Ball Sliding Against Elastic Half-Space

In this example, a rigid ball is repeatedly slid against an elastic half-space, see Stup-
kiewicz (2013) for details. Wear due to repeated sliding will thus result in formation
of a wear groove on the half-space. This arrangement corresponds, for instance, to
the ball-on-disk test, provided the curvature of the sliding path (and wear groove) on
the disk is negligible. The problem is a quasi-steady-state problem so that the elastic
half-space can be analyzed in an Eulerian frame with the coordinate system attached
to the rigid ball. Specifically, an Eulerian description of the rigid-body motion in
the undeformed configuration is adopted, while the deformation due to the contact
interaction is treated in a Lagrangian manner, see Sect. 4.3. Other relevant tribolog-
ical tests are illustrated in Fig. 8. In the case of the reciprocating pin-on-flat test,
the periodic pin-on-flat arrangement is only an approximation since this problem is
actually not a quasi-steady-state problem.

Referring to the pin-on-disk test, the disk wears due to the repeated contact at
each revolution of the disk. Hence, the wear rate governing the evolution of the wear
groove must be averaged along the sliding path, and the corresponding parameter L ,
the sliding length per cycle, must be specified. In the case of the pin-on-disk test, L
is the circumference of the circular sliding path. This parameter is independent from
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Fig. 8 Periodic pin-on-flat arrangement as an approximation of three tribological tests (reproduced
from Lengiewicz and Stupkiewicz 2013)

the actual dimensions of the computational domain, the latter being restricted to the
neighbourhood of the contact zone in order to reduce the computational cost.

Two sets of material parameters are considered that correspond to the finite-
deformation and the small-deformation regime. Details are provided in Stupkiewicz
(2013). The deformed finite-element mesh and the contact pressure at the initial and
final time instant are shown in Fig. 9 for the case of the finite-deformation regime.

Thewear groove is here uniformalong the slidingdirectionwhich is a consequence
of quasi-steady-state conditions. Accordingly, the shape transformation mapping �

is also uniform along the sliding direction, and it is sufficient to prescribe it as
a two-dimensional field at one cross-section only. The number of corresponding
degrees of freedom in the finite-element model is thus a small fraction of the total
number of degrees of freedom, and the additional computational cost of solving
the coupled problem of deformation and shape evolution, as referred to the cost of
the deformation problem alone, is small. The fully coupled implicit scheme is thus
particularly attractive for this class of problems.

In the finite-deformation regime, conditional stability of the explicit scheme is not
a crucial issue, as already illustrated in the previous examples. The situation is again
very different in the case of the small-deformation regime. Figure10a presents the
corresponding evolution of the contact pressure obtained using the implicit scheme.
Initially, the Hertzian pressure distribution corresponds to the initial circular contact
zone. Once the wear groove forms, the contact zone becomes elongated and so is the
contact pressure distribution. A characteristic feature of the pressure distribution is
observed for t ≥ 100 s which results from the elastic contact interaction of the ball
with a nearly cylindrical groove. Specifically, the pressure profile is uniform along
the direction perpendicular to the sliding direction, except at the outer edge where
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Fig. 9 Rigid ball–elastic half-space problem in the finite-deformation regime: equivalent stress σeq
in the deformed configuration (top) and contact pressure (bottom) at (a) t = 0 and (b) t = 1000 s
(reproduced from Stupkiewicz 2013)

a small pressure spike is formed. This pressure distribution is shown in detail at the
bottom of Fig. 10a.

In this example, the finite-element mesh (not shown, see Stupkiewicz (2013))
consists of 65,600 hexahedral elements, and the total number of unknowns is 219,432
of which only about 3,400 are the displacement-like quantities corresponding to
the shape transformation mapping �. The additional computational cost related to
the application of the implicit time integration scheme is thus very small. This is
because the number of additional unknowns associatedwith the shape transformation
mapping is small compared to the total number of unknowns (less than 2%). The
benefit due to stability of the integration scheme is thus obvious. Specifically, it
has been checked that the critical time increment of the explicit scheme is here not
greater than 0.5–1s, thus at least 1000–2000 time steps would be needed to obtain
a stable solution using the explicit scheme. The corresponding computational cost
would thus be approximately two orders of magnitude higher than that of the implicit
scheme for which the simulation required only 26 time steps.
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Fig. 10 Rigid ball–elastic half-space problem in the small-deformation regime for the homoge-
neous (a) and inhomogeneous (b) half-space. Top figures show evolution of the contact pressure
(subsequent graphs correspond to t = 0, 50, 200, 500, 1000 s) and a detailed view of the contact
pressure at t = 1000 s is shown in the bottom figures. Results corresponding to the homogeneous
half-space are reproduced from Stupkiewicz (2013)

Additional results obtained for an inhomogeneous surface layer are also included
in Fig. 10b. Here, it is assumed that the elastic half-space is coated with a functionally
graded (FGM) layer in which the elastic modulus and the wear coefficient depend
on the depth. Both parameters increase linearly towards the surface starting from
their reference values characteristic for the homogeneous substrate. As the material
is removed and the wear groove is formed, the material characterized by a lower
elastic modulus and a lower wear coefficient is thus gradually exposed. The local
wear coefficient is thus non-uniform across the wear groove. As a result, the contact
pressure increases towards the groove edges where the wear coefficient is the highest,
see Fig. 10b.
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5.4 Finite Wear: Summary

In Sects. 3, 4 and 5, a class of non-standard finite-wear contact problems has been
discussed, and, in particular, illustrative numerical examples have been presented in
Sects. 4.4 and 5.

The distinctive feature of the formulation proposed by Lengiewicz and Stup-
kiewicz (2012) and described in Sect. 4 is that finite changes of configuration are
considered that result from both wear and deformation. This general setting implies
that some care must be taken when formulating the problem. For instance, a distinc-
tion is made between the nominal and the spatial wear rate, and the wear law, e.g., the
classical Archard law, must be adequately formulated, as discussed in Sect. 3. Also,
the finite configuration changes have consequences for the finite-element treatment,
here discussed in the context of the master-slave approach.

As the second important ingredient, the concept of two time scales has been
introduced with the fast time scale of the deformation subproblem and the slow time
scale corresponding to the shape evolution problem. Now, assuming separation of the
two time scales allows one to partially decouple the two subproblems. Importantly,
upon adopting this assumption, the deformation subproblem becomes a standard
frictional contact problemwhich is not affected by the shape changes due to wear and
thus can be solved using standard techniques of computational contact mechanics.
This has been illustrated by the reciprocating pin-on-flat problem in Sect. 5.1.

Finally, the concept of two time scales provides a framework for developing var-
ious computational strategies for time integration of the shape evolution problem.
The most common approach is based on applying the explicit forward-Euler scheme
which is easy to implement, but which suffers from conditional stability. Alterna-
tive strategies include the approach employing the unconditionally-stable implicit
backward-Euler scheme that has been studied in Sect. 4.4 and successfully applied
to more advanced problems in Sects. 5.2 and 5.3. In particular, in the case of the rigid
ball–elastic half-space problem, a high-quality solution of this three-dimensional
problem has been obtained at a relatively low computational cost thanks to the appli-
cation of the implicit scheme. To the best of our knowledge, similar results are not
available in the literature, and this is because the application of the usual explicit
time-integration scheme would be associated with a very high computational cost
due to the severe constraint on the time step, as imposed by the stability criterion.

6 Hydrodynamic Lubrication

6.1 Introduction to Soft-EHL

Hydrodynamic lubrication is a contact regime in which the contacting solids are
fully separated by a thin film of fluid (lubricant) such that the load is fully transferred
by the hydrodynamic pressure that develops in the fluid. When the hydrodynamic
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pressure is sufficiently high to elastically deform the contacting bodies, the thickness
of the gap between the bodies changes, which in turn influences the fluid flow. This
introduces the elasto-hydrodynamic coupling which is characteristic for the elasto-
hydrodynamic lubrication (EHL) regime. Finally, when one or both contacting bod-
ies are highly compliant (or soft), a relatively low pressure suffices to significantly
deform the bodies, and this lubrication regime is usually called soft-EHL. Alterna-
tively, it is called elastic-isoviscous regime, as the effect of the pressure dependence
of fluid viscosity is not essential, and the viscosity can be assumed constant, con-
trary to the elastic-piezoviscous (or hard-EHL) regime in which the related effects
are crucial. The focus of the remainder of this chapter is on the soft-EHL problems
and, in particular, on the related finite-deformation effects.

Representative examples of soft-EHL problems include elastomeric seals, wind-
screen wipers, wet tyres, and others. However, the soft-EHL regime is also charac-
teristic for many biotribological systems, such as synovial joints, contact-lens lubri-
cation, eye–eyelid contact, human skin contact, and oral processing of food (e.g.,
Dowson 1995; de Vicente et al. 2005; Adams et al. 2007; Jones et al. 2008). Clearly,
additional difficulties are encountered in the modelling of biotribological systems,
which are associated with the modelling of the complex constitutive behaviour of
soft tissues and biological fluids. The related effects are not discussed here.

In the context of hydrodynamic lubrication, the fluid flow in the thin channel
between the contacting bodies is usually described using the well-known Reynolds
equation (Reynolds 1886). The Reynolds equation is obtained from the Navier–
Stokes equation by integrating it over the film thickness under several assumptions
of which the most important one is that the film is thin so that the flow is laminar
and fluid inertia is negligible (Dowson and Higginson 1977; Hamrock et al. 2004).
The resulting partial differential equation, introduced in Sect. 6.3 below, relates the
hydrodynamic pressure (assumed constant across the film) and the film thickness. In
the usual setting, the film thickness is assumed known, and unknown is the pressure.
Transition from the Navier–Stokes equation to the Reynolds equation is associated
with a dimension reduction so that the Reynolds equation is formulated on the lubri-
cation surface, and the corresponding problem is thus two-dimensional in the general
three-dimensional case.

Two phenomena are considered in the modelling of an EHL problem, namely
the fluid flow in the thin channel between the contacting bodies and the elastic
deflections of the bodies. As mentioned above, the fluid subproblem is conveniently
modelled using the Reynolds equation that relates the hydrodynamic pressure and
the film thickness. At the same time, the film thickness is influenced by the elastic
deflections of the bodies as a result of the action of the hydrodynamic pressure. The
two subproblems are thus strongly coupled.

The EHL problem is thus, in fact, a particular kind of a fluid–structure interaction
(FSI) problem in which the fluid part is modelled using the Reynolds equation upon
adopting the thin-film approximation. In principle, the general FSI approach can
alternatively be applied, in which the Navier–Stokes equation is directly used for the
fluid part. This general approach offers several advantages by relaxing the assump-
tions behind the Reynolds equation. At the same time, whenever those assumptions
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are reasonably satisfied, the two approaches yield similar results (e.g., Almqvist et al.
2004; Hajishafiee et al. 2017), while the approach based on the Reynolds equation
is expected to be significantly more efficient due to the reduced number of degrees
of freedom and due to the ease of spatial discretization.

In the classical EHL theory, the solid subproblem is modelled within the linear-
elasticity framework. The elasticity problem is then usually formulated for a half-
space so that specialized, highly efficient solution methods can be applied (Dowson
andHigginson 1977;Hamrock et al. 2004).While both assumptions (linear elasticity,
half-space approximation) are well justified in the case of the hard-EHL problems,
this is not necessarily so in the case of the soft-EHL problems in which finite defor-
mations may be encountered. Furthermore, the size of the contact zone may be
comparable to the size of the contacting bodies so that the half-space approximation
is then not adequate.

In realistic conditions, the lubricant film is very thin so that surface roughness
may significantly influence the fluid flow and the overall behaviour of the contact
pair. However, the related effects are not discussed in the following, and the presen-
tation of the Reynolds equation is restricted to the case of smooth surfaces. Let us
only mention here that several approaches are readily available for the modelling
of roughness effects through the so-called flow factors introduced first by Patir and
Cheng (1978) and reinterpreted later in the rigorous framework of the homogeniza-
tion theory (Bayada and Faure 1989; Buscaglia and Jai 2000; Bou-Said and Kane
2004; Bayada et al. 2006; Almqvist et al. 2011; Waseem et al. 2017).

6.2 Lubrication Surface and Film Thickness

The Reynolds equation is usually formulated on a planar lubrication surface. Below,
a more general form is provided for a non-planar surface. The presentation is here
restricted to a time-independent lubrication surface, while the general case of a time-
dependent lubrication surface is discussed in detail in the recent work of Temizer
and Stupkiewicz (2016).

Let us consider the flow of a fluid (lubricant) in a thin channel between two
physical surfaces γ

(i)
l , i = 1, 2, that represent the contact boundaries of the two

contacting bodies in the current configuration, see Fig. 11. The physical surface
γ

(i)
l is parametrized by the convected curvilinear coordinates ξ (i),α , α = 1, 2, so
that the position of a material point in the current configuration is represented by
x(i) = x(i)(ξ (i), t) for x(i) ∈ γ

(i)
l .

We also introduce the lubrication surface S on which the lubricant flow will be
described. It is assumed that the lubrication surface S is located between the physical
surfaces γ

(i)
l . This imposes a constraint on the deformation (motion) of the physical

surfaces because S is here assumed time-independent. Actually, the case of the time-
independent lubrication surface is most relevant when one of the physical surfaces
is rigid so that the lubrication surface can be identified with this rigid surface.
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Fig. 11 Physical surfaces γ
(i)
l and lubrication surface S

Note that there is some ambiguity in the choice of the location of the lubrication
surface S between the physical surfaces γ

(i)
l when the distance between the physical

surfaces is finite (though still sufficiently small so that the Reynolds approximation
holds). The results of the computational study reported by Stupkiewicz et al. (2016),
see also Fig. 23, show that the solution of the EHL problem is not much afftected by
the location of the lubrication surface, and this aspect is not discussed here in detail.

Position of a point on the lubrication surfaceS is denoted byy, and parametrization
ofS by curvilinear coordinates η = {η1, η2} is introduced so that y = y(η) for y ∈ S.
This parametrization introduces the tangent basis gα and the co-basis gα such that

gα = ∂y
∂ηα

, gα · gβ = δα
β , α, β = 1, 2, (32)

where δα
β is the Kronecker delta. Let ν denote the unit normal to S, pointing in the

direction from γ
(2)
l to γ

(1)
l , thus gα · ν = 0.

Consider now a scalar field φ = φ(η) defined on S. The surface gradient of φ

can be expressed as

gradS φ = ∂φ

∂ηα
gα, (33)

where the repeated (Greek) indices are implicitly summed over. It follows that the
surface gradient of a scalar field is a vector tangent to S. Similarly, the surface
divergence of a vector field φ = φ(η) defined on S can be expressed as

divS φ = ∂φ

∂ηα
· gα. (34)

For future use, we also recall the surface-divergence theorem for a continuously
differentiable tangential vector field φ (thus φ · ν = 0),
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∫
S
divS φ ds =

∫
∂S

φ · m dl, (35)

where m is a unit vector tangent to S that is simultaneously an outward normal to
∂S.

One of the basic assumptions in the derivation of the Reynolds equation is that
the thickness of the lubricant film, denoted by h = h(η, t), is small compared to the
dimensions of the lubrication surface S. Even though the present formulation admits
finite deformations of the contacting bodies, the above assumption restricts those
deformations such that the film thickness is sufficiently small so that the Reynolds
approximation holds. In typical conditions, the film thickness is indeed small except
in the inlet and outlet zones in which the two contacting surfaces diverge and the
film thickness may no longer be small. However, the hydrodynamic pressure buildup
is concentrated in the zone where the film thickness is relatively small (note that
the Poiseuille term discussed below depends on h3). Accordingly, even if the film
thickness is relatively large in the inlet and outlet zones, and thus the assumption of
small film thickness may be violated there, the related effect on the solution in the
actual contact zone is not substantial.

Since the fluid film thickness is here considered finite, though small, there is some
ambiguity in defining its measure. In the following we adopt the definition based on
the inverse-orthogonal projection, as illustrated in Fig. 11, but alternative options
are also possible (cf. Temizer and Stupkiewicz 2016). The film thickness h is thus
decomposed into the measures h(i) of the gap between the physical surfaces γ

(i)
l and

the lubrication surface S,
h = h(1) − h(2), (36)

where h(i) is defined by the inverse-orthogonal projection of a point y ∈ S onto γ
(i)
l

along the normal ν,
h(i) = (x̄(i) − y) · ν. (37)

Here, x̄(i) = x(i)(ξ̄ (i), t) is the inverse-orthogonal projection of y onto γ
(i)
l , defined

such that x̄(i) = y + h(i)ν, and a bar over the symbol denotes the quantity evaluated
at the projection point.

6.3 Reynolds Equation

The Reynolds equation expresses the mass balance of the fluid contained in the thin
channel between the physical surfaces γ

(1)
l and γ

(2)
l (e.g., Hamrock et al. 2004). For a

time-independent non-planar lubrication surface S, the mass balance equation takes
the following form:

∂(�h)

∂t
+ divS(�q) = 0, (38)
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where q is the fluid flux vector tangent to S, to be specified below, and � is the
density.

For an incompressible fluid (relevant for the soft-EHL), the density � is constant
and the Reynolds equation expresses the balance of volume, viz.

∂h

∂t
+ divS q = 0. (39)

In the Reynolds approximation of the fluid flow within the thin film, the fluid
flux q comprises two components: the Poiseuille term is proportional to the pressure
gradient and corresponds to the parabolic profile of the fluid velocity across the film,
while the Couette term is proportional to the average tangential velocity, see Fig. 12.
Specifically, the fluid flux is given by the following expression,

q = − h3

12μ
gradS p + hvT , (40)

where p is the pressure, vT is the mean tangential velocity of the two physical
surfaces, andμ is the fluid viscosity, which is here assumed constant, but its pressure-
dependence can be easily accounted for. It is recalled that the Reynolds equation is
formulated on the lubrication surfaceS so that all quantities depend on the curvilinear
coordinates η and time, thus, for instance, p = p(η, t).

In view of the kinematics introduced by the inverse-orthogonal projection and by
the definition of the film thickness h, Eqs. (36)–(37), the mean tangential velocity
vT is defined as

vT = 1

2

(
v̄(1)
T + v̄(2)

T

)
, (41)

where v̄(i)
T = v(i)(ξ̄ (i), t) is the tangential velocity of the physical surface γ

(i)
l at the

projection point x̄(i),

flowflow
Couette Poiseuille

v̄(1)
T

v̄(2)
T

Fig. 12 Fluid velocity across a thin channel: Couette and Poiseuille contributions
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v(i)
T = v(i) − v

(i)
N ν, v(i) = ∂x(i)

∂t
, v

(i)
N = v(i) · ν. (42)

The Reynolds equation (39)–(40) is accompanied by the standard essential and
natural boundary conditions, namely

p = p∗ on ∂pS and q · m = q∗ on ∂qS, (43)

where p∗ is the pressure prescribed on the boundary ∂pS, q∗ is the flux prescribed
on the boundary ∂qS, and m is a unit vector tangent to S and normal to ∂S, pointing
outwards of S. Note that cavitation, if considered, introduces additional boundary
conditions on an unknown cavitation boundary, see Remark 3.1.

The first term in the Reynolds equation (39) is the time derivative of the film
thickness h = h(η, t). This derivative is evaluated at fixedη and, in viewof Eqs. (36)–
(37), it involves differentiation of the position x̄(i) of the projection point (for fixed
η). Note that the coordinates ξ̄ (i) of the projection point depend on time so that we
have x̄(i) = x(i)(ξ̄ (i)(η, t), t). The time derivative of h(i) at fixed η is thus equal to

∂h(i)

∂t
=

(
v̄(i) + ∂x(i)

∂ξ (i),α
˙̄ξ (i),α

)
· ν = v̄

(i)
N + (τ̄ (i)

α · ν) ˙̄ξ (i),α, (44)

where τ (i)
α denotes the tangent basis associated with the parametrization of the phys-

ical surface γ
(i)
l by ξ (i), and we have

∂h

∂t
= v̄

(1)
N − v̄

(2)
N +

(
τ̄ (1)

α
˙̄ξ (1),α − τ̄ (2)

α
˙̄ξ (2),α

)
· ν. (45)

Note that, in general, τ̄ (i)
α · ν 
= 0 since the physical surfaces are not necessarily

parallel to the lubrication surface. It follows from Eq. (45) that the time derivative
of the film thickness h involves not only the normal velocities v̄

(i)
N of the physical

surfaces, but also the term related to the motion of the physical surfaces that are
(locally) inclined with respect to the lubrication surface. This is further discussed in
Sect. 6.6 in the case of a planar lubrication surface.

For future use, we provide here the formula for the surface traction acting on the
physical surface γ

(i)
l :

t(i) = −pn(i) − μ

h

(
v̄(i)
T − v̄(i±1)

T

)
− h

2
gradS p, (46)

where n(i) is the unit outward normal to γ
(i)
l . The first term is the normal traction due

to the hydrodynamic pressure. The second and the third term are due to the viscous
shear stresses in the fluid that act on the solid surfaces (Hamrock et al. 2004, Sect. 7.3).
Specifically, the second term results from the Couette flow, and v̄(i±1)

T denotes here
the tangential velocity of the countersurface, i.e. i ± 1 = 2 for i = 1 and i ± 1 = 1
for i = 2. Accordingly, the second term is proportional to the tangential relative
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velocity, and it acts on the two surfaces in the opposite direction. The third term
results from the Poiseuille flow. This term is proportional to the pressure gradient,
and it acts on the two surfaces in the same direction.

6.4 Weak Form of the Reynolds Equation

The weak form of the Reynolds equation (39) is obtained by following the standard
procedure. Equation (39) is first multiplied by a test function δp, which vanishes on
∂pS, and integrated over the lubrication surface S, thus

∫
S

(
∂h

∂t
+ divS q

)
δp ds = 0 ∀ δp. (47)

By using the identity

divS(q δp) = (divS q)δp + q · gradS δp (48)

and by applying the divergence theorem (34) to the term divS(q δp), Eq. (47) is then
transformed to the following weak form,

∫
S

(
∂h

∂t
δp − q · gradS δp

)
ds +

∫
∂qS

q∗δp dl = 0 ∀ δp, (49)

where the boundary integral over ∂pS vanishes because the test function δp vanishes
on ∂pS.

6.5 Cavitation

Cavitation is an important phenomenon in hydrodynamic lubrication, although, for
highly compliant solids, the effect of cavitation on friction is limited (Persson and
Scaraggi 2009). The popular mass-conserving cavitation model is briefly presented
below. This model is often referred to as the JFO model as it follows the pioneering
work of Jakobsson and Floberg (1957) andOlsson (1965). The formulation presented
below is based on that developed by Lengiewicz et al. (2014), where more details
can found, including the references to the earlier work.

When cavitation occurs, the lubrication surface S is divided into the full-film
region S f and the cavitated region Sc with the cavitation boundary, denoted by �,
separating the two regions, cf. Fig. 13. The position of the cavitation boundary �

constitutes a part of the solution hence the cavitation problem belongs to the class of
free-boundary problems.
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Fig. 13 Cavitation: full-film
region S f and cavitated
region Sc mΣ

Sc

Sf

m

∂S

Σ
vT

Cavitation occurs when the hydrodynamic pressure drops to the cavitation pres-
sure pcav, and the pressure is constant and equal to the cavitation pressure p = pcav
in the cavitated region, viz.

p ≥ pcav on S and p = pcav on Sc. (50)

In the cavitated region, the fluid is a mixture of liquid, vapor, and gas, and its density
� is thus lower than the density �0 of the intact fluid,

� ≤ �0 on S and � = �0 on S f . (51)

Since the focus is here on soft-EHL problems, the intact fluid is assumed incompress-
ible so that the density � = �0 is constant in the full-film region S f . Introducing the
relative density �̄ = �/�0 and assuming for simplicity that pcav = 0, conditions (50)
and (51) can be compactly written in the form of the following complementarity
conditions,

p ≥ 0, �̄ − 1 ≤ 0, p(�̄ − 1) = 0 on S, (52)

which resemble the unilateral contact conditions (4).
Since the density is no longer constant, the Reynolds equation is now written in

the following form, cf. Eq. (38),

∂(�̄h)

∂t
+ divS(�̄q) = 0, (53)

In the full-film region S f the flux is defined by Eq. (40), while in the cavitated region
Sc the flux is assumed to comprise only the Couette term, thus

q = hvT on Sc, (54)

which can be formally obtained from Eq. (40) by putting gradS p = 0, in agreement
with the assumption that the pressure is constant in in the cavitated region.

The mass-balance equation (53) is accompanied by the continuity condition that
enforces the mass balance on the cavitation boundary �,
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(�̄+q+ − �̄−q−) · m� = 0 on �, (55)

wherem� is the unit vector tangent toS, normal to�, and oriented outwards fromSc.
The superscripts ‘+’ and ‘−’ denote the limit values of the corresponding quantities
as the cavitation boundary � is approached from the full-film and cavitated side,
respectively.

The weak form of the Reynolds equation combined with the above mass-
conserving cavitation model can by obtained by following the procedure outlined in
Sect. 6.4, applied to the full-film region S f and to the cavitation region Sc separately,
and by exploiting the continuity condition (55). This leads to the following weak
form ∫

S

(
∂(�̄h)

∂t
δp − �̄q · gradS δp

)
ds = 0 ∀ δp, (56)

where it has been additionally assumed that the Dirichlet boundary condition (43)1 is
prescribed on the whole boundary ∂S so that the boundary term vanishes. However,
this form is not suitable for the finite-element implementation because it is not com-
patible with the upwind scheme that is needed to stabilize the advection equation in
the cavitated region, see Remark 3.2 below.

An alternative weak form is obtained by applying the divergence theorem only
to the pressure-gradient part of the flux q, which yields the following weak form
(Lengiewicz et al. 2014, Appendix A)

∫
S

(
�̄h3

12μ
gradS p · gradS δp +

(
divS(�̄vT h) + ∂(�̄h)

∂t

)
δp

)
ds

+
∫

�

(�̄+ − �̄−)hvT · m� δp dl = 0. (57)

We note that the last term in the above weak form involves the jump of the rela-
tive density �̄ along the cavitation boundary �. Actually, the relative density �̄ is
continuous on the rupture boundary and suffers discontinuity on the reformation
boundary, see Remark 3.1. Considering that the position of the cavitation boundary
� is unknown, the jump term in the weak form (57) is an undesired feature from
the point of view of finite-element implementation. In the approach developed by
Lengiewicz et al. (2014), a continuous finite-element approximation of the relative
density �̄ (actually, of the void fraction λ = 1 − �̄) has been introduced so that the
jump term vanishes, and a direct finite-element treatment is possible. The jump of �̄

on the reformation boundary is then approximated by a continuous solution with a
high gradient.

The lubrication and cavitation problem is governed by the weak form (57) and
by the complementarity conditions (52). After a small modification, the problem
can be formulated as a linear complementarity problem (LCP) that can be solved
using the methods available for this class of problems (Giacopini et al. 2010). In the
computational scheme developed by Lengiewicz et al. (2014), the complementarity
conditions (52) are enforced by introducing a non-smooth constraint function that
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relates two independent unknown fields, the pressure p and the relative density
�̄. This two-field formulation can be transformed to a single-field formulation in
which a single variable is used, along with the complementarity conditions (57),
to represent the two physical fields, see also Hajjam and Bonneau (2007). A single-
field formulation is also employed in the classical Elrod–Adams cavitation algorithm
(Elrod and Adams 1974; Elrod 1981) in which the fluid is assumed compressible in
the full-film region so that the pressure and the density are related by a one-to-one
function. The formulation outlined above is applicable for an incompressible fluid.

Remark 3.1 The mass-flux continuity condition (55) and the cavitation condition
(52) imply the well-known boundary conditions of the JFO theory. Specifically, on
the film rupture boundary, where vT · m� < 0, the relative density �̄ is continuous
so that we have

p+ = 0 and (gradS p)+ · m� = 0. (58)

On the reformation boundary, where vT · m� > 0, the relative density �̄ suffers
discontinuity which, in view of condition (55), implies discontinuity of the pressure
gradient, thus

p+ = 0 and
�̄+h3

12μ
(gradS p)+ · m� = (�̄+ − �̄−)hvT · m�. (59)

The formulation developed by Lengiewicz et al. (2014) and outlined above is based
on the general continuity condition (55), and the boundary conditions (58) and (59)
are not employed directly.

Remark 3.2 In the cavitated region, the lubrication and cavitation problem becomes
a pure advection problem because the pressure gradient vanishes in that region
in view of the condition (50)2. The standard Galerkin finite-element formulations
are not suitable for such problems (Zienkiewicz and Taylor 2000), and upwinding
schemes are usually used to stabilize the problem. However, the popular streamline
upwind/Petrov–Galerkin (SUPG) method (Brooks and Hughes 1982) is not effective
in the case of the weak form (56), because it involves the test-function gradient,
which is not affected by the upwind correction when low-order (linear) elements are
used. Accordingly, the alternative weak form (57) is needed, for which the SUPG
method works well, see Lengiewicz et al. (2014) for details.

6.6 Traditional Form for a Planar Lubrication Surface

The Reynolds equation is usually formulated on a planar lubrication surface, which
also includes the case of an unwrapped cylindrical surface of a journal bearing.
The compact vector notation employed so far in Sect. 6 is not popular either. For
completeness, the traditional form of the Reynolds equation is thus included below.
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Assume thus that the physical surface γ
(2)
l is planar and so is the lubrication

surface S which is represented by a domain in the (x, y)-plane so that the normal ν
is aligned with the z-axis. The Reynolds equation (39)–(40) can then be written in
the following form:

∂

∂x

(
h3

12μ

∂p

∂x

)
+ ∂

∂y

(
h3

12μ

∂p

∂y

)

= ∂

∂x

(
h

2

(
v(1)
x + v(2)

x

)) + ∂

∂y

(
h

2

(
v(1)
y + v(2)

y

)) + ∂h

∂t
, (60)

where v(i)
x , v(i)

y and v(i)
z are the components of the velocity v(i). The time derivative

of the film thickness h is now given by the following formula:

∂h

∂t
= v(1)

z − v(2)
z − v(1)

x

∂h

∂x
− v(1)

y

∂h

∂y
, (61)

see (Hamrock et al. 2004, Sect. 7.3). As in the general case, cf. Eq. (45), in addition
to the contribution of the normal velocity components v(i)

z , ∂h/∂t comprises the term

related to the tangential (in-plane) motion of an inclined physical surface γ
(1)
l . Note

that γ
(2)
l is assumed to be planar and parallel to the (x, y)-plane hence it does not

contribute to ∂h/∂t .

7 Formulation of the Soft-EHL Problem

This section presents the formulation and the finite-element treatment of the soft-
EHL problem. The formulation and its implementation are restricted to steady-state
conditions, and one of the contacting bodies is assumed to be rigid and is repre-
sented by a rigid surface. Finite deformations of the other body, which is assumed
hyperelastic, are fully accounted for.

7.1 Solid Part

Consider first the solid subproblem formulated for the hyperelastic body (i = 1, the
index is omitted in the following), the other body (i = 2) is assumed to be rigid.
In the finite-deformation framework, the reference configuration � and the current
configurationω are introduced alongwith the deformationmapping x = ϕ(X), where
X ∈ � and x ∈ ω. The virtual work principle, i.e. the weak form of equilibrium, has
the standard form,
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Gs(ϕ, δϕ; p) =
∫

�

P · Grad δϕ dV −
∫

�l

T · δϕ dS = 0 ∀ δϕ, (62)

where �l is the lubricated contact surface in the reference configuration and T is the
nominal surface traction resulting from the hydrodynamic interaction on�l , which is
here, for simplicity, assumed to be the only loading. The formulation can be extended
in the standard manner to include other loads, such as prescribed surface traction,
body forces, unilateral contact, etc. The pressure field p has been introduced as an
additional argument of the functional Gs to indicate that the solid subproblem is
coupled to the fluid subproblem through the dependence of the traction T on p.

The virtual work principle can be written in an equivalent form with the traction
term evaluated in the current configuration and expressed in terms of the spatial
surface traction t,

Gs(ϕ, δϕ; p) =
∫

�

P · Grad δϕ dV −
∫

γl

t · δϕ ds = 0 ∀ δϕ, (63)

where γl = ϕ(�l) is the lubricated contact surface in the current configuration, and
the spatial (Cauchy) traction t is given by Eq. (46). For a hyperelastic solid, the
first Piola–Kirchhoff stress P is governed by the elastic strain energy functionW (F)

according to

P = ∂W

∂F
, F = Grad ϕ, (64)

where F is the deformation gradient.

7.2 Fluid Part

As discussed in Sect. 6, the fluid subproblem is governed by the Reynolds equation
that is formulated on the lubrication surface S. When one of the physical surfaces
is rigid, as assumed here, it is convenient to define the lubrication surface as the
projection of the deformed lubricated contact surface γl onto the rigid countersurface,
thus S = P(γl), where P(x) denotes the orthogonal projection of point x ∈ γl onto
the rigid countersurface, see Fig. 14. It is stressed that the deformed lubricated contact
surface γl = ϕ(�l) depends on the solution of the solid subproblem and so does S.

As a special case of the general weak form (49), the weak form of the steady-state
Reynolds equation with the Dirichlet boundary condition prescribed on the whole
boundary, i.e. ∂pS = ∂S, takes the following simple form:

G f (p, δp;ϕ) =
∫
S

q · gradS δp ds = 0 ∀ δp, (65)
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rigid surface

deformable surface

rigid surface

deformable surface

x

S = P(γl)

γl

xi

P(xi)

Sh = P(γh
l )

P(x)

γh
l

Fig. 14 The solution-dependent lubrication surface S (Sh) is defined by the projection of the
lubricated contact surface γl (γ h

l ) onto the rigid countersurface: continuum (top) and discretized
(bottom) setting. The dashed line in the top figure indicates an intermediate surface that could also
be adopted as the lubrication surface, see Stupkiewicz et al. (2016) and Temizer and Stupkiewicz
(2016)

where ϕ has been introduced as an additional argument of the functional G f to
indicate the respective coupling, e.g., through the film thickness h.

The cavitation is not considered here to make the formulation of the coupled
soft-EHL problem possibly simple. In fact, adding the cavitation does not change
the general structure of the problem, and it is included in the illustrative examples
provided in Sect. 8.

7.3 Elasto-Hydrodynamic Coupling

The strong coupling of the two subproblems introduced above constitutes the essen-
tial feature of the EHL problems. Specifically:

(i) the lubricant film thickness h, which influences the lubricant flow through the
Reynolds equation, depends on the deformation of the solid, cf. Eqs. (36)–(37);

(ii) the load, i.e. the surface traction t in the virtual work principle (63), depends on
the hydrodynamic pressure p and its gradient, cf. Eq. (46);

(iii) the lubrication surfaceS, onwhich theReynolds equation is formulated, depends
on the deformation of the solid through the projection S = P(γl).

The first and the second coupling are characteristic for all EHL problems. The third
coupling is solely due to the finite-deformation effects, and it is not present in the
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small-deformation framework that is usually adopted in the EHL theory. Note also
that the effect of the shear stresses on the deformation of the solid is usually neglected
in the EHL theory, and only the pressure loading is considered. However, in soft-EHL
problems, this assumption is not necessarily valid, see Stupkiewicz and Marciniszyn
(2009). The couplings listed above have already been symbolically indicated in the
weak forms (63) and (65) by including p and ϕ as the arguments of the functionals
Gs and G f , respectively.

7.4 Finite-Element Treatment

Following the standard approach, the finite-element approximation of the unknown
fields of placement ϕ and pressure p is introduced,

ϕh =
∑
i

N (ϕ)

i ϕi , ph =
∑
i

N (p)
i pi , (66)

whereϕi = Xi + ui denotes the placement of the i-th node, N (ϕ)

i is the corresponding
basis function, Xi is the position of the node in the reference configuration and ui is
the nodal displacement, which is the actual unknown in the standard finite-element
formulation. Similarly, pi denotes the nodal pressure and N (p)

i the corresponding
basis function. Recall that the pressure field is defined on the lubrication surface S
while the displacement is defined in the bulk domain �. In the Galerkin method, the
test functions are approximated using the same basis functions, thus

δϕh =
∑
i

N (ϕ)

i δϕi , δph =
∑
i

N (p)
i δpi . (67)

Discretized weak forms are now obtained by introducing the approximations
(66)–(67) into the weak forms (63) and (65), viz.

Gh
s (U, δU; P) = Gs(ϕ

h, δϕh; ph) = 0 ∀ δU, (68)

and
Gh

f (P, δP; U) = Gs(p
h, δph;ϕh) = 0 ∀ δP, (69)

where U and P denote the global vectors of unknown nodal displacements and
pressures, respectively. Since Gh

s is linear in δU and Gh
f is linear in δP we have

Gh
s (U, δU; P) = Rs(U; P) · δU, Gh

f (P, δP; U) = R f (P; U) · δP, (70)

so that the problem can be written in the residual form,
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Rs(U; P) = 0, R f (P; U) = 0, (71)

or, with a view to applying a monolithic solution scheme, in the following form,

R̄(Ū) = 0, R̄ = {Rs, R f }, Ū = {U, P}. (72)

In the monolithic scheme, the nonlinear equation (72) is solved simultaneously
with respect to all unknowns, and the Newton method is used here for that purpose.
The tangent matrix required by the Newton method can be efficiently obtained using
the automatic differentiation (AD) technique (Korelc 2009; Korelc and Wriggers
2016). Since Eq. (72) governing the coupled problem is highly nonlinear, conver-
gence of the iterative Newton scheme cannot be guaranteed. This problem can be
circumvented by applying a kind of continuation method in which the desired solu-
tion is obtained by gradually increasing the load (or by varying another influential
parameter) and by using the converged solution as the initial guess for the subse-
quent solution corresponding to the increased load. This approach proved successful
in solving a wide range of fully-coupled finite-deformation soft-EHL problems (e.g.,
Stupkiewicz and Marciniszyn 2009; Stupkiewicz et al. 2016); selected examples are
presented in the next section.

8 Soft-EHL: Illustrative Examples

Three illustrative examples of the soft-EHLproblems that involve finite deformations
of the solid are briefly described in this section. The examples are taken from our
earlier work (Stupkiewicz 2009; Stupkiewicz et al. 2016), where more details can be
found.

8.1 Reciprocating O-Ring Seal

In this section, selected results are presented for the reciprocating elastomeric O-ring
seal that has been studied in detail by Stupkiewicz (2009), see also Stupkiewicz and
Marciniszyn (2009). Due to the simple geometry (circular cross section), the O-ring
seal is a suitable benchmark problem, and it is frequently studied in various contexts
(e.g., Fatu and Hajjam 2011; Yang and Salant 2011; Shin et al. 2016).

The general geometrical setup of a hydraulic seal is shown in Fig. 15. Due to the
action of the sealed pressure, the seal is compressed between the housing and the rod,
and this is accompanied by visibly finite deformations, see Fig. 16. The reciprocating
motion of the rod results in the buildup of the hydrodynamic pressure at the rod–
seal interface, and the analysis below is limited to the steady-state hydrodynamic
lubrication during the outstroke (the rod moves towards the air side, U > 0) and
instroke (the rod moves towards the sealed pressure side, U < 0). The unilateral
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Fig. 15 Reciprocating O-ring seal: schematic of the problem

ps = 0 ps = 5MPa

Fig. 16 O-ring seal: finite-element mesh (mesh density 2) in the undeformed configuration (left)
and in the deformed configuration for two values of the sealed pressure ps . The housing and the
rod are rigid and are represented by solid lines (reproduced from Stupkiewicz 2009)

contact with the housing is also included in the model, and both the rod and the
housing are assumed to be rigid. Axial symmetry with respect to the rod axis is
assumed so that the problem is two-dimensional, and thus the Reynolds equation
becomes one-dimensional.

The seal is assumed to be hyperelastic, governed by the Mooney–Rivlin material
model. All the geometrical, material and process parameters can be found in Stup-
kiewicz (2009). Note that the maximum sealed pressure, ps = 5MPa, exceeds the
shear modulus of the seal,μ = μ1 + μ2 = 3.66MPa. Five mesh densities have been
used in the computations with the total number of unknowns ranging from about
1,000 for mesh density 1 to 190,000 for mesh density 16. The mass-conserving cav-
itation model, cf. Sect. 6.5, is not employed in this example. Instead, the cavitation
condition is approximately enforced using the penalty method (Wu 1986).

Figure17 shows the hydrodynamic pressure and the film thickness for two values
of the sealed pressure ps . It can be seen that a characteristic ridge is formed at outlet,
i.e. on the right (left) in the case of the outstroke (instroke). The pressure profiles
corresponding to the outstroke and instroke are very similar except for fine details
at the inlet and outlet. In particular, a small pressure dimple is observed at the outlet
during the instroke, while, at the same location, which corresponds to the inlet during
the outstroke, the pressure increases monotonically. A similar dimple is not formed
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Fig. 17 O-ring seal: the effect of the sealed pressure ps on the hydrodynamic pressure p (left)
and film thickness h (right) for the rod speed U = 100mm/s (mesh density 16). Position x = 0
corresponds to the position of the center of the cross section in the undeformed configuration, see
Fig. 16 (reproduced from Stupkiewicz 2009)

Fig. 18 O-ring seal: convergence with mesh refinement in terms of the pressure p (left) and of the
film thickness h (right) (reproduced from Stupkiewicz 2009)

at the outlet during the outstroke because the pressure would then decrease below
zero, which is prevented by the cavitation condition.

As mentioned above, five mesh densities have been used in the computations to
check the performance of the computational scheme and convergence with mesh
refinement. In particular, it has been observed that spurious oscillations of pressure
and film thickness may occur in some situations. This is illustrated in Fig. 18 which
shows convergence of the solution with mesh refinement. The oscillations of the film
thickness have a zigzag-like appearancewhich is related to the piecewise-linear finite-
element approximation of the displacement field on the boundary. The approximation
of the hydrodynamic pressure is here piecewise-polynomial and hence the wavy
appearance of the pressure oscillations.
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Fig. 19 O-ring seal: effect of the rod speed U and mesh density on the film thickness h for mesh
density 4 (left) and mesh density 8 (right). The more severe lubrication conditions, the finer mesh
is needed to avoid spurious oscillations (reproduced from Stupkiewicz 2009)

Different orders of approximation of the pressure have been tested in a quest for
a remedy to the spurious oscillations. However, the only remedy found is the mesh
refinement, as can be observed inFig. 18. In the case shown inFig. 18 (outstroke, ps =
1MPa, U = 400mm/s), an oscillation-free solution is obtained for mesh density 4
or higher.

The spurious oscillations are further illustrated in Fig. 19 showing the effect of
the rod speed and mesh density. It can be seen that the higher the mesh density, the
lower the rod speed at which the oscillations appear. Figure19 shows the results for
mesh densities 4 and 8; further reduction of the oscillations is obtained for mesh
density 16, see Fig. 15c in Stupkiewicz (2009). This trend is also visible in the other
cases studied.

The general conclusion resulting from the convergence studies is that the spurious
oscillations occur in severe lubrication conditions, and the severer the lubrication
conditions, the finer mesh is necessary to avoid the oscillations. This applies to the
finite-element treatment of the Reynolds equation, as illustrated above, but also to
the discontinuous Galerkin method that has also been tested, see Stupkiewicz (2009).
The low speed of the rod, which results in a small film thickness, is the main factor
that promotes the oscillations. Severe conditions are also associated with higher
sealed pressures. Interestingly, a solution with mild oscillations may still provide a
reasonable estimation of the actual profile of the pressure and the film thickness once
the oscillations are filtered out, see Fig. 18.

8.2 Rigid Cylider Sliding Against a Coated Layer

In this example, a rigid cylinder is sliding against a soft layer with a harder thin coat-
ing, see Fig. 20. A hyperelastic neo-Hookean model is adopted for both the layer and
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rigid substrate

rigid cylinder

elastic coating

elastic layer

Hlayer

Hcoating

2R

W

V = 2U

Fig. 20 Rigid cylider sliding against a coated layer (reproduced from Stupkiewicz et al. 2016)

Fig. 21 Coated layer: detail
of the deformed
finite-element mesh for two
values of the load W . A
much finer mesh is used in
the actual computations
(reproduced from
Stupkiewicz et al. 2016)

W = 0.1N/mm

W = 1N/mm

the coating. Steady-state hydrodynamic lubrication is studied in a coordinate system
attached to the cylinder. A kind of arbitrary Lagrangian-Eulerian (ALE) description
is thus adopted for the layer in which the material flows through the (deformed)
finite-element mesh. However, since the layer is elastic, the solid formulation is
standard; only the local velocity v of the material points must be adequately deter-
mined in terms of the nominal sliding speed V according to v = FV, where F is the
local deformation gradient. For the material and geometrical parameters used in the
computations, the reader is referred to Stupkiewicz et al. (2016).

Figure21 shows the deformation pattern induced by the lubricated contact. Note
that, for better visualization, a coarsemesh is shown inFig. 21, and a significantlyfiner
mesh has been used in the actual computations. Figure22 shows the hydrodynamic
pressure and the film thickness corresponding to the load W varying between 0.1
and 1N/mm. To illustrate the effect of finite deformations, which are clearly visible
in Fig. 21, the results obtained using the geometrically linear model, i.e. according to
the classical EHL theory, are also included in Fig. 22 (indicated by dashed lines). It
can be seen that both the pressure and the film thickness are not predicted correctly
when the finite-deformation effects are neglected, particularly at the higher loads.
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Fig. 22 Coated layer: the hydrodynamic pressure p (left) and the film thickness h (right) as a
function of the load W (nominal entrainment speed μU = 0.1N/m). Dashed lines indicate the
results of the geometrically linear model (reproduced from Stupkiewicz et al. 2016)

Fig. 23 Coated layer: influence of the position of the lubrication surface S (specified by parameter
α, see text) on the pressure p (left) and on the film thickness h (right) forμU = 0.1N/m (reproduced
from Stupkiewicz et al. 2016)

As described in Sect. 7.4, the lubrication surfaceS is here defined as the projection
on the lubricated contact surface γl onto the rigid countersurface, i.e. S = P(γl).
Alternatively, surface γl itself (i.e. S = γl) or an intermediate surface (such as that
indicated by the dashed line in Fig. 14) could be chosen as the lubrication surface. The
effect of this choice is small, as illustrated in Fig. 23. Parameter α = 0 corresponds
to S = P(γl) and α = 1 corresponds to S = γl . Intermediate values of α are also
possible, see Stupkiewicz et al. (2016), but the results are not sensitive to the variation
in α, as can already be deduced from Fig. 23.
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8.3 Elastic Ball Sliding Against a Rigid Plane

In this last example, a hyperelastic ball is slid against a rigid plane in the steady-
state hydrodynamic lubrication regime. A constant normal force W is applied at the
horizontal mid plane, which is allowed to move vertically as a rigid plane. Further,
the symmetry with respect to the vertical mid plane aligned with the sliding direction
is exploited so that only one quarter of the ball is included in the model. The setup
corresponds to the ball-on-disc test under pure sliding, assuming that the curvature of
the sliding path is neglected. The material and geometrical parameters can be found
in Stupkiewicz et al. (2016).

The finite-element mesh, shown in Fig. 24, has been refined in the vicinity of
the contact zone, with the finest mesh along the trailing edge of the contact zone.
Figure24 shows also the σzz component of the Cauchy stress in the deformed con-
figuration. At the highest load W = 40N, the radius of the contact zone is equal to
approximately 50% of the ball radius. The ball is thus deformed in the finite-strain
regime, well beyond the Hertzian contact conditions.

Maps of the lubricant film thickness h are shown in Fig. 25 for selected values of
the loadW and entrainment speedU , the latter defined as one half of the sliding speed
V , thusU = V/2. The entrainment speed is here provided in the form of the product
μU , μ being the fluid viscosity, since the entrainment speed enters the Reynolds
equation only through this product. Hence, the effect of increasing the sliding speed
(and the entrainment speed) by the factor of two is the same as if the viscosity was
increased by the factor of two.

It can be seen in Fig. 25 that a characteristic ridge is formed along the trailing edge
of the contact zone. At lower loads and at higher entrainment speeds, the point of the
minimum film thickness is located on the symmetry axis, at the rear of the contact
zone. Otherwise, there are two minima located at the side lobes. These qualitative
features agree well with the results obtained using the classical EHL theory (Hooke
1995).

Fig. 24 Elastic ball sliding against a rigid plane: the finite-element mesh (left) and the σzz com-
ponent of the Cauchy stress (in MPa) in the deformed configuration at the load W = 40N (right).
The inlet is on the left (reproduced from Stupkiewicz et al. 2016)
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µU = 0.078 N/m µU = 0.78 N/m µU = 7.8 N/m
W

=
5
N

W
=

10
N

W
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N

Fig. 25 Elastic ball: maps of the lubricant film thickness h (in mm, position in mm, inlet on the
left) (reproduced from Stupkiewicz et al. 2016)

The profiles of the pressure p and the film thickness h along the symmetry axis
are shown in Fig. 26. In order to illustrate the finite-deformation effects, the results
obtained using the fully nonlinear model (solid lines) are compared to the results
obtained using two simplified models. The predictions of the geometrically linear
model, in which the configuration changes are neglected as in the classical EHL
theory, are denoted by dash-dotted lines. It can be seen that the difference is quite
substantial, both in terms of the pressure and the film thickness, for instance, the
maximum pressure is 10–15% higher and the minimum film thickness is 10–15%
lower in the case of the classical EHL theory. Secondly, the dashed lines depict the
results obtained using the geometrically nonlinear model in which the shear (friction)
stresses are neglected. It follows that the effect of shear stresses is here negligible.
However, as shown by Stupkiewicz et al. (2016), this effect becomes visible, though
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Fig. 26 Elastic ball: pressure p (left) and film thickness h (right) along the symmetry plane y = 0
for μU = 0.078N/m. Solid lines denote the nonlinear model, dashed lines denote the nonlinear
modelwithout friction stresses, dash-dotted lines denote the geometrically linearmodel (reproduced
from Stupkiewicz et al. 2016)

Fig. 27 Elastic ball: friction
coefficient as a function of
μU and W . The individual
lines correspond to the load
W equal to 1, 5, 10, 20 and
40N (from the top to the
bottom) (reproduced from
Stupkiewicz et al. 2016)

still not substantial, when the entrainment speed μU is increased by one or two
orders of magnitude (the respective results are not shown here for brevity).

Interestingly, despite the visible finite deformation effects on the pressure and
film thickness, as illustrated in Fig. 26, the friction coefficient is not visibly affected.
Figure27 shows the friction coefficient, defined in the standard manner by dividing
the friction force by the normal force, as a function of the entrainment speed μU . It
can be seen that the results of the fully nonlinearmodel and of the geometrically linear
model are practically identical while the entrainment speed μU changes by nearly
three orders of magnitude and the friction coefficient changes by about two orders
of magnitude. The predicted friction coefficient shows also a very good agreement
with the regression equation that has been obtained by fitting the predictions of the
classical EHL theory (de Vicente et al. 2005).
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8.4 Soft-EHL: Summary

In Sects. 6, 7 and 8, we have reviewed the recent progress in the modelling of the
soft-EHL problems in the finite-deformation regime. Consistent treatment of the
finite-deformation effects in the soft-EHL has several consequences that make the
corresponding formulation and its computer implementation distinct from the clas-
sical EHL theory.

Finite deformations of one or both contacting bodies may imply finite changes
of the lubrication surface, see, e.g., the coated-layer example studied in Sect. 8.2.
Accordingly, the Reynolds equation, which is the main tool used for the modelling
of the lubricant flow, should be formulated on a non-planar lubrication surface.
The corresponding non-classical formulation of the Reynolds equation, provided in
Sect. 6, has been here restricted to the case of a time-independent lubrication surface.
A detailed discussion of the general case of a time-dependent lubrication surface can
be found in Temizer and Stupkiewicz (2016).

At finite deformation, the lubrication surface, as well as its discretization in the
computational scheme, depends on the deformation of the solid, and thus it depends
on the solution of the EHL problem. This introduces an additional EHL coupling
that is not present in the small-strain framework of the classical EHL theory.

Further, an adequate computational method must be used to resolve the finite
deformations of the solid. In particular, the elastic half-space approximation, typically
used in the classical EHL theory, is not applicable. The finite-element method is here
a natural choice, as it provides a general method for treating geometrical andmaterial
nonlinearities.

The finite-deformation effects mentioned above are fully accounted for in the
computational scheme that is briefly described in Sect. 7.4. So far, the computer
implementation is restricted to the case of steady-state problems in which one of
the bodies is rigid. Extension to transient lubrication problems for two deformable
bodies is a challenging task for future work. The present computational scheme is
based on the finite-element method and employs a fully-coupled monolithic solution
scheme which proves to perform well.

Representative numerical examples that illustrate the finite-deformation effects
have been provided in Sect. 8. Interestingly, in the case of the hyperelastic ball sliding
against a rigid plane, the friction coefficient is not affected by the finite deformation
of the ball, and the geometrically linear theory delivers accurate predictions of the
friction coefficient also at high loads, at which the ball deforms significantly. This
result has also been confirmed experimentally, see Fig. 2 in Stupkiewicz et al. (2016).
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