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Abstract In this contribution, we review mortar finite element methods (FEM),
which are nowadays the most well-established computational technique for contact
modeling of solids and structures in the context of finite deformations and frictional
sliding. Based on some concepts of nonlinear continuum mechanics, the mortar
approach is first presented for the more accessible case of mesh tying (also referred
to as tied contact). Mortar methods for unilateral contact then follow in a rather
straightforward manner, despite the fact that several complexities, such as inequality
constraints, are added to the problem formulation. A special focus is set on practical
aspects of the implementation of mortar methods within a fully nonlinear, 3D finite
element environment. Specifically, the choice of suitable discrete Lagrange multi-
plier bases, aspects of high performance computing (HPC), numerical integration
procedures and new discretization techniques such as isogeometric analysis (IGA)
using NURBS are discussed. Eventually, the great potential of mortar methods in
the more general field of computational interface mechanics is exemplified through
applications such as wear modeling and coupled thermo-mechanical interfaces.

1 Introduction and Motivation

Contact phenomena are virtually omnipresent in nature and biological systems. The
associated length and time scales cover the entire spectrum from the nanoscale to
the macroscopic level and from hypervelocity impact to quasi-static contact interac-
tion, respectively. For example, the plate tectonics process of the continental drift,
the simple motion sequence when walking or the flow of red blood cells (erythro-
cytes) through blood vessels are all representatives of processes largely dominated
by contact and associated physical effects. Beyond that, science and engineering
have exploited the principles of contact mechanics to develop processes, such as
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deep-drawing or extrusion-molding, as well as technical systems and machine parts,
including car tires, fluid bearings, gears, shafts and splines or elastomeric seals.

Contact mechanics can be looked at from several different perspectives. For some
scenarios, e.g. in nanotribology, it is helpful or even mandatory to investigate con-
tact interaction at an atomistic level. For many contact applications, however, a
purely macroscopic viewpoint based on classical continuum assumptions is suf-
ficient. Throughout this chapter, a continuum approach will be followed, mainly
considering contact mechanics as a particularly challenging subclass of solid and
structuralmechanics. The geometrical constraint of non-penetration of different solid
bodies can then easily be identified as the most important underlying principle of
contact interaction. In addition, the overall contact phenomenon is commonly also
influenced by one or several closely related interface effects, for example sticking
and sliding friction, adhesion, elastohydrodynamic lubrication and wear. Altogether,
contact and its associated phenomena introduce strong additional nonlinearities into
solid mechanics problems, where contact itself can basically be interpreted as a set
of complex boundary conditions, possibly changing over time. Together with the
already typical nonlinearities inherent in general solid mechanics, i.e. large defor-
mations and nonlinear constitutive (material) behavior, this evinces the challenges
and difficulties of mathematically describing and solving contact interactions, even if
the given problem setup is quite simple. Due to this complexity, only very few contact
problem settings exist, where analytical solution techniques are actually applicable.
The earlywork conducted byHertz (1882) on pressure distributions between contact-
ing elastic bodiesmore than a century ago, is commonly considered to be the origin of
modern contact analysis. A comprehensive overview of the basic principles of con-
tact mechanics, together with the most important analytical solution techniques can
be found in the textbooks by Johnson (1985) and Timoshenko and Goodier (1970).

With general contact problems being hardly accessible for mathematical anal-
ysis, experimental procedures and numerical modeling are naturally becoming the
focus of attention. Physical experiments are a convenient way of gaining informa-
tion about certain aspects of contact mechanics, e.g. for determining coefficients of
friction related to different material pairings. However, for the majority of contact
scenarios, the applicability of experimental procedures is either limited or practically
impossible. As a prominent example, experimental crashworthiness assessment, in
accordance with safety regulations and consumer protection tests, causes consid-
erable costs in the automotive industry. Complex contact phenomena in patient-
specific surgery planning or during the design of medical devices, e.g. guaranteeing
the optimal placement and minimum leakage of arterial stents, do not even allow for
meaningful experimental tests at all. Thus, combining the aforementioned exemplary
arguments, it becomes obvious that there is a very high and ever-growing demand
for powerful numerical modeling and simulation techniques in the field of contact
mechanics.What makes improved contact simulation approaches even more promis-
ing and likely to generate significant impact is the fact that the resulting numerical
algorithms can typically be employed for a very broad range of scientific and techni-
cal interests. In fundamental physical, chemical or biological research, as well as in
the applied sciences, novel methods and tools of computational contact mechanics
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allow for a better understanding of complex systems, which are influenced by contact
phenomena. On the other hand, many aspects of engineering practice and product
development (e.g. minimizing the frictional loss in gear transmissions, optimizing
the structural integrity of car bodies in crash situations) also heavily benefit from
improvements in contact modeling and simulation.

2 Contact Mechanics and FEM

All ideas and methods of computational contact mechanics will be exclusively dis-
cussed in the context of the finite element method (FEM) throughout this chapter.
Since the 1960s, the FEMhas gradually evolved as the dominating numerical approx-
imation technique for the solution of partial differential equations (PDEs) in various
fields, especially solid and structural mechanics including contact mechanics, but
also in fluid mechanics, thermodynamics and for the treatment of coupled prob-
lems. The general FEM literature is abundant, exemplarily the interested reader is
referred to themonographs byBathe (1996),Hughes (2000), Belytschko et al. (2000),
Reddy (2004), Zienkiewicz et al. (2005) and Zienkiewicz and Taylor (2005). Other
approaches for the numerical simulation of contact mechanics are only mentioned
very briefly here for the sake of completeness. Multibody dynamics are a fitting tool
when analyzing contact and impact phenomena of rigid bodies, with possible exten-
sions to elastic multibody dynamics allowing for a certain degree of deformation
of the contacting bodies. Moreover, particle methods such as the discrete element
method (DEM) are frequently used for investigating granular and particulate mate-
rials, whose mechanical behavior is largely dominated by contact interaction. While
finite elementswould not be themethod of choice for such applications, this chapter is
mainly related to contact of elastic solid bodies, possibly including very large defor-
mations. In this context, the FEMundoubtedly provides a very convenient framework
for numerical modeling and simulation. Furthermore, there is an increasing interest
in the interplay of contact mechanics with other physical phenomena, such as ther-
momechanics, wear and the lubrication behavior of thin fluid films, where finite
elements are also an eligible approach, e.g. due to their generality and geometrical
flexibility.

First contributions to the treatment of contact mechanics within the FEM can
be traced back to the 1970s and 1980s. In Francavilla and Zienkiewicz (1975)
and Hughes et al. (1976), contact conditions are formulated based on a very simple,
purely node-based approach, which requires node-matching finite element meshes
at the contact interface and is restricted to small deformations. Subsequently, a dif-
ferent idea was expedited, typically denoted as node-to-surface or node-to-segment
(NTS) approach and characterized by a discrete, point-wise enforcement of the non-
penetration condition at the finite element nodes. This NTS approach could readily
be applied to the case of finite deformations and large sliding motions, therefore
soon becoming the standard procedure in computational contact mechanics. With-
out claiming that the following listing is exhaustive, the reader is referred toBathe and
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Chaudhary (1985), Hallquist et al. (1985), Benson and Hallquist (1990), Simo and
Laursen (1992), Laursen (1992), Laursen and Simo (1993) andWriggers et al. (1990)
for a comprehensive overview. An important basis for the methods to be proposed in
this chapter is formed by the first investigations on the so-called segment-to-segment
(STS) approach in Papadopoulos and Taylor (1992) and Simo et al. (1985). In con-
trast to the purely point-wise procedure typical of NTS methods, the STS approach
is based on a thorough sub-division of the contact surface into individual segments
for numerical integration together with an independent approximation of the contact
pressure. Thereby, the STS approach can be interpreted as precursor of mortar finite
element methods for computational contact mechanics, which will be the main topic
here.

Before reviewing the literature on mortar methods, however, an overview of other
important aspects of computational contact mechanics aside from the discretization
approach (NTS,STS,mortar) is given.Onemain focus of attentionhas been set ondif-
ferent procedures for the enforcement of contact constraints, with themost prominent
representatives being penaltymethods, Lagrangemultipliermethods andAugmented
Lagrangemethods, seeAlart andCurnier (1991) for an excellent overviewanddiscus-
sion. Further questions related to contact modelingwithin a finite element framework
comprise efficient search algorithms (Williams and O’Connor 1999), mesh adaptiv-
ity (Wriggers and Scherf 1995; Carstensen et al. 1999; Hüeber andWohlmuth 2012),
covariant surface description (Laursen andSimo1993; Schweizerhof andKonyukhov
2005), surface smoothing (Wriggers et al. 2001; Puso and Laursen 2002), the treat-
ment of contact on enriched and embedded interfaces (Laursen et al. 2012), modeling
of interface effects other than friction (Yang and Laursen 2009; Sauer 2011), beam
contact (Wriggers and Zavarise 1997; Zavarise and Wriggers 2000) and energy con-
servation in the context of contact dynamics (Laursen and Chawla 1997; Laursen and
Love 2002; Hager et al. 2008; Hesch and Betsch 2009), among others. Apart from
numerous original papers, a comprehensive introduction to most of these topics can
be found in the textbooks by Laursen (2002) and Wriggers (2006).

Nevertheless, novel robust discretization techniques for finite deformation con-
tact problems, and especially mortar finite elements adapted for this purpose, have
arguably received most attention in the field of computational contact mechanics in
recent years.Mortarmethods,whichwere originally introduced as an abstract domain
decomposition technique (Bernardi et al. 1994; Ben Belgacem 1999; Seshaiyer and
Suri 2000), are characterized by an imposition of the occurring interface constraints
in a weak sense and by the possibility to prove their mathematical optimality. In
the context of contact analysis, this allows for a variationally consistent treatment of
non-penetration and frictional sliding conditions despite the inevitably non-matching
interfacemeshes for finite deformations and large slidingmotions. Early applications
of mortar finite element methods for contact mechanics can, for example, be found in
Ben Belgacem et al. (1998), Hild (2000) and McDevitt and Laursen (2000), though
limited to small deformations. Gradually, restrictions of mortar-based contact for-
mulations with respect to nonlinear kinematics have been removed, leading to the
implementations given in Puso and Laursen (2004a, b), Fischer andWriggers (2005),
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Fischer and Wriggers (2006), Hesch and Betsch (2009), Tur et al. (2009) and Hesch
and Betsch (2011).

An alternative choice for the discrete Lagrange multiplier space, so-called dual
Lagrange multipliers, was proposed in Wohlmuth (2000, 2001) and, in contrast to
the standard mortar approach, generates interface coupling conditions that are much
easier to realize without impinging upon the optimality of the method. Applications
of this approach to small deformation contact problems can be found in Hüeber and
Wohlmuth (2005), Flemisch and Wohlmuth (2007), Brunssen et al. (2007) and Hüe-
ber et al. (2008), and first steps towards finite deformations have been undertaken
in Hartmann (2007) and Hartmann et al. (2007). A fully nonlinear extension of the
dualmortar approach including consistent linearization of all deformation-dependent
quantities has been proposed in Popp et al. (2009, 2010), with extensions to fric-
tional sliding, second-order finite elements and a consistent treatment of dropping-
edge problems following shortly afterwards (Cichosz and Bischoff 2011; Popp et al.
2012;Wohlmuth et al. 2012; Popp et al. 2013; Popp andWall 2014). Another interest-
ing feature of dual Lagrange multiplier interpolation is that it naturally fits together
with so-called primal-dual active set strategies for constraint enforcement. It is well-
known from the mathematical literature on constrained optimization problems and
also from applications in computational contact mechanics, that primal-dual active
set strategies can equivalently be interpreted as semi-smooth Newton methods (Alart
and Curnier 1991; Qi and Sun 1993; Christensen et al. 1998; Christensen 2002; Hin-
termüller et al. 2002), thus allowing for the design of very efficient global solution
algorithms, especially in the context of nonlinear material behavior and finite defor-
mations.

Recent developments in the meanwhile rather broad field of mortar finite element
methods for computational contact mechanics include, without being complete, the
following topics: smoothing techniques (Tur et al. 2012), isogeometric analysis using
NURBS (Temizer et al. 2011, 2012; De Lorenzis et al. 2014; Brivadis et al. 2015),
improved numerical integration schemes (Farah et al. 2015), complex interface mod-
els such as wear (Cavalieri and Cardona 2013; Farah et al. 2016, 2017), treatment
of embedded interfaces (Laursen et al. 2012) as well as aspects of adaptivity and
high performance computing (Popp and Wall 2014; Kindo et al. 2014). While a few
different discretization approaches have been suggested, see e.g. the contact domain
method proposed in Hartmann et al. (2009) and Oliver et al. (2009), and while NTS
methods are still very popular in engineering practice, mortar-based contact formu-
lations have become quite well-established in themeantime and can arguably be seen
as state-of-the-art method for computational contact mechanics.

3 Overview of Nonlinear Continuum Mechanics

In this section, the basic concepts of nonlinear continuum mechanics are reviewed
with a focus on the governing equations for solid dynamics and contact interaction
required later. These remarks are not intended to give an exhaustive overview of
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the topic, but are rather geared towards outlining the necessary basics for contact
mechanics. For more extensive reviews in the field of solid and structural dynamics,
the reader is referred to the corresponding literature, e.g., Gurtin (1981),Marsden and
Hughes (1994), Ogden (1997), Bonet and Wood (1997), Holzapfel (2000) and Simo
and Hughes (1998). Large parts of this section are based on the author’s previously
published work (Popp 2012).

3.1 Kinematics

In this section, the fundamental kinematic relationships describing the deformation
of a homogeneous body are presented. The classical (Boltzmann) continuum model
in a three-dimensional Euclidean space description is assumed. Two distinct observer
frames are defined: the reference configuration �0 ⊂ R

3 denotes the domain occu-
pied by all material points X at time t = 0, while the current configuration �t ⊂ R

3

describes the changed positions x at a certain time t. The motion and deformation
from reference to current configuration are trackedwith the bijective nonlinear defor-
mation map

�t :
{

�0 → �t

X �→ x
, (1)

which also allows for the notations x = �t(X, t) and X = �−1
t (x, t). The absolute

displacement of a material point (see again Fig. 1) is then described as

u(X, t) = x(X, t) − X. (2)

Within the total Lagrangian approach, kinematic relations and all derived quan-
tities are described with respect to the material points in the reference configu-
ration �0. Thus, the material point position X plays the role of an independent
variable for the problem formulation, while the primary unknown to be solved for

Fig. 1 Cartesian coordinate
system, reference
configuration and current
configuration for a total
Lagrangian description of
motion

P

Ωt
Φt

xP

e3

e2

e1

XP

P
u(XP, t)

Ω0
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is the time-dependent deformation map �t(X, t), or equivalently the displacement
vector u(X, t).

A fundamental measure for deformation and strain in the context of finite defor-
mation solid mechanics is given by the deformation gradient F, defined as partial
derivative of the current configuration with respect to the reference configuration:

F = ∂x(X, t)

∂X
= I + ∂u(X, t)

∂X
, (3)

where I is the second-order identity tensor.Assuming as usual bijectivity and smooth-
ness of the deformation map �t , the inverse deformation gradient F−1 = ∂X/∂x
is also well-defined, therefore guaranteeing a positive determinant J = detF > 0.
This quantity, also commonly denoted as Jacobian determinant of the deformation,
represents the transformation of an infinitesimal volume element between the two
configurations:

dV = detF dV0 = J dV0. (4)

The deformation gradient also allows for the mapping of an infinitesimal, oriented
area element from reference to current configuration, yielding

dA = J F−T · dA0, (5)

which is commonly referred to as Nanson’s formula. Herein, the infinitesimal area
elements are interpreted as vectors dA0 = dA0 N and dA = dAn, where N and n
denote unit normal vectors of the area element in the reference and current configu-
ration, respectively.

An apparent choice for a suitable nonlinear strain measure is the so-called Green–
Lagrange strain tensor E defined in the material configuration as

E = 1

2
(FT · F − I) = 1

2
(C − I). (6)

Although strain measures are never unique, the Green–Lagrange strain tensor is a
very common choice in nonlinear solidmechanics, and can be considered particularly
convenient if large deformations occur but only a moderate amount of stretch and
compression.

The first and second time derivatives of the displacement vectoru(X, t) inmaterial
description, i.e. velocities u̇(X, t) and accelerations ü(X, t), are defined as follows:

u̇(X, t) = ∂u(X, t)

∂t

∣∣∣∣
X

= du(X, t)

dt
, (7)

ü(X, t) = ∂u̇(X, t)

∂t

∣∣∣∣
X

= du̇(X, t)

dt
= d2u(X, t)

dt2
. (8)
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Corresponding rate forms (i.e. time derivatives) of the deformation measures,
such as the material velocity gradient L = Ḟ or the material strain rate tensor

Ė = 1
2 (Ḟ

T · F + FT · Ḟ) = 1
2 Ċ are readily defined, too.

3.2 Stresses and Constitutive Laws

Themotion and deformation of an elastic body effects internal stresses. This is readily
described by the traction vector t in the current configuration:

t(n, x, t) = lim
�A→0

�f
�A

, (9)

yielding the limit value of the resulting force f acting on an arbitrary surface area
�A characterized by its unit surface normal vector n. The Cauchy theorem then
correlates tractions and stresses via

t = σ · n. (10)

Herein, the symmetric Cauchy stress tensor σ represents the true internal stress state
within a body in its a priori unknown current configuration, with diagonal and off-
diagonal components components being interpretable as normal stresses and shear
stresses, respectively. A multitude of alternative stress definitions is also prevail-
ing in nonlinear continuum mechanics. Exemplarily, the first Piola–Kirchhoff stress
tensor P maps the material surface element dA0 = dA0N onto the spatial result-
ing force f . Its definition is obtained from the Cauchy stress tensor σ by applying
Nanson’s formula (5), yielding

P = J σ · F−T. (11)

Consequently, it is possible to construct a stress tensor purely based on quantities
in the reference configuration, too. By also transforming the resulting force vector f
accordingly, the symmetric second Piola–Kirchhoff stress tensor S emerges as

S = F−1 · P = J F−1 · σ · F−T. (12)

With typical measures for both strains and stresses being established, constitu-
tive relations provide the missing link between kinematics and material response.
Throughout this chapter, only homogeneous bodies undergoing purely elastic defor-
mation processeswithout internal dissipation are considered.Moreover, the existence
of a so-called strain energy function or elastic potential�(F) is assumed, which only
depends upon the current state of deformation (hyperelastic material behavior). The
requirement of objectivity implies that� remains unchanged when an arbitrary rigid
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body rotation is applied to the current configuration. A common formulation of
hyperelastic materials in the reference frame then follows as

S = ∂�

∂E
. (13)

The relation between S and E given by (13) will in general be nonlinear. Thus, it is
possible (and necessary within typical finite element procedures) to determine the
fourth-order material elasticity tensor CCCm via repeated derivation, yielding

CCCm = ∂S
∂E

= ∂2�

∂E ∂E
. (14)

Exemplarily, only oneprevailing constitutivemodel is presentedhere: theSt.-Venant–
Kirchhoff material model is an isotropic, hyperelastic model based on a quadratic
strain energy function

�SVK = λ

2
(trE)2 + μE : E. (15)

In this context,λ andμ represent the so-called Lamé parameters, which are correlated
with the more common Young’s modulus E and Poisson’s ratio ν via

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (16)

Inserting (15) into (13) and (14), it can easily be observed that the St.-Venant–
Kirchhoff material model defines a linear relationship between Green–Lagrange
strainsE and secondPiola–Kirchhoff stressesS, and can therefore be interpreted as an
objective generalization of Hooke’s law to the geometrically nonlinear realm. Many
other constitutive laws exist for miscellaneous applications (e.g. the well-known
Neo–Hookean, Mooney–Rivlin or Ogden models for rubber materials). However,
with the focus of this chapter being on contact interaction rather than constitutive
modeling, the interested reader is referred to the abundant literature on hyperelas-
ticity, viscoelasticity or elastoplasticity for further details, e.g. in Holzapfel (2000),
Ogden (1997) and Simo and Hughes (1998).

3.3 Initial Boundary Value Problem

Exemplarily, the IBVPwill be presented in the reference configuration here, however
the spatial description is derived analogously. For the definition of suitable bound-
ary conditions, ∂�0 is decomposed into two complementary sets in the absence of
contact: �σ represents the Neumann boundary, where the tractions t̂0 are given, and
�u denotes the Dirichlet boundary, where displacements û are prescribed. Neumann
and Dirichlet boundaries are disjoint sets, i.e.
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�σ ∪ �u = ∂�0, �σ ∩ �u = ∅. (17)

The initial boundary value problem in material description can be summarized as
follows :

DivP + b̂0 = ρ0ü in �0 × [0,T ], (18)

u = û on �u × [0,T ], (19)

P · N = t̂0 on �σ × [0,T ]. (20)

Herein,T denotes the end of the considered time interval. Due to the time dependency
within the balance of linear momentum in (18), which contains second derivatives
with respect to time t, suitable initial conditions for the displacements û0(X) and
velocities ˆ̇u0(X) at time t = 0 are needed, viz.

u(X, 0) = û0(X) in �0, (21)

u̇(X, 0) = ˆ̇u0(X) in �0. (22)

The definition of a material model, such as for instance the one given in (15), eventu-
ally rounds off the initial boundary value problemof finite deformation solidmechan-
ics. The IBVP is also commonly referred to as strong formulation of nonlinear
solid mechanics, as Eqs. (18)–(22) are enforced at each individual point within the
domain �0.

3.4 Contact Kinematics

From the viewpoint of mathematical problem formulation, contact and impact proce-
dures can be classified into several different categories. A problem setup consisting of
one single deformable body and a rigid obstacle is commonly referred to as Signorini
contact, while the typical general problem formulation rests upon the assumption of
two deformable bodies undergoing contact interaction. Moreover, self contact and
contact involvingmultiple bodies representwell-known special cases.While it is usu-
ally advantageous or even essential to design specific numerical algorithms for the
aforementioned special cases, all mathematical basics concerning contact kinematics
and contact constraints can yet be perfectly derived for the case of two deformable
bodies.

Hence, deformable-deformable contact of two bodies undergoing finite deforma-
tions, as illustrated in Fig. 2, serves as prototype exclusively considered here. Let the
open sets �

(1)
0 , �(2)

0 ⊂ R
3 and �

(1)
t , �(2)

t ⊂ R
3 represent two bodies in the reference

and current configuration, respectively. As the two bodies approach each other and
may potentially come into contact on parts of their boundaries, the surfaces ∂�

(i)
0 ,

i = 1, 2, are now divided into three disjoint subsets, viz.
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e3

e2

e1

Γ(1)
u

Γ(2)
u

γ
(1)
u

Γ(2)
σ

Ω(2)
t

γ
(2)
σ

Ω(1)
0

Ω(1)
t

Ω(2)
0

X̂
(2)

Γ(1)
σ

γ
(1)
σ

Γ(1)
c (slave)

Γ(2)
c (master)

u(1)(X(1), t)

γ
(2)
c

γ
(1)
c

nc(x(1))

X(1)

τ ξ
c(x

(1))

u(2)(X(2), t)

x(1)

τ η
c(x

(1))

x̂(2)

γ
(2)
u

Fig. 2 Kinematics and basic notation for a two body unilateral contact problem in 3D

∂�
(i)
0 = �(i)

u ∪ �(i)
σ ∪ �(i)

c ,

�(i)
u ∩ �(i)

σ = �(i)
u ∩ �(i)

c = �(i)
σ ∩ �(i)

c = ∅, (23)

where �
(i)
u and �(i)

σ are the well-known Dirichlet and Neumann boundaries, and �
(i)
c

represents the potential contact surface. The counterparts in the current configuration
are denoted as γ(i)

u , γ(i)
σ and γ(i)

c . It is characteristic of contact problems that the
actual, so-called active contact surface�

(i)
a ⊆ �

(i)
c is unknown, possibly continuously

changing over time and thus has to be determined as part of the nonlinear solution
process. For the sake of completeness, and to bemathematically precise, the currently
inactive contact surface �

(i)
i = �

(i)
c \ �

(i)
a should technically be interpreted as part of

the Neumann boundary �(i)
σ .

A classical nomenclature in contact mechanics is retained throughout this chapter
by referring to �

(1)
c as the slave surface and to �

(2)
c as the master surface, although

the master-slave concept actually only makes sense in the context of finite element
discretization and although its traditional meaning will not be entirely conveyed to
the mortar FE approach presented later on.

Both bodies are required to satisfy the initial boundary value problem previously
presented in Sect. 3.3, with the motion and deformation being described by the abso-
lute displacement vectors u(i) = x(i) − X(i). Moreover, a new fundamental geometric
measure for proximity, potential contact and penetration of the two bodies is intro-
duced with the so-called gap function gn(X, t) in the current configuration. It is
evident that the gap function and other contact-related quantities need to be exam-
ined in a spatial description, even though the IBVP may still be formulated with
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respect to the reference configuration. The gap function is defined as

gn(X, t) = −nc ·
[
x(1)(X(1), t) − x̂(2)

(X̂
(2)

(X(1), t), t)
]
, (24)

where some alternatives exist for the identification of the contact point x̂(2) on the
master surface associated with each point x(1) on the slave surface and also for the
corresponding contact normal vector nc. The classical and perhaps most intuitive
choice in contact mechanics is based on the so-called closest point projection (CPP),
which determines x̂(2) as

x̂(2) = arg min
x(2)∈γ(2)

c

‖x(1) − x(2)‖. (25)

Consequently, nc is then chosen to be the outward unit normal to the current master
surface γ(2)

c in x̂(2). A very comprehensive overview of the closest point projection,
its mathematical properties and possible pitfalls due to non-uniqueness and certain
pathological cases can be found in Konyukhov and Schweizerhof (2008). However,
a slightly different approach is followed here, with the outward unit normal to the
current slave surface γ(1)

c being considered as contact normal nc. Hence, the master
side contact point x̂(2) is the result of a smooth interface mapping χ : γ(1)

c → γ(2)
c

of x(1) onto the master surface γ(2)
c along nc, see Fig. 2. Especially in the context of

mortar finite element discretization, this choice has some practical advantages over
the classical closest point projection common for node-to-segment discretization.

Together with two vectors τ
ξ
c and τ

η
c taken from the tangential plane, nc forms

a set of orthonormal basis vectors in the slave surface point x(1). As these basis
vector are attached to x(1) and also move accordingly, they are commonly referred
to as slip advected basis vectors. In this context, it is worth noting that the contact
surface γ(1)

c is a two-dimensional manifold, which means that the tangential plane in
each point x(1) locally defines an R2 space embedded into the global R3. Therefore,
any quantity on γ(1)

c is readily parametrized with the two local coordinates ξ(X(1), t)
and η(X(1), t). While the gap function characterizes contact interaction in normal
direction, the primary kinematic variable for frictional sliding in tangential direction
is given by the relative tangential velocity

vτ ,rel = (I − nc ⊗ nc) ·
[
ẋ(1)(X(1), t) − ˙̂x(2)(X̂

(2)
(X(1), t), t)

]
. (26)

Note that this expression for vτ ,rel is only exact in the case of perfect sliding and
persistent contact, i.e. assuming gn = ġn = 0. Nevertheless, it is typically employed
for quantifying the relative tangential movement of contacting bodies in all cases,
even if the described prerequisites are not met exactly. To clarify the notation in (26),
it is pointed out that ˙̂x(2) represents the current velocity of the material point X̂

(2)
,

viz. the material contact point associated with X(1) at time t. Therefore, it does not
include a change of the material contact point X̂

(2)
itself, or in other words, it does
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not include a change of the CPP of slave point x(1). Based on the tangential plane
defined above, vτ ,rel can be decomposed into

vτ ,rel = vξ
ττ

ξ
c + vη

τ τ
η
c. (27)

As already mentioned, the definition of the relative tangential velocity given above
is only frame-indifferent when perfect sliding occurs (gn = 0), see e.g. Laursen
(2002). However, since an objective measure of the slip rate is essential for formulat-
ing frictional contact conditions in finite deformation formulations, an appropriate
algorithmic modification of the slip rate is typically carried out later in the course of
finite element discretization.

Similar to the kinematic measures gn and vτ ,rel, the contact traction t(1)c on the
slave surface γ(1)

c can be split into normal and tangential components, yielding

t(1)c = pnnc + tτ = pnnc + tξττ
ξ
c + tητ τ

η
c. (28)

Moreover, due to the balance of linearmomentumon the contact interface, the traction
vectors on slave side γ(1)

c and master side γ(2)
c are identical except for opposite

signs, i.e.
t(1)c = −t(2)c . (29)

For further details on these topics, the interested reader is referred to classical text-
books on contact mechanics, e.g. Johnson (1985) and Kikuchi and Oden (1988),
or to more recent monographs on computational methods for contact mechanics,
e.g. Laursen (2002) and Wriggers (2006).

3.5 Tied Contact Constraints

While the main focus of this chapter is on unilateral contact problems, the integration
of mesh tying or tied contact problems for connecting dissimilar meshes suggests
itself due to the numerous conceptual similarities. Mesh tying applications are also
closely connected to the notion of domain decomposition. Thus, in Sect. 5,mesh tying
serves as simplified model problem through which many methodological and later
also implementational aspects of computational contact mechanics can be clearly
illustrated.

As will be seen in the following, mesh tying (or tied contact) perfectly fits into
the framework of contact kinematics defined above and can simply be interpreted as
a special case from now on. The fundamental kinematic measure for mesh tying is
simply the relative displacement between the two bodies, sometimes also referred to
as gap vector g(X, t), viz.

g(X, t) = u(1)(X(1), t) − û(2)
(X̂

(2)
(X(1), t), t). (30)
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Since it is typically assumed that the two bodies to be tied together share a common
interface �

(1)
c ≡ �

(2)
c ≡ �c in the reference configuration, the gap vector is equiva-

lently expressed as

g(X, t) = x(1)(X(1), t) − x̂(2)
(X̂

(2)
(X(1), t), t), (31)

thus demonstrating the similarity with the scalar gap function gn(X, t) for unilateral
contact defined in (24) even more clearly. As compared with unilateral contact, mesh
tying firstly requires no distinction between normal and tangential directions at the
interface, and secondly results in a simple vector-valued equality constraint:

g(X, t) = 0. (32)

3.6 Normal Contact Constraints

After the short interlude on mesh tying, the focus in now again set on unilateral
contact conditions. Examining the gap function defined in (24) in more detail, it
becomes obvious that a positive value gn(X, t) > 0 characterizes points currently
not in contact, while a negative value gn(X, t) < 0 denotes the (physically non-
admissible) state of penetration. Therefore, the classical set of Karush–Kuhn–Tucker
(KKT) conditions, commonly also referred to as Hertz–Signorini–Moreau (HSM)
conditions for frictionless contact on the contact boundary can be stated as

gn(X, t) ≥ 0, pn(X, t) ≤ 0, pn(X, t) gn(X, t) = 0. (33)

As can be seen from Fig. 3, the KKT conditions not only define a non-smooth and
nonlinear contact law, but one that is multi-valued at gn(X, t) = 0. However, this set
of inequality conditions also allows for a very intuitive physical interpretation. Due

Fig. 3 Karush–Kuhn–
Tucker (KKT) conditions of
non-penetration

gn

pn
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to the sign convention of the gap function introduced here, the first KKT condition
simply represents the geometric constraint of non-penetration, whereas the second
KKT condition implies that no adhesive stresses are allowed in the contact zone.
Finally, the third KKT condition, well-known as complementarity condition, forces
the gap to be closed when non-zero contact pressure occurs (contact) and the contact
pressure to be zero when the gap is open (no contact). Note, that the type of KKT
conditions defined in (33) also arise in many other problem classes of constrained
optimization, and thus standard solution techniques (e.g. based on Lagrange mul-
tiplier methods and active set strategies) from optimization theory can readily be
adapted for contact mechanics.

For the sake of completeness, the so-called persistency condition is alsomentioned
here. In the context of contact dynamics, the persistency condition is sometimes
considered as an additional contact condition, requiring that

pn(X, t) ġn(X, t) = 0. (34)

Herein, ġn(X, t) represents the material time derivative of the gap function. There-
fore, the persistency condition in combination with the KKT conditions in (33)
basically demands that the contact pressure is only non-zero when the bodies are in
contact and also remain so (persistent contact). On the contrary, the contact pressure
is zero in the instant of bodies coming into contact and in the instant of separation.
The persistency condition plays an important role in the design of energy conserving
numerical algorithms for contact dynamics, see e.g. Laursen and Chawla (1997),
Laursen and Love (2002), and bears a certain resemblance to the consistency condi-
tion in plasticity, see e.g. Simo and Hughes (1998).

3.7 Frictional Contact Constraints

While frictionless response (i.e. tτ = 0) is a common modeling assumption, and
especially helpful for a thorough development of computational methods for contact
mechanics, the real contact behavior of many technical systems is determined by the
frictional response to tangential loading. The associated scientific field of tribology
is extremely broad, also encompassing physical phenomena such as adhesion, wear
or elastohydrodynamic lubrication. The following overview is restricted to a purely
macroscopic observation of dry friction, classically described by Coulomb’s law.
One possible and widely used notation of Coulomb friction is given by

� := ‖tτ‖ − F|pn| ≤ 0, vτ ,rel + βtτ = 0, β ≥ 0, �β = 0. (35)

Herein, ‖ · ‖ denotes the L2-norm inR3,F ≥ 0 is the friction coefficient and β ≥ 0 is
a scalar parameter. An intuitive physical interpretation of Coulomb’s law as described
in (35) is readily available, too. The first (inequality) condition, commonly referred
to as slip condition, requires that the magnitude of the tangential stress tτ does not
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exceed a threshold defined by the coefficient of friction F and the normal contact
pressure pn. The frictional response is then characterized by two physically distinct
situations. The stick state, defined by β = 0, does not allow for any relative tangential
movement in the contact zone, i.e. vτ ,rel = 0. In contrast, the slip state, defined by
β > 0, implicates relative tangential sliding of the two bodies in accordance with the
so-called slip rule given as second equation in (35). The last equation in (35) is again
a complementarity condition, here separating the two independent solution branches
of stick and slip. A commonly cited similarity of Coulomb’s law exists with the
most simple formulations of elastoplasticity, see e.g. Simo and Hughes (1998). This
similarity is especially interesting in the course of developing numerical algorithms
for friction, which usually reuse well-known methodologies from computational
inelasticity.

Finally, it is pointed out that frictional response in contact is a path-dependent
process, thus introducingmechanical dissipation andmaking a system representation
based on elastic potentials infeasible. Path-dependency can easily be observed in the
fact that the tangential contact traction tτ depends on the velocity vτ ,rel or on the rate
of change of the tangential displacement if interpreted incrementally.

4 Overview of Nonlinear FEM

This section provides a brief introduction to the numerical treatment of nonlinear
solid mechanics problems with finite element methods. Based on a weak formulation
of the previously derived IBVP, the FEM for space discretization as well as typical
implicit time stepping schemes for time discretization are presented. Large parts of
this section are based on the author’s previously published work (Popp 2012).

4.1 From Strong Formulation to Weak Formulation

Many numerical methods for the solution of partial differential equations, and finite
element methods in particular, require a transformation of the IBVP defined in (18)–
(22) within a so-called weak or variational formulation. Although other variational
principles exist, the well-known principle of virtual work (PVW) is derived exclu-
sively here, with the starting point being a weighted residual notation of the balance
equation (18) and the traction boundary condition (20), i.e.

∫
�0

(ρ0ü − DivP − b̂0) · w dV0 +
∫

�σ

(P · N − t̂0) · w dA0 = 0. (36)

Herein, the weighting or test functionsw are initially arbitrary and can be interpreted
as virtual displacements, i.e. w = δu. Since the solution for the displacements is
known on the Dirichlet boundary �u, it is required that
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w = 0 on �u × [0,T ]. (37)

Applying Gauss divergence theorem and inserting (37) and (12) yields

∫
�0

ρ0ü · δu dV0

︸ ︷︷ ︸
−δWkin

+
∫

�0

S : δE dV0

︸ ︷︷ ︸
−δWint

−
∫

�0

b̂0 · δu dV0 −
∫

�σ

t̂0 · δu dA0

︸ ︷︷ ︸
−δWext

= 0. (38)

Three distinct contributions to the PVWcan be identified. The first term in (38) repre-
sents the kinetic virtual work contribution δWkin, the second term denotes the internal
virtual work contribution δWint, and the third and fourth term together form the vir-
tual work of external loads δWext. The PVW emerges as a very general principle of
solid mechanics, as it does not require the existence of an associated potentialW . As
an example, no constitutive assumptions whatsoever enter the weak formulation in
(38), thus making it also valid and applicable for problems such as elastoplasticity,
frictional sliding or non-conservative loading.

It can easily be shown that solutions of the IBVP (i.e. of the strong formulation)
also satisfy the weak formulation (38). As long as no restrictions are set on the choice
of the weighting functions δu, the two are formally identical, see e.g. Hughes (2000).
However, due to the manipulations introduced above, the weak formulation poses
weaker differentiability requirements to the solution functions u, because only first
derivatives of u with respect to X appear in (38) instead of second derivatives as in
(18). Thus, the following solution and weighting spaces can be defined:

U = {
u ∈ H 1(�) | u(X, t) = û(X, t) on �u

}
, (39)

V = {
δu ∈ H 1(�) | δu(X) = 0 on �u

}
. (40)

Herein,H 1(�) denotes the Sobolev space of functions with square integrable values
and first derivatives. While the solution space U may in general depend on the
time t due to a possible time dependency of the Dirichlet boundary conditions, the
weighting spaceV does not depend on the time t in any way. In conclusion, the weak
formulation of the nonlinear solid mechanics problems at hand can be restated as
follows: Find u ∈ U such that

δW = 0 ∀ δu ∈ V. (41)

4.2 Space Discretization

Space discretization is exclusively considered in the context of finite elementmethods
here. However, as a detailed introduction to all important aspects of the FEM is
beyond the scope of this chapter, only the basic ideas and notationwill be highlighted.
For a more elaborate survey of finite element methods, the reader is again referred to
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the corresponding literature, e.g. in Bathe (1996), Hughes (2000), Belytschko et al.
(2000), Reddy (2004), Zienkiewicz and Taylor (2005) and Zienkiewicz et al. (2005).

Simply speaking, the concept of finite element discretization in this context is
based on finding a numerical solution to (41) at discrete points, commonly referred
to as nodes. The nodes are connected to form elements, which allows to formulate the
following approximate partitioning of the domain�0 into nele element subdomains:

�0 ≈
nele⋃
e=1

�
(e)
0 . (42)

The displacement solution u(e) on element e is then typically approximated by local
interpolation functions Nk(X), yielding

u(e)(X, t) ≈ u(e)
h (X, t) =

nnod(e)∑
k=1

Nk(X)dk(t), (43)

where the discrete nodal values of the displacements dk(t) have been introduced.
Furthermore, the subscript ·h signifies a spatially discretized quantity throughout this
chapter and nnod(e) represents the number of nodes associated with the element e.
The interpolation functionsNk(X), commonly referred to as shape functions, are typ-
ically (but not exclusively) low-order polynomials, e.g. Lagrange polynomials, thus
meeting the differentiability requirements of the weak form. Based on the so-called
isoparametric concept, the element geometry in the reference configuration X(e) and
current configuration x(e) is approximated using the same shape functions. Typically,
�

(e)
0 is mapped to a reference element geometry or parameter space ξ = (ξ, η, ζ),

e.g. the cube [−1, 1] × [−1, 1] × [−1, 1], which defines an element Jacobian matrix
J(e) = ∂X(e)/∂ξ. Thus, the interpolation of displacements, current geometry and ref-
erence geometry at the element level is alternatively expressed as

u(e)
h (ξ, t) =

nnod(e)∑
k=1

Nk(ξ)dk(t), (44)

x(e)
h (ξ, t) =

nnod(e)∑
k=1

Nk(ξ)xk(t), (45)

X(e)
h (ξ) =

nnod(e)∑
k=1

Nk(ξ)Xk , (46)

with nodal positions Xk and xk(t) in the reference and current configuration, respec-
tively. Finally, time derivatives of the displacements, e.g. the accelerations ü, and the
weighting functions δu are also interpolated using the same shape functions. The lat-
ter convention is commonly referred to as Bubnov–Galerkin approach, as compared
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with a Petrov–Galerkin approach, where an independent set of shape functions is
chosen for interpolating the weighting functions.

Examining (44) more closely, it becomes obvious that the finite element method
basically introduces restrictions on the solution and weighting spaces defined in (39)
and (40). In the discrete setting, these spaces only contain a finite number of solution
and weighting functions, respectively, which is expressed mathematically in terms of
finite dimensional subspacesUh ⊂ U andVh ⊂ V . The limited selection of solution
andweighting functions then serves as a basis for the numerical solution, i.e. theweak
formulation is recast into a discrete form, which is no longer equivalent to strong
and weak formulation, but rather represents an approximation.

The individual contributions to the discretized weak form are integrated element-
by-element using Gauss quadrature and then sorted into global vectors based on
the so-called assembly operator, which governs the arrangement of local vectorial
quantities into global vectors. After inserting the interpolations given by (44) into
the weak formulation (38), the final spatially discretized formulation emerges as

δdT
(Md̈ + fint(d) − fext) = 0, (47)

with the global mass matrix M, the global vector of nonlinear internal forces fint

and the global vector of external forces fext. Moreover, δd, d̈ and d are global
vectors comprising all discrete nodal values of virtual displacements, accelerations
and displacements. Due to the interpolation introduced above, all vectors in (47)
are of the size ndof = ndim · nnod, where nnod is the total number of nodes in the
entire domain and ndim is the number of spatial dimensions. The variable name ndof
refers to the fact that the discrete values of the nodal displacementsd are also denoted
as degrees of freedom. Since (47) must hold for arbitrary virtual displacements δd,
it can equivalently be written as

Md̈ + fint(d) − fext = 0. (48)

This defines a system of ndof ordinary differential equations (ODEs), commonly
referred to as semi-discrete equations of motion. So far, only space discretization
with the finite element method has been established, but the system is still continuous
with respect to time.

4.3 Time Discretization

There exists a large variety of finite differencemethods suitable for timediscretization
of the semi-discrete equations of motion (48). In doing so, time derivatives are
approximated by their discrete counterparts, the difference quotients. Based on the
introduction of a constant time step size �t, the time interval of interest t ∈ [0,T ]
is subdivided into several intervals [tn, tn+1], where n ∈ N0 is the time step index,
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and thus the spatially discretized displacement solution d(t) is computed at a series
of discrete points in time.

In principle, time integration methods can be divided into implicit and explicit
schemes. While implicit methods lead to a fully coupled system of ndof nonlinear
discrete algebraic equations for the unknowndisplacementsdn+1 := d(tn+1), explicit
methods allow for a direct extrapolation towards dn+1 without requiring a solution
step. Here, only implicit schemes will be considered. They represent the method of
choice for problems dominated by a low frequency response, while explicit methods
are widely used in the context of high frequency responses and wave-like phenom-
ena, e.g. in high velocity impact situations. In general, implicit time integration
methods can be shown to be unconditionally stable, thus allowing for relatively large
time step sizes as compared with explicit schemes. However, the implementation of
implicit methods is more challenging due to the fact that nonlinear solution methods
(see Sect. 4.4) including a linearization of the entire finite element formulation are
required.

Here, the presentation is restricted to one exemplary and widely used implicit
time integration scheme, viz. the generalized-α method introduced by Chung and
Hulbert (1993). This one-step time integration scheme is based on the well-known
Newmark method, which allows for expressing the approximate discrete velocities
vn+1 ≈ ḋ(tn+1) and accelerations an+1 ≈ d̈(tn+1) at the end of the considered time
interval [tn, tn+1] solely in terms of already known quantities at time tn and the
unknown displacements dn+1, i.e.

vn+1(dn+1) = γ

β�t
(dn+1 − dn) − γ − β

β
vn − γ − 2β

2β
�tan, (49)

an+1(dn+1) = 1

β�t2
(dn+1 − dn) − 1

β�t
vn − 1 − 2β

2β
�tan, (50)

where β ∈ [0, 1/2] and γ ∈ [0, 1] are two parameters characterizing the behavior of
the method. The generalized-α method introduces generalized mid-points tn+1−αm

and tn+1−αf and shifts the evaluation of the individual terms in (48) from tn+1 to these
midpoints. The following linear interpolation rules are commonly established for the
generalized-α method:

dn+1−αf = (1 − αf)dn+1 + αf dn, (51)

vn+1−αf = (1 − αf)vn+1 + αf vn, (52)

an+1−αm = (1 − αm)an+1 + αm an, (53)

fext,n+1−αf = (1 − αf) fext,n+1 + αf fext,n. (54)

Eventually, the fully (i.e. space and time) discretized finite element formulation of
nonlinear solid mechanics, also referred to as discrete linear momentum balance, is
obtained as

Man+1−αm + Cvn+1−αf + fint(dn+1−αf) − fext,n+1−αf = 0. (55)
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One important advantage of the generalized-αmethod is that it allows for introducing
controllable numerical dissipation into the considered system, while at the same
time retaining the important properties of unconditional stability and second-order
accuracy.Controllable numerical dissipation in this contextmeans that the parameters
β, γ, αm and αf can be harmonized such that the desired damping effect is only
achieved in the spurious high frequency modes, while damping in the low frequency
domain is kept at a minimum. This procedure is usually united in the notion of a
spectral radius ρ∞ as the sole free parameter to choose for a generalized-α method.
The other parameters then follow directly from the requirements of unconditional
stability, second-order accuracy and optimized numerical dissipation as

αm = 2ρ∞ − 1

ρ∞ + 1
, αf = ρ∞

ρ∞ + 1
, β = 1

4
(1 − αm + αf)

2, γ = 1

2
− αm + αf.

(56)
Note that no numerical dissipation is introduced into the system for the choice ρ∞ =
1. Moreover, the generalized-α method also contains the classical Newmark method
as a special case by setting αm = αf = 0.

For the sakeof completeness, it is pointedout that quasistatic problems, i.e. neglect-
ing inertia effects, are also considered in the following. In that case, the timeparameter
t only plays the role of a pseudo-time and no time integration method is needed, but
the quasistatic solution is rather computed as a series of static equilibrium states.

4.4 Linearization and Solution Techniques for Nonlinear
Equations

Within each time step, the system of ndof nonlinear discrete algebraic Eq. (55) needs
to be solved for the unknown displacements dn+1. Throughout this contribution, the
Newton–Raphson method is employed as an iterative nonlinear solution technique.
Within each iteration step i, the residual of the discrete linear momentum balance
can be defined as

reffdyn(d
i
n+1) = Main+1−αm

+ Cvi
n+1−αf

+ fint(d
i
n+1−αf

) − fext,n+1−αf . (57)

The Newton–Raphson method is based on repeated linearization of the residual in
(57), solution of the resulting linearized system of equations and incremental update
of the unknown displacements until a user-defined convergence criterion is met. At
first, the linearization is obtained from the truncated Taylor expansion of (57), viz.

Lin reffdyn(d
i
n+1) = reffdyn(d

i
n+1) + ∂reffdyn(dn+1)

∂dn+1

∣∣∣∣
i

︸ ︷︷ ︸
Keffdyn(di

n+1)

�di+1
n+1, (58)
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where the partial derivative of reffdyn(d
i
n+1)with respect to the displacements is com-

monly referred to as dynamic effective tangential stiffness matrix Keffdyn(d
i
n+1) of

size ndof × ndof. In the context of the generalized-α method, the dynamic effective
tangential stiffness matrix can be determined based on Newmark’s approximation
given in (49) and (50) and the generalized midpoints defined in (51)–(54), yielding

Keffdyn(d
i
n+1) = ∂reffdyn(dn+1)

∂dn+1

∣∣∣∣
i

=

=
[
1 − αm

β�t2
M + (1 − αf)γ

β�t
C + (1 − αf)KT(dn+1−αf)

]i
, (59)

where KT(dn+1−αf) is the tangential stiffness matrix associated with the internal
forces as

KT(dn+1−αf) = ∂fint(dn+1−αf)

∂dn+1−αf

. (60)

To sum up, the Newton–Raphson method provides an iterative procedure for finding
the unknown solutiondn+1 for which the residual reffdyn(dn+1) vanishes.Within each
iteration, it is required that

Lin reffdyn(d
i
n+1)

!= 0, (61)

or in other words, the following linear system of equations has to be solved:

Keffdyn(d
i
n+1)�di+1

n+1 = −reffdyn(d
i
n+1). (62)

Having solved (62), the displacementsdi+1
n+1 at the end of the time step can be updated

via
di+1
n+1 = di

n+1 + �di+1
n+1, (63)

and the iteration counter is increased by one, i.e. i → i + 1. The procedure in (62)
and (63) is repeated until a certain user-defined convergence criterion, usually with
regard to the L2-norm of the residual ‖reffdyn(d

i
n+1)‖, is met. The most advantageous

property of the Newton–Raphson method is its local quadratic convergence. This
means that if the start solution estimated0

n+1 is sufficiently close to the actual solution
dn+1, i.e. within the problem-dependent convergence radius, then the residual norm
approaches zero with a quadratic convergence rate.
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In this contribution, only exact Newton–Raphson methods are considered as
described above or later also their semi-smooth variants for the inclusion of con-
tact constraints. However, the computational cost associated with such an approach
can be considerable for nonlinear solid mechanics problems, bearing in mind that
it requires a consistent linearization and thus a determination of the tangential stiff-
ness matrix KT(dn+1−αf) within each iteration step. In practice, this often leads to
the application of quasi-Newton methods or modified Newton methods, which are
based on a computationally cheaper approximation of the stiffness matrix (e.g. via
secants), but sacrifice optimal convergence behavior. Apart from that, many exten-
sions of the Newton–Raphson method aim at enlarging its local convergence radius.
Popular examples of such globalization strategies are line search methods and the
pseudo-transient continuation (PTC) technique, see e.g. Gee et al. (2009) and refer-
ences therein.

5 Mortar Methods for Tied Contact

Mesh tying (also referred to as tied contact) serves as a model problem for the intro-
duction to mortar finite element methods here. The basic motivation for such mortar
mesh tying algorithms is to connect dissimilar meshes in nonlinear solid mechanics
in a variationally consistent manner. Reasons for the occurrence of non-matching
meshes can be manifold and range from different resolution requirements in the
individual subdomains over the use of different types of finite element interpolation
to the rather practical experience that the submodels to be connected are commonly
meshed independently. Further details and a full derivation of all formulations can
be found in the author’s original work (Popp 2012).

5.1 Strong Formulation

Without loss of generality, only the case of a body with one sole tied contact interface
is considered. On each subdomain �

(i)
0 , the initial boundary value problem of finite

deformation elastodynamics needs to be satisfied, viz.

DivP(i) + b̂
(i)

0 = ρ(i)
0 ü(i) in �

(i)
0 × [0,T ], (64)

u(i) = û(i) on �(i)
u × [0,T ], (65)

P(i) · N(i) = t̂
(i)
0 on �(i)

σ × [0,T ], (66)

u(i)(X(i), 0) = û(i)
0 (X(i)) in �

(i)
0 , (67)

u̇(i)(X(i), 0) = ˆ̇u(i)
0 (X(i)) in �

(i)
0 . (68)
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The tied contact constraint, also formulated in the reference configuration, is given as

u(1) = u(2) on �c × [0,T ]. (69)

Equations (64)–(69) represent the final strong form of a mesh tying problem in
nonlinear solid mechanics. In the course of deriving a weak formulation (see next
paragraph), the balance of linearmomentumat themesh tying interface�c is typically
exploited and a Lagrangemultiplier vector fieldλ is introduced, thus setting the basis
for a mixed variational approach.

5.2 Weak Formulation

To start the derivation of a weak formulation of (64)–(69), appropriate solution
spaces U (i) and weighting spaces V (i) need to be defined as

U (i) =
{
u(i) ∈ H 1(�) | u(i) = û(i) on �u

}
, (70)

V (i) = {
δu(i) ∈ H 1(�) | δu(i) = 0 on �u

}
. (71)

Moreover, the Lagrange multiplier vector λ = −t(1)c , which represents the negative
slave side contact traction t(1)c and is supposed to enforce the mesh tying constraint
(69), is chosen from a corresponding solution space denoted as M. In terms of
its classification in functional analysis, this space represents the dual space of the
trace space W (1) of V (1). In the given context, this means that M = H−1/2(�c)

and W (1) = H 1/2(�c), where M and W (1) denote single scalar components of the
corresponding vector-valued spaces M and W .

Based on these considerations, a saddle point type weak formulation is derived
next. Basically, this can be done by extending the standard weak formulation of
nonlinear solid mechanics as defined in (38) to two subdomains and combining it
with Lagrange multiplier coupling terms. Find u(i) ∈ U (i) and λ ∈ M such that

−δWkin,int,ext(u(i), δu(i)) − δWmt(λ, δu(i)) = 0 ∀ δu(i) ∈ V (i), (72)

δWλ(u(i), δλ) = 0 ∀ δλ ∈ M. (73)

Herein, the kinetic contribution δWkin, the internal and external contributions
δWint,ext and the mesh tying interface contribution δWmt to the overall virtual work
on the two subdomains, as well as the weak form of the mesh tying constraint δWλ,
have been abbreviated as
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−δWkin =
2∑

i=1

[∫
�

(i)
0

ρ(i)
0 ü(i) · δu(i) dV0

]
, (74)

−δWint,ext =
2∑

i=1

[∫
�

(i)
0

(
S(i) : δE(i) − b̂

(i)

0 · δu(i)
)
dV0 −

∫
�

(i)
σ

t̂
(i)
0 · δu(i) dA0

]
,

(75)

−δWmt =
∫

�c

λ · (δu(1) − δu(2)) dA0, (76)

δWλ =
∫

�c

δλ · (u(1) − u(2)) dA0. (77)

It is important to point out that, strictly speaking, the coupling bilinear forms
δWmt and δWλ cannot be represented by integrals, because the involved spaces
H 1/2(�c) and H−1/2(�c) do not satisfy the requirements for a proper integral defini-
tion. Instead, a mathematically correct notation would use so-called duality pairings
〈λ, (δu(1) − δu(2))〉�c and 〈δλ, (u(1) − u(2))〉�c , see e.g. Wohlmuth (2000). How-
ever, during finite element discretization the solution spaces are restricted to discrete
subsets of L2(�c) functions, and by then at the latest the coupling terms may be
formulated as surface integrals. Moreover, even in the mathematical literature the
distinction between duality pairing and integral is not treated consistently, and thus
the slightly inaccurate formulation in (76) and (77) is preferred here due to readabil-
ity.

The coupling terms on �c also allow for a direct interpretation in terms of varia-
tional formulations and the principle of virtualwork.Whereas the contribution in (76)
represents the virtual work of the unknown interface tractions λ = −t(1)c = t(2)c , the
contribution in (77) ensures a weak, variationally consistent enforcement of the tied
contact constraint (69). Unlike for unilateral contact with inequality constraints,
there exist no further restrictions on the Lagrange multiplier spaceM here (such as
e.g. positivity). Nevertheless, the concrete choice of the discrete Lagrange multiplier
space Mh in the context of mortar finite element discretizations is decisive for the
stability of the method and for optimal a priori error bounds, cf. Sect. 7.1. Finally, it
is pointed out that the weak formulation (72) and (73) possesses all characteristics
of saddle point problems and Lagrange multiplier methods.

5.3 Finite Element Discretization

For the spatial discretization of the tied contact problem (72) and (73), standard
isoparametric finite elements are employed. This defines the usual finite dimensional
subspacesU (i)

h andV (i)
h being approximations ofU (i) andV (i), respectively. Through-

out this chapter, both first-order and second-order interpolation is considered with
finite element meshes typically consisting of 3-node triangular (tri3), 4-node quadri-
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lateral (quad4), 6-node triangular (tri6), 8-node quadrilateral (quad8) and 9-node
quadrilateral (quad9) elements in 2D, and of 4-node tetrahedral (tet4), 8-node hexa-
hedral (hex8), 10-node tetrahedral (tet10), 20-node hexahedral (hex20) and 27-node
hexahedral (hex27) elements in 3D.

With the focus being on the finite element discretization of the coupling terms
here, only the geometry, displacement and Lagrangemultiplier interpolations on�

(i)
c,h

will be considered in the following. Discretization of the remaining contributions
to (72) is not discussed, but the reader is instead referred to the abundant literature.
As explained in Sect. 4.2, the subscript ·h refers to a spatially discretized quantity.
Obviously, there exists a connection between the employed finite elements in the
domains �

(i)
0,h and the resulting surface facets on the mesh tying interfaces �

(i)
c,h. For

example, a mixed 3D finite element mesh composed of tet4 and hex8 elements yields
tri3 and quad4 facets on the surface of tied contact. Consequently, the following
general form of geometry and displacement interpolation on the discrete mesh tying
surfaces holds:

x(1)
h |

�
(1)
c,h

=
n(1)∑
k=1

N (1)
k (ξ(1), η(1))x(1)

k , x(2)
h |

�
(2)
c,h

=
n(2)∑
l=1

N (2)
l (ξ(2), η(2))x(2)

l , (78)

u(1)
h |

�
(1)
c,h

=
n(1)∑
k=1

N (1)
k (ξ(1), η(1))d(1)

k , u(2)
h |

�
(2)
c,h

=
n(2)∑
l=1

N (2)
l (ξ(2), η(2))d(2)

l . (79)

The total number of slave nodes on �
(1)
c,h is n(1), and the total number of master

nodes on �
(2)
c,h is n

(2). Discrete nodal positions and discrete nodal displacements are

given by x(1)
k , x(2)

l , d(1)
k and d(2)

l . The shape functions N (1)
k and N (2)

l are defined with
respect to the usual finite element parameter space, commonly denoted as ξ(i) for
two-dimensional problems (i.e. 1D mesh tying interfaces) and as ξ(i) = (ξ(i), η(i))

for three-dimensional problems (i.e. 2Dmesh tying interfaces). Asmentioned above,
the shape functions are derived from the underlying bulk discretization. Although not
studied here, the proposed algorithms can in principle be transferred to higher-order
interpolation and alternative shape functions, such as non-uniform rational B-splines
(NURBS), see e.g. Cottrell et al. (2009), De Lorenzis et al. (2011) and Temizer et al.
(2011, 2012).

In addition, an adequate discretization of the Lagrange multiplier vector λ is
needed, too, and will be based on a discrete Lagrange multiplier space Mh being
an approximation ofM. Some details concerning the choice ofMh, and especially
concerning the two possible families of standard and dual Lagrange multipliers, will
follow in Sect. 7.1. Thus, only a very general notation is given at this point:

λh =
m(1)∑
j=1

�j(ξ
(1), η(1))λj, (80)
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with the (still to be defined) shape functions �j and the discrete nodal Lagrange
multipliers λj. The total number of slave nodes carrying additional Lagrange mul-
tiplier degrees of freedom is m(1). Typically for mortar methods, every slave node
also serves as coupling node, and thus in the majority of cases m(1) = n(1) will hold.
However, in the context of second-order finite elements, it will be favorable to chose
m(1) < n(1) in certain cases. Substituting (78) and (80) into the interface virtual work
δWmt in (72) yields

−δWmt,h =
m(1)∑
j=1

n(1)∑
k=1

λT
j

(∫
�

(1)
c,h

�j N
(1)
k dA0

)
δd(1)

k

−
m(1)∑
j=1

n(2)∑
l=1

λT
j

(∫
�

(1)
c,h

�j (N
(2)
l ◦ χh) dA0

)
δd(2)

l , (81)

where χh : �
(1)
c,h → �

(2)
c,h defines a suitable discrete mapping from the slave to the

master side of the mesh tying interface. Such a mapping (or projection) becomes
necessary due to the fact that the discretized coupling surfaces �

(1)
c,h and �

(2)
c,h are, in

general, no longer geometrically coincident. This becomes very clear when thinking
of a curved mesh tying interface with non-matching finite element meshes on the two
different sides. As illustrated in Fig. 4, tiny gaps and overlaps may be generated in
the discretized setting, although the surfaces had still been coincident in the contin-
uum framework. Throughout this contribution, numerical integration of the mortar
coupling terms is exclusively performed on the slave side �

(1)
c,h of the interface. In

(81), nodal blocks of the two mortar integral matrices commonly denoted as D and
M can be identified. This leads to the following definitions:

D[j, k] = Djk Indim =
∫

�
(1)
c,h

�jN
(1)
k dA0 Indim, (82)

M[j, l] = Mjl Indim =
∫

�
(1)
c,h

�j(N
(2)
l ◦ χh) dA0 Indim, (83)

gap gap

overlap

Γ(1)
c,h �= Γ(2)

c,hΓ(1)
c ≡ Γ(2)

c ≡ Γc

Ω(1)
0

Ω(2)
0

Fig. 4 Gaps and overlaps in a curved mesh tying interface with non-matching FE meshes
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where j= 1, . . . ,m(1), k = 1, . . . , n(1), l = 1, . . . , n(2).Note that Indim ∈ R
ndim×ndim

is an identitymatrixwhose size is determined by the global problemdimensionndim,
viz. either ndim = 2 or ndim = 3. In general, both mortar matrices D and M
have a rectangular shape. However, D becomes a square matrix for the common
choice m(1) = n(1). More details concerning the actual numerical integration of the
mass matrix type of entries inD andM as well as the implementation of the interface
mapping χh for 3D will be given in Sects. 5.4 and 7.3.

For the ease of notation, all nodes of the two subdomains�
(1)
0 and�

(2)
0 , and corre-

spondingly all degrees of freedom (DOFs) in the global discrete displacement vector
d, are sorted into three groups: a group S containing all slave interface quantities,
a group M of all master quantities and a group denoted as N , which comprises all
remaining nodes or DOFs. The global discrete displacement vector can be sorted
accordingly, yielding d = (dN ,dM,dS). Going back to (81), this allows for the
following definition:

− δWmt,h = δdT
SD

Tλ − δdT
MMTλ = δdT

⎡
⎣ 0

−MT

DT

⎤
⎦

︸ ︷︷ ︸
BT

mt

λ = δdTfmt(λ). (84)

Herein, the discrete mortar mesh tying operatorBmt and the resulting discrete vector
of mesh tying forces fmt(λ) = BT

mtλ acting on the slave and the master side of the
interface are introduced. To finalize the discretization of the considered mesh tying
problem, a closer look needs to be taken at the weak constraint contribution δWλ

in (73). Due to the saddle point characteristics and resulting symmetry of the mixed
variational formulation in (72) and (73), all discrete components of δWλ have already
been introduced and the final formulation is given as

δWλ,h = δλTDdS − δλTMdM = δλTBmtd = δλTgmt(d), (85)

with gmt(d) = Bmtd representing the discrete mesh tying constraint at the coupling
interface. Taking into account the typical finite element discretization of all remaining
contributions to the first part of the weak formulation (72), as previously outlined in
Sect. 4.2, the semi-discrete equations of motion including tied contact forces and the
constraint equations emerge as

Md̈ + Cḋ + fint(d) + fmt(λ) − fext = 0, (86)

gmt(d) = 0. (87)

Mass matrix M, damping matrix C, internal forces fint(d) and external forces fext

result from standard FE discretization. It is important to point out that the actual
mortar-based interface coupling described here is completely independent of the
concrete choice of the underlying finite element formulation. The same also holds
true for the question which particular material model is applied. As both topics,
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i.e. nonlinear finite elements for continua and complexmaterialmodels, are discussed
at length in the literature, details will not be repeated here but the focus will remain
solely on the mesh tying terms fmt(λ) and gmt(d).

Examining the semi-discrete problem statement in (86) and (87) in more detail,
the well-known nonlinearity of the internal forces fint(d) due to the consideration
of finite deformation kinematics and nonlinear material behavior becomes apparent.
However, neither the discrete interface forces fmt(λ) nor the mesh tying constraints
gmt(d) introduce an additional nonlinearity into the system. This is due to the fact
that no relative movement of the subdomains is permitted in mesh tying problems.
Therefore, the mortar integral matrices D and M and hence also the discrete mesh
tying operator Bmt only need to be evaluated once at problem initialization and
thus do not depend on the actual displacements, even if finite deformations of the
considered body are involved. With respect to numerical efficiency, this means that
evaluating the mortar coupling terms for tied contact problems is a one-time cost,
which can usually be neglected as compared with the remaining computational costs.
Only for the unilateral contact case discussed in Sect. 6, this will no longer be the
case. The question how to numerically evaluate the entries of Bmt in 3D problems is
discussed in the following paragraph.

5.4 Evaluation of Mortar Integrals in 3D

All general concepts of the evaluation of mortar integrals in 3D can also be trans-
ferred back to the simple 2D case. The integral entries of both matricesD andMwill
be computed based on so-called mortar segments in order to achieve the maximum
possible accuracy of Gauss quadrature and to guarantee linear momentum conser-
vation in the semi-discrete setting. Projection operations between slave surface �

(1)
c,h

and master surface �
(2)
c,h, which consist of two-dimensional facets, are based on nodal

averaging and a C0-continuous field of normal vectors, cf. Fig. 17. For 3D situations,
the averaged nodal normal vector nk is given as

nk =
∑nadj

k
e=1 n

(e)
k

‖∑nadj
k
e=1 n

(e)
k ‖

, (88)

where the total number of slave facets nadj
k adjacent to slave node k may vary within

a much wider range than in 2D (for instance nadj
k = 4 in Fig. 17). In anticipation of

unilateral contact formulations, (88) also defines a tangential plane at slave node
k, from which the two unit tangent vectors τ

ξ
k and τ

η
k can be chosen to form an

orthonormal basis together with nk as

nk · τ
ξ
k = 0, τ

η
k = nk × τ

ξ
k . (89)
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Mortar segments must be defined such that the shape function integrands in (82)
and (83) are C1-continuous on these surface subsets. However, it is quite obvious
that this task is much more complex in three dimensions than it would be in two
dimensions, because mortar segments are arbitrarily shaped polygons as compared
with line segments in the 2D case. Beyond that, the choice of an adequate mortar
integration surface itself is quite difficult. In the 2D mortar mesh tying formulation
that is not discussed here, integration is performed directly on the slave surface �

(1)
c,h.

Unfortunately, it is not trivial to directly transfer this approach to three dimensions,
because of the possible warping of surface facets.

The general topic of numerical integration, and an overview of the available
(segment-based and element-based) integration schemes for this purpose is given
in Sect. 7.3

5.5 Solution Methods

The attention is now turned back to the actual mortar finite element approach for
tied contact derived in Sect. 5.3, and in particular to the final fully discretized version
(i.e. after time discretization with the generalized-α method previously discussed
in Sect. 4.3) of (86) and (87). All solution methods for this system of ndof + nco
nonlinear discrete algebraic equations, where the global number of constraints is
given by nco = ndim · m(1), are based on a standard Newton–Raphson iteration as
introduced in Sect. 4.4. With only equality constraints being present, no active set
strategies are needed for mesh tying systems, but the iterative solution techniques can
be applied directly, thus yielding standard (or smooth) Newtonmethods. Primal-dual
active set strategies and the associated notion of semi-smooth Newton methods only
become important in the context of unilateral contact considered in Sect. 6.

As explained in Sect. 4.4, the Newton–Raphson method (or Newton’s method)
is based on a subsequent linearization of the residual, here defined by the discrete
balance of linear momentum and the discrete mesh tying constraints in the time-
discretized versions of (86) and (87). Each nonlinear solution step (iteration index
i) then consists of solving the resulting linearized system of equations and an incre-
mental update of the unknown displacements dn+1 and Lagrange multipliersλn+1−αf

until a user-defined convergence criterion is met. Taking into account that the dis-
crete mesh tying operatorBmt defined in (84) does not depend on the displacements,
consistent linearization in iteration step i yields:

Keffdyn(d
i
n+1) �di+1

n+1 + Bmtλ
i
n+1−αf

= −reffdyn(d
i
n+1), (90)

∂gmt(dn+1)

∂dn+1

∣∣∣∣
i

�di+1
n+1 = −gmt(d

i
n+1). (91)

Herein, the fact that the Lagrange multipliers only enter the discrete mesh tying in
a linear fashion has been made use of. Due to this linearity, it is possible to solve
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directly for the unknown Lagrange multipliers λi
n+1−αf

in each iteration step instead
of an incremental formulation. Moreover, as mentioned in Sect. 4.4, all discrete force
terms (inertia, damping, internal and external forces) except for the additional mesh
tying forces fmt(λ

i
n+1−αf

) are summarized in the residual reffdyn(d
i
n+1) and the partial

derivative of reffdyn(d
i
n+1)with respect to the displacementsd is commonly referred to

as dynamic effective tangential stiffness matrix Keffdyn(d
i
n+1), as introduced in (58).

Finally, it is pointed out that the constraints gmt(dn+1) = 0 are already enforced at
time t = 0 to assure angular momentum conservation. Thus, the right-hand side of
the linearized constraint equation in (91) simply reduces to zero.

The linearized statement in (90) and (91) already gives a hint as to the typical
saddle point structure of the resulting Lagrange multiplier system. Analyzing the
linearizedmesh tying system (90) inmore detail and splitting the global displacement
vector d = (dN ,dM,dS) as well as all other involved quantities into three subsets
as defined in Sect. 5.3 leads to the following notation in matrix-vector notation:

⎡
⎢⎢⎣
KNN KNM KNS 0
KMN KMM 0 −MT

KSN 0 KSS DT

0 −M D 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�dn+1,N
�dn+1,M
�dn+1,S
λn+1−αf

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣
rN
rM
rS
0

⎤
⎥⎥⎦ . (92)

Herein, the nonlinear iteration index i and the subscript ·effdyn of the residual vector
reffdyn and the tangential stiffness matrix Keffdyn have been omitted for the ease of
notation. Note that no matrix blocksKMS andKSM exist, because slave and master
side degrees of freedom are only coupled via themortar approach. Due to the inherent
symmetry of Keffdyn, the global linearized mesh tying system (92) is also symmetric
and has the typical saddle point structure with a zero matrix block associated with
the Lagrange multipliers λn+1−αf on the main diagonal. Thus, while a conforming
discretization would yield a positive definite system, the coupled mesh tying system
considered here becomes indefinite with both positive and negative eigenvalues due
to the saddle point characteristics of the Lagrange multiplier method.

The linear system (92) needs to be solved within each nonlinear iteration step.
Unfortunately, efficient iterative solution techniques and especially the associated
preconditioners usually perform very poorly for such indefinite systems or are not
applicable at all. The main reason for this lies in the fact that common precondi-
tioning techniques, e.g. the Jacobi and Gauss–Seidel methods, fail for zero diagonal
matrix entries as occurring in (92). Nevertheless, there exist some specific solution
methods for this type of saddle point matrix block system, which are both well-
established and quite efficient. One popular representative, also employed as pre-
conditioner in this contribution whenever large mesh tying and contact systems are
considered with a standard Lagrange multiplier approach, is given by the so-called
semi-implicit method for pressure-linked equations (SIMPLE) and its many descen-
dants, see e.g. Elman et al. (2008) for a very comprehensive overview in the context
of the incompressible Navier–Stokes equations for fluid dynamics.
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As will be explained in Sect. 7.1, the dual Lagrange multiplier approach is char-
acterized by its localization of the coupling constraints at the mesh tying interface,
and thus algebraically by mortar matrixD reducing to a diagonal matrix. This makes
D trivial to invert and allows for efficient condensation operations of the slave side
degrees of freedom, i.e. both Lagrange multipliers and the discrete slave side dis-
placements. The basis for this condensation is given by the saddle point system in
(92), which is of course equally valid for dual Lagrange multiplier interpolation. In
preparation of a first condensation step, the third row of (92) is used to express the
unknown Lagrange multipliers λn+1−αf as

λn+1−αf = D−T (−rS − KSN�dn+1,N − KSS�dn+1,S
)
. (93)

Insertion into the second row of (92) yields the following intermediate system:

⎡
⎣ KNN KNM KNS
KMN + PTKSN KMM PTKSS

0 −M D

⎤
⎦
⎡
⎣�dn+1,N

�dn+1,M
�dn+1,S

⎤
⎦ = −

⎡
⎣ rN
rM + PTrS

0

⎤
⎦ , (94)

where the mortar projection operator P = D−1M that will formally be introduced in
(143) is used to abbreviate the notation. As a second step, the constraint equation in
the last row of (94) can be expressed as

�dn+1,S = D−1M�dn+1,M = P�dn+1,M. (95)

The final condensed system for the dual Lagrange multiplier approach is then
obtained by reinserting this result into the first row and second row of the inter-
mediate system, viz.

[
KNN KNM + KNSP

KMN + PTKSN KMM + PTKSSP

] [
�dn+1,N
�dn+1,M

]
= −

[
rN

rM + PTrS

]
. (96)

This final linearized system unifies several beneficial properties as compared with
the equivalent saddle point formulation given in (92). Firstly, the discrete Lagrange
multiplier degrees of freedom λn+1−αf have been removed from the global system
and thus the commonly cited disadvantage of an increased system size for Lagrange
multiplier methods is resolved. In fact, owing to the second condensation step, which
removes the slave side displacement degrees of freedom �dn+1,S , the final system
size is even reduced as compared with a conforming discretization. Secondly, and
more importantly, the typical saddle point structure with a zero diagonal matrix
block has been completely removed on the way towards the final system (96), which
is instead symmetric and positive definite again.

With regard to linear solvers, the dual Lagrange multiplier approach virtually
allows for an “out-of-the-box” application of state-of-the-art iterative solution and
preconditioning techniques, such as the CG or GMRES approach in combination
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with algebraic multigrid (AMG) methods. Simply speaking, all solvers that were
optimized for conforming discretizations in nonlinear solid mechanics are equally
applicable to the non-conforming mortar formulation with dual Lagrange multipliers
in (96) due to similar system properties. The additional computational effort associ-
ated with the condensation operations can be considered very low. In a first, naive
implementation, setting up the condensed system would simply require some addi-
tional matrix-matrix products of interface-sized matrix blocks such as the discrete
projection operator P. However, a more elaborate implementation could even do
without explicit matrix-matrix products, but would rather introduce modified local
assembly procedures for the individual finite element contributions to the tangential
stiffness matrix blocksKNS ,KSN andKSS , taking into account the associated local
entries of the mortar projection operator P. In any case, the improved properties and
the more efficient solvability of (96) as compared with (92) by far outweigh addi-
tional computational costs for the condensation, which makes the dual Lagrange
multiplier approach the preferred choice throughout this chapter.

For the sake of completeness, two details should be pointed out. Firstly, the
described condensationoperations are of course also applicable for standardLagrange
multiplier interpolation with a non-diagonal mortar matrix D, at least theoretically.
In practice, however, the inverse matrix D−1 would be densely populated in such
a case, which forbids the actual computation and storage of D−1 or likewise P for
moderate or even large system sizes. For dual Lagrange multiplier interpolation, on
the contrary, inversion of D and storage of the sparsely populated matrix P remain
easily manageable even for large-scale mortar mesh tying simulations. Secondly,
node-matching interface meshes are contained as a special case in the given mortar
formulation. This situation basically leads toP becoming an identity operator, estab-
lishing a one-to-one mapping between slave side and master side displacements.
Expression (96) then reduces to exactly the same linearized system that is obtained
for a conforming mesh.

5.6 Numerical Example

Patch tests are arguably one of the most common validation tools in finite element
analysis, typically used as a first important step towards an assessment of the con-
sistency of new element formulations, see e.g. Irons (1966) and Taylor et al. (1986).
In the present context of mesh tying and contact mechanics, patch tests are inves-
tigated in order to analyze the ability of mortar methods to exactly represent the
simplest possible (i.e. constant) stress states across arbitrary non-conforming inter-
faces. However, it is well-known that collocation-basedmethods such as the classical
node-to-segment (NTS) approach for mesh tying and unilateral contact typically fail
the patch test.Mortar finite elementmethods, with their variationally consistent inter-
polation of the interface traction via discrete Lagrange multipliers λ, guarantee the
exact satisfaction of typical patch tests by design.
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Fig. 5 3D patch test with inclined interface – finite element mesh (left), displacement uz (middle)
and interface tractions represented by the discrete Lagrange multipliers λ (right)

As a first test setup, two stacked cubes with an inclined but flat mesh tying inter-
face, as illustrated in Fig. 5, are investigated. This geometric model is obtained by
first considering two identical cubes of side length 10 and then moving two opposite
corners of the interface by a distance of ±2 in z-direction. The compressible Neo–
Hookean material law introduced in Sect. 3.2 is employed with Young’s modulus
E = 10 and Poisson’s ratio ν = 0.4. A constant pressure load p = −0.2 is applied
to the top surface of the upper block, and the bottom surface of the lower block is
supported such that any rigid body movement is precluded, but the bodies are free
to expand laterally. The lower block is defined as slave side for mortar coupling and
the chosen mesh size ratio of h(1)/h(2) = 5/6 generates a non-matching situation at
the interface. Figure5 exemplarily illustrates the displacement solution as well as
the Lagrange multiplier (i.e. interface traction) solution in z-direction for a hex8 dis-
cretization. As expected, a linear displacement field and constant interface tractions
are obtained. The fact that the patch test is actually passed to machine precision for
any first-order or second-order finite element type is emphasized in Fig. 6, where the
normal stress component in z-direction of the Cauchy stress tensor σ is visualized.
While all presented results have been obtained with dual Lagrange multiplier inter-
polation according to Sect. 7.1, standard Lagrange multipliers would yield identical
results.

The second patch test investigated is a 2D rectangular strip (length l = 8,
width w = 3) with five subdomains, each discretized with different first-order and
second-order finite elements (i.e. tri3, quad4, tri6, quad8 and quad9 elements),
see Fig. 7. While this admittedly constitutes a rather academic example, it strik-
ingly demonstrates the mesh generation flexibility offered by mortar methods, and
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Fig. 6 3D patch test with inclined interface – Cauchy stress σzz for several different types of
first-order and second-order mortar finite element interpolation

Fig. 7 2D patch test with crosspoints – types of finite element interpolation in the individual
subdomains (left), displacement uy (middle) and Cauchy stress σyy (right)
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Fig. 8 3D patch test with curved interface – finite element mesh and Cauchy stress σzz for non-
conforming interfaces (left) and for node-matching interfaces (right)

especially also the possibility of a consistent treatment of so-called crosspoints as
discussed in Wohlmuth (2001). Again, a compressible Neo–Hookean constitutive
model is employed (E = 10, ν = 0.3) and the strip is subject to unilateral loading
in y-direction. Both displacement and stress solution confirm that this 2D patch test
is passed to machine precision. The treatment of crosspoints is readily extended to
three dimensions, see e.g. Wohlmuth (2001).

Finally, the first patch testmodel is reconsidered, but nowwith a curvedmesh tying
interface. The exemplary results for a hex8mesh in the left part of Fig. 8 illustrate the
limits of mortar finite element methods with regard to exact patch test satisfaction.
It can be seen quite clearly that the patch test is not satisfied to machine precision
in that case, but instead a small error is introduced in the vicinity of the interface.
The reason for this result has already been explained in Sect. 5.3 and lies in the fact
that the discrete surfaces �

(1)
c,h and �

(2)
c,h are no longer geometrically coincident for

non-matching meshes on curved interfaces, but tiny gaps and overlapping regions
appear. Thus, a discrete projection step is needed, which inevitably precludes the
constant stress solution to be recovered exactly. This becomes even clearer when
analyzing a curved mesh tying interface with node-matching meshes, as visualized
in the right part of Fig. 8. In that case, the discrete mesh tying surfaces �

(1)
c,h and �

(2)
c,h

are again coincident, the mortar projection operatorP reduces to an identity mapping
and the patch test is satisfied exactly. Nevertheless, it should be pointed out that the
error of mortar methods in curved patch tests is only marginal and can factually be
neglected from an engineering point of view. Besides, the curved patch test behavior
of mortar methods is still significantly better than that of classical NTS schemes, see
also Hesch and Betsch (2010).
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6 Mortar Methods for Unilateral Contact

Contact interaction in nonlinear solid mechanics and the use of mortar finite element
methods in this context are the main focus of interest of this chapter. The goal of all
developments presented is to be able to analyze and accurately predict themechanical
response in highly nonlinear unilateral contact scenarios, i.e. including very large
deformations and sliding, continuous changes of the active contact area and possibly
nonlinearmaterial behavior. Fromamethod development point of view,many aspects
of mortar methods already introduced for mesh tying in Sect. 5 can either be re-used
directly or in a slightly modified way in order to meet contact-specific demands.
For further theoretical considerations and an in-depth analysis of the mathematical
foundations of contact mechanics, the comprehensive textbook by Kikuchi and Oden
(1988) and the recent review article byWohlmuth (2011) should be consulted. A full
derivation of all formulations reviewed here can be found in the author’s original
work (Popp 2012).

6.1 Strong Formulation

For the sake of simplicity, only the case of two contacting bodies with one sole con-
tact interface is considered here. However, a generalization to multiple bodies and
self contact is rather straightforward and mostly a matter of efficient search algo-
rithms. All necessary notations for the finite deformation unilateral contact problem
have already been introduced in Fig. 2, to which the reader is once again referred
at this point. The domains �0(i) ⊂ R

3 and �
(i)
t ⊂ R

3, i = 1, 2, represent two sepa-
rate bodies in the reference and current configuration, respectively. To allow for the
usual Dirichlet and Neumann boundary conditions as well as contact interaction, the
surfaces ∂�

(i)
0 are divided into three disjoint subsets �

(i)
u , �(i)

σ and �
(i)
c , where �

(i)
c

represents the potential contact surface. Similarly, the spatial surface descriptions
∂�

(i)
t are split into γ(i)

u , γ(i)
σ and γ(i)

c . Retaining a customary nomenclature in contact
mechanics, �(1)

c is again referred to as slave surface and �
(2)
c as master surface.

On each subdomain �
(i)
0 the initial boundary value problem of finite deformation

elastodynamics needs to be satisfied, viz.

DivP(i) + b̂
(i)

0 = ρ(i)
0 ü(i) in �

(i)
0 × [0,T ], (97)

u(i) = û(i) on �(i)
u × [0,T ], (98)

P(i)N(i) = t̂
(i)
0 on �(i)

σ × [0,T ], (99)

u(i)(X(i), 0) = û(i)
0 (X(i)) in �

(i)
0 , (100)

u̇(i)(X(i), 0) = ˆ̇u(i)
0 (X(i)) in �

(i)
0 . (101)
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The contact constraints in normal direction are typically given in form of KKT
conditions as defined in (33), while frictional sliding according to Coulomb’s law
has been introduced in (35). For the sake of completeness of the strong formulation,
both sets of conditions are repeated:

gn ≥ 0, pn ≤ 0, pn gn = 0 on γ(1)
c × [0,T ], (102)

� := ‖tτ‖ − F|pn| ≤ 0,

vτ ,rel + βtτ = 0, β ≥ 0, �β = 0 on γ(1)
c × [0,T ]. (103)

Equations (97)–(103) represent the final strong form of a unilateral contact problem
in nonlinear solid mechanics. In the course of deriving a weak formulation (see
next paragraph), the balance of linear momentum at the contact interface is typically
exploited and a Lagrange multiplier vector λ is introduced, thus setting the basis
for a mixed variational approach. In contrast to the mesh tying case in Sect. 5, it is
striking that the unilateral contact constraints are typically formulated (and later also
numerically evaluated) in the current configuration.

6.2 Weak Formulation

In the first instance, the most general weak formulation including also Coulomb
friction is considered. Similar to the pure solid mechanics case in Sect. 4.1 and the
mesh tying case in Sect. 5.2, the well-known solution spaces U (i) and weighting
spaces V (i) are defined as

U (i) =
{
u(i) ∈ H 1(�) | u(i) = û(i) on �u

}
, (104)

V (i) = {
δu(i) ∈ H 1(�) | δu(i) = 0 on �u

}
. (105)

Moreover, the Lagrange multiplier vector λ = −t(1)c , which represents the negative
slave side contact traction t(1)c and is used to enforce the contact constraints (102)
and (103), is chosen from the convex set M(λ) ⊂ M given by

M(λ) =
{
μ ∈ M | 〈μ, v〉γ(1)

c
≤ 〈Fλn, ‖vτ‖〉γ(1)

c
, v ∈ W, vn ≤ 0

}
. (106)

Herein, 〈·, ·〉γ(1)
c

again stands for the scalar or vector-valued duality pairing between

H−1/2 andH 1/2 on γ(1)
c , see also Sect. 5.2.Moreover,M is the dual space of the trace

spaceW (1) of V (1) restricted to γ(1)
c , i.e.M = H−1/2(γ(1)

c ) andW (1) = H 1/2(γ(1)
c ),

where M and W (1) denote single scalar components of the corresponding vector-
valued spacesM andW . Thus, the definition of the solution cone for the Lagrange
multipliers in (106) satisfies the conditions on λ of the Coulomb friction law in a
weak sense.
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Based on these considerations, the weak saddle point formulation is derived next.
Basically, this can be done by extending the standard weak formulation of nonlinear
solid mechanics as defined in (38) to two bodies and combining it with contact-
specific Lagrange multiplier contributions. Find u(i) ∈ U (i) and λ ∈ M(λ) such
that

−δWkin,int,ext(u(i), δu(i)) − δWco(λ, δu(i)) = 0 ∀ δu(i) ∈ V (i), (107)

δWλ(u(i), δλ) ≥ 0 ∀ δλ ∈ M(λ). (108)

Herein, the kinetic contribution δWkin as well as the internal and external contri-
butions δWint,ext to the overall virtual work of the two bodies do not change as
compared with the mesh tying case in (74) and (75). However, the contact contribu-
tion δWco and the weak constraints δWλ, including non-penetration and frictional
sliding conditions, are given in full length as

−δWco =
∫

γ(1)
c

λ(δu(1) − δu(2) ◦ χ) dA, (109)

δWλ =
∫

γ(1)
c

(δλn − λn) gn dA −
∫

γ(1)
c

(δλτ − λτ ) vτ ,rel dA, (110)

where χ : γ(1)
c → γ(2)

c defines a suitable mapping from slave to master side of the
contact surface, see also Sect. 3.4. In contrast to the mesh tying case, where this
mapping only came into play in the discrete setting, γ(1)

c and γ(2)
c cannot even be

guaranteed to be identical in the continuum framework for unilateral contact, because
they not only comprise the actual contact surfaces but the potential contact surfaces.
As explained in detail in Sect. 5.2, the integral expressions in the coupling bilinear
forms δWco and δWλ would need to be replaced by duality pairings 〈·, ·〉γ(1)

c
in

order to be mathematically concise. However, the integral diction in (74) and (75) is
preferred here due to readability. The coupling terms on γ(1)

c also allow for a direct
interpretation in terms of variational formulations and the principle of virtual work.
Whereas the contribution in (109) represents the virtual work of the unknown contact
tractionsλ = −t(1)c , the contribution in (110) ensures aweak, variationally consistent
enforcement of the unilateral contact constraints in normal direction as well as the
Coulomb friction law. The equivalence of the strong pointwise conditions given in
(102) and (103) and the corresponding variational inequalities in (110) can readily
be proven, see e.g. Wohlmuth (2011).

The main focus of this chapter is on mortar finite element methods for contact
mechanics in general, and on discrete dual Lagrange multiplier spaces in particu-
lar, rather than on the physical foundations of frictional sliding or other interface
effects. Many scientific questions investigated and answered in the following are
completely independent of the precise tangential contact model. Thus, for the sake
of simplicity, the weak formulation is restricted to the frictionless case from now on,
as well as the upcoming derivations concerning finite element discretization. Never-
theless, Coulomb friction is included in the actual implementation originating from
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this work, and special remarks on frictional sliding will be given where important,
e.g. when considering semi-smooth Newton type active set strategies in Sect. 6.4.
Without claiming that this list is exhaustive, details on the mortar finite element dis-
cretization of frictional contact can be found in Gitterle et al. (2010), Gitterle (2012),
Hüeber et al. (2008), Tur et al. (2009), Wohlmuth (2011), Puso and Laursen (2004b)
and Yang et al. (2005).

For frictionless sliding, the tangential part tτ of the slave side contact traction t
(1)
c

is supposed to vanish, and thus the set of frictional sliding conditions in (103) is
simply replaced by

tτ = 0. (111)

Considering appropriate solution spaces, it becomes obvious that frictionless contact
allows for a significant simplification of the convex cone of Lagrange multipliers,
which is now given as

M+ =
{
μ ∈ M | μτ = 0, 〈μn, w〉γ(1)

c
≥ 0, w ∈ W+

}
. (112)

Herein, W+ is a closed non-empty convex cone being defined by W+ = {w ∈
W, w ≥ 0}. The weak solution of the frictionless contact problem is then obtained
from the following saddle point formulation: Find u(i) ∈ U (i) andλ ∈ M+ such that

−δWkin,int,ext(u(i), δu(i)) − δWco(λ, δu(i)) = 0 ∀ δu(i) ∈ V (i), (113)

δWλ(u(i), δλ) ≥ 0 ∀ δλ ∈ M+. (114)

The contributions δWkin, δWint,ext and δWco remain unchanged as previously defined
in (74), (75) and (109). However, the weak contact constraints δWλ now reduce to

δWλ =
∫

γ(1)
c

(δλn − λn) gn dA. (115)

Strictly speaking, a scalar Lagrange multiplier λn would be completely sufficient to
enforce the non-penetration condition here. Yet, in view of the more general case
of frictional contact, a vector-valued Lagrange multiplier will also be employed for
the frictionless case in this contribution, which allows for the nice interpretation of
frictionless sliding as a special case of Coulomb’s law with F = 0 and the convex
cone of Lagrange multipliers M(λ) reducing toM+. As compared with the mesh
tying case in Sect. 5.2, it is noticeable that the weak formulation contains inequal-
ity conditions for unilateral contact. These require a particular numerical treatment
based on active set strategies, as will be explained in Sect. 6.4. As mentioned before,
all standard terms (representing kinetic, internal and external virtual work) are for-
mulated in the reference configuration, while the contact virtual work term δWco

and the constraints δWλ are typically formulated in the current configuration for the
considered finite deformation contact problems. This is convenient due to the fact
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that the contact mapping χ : γ(1)
c → γ(2)

c needs to be evaluated with respect to the
deformed geometry, anyway.

6.3 Finite Element Discretization

Similar to the tied contact case, all common types of first-order and second-order
finite element interpolations in 2D and 3D are considered here, which again define
finite dimensional subspaces U (i)

h and V (i)
h being approximations of U (i) and V (i),

respectively. The general notations of slave and master side displacement interpola-
tion given in (78), as well as the Lagrange multiplier interpolation defined in (80)
are still valid. Substituting everything into the contact virtual work expression δWco

in (109) yields

−δWco,h =
m(1)∑
j=1

n(1)∑
k=1

λT
j

(∫
γ(1)

c,h

�j N
(1)
k dA

)
δd(1)

k

−
m(1)∑
j=1

n(2)∑
l=1

λT
j

(∫
γ(1)

c,h

�j (N
(2)
l ◦ χh) dA

)
δd(2)

l . (116)

Herein, the only two differences to the mesh tying case lie in the integration domain
(spatial description γ(1)

c,h instead of material description �
(1)
c,h) and in the fact that

the discrete contact mapping χh : γ(1)
c,h → γ(2)

c,h now continuously changes due to a
relative movement of slave and master surfaces. Thus, as will be seen later on, it is
not sufficient to evaluate the mapping only once as for mesh tying, but the mortar
matrices D and M become deformation-dependent instead. Due to the fundamental
importance of the discrete mortar matrices, their blockwise definition is repeated
here, although only slightly modified as compared with (82) and (83), i.e.

D[j, k] = Djk Indim =
∫

γ(1)
c,h

�jN
(1)
k dA Indim, (117)

M[j, l] = Mjl Indim =
∫

γ(1)
c,h

�j(N
(2)
l ◦ χh) dA Indim, (118)

where j = 1, . . . ,m(1), k = 1, . . . , n(1), l = 1, . . . , n(2). In analogy to (84), the dis-
crete contact virtual work contribution can be expressed as

− δWco,h = δdT
SD

Tλ − δdT
MMTλ = δdT

⎡
⎣ 0

−MT

DT

⎤
⎦

︸ ︷︷ ︸
Bco(d)T

λ = δdTfco(d,λ), (119)
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where the discrete mortar contact operatorBco(d) and the resulting discrete vector of
contact forces fco(d,λ) = Bco(d)Tλ acting on slave andmaster sides of the interface
now depend nonlinearly on the current deformation state d.

Next, the focus is shifted towards the weak constraint contribution for frictionless
contact defined in (115), where more profound differences to the mesh tying case can
be expected. As shown in great detail in Hüeber (2008), the discretized version of the
weak formulation in (114) and (115) is equivalent to the following set of pointwise
conditions:

(g̃n)j ≥ 0, (λn)j ≥ 0, (g̃n)j(λn)j = 0, j = 1, . . . ,m(1), (120)

where the discrete weighted gap (g̃n)j at slave node j is given by

(g̃n)j =
∫

γ(1)
c

�j gn,h dA. (121)

Herein, gn,h is the discretized version of the gap function gn introduced in (24).
Examining the last two equations in more detail, an interesting analogy becomes
apparent. Basically, (120) represents nothing less than a discrete formulation of the
original KKT conditions in (102)with an additional weighting based on the Lagrange
multiplier shape functions�j. It is worth noting that although a segment-based (mor-
tar) approach has been followed, decoupled constraints at the discrete nodal points
are eventually enforced independently, just as it is well-known from traditional NTS
schemes. However, the nodal constraints (120) in the mortar formulation convey a
substantially increased level of information as compared with the truly nodal con-
straints in a NTS formulation, owing to the underlying variational approach which
is algebraically reflected in the weighted (integral) gap formulation in (121).

For the sake of completeness, it should be pointed out that the nodal decoupling of
constraints and thus the final formulation given in (120) is strictly speaking only valid
for dual Lagrange multiplier interpolation, see Hüeber (2008) for the corresponding
mathematical proof, which relies on biorthogonality as defined in (144). In the case
of standard Lagrange multiplier interpolation, the conversion of (114) and (115)
into (120) involves an additional, yet only slight, approximation, see Hüeber (2008).
Finally, the frictionless sliding constraint contained in the definition of the convex
cone M+ is readily enforced on a discrete nodal basis, i.e. (λτ )j = 0. To sum up,
the final space discretized but still time continuous problem formulation, consisting
of the semi-discrete equations of motion and the frictionless contact constraints for
all slave nodes also carrying discrete Lagrange multiplier degrees of freedom, can
be expressed as

Md̈ + Cḋ + fint(d) + fco(d,λ) − fext = 0, (122)

(g̃n)j ≥ 0, (λn)j ≥ 0, (g̃n)j(λn)j = 0, j = 1, . . . ,m(1), (123)

(λτ )j = 0, j = 1, . . . ,m(1). (124)
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While this finite element formulation has some strong similarities with the mesh
tying case in (86) and (87), it also contains three striking additional complexities.
Firstly, unilateral contact involves inequality constraints, which require a suitable
active set strategy as part of the global solution algorithm (cf. Sect. 6.4). Secondly,
normal and tangential contact directions need to be treated separately in order to
enforce the different underlying physical principles (non-penetration, frictionless or
frictional sliding). Thirdly, and most importantly from the viewpoint of implemen-
tation, the contact forces in (122) as well as the contact constraints in (123) and
(124) are deformation-dependent. This introduces an additional nonlinearity into the
global system and thus demands for an incessant re-evaluation of mortar coupling
terms including a consistent linearization for implicit time integration. Correspond-
ing extensions of the numerical integration scheme for the discrete contact operator
Bco(d) and the discrete weighted gaps (g̃n)j in both 2D and 3D will be presented in
the next three paragraphs.

Finally, a short outlook is also given on the weak constraint contribution for
frictional contact according to Coulomb’s law as defined in (110), although the
frictional part is not in the focus of interest here. Again, it has been shown in great
detail in Hüeber (2008) and can be readily understood that the discretized version
of the tangential part of the weak formulation in (108) and (110) is equivalent to the
following set of pointwise conditions:

�j := ‖(λτ )j‖ − F|(λn)j| ≤ 0,

(ṽτ ,rel)j + βj(λτ )j = 0, βj ≥ 0, �jβj = 0, j = 1, . . . ,m(1). (125)

where the discrete relative tangential velocity (ṽτ ,rel)j at slave node j is determined
such that it satisfies the requirement of frame indifference, see e.g. Yang et al. (2005)
and Gitterle et al. (2010) for further explanations. Similar to the non-penetration
condition, it can be observed that (125) basically represents a weak formulation
of the original Coulomb friction conditions in (103) with an additional weighting
based on the Lagrange multiplier shape functions �j. In the semi-discrete formula-
tion for Coulomb friction, the set of conditions in (125) would simply replace (124),
while (122) and (123) would remain unchanged. While by no means exhaustive, the
given outlook demonstrates that an extension of the proposed mortar finite element
framework towards any tangential constitutive law (e.g. Tresca friction, Coulomb
friction) is pretty straightforward. Most importantly, the discrete frictional expres-
sions such as the discrete relative tangential velocity (ṽτ ,rel)j do not require any
additional numerical integration efforts, but can rather be constructed from the well-
known mortar matrices D and M (including history values due to path dependency)
and the nodal tangent vectors τ

ξ
j and τ

η
j defined in (89).

The main steps for evaluating the entries of the mortar integral matrices D andM
in 3D will be presented in Sect. 7.3 in the context of tied contact and can be directly
transferred to unilateral contact. Concretely, this encompasses the definition of aver-
aged nodal normal vectors and the 3D mortar segmentation algorithm (cf. Fig. 18)
with its associated projection, clipping and triangulation procedures.
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6.4 Active Set Strategy and Semi-smooth Newton Methods

As mentioned before, the semi-discrete problem statement of unilateral contact
in (122)–(124), and in particular its final fully discretized version (i.e. after time dis-
cretization with the generalized-α method previously discussed in Sect. 4.3), causes
one major additional complexity with regard to global solution schemes as compared
with the mesh tying case, namely the contact specific inequality constraints, which
divide the set of all discrete constraints (i.e. the equivalent of all slave nodes) into
two a priori unknown sets of active and inactive constraints. Mathematically speak-
ing, this introduces an additional source of nonlinearity apart from the well-known
geometrical and material nonlinearities of nonlinear solid mechanics. To resolve
this contact nonlinearity, so-called primal-dual active set strategies (PDASS) will be
employed in the solution algorithms developed here.

The idea of any active set strategy in the context of unilateral contact is to find
the correct subset of all slave nodes which are in contact with the master surface at
the end of the currently considered time interval [tn, tn+1]. As discussed in Sect. 6.3,
the contact constraints can be enforced nodally at each slave node j ∈ S, with j =
1, . . . ,m(1), despite the fact that a segment-based mortar approach is employed here.
Consequently, the so-called active set A ⊆ S defines a subset of the set of all slave
nodes S, and the definition of the inactive set I = S \ A is straightforward. Before
considering possible formulations of active set strategies, the final KKT conditions
defined in (123) are repeated here, with the time index n + 1 being omitted in the
following for the sake of notational simplicity, i.e.

(g̃n)j ≥ 0, ∀ j ∈ S
(λn)j ≥ 0, ∀ j ∈ S

(g̃n)j(λn)j = 0, ∀ j ∈ S. (126)

The aforementioned definitions of the active set and the inactive set in combination
with the complementarity condition (g̃n)j(λn)j = 0 motivate a first, naive reformu-
lation of the KKT conditions using only equality constraints:

(g̃n)j = 0, ∀ j ∈ A
(λn)j = 0, ∀ j ∈ I

(g̃n)j(λn)j = 0, ∀ j ∈ S. (127)

Obviously, the PDASS in (127) suffers from a serious drawback: the contact nonlin-
earity, i.e. finding the correct active setA can not be resolved by a Newton–Raphson
type approach. This is due to the fact that no directional derivative of the sets them-
selves with respect to the nodal displacementsd can be extracted from (127). Instead,
the given formulation inevitably leads to two nested iterative solution schemes, with
the outer (fixed-point type) loop solving for the correct active set and the inner
(Newton–Raphson type) loop solving a constrained nonlinear finite element prob-
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lem while the active set is fixed. Consequently, this approach does not provide the
desired efficiency and will not be followed any further in this contribution. Further
information on such a fixed-point type treatment of the active set in the context of
finite deformation mortar contact can for instance be found in Hartmann et al. (2007)
and Hesch and Betsch (2009).

Based on the above considerations, the basic idea of an alternative PDASS formu-
lation is to rearrange theKKTconditions such that aNewton–Raphson type algorithm
can be applied not only for geometrical and material nonlinearities, but also for the
nonlinearity stemming from contact itself, i.e. the active set search. The resulting
primal-dual active set approach is well-known from the general mathematical liter-
ature on constrained optimization, see e.g. in Hintermüller et al. (2002) and Qi and
Sun (1993), and can equivalently be interpreted as a semi-smooth Newton method.
Applications to classical NTS contact formulations can be found in Alart and Curnier
(1991), Christensen et al. (1998) and Strömberg et al. (1996), and small deformation
mortar contact has been investigated in Hüeber andWohlmuth (2005). Here, the first
successful consistent extension to a finite deformation mortar contact formulation
is presented, cf. also Popp et al. (2009, 2010). The main idea is to reformulate the
discrete KKT conditions within a so-called nonlinear complementarity (NCP) func-
tion, where all details for frictionless and frictional contact are given in the upcoming
paragraphs. For the sake of completeness, it should be mentioned that the concept
of NCP functions is also applicable to other well-known solid mechanics problems
involving inequality constraints such as computational plasticity. For a comprehen-
sive and more general overview, the reader is exemplarily referred to Hager (2010).

The first step for frictionless contact is to reformulate the discrete KKT-conditions
in (126) within a complementarity function Cj for each slave node j ∈ S as

Cj (d,λ) = (λn)j − max
(
0, (λn)j − cn(g̃n)j

) = 0, cn > 0. (128)

This is a nonlinear function of the discrete displacements as both the nodal normal
vector nj in (λn)j = nj · λj and the nodal weighted gap (g̃n)j defined in (121) depend
nonlinearly on d. It can be easily shown that the resulting equality constraint Cj = 0
is equivalent to the complete set of KKT inequality conditions in (126), and that
this equivalence holds for arbitrary positive values of the so-called complementarity
parameter cn. The concrete role of cn will be explained later in this paragraph.
Figure9 exemplarily illustrates the nodal complementarity function and emphasizes
the equivalence with the KKT conditions.

It is important to see that a distinction between the active set A and the inactive
set I is implicitly contained in the complementarity function Cj: the max-function is
non-smooth and thus consists of two different solution branches. In other words, Cj

provides a certain regularization of the non-smooth decision between each slave node
being currently active or inactive, yet without introducing any additional approxi-
mation. Thus, the resulting PDASS contains derivative information on the sets them-
selves and allows for the application of aNewton–Raphson type solution scheme also
for the nonlinearity stemming from contact. Consequently, all sources of nonlinear-
ities, i.e. finite deformations, nonlinear material behavior and contact itself, can be
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Fig. 9 Exemplary nodal
NCP function Cj (d,λ) as a
function of the nodal
weighted gap (g̃n)j and the
normal part of the nodal
Lagrange multiplier (λn)j for
a complementarity parameter
cn = 1. The equivalence
with the KKT conditions is
indicated in red color.
Reprinted with permission
from Popp et al. (2009), c©
2009 John Wiley & Sons,
Ltd.

Cj(d, λ) = 0

(g̃n)j

(λn)j

C
j
(d

,λ
)

treatedwithin one single iterative scheme.WhileCj is a continuous function, it is non-
smooth and has no uniquely defined derivative at the positions (λn)j − cn(g̃n)j = 0.
Yet, it is well-known from mathematical literature on constrained optimization that
the max-function can be classified as so-called semi-smooth function, and therefore
a semi-smooth (or generalized) Newton method can still be applied. The interested
reader is referred toHintermüller et al. (2002) andQi andSun (1993) formore detailed
information on semi-smoothNewtonmethods, for example including a concise proof
of their superlinear local convergence behavior. The actual linearization of the NCP
function in (128) is based on the concept of generalized derivatives (e.g. the general-
ized derivative of the max-function) and has been presented in the author’s original
work in Popp et al. (2009, 2010) alongwith the remaining parts of the global solution
algorithm.

It should be pointed out that the complementarity parameter cn represents a purely
algorithmic parameter. Although quite some similarities appear at first sight, cn is
in stark contrast to a penalty parameter, because it does not influence the accuracy
of results. Instead, the weak non-penetration condition in (126) will be satisfied
exactly, as can be expected from a Lagrange multiplier method. The choice of cn

only improves or deteriorates convergence of the resulting semi-smooth Newton
method. In Hüeber and Wohlmuth (2005), cn has been suggested to be chosen at the
order of Young’s modulus E of the contacting bodies to obtain optimal convergence.
Numerical investigations for 2D and 3D mortar contact in Popp et al. (2009, 2010),
though, have shown very little influence on semi-smooth Newton convergence along
a very broad spectrum of values for cn. Even for relatively large step sizes and fine
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contacting meshes, the correct active set is usually found after only a few Newton
steps. Once the sets remain constant, of course, quadratic convergence is obtained
due to the underlying consistent linearization.

Examining the NCP function for frictionless contact in (128) in more detail
allows for an interesting and important observation: there exists a certain similar-
ity between the proposed PDASS with its algorithmic realization as semi-smooth
Newton method and the classical Augmented Lagrange method, see also the seminal
paper by Alart and Curnier (1991) in this context. Simply speaking, the Augmented
Lagrange approach as discussed in Alart and Curnier (1991) aims at a regularized
variational formulation, while the PDASS and NCP function concept applies at a
later stage with a regularized constraint enforcement. Again, no detailed derivation
of the Coulomb friction case is given here, but the interested reader is instead referred
to Hüeber et al. (2008), Gitterle et al. (2010), Gitterle (2012) and Wohlmuth (2011)
for all details on the semi-smooth Newton approach for frictional contact problems.

6.5 Solution Methods

Again, the final system consists of ndof + nco nonlinear discrete algebraic equa-
tions,where thenumber of constraints isnco = ndim · m(1).While standard (smooth)
Newton–Rapshon methods were the method of choice for mesh tying problems
in Sect. 5.5, the active set strategies now require a semi-smooth Newton approach
as discussed in the last paragraph. Nevertheless, for frictionless contact this non-
smoothness solely affects the contact constraints in normal direction in (123) or to
be more precise their reformulation as NCP function in (128). All remaining parts
of the nonlinear system, i.e. both the discrete equilibrium of forces in (122) and the
frictionless sliding conditions in (124) still show a smooth behavior.

As explained in Sect. 4.4, the Newton–Raphson method is based on a subsequent
linearization of the residual, here defined by the discrete balance of linear momentum
in (122) and the discrete contact constraints in (124) and (128). Each nonlinear
solution step (iteration index i) then consists of solving the resulting linearized system
of equations and applying an incremental update of the unknown displacements
dn+1 and Lagrange multipliers λn+1 until a user-defined convergence criterion is
met. Examining the residual in (122) in more detail, an important difference to the
mesh tying case becomes apparent: the contact operator Bco(d) defined in (119),
and thus the contact forces fco(d,λ), depend nonlinearly on the displacements and
yield additional contact stiffness blocks when being linearized, i.e.

[
Keffdyn(d

i
n+1) + (1 − αf)Kco(d

i
n+1,λ

i
n+1)

]
�di+1

n+1+
+(1 − αf)Bco(d

i
n+1)λ

i+1
n+1 = −reffdyn(d

i
n+1) − αfBco(dn)λn. (129)
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Herein, the contact stiffness Kco is defined as

Kco(d
i
n+1,λ

i
n+1) = ∂(Bco(dn+1)λn+1)

∂dn+1

∣∣∣∣
i

. (130)

Moreover, it should be pointed out that contact-related quantities from the last con-
verged time step n appear on the right-hand side of (129) due to the employed
generalized-α time integration in combination with a trapezoidal rule interpolation
of the contact forces. Similar to the mesh tying case, the interface forces are still
linear with respect to the discrete Lagrange multipliers. Consequently, it is possible
to solve directly for λi+1

n+1 in each iteration step and no incremental formulation is
needed.

Repeatedly performing semi-smooth Newton steps (iteration index i), each to be
solved for the primal-dual pair of discrete variables (�di+1

n+1,λ
i+1
n+1), yields the fol-

lowing solution algorithm within the time step [tn, tn+1]:

Algorithm 1

1. Set i = 0 and initialize the solution (d0
n+1,λ

0
n+1)

2. Initialize A0
n+1 and I0

n+1 such that A0
n+1 ∪ I0

n+1 = S
3. Find the primal-dual pair (�di+1

n+1,λ
i+1
n+1) by solving

K̃effdyn,co�di+1
n+1 + (1 − αf)Bco(d

i
n+1)λ

i+1
n+1 = −r̃effdyn,co, (131)

(λj)
i+1
n+1 = 0 ∀ j ∈ I i

n+1, (132)

�((g̃n)j)
i
n+1 + ((g̃n)j)

i
n+1 = 0 ∀ j ∈ Ai

n+1, (133)

�(τ
ξ
j )

i
n+1(λj)

i
n+1 + (τ

ξ
j )

i
n+1(λj)

i+1
n+1 = 0 ∀ j ∈ S, (134)

�(τ
η
j )

i
n+1(λj)

i
n+1 + (τ

η
j )

i
n+1(lj)

i+1
n+1 = 0 ∀ j ∈ S. (135)

4. Update di+1
n+1 = di

n+1 + �di+1
n+1

5. Set Ai+1
n+1 and I i+1

n+1 to

I i+1
n+1 := {

j ∈ S | ((λn)j)
i+1
n+1 − cn((g̃n)j)

i+1
n+1 ≥ 0

}
,

Ai+1
n+1 := {

j ∈ S | ((λn)j)
i+1
n+1 − cn((g̃n)j)

i+1
n+1 < 0

}
. (136)

6. If Ai+1
n+1 = Ai

n+1, I i+1
n+1 = I i

n+1 and ‖rtot‖ ≤ εr, then stop,
else set i := i + 1 and go to step (3).

Herein, the following abbreviations have been introduced for notational simplicity:

K̃effdyn,co = Keffdyn(d
i
n+1) + (1 − αf)Kco(d

i
n+1,λ

i
n+1), (137)

r̃effdyn,co = reffdyn(d
i
n+1) + αfBco(dn)λn. (138)
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Moreover, the variable εr denotes an absolute Newton convergence tolerance for the
L2-norm of the total residual vector rtot, which comprises the force residual and the
residual of the contact constraints (132)–(135). All types of nonlinearities including
the search for the correct active set are resolved within one single nonlinear solution
scheme, with the sets I i

n+1 andAi
n+1 being updated after each semi-smooth Newton

step.
The convergence behavior of the resulting solution scheme is very good. As long

as the correct active set is not found, and thus the contact typical non-smoothness is
not yet resolved, locally superlinear convergence rates are obtained, see e.g. Hinter-
müller et al. (2002). Once the sets are fixed, the nonlinear iteration scheme reduces
to a standard (smooth) Newton–Raphson method, and thus even locally quadratic
convergence rates are achieved in the limit owing to the underlying consistent lin-
earization. While not discussed here, similar observations can also be made for fric-
tional contact according to Coulomb’s law and the associated search for the correct
stick and slip sets, see e.g. Gitterle et al. (2010), Gitterle (2012) and Hüeber et al.
(2008).

In this section, an algebraic representation of the linearized system to be solved
within each semi-smoothNewton step is derived and globally assembledmatrix nota-
tions for the directional derivatives in (131)–(135) are provided. With the assembly
procedure itself being rather straightforward in finite element methods, only the final
results are given here. The final system to be solvedwithin each semi-smoothNewton
step can be expressed as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̃NN K̃NM K̃NI K̃NA 0 0
K̃MN K̃MM K̃MI K̃MA −aMT

I −aMT
A

K̃IN K̃IM K̃II K̃IA aDT
II aDT

IA
K̃AN K̃AM K̃AI K̃AA aDT

AI aDT
AA

0 0 0 0 II 0
0 NM NI NA 0 0
0 0 FI FA 0 TA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�dn+1,N
�dn+1,M
�dn+1,I
�dn+1,A
λn+1,I
λn+1,A

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̃N
r̃M
r̃I
r̃A
0
g̃A
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (139)

Herein, the scalar a := 1 − αf abbreviates the weighting factor introduced by
generalized-α time integration. Moreover, the nonlinear iteration index i as well
as the subscript ·effdyn,co of the residual vector r̃effdyn,co given in (137) and the effec-
tive stiffness matrix K̃effdyn,co defined in (138) have been omitted for the ease of
notation.

Again, as has been the case for mesh tying, the dual Lagrange multiplier approach
can be beneficially exploited to simplify the final linear system of equations. In a first
step, the Lagrange multipliers λn+1,I associated with inactive slave nodes are easily
condensed by simply extracting the identity λn+1,I = 0 from the fifth row of (139).
This basically removes the fifth row and the fifth column of the original saddle point
system.More importantly, based on the fourth row of (139), the Lagrangemultipliers
λn+1,A associated with active slave nodes can be expressed as
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λn+1,A = 1

a
D−T

AA
(
−r̃A − K̃AN�dn+1,N − K̃AM�dn+1,M

−K̃AI�dn+1,I − K̃AA�dn+1,A
)

. (140)

As will be discussed in Sect. 7.3, the active part of the mortar projection operator
P = D−1M can be defined as

PA = D−1
AAMA. (141)

Inserting (140) into the second and seventh row of (139) yields

⎡
⎢⎢⎢⎢⎢⎣

K̃NN K̃NM K̃NI K̃NA
K̃MN + PT

AK̃AN K̃MM + PT
AK̃AM K̃MI + PT

AK̃AI K̃MA + PT
AK̃AA

K̃IN K̃IM K̃II K̃IA
0 NM NI NA

a TAD−1
AAK̃AN a TAD−1

AAK̃AM a TAD−1
AAK̃AI − FI a TAD−1

AAK̃AA − FA

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎣

�dn+1,N
�dn+1,M
�dn+1,I
�dn+1,A

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎣

r̃N
r̃M + PT

Ar̃A
r̃I
g̃A

a TAD−1
AAr̃A

⎤
⎥⎥⎥⎥⎦ . (142)

While inevitable for standard Lagrange multiplier interpolation, the undesirable sad-
dle point structure of (139) with its typical zero diagonal block has successfully
been removed. Finally, it should be mentioned that the discrete Lagrange multipli-
ers, and thus their physical interpretation as contact tractions, are recovered from
the displacement solution in a variationally consistent way. This recovery can be
performed as a pure postprocessing step at the end of each time interval based on the
relation given in (140).

6.6 Numerical Example

The numerical example presented in this section demonstrates the applicability of the
proposed mortar contact formulations, including the parallel search algorithms and
dynamic load balancing strategies to be described in Sect. 7.2, for large-scale sim-
ulations on parallel high-performance computing (HPC) systems. The investigated
setup, illustrated in Fig. 10, consists of two thin-walled tori with a Neo–Hookean
material model (E = 3000, ν = 0.3, ρ0 = 0.1). The major and minor radius of the
two hollow tori is 76 and 24, respectively, and the wall thickness is 4.5. The lower
torus lies in the xy-plane and the upper torus is rotated around the y-axis by 45 degrees.
Both the chosen geometry and loading conditions are inspired by a very similar
analysis presented in Yang and Laursen (2008) to evaluate contact search strate-
gies. Transient structural dynamics using a generalized-α time integration scheme
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Fig. 10 Two torus impact –
stages of deformation

are considered for the solution within 500 time steps and a constant time step size
�t = 0.02. As can be seen from the exemplary snapshots of deformation in Fig. 10,
the lower torus is first accelerated towards the upper torus by a body force and then
a very general oblique impact situation with large structural deformations occurs.

The finite element mesh for this 3D impact model involves 4,255,360 first-order
hexahedral (hex8) elements and 13,994,880 degrees of freedom in total, with both
slave andmaster surfaces consisting of 204,800 contact elements each. The numerical
solution is performed in parallel on 120 processors within an overall simulation time
of approximately 48 h.

Figures11 and 12 further illustrate the complexity of the considered simulation
model with severe changes of the active contact set and an extremely fine mesh reso-
lution. While there always remains room for improvements of the parallel efficiency
(e.g. with respect to efficient linear solvers, see Sect. 9), the results nevertheless strik-
ingly emphasize that the implementation devised within this section is already very
mature in this regard.
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Fig. 11 Two torus impact – exemplary cut through the contact zone at time t = 4 and visualization
of the finite element mesh

7 Algorithmic Aspects and Extensions

Going beyond the fundamental concepts of mortar finite element methods for mesh
tying and unilateral contact (including friction), the following paragraphs shall give
an overviewof certain important algorithmic aspects that are of utmost importance for
the acurate and efficient implementation of such mortar methods within a nonlinear
finite element code framework. Specifically, the topics of suitable discrete Lagrange
multiplier bases, parallel and high performance computing, numerical integration as
well as isogeometric analysis will be highlighted. Further details on each of these
topics can be found in the author’s original contributions (Popp et al. 2012;Wohlmuth
et al. 2012; Popp et al. 2013; Popp andWall 2014; Farah et al. 2015; Seitz et al. 2016).

7.1 Discrete Lagrange Multipliers

The discrete Lagrange multiplier space Mh and associated shape functions �j,
j = 1, . . . ,m(1), on the slave side of the mesh tying interface were already introduced
in Sect. 5.3, although not specified in detail. Yet, this choice of the discrete Lagrange
multiplier space is crucial for both the mathematical properties and the numerical
efficiency of the resulting mortar approach. There exists a vast amount of literature
discussing all relevant characteristics associated with the choice ofMh, such as inf-
sup stability of the underlying mixed formulation and optimal a priori error bounds,
see e.g. Bernardi et al. (1994), Ben Belgacem (1999), Seshaiyer and Suri (2000)
and Wohlmuth (2000). With stability investigations and a priori error estimates not
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Fig. 12 Two torus impact –
active contact set lower torus
(1=active)

being in the focus of interest of this contribution, the following considerations rely
on the fact that there exists a well-established framework of proofs and rigorous
mathematical analyses, which guarantees the applicability of all discrete Lagrange
multiplier spaces discussed here tomortarmesh tying problems. For a comprehensive
overview, the reader is referred to Wohlmuth (2001) and the references therein.

Throughout this chapter, two different families of discrete Lagrange multipliers,
namely standard and so-called dual Lagrange multipliers, will be distinguished.
Standard Lagrange multipliers represent the classical approach for mortar methods
(cf. Ben Belgacem 1999; Seshaiyer and Suri 2000) and are usually taken from the
finite dimensional subset W (1)

h ⊂ W (1) on the slave side of the interface, where
W (1) is the trace space of V (1), as explained in Sect. 5.2. Thus, standard mortar
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methods typically lead to identical shape functions for Lagrange multiplier and slave
displacement interpolation, i.e. �j = N (1)

j .
In contrast, the dual approach is motivated by the observation that the Lagrange

multipliers physically represent fluxes (tractions) on the mesh tying interface in
the continuous setting. This duality argument is then reflected by constructing dual
Lagrange multiplier shape functions based on a so-called biorthogonality condition
with the displacements inW (1)

h , see e.g.Wohlmuth (2000).While they are, in general,
not continuous and cannot be interpreted as a trace of conforming finite elements,
the biorthogonality condition assures that the Lagrange multiplier shape functions
�j are again well-defined and satisfy all required approximation properties. One
crucial advantage of the dual approach lies in the fact that it heavily facilitates the
treatment of typical mortar coupling conditions at the interface, while at the same
time preserving the mathematical optimality of the method. Going back to (85), the
discrete mesh tying condition can alternatively be expressed as

dS = D−1MdM := PdM , (143)

where P = D−1M represents the discrete interface coupling operator. As will be
demonstrated later on for both mesh tying and unilateral contact problems, dual
Lagrange multipliers avoid the necessity of solving a mass matrix type of system
when evaluating (143), but localize the coupling conditions instead. Algebraically,
this advantageous property of dual Lagrange multipliers can be observed by the
mortar matrix D in (82) reducing to a diagonal matrix. This allows for very efficient
condensation procedures of the discrete Lagrange multiplier degrees of freedom,
which completely remove the undesirable saddle point structure of the underlying
mesh tying and later unilateral contact systems, see Sects. 5.5 and 6.5.

While the construction of standard Lagrange multiplier bases is absolutely
straightforward, the construction of dual Lagrangemultiplier bases shall exemplarily
be highlighted here for the simple first-order interpolation case in 2D. Details on how
to define dual Lagrange multiplier shape functions �j using the so-called biorthog-
onality relationship with the standard displacement shape functions N (1)

k have first
been presented in Scott and Zhang (1990) andWohlmuth (2000). A common notation
of the biorthogonality condition is

∫
�

(1)
c,h

�j N
(1)
k dA0 = δjk

∫
�

(1)
c,h

N (1)
k dA0, j, k = 1, . . . ,m(1). (144)

Herein, δjk is the Kronecker delta, and the most common choice m(1) = n(1) is
assumed. For practical reasons, the biorthogonality condition is typically applied
locally on each slave element e, yielding

∫
e
�j N

(1)
k de = δjk

∫
e
N (1)
k de, j, k = 1, . . . ,m(1)

e , (145)
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where m(1)
e represents the number of Lagrange multiplier nodes of the considered

slave element. Taking into account the assumption that all nodes also carry discrete
Lagrange multiplier degrees of freedom, m(1)

e is simply the number of nodes of the
current slave facet. Comparing (144) and (82) also clearly reveals why dual shape
functions reduce the mortar matrix D to a diagonal matrix. The dual shape functions
resulting from (144), or rather from the elementwise version in (145), have the same
polynomial order as the employed standard shape functions, i.e. pλ = p. Moreover,
it can easily be shown that the biorthogonality condition guarantees a partition of
unity property, i.e.

∑
j �j = 1, j = 1, . . . ,m(1)

e , see Flemisch and Wohlmuth (2007)
for a proof.

As a simple example, the first-order finite element interpolation case in 2D shall
be considered in the following. Obviously, this case leads to line2 shaped mortar
interface segments. With the Jacobian of line2 segments being constant, the dual
Lagrangemultiplier shape functions determined by (145) are independent of element
distortion, and can be defined a priori instead:

�1(ξ) = 1

2
(1 − 3ξ), �2(ξ) = 1

2
(1 + 3ξ). (146)

Figure13 illustrates these dual shape functions along with their standard counter-
parts, i.e. the first-order slave displacement shape functions N (1)

j . In contrast to the
corresponding standard Lagrange multiplier case, dual Lagrange multiplier shape
functions can no longer be positive everywhere in order to fulfill the biorthogonal-
ity condition. However, integral positivity is still guaranteed. Moreover, the above
defined �j are indeed locally linear polynomials and satisfy a partition of unity
property, but nonetheless they represent discontinuous functions.

In general, dual shape functions depend on the actual distortion of the individual
underlying finite element, and cannot be defined a priori for non-constant slave
element Jacobian determinants. In that regard, the first-order case in 2D illustrated
abovewas a special case. Instead, a local linearmassmatrix systemof sizem(1)

e × m(1)
e

must be solved on each slave element. Details on these quite intricate constructions
can for example be found in Wohlmuth (2001), Flemisch and Wohlmuth (2007),
Lamichhane et al. (2005), Lamichhane andWohlmuth (2007),Wohlmuth et al. (2012)
and Popp et al. (2012).

N
(1)
2N

(1)
11

0

Φ1 Φ2

−1

0

2

Fig. 13 Slave side displacement shape functions N (1)
j (left) and dual Lagrange multiplier shape

functions �j (right) for a line2 element
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7.2 Parallel Computing

The mortar-based mesh tying and contact algorithms developed throughout this con-
tribution are designed for the use on large interconnected computer systems (clusters)
with many central processing units (CPUs) and a distributed main memory. Being
able to efficiently run large simulations in parallel requires strategies for the par-
titioning and parallel distribution of the problem data, i.e. finite element meshes
(consisting of nodes and elements) as well as global vectors and matrices, into sev-
eral independent processes, each assigned to a corresponding processor. For the sake
of simplicity, the term processor refers to an independent processing unit through-
out this chapter without implying any specific hardware configuration (such as a
single-core or multi-core architecture). Within the finite element based multiphyiscs
research code BACI that has been co-developed by the author at the Institute for
Computational Mechanics of TUM, this so-called domain (or data) decomposition
functionality is provided by the third-party library ParMETIS, see e.g. Karypis and
Kumar (1998).

An example of such decompositions is visualized in Fig. 14 for a simple partition-
ing including only two processors, see also Gee (2004). It can be seen that each node
in themesh is uniquely assigned to one specific processor, and the same holds true for
the elements. In addition, some nodes and elements at the transition between differ-
ent processors must be stored redundantly within all adjacent processors. Therefore,

partition of processor 1

partition of processor 2

domain and mesh
owned nodes

non−owned nodes

elements integrated

elements integrated

by processor 2

by processor 1
elements integrated

by both processors

Fig. 14 An example of overlapping domain decomposition and parallel assembly involving two
independent processors
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this type of partitioning is commonly denoted as overlapping decomposition. For the
methods developed in this chapter, it is sufficient to consider only the most straight-
forward case of minimal overlap between the individual partitions, i.e. an overlap of
one layer of elements or nodes, respectively. Obviously, this concept of overlapping
decomposition fits quite naturally to the typical tasks within a finite element pro-
gram: first, each processor performs an elementwise integration of its own partition
of the computational domain including the (relatively few) elements at the inter-
processor boundaries. Then, the resulting quantities (e.g. local element load vectors
and stiffness matrices) are assembled into the respective FE nodes of each processor.
Thus, overlapping domain decomposition as described above provides a very elegant
way of processing finite element integration and assembly, which is completely free
of communication due to the distributed storage of the resulting global vector and
matrix objects. While this rough introduction is by far not complete or rigorous from
the viewpoint of parallel software design, it is sufficient for the following ideas on
redistribution and load balancing to be comprehensible. For further details on the
C++ based implementation of parallel (i.e. distributed) matrix and vector objects as
well as the associated linear algebra, the interested reader is exemplarily referred
to the documentation of open-source libraries of the Trilinos Project conducted by
Sandia National Laboratories Heroux (2005).

Returning to the efficient parallel treatment of mortar methods and the derived
mesh tying and contact algorithms, an exemplary mesh tying problem setup con-
sisting of two cubic bodies as depicted in Fig. 15 is considered now. In total, the
FE model contains 681,476 volume elements (with 2,136,177 displacement degrees
of freedom) and 15,041 contact interface elements, which are distributed in parallel
among several processors. As explained in the last paragraph, this partitioning gener-
ated via the ParMETIS library is in a sense optimal for the integration and assembly
of the individual volume finite elements of the two bodies, i.e. the corresponding
workload is equally distributed among all processors. For both tied and unilateral
contact interaction, however, additional (but conceptually similar) tasks have to be
performed locally at the interface: as will be explained in detail in Sect. 7.3, comput-
ing the interface contributions to the overall discrete problem formulation involves
the mortar segmentation process, integration and assembly of the mortar matrices D
andM, to name only the most important tasks. Especially in three dimensions and for
large interfaces, these computations may become quite time-consuming, so that they
actually carry considerable weight as compared to the remaining time needed for
FE evaluation and linear solvers. In contrast to NTS formulations, the high approxi-
mation quality of mortar methods comes at a price here. Unfortunately, the parallel
distribution of the mortar interface itself is not optimal at all, which can easily be
seen in Fig. 15. In this context, it is important to commemorate the slave-master con-
cept typically used for implementing contact algorithms, where the interface-related
workload is completely assigned to the slave side (or non-mortar side) whereas the
master side (or mortar side) is passive. Thus, in the given example, the slave side of
the interface (and thus the entire workload related to mesh tying) is associated with
only 4 out of 16 processors.
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Fig. 15 Parallel redistribution and load balancing – initial partitioning for exemplary mesh tying
problem setup using 32 processors (left) and strong scaling diagram (right)

The right hand side of Fig. 15 illustrates typical results for the parallel efficiency
of the presented mortar algorithms in a so-called strong scaling diagram. Therein,
the computation time for numerical integration and assembly of all interface-related
quantities T is plotted against the total number of processors nproc with logarithmic
scales applied to both axes. Perfect scalability of the examined numerical algorithm
is represented by a straight line with a negative slope of −1, thus representing the
evident relation

T = c

nproc
with c > 0. (147)

It can clearly be seen that no perfect scalability is achieved with the presented
algorithms without load balancing (blue curve in Fig. 15). This is due to the non-
optimal distribution of the slave surface among the participating processors as already
described above. The results clearly motivate the development of an efficient paral-
lel redistribution and load balancing strategy for mortar finite element methods. The
approach proposed in the following is based on three steps, where the first one is
of fundamental importance and is therefore needed for both mesh tying and contact
applications. In contrast, the second and third step are purely contact-specific.

The rather simple basic idea of the first step is an independent parallel distribu-
tion of the finite elements in the domain and the mortar elements at the mesh tying
or contact interface in order to achieve optimal parallel scalability of the compu-
tational tasks associated with both, i.e. integration and assembly in �(1) and �(2)

as well as integration and assembly on γ(1)
c and γ(2)

c . Again using ParMETIS, this
redistribution of the interface elements can readily be performed during problem
initialization at t = 0. Results for the test model introduced above are also visualized
(green curve in Fig. 15), thus demonstrating that this simple modification already
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allows for excellent parallel scalability within a wide range concerning the number
of processors nproc. However, dependent on the considered problem size, parallel
redistribution only makes sense up to a certain nproc. It is quite natural that such a
limit exists, because there are of course some computational costs associated with the
proposed redistribution procedure itself. If too many processors are used in relation
to the problem size, these costs (mainly due to communication) become dominant
and redistribution is no longer profitable beyond this point.

As already mentioned, this strategy can be further refined for unilateral contact
applications. In contrast to mesh tying, contact interfaces are characterized by two
additional complexities: the actual contact zone is not known a priori and it may
constantly and significantly vary over time. Thus, in a second and third step, the
proposed redistribution strategy is adapted such that it accommodates these addi-
tional complexities. Concretely, it can be seen from the Hertzian contact example in
Fig. 16 that parallel redistribution must be limited to the actual contact area instead
of the potential contact area, because the entire computational effort of numerical
integration and assembly is connected with the former. Moreover, whenever finite
deformations and large sliding motions occur, the described redistribution needs to
be performed dynamically, i.e. over and over again. Such a dynamic load balancing

Fig. 16 Motivation for parallel redistribution exemplified with a Hertzian contact example – the
active contact region (bottom right) is relatively small as comparedwith the potential contact surface
(i.e. thewhole hemisphere).Without redistribution only 6 out of 16 processorswould carry the entire
workload associated with contact evaluation (bottom left)
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Fig. 17 Nodally averaged
normal vector nk at a slave
node k with four adjacent
slave facets e1 to e4. The
element normal vectors n(e)

k
are exemplified for elements
e2 and e4. Reprinted with
permission from Popp et al.
(2010), c© 2010 John Wiley
& Sons, Ltd.
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e1 Γ(1)
c,he4

nk

n(4)k n(2)
k

strategy is then typically triggered by a suitable measure for the workload of each
individual processor. The parallel balance of the workload among all processors is
monitored and a simple criterion whether to apply dynamic load balancing within
the current time step or not can be formulated as

IF

(
Tmax

Tmin
> r

)
� redistribute. (148)

Herein, the minimum and maximum computation times of one individual processor
in the last time step are denoted as Tmin and Tmax, respectively. The parameter
r > 1 represents a user-defined tolerance. For example, choosing r = 1.2 implies
that at most 20% unbalance of the parallel workload distribution are tolerated. Of
course, the rather simple condition in (148) can easily be extended to incorporate
more sophisticated criteria for dynamic load balancing. However, already the short
overview given here shows that redistribution and load balancing provide an efficient
tool for increased parallel efficiency of mortar algorithms for mesh tying and contact
simulations. Corresponding numerical examples (see e.g. Section6.6) demonstrate
that the proposed approach is actually indispensable when considering large-scale
applications.

7.3 Numerical Integration

A very efficient, yet at the same time highly accurate coupling algorithm, which per-
forms integration not on the slave surface �

(1)
c,h itself, but on its geometrical approxi-

mation with piecewise flat segments, has been proposed in Puso (2004) and will also
be employed here. For further details and an in-depth mathematical analysis of this
algorithm, the reader is also referred to Puso and Laursen (2004a, b) and Dickopf
and Krause (2009). This scheme is referred to as segment-based integration scheme
in the following.

In Fig. 18, the main steps of the 3D numerical integration algorithm for the mortar
integrals in D and M are illustrated. In the following, the algorithm is outlined for
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proj. master
proj. slave

master
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auxiliary plane auxiliary plane

auxiliary plane auxiliary plane

x(1)0 x(1)0

n0 n0

clip polygon integration cell

Fig. 18 Main steps of 3D mortar coupling of one slave and master element pair. Construct an
auxiliary plane (top left), project slave and master nodes into the auxiliary plane (top right), perform
polygon clipping (bottom left), divide clip polygon into triangular integration cells and perform
Gauss integration (bottom right)

one pair of slave and master elements (s, m), which are close to each other and thus
form an arbitrary overlap.
Algorithm 2

1. Construct an auxiliary plane for numerical integration based on the slave element
center x(1)

0 and the corresponding unit normal vector n0.
2. Project all nes slave element nodes x(1)

k , k = 1, . . . , nes onto the auxiliary plane

along n0 to obtain the projected slave nodes x̃(1)
k . Steps 1 and 2 can also be

interpreted as a geometrical approximation of the slave surface removing element
warping.

3. Project all nem master element nodes x(2)
l , l = 1, . . . , nem onto the auxiliary plane

along n0 to obtain the projected master nodes x̃(2)
l .

4. Find the clip polygon of the projected slave and master elements in the auxiliary
plane by applying a clipping algorithm, see e.g. Foley (1997).

5. Establish ncell triangular integration cells by applying Delaunay triangulation to
the clip polygon. Each integration cell consists of three vertices x̃cell

v , v = 1, 2, 3
and is interpolated by standard triangular shape functions on the well-known
integration cell parameter space

η̃ =
{
(ξ̃, η̃)|ξ̃ ≥ 0, η̃ ≥ 0, ξ̃ + η̃ ≤ 1

}
.

6. Define ngp Gauss integration points with coordinates η̃g, g = 1, . . . , ngp on each
cell and project back along n0 to slave and master elements to obtain ξ(1)(η̃g)

and ξ(2)(η̃g).
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7. Perform Gauss integration of Djk(s,m) and Mjl(s,m), j, k = 1, . . . , nes and
l = 1, . . . , nem on all integration cells

Djk(s,m) =
ncell∑
c=1

⎛
⎝ ngp∑

g=1

wg �
(1)
j (ξ(1)(η̃g))N

(1)
k (ξ(1)(η̃g)) Jc

⎞
⎠ , (149)

Mjl(s,m) =
ncell∑
c=1

⎛
⎝ ngp∑

g=1

wg �
(1)
j (ξ(1)(η̃g))N

(2)
l (ξ(2)(η̃g)) Jc

⎞
⎠ . (150)

where Jc, c = 1, . . . , ncell is the integration cell Jacobian determinant.

Expressions (149) and (150) represent contributions to Djk and Mjl given by one
slave and master element pair (s, m). Total quantities are obtained by summing up
all slave and master element pair contributions. As pointed out in Puso (2004), the
above algorithm relies on the fact that the clip polygons of all slave and master
element pairs are convex. For further explanations on prerequisites and properties
of this numerical integration procedure, the reader is referred to the original paper
by Puso (2004).

In this work, seven point integration is used, which allows to exactly integrate
polynomials of up to order five. This order of accuracy is sufficient to exactly inte-
grate (149) and (150) for tri3 surface facets and unwarped quad4 surface facets.
Typical constant stress patch tests on flat interfaces could even be satisfied with
much fewer quadrature points. However, it should be pointed out that in the case
of surface facet warping, the mapping between slave and master sides introduces
rational polynomial functions into the integrands in (149) and (150), and thus the
numerical quadrature rule can never reproduce the exact integral value in such cases.
However, numerical results including mesh refinement studies on curved mesh tying
interfaces demonstrate that the suggested choice of seven Gauss points per inte-
gration cell provides a sufficiently accurate quadrature rule. Figure19 illustrates the
generation of integration cells for 3Dmortar coupling with a more complex example.

While Algorithm 2 undoubtedly provides the highest achievable accuracy for the
numerical integration of Djk and Mjl in 3D, some computationally more efficient
alternatives have also been suggested in the literature. One prominent example is
the simplified integration algorithm proposed in Fischer and Wriggers (2005, 2006)
and later reused in De Lorenzis et al. (2011) and Tur et al. (2009), which will be
referred to as element-based integration scheme in the following. Instead of thor-
oughly sub-dividing the mesh tying or contact interface into mortar segments, the
numerical integration is simply performed element-wise in that approach, deliber-
ately ignoring kinks of the functions to be integrated. Consequently, the devised
integration schemes may indeed offer an appealing computational efficiency, but
inevitably bring about difficulties with respect to accuracy of numerical integration.
Even the exact satisfaction of a simple two-dimensional patch test, as investigated
in Fischer and Wriggers (2005), is strongly influenced by the total number of Gauss
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Fig. 19 Main steps of 3D mortar coupling for a representative mesh tying example

points chosen per slave element. An interesting improvement of this approach is
suggested in Unger et al. (2007), where adaptive refinement of the integration cells
is performed based on a hierarchical quadtree structure. Simply speaking, refinement
is only performed close to the kinks of the integrands in (149) and (150) and thus
the associated error of numerical integration can be reduced.

In contrast to the 2D case, an extension of the segmentation and integration algo-
rithm to second-order interpolation needs some additional considerations for three-
dimensional mortar mesh tying problems. As explained above, the presented method
for first-order interpolation is based on the projection of flattened surface elements.
This approach has been directly extended to quadratic finite elements in Puso et al.
(2008), and is also employed here. The basic idea in Puso et al. (2008) is to subdivide
quadratic surface elements into linearly interpolated segments as exemplarily illus-
trated in Fig. 20 for quad9 facets. Numerical integration according to Algorithm 2 is
then performed on the subsegments. As an example, consider the following mapping
between parent element and subsegment space of subsegment sub3 for the quad9
element in Fig. 20, which is given by

ξsub3(ξ(1)) =
[
2ξ(1) − 1
2η(1) − 1

]
. (151)

Similarmapping rules canalsobe readilyestablished for tri6 andquad8 surface facets.
It is important topointout that theapproximationintroducedbysubdividingmortarele-
ments only affects the integration domain itself, which no longer reflects the quadratic
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Fig. 20 Subdivision of interface elements with second-order interpolation. Exemplarily, a quad9
element is split into fourquad4 subsegments sub1–sub4, towhich the3Dmortar integrationalgorithm
is then applied nearly unchanged. Reprinted with permission from Popp et al. (2010), c© 2010 John
Wiley & Sons, Ltd.
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Fig. 21 Tori impact problem – averaged integration time per Newton step (left) and relative error of
computed displacement field (right)

finite element surfaces correctly. Yet, bymaking use of the aforementioned geometric
mappings from parent element space to subsegment space and vice versa, one is still
able to properly evaluate the higher-order shape function products in (149) and (150).

Numerical integration using the segment-based scheme and the element-based
scheme has been thoroughly compared with regard to accuracy and computational
efficiency in Farah et al. (2015). To illustrate the main conclusions that can be drawn
from such comparisons, the two tori impact example already introduced in the pre-
vious section is revisited here. Therefore, the average required integration times for
one Newton step within each time step are plotted in the left subfigure of Fig. 21. In
addition, the accuracy of the integration schemes is validated by the right subfigure of
Fig. 21, which visualizes the deviations of the relative L2-norm of the displacements
with respect to a reference solution basedon segment-based integrationwith 12Gauss
points per integration cell. Using 37 or 64 Gauss points per integration cell does not
significantly change the displacement norm compared to 12Gauss points.

For this example, the segment-based integration is testedwith 3 and 7Gauss points
per integration cell, and the element-based integrationmethod employs 4 to 64Gauss
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points per slave element. For the segment-based integration, 3 Gauss points per inte-
gration cell is the smallest sensible number of integration points. Thus, it can be seen
thatcomparedtothesegment-based integration, theelement-based integrationmethod
has the ability to significantly reduce the number of integration points. In addition, it
is obvious that the required integration time scales linearlywith the employed number
of integration points, which iswhy all curves in Fig. 21 have a similar shape. The char-
acteristic shape of the curves depends strongly on the active set. Thus, ups and downs
of the curves occur due to time steps with a correspondingly high or low number of
nodes being in contact. From time step 190 onwards, the curves are zero-valued due to
the fact that the two tori are not in contact anymore. Interestingly, theL2-displacement
errors are only marginal and decrease with more and more integration points. Even 4
Gauss points per element are sufficient for theL2-displacement error being negligible.
However,with 4Gauss points per element, only7%of integration timeof the segment-
based integrationemploying7integrationpointsperintegrationcellarerequired.All in
all, it becomes obvious that the element-based integration scheme allows for dramatic
reductionsof thecomputationalcosts forpracticalapplications,whilestillmaintaining
a sufficient level of accuracy. Further details on this topic can be found in the author’s
original work in Farah et al. (2015).

7.4 IsogeometricAnalysis (IGA)

Robust and accurate contact discretizations for nonlinear finite element analysis have
been an active field of research in the past decade and a new class of formulations
emerged with the introduction of isogeometric analysis (IGA) (Hughes et al. 2005).
IGAis intended tobridge thegapbetweencomputer aideddesign (CAD)andfiniteele-
ment analysis (FEA)byusing the smoothnon-uniformrationalB-splines (NURBS)or
T-splines common in CAD also as a basis for the numerical analysis. The use of such
smooth basis functions has some advantages over classical Lagrange polynomials for
FEAsuchasapossiblyhigheraccuracyperdegreeof freedom(Evansetal.2009;Groß-
mannetal.2012)and,more importantly,ahigher inter-elementcontinuity.Whilefinite
elements based on Lagrange polynomials are limited to C0 inter-element continuity
independent of the polynomial order p, NURBS can be constructed with a maximum
of Cp−1 continuity. This high continuity results, amongst others, in a smooth surface
representation which makes the application to computational contact mechanics par-
ticularly appealing, which has already been anticipated in the original proposition of
IGA in Hughes et al. (2005).

As a consequence, in thepast fiveyears variousdiscretization techniqueshavebeen
developed for IGAor transferred fromfinite element based contactmechanics to IGA,
such as node-to-segment (Matzen et al. 2013),Gauss-point-to-segment (Temizer et al.
2011; De Lorenzis et al. 2011; Dimitri et al. 2014; Dimitri 2015; Lu 2011; Sauer and
De Lorenzis 2015) andmortar methods (Temizer et al. 2011; De Lorenzis et al. 2011;
Temizeretal.2012;DeLorenzisetal.2012;KimandYoun2012;Dittmannetal.2014).
We refer to the recent review in De Lorenzis et al. (2014) for a comprehensive dis-
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cussion of suchmethods, comparisons to their finite element counterparts and further
references. In addition to the mentioned methods based on an isogeometric Galerkin
approximation, the higher inter-element continuity of NURBS basis functions allows
for the use of collocation methods, see Reali and Hughes (2015) for a general intro-
duction andDeLorenzis et al. (2015), Kruse et al. (2015) for an application to compu-
tational contact mechanics. Besides the discretization technique, computational con-
tact algorithmscanbedistinguishedwith respect to theunderlying solutionprocedure.
While Gauss-point-to-segment approaches are, due to their lack of inf-sup stability
(see e.g. Temizer et al. 2011; Dimitri et al. 2014 for numerical investigations), usually
combinedwithapenaltyapproach, seeDimitri et al. (2014),Dimitri (2015),Lu(2011),
Sauer andDeLorenzis (2015), node-to-segment andmortar formulations can be com-
binedwithpenaltymethods (Temizer et al. 2011;DeLorenzis et al. 2011),Uzawa-type
algorithms (Temizer et al. 2012), Lagrange multiplier methods (Kim and Youn 2012;
Dittmann et al. 2014) or augmented Lagrange methods (De Lorenzis et al. 2012). In
contrast topenaltymethods, theothermentionedmethodsfulfill thecontactconstraints
in a discrete sense exactly. In the context of domain decomposition in IGA, optimality
and stability of standard mortar methods have only very recently been investigated in
Hesch and Betsch (2012), Apostolatos et al. (2014), Dornisch et al. (2015), Brivadis
et al. (2015),where also the constructionof dualB-spline basis functions has beenout-
lined theoretically.

In this section, the so-called dual mortar method is investigated mainly for contact
mechanics usingNURBS basis functions. In contrast to standardmortar methods, the
use of dual basis functions for theLagrangemultiplier based on themathematical con-
cept of biorthogonality enables an easy elimination of the additional Lagrange multi-
plier degrees of freedom from the global system. This condensed system is smaller in
size and no longer of saddle point type, but positive definite. A very simple and com-
monlyusedelement-wiseconstructionof thedualbasis functionscandirectlybe trans-
ferredtotheIGAcase.TheresultingLagrangemultiplierinterpolationsatisfiesdiscrete
inf-sup stability andbiorthogonality, however, the reproductionorder is limited toone.
In thedomaindecompositioncase, this results ina limitationof thespatial convergence
order toO(h3/2) in theenergynorm,whereas forunilateral contact, due to the lower reg-
ularity of the solution, optimal convergence rates are still met.

Givensomestill tobedefinedbasisfunctions�asabasisofMh anddiscretevector-
valued Lagrange multipliersλj at each control point on the potential contact surface,
the Lagrangemultiplier field on the slave side is approximated by

λ ≈ λh =
ncp∑
a=1

�aλa. (152)

While dual mortar methods are meanwhile well-established in finite elements, the
presentwork, to the author’s knowledge, is the first application of dual basis functions
in the context of IGA for both domain decomposition andfinite deformation frictional
contact.Dualbasis functionsarecharacterizedbyfulfillingabiorthogonalitycondition
(Wohlmuth 2000):
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∫
γ(1)
c,h

�aR
(1)
b dγ = δab

∫
γ(1)
c,h

R(1)
b dγ , (153)

with the Kronecker symbol δab. Different methods to construct such dual bases exist,
and we want to follow the most simple one, where the dual basis functions have the
samesupport as theirprimalcounterparts, fulfill apartitionofunityandareconstructed
via element-wise linear combinations of the primal shape functions (Flemisch and
Wohlmuth2007;Wohlmuth2001;LamichhaneandWohlmuth2007;Lamichhaneetal.
2005). On each element e one readily obtains

�j

∣∣
e = aejkR

(1)
k

∣∣
e, Ae = [aejk ] ∈ �ncpe×ncpe , (154)

with the coefficient matrix for each element

Ae = De M−1
e ,

De = [de
jk ], de

jk = δjk

∫
e
R(1)
k de,

Me = [me
jk ], me

jk =
∫
e
R(1)
j R(1)

k de, j, k = 1, . . . , ncpe.

(155)

Intheconstructionofthecoefficientmatrix,thelocalintegrationforeveryslaveelement
is only performedon that part of the element domain, forwhich a feasible projection to
themastersurfaceispossible.Thisiscrucialfortheconsistenttreatmentofpartiallypro-
jectingelements incomplexcontact scenarios, ashasbeen investigated forLagrangian
finite elements in Cichosz and Bischoff (2011) for two-dimensional mortar formula-
tionsandinPoppetal. (2013)forthegeneral three-dimensionalcase.Toproperlydetect
the integration domain and reduce the integration error to aminimum, a segmentation
process for isogeometric contact analysiswill bedescribed later on. For awell-defined
construction of dual shape functions according to (155), the primal shape functions
are required to have a non-zero integral value on the integration domain. Higher-order
Lagrange polynomials do, in general, not meet this requirement which necessitates
the use of a local basis transformation of the primal basis to obtain well defined dual
shape functions, see Popp et al. (2012),Wohlmuth et al. (2012). NURBS, on the other
hand, are positive on the entire element, such that the construction (154), (155) is well
definedwithout any furthermodifications and for any approximation order. For a two-
dimensional contact problem, i.e. a one dimensional contact boundary, an exemplary
set of primal and dual basis functions of second-order is depicted in Fig. 22.

It should be pointed out that the dual basis functions generated by (154), (155) only
guarantee a partition of unity. Consequently, the global approximation order is lim-
ited to one in the L2-norm, independent of the local approximation. Since the dual
NURBS do not posses the optimal reproduction order, optimal convergence rates as
proven in Brivadis et al. (2015) cannot be guaranteed. For dual mortar methods based
onLagrangepolynomialsoptimalitycanberecoveredbyatransformationoftheprimal
basis (Lamichhane andWohlmuth 2007) or by extending the support of the basis func-
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Fig. 22 Primal (top) and dual (bottom) basis functions for a one dimensional B-spline example. The
equations for the shape functions in the central element are given to underline the desired biorthog-
onality and partition of unity. Reprinted with permission from Seitz et al. (2016), c© 2016 Elsevier
B.V.

tions (Oswald andWohlmuth 2001). An extension of the latter approach to B-splines
is outlined in Brivadis et al. (2015), but in general still unsolved. However, for contact
problems the solution is typically inHt(�(i))3 with t < 5/2, such that a priori estimates
are already limited by the regularity of the solution. Even this simple construction of
dual shape functions meets the requirements in Wohlmuth et al. (2012) for optimal a
priori estimates for the displacements in theH 1-norm of orderO(h3/2).

Although the presented element-wise construction of dual shape functions yields
sub-optimal convergence in domain decomposition applications, they may still be
interesting for unilateral contact applications. In this case, the spatial convergence
is usually limited by the reduced regularity of the solution, such that even the sim-
ple element-wise construction gives optimal convergence in finite element analysis
(Wohlmuthetal.2012).Hence, inournumericalexamplebelow,wewant to investigate
the spatial convergence properties of the isogeometric dual mortar contact algorithm
in detail. We therefore use a two dimensional Hertzian-type contact of a cylindrical
body (radiusR) with a rigid planar surface under plane strain conditions. The two hor-
izontal upper boundaries undergo a prescribed vertical displacement. To avoid singu-
larities in the isogeometric mapping, we introduce a small inner radius (radius r), see
Fig. 23 for the geometric setting, thematerial parameters and the coarsestmesh.Again
meshes using second and third-order NURBS basis functions are used as depicted in
Fig. 23for thecoarsest level,wheredifferentBézierelementsaremarkedwithdifferent
shading. In this setup half of the elements on the potential contact surface are located
within one ninth of the circumferential length andCp−1 continuity is ensured over the
entire active contact surface. In the convergence study, uniform mesh refinement via
knot insertion is performed on each of the patches resulting in a constant local ele-
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Fig.23 Hertziancontact-ProblemsetupandcoarsestmeshwithBézierelementsindifferentshading.
Reprinted with permission from Seitz et al. (2016), c© 2016 Elsevier B.V.

ment aspect ratio. Although only relatively small deformations are to be expected, we
use a fully nonlinear description of the continuum using nonlinear kinematics and a
Saint–Venant–Kirchhoffmaterial under plane strain assumption aswell as the nonlin-
ear contact formulation.

InTables1and2,wecomparedifferent refinement levelsandstudy theconvergence
behavior in terms of the energy norm. Since no analytical solution is available, we use
the finest mesh of level 7 with standard third-order NURBS as a numerical reference
solution. Tables1 and 2 give the error decay over six refinement levels for both a stan-
dardanddualLagrangemultiplier interpolationofsecondandthird-ordertogetherwith
the numerical convergence order in each step. In the limit, all methods converge with
the expected order ofO(h3/2) in the energy norm and also the absolute error values are
quantitatively very similar. Only the N 3 standard case gives a slightly higher order in
the last step since the next level of thismesh is chosen as the numerical reference solu-
tion. Inviewof these results, theuseofdual shapefunctions for theLagrangemultiplier
instead of primal ones does not come at the expense of a reduced accuracy but yields
equally accurate resultswhile reducing the total systemsize to the number of displace-
mentdegreesof freedomonly. Incontrast to thedomaindecompositioncaseabove, the
convergence is now limited by the regularity of the solution, such that both standard
anddual interpolationsconvergewith thesameorder.Theuseofhigher-orderNURBS,
i.e. third-order inTable2or evenhigher seemsquestionable from this viewpoint, since
no faster convergence isgained fromthehigher-order interpolationwithuniformmesh
refinement.

8 InterfaceModeling –Wear andThermomechanics

Since contact can readily be interpreted as a special type of interface problem, it seems
advisable not to isolate contact mechanics, but rather to address it in the context of a
broader class of problems denoted as computational interface mechanics. Apart from
thecomputationaltreatmentofcontactinteractionandfriction,computationalinterface
mechanics also comprises other related physical phenomena such aswear, thermome-
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Table 1 Hertzian contact - spatial convergence for second-order NURBS

Mesh h ‖uN 2

std − uref‖E O(hx) ‖uN 2

dual −
uref‖E

O(hx)

1 1 2.5817e-1 – 3.1851e-1 –

2 0.5 1.4832e-1 0.80 8.8465e-2 1.85

3 0.25 4.7978e-2 1.63 4.0948e-2 1.11

4 0.125 1.5946e-2 1.59 1.5791e-2 1.37

5 0.0625 5.7112e-3 1.48 5.5474e-3 1.51

6 0.03125 1.9859e-3 1.52 1.9624e-3 1.50

Table 2 Hertzian contact - spatial convergence for third-order NURBS

mesh h ‖uN 3

std − uref‖E O(hx) ‖uN 3

dual −
uref‖E

O(hx)

1 1 1.6407e-1 – 1.6171e-1 –

2 0.5 8.1487e-2 1.01 1.2201e-1 0.41

3 0.25 2.9319e-2 1.47 5.2129e-2 1.23

4 0.125 1.0849e-2 1.43 1.9212e-2 1.44

5 0.0625 3.9370e-3 1.46 6.8044e-3 1.50

6 0.03125 1.3038e-3 1.59 2.4698e-3 1.46

chanics and phase boundaries. Put in short terms, computational contact and interface
mechanics are concerned with the treatment of complex interface effects at different
length scales ranging fromatomisticmodels tomicro- andmeso-scalemodels and fur-
ther to classical continuum models at the macro-scale. The nature of many interface
phenomena even requires a multi-scale perspective and associated models to bridge
the spectrum of relevant length scales. Exemplarily, the following two sections shall
highlight the application of the numerical methods discussed above (i.e. in particu-
larmortar finite elementmethods) towearmodeling and thermo-mechanical interface
problems. All details on the resulting schemes can be found in the author’s original
contributions (Farah et al. 2016, 2017; Seitz et al. 2018).

8.1 WearModeling

Contact mechanics including wear is one of the main causes for subsequent failure
of machines and component damage and thus highly important for industrial applica-
tions. It is a process ofmaterial removal associatedwith frictional effects,whichmight
result in finite shape changes due to the accumulation of wear.Wear is a very complex
phenomenon, which relates a geometrical setting including external conditions with
tribologicalmaterial behavior in the contact zone, and therefore correct predictions of
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wear effects are quite difficult tomake, seeMeng and Ludema (1995). Themainwear
types from the classifications in Popov (2010) and Rabinowicz (1995) are abrasive,
adhesive corrosive and fretting wear. Nevertheless, there are many more wear types
for different materials and load cases. The formulation predominantly employed for
wear calculations is the phenomenological law by Archard (1953), which was firstly
proposed by Holm (1946). It relates the worn volume with the normal contact force,
a characteristic sliding length and a problem-specific wear parameter. Archards’s law
is also employed in this contribution as general wear description without discussing
microscopical effects of special wear types.

In general, there are two different classes of wear treatment in computational con-
tact mechanics: either only the consideration of very small amounts of wear or finite
wear resulting in significant shapechanges.Thefirst class is usually treatedby tailored
modifications of the gap function, which results in slightly overlapping bodies (Farah
etal.2016;Rodríguez-Temblequeetal.2012;Serreetal.2001;Strömberg1996).How-
ever, this contribution will focus on the second class, which treats finite wear effects.
Standard remeshing procedures are employed in various contributions to prevent bulk
elements from degeneration (McColl et al. 2004; Molinari et al. 2001; Öqvist 2001;
PõdraandAndersson1999;Paulin et al. 2008;Sfantos andAliabadi 2006).Analterna-
tive approach to guarantee propermeshquality is theArbitrary–Lagrangean–Eulerian
formulation, where the mesh movement is considered as pseudo-elasticity problem,
see Stupkiewicz (2013).Most of the solution procedures for wear evolution are based
on an explicit forward-Euler time integration scheme. Concretely, the standard con-
tact problem is evaluated and only afterwards wear is calculated as a post-processing
quantity for the last time step or even for a certain number of time steps. This incre-
mental procedure is widely employed for the finite element method (Lengiewicz and
Stupkiewicz 2012; McColl et al. 2004; Öqvist 2001; Põdra and Andersson 1999) and
for theboundary elementmethod (Rodríguez-Tembleque et al. 2012;Serre et al. 2001;
Sfantos and Aliabadi 2006, 2007). Wear algorithms based on implicit time integra-
tion schemes are predominantly available for small amounts ofwear andusually intro-
duce additional unknowns into the linearized system of equations, see Ben Dhia and
Torkhani (2011), Jourdan and Samida (2009), Strömberg (1996). Up to the authors’
knowledge, the algorithm shown in Stupkiewicz (2013) is the only contribution in the
context of finite element analysis that treatswear implicitly in a finite deformation and
finite wear regime. Yet, it is limited to quasi-steady-state contact scenarios.

Restrictions to periodic cycling and prescribed relative movement of the involved
bodies are often made in order to simplify the wear algorithm, see Argatov (2011),
ArgatovandTato (2012),Lengiewicz andStupkiewicz (2013), Páczelt et al. (2012) for
reciprocal sliding andPáczelt andMróz (2005, 2007); Stupkiewicz (2013) for general
steady-state simulations. This assumption may be valid for classical tribological test
configurations like pin-on-cylinder tests, but it is certainly not applicable to general
scenarios.

Theunderlyingcontact frameworksfor thewearalgorithmsexistingin literatureare
mostly based on node-to-segment contact formulations, see for example Lengiewicz
and Stupkiewicz (2012); Strömberg et al. (1996). Nowadays, the mortar method is
undoubtedly themostpreferredchoice for robustfiniteelementdiscretizations incom-
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putational contactmechanics. Finite deformationmortar algorithmswith andwithout
frictional effects can exemplarily be found in Popp et al. (2010), Puso and Laursen
(2004b), Puso et al. (2008), Yang et al. (2005). Still, the only wear algorithm based on
mortar finite element discretization that can be found in the literature is given in Cav-
alieri and Cardona (2013), where only small wear effects without shape changes are
considered.

Theprimaryaimofthissection,whichsummarizes theauthor’srecentoriginalwork
in Farah et al. (2017), is to simulate finite wear effects for arbitrary load paths in a
fully implicit manner. To prevent element degeneration due to the loss of material,
an Arbitrary–Lagrangean–Eulerian formulation with a nonlinear pseudo-elasticity
assumption for themeshmotion is employed.Thedeveloped implicit partitionedalgo-
rithm is based on the configurationally consistent split between a Lagrangean step,
where the finite deformation contact problem is solved and a shape evolution step,
which realizes the finite configuration change due to wear. The wear equation based
on Archard’s law is enforced in a weak sense to follow the mortar idea and wear is
already included in the Lagrangean step as an additional contribution to the gap func-
tion, which leads to an artificial penetration of the involved bodies. Within the shape
evolution step, this non-physical overlap is then removed. Additional unknowns due
to the Lagrange multiplier approach for contact and due to the wear discretization are
eliminatedbycondensationprocedureswithin theLagrangeanstep toguaranteeanon-
increased system size. Within each time step, the Lagrangean step and the shape evo-
lution step are repeated until convergence of the overall nonlinear coupled problem is
obtained.

Thenumerical exampleshownhere isadapted fromStupkiewicz (2013) tocompare
the presented implicit wear algorithmwith a monolithic steady-state wear algorithm.
Steady-stateassumptionsarevalid forperiodically repeatedcontactandfrictional slid-
ingproblemswithmanycycles, suchaspin-on-disc, reciprocatingpin-on-flat, andpin-
on-cylinder tribological tests. Usually, these problems are based on splitting the time
scale into a fast time of the finite deformation problem and a slow time for the shape
evolution due towear, see Lengiewicz and Stupkiewicz (2012), Lengiewicz and Stup-
kiewicz (2013), Stupkiewicz (2013). However, within ourwear framework,we define
astate-independentfixedslip incrementper integrationpoint to simulatea steady-state
sliding process.Concretely, the 2Dpin-on-flat example consists of a hyper-elastic pin,
which is pressed into an infinitely long rigid plane, see Fig. 24.

The pin ismoved laterally with a constant velocity of v = 1000mm
s . Consequently,

the absolute value of the integration point slip increment is given as ||uτ ,rel|| = v�t.
The simulation is performed within 5 pseudo-time steps with �t = 200 s. Friction-
less sliding is assumed, which leads to a formulation of Archard’s law in terms of the
normal contact pressure. Thewear coefficient is assumed constant in thematerial con-
figuration and defined as kw = 10−7 MPa−1. The pin is loaded at its top edge with a
normal forceF = 20 N

mm acting in negative y-direction. The strain energy function for
the hyper-elastic material model is of neo-Hookean type and given as
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Fig. 24 2D pin-on-flat problem: reference configuration with dimensions (left) and material con-
figuration with material displacements after 5 pseudo time steps (right). Reprinted with permission
from Farah et al. (2017), c© 2017 JohnWiley & Sons, Ltd.
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Here, IC and IIIC are the invariants of the Cauchy–Green tensor. Furthermore, λ
andμ represent the so-calledLamé parameters, which are correlatedwith theYoung’s
modulusE and the Poisson’s ratio ν via

λ = Eν

(1 + ν)(1 − 2ν)
and μ = E

2(1 + ν)
. (157)

TheYoung’smodulus ischosenasE = 20MPaand thePoisson’s ratio isν = 0.3.This
2D simulation is based on a plane-strain assumption and volumetric locking effects
are avoided by the F-bar formulation for the employed 4-node quadrilateral elements,
seedeSouzaNetoet al. (1996).The resultingmaterial (i.e.worn) configuration isvisu-
alized in the Fig. 24. Here, the material displacements, which connect reference and
materialconfiguration,areillustrated.Itcanbeclearlyseenthatnotonlynodesattached
to the contact boundary are relocated but also inner nodes are properly adapted by our
ALEapproach.This guarantees a verygoodmeshquality in theworn configuration. In
addition, the evolution of the contact boundary is shown in Fig. 25.

Here, we compare our results with the simulation from Stupkiewicz (2013). Our
methodmatches the results fromliteratureverywell,whichdemonstrates thatourwear
algorithmcanalsobeappliedforsuchsteady-statewearsimulations.Furthernumerical
examples as well as the entire background for numerical method development can be
found in Farah et al. (2016, 2017).
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Fig. 25 Worn shape of the
pin after 5 pseudo time steps
with �t = 200 s compared to
results from Stupkiewicz
(2013). Reprinted with
permission from Farah et al.
(2017), c© 2017 JohnWiley
& Sons, Ltd.
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8.2 ThermomechanicsModeling

In many engineering applications, frictional contact, thermomechanics and elasto-
plastic material behavior come hand in hand. Just one class of typical well-known
examplesaremetal formingand impact/crashanalysis,where, athighstrain rates, ther-
mal effects need to be taken into account. The thermo-mechanical coupling appears in
several forms: firstly and most obviously, there is heat conduction across the contact
interface. Secondly, the dissipation of frictional work leads to an additional heating
at the contact interface. Thirdly, also plastic work within the structure is transformed
to heat. Vice versa, the current temperature may influence the elastic and especially
the plastic material response. All this necessitates robust and efficient solution algo-
rithms for fully coupled thermo-elasto-plastic contact problems, which has been an
active research topic over the past 25years.

Early implementations of thermo-elastic contact based on well-known node-to-
segment (NTS)contact formulations incombinationwithapenaltyconstraint enforce-
ment can be found in Johansson and Klarbring (1993), Oancea and Laursen (1997),
Wriggers andMiehe (1994), Zavarise et al. (1992), Agelet De Saracibar (1998), Pan-
tuso et al. (2000),Xing andMakinouchi (2002).Within the last decade,more sophisti-
cated variationally consistent contact discretizations based on themortarmethodhave
been developed and applied to thermo-mechanical contact in Hansen (2011), Khoei
et al. (2015), Temizer (2014), Dittmann et al. (2014), Hüeber and Wohlmuth (2009).
In addition, those algorithms satisfy the contact constraints exactly (at least in a weak
sense) by using either Lagrange multipliers or an augmented Lagrangian functional
instead of a simple penalty approach.Due to an easier implementation and other bene-
fits like symmetric operators,most of the citedworks above employ some sort of parti-
tionedsolutionschemeforsolvingthestructuralproblem(atconstant temperature)and
thermal problem (at constant displacement) sequentially. In thermo-plasticity, those
partitioned schemes based on an isothermal split are only conditionally stable (Simo
etal.1992).Onlyafewresearchershaveemployedmonolithicsolutionschemes,which
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solve for displacements and temperatures simultaneously (Zavarise et al. 1992; Pan-
tuso et al. 2000; Dittmann et al. 2014; Hüeber andWohlmuth 2009).

Numerical algorithms for finite deformation thermo-plasticity go back to the sem-
inal work by Simo et al. (1992), which is based on the isothermal radial return map-
ping algorithm presented in Simo (1988). Both partitioned and monolithic solution
approaches are discussed in Simo et al. (1992). Several extensions to this algorithm
have been presented later, e.g. amonolithic formulation in principle axes (Ibrahimbe-
govicandChorfi2002)andavariant including temperature-dependent elasticmaterial
properties (Canajija and Brnić 2004). In a different line of work, a variational formu-
lation of thermo-plasticity has been developed in Yang et al. (2006), where the rate of
plastic work converted to heat follows from a variational principle instead of being a
(constant) material parameter as in Simo et al. (1992). A comparison to experimen-
tal results is presented in Stainier andOrtiz (2010) to support this variational form.We
pointoutthatbothapproachestodeterminetheplasticdissipation,i.e.Simoetal.(1992)
andYang et al. (2006), are applicablewithin the algorithm for thermo-plasticity that is
illustratedhere.Besides thementioned radial returnmapping andvariational formula-
tions, a different numerical algorithm to isothermal plasticity at finite strains has been
developedinSeitzetal. (2015).Basedonfundamental ideasfromHagerandWohlmuth
(2009), the plastic deformation at everyquadrature point is introduced as an additional
primary variable and the plastic inequality constraints are reformulated as nonlinear
complementarity functions. This allows for a constraint violation during the nonlinear
solution procedure, i.e. in the pre-asymptotic range ofNewton’smethod,while ensur-
ing their satisfaction at convergence.As usual in computational plasticity, thematerial
constraints are enforced at eachmaterial point independently, such that the additional
unknowns can be condensed directly at quadrature point level. It could be shown in
Seitz et al. (2015) that due to this less restrictive formulation, a higher robustness can
be achieved, which allows for larger time or load steps.

The author’s recent original work in Seitz et al. (2018) aims at developing amono-
lithic solution scheme for the thermo-elasto-plastic frictional contact problem based
on a new approach.Mortar finite elementmethods with dual Lagrangemultipliers are
applied for the contact treatment using nonlinear complementarity functions to deal
withboththeinequalityconstraintsarisingfromfrictionalcontactaswellasplasticityin
a unifiedmanner. This bears novelty both for the numerical formulation of anisotropic
thermo-plasticity within the bulk material as well as for the fully nonlinear thermo-
mechanical contact formulation at the interface. Furthermore, full compatibility of
the algorithms for thermo-plasticity and thermo-mechanical contact is demonstrated.
Concerning plasticity, an extension of Seitz et al. (2015) to coupled thermo-plasticity
within a monolithic solution framework is presented. Similar to the isothermal case,
the use of Gauss-point-wise decoupled plastic deformation allows for a condensation
of the additionally introduced plastic unknowns, where now also thermo-mechanical
coupling termshave tobeaccounted for.Thenovel thermo-mechanical contact formu-
lation represents a fully nonlinear extension of Hüeber andWohlmuth (2009) includ-
ing a consistent linearization with respect to both the displacement and temperature
unknowns.Moreover, theuseofdualLagrangemultiplierswithin amortar contact for-
mulation enables the trivial condensation of the discrete contact Lagrangemultipliers
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Fig. 26 Squeezed
elasto-plastic tube – Initial
configuration and mesh

such that the final linearized system to be solved consists of displacement and tem-
perature degrees of freedom only. Our new thermo-mechanical contact formulation
is applicable for both classical finite elements based on Lagrange polynomial basis
functions as well as isogeometric analysis using NURBS basis functions, for which
an appropriate dual basis has recently been proposed in Seitz et al. (2016). Owing to
the variational basis of the mortar method, the thermo-mechanical contact patch test
on non-matching discretizations is satisfied exactly and optimal convergence rates are
achieved (Seitz et al. 2016) (Fig. 26).

While the reader is referred to Seitz et al. (2018) for all details of the formulation,
we would at least like to present a fully coupled thermo-elasto-plastic contact exam-
ple to demonstrate the robustness and efficiency of the developed algorithm. Similar
to the example in Seitz et al. (2015) and originally inspired by Hager and Wohlmuth
(2009), a squeezedmetal tubewith an inner and outer radius of 4 cm and 5 cm, respec-
tively, and a length of 40 cm is analyzed. In the middle of the tube it is squeezed by
two rigid cylindrical tools with an inner and outer of radius 4.5 cm and 5 cm, respec-
tively, and a length of 16 cm. The material properties are the ones given in Seitz et al.
(2018), with plastic isotropy, i.e. y11 = y0. Between the tools and the tube, frictional
contact with a temperature dependent friction coefficient is assumed with the initial
coefficient of frictionμ0 = 0.25, the reference temperature T0 = 293K and the dam-
age temperature Td = 1793K. The tools are initially in stress free contact and per-
form a vertical displacement of u(t) = (1 − cos( t

1 sπ)) · 17.5 cm over time. Figure27
illustrates the plastic strain and temperature distribution at different times. Due to the
symmetry of the problem, only one eighth of the entiremodel is discretizedwith about
20.000 elements, and the results are reflected for visualization purposes. First-order
hexahedral elements with an F-bar technology are used to avoid volumetric locking,
see de SouzaNeto et al. (1996) for the original isothermal formulation of this element.
In the early deformation stages, plastic deformation and therefore heat generation is
mainly located directly beneath the contact zone (see Fig. 27), whereas later the main
plastic deformation occurs at the side of the tube,where the highest peak temperatures
are reached (see Fig. 27).After contact is released, thermal conduction tends to equili-
brate the temperature inhomogeneity, see Fig. 27. To illustrate the efficient nonlinear
solutionprocedure usingNewton’smethodwith a consistent linearization, Fig. 28dis-
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Fig.27 Squeezedelasto-plastic tube–Deformedconfigurationsatdifferent times includingaccumu-
latedplastic strain and temperaturedistribution (results of aneighthmodel reflected for vizualization)

Fig. 28 Squeezed
elasto-plastic tube –
Convergence of different
residuals in Newton’s method
for t = 0.5 s
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plays the convergence behavior of different residual contributions in the time step of
maximal tool velocity (t = 0.5 s). All residuals clearly exhibit a quadratic rate of con-
vergence asymptotically, until they are at some point limited bymachine precision.
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9 SummaryandOutlook

In thiscontribution,mortarfiniteelementmethodshavebeenreviewedin thecontextof
nonlinear solidmechanics,witha special emphasisonunilateral contact and frictionas
well as more complex interface problems. As a first step, somewell-established basic
principles ofmortarmethods have exemplarily been recapitulated formesh tying (tied
contact). The concepts of both standard and dual Lagrange multiplier interpolation
were addressedwith a focus on the latter. Themost important favorable feature of dual
Lagrange multiplier techniques is the resulting localization of the occurring interface
constraints based on a biorthogonalization procedure. Algebraically, this is reflected
in the possibility to easily condense the discrete Lagrange multiplier degrees of free-
dom (DOFs) associated with the non-matching mortar interfaces from the final linear
systems of equations. Moreover, several important algorithmic aspects for an accu-
rate and efficient implementation ofmortar methods within a nonlinear finite element
code framework have been discussed, including the construction of suitable discrete
Lagrangemultiplier bases, efficient parallel algorithms for highperformance comput-
ing,accuratenumerical integrationproceduresandanextensionof themortarapproach
to isogeometric analysis using NURBS.

In many engineering applications, however, an accurate treatment of non-penet-
ration and Coulomb friction conditions at the contact interfaces is not sufficient to
draw all technically relevant conclusions. Stress analysis and lifetime prediction of
blade-to-discjoints inaircraftenginesisanillustrativeexamplefor thisstatement.Such
analyses require adetailedmodelingand simulationof themanifoldphysical phenom-
ena occurring at the contact interfaces. This possibly includes anisotropic friction, the
dependency of friction coefficients on state variables (e.g. temperature), heat trans-
mission, dissipation due to frictional sliding and surface degradation due to wear. As
an outlook towards such challenging application scenarios in interfacemechanics and
real-lifeengineering, recentextensionsofmortarfiniteelementmethodsforwearmod-
elingand thermomechanical contactmodelinghavebeen illustrated.Forallmentioned
applications,mortarmethodsprovidean important algorithmicbuildingblock inorder
toobtainmoreaccuratenumericalsolutionsthanpossibletodate,oreventogaininsight
intophenomena that havehardlybeenaccessible for computational analysis until now.
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M. Canajija and J. Brnić. Associative coupled thermoplasticity at finite strain with temperature-
dependent material parameters. International Journal of Plasticity, 20(10):1851–1874, 2004.

C.Carstensen,O.Scherf, andP.Wriggers.Adaptivefinite elements for elasticbodies incontact.SIAM
Journal on Scientific Computing, 20(5):1605–1626, 1999.

F. J. Cavalieri and A. Cardona. Three-dimensional numerical solution for wear prediction using a
mortar contact algorithm. International Journal for Numerical Methods in Engineering, 96:467–
486, 2013.

P.W.Christensen. A semi-smoothNewtonmethod for elasto-plastic contact problems. International
Journal of Solids and Structures, 39(8):2323–2341, 2002.

P.W. Christensen, A. Klarbring, J. S. Pang, and N. Strömberg. Formulation and comparison of algo-
rithms for frictional contact problems. International Journal for Numerical Methods in Engineer-
ing, 42(1):145–173, 1998.

J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved
numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60:371–375,
1993.

T. Cichosz and M. Bischoff. Consistent treatment of boundaries with mortar contact formulations
using dual Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering,
200(9-12):1317–1332, 2011.

J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of CAD
and FEA. Wiley, 2009.

L.DeLorenzis, I.Temizer,P.Wriggers,andG.Zavarise.Alargedeformationfrictionalcontact formu-
lation using NURBS-based isogeometric analysis. International Journal for Numerical Methods
in Engineering, 87(13):1278–1300, 2011.



80 A. Popp

L De Lorenzis, PWriggers, and G Zavarise. A mortar formulation for 3D large deformation contact
usingNURBS-basedisogeometricanalysisandtheaugmentedLagrangianmethod.Computational
Mechanics, 49(1):1–20, 2012.

L. De Lorenzis, P. Wriggers, and T. J. R. Hughes. Isogeometric contact: a review. GAMM-
Mitteilungen, 37(1):85–123, 2014.

L.DeLorenzis, J.A.Evans,T. J.R.Hughes, andA.Reali. Isogeometric collocation:Neumannbound-
aryconditionsandcontact.ComputerMethods inAppliedMechanicsandEngineering, 284:21–54,
2015.
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