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Preface

The chapters contained in this volume correspond to lectures given during the
course “Computational Contact and Interface Mechanics” that was held at the
CISM in Udine (Italy), October 3–7, 2016.

Contact is virtually omnipresent in many technical and biological systems,
which motivates a broad dissemination of profound knowledge regarding the
computational modeling of contact phenomena in the context of both solid
mechanics and particle mechanics. In this spirit, the main objective of the CISM
course and, consequently, of this volume is to convey modern techniques and the
latest state-of-the-art with regard to the most fundamental aspects of computational
contact modeling for solids and particles. However, since contact can readily be
interpreted as a special type of interface problem, it seems advisable not to isolate
contact mechanics, but rather to address it in the context of a broader class of
problems denoted as computational interface mechanics. Apart from the compu-
tational treatment of contact interaction and friction, computational interface
mechanics also comprises other related physical phenomena such as wear, lubri-
cation, and thermomechanical interface effects. Put in short terms, computational
contact and interface mechanics are concerned with the treatment of complex
interface effects at different length scales ranging from atomistic models to micro-
and mesoscale models and further to continuum models at the macroscale. The
nature of many interface phenomena even requires a multi-scale perspective and
associated models to bridge the spectrum of relevant length scales.

Therefore, the aforementioned aim of the volume has been expanded toward
firstly conveying a clear understanding of the underlying physics of interfaces, and
secondly giving a comprehensive insight into the current state-of-the-art and
selected cutting-edge research directions in the computational treatment of interface
effects. With regard to the first aim, the carefully prepared chapters of this volume
will focus on the modeling of friction, wear, lubrication, thermomechanics, and
particle contact (e.g., granular media). In view of the second objective, the most
important computational aspects will be addressed, including discretization tech-
niques for finite deformations, solution algorithms for single- and multi-processor
computing environments, multi-scale approaches, and multi-physics problems
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including contact and interface constraints. Among the computational techniques
covered in this volume are finite element methods (FEM), mortar methods, iso-
geometric analysis (IGA), virtual element methods (VEM), contact domain and
third medium methods as well as discrete element methods (DEM).

Each chapter will start from the respective basics of physical modeling and
computational techniques and will then move on to an in-depth treatment of
cutting-edge research topics. The volume starts with a general introduction to
FEM-based contact modeling in nonlinear solid mechanics by Alexander Popp,
followed by an overview of several emerging, non-conventional discretization
techniques for contact problems by Peter Wriggers. Subsequently, the focus is
shifted more toward more complex interface phenomena such as wear and soft
elastohydrodynamic lubrication by Stanisław Stupkiewicz. Finally, the fundamen-
tals of contact modeling for particles using DEM are reviewed by Jerzy Rojek. The
content is primarily designed for doctoral students and postdoctoral researchers in
applied mathematics, mechanics, engineering, and physics with a strong interest in
contact and interface phenomena. However, the book is equally suited for academic
and industrial researchers, who have only little experience with regard to the
computational treatment of interface effects and who would like to gain a compact
yet comprehensive overview of the field, as well as for practicing computational
engineers working on high-level industrial applications.

The editors wish to express their sincere gratitude to all contributors to this
volume, to the remaining lecturers of the corresponding CISM course, to all course
participants who created an enthusiastic and truly inspiring atmosphere, and last but
not least to all members of CISM and CISM Springer for their support and
thoughtful suggestions during the course and during the preparation of this volume.

Neubiberg, Germany Alexander Popp
Hannover, Germany Peter Wriggers
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State-of-the-Art Computational
Methods for Finite Deformation
Contact Modeling of Solids
and Structures

Alexander Popp

Abstract In this contribution, we review mortar finite element methods (FEM),
which are nowadays the most well-established computational technique for contact
modeling of solids and structures in the context of finite deformations and frictional
sliding. Based on some concepts of nonlinear continuum mechanics, the mortar
approach is first presented for the more accessible case of mesh tying (also referred
to as tied contact). Mortar methods for unilateral contact then follow in a rather
straightforward manner, despite the fact that several complexities, such as inequality
constraints, are added to the problem formulation. A special focus is set on practical
aspects of the implementation of mortar methods within a fully nonlinear, 3D finite
element environment. Specifically, the choice of suitable discrete Lagrange multi-
plier bases, aspects of high performance computing (HPC), numerical integration
procedures and new discretization techniques such as isogeometric analysis (IGA)
using NURBS are discussed. Eventually, the great potential of mortar methods in
the more general field of computational interface mechanics is exemplified through
applications such as wear modeling and coupled thermo-mechanical interfaces.

1 Introduction and Motivation

Contact phenomena are virtually omnipresent in nature and biological systems. The
associated length and time scales cover the entire spectrum from the nanoscale to
the macroscopic level and from hypervelocity impact to quasi-static contact interac-
tion, respectively. For example, the plate tectonics process of the continental drift,
the simple motion sequence when walking or the flow of red blood cells (erythro-
cytes) through blood vessels are all representatives of processes largely dominated
by contact and associated physical effects. Beyond that, science and engineering
have exploited the principles of contact mechanics to develop processes, such as

A. Popp (B)
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2 A. Popp

deep-drawing or extrusion-molding, as well as technical systems and machine parts,
including car tires, fluid bearings, gears, shafts and splines or elastomeric seals.

Contact mechanics can be looked at from several different perspectives. For some
scenarios, e.g. in nanotribology, it is helpful or even mandatory to investigate con-
tact interaction at an atomistic level. For many contact applications, however, a
purely macroscopic viewpoint based on classical continuum assumptions is suf-
ficient. Throughout this chapter, a continuum approach will be followed, mainly
considering contact mechanics as a particularly challenging subclass of solid and
structuralmechanics. The geometrical constraint of non-penetration of different solid
bodies can then easily be identified as the most important underlying principle of
contact interaction. In addition, the overall contact phenomenon is commonly also
influenced by one or several closely related interface effects, for example sticking
and sliding friction, adhesion, elastohydrodynamic lubrication and wear. Altogether,
contact and its associated phenomena introduce strong additional nonlinearities into
solid mechanics problems, where contact itself can basically be interpreted as a set
of complex boundary conditions, possibly changing over time. Together with the
already typical nonlinearities inherent in general solid mechanics, i.e. large defor-
mations and nonlinear constitutive (material) behavior, this evinces the challenges
and difficulties of mathematically describing and solving contact interactions, even if
the given problem setup is quite simple. Due to this complexity, only very few contact
problem settings exist, where analytical solution techniques are actually applicable.
The earlywork conducted byHertz (1882) on pressure distributions between contact-
ing elastic bodiesmore than a century ago, is commonly considered to be the origin of
modern contact analysis. A comprehensive overview of the basic principles of con-
tact mechanics, together with the most important analytical solution techniques can
be found in the textbooks by Johnson (1985) and Timoshenko and Goodier (1970).

With general contact problems being hardly accessible for mathematical anal-
ysis, experimental procedures and numerical modeling are naturally becoming the
focus of attention. Physical experiments are a convenient way of gaining informa-
tion about certain aspects of contact mechanics, e.g. for determining coefficients of
friction related to different material pairings. However, for the majority of contact
scenarios, the applicability of experimental procedures is either limited or practically
impossible. As a prominent example, experimental crashworthiness assessment, in
accordance with safety regulations and consumer protection tests, causes consid-
erable costs in the automotive industry. Complex contact phenomena in patient-
specific surgery planning or during the design of medical devices, e.g. guaranteeing
the optimal placement and minimum leakage of arterial stents, do not even allow for
meaningful experimental tests at all. Thus, combining the aforementioned exemplary
arguments, it becomes obvious that there is a very high and ever-growing demand
for powerful numerical modeling and simulation techniques in the field of contact
mechanics.What makes improved contact simulation approaches even more promis-
ing and likely to generate significant impact is the fact that the resulting numerical
algorithms can typically be employed for a very broad range of scientific and techni-
cal interests. In fundamental physical, chemical or biological research, as well as in
the applied sciences, novel methods and tools of computational contact mechanics
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allow for a better understanding of complex systems, which are influenced by contact
phenomena. On the other hand, many aspects of engineering practice and product
development (e.g. minimizing the frictional loss in gear transmissions, optimizing
the structural integrity of car bodies in crash situations) also heavily benefit from
improvements in contact modeling and simulation.

2 Contact Mechanics and FEM

All ideas and methods of computational contact mechanics will be exclusively dis-
cussed in the context of the finite element method (FEM) throughout this chapter.
Since the 1960s, the FEMhas gradually evolved as the dominating numerical approx-
imation technique for the solution of partial differential equations (PDEs) in various
fields, especially solid and structural mechanics including contact mechanics, but
also in fluid mechanics, thermodynamics and for the treatment of coupled prob-
lems. The general FEM literature is abundant, exemplarily the interested reader is
referred to themonographs byBathe (1996),Hughes (2000), Belytschko et al. (2000),
Reddy (2004), Zienkiewicz et al. (2005) and Zienkiewicz and Taylor (2005). Other
approaches for the numerical simulation of contact mechanics are only mentioned
very briefly here for the sake of completeness. Multibody dynamics are a fitting tool
when analyzing contact and impact phenomena of rigid bodies, with possible exten-
sions to elastic multibody dynamics allowing for a certain degree of deformation
of the contacting bodies. Moreover, particle methods such as the discrete element
method (DEM) are frequently used for investigating granular and particulate mate-
rials, whose mechanical behavior is largely dominated by contact interaction. While
finite elementswould not be themethod of choice for such applications, this chapter is
mainly related to contact of elastic solid bodies, possibly including very large defor-
mations. In this context, the FEMundoubtedly provides a very convenient framework
for numerical modeling and simulation. Furthermore, there is an increasing interest
in the interplay of contact mechanics with other physical phenomena, such as ther-
momechanics, wear and the lubrication behavior of thin fluid films, where finite
elements are also an eligible approach, e.g. due to their generality and geometrical
flexibility.

First contributions to the treatment of contact mechanics within the FEM can
be traced back to the 1970s and 1980s. In Francavilla and Zienkiewicz (1975)
and Hughes et al. (1976), contact conditions are formulated based on a very simple,
purely node-based approach, which requires node-matching finite element meshes
at the contact interface and is restricted to small deformations. Subsequently, a dif-
ferent idea was expedited, typically denoted as node-to-surface or node-to-segment
(NTS) approach and characterized by a discrete, point-wise enforcement of the non-
penetration condition at the finite element nodes. This NTS approach could readily
be applied to the case of finite deformations and large sliding motions, therefore
soon becoming the standard procedure in computational contact mechanics. With-
out claiming that the following listing is exhaustive, the reader is referred toBathe and
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Chaudhary (1985), Hallquist et al. (1985), Benson and Hallquist (1990), Simo and
Laursen (1992), Laursen (1992), Laursen and Simo (1993) andWriggers et al. (1990)
for a comprehensive overview. An important basis for the methods to be proposed in
this chapter is formed by the first investigations on the so-called segment-to-segment
(STS) approach in Papadopoulos and Taylor (1992) and Simo et al. (1985). In con-
trast to the purely point-wise procedure typical of NTS methods, the STS approach
is based on a thorough sub-division of the contact surface into individual segments
for numerical integration together with an independent approximation of the contact
pressure. Thereby, the STS approach can be interpreted as precursor of mortar finite
element methods for computational contact mechanics, which will be the main topic
here.

Before reviewing the literature on mortar methods, however, an overview of other
important aspects of computational contact mechanics aside from the discretization
approach (NTS,STS,mortar) is given.Onemain focus of attentionhas been set ondif-
ferent procedures for the enforcement of contact constraints, with themost prominent
representatives being penaltymethods, Lagrangemultipliermethods andAugmented
Lagrangemethods, seeAlart andCurnier (1991) for an excellent overviewanddiscus-
sion. Further questions related to contact modelingwithin a finite element framework
comprise efficient search algorithms (Williams and O’Connor 1999), mesh adaptiv-
ity (Wriggers and Scherf 1995; Carstensen et al. 1999; Hüeber andWohlmuth 2012),
covariant surface description (Laursen andSimo1993; Schweizerhof andKonyukhov
2005), surface smoothing (Wriggers et al. 2001; Puso and Laursen 2002), the treat-
ment of contact on enriched and embedded interfaces (Laursen et al. 2012), modeling
of interface effects other than friction (Yang and Laursen 2009; Sauer 2011), beam
contact (Wriggers and Zavarise 1997; Zavarise and Wriggers 2000) and energy con-
servation in the context of contact dynamics (Laursen and Chawla 1997; Laursen and
Love 2002; Hager et al. 2008; Hesch and Betsch 2009), among others. Apart from
numerous original papers, a comprehensive introduction to most of these topics can
be found in the textbooks by Laursen (2002) and Wriggers (2006).

Nevertheless, novel robust discretization techniques for finite deformation con-
tact problems, and especially mortar finite elements adapted for this purpose, have
arguably received most attention in the field of computational contact mechanics in
recent years.Mortarmethods,whichwere originally introduced as an abstract domain
decomposition technique (Bernardi et al. 1994; Ben Belgacem 1999; Seshaiyer and
Suri 2000), are characterized by an imposition of the occurring interface constraints
in a weak sense and by the possibility to prove their mathematical optimality. In
the context of contact analysis, this allows for a variationally consistent treatment of
non-penetration and frictional sliding conditions despite the inevitably non-matching
interfacemeshes for finite deformations and large slidingmotions. Early applications
of mortar finite element methods for contact mechanics can, for example, be found in
Ben Belgacem et al. (1998), Hild (2000) and McDevitt and Laursen (2000), though
limited to small deformations. Gradually, restrictions of mortar-based contact for-
mulations with respect to nonlinear kinematics have been removed, leading to the
implementations given in Puso and Laursen (2004a, b), Fischer andWriggers (2005),
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Fischer and Wriggers (2006), Hesch and Betsch (2009), Tur et al. (2009) and Hesch
and Betsch (2011).

An alternative choice for the discrete Lagrange multiplier space, so-called dual
Lagrange multipliers, was proposed in Wohlmuth (2000, 2001) and, in contrast to
the standard mortar approach, generates interface coupling conditions that are much
easier to realize without impinging upon the optimality of the method. Applications
of this approach to small deformation contact problems can be found in Hüeber and
Wohlmuth (2005), Flemisch and Wohlmuth (2007), Brunssen et al. (2007) and Hüe-
ber et al. (2008), and first steps towards finite deformations have been undertaken
in Hartmann (2007) and Hartmann et al. (2007). A fully nonlinear extension of the
dualmortar approach including consistent linearization of all deformation-dependent
quantities has been proposed in Popp et al. (2009, 2010), with extensions to fric-
tional sliding, second-order finite elements and a consistent treatment of dropping-
edge problems following shortly afterwards (Cichosz and Bischoff 2011; Popp et al.
2012;Wohlmuth et al. 2012; Popp et al. 2013; Popp andWall 2014). Another interest-
ing feature of dual Lagrange multiplier interpolation is that it naturally fits together
with so-called primal-dual active set strategies for constraint enforcement. It is well-
known from the mathematical literature on constrained optimization problems and
also from applications in computational contact mechanics, that primal-dual active
set strategies can equivalently be interpreted as semi-smooth Newton methods (Alart
and Curnier 1991; Qi and Sun 1993; Christensen et al. 1998; Christensen 2002; Hin-
termüller et al. 2002), thus allowing for the design of very efficient global solution
algorithms, especially in the context of nonlinear material behavior and finite defor-
mations.

Recent developments in the meanwhile rather broad field of mortar finite element
methods for computational contact mechanics include, without being complete, the
following topics: smoothing techniques (Tur et al. 2012), isogeometric analysis using
NURBS (Temizer et al. 2011, 2012; De Lorenzis et al. 2014; Brivadis et al. 2015),
improved numerical integration schemes (Farah et al. 2015), complex interface mod-
els such as wear (Cavalieri and Cardona 2013; Farah et al. 2016, 2017), treatment
of embedded interfaces (Laursen et al. 2012) as well as aspects of adaptivity and
high performance computing (Popp and Wall 2014; Kindo et al. 2014). While a few
different discretization approaches have been suggested, see e.g. the contact domain
method proposed in Hartmann et al. (2009) and Oliver et al. (2009), and while NTS
methods are still very popular in engineering practice, mortar-based contact formu-
lations have become quite well-established in themeantime and can arguably be seen
as state-of-the-art method for computational contact mechanics.

3 Overview of Nonlinear Continuum Mechanics

In this section, the basic concepts of nonlinear continuum mechanics are reviewed
with a focus on the governing equations for solid dynamics and contact interaction
required later. These remarks are not intended to give an exhaustive overview of
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the topic, but are rather geared towards outlining the necessary basics for contact
mechanics. For more extensive reviews in the field of solid and structural dynamics,
the reader is referred to the corresponding literature, e.g., Gurtin (1981),Marsden and
Hughes (1994), Ogden (1997), Bonet and Wood (1997), Holzapfel (2000) and Simo
and Hughes (1998). Large parts of this section are based on the author’s previously
published work (Popp 2012).

3.1 Kinematics

In this section, the fundamental kinematic relationships describing the deformation
of a homogeneous body are presented. The classical (Boltzmann) continuum model
in a three-dimensional Euclidean space description is assumed. Two distinct observer
frames are defined: the reference configuration �0 ⊂ R

3 denotes the domain occu-
pied by all material points X at time t = 0, while the current configuration �t ⊂ R

3

describes the changed positions x at a certain time t. The motion and deformation
from reference to current configuration are trackedwith the bijective nonlinear defor-
mation map

�t :
{

�0 → �t

X �→ x
, (1)

which also allows for the notations x = �t(X, t) and X = �−1
t (x, t). The absolute

displacement of a material point (see again Fig. 1) is then described as

u(X, t) = x(X, t) − X. (2)

Within the total Lagrangian approach, kinematic relations and all derived quan-
tities are described with respect to the material points in the reference configu-
ration �0. Thus, the material point position X plays the role of an independent
variable for the problem formulation, while the primary unknown to be solved for

Fig. 1 Cartesian coordinate
system, reference
configuration and current
configuration for a total
Lagrangian description of
motion

P

Ωt
Φt

xP

e3

e2

e1

XP

P
u(XP, t)

Ω0
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is the time-dependent deformation map �t(X, t), or equivalently the displacement
vector u(X, t).

A fundamental measure for deformation and strain in the context of finite defor-
mation solid mechanics is given by the deformation gradient F, defined as partial
derivative of the current configuration with respect to the reference configuration:

F = ∂x(X, t)

∂X
= I + ∂u(X, t)

∂X
, (3)

where I is the second-order identity tensor.Assuming as usual bijectivity and smooth-
ness of the deformation map �t , the inverse deformation gradient F−1 = ∂X/∂x
is also well-defined, therefore guaranteeing a positive determinant J = detF > 0.
This quantity, also commonly denoted as Jacobian determinant of the deformation,
represents the transformation of an infinitesimal volume element between the two
configurations:

dV = detF dV0 = J dV0. (4)

The deformation gradient also allows for the mapping of an infinitesimal, oriented
area element from reference to current configuration, yielding

dA = J F−T · dA0, (5)

which is commonly referred to as Nanson’s formula. Herein, the infinitesimal area
elements are interpreted as vectors dA0 = dA0 N and dA = dAn, where N and n
denote unit normal vectors of the area element in the reference and current configu-
ration, respectively.

An apparent choice for a suitable nonlinear strain measure is the so-called Green–
Lagrange strain tensor E defined in the material configuration as

E = 1

2
(FT · F − I) = 1

2
(C − I). (6)

Although strain measures are never unique, the Green–Lagrange strain tensor is a
very common choice in nonlinear solidmechanics, and can be considered particularly
convenient if large deformations occur but only a moderate amount of stretch and
compression.

The first and second time derivatives of the displacement vectoru(X, t) inmaterial
description, i.e. velocities u̇(X, t) and accelerations ü(X, t), are defined as follows:

u̇(X, t) = ∂u(X, t)

∂t

∣∣∣∣
X

= du(X, t)

dt
, (7)

ü(X, t) = ∂u̇(X, t)

∂t

∣∣∣∣
X

= du̇(X, t)

dt
= d2u(X, t)

dt2
. (8)
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Corresponding rate forms (i.e. time derivatives) of the deformation measures,
such as the material velocity gradient L = Ḟ or the material strain rate tensor

Ė = 1
2 (Ḟ

T · F + FT · Ḟ) = 1
2 Ċ are readily defined, too.

3.2 Stresses and Constitutive Laws

Themotion and deformation of an elastic body effects internal stresses. This is readily
described by the traction vector t in the current configuration:

t(n, x, t) = lim
�A→0

�f
�A

, (9)

yielding the limit value of the resulting force f acting on an arbitrary surface area
�A characterized by its unit surface normal vector n. The Cauchy theorem then
correlates tractions and stresses via

t = σ · n. (10)

Herein, the symmetric Cauchy stress tensor σ represents the true internal stress state
within a body in its a priori unknown current configuration, with diagonal and off-
diagonal components components being interpretable as normal stresses and shear
stresses, respectively. A multitude of alternative stress definitions is also prevail-
ing in nonlinear continuum mechanics. Exemplarily, the first Piola–Kirchhoff stress
tensor P maps the material surface element dA0 = dA0N onto the spatial result-
ing force f . Its definition is obtained from the Cauchy stress tensor σ by applying
Nanson’s formula (5), yielding

P = J σ · F−T. (11)

Consequently, it is possible to construct a stress tensor purely based on quantities
in the reference configuration, too. By also transforming the resulting force vector f
accordingly, the symmetric second Piola–Kirchhoff stress tensor S emerges as

S = F−1 · P = J F−1 · σ · F−T. (12)

With typical measures for both strains and stresses being established, constitu-
tive relations provide the missing link between kinematics and material response.
Throughout this chapter, only homogeneous bodies undergoing purely elastic defor-
mation processeswithout internal dissipation are considered.Moreover, the existence
of a so-called strain energy function or elastic potential�(F) is assumed, which only
depends upon the current state of deformation (hyperelastic material behavior). The
requirement of objectivity implies that� remains unchanged when an arbitrary rigid
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body rotation is applied to the current configuration. A common formulation of
hyperelastic materials in the reference frame then follows as

S = ∂�

∂E
. (13)

The relation between S and E given by (13) will in general be nonlinear. Thus, it is
possible (and necessary within typical finite element procedures) to determine the
fourth-order material elasticity tensor CCCm via repeated derivation, yielding

CCCm = ∂S
∂E

= ∂2�

∂E ∂E
. (14)

Exemplarily, only oneprevailing constitutivemodel is presentedhere: theSt.-Venant–
Kirchhoff material model is an isotropic, hyperelastic model based on a quadratic
strain energy function

�SVK = λ

2
(trE)2 + μE : E. (15)

In this context,λ andμ represent the so-called Lamé parameters, which are correlated
with the more common Young’s modulus E and Poisson’s ratio ν via

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (16)

Inserting (15) into (13) and (14), it can easily be observed that the St.-Venant–
Kirchhoff material model defines a linear relationship between Green–Lagrange
strainsE and secondPiola–Kirchhoff stressesS, and can therefore be interpreted as an
objective generalization of Hooke’s law to the geometrically nonlinear realm. Many
other constitutive laws exist for miscellaneous applications (e.g. the well-known
Neo–Hookean, Mooney–Rivlin or Ogden models for rubber materials). However,
with the focus of this chapter being on contact interaction rather than constitutive
modeling, the interested reader is referred to the abundant literature on hyperelas-
ticity, viscoelasticity or elastoplasticity for further details, e.g. in Holzapfel (2000),
Ogden (1997) and Simo and Hughes (1998).

3.3 Initial Boundary Value Problem

Exemplarily, the IBVPwill be presented in the reference configuration here, however
the spatial description is derived analogously. For the definition of suitable bound-
ary conditions, ∂�0 is decomposed into two complementary sets in the absence of
contact: �σ represents the Neumann boundary, where the tractions t̂0 are given, and
�u denotes the Dirichlet boundary, where displacements û are prescribed. Neumann
and Dirichlet boundaries are disjoint sets, i.e.
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�σ ∪ �u = ∂�0, �σ ∩ �u = ∅. (17)

The initial boundary value problem in material description can be summarized as
follows :

DivP + b̂0 = ρ0ü in �0 × [0,T ], (18)

u = û on �u × [0,T ], (19)

P · N = t̂0 on �σ × [0,T ]. (20)

Herein,T denotes the end of the considered time interval. Due to the time dependency
within the balance of linear momentum in (18), which contains second derivatives
with respect to time t, suitable initial conditions for the displacements û0(X) and
velocities ˆ̇u0(X) at time t = 0 are needed, viz.

u(X, 0) = û0(X) in �0, (21)

u̇(X, 0) = ˆ̇u0(X) in �0. (22)

The definition of a material model, such as for instance the one given in (15), eventu-
ally rounds off the initial boundary value problemof finite deformation solidmechan-
ics. The IBVP is also commonly referred to as strong formulation of nonlinear
solid mechanics, as Eqs. (18)–(22) are enforced at each individual point within the
domain �0.

3.4 Contact Kinematics

From the viewpoint of mathematical problem formulation, contact and impact proce-
dures can be classified into several different categories. A problem setup consisting of
one single deformable body and a rigid obstacle is commonly referred to as Signorini
contact, while the typical general problem formulation rests upon the assumption of
two deformable bodies undergoing contact interaction. Moreover, self contact and
contact involvingmultiple bodies representwell-known special cases.While it is usu-
ally advantageous or even essential to design specific numerical algorithms for the
aforementioned special cases, all mathematical basics concerning contact kinematics
and contact constraints can yet be perfectly derived for the case of two deformable
bodies.

Hence, deformable-deformable contact of two bodies undergoing finite deforma-
tions, as illustrated in Fig. 2, serves as prototype exclusively considered here. Let the
open sets �

(1)
0 , �(2)

0 ⊂ R
3 and �

(1)
t , �(2)

t ⊂ R
3 represent two bodies in the reference

and current configuration, respectively. As the two bodies approach each other and
may potentially come into contact on parts of their boundaries, the surfaces ∂�

(i)
0 ,

i = 1, 2, are now divided into three disjoint subsets, viz.
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e3

e2

e1

Γ(1)
u

Γ(2)
u

γ
(1)
u

Γ(2)
σ

Ω(2)
t

γ
(2)
σ

Ω(1)
0

Ω(1)
t

Ω(2)
0

X̂
(2)

Γ(1)
σ

γ
(1)
σ

Γ(1)
c (slave)

Γ(2)
c (master)

u(1)(X(1), t)

γ
(2)
c

γ
(1)
c

nc(x(1))

X(1)

τ ξ
c(x

(1))

u(2)(X(2), t)

x(1)

τ η
c(x

(1))

x̂(2)

γ
(2)
u

Fig. 2 Kinematics and basic notation for a two body unilateral contact problem in 3D

∂�
(i)
0 = �(i)

u ∪ �(i)
σ ∪ �(i)

c ,

�(i)
u ∩ �(i)

σ = �(i)
u ∩ �(i)

c = �(i)
σ ∩ �(i)

c = ∅, (23)

where �
(i)
u and �(i)

σ are the well-known Dirichlet and Neumann boundaries, and �
(i)
c

represents the potential contact surface. The counterparts in the current configuration
are denoted as γ(i)

u , γ(i)
σ and γ(i)

c . It is characteristic of contact problems that the
actual, so-called active contact surface�

(i)
a ⊆ �

(i)
c is unknown, possibly continuously

changing over time and thus has to be determined as part of the nonlinear solution
process. For the sake of completeness, and to bemathematically precise, the currently
inactive contact surface �

(i)
i = �

(i)
c \ �

(i)
a should technically be interpreted as part of

the Neumann boundary �(i)
σ .

A classical nomenclature in contact mechanics is retained throughout this chapter
by referring to �

(1)
c as the slave surface and to �

(2)
c as the master surface, although

the master-slave concept actually only makes sense in the context of finite element
discretization and although its traditional meaning will not be entirely conveyed to
the mortar FE approach presented later on.

Both bodies are required to satisfy the initial boundary value problem previously
presented in Sect. 3.3, with the motion and deformation being described by the abso-
lute displacement vectors u(i) = x(i) − X(i). Moreover, a new fundamental geometric
measure for proximity, potential contact and penetration of the two bodies is intro-
duced with the so-called gap function gn(X, t) in the current configuration. It is
evident that the gap function and other contact-related quantities need to be exam-
ined in a spatial description, even though the IBVP may still be formulated with
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respect to the reference configuration. The gap function is defined as

gn(X, t) = −nc ·
[
x(1)(X(1), t) − x̂(2)

(X̂
(2)

(X(1), t), t)
]
, (24)

where some alternatives exist for the identification of the contact point x̂(2) on the
master surface associated with each point x(1) on the slave surface and also for the
corresponding contact normal vector nc. The classical and perhaps most intuitive
choice in contact mechanics is based on the so-called closest point projection (CPP),
which determines x̂(2) as

x̂(2) = arg min
x(2)∈γ(2)

c

‖x(1) − x(2)‖. (25)

Consequently, nc is then chosen to be the outward unit normal to the current master
surface γ(2)

c in x̂(2). A very comprehensive overview of the closest point projection,
its mathematical properties and possible pitfalls due to non-uniqueness and certain
pathological cases can be found in Konyukhov and Schweizerhof (2008). However,
a slightly different approach is followed here, with the outward unit normal to the
current slave surface γ(1)

c being considered as contact normal nc. Hence, the master
side contact point x̂(2) is the result of a smooth interface mapping χ : γ(1)

c → γ(2)
c

of x(1) onto the master surface γ(2)
c along nc, see Fig. 2. Especially in the context of

mortar finite element discretization, this choice has some practical advantages over
the classical closest point projection common for node-to-segment discretization.

Together with two vectors τ
ξ
c and τ

η
c taken from the tangential plane, nc forms

a set of orthonormal basis vectors in the slave surface point x(1). As these basis
vector are attached to x(1) and also move accordingly, they are commonly referred
to as slip advected basis vectors. In this context, it is worth noting that the contact
surface γ(1)

c is a two-dimensional manifold, which means that the tangential plane in
each point x(1) locally defines an R2 space embedded into the global R3. Therefore,
any quantity on γ(1)

c is readily parametrized with the two local coordinates ξ(X(1), t)
and η(X(1), t). While the gap function characterizes contact interaction in normal
direction, the primary kinematic variable for frictional sliding in tangential direction
is given by the relative tangential velocity

vτ ,rel = (I − nc ⊗ nc) ·
[
ẋ(1)(X(1), t) − ˙̂x(2)(X̂

(2)
(X(1), t), t)

]
. (26)

Note that this expression for vτ ,rel is only exact in the case of perfect sliding and
persistent contact, i.e. assuming gn = ġn = 0. Nevertheless, it is typically employed
for quantifying the relative tangential movement of contacting bodies in all cases,
even if the described prerequisites are not met exactly. To clarify the notation in (26),
it is pointed out that ˙̂x(2) represents the current velocity of the material point X̂

(2)
,

viz. the material contact point associated with X(1) at time t. Therefore, it does not
include a change of the material contact point X̂

(2)
itself, or in other words, it does
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not include a change of the CPP of slave point x(1). Based on the tangential plane
defined above, vτ ,rel can be decomposed into

vτ ,rel = vξ
ττ

ξ
c + vη

τ τ
η
c. (27)

As already mentioned, the definition of the relative tangential velocity given above
is only frame-indifferent when perfect sliding occurs (gn = 0), see e.g. Laursen
(2002). However, since an objective measure of the slip rate is essential for formulat-
ing frictional contact conditions in finite deformation formulations, an appropriate
algorithmic modification of the slip rate is typically carried out later in the course of
finite element discretization.

Similar to the kinematic measures gn and vτ ,rel, the contact traction t(1)c on the
slave surface γ(1)

c can be split into normal and tangential components, yielding

t(1)c = pnnc + tτ = pnnc + tξττ
ξ
c + tητ τ

η
c. (28)

Moreover, due to the balance of linearmomentumon the contact interface, the traction
vectors on slave side γ(1)

c and master side γ(2)
c are identical except for opposite

signs, i.e.
t(1)c = −t(2)c . (29)

For further details on these topics, the interested reader is referred to classical text-
books on contact mechanics, e.g. Johnson (1985) and Kikuchi and Oden (1988),
or to more recent monographs on computational methods for contact mechanics,
e.g. Laursen (2002) and Wriggers (2006).

3.5 Tied Contact Constraints

While the main focus of this chapter is on unilateral contact problems, the integration
of mesh tying or tied contact problems for connecting dissimilar meshes suggests
itself due to the numerous conceptual similarities. Mesh tying applications are also
closely connected to the notion of domain decomposition. Thus, in Sect. 5,mesh tying
serves as simplified model problem through which many methodological and later
also implementational aspects of computational contact mechanics can be clearly
illustrated.

As will be seen in the following, mesh tying (or tied contact) perfectly fits into
the framework of contact kinematics defined above and can simply be interpreted as
a special case from now on. The fundamental kinematic measure for mesh tying is
simply the relative displacement between the two bodies, sometimes also referred to
as gap vector g(X, t), viz.

g(X, t) = u(1)(X(1), t) − û(2)
(X̂

(2)
(X(1), t), t). (30)
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Since it is typically assumed that the two bodies to be tied together share a common
interface �

(1)
c ≡ �

(2)
c ≡ �c in the reference configuration, the gap vector is equiva-

lently expressed as

g(X, t) = x(1)(X(1), t) − x̂(2)
(X̂

(2)
(X(1), t), t), (31)

thus demonstrating the similarity with the scalar gap function gn(X, t) for unilateral
contact defined in (24) even more clearly. As compared with unilateral contact, mesh
tying firstly requires no distinction between normal and tangential directions at the
interface, and secondly results in a simple vector-valued equality constraint:

g(X, t) = 0. (32)

3.6 Normal Contact Constraints

After the short interlude on mesh tying, the focus in now again set on unilateral
contact conditions. Examining the gap function defined in (24) in more detail, it
becomes obvious that a positive value gn(X, t) > 0 characterizes points currently
not in contact, while a negative value gn(X, t) < 0 denotes the (physically non-
admissible) state of penetration. Therefore, the classical set of Karush–Kuhn–Tucker
(KKT) conditions, commonly also referred to as Hertz–Signorini–Moreau (HSM)
conditions for frictionless contact on the contact boundary can be stated as

gn(X, t) ≥ 0, pn(X, t) ≤ 0, pn(X, t) gn(X, t) = 0. (33)

As can be seen from Fig. 3, the KKT conditions not only define a non-smooth and
nonlinear contact law, but one that is multi-valued at gn(X, t) = 0. However, this set
of inequality conditions also allows for a very intuitive physical interpretation. Due

Fig. 3 Karush–Kuhn–
Tucker (KKT) conditions of
non-penetration

gn

pn
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to the sign convention of the gap function introduced here, the first KKT condition
simply represents the geometric constraint of non-penetration, whereas the second
KKT condition implies that no adhesive stresses are allowed in the contact zone.
Finally, the third KKT condition, well-known as complementarity condition, forces
the gap to be closed when non-zero contact pressure occurs (contact) and the contact
pressure to be zero when the gap is open (no contact). Note, that the type of KKT
conditions defined in (33) also arise in many other problem classes of constrained
optimization, and thus standard solution techniques (e.g. based on Lagrange mul-
tiplier methods and active set strategies) from optimization theory can readily be
adapted for contact mechanics.

For the sake of completeness, the so-called persistency condition is alsomentioned
here. In the context of contact dynamics, the persistency condition is sometimes
considered as an additional contact condition, requiring that

pn(X, t) ġn(X, t) = 0. (34)

Herein, ġn(X, t) represents the material time derivative of the gap function. There-
fore, the persistency condition in combination with the KKT conditions in (33)
basically demands that the contact pressure is only non-zero when the bodies are in
contact and also remain so (persistent contact). On the contrary, the contact pressure
is zero in the instant of bodies coming into contact and in the instant of separation.
The persistency condition plays an important role in the design of energy conserving
numerical algorithms for contact dynamics, see e.g. Laursen and Chawla (1997),
Laursen and Love (2002), and bears a certain resemblance to the consistency condi-
tion in plasticity, see e.g. Simo and Hughes (1998).

3.7 Frictional Contact Constraints

While frictionless response (i.e. tτ = 0) is a common modeling assumption, and
especially helpful for a thorough development of computational methods for contact
mechanics, the real contact behavior of many technical systems is determined by the
frictional response to tangential loading. The associated scientific field of tribology
is extremely broad, also encompassing physical phenomena such as adhesion, wear
or elastohydrodynamic lubrication. The following overview is restricted to a purely
macroscopic observation of dry friction, classically described by Coulomb’s law.
One possible and widely used notation of Coulomb friction is given by

� := ‖tτ‖ − F|pn| ≤ 0, vτ ,rel + βtτ = 0, β ≥ 0, �β = 0. (35)

Herein, ‖ · ‖ denotes the L2-norm inR3,F ≥ 0 is the friction coefficient and β ≥ 0 is
a scalar parameter. An intuitive physical interpretation of Coulomb’s law as described
in (35) is readily available, too. The first (inequality) condition, commonly referred
to as slip condition, requires that the magnitude of the tangential stress tτ does not
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exceed a threshold defined by the coefficient of friction F and the normal contact
pressure pn. The frictional response is then characterized by two physically distinct
situations. The stick state, defined by β = 0, does not allow for any relative tangential
movement in the contact zone, i.e. vτ ,rel = 0. In contrast, the slip state, defined by
β > 0, implicates relative tangential sliding of the two bodies in accordance with the
so-called slip rule given as second equation in (35). The last equation in (35) is again
a complementarity condition, here separating the two independent solution branches
of stick and slip. A commonly cited similarity of Coulomb’s law exists with the
most simple formulations of elastoplasticity, see e.g. Simo and Hughes (1998). This
similarity is especially interesting in the course of developing numerical algorithms
for friction, which usually reuse well-known methodologies from computational
inelasticity.

Finally, it is pointed out that frictional response in contact is a path-dependent
process, thus introducingmechanical dissipation andmaking a system representation
based on elastic potentials infeasible. Path-dependency can easily be observed in the
fact that the tangential contact traction tτ depends on the velocity vτ ,rel or on the rate
of change of the tangential displacement if interpreted incrementally.

4 Overview of Nonlinear FEM

This section provides a brief introduction to the numerical treatment of nonlinear
solid mechanics problems with finite element methods. Based on a weak formulation
of the previously derived IBVP, the FEM for space discretization as well as typical
implicit time stepping schemes for time discretization are presented. Large parts of
this section are based on the author’s previously published work (Popp 2012).

4.1 From Strong Formulation to Weak Formulation

Many numerical methods for the solution of partial differential equations, and finite
element methods in particular, require a transformation of the IBVP defined in (18)–
(22) within a so-called weak or variational formulation. Although other variational
principles exist, the well-known principle of virtual work (PVW) is derived exclu-
sively here, with the starting point being a weighted residual notation of the balance
equation (18) and the traction boundary condition (20), i.e.

∫
�0

(ρ0ü − DivP − b̂0) · w dV0 +
∫

�σ

(P · N − t̂0) · w dA0 = 0. (36)

Herein, the weighting or test functionsw are initially arbitrary and can be interpreted
as virtual displacements, i.e. w = δu. Since the solution for the displacements is
known on the Dirichlet boundary �u, it is required that
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w = 0 on �u × [0,T ]. (37)

Applying Gauss divergence theorem and inserting (37) and (12) yields

∫
�0

ρ0ü · δu dV0

︸ ︷︷ ︸
−δWkin

+
∫

�0

S : δE dV0

︸ ︷︷ ︸
−δWint

−
∫

�0

b̂0 · δu dV0 −
∫

�σ

t̂0 · δu dA0

︸ ︷︷ ︸
−δWext

= 0. (38)

Three distinct contributions to the PVWcan be identified. The first term in (38) repre-
sents the kinetic virtual work contribution δWkin, the second term denotes the internal
virtual work contribution δWint, and the third and fourth term together form the vir-
tual work of external loads δWext. The PVW emerges as a very general principle of
solid mechanics, as it does not require the existence of an associated potentialW . As
an example, no constitutive assumptions whatsoever enter the weak formulation in
(38), thus making it also valid and applicable for problems such as elastoplasticity,
frictional sliding or non-conservative loading.

It can easily be shown that solutions of the IBVP (i.e. of the strong formulation)
also satisfy the weak formulation (38). As long as no restrictions are set on the choice
of the weighting functions δu, the two are formally identical, see e.g. Hughes (2000).
However, due to the manipulations introduced above, the weak formulation poses
weaker differentiability requirements to the solution functions u, because only first
derivatives of u with respect to X appear in (38) instead of second derivatives as in
(18). Thus, the following solution and weighting spaces can be defined:

U = {
u ∈ H 1(�) | u(X, t) = û(X, t) on �u

}
, (39)

V = {
δu ∈ H 1(�) | δu(X) = 0 on �u

}
. (40)

Herein,H 1(�) denotes the Sobolev space of functions with square integrable values
and first derivatives. While the solution space U may in general depend on the
time t due to a possible time dependency of the Dirichlet boundary conditions, the
weighting spaceV does not depend on the time t in any way. In conclusion, the weak
formulation of the nonlinear solid mechanics problems at hand can be restated as
follows: Find u ∈ U such that

δW = 0 ∀ δu ∈ V. (41)

4.2 Space Discretization

Space discretization is exclusively considered in the context of finite elementmethods
here. However, as a detailed introduction to all important aspects of the FEM is
beyond the scope of this chapter, only the basic ideas and notationwill be highlighted.
For a more elaborate survey of finite element methods, the reader is again referred to
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the corresponding literature, e.g. in Bathe (1996), Hughes (2000), Belytschko et al.
(2000), Reddy (2004), Zienkiewicz and Taylor (2005) and Zienkiewicz et al. (2005).

Simply speaking, the concept of finite element discretization in this context is
based on finding a numerical solution to (41) at discrete points, commonly referred
to as nodes. The nodes are connected to form elements, which allows to formulate the
following approximate partitioning of the domain�0 into nele element subdomains:

�0 ≈
nele⋃
e=1

�
(e)
0 . (42)

The displacement solution u(e) on element e is then typically approximated by local
interpolation functions Nk(X), yielding

u(e)(X, t) ≈ u(e)
h (X, t) =

nnod(e)∑
k=1

Nk(X)dk(t), (43)

where the discrete nodal values of the displacements dk(t) have been introduced.
Furthermore, the subscript ·h signifies a spatially discretized quantity throughout this
chapter and nnod(e) represents the number of nodes associated with the element e.
The interpolation functionsNk(X), commonly referred to as shape functions, are typ-
ically (but not exclusively) low-order polynomials, e.g. Lagrange polynomials, thus
meeting the differentiability requirements of the weak form. Based on the so-called
isoparametric concept, the element geometry in the reference configuration X(e) and
current configuration x(e) is approximated using the same shape functions. Typically,
�

(e)
0 is mapped to a reference element geometry or parameter space ξ = (ξ, η, ζ),

e.g. the cube [−1, 1] × [−1, 1] × [−1, 1], which defines an element Jacobian matrix
J(e) = ∂X(e)/∂ξ. Thus, the interpolation of displacements, current geometry and ref-
erence geometry at the element level is alternatively expressed as

u(e)
h (ξ, t) =

nnod(e)∑
k=1

Nk(ξ)dk(t), (44)

x(e)
h (ξ, t) =

nnod(e)∑
k=1

Nk(ξ)xk(t), (45)

X(e)
h (ξ) =

nnod(e)∑
k=1

Nk(ξ)Xk , (46)

with nodal positions Xk and xk(t) in the reference and current configuration, respec-
tively. Finally, time derivatives of the displacements, e.g. the accelerations ü, and the
weighting functions δu are also interpolated using the same shape functions. The lat-
ter convention is commonly referred to as Bubnov–Galerkin approach, as compared
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with a Petrov–Galerkin approach, where an independent set of shape functions is
chosen for interpolating the weighting functions.

Examining (44) more closely, it becomes obvious that the finite element method
basically introduces restrictions on the solution and weighting spaces defined in (39)
and (40). In the discrete setting, these spaces only contain a finite number of solution
and weighting functions, respectively, which is expressed mathematically in terms of
finite dimensional subspacesUh ⊂ U andVh ⊂ V . The limited selection of solution
andweighting functions then serves as a basis for the numerical solution, i.e. theweak
formulation is recast into a discrete form, which is no longer equivalent to strong
and weak formulation, but rather represents an approximation.

The individual contributions to the discretized weak form are integrated element-
by-element using Gauss quadrature and then sorted into global vectors based on
the so-called assembly operator, which governs the arrangement of local vectorial
quantities into global vectors. After inserting the interpolations given by (44) into
the weak formulation (38), the final spatially discretized formulation emerges as

δdT
(Md̈ + fint(d) − fext) = 0, (47)

with the global mass matrix M, the global vector of nonlinear internal forces fint

and the global vector of external forces fext. Moreover, δd, d̈ and d are global
vectors comprising all discrete nodal values of virtual displacements, accelerations
and displacements. Due to the interpolation introduced above, all vectors in (47)
are of the size ndof = ndim · nnod, where nnod is the total number of nodes in the
entire domain and ndim is the number of spatial dimensions. The variable name ndof
refers to the fact that the discrete values of the nodal displacementsd are also denoted
as degrees of freedom. Since (47) must hold for arbitrary virtual displacements δd,
it can equivalently be written as

Md̈ + fint(d) − fext = 0. (48)

This defines a system of ndof ordinary differential equations (ODEs), commonly
referred to as semi-discrete equations of motion. So far, only space discretization
with the finite element method has been established, but the system is still continuous
with respect to time.

4.3 Time Discretization

There exists a large variety of finite differencemethods suitable for timediscretization
of the semi-discrete equations of motion (48). In doing so, time derivatives are
approximated by their discrete counterparts, the difference quotients. Based on the
introduction of a constant time step size �t, the time interval of interest t ∈ [0,T ]
is subdivided into several intervals [tn, tn+1], where n ∈ N0 is the time step index,
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and thus the spatially discretized displacement solution d(t) is computed at a series
of discrete points in time.

In principle, time integration methods can be divided into implicit and explicit
schemes. While implicit methods lead to a fully coupled system of ndof nonlinear
discrete algebraic equations for the unknowndisplacementsdn+1 := d(tn+1), explicit
methods allow for a direct extrapolation towards dn+1 without requiring a solution
step. Here, only implicit schemes will be considered. They represent the method of
choice for problems dominated by a low frequency response, while explicit methods
are widely used in the context of high frequency responses and wave-like phenom-
ena, e.g. in high velocity impact situations. In general, implicit time integration
methods can be shown to be unconditionally stable, thus allowing for relatively large
time step sizes as compared with explicit schemes. However, the implementation of
implicit methods is more challenging due to the fact that nonlinear solution methods
(see Sect. 4.4) including a linearization of the entire finite element formulation are
required.

Here, the presentation is restricted to one exemplary and widely used implicit
time integration scheme, viz. the generalized-α method introduced by Chung and
Hulbert (1993). This one-step time integration scheme is based on the well-known
Newmark method, which allows for expressing the approximate discrete velocities
vn+1 ≈ ḋ(tn+1) and accelerations an+1 ≈ d̈(tn+1) at the end of the considered time
interval [tn, tn+1] solely in terms of already known quantities at time tn and the
unknown displacements dn+1, i.e.

vn+1(dn+1) = γ

β�t
(dn+1 − dn) − γ − β

β
vn − γ − 2β

2β
�tan, (49)

an+1(dn+1) = 1

β�t2
(dn+1 − dn) − 1

β�t
vn − 1 − 2β

2β
�tan, (50)

where β ∈ [0, 1/2] and γ ∈ [0, 1] are two parameters characterizing the behavior of
the method. The generalized-α method introduces generalized mid-points tn+1−αm

and tn+1−αf and shifts the evaluation of the individual terms in (48) from tn+1 to these
midpoints. The following linear interpolation rules are commonly established for the
generalized-α method:

dn+1−αf = (1 − αf)dn+1 + αf dn, (51)

vn+1−αf = (1 − αf)vn+1 + αf vn, (52)

an+1−αm = (1 − αm)an+1 + αm an, (53)

fext,n+1−αf = (1 − αf) fext,n+1 + αf fext,n. (54)

Eventually, the fully (i.e. space and time) discretized finite element formulation of
nonlinear solid mechanics, also referred to as discrete linear momentum balance, is
obtained as

Man+1−αm + Cvn+1−αf + fint(dn+1−αf) − fext,n+1−αf = 0. (55)
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One important advantage of the generalized-αmethod is that it allows for introducing
controllable numerical dissipation into the considered system, while at the same
time retaining the important properties of unconditional stability and second-order
accuracy.Controllable numerical dissipation in this contextmeans that the parameters
β, γ, αm and αf can be harmonized such that the desired damping effect is only
achieved in the spurious high frequency modes, while damping in the low frequency
domain is kept at a minimum. This procedure is usually united in the notion of a
spectral radius ρ∞ as the sole free parameter to choose for a generalized-α method.
The other parameters then follow directly from the requirements of unconditional
stability, second-order accuracy and optimized numerical dissipation as

αm = 2ρ∞ − 1

ρ∞ + 1
, αf = ρ∞

ρ∞ + 1
, β = 1

4
(1 − αm + αf)

2, γ = 1

2
− αm + αf.

(56)
Note that no numerical dissipation is introduced into the system for the choice ρ∞ =
1. Moreover, the generalized-α method also contains the classical Newmark method
as a special case by setting αm = αf = 0.

For the sakeof completeness, it is pointedout that quasistatic problems, i.e. neglect-
ing inertia effects, are also considered in the following. In that case, the timeparameter
t only plays the role of a pseudo-time and no time integration method is needed, but
the quasistatic solution is rather computed as a series of static equilibrium states.

4.4 Linearization and Solution Techniques for Nonlinear
Equations

Within each time step, the system of ndof nonlinear discrete algebraic Eq. (55) needs
to be solved for the unknown displacements dn+1. Throughout this contribution, the
Newton–Raphson method is employed as an iterative nonlinear solution technique.
Within each iteration step i, the residual of the discrete linear momentum balance
can be defined as

reffdyn(d
i
n+1) = Main+1−αm

+ Cvi
n+1−αf

+ fint(d
i
n+1−αf

) − fext,n+1−αf . (57)

The Newton–Raphson method is based on repeated linearization of the residual in
(57), solution of the resulting linearized system of equations and incremental update
of the unknown displacements until a user-defined convergence criterion is met. At
first, the linearization is obtained from the truncated Taylor expansion of (57), viz.

Lin reffdyn(d
i
n+1) = reffdyn(d

i
n+1) + ∂reffdyn(dn+1)

∂dn+1

∣∣∣∣
i

︸ ︷︷ ︸
Keffdyn(di

n+1)

�di+1
n+1, (58)
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where the partial derivative of reffdyn(d
i
n+1)with respect to the displacements is com-

monly referred to as dynamic effective tangential stiffness matrix Keffdyn(d
i
n+1) of

size ndof × ndof. In the context of the generalized-α method, the dynamic effective
tangential stiffness matrix can be determined based on Newmark’s approximation
given in (49) and (50) and the generalized midpoints defined in (51)–(54), yielding

Keffdyn(d
i
n+1) = ∂reffdyn(dn+1)

∂dn+1

∣∣∣∣
i

=

=
[
1 − αm

β�t2
M + (1 − αf)γ

β�t
C + (1 − αf)KT(dn+1−αf)

]i
, (59)

where KT(dn+1−αf) is the tangential stiffness matrix associated with the internal
forces as

KT(dn+1−αf) = ∂fint(dn+1−αf)

∂dn+1−αf

. (60)

To sum up, the Newton–Raphson method provides an iterative procedure for finding
the unknown solutiondn+1 for which the residual reffdyn(dn+1) vanishes.Within each
iteration, it is required that

Lin reffdyn(d
i
n+1)

!= 0, (61)

or in other words, the following linear system of equations has to be solved:

Keffdyn(d
i
n+1)�di+1

n+1 = −reffdyn(d
i
n+1). (62)

Having solved (62), the displacementsdi+1
n+1 at the end of the time step can be updated

via
di+1
n+1 = di

n+1 + �di+1
n+1, (63)

and the iteration counter is increased by one, i.e. i → i + 1. The procedure in (62)
and (63) is repeated until a certain user-defined convergence criterion, usually with
regard to the L2-norm of the residual ‖reffdyn(d

i
n+1)‖, is met. The most advantageous

property of the Newton–Raphson method is its local quadratic convergence. This
means that if the start solution estimated0

n+1 is sufficiently close to the actual solution
dn+1, i.e. within the problem-dependent convergence radius, then the residual norm
approaches zero with a quadratic convergence rate.
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In this contribution, only exact Newton–Raphson methods are considered as
described above or later also their semi-smooth variants for the inclusion of con-
tact constraints. However, the computational cost associated with such an approach
can be considerable for nonlinear solid mechanics problems, bearing in mind that
it requires a consistent linearization and thus a determination of the tangential stiff-
ness matrix KT(dn+1−αf) within each iteration step. In practice, this often leads to
the application of quasi-Newton methods or modified Newton methods, which are
based on a computationally cheaper approximation of the stiffness matrix (e.g. via
secants), but sacrifice optimal convergence behavior. Apart from that, many exten-
sions of the Newton–Raphson method aim at enlarging its local convergence radius.
Popular examples of such globalization strategies are line search methods and the
pseudo-transient continuation (PTC) technique, see e.g. Gee et al. (2009) and refer-
ences therein.

5 Mortar Methods for Tied Contact

Mesh tying (also referred to as tied contact) serves as a model problem for the intro-
duction to mortar finite element methods here. The basic motivation for such mortar
mesh tying algorithms is to connect dissimilar meshes in nonlinear solid mechanics
in a variationally consistent manner. Reasons for the occurrence of non-matching
meshes can be manifold and range from different resolution requirements in the
individual subdomains over the use of different types of finite element interpolation
to the rather practical experience that the submodels to be connected are commonly
meshed independently. Further details and a full derivation of all formulations can
be found in the author’s original work (Popp 2012).

5.1 Strong Formulation

Without loss of generality, only the case of a body with one sole tied contact interface
is considered. On each subdomain �

(i)
0 , the initial boundary value problem of finite

deformation elastodynamics needs to be satisfied, viz.

DivP(i) + b̂
(i)

0 = ρ(i)
0 ü(i) in �

(i)
0 × [0,T ], (64)

u(i) = û(i) on �(i)
u × [0,T ], (65)

P(i) · N(i) = t̂
(i)
0 on �(i)

σ × [0,T ], (66)

u(i)(X(i), 0) = û(i)
0 (X(i)) in �

(i)
0 , (67)

u̇(i)(X(i), 0) = ˆ̇u(i)
0 (X(i)) in �

(i)
0 . (68)
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The tied contact constraint, also formulated in the reference configuration, is given as

u(1) = u(2) on �c × [0,T ]. (69)

Equations (64)–(69) represent the final strong form of a mesh tying problem in
nonlinear solid mechanics. In the course of deriving a weak formulation (see next
paragraph), the balance of linearmomentumat themesh tying interface�c is typically
exploited and a Lagrangemultiplier vector fieldλ is introduced, thus setting the basis
for a mixed variational approach.

5.2 Weak Formulation

To start the derivation of a weak formulation of (64)–(69), appropriate solution
spaces U (i) and weighting spaces V (i) need to be defined as

U (i) =
{
u(i) ∈ H 1(�) | u(i) = û(i) on �u

}
, (70)

V (i) = {
δu(i) ∈ H 1(�) | δu(i) = 0 on �u

}
. (71)

Moreover, the Lagrange multiplier vector λ = −t(1)c , which represents the negative
slave side contact traction t(1)c and is supposed to enforce the mesh tying constraint
(69), is chosen from a corresponding solution space denoted as M. In terms of
its classification in functional analysis, this space represents the dual space of the
trace space W (1) of V (1). In the given context, this means that M = H−1/2(�c)

and W (1) = H 1/2(�c), where M and W (1) denote single scalar components of the
corresponding vector-valued spaces M and W .

Based on these considerations, a saddle point type weak formulation is derived
next. Basically, this can be done by extending the standard weak formulation of
nonlinear solid mechanics as defined in (38) to two subdomains and combining it
with Lagrange multiplier coupling terms. Find u(i) ∈ U (i) and λ ∈ M such that

−δWkin,int,ext(u(i), δu(i)) − δWmt(λ, δu(i)) = 0 ∀ δu(i) ∈ V (i), (72)

δWλ(u(i), δλ) = 0 ∀ δλ ∈ M. (73)

Herein, the kinetic contribution δWkin, the internal and external contributions
δWint,ext and the mesh tying interface contribution δWmt to the overall virtual work
on the two subdomains, as well as the weak form of the mesh tying constraint δWλ,
have been abbreviated as
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−δWkin =
2∑

i=1

[∫
�

(i)
0

ρ(i)
0 ü(i) · δu(i) dV0

]
, (74)

−δWint,ext =
2∑

i=1

[∫
�

(i)
0

(
S(i) : δE(i) − b̂

(i)

0 · δu(i)
)
dV0 −

∫
�

(i)
σ

t̂
(i)
0 · δu(i) dA0

]
,

(75)

−δWmt =
∫

�c

λ · (δu(1) − δu(2)) dA0, (76)

δWλ =
∫

�c

δλ · (u(1) − u(2)) dA0. (77)

It is important to point out that, strictly speaking, the coupling bilinear forms
δWmt and δWλ cannot be represented by integrals, because the involved spaces
H 1/2(�c) and H−1/2(�c) do not satisfy the requirements for a proper integral defini-
tion. Instead, a mathematically correct notation would use so-called duality pairings
〈λ, (δu(1) − δu(2))〉�c and 〈δλ, (u(1) − u(2))〉�c , see e.g. Wohlmuth (2000). How-
ever, during finite element discretization the solution spaces are restricted to discrete
subsets of L2(�c) functions, and by then at the latest the coupling terms may be
formulated as surface integrals. Moreover, even in the mathematical literature the
distinction between duality pairing and integral is not treated consistently, and thus
the slightly inaccurate formulation in (76) and (77) is preferred here due to readabil-
ity.

The coupling terms on �c also allow for a direct interpretation in terms of varia-
tional formulations and the principle of virtualwork.Whereas the contribution in (76)
represents the virtual work of the unknown interface tractions λ = −t(1)c = t(2)c , the
contribution in (77) ensures a weak, variationally consistent enforcement of the tied
contact constraint (69). Unlike for unilateral contact with inequality constraints,
there exist no further restrictions on the Lagrange multiplier spaceM here (such as
e.g. positivity). Nevertheless, the concrete choice of the discrete Lagrange multiplier
space Mh in the context of mortar finite element discretizations is decisive for the
stability of the method and for optimal a priori error bounds, cf. Sect. 7.1. Finally, it
is pointed out that the weak formulation (72) and (73) possesses all characteristics
of saddle point problems and Lagrange multiplier methods.

5.3 Finite Element Discretization

For the spatial discretization of the tied contact problem (72) and (73), standard
isoparametric finite elements are employed. This defines the usual finite dimensional
subspacesU (i)

h andV (i)
h being approximations ofU (i) andV (i), respectively. Through-

out this chapter, both first-order and second-order interpolation is considered with
finite element meshes typically consisting of 3-node triangular (tri3), 4-node quadri-
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lateral (quad4), 6-node triangular (tri6), 8-node quadrilateral (quad8) and 9-node
quadrilateral (quad9) elements in 2D, and of 4-node tetrahedral (tet4), 8-node hexa-
hedral (hex8), 10-node tetrahedral (tet10), 20-node hexahedral (hex20) and 27-node
hexahedral (hex27) elements in 3D.

With the focus being on the finite element discretization of the coupling terms
here, only the geometry, displacement and Lagrangemultiplier interpolations on�

(i)
c,h

will be considered in the following. Discretization of the remaining contributions
to (72) is not discussed, but the reader is instead referred to the abundant literature.
As explained in Sect. 4.2, the subscript ·h refers to a spatially discretized quantity.
Obviously, there exists a connection between the employed finite elements in the
domains �

(i)
0,h and the resulting surface facets on the mesh tying interfaces �

(i)
c,h. For

example, a mixed 3D finite element mesh composed of tet4 and hex8 elements yields
tri3 and quad4 facets on the surface of tied contact. Consequently, the following
general form of geometry and displacement interpolation on the discrete mesh tying
surfaces holds:

x(1)
h |

�
(1)
c,h

=
n(1)∑
k=1

N (1)
k (ξ(1), η(1))x(1)

k , x(2)
h |

�
(2)
c,h

=
n(2)∑
l=1

N (2)
l (ξ(2), η(2))x(2)

l , (78)

u(1)
h |

�
(1)
c,h

=
n(1)∑
k=1

N (1)
k (ξ(1), η(1))d(1)

k , u(2)
h |

�
(2)
c,h

=
n(2)∑
l=1

N (2)
l (ξ(2), η(2))d(2)

l . (79)

The total number of slave nodes on �
(1)
c,h is n(1), and the total number of master

nodes on �
(2)
c,h is n

(2). Discrete nodal positions and discrete nodal displacements are

given by x(1)
k , x(2)

l , d(1)
k and d(2)

l . The shape functions N (1)
k and N (2)

l are defined with
respect to the usual finite element parameter space, commonly denoted as ξ(i) for
two-dimensional problems (i.e. 1D mesh tying interfaces) and as ξ(i) = (ξ(i), η(i))

for three-dimensional problems (i.e. 2Dmesh tying interfaces). Asmentioned above,
the shape functions are derived from the underlying bulk discretization. Although not
studied here, the proposed algorithms can in principle be transferred to higher-order
interpolation and alternative shape functions, such as non-uniform rational B-splines
(NURBS), see e.g. Cottrell et al. (2009), De Lorenzis et al. (2011) and Temizer et al.
(2011, 2012).

In addition, an adequate discretization of the Lagrange multiplier vector λ is
needed, too, and will be based on a discrete Lagrange multiplier space Mh being
an approximation ofM. Some details concerning the choice ofMh, and especially
concerning the two possible families of standard and dual Lagrange multipliers, will
follow in Sect. 7.1. Thus, only a very general notation is given at this point:

λh =
m(1)∑
j=1

�j(ξ
(1), η(1))λj, (80)
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with the (still to be defined) shape functions �j and the discrete nodal Lagrange
multipliers λj. The total number of slave nodes carrying additional Lagrange mul-
tiplier degrees of freedom is m(1). Typically for mortar methods, every slave node
also serves as coupling node, and thus in the majority of cases m(1) = n(1) will hold.
However, in the context of second-order finite elements, it will be favorable to chose
m(1) < n(1) in certain cases. Substituting (78) and (80) into the interface virtual work
δWmt in (72) yields

−δWmt,h =
m(1)∑
j=1

n(1)∑
k=1

λT
j

(∫
�

(1)
c,h

�j N
(1)
k dA0

)
δd(1)

k

−
m(1)∑
j=1

n(2)∑
l=1

λT
j

(∫
�

(1)
c,h

�j (N
(2)
l ◦ χh) dA0

)
δd(2)

l , (81)

where χh : �
(1)
c,h → �

(2)
c,h defines a suitable discrete mapping from the slave to the

master side of the mesh tying interface. Such a mapping (or projection) becomes
necessary due to the fact that the discretized coupling surfaces �

(1)
c,h and �

(2)
c,h are, in

general, no longer geometrically coincident. This becomes very clear when thinking
of a curved mesh tying interface with non-matching finite element meshes on the two
different sides. As illustrated in Fig. 4, tiny gaps and overlaps may be generated in
the discretized setting, although the surfaces had still been coincident in the contin-
uum framework. Throughout this contribution, numerical integration of the mortar
coupling terms is exclusively performed on the slave side �

(1)
c,h of the interface. In

(81), nodal blocks of the two mortar integral matrices commonly denoted as D and
M can be identified. This leads to the following definitions:

D[j, k] = Djk Indim =
∫

�
(1)
c,h

�jN
(1)
k dA0 Indim, (82)

M[j, l] = Mjl Indim =
∫

�
(1)
c,h

�j(N
(2)
l ◦ χh) dA0 Indim, (83)

gap gap

overlap

Γ(1)
c,h �= Γ(2)

c,hΓ(1)
c ≡ Γ(2)

c ≡ Γc

Ω(1)
0

Ω(2)
0

Fig. 4 Gaps and overlaps in a curved mesh tying interface with non-matching FE meshes
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where j= 1, . . . ,m(1), k = 1, . . . , n(1), l = 1, . . . , n(2).Note that Indim ∈ R
ndim×ndim

is an identitymatrixwhose size is determined by the global problemdimensionndim,
viz. either ndim = 2 or ndim = 3. In general, both mortar matrices D and M
have a rectangular shape. However, D becomes a square matrix for the common
choice m(1) = n(1). More details concerning the actual numerical integration of the
mass matrix type of entries inD andM as well as the implementation of the interface
mapping χh for 3D will be given in Sects. 5.4 and 7.3.

For the ease of notation, all nodes of the two subdomains�
(1)
0 and�

(2)
0 , and corre-

spondingly all degrees of freedom (DOFs) in the global discrete displacement vector
d, are sorted into three groups: a group S containing all slave interface quantities,
a group M of all master quantities and a group denoted as N , which comprises all
remaining nodes or DOFs. The global discrete displacement vector can be sorted
accordingly, yielding d = (dN ,dM,dS). Going back to (81), this allows for the
following definition:

− δWmt,h = δdT
SD

Tλ − δdT
MMTλ = δdT

⎡
⎣ 0

−MT

DT

⎤
⎦

︸ ︷︷ ︸
BT

mt

λ = δdTfmt(λ). (84)

Herein, the discrete mortar mesh tying operatorBmt and the resulting discrete vector
of mesh tying forces fmt(λ) = BT

mtλ acting on the slave and the master side of the
interface are introduced. To finalize the discretization of the considered mesh tying
problem, a closer look needs to be taken at the weak constraint contribution δWλ

in (73). Due to the saddle point characteristics and resulting symmetry of the mixed
variational formulation in (72) and (73), all discrete components of δWλ have already
been introduced and the final formulation is given as

δWλ,h = δλTDdS − δλTMdM = δλTBmtd = δλTgmt(d), (85)

with gmt(d) = Bmtd representing the discrete mesh tying constraint at the coupling
interface. Taking into account the typical finite element discretization of all remaining
contributions to the first part of the weak formulation (72), as previously outlined in
Sect. 4.2, the semi-discrete equations of motion including tied contact forces and the
constraint equations emerge as

Md̈ + Cḋ + fint(d) + fmt(λ) − fext = 0, (86)

gmt(d) = 0. (87)

Mass matrix M, damping matrix C, internal forces fint(d) and external forces fext

result from standard FE discretization. It is important to point out that the actual
mortar-based interface coupling described here is completely independent of the
concrete choice of the underlying finite element formulation. The same also holds
true for the question which particular material model is applied. As both topics,
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i.e. nonlinear finite elements for continua and complexmaterialmodels, are discussed
at length in the literature, details will not be repeated here but the focus will remain
solely on the mesh tying terms fmt(λ) and gmt(d).

Examining the semi-discrete problem statement in (86) and (87) in more detail,
the well-known nonlinearity of the internal forces fint(d) due to the consideration
of finite deformation kinematics and nonlinear material behavior becomes apparent.
However, neither the discrete interface forces fmt(λ) nor the mesh tying constraints
gmt(d) introduce an additional nonlinearity into the system. This is due to the fact
that no relative movement of the subdomains is permitted in mesh tying problems.
Therefore, the mortar integral matrices D and M and hence also the discrete mesh
tying operator Bmt only need to be evaluated once at problem initialization and
thus do not depend on the actual displacements, even if finite deformations of the
considered body are involved. With respect to numerical efficiency, this means that
evaluating the mortar coupling terms for tied contact problems is a one-time cost,
which can usually be neglected as compared with the remaining computational costs.
Only for the unilateral contact case discussed in Sect. 6, this will no longer be the
case. The question how to numerically evaluate the entries of Bmt in 3D problems is
discussed in the following paragraph.

5.4 Evaluation of Mortar Integrals in 3D

All general concepts of the evaluation of mortar integrals in 3D can also be trans-
ferred back to the simple 2D case. The integral entries of both matricesD andMwill
be computed based on so-called mortar segments in order to achieve the maximum
possible accuracy of Gauss quadrature and to guarantee linear momentum conser-
vation in the semi-discrete setting. Projection operations between slave surface �

(1)
c,h

and master surface �
(2)
c,h, which consist of two-dimensional facets, are based on nodal

averaging and a C0-continuous field of normal vectors, cf. Fig. 17. For 3D situations,
the averaged nodal normal vector nk is given as

nk =
∑nadj

k
e=1 n

(e)
k

‖∑nadj
k
e=1 n

(e)
k ‖

, (88)

where the total number of slave facets nadj
k adjacent to slave node k may vary within

a much wider range than in 2D (for instance nadj
k = 4 in Fig. 17). In anticipation of

unilateral contact formulations, (88) also defines a tangential plane at slave node
k, from which the two unit tangent vectors τ

ξ
k and τ

η
k can be chosen to form an

orthonormal basis together with nk as

nk · τ
ξ
k = 0, τ

η
k = nk × τ

ξ
k . (89)
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Mortar segments must be defined such that the shape function integrands in (82)
and (83) are C1-continuous on these surface subsets. However, it is quite obvious
that this task is much more complex in three dimensions than it would be in two
dimensions, because mortar segments are arbitrarily shaped polygons as compared
with line segments in the 2D case. Beyond that, the choice of an adequate mortar
integration surface itself is quite difficult. In the 2D mortar mesh tying formulation
that is not discussed here, integration is performed directly on the slave surface �

(1)
c,h.

Unfortunately, it is not trivial to directly transfer this approach to three dimensions,
because of the possible warping of surface facets.

The general topic of numerical integration, and an overview of the available
(segment-based and element-based) integration schemes for this purpose is given
in Sect. 7.3

5.5 Solution Methods

The attention is now turned back to the actual mortar finite element approach for
tied contact derived in Sect. 5.3, and in particular to the final fully discretized version
(i.e. after time discretization with the generalized-α method previously discussed
in Sect. 4.3) of (86) and (87). All solution methods for this system of ndof + nco
nonlinear discrete algebraic equations, where the global number of constraints is
given by nco = ndim · m(1), are based on a standard Newton–Raphson iteration as
introduced in Sect. 4.4. With only equality constraints being present, no active set
strategies are needed for mesh tying systems, but the iterative solution techniques can
be applied directly, thus yielding standard (or smooth) Newtonmethods. Primal-dual
active set strategies and the associated notion of semi-smooth Newton methods only
become important in the context of unilateral contact considered in Sect. 6.

As explained in Sect. 4.4, the Newton–Raphson method (or Newton’s method)
is based on a subsequent linearization of the residual, here defined by the discrete
balance of linear momentum and the discrete mesh tying constraints in the time-
discretized versions of (86) and (87). Each nonlinear solution step (iteration index
i) then consists of solving the resulting linearized system of equations and an incre-
mental update of the unknown displacements dn+1 and Lagrange multipliersλn+1−αf

until a user-defined convergence criterion is met. Taking into account that the dis-
crete mesh tying operatorBmt defined in (84) does not depend on the displacements,
consistent linearization in iteration step i yields:

Keffdyn(d
i
n+1) �di+1

n+1 + Bmtλ
i
n+1−αf

= −reffdyn(d
i
n+1), (90)

∂gmt(dn+1)

∂dn+1

∣∣∣∣
i

�di+1
n+1 = −gmt(d

i
n+1). (91)

Herein, the fact that the Lagrange multipliers only enter the discrete mesh tying in
a linear fashion has been made use of. Due to this linearity, it is possible to solve
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directly for the unknown Lagrange multipliers λi
n+1−αf

in each iteration step instead
of an incremental formulation. Moreover, as mentioned in Sect. 4.4, all discrete force
terms (inertia, damping, internal and external forces) except for the additional mesh
tying forces fmt(λ

i
n+1−αf

) are summarized in the residual reffdyn(d
i
n+1) and the partial

derivative of reffdyn(d
i
n+1)with respect to the displacementsd is commonly referred to

as dynamic effective tangential stiffness matrix Keffdyn(d
i
n+1), as introduced in (58).

Finally, it is pointed out that the constraints gmt(dn+1) = 0 are already enforced at
time t = 0 to assure angular momentum conservation. Thus, the right-hand side of
the linearized constraint equation in (91) simply reduces to zero.

The linearized statement in (90) and (91) already gives a hint as to the typical
saddle point structure of the resulting Lagrange multiplier system. Analyzing the
linearizedmesh tying system (90) inmore detail and splitting the global displacement
vector d = (dN ,dM,dS) as well as all other involved quantities into three subsets
as defined in Sect. 5.3 leads to the following notation in matrix-vector notation:

⎡
⎢⎢⎣
KNN KNM KNS 0
KMN KMM 0 −MT

KSN 0 KSS DT

0 −M D 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�dn+1,N
�dn+1,M
�dn+1,S
λn+1−αf

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣
rN
rM
rS
0

⎤
⎥⎥⎦ . (92)

Herein, the nonlinear iteration index i and the subscript ·effdyn of the residual vector
reffdyn and the tangential stiffness matrix Keffdyn have been omitted for the ease of
notation. Note that no matrix blocksKMS andKSM exist, because slave and master
side degrees of freedom are only coupled via themortar approach. Due to the inherent
symmetry of Keffdyn, the global linearized mesh tying system (92) is also symmetric
and has the typical saddle point structure with a zero matrix block associated with
the Lagrange multipliers λn+1−αf on the main diagonal. Thus, while a conforming
discretization would yield a positive definite system, the coupled mesh tying system
considered here becomes indefinite with both positive and negative eigenvalues due
to the saddle point characteristics of the Lagrange multiplier method.

The linear system (92) needs to be solved within each nonlinear iteration step.
Unfortunately, efficient iterative solution techniques and especially the associated
preconditioners usually perform very poorly for such indefinite systems or are not
applicable at all. The main reason for this lies in the fact that common precondi-
tioning techniques, e.g. the Jacobi and Gauss–Seidel methods, fail for zero diagonal
matrix entries as occurring in (92). Nevertheless, there exist some specific solution
methods for this type of saddle point matrix block system, which are both well-
established and quite efficient. One popular representative, also employed as pre-
conditioner in this contribution whenever large mesh tying and contact systems are
considered with a standard Lagrange multiplier approach, is given by the so-called
semi-implicit method for pressure-linked equations (SIMPLE) and its many descen-
dants, see e.g. Elman et al. (2008) for a very comprehensive overview in the context
of the incompressible Navier–Stokes equations for fluid dynamics.
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As will be explained in Sect. 7.1, the dual Lagrange multiplier approach is char-
acterized by its localization of the coupling constraints at the mesh tying interface,
and thus algebraically by mortar matrixD reducing to a diagonal matrix. This makes
D trivial to invert and allows for efficient condensation operations of the slave side
degrees of freedom, i.e. both Lagrange multipliers and the discrete slave side dis-
placements. The basis for this condensation is given by the saddle point system in
(92), which is of course equally valid for dual Lagrange multiplier interpolation. In
preparation of a first condensation step, the third row of (92) is used to express the
unknown Lagrange multipliers λn+1−αf as

λn+1−αf = D−T (−rS − KSN�dn+1,N − KSS�dn+1,S
)
. (93)

Insertion into the second row of (92) yields the following intermediate system:

⎡
⎣ KNN KNM KNS
KMN + PTKSN KMM PTKSS

0 −M D

⎤
⎦
⎡
⎣�dn+1,N

�dn+1,M
�dn+1,S

⎤
⎦ = −

⎡
⎣ rN
rM + PTrS

0

⎤
⎦ , (94)

where the mortar projection operator P = D−1M that will formally be introduced in
(143) is used to abbreviate the notation. As a second step, the constraint equation in
the last row of (94) can be expressed as

�dn+1,S = D−1M�dn+1,M = P�dn+1,M. (95)

The final condensed system for the dual Lagrange multiplier approach is then
obtained by reinserting this result into the first row and second row of the inter-
mediate system, viz.

[
KNN KNM + KNSP

KMN + PTKSN KMM + PTKSSP

] [
�dn+1,N
�dn+1,M

]
= −

[
rN

rM + PTrS

]
. (96)

This final linearized system unifies several beneficial properties as compared with
the equivalent saddle point formulation given in (92). Firstly, the discrete Lagrange
multiplier degrees of freedom λn+1−αf have been removed from the global system
and thus the commonly cited disadvantage of an increased system size for Lagrange
multiplier methods is resolved. In fact, owing to the second condensation step, which
removes the slave side displacement degrees of freedom �dn+1,S , the final system
size is even reduced as compared with a conforming discretization. Secondly, and
more importantly, the typical saddle point structure with a zero diagonal matrix
block has been completely removed on the way towards the final system (96), which
is instead symmetric and positive definite again.

With regard to linear solvers, the dual Lagrange multiplier approach virtually
allows for an “out-of-the-box” application of state-of-the-art iterative solution and
preconditioning techniques, such as the CG or GMRES approach in combination
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with algebraic multigrid (AMG) methods. Simply speaking, all solvers that were
optimized for conforming discretizations in nonlinear solid mechanics are equally
applicable to the non-conforming mortar formulation with dual Lagrange multipliers
in (96) due to similar system properties. The additional computational effort associ-
ated with the condensation operations can be considered very low. In a first, naive
implementation, setting up the condensed system would simply require some addi-
tional matrix-matrix products of interface-sized matrix blocks such as the discrete
projection operator P. However, a more elaborate implementation could even do
without explicit matrix-matrix products, but would rather introduce modified local
assembly procedures for the individual finite element contributions to the tangential
stiffness matrix blocksKNS ,KSN andKSS , taking into account the associated local
entries of the mortar projection operator P. In any case, the improved properties and
the more efficient solvability of (96) as compared with (92) by far outweigh addi-
tional computational costs for the condensation, which makes the dual Lagrange
multiplier approach the preferred choice throughout this chapter.

For the sake of completeness, two details should be pointed out. Firstly, the
described condensationoperations are of course also applicable for standardLagrange
multiplier interpolation with a non-diagonal mortar matrix D, at least theoretically.
In practice, however, the inverse matrix D−1 would be densely populated in such
a case, which forbids the actual computation and storage of D−1 or likewise P for
moderate or even large system sizes. For dual Lagrange multiplier interpolation, on
the contrary, inversion of D and storage of the sparsely populated matrix P remain
easily manageable even for large-scale mortar mesh tying simulations. Secondly,
node-matching interface meshes are contained as a special case in the given mortar
formulation. This situation basically leads toP becoming an identity operator, estab-
lishing a one-to-one mapping between slave side and master side displacements.
Expression (96) then reduces to exactly the same linearized system that is obtained
for a conforming mesh.

5.6 Numerical Example

Patch tests are arguably one of the most common validation tools in finite element
analysis, typically used as a first important step towards an assessment of the con-
sistency of new element formulations, see e.g. Irons (1966) and Taylor et al. (1986).
In the present context of mesh tying and contact mechanics, patch tests are inves-
tigated in order to analyze the ability of mortar methods to exactly represent the
simplest possible (i.e. constant) stress states across arbitrary non-conforming inter-
faces. However, it is well-known that collocation-basedmethods such as the classical
node-to-segment (NTS) approach for mesh tying and unilateral contact typically fail
the patch test.Mortar finite elementmethods, with their variationally consistent inter-
polation of the interface traction via discrete Lagrange multipliers λ, guarantee the
exact satisfaction of typical patch tests by design.
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Fig. 5 3D patch test with inclined interface – finite element mesh (left), displacement uz (middle)
and interface tractions represented by the discrete Lagrange multipliers λ (right)

As a first test setup, two stacked cubes with an inclined but flat mesh tying inter-
face, as illustrated in Fig. 5, are investigated. This geometric model is obtained by
first considering two identical cubes of side length 10 and then moving two opposite
corners of the interface by a distance of ±2 in z-direction. The compressible Neo–
Hookean material law introduced in Sect. 3.2 is employed with Young’s modulus
E = 10 and Poisson’s ratio ν = 0.4. A constant pressure load p = −0.2 is applied
to the top surface of the upper block, and the bottom surface of the lower block is
supported such that any rigid body movement is precluded, but the bodies are free
to expand laterally. The lower block is defined as slave side for mortar coupling and
the chosen mesh size ratio of h(1)/h(2) = 5/6 generates a non-matching situation at
the interface. Figure5 exemplarily illustrates the displacement solution as well as
the Lagrange multiplier (i.e. interface traction) solution in z-direction for a hex8 dis-
cretization. As expected, a linear displacement field and constant interface tractions
are obtained. The fact that the patch test is actually passed to machine precision for
any first-order or second-order finite element type is emphasized in Fig. 6, where the
normal stress component in z-direction of the Cauchy stress tensor σ is visualized.
While all presented results have been obtained with dual Lagrange multiplier inter-
polation according to Sect. 7.1, standard Lagrange multipliers would yield identical
results.

The second patch test investigated is a 2D rectangular strip (length l = 8,
width w = 3) with five subdomains, each discretized with different first-order and
second-order finite elements (i.e. tri3, quad4, tri6, quad8 and quad9 elements),
see Fig. 7. While this admittedly constitutes a rather academic example, it strik-
ingly demonstrates the mesh generation flexibility offered by mortar methods, and
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Fig. 6 3D patch test with inclined interface – Cauchy stress σzz for several different types of
first-order and second-order mortar finite element interpolation

Fig. 7 2D patch test with crosspoints – types of finite element interpolation in the individual
subdomains (left), displacement uy (middle) and Cauchy stress σyy (right)
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Fig. 8 3D patch test with curved interface – finite element mesh and Cauchy stress σzz for non-
conforming interfaces (left) and for node-matching interfaces (right)

especially also the possibility of a consistent treatment of so-called crosspoints as
discussed in Wohlmuth (2001). Again, a compressible Neo–Hookean constitutive
model is employed (E = 10, ν = 0.3) and the strip is subject to unilateral loading
in y-direction. Both displacement and stress solution confirm that this 2D patch test
is passed to machine precision. The treatment of crosspoints is readily extended to
three dimensions, see e.g. Wohlmuth (2001).

Finally, the first patch testmodel is reconsidered, but nowwith a curvedmesh tying
interface. The exemplary results for a hex8mesh in the left part of Fig. 8 illustrate the
limits of mortar finite element methods with regard to exact patch test satisfaction.
It can be seen quite clearly that the patch test is not satisfied to machine precision
in that case, but instead a small error is introduced in the vicinity of the interface.
The reason for this result has already been explained in Sect. 5.3 and lies in the fact
that the discrete surfaces �

(1)
c,h and �

(2)
c,h are no longer geometrically coincident for

non-matching meshes on curved interfaces, but tiny gaps and overlapping regions
appear. Thus, a discrete projection step is needed, which inevitably precludes the
constant stress solution to be recovered exactly. This becomes even clearer when
analyzing a curved mesh tying interface with node-matching meshes, as visualized
in the right part of Fig. 8. In that case, the discrete mesh tying surfaces �

(1)
c,h and �

(2)
c,h

are again coincident, the mortar projection operatorP reduces to an identity mapping
and the patch test is satisfied exactly. Nevertheless, it should be pointed out that the
error of mortar methods in curved patch tests is only marginal and can factually be
neglected from an engineering point of view. Besides, the curved patch test behavior
of mortar methods is still significantly better than that of classical NTS schemes, see
also Hesch and Betsch (2010).



State-of-the-Art Computational Methods for Finite … 37

6 Mortar Methods for Unilateral Contact

Contact interaction in nonlinear solid mechanics and the use of mortar finite element
methods in this context are the main focus of interest of this chapter. The goal of all
developments presented is to be able to analyze and accurately predict themechanical
response in highly nonlinear unilateral contact scenarios, i.e. including very large
deformations and sliding, continuous changes of the active contact area and possibly
nonlinearmaterial behavior. Fromamethod development point of view,many aspects
of mortar methods already introduced for mesh tying in Sect. 5 can either be re-used
directly or in a slightly modified way in order to meet contact-specific demands.
For further theoretical considerations and an in-depth analysis of the mathematical
foundations of contact mechanics, the comprehensive textbook by Kikuchi and Oden
(1988) and the recent review article byWohlmuth (2011) should be consulted. A full
derivation of all formulations reviewed here can be found in the author’s original
work (Popp 2012).

6.1 Strong Formulation

For the sake of simplicity, only the case of two contacting bodies with one sole con-
tact interface is considered here. However, a generalization to multiple bodies and
self contact is rather straightforward and mostly a matter of efficient search algo-
rithms. All necessary notations for the finite deformation unilateral contact problem
have already been introduced in Fig. 2, to which the reader is once again referred
at this point. The domains �0(i) ⊂ R

3 and �
(i)
t ⊂ R

3, i = 1, 2, represent two sepa-
rate bodies in the reference and current configuration, respectively. To allow for the
usual Dirichlet and Neumann boundary conditions as well as contact interaction, the
surfaces ∂�

(i)
0 are divided into three disjoint subsets �

(i)
u , �(i)

σ and �
(i)
c , where �

(i)
c

represents the potential contact surface. Similarly, the spatial surface descriptions
∂�

(i)
t are split into γ(i)

u , γ(i)
σ and γ(i)

c . Retaining a customary nomenclature in contact
mechanics, �(1)

c is again referred to as slave surface and �
(2)
c as master surface.

On each subdomain �
(i)
0 the initial boundary value problem of finite deformation

elastodynamics needs to be satisfied, viz.

DivP(i) + b̂
(i)

0 = ρ(i)
0 ü(i) in �

(i)
0 × [0,T ], (97)

u(i) = û(i) on �(i)
u × [0,T ], (98)

P(i)N(i) = t̂
(i)
0 on �(i)

σ × [0,T ], (99)

u(i)(X(i), 0) = û(i)
0 (X(i)) in �

(i)
0 , (100)

u̇(i)(X(i), 0) = ˆ̇u(i)
0 (X(i)) in �

(i)
0 . (101)
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The contact constraints in normal direction are typically given in form of KKT
conditions as defined in (33), while frictional sliding according to Coulomb’s law
has been introduced in (35). For the sake of completeness of the strong formulation,
both sets of conditions are repeated:

gn ≥ 0, pn ≤ 0, pn gn = 0 on γ(1)
c × [0,T ], (102)

� := ‖tτ‖ − F|pn| ≤ 0,

vτ ,rel + βtτ = 0, β ≥ 0, �β = 0 on γ(1)
c × [0,T ]. (103)

Equations (97)–(103) represent the final strong form of a unilateral contact problem
in nonlinear solid mechanics. In the course of deriving a weak formulation (see
next paragraph), the balance of linear momentum at the contact interface is typically
exploited and a Lagrange multiplier vector λ is introduced, thus setting the basis
for a mixed variational approach. In contrast to the mesh tying case in Sect. 5, it is
striking that the unilateral contact constraints are typically formulated (and later also
numerically evaluated) in the current configuration.

6.2 Weak Formulation

In the first instance, the most general weak formulation including also Coulomb
friction is considered. Similar to the pure solid mechanics case in Sect. 4.1 and the
mesh tying case in Sect. 5.2, the well-known solution spaces U (i) and weighting
spaces V (i) are defined as

U (i) =
{
u(i) ∈ H 1(�) | u(i) = û(i) on �u

}
, (104)

V (i) = {
δu(i) ∈ H 1(�) | δu(i) = 0 on �u

}
. (105)

Moreover, the Lagrange multiplier vector λ = −t(1)c , which represents the negative
slave side contact traction t(1)c and is used to enforce the contact constraints (102)
and (103), is chosen from the convex set M(λ) ⊂ M given by

M(λ) =
{
μ ∈ M | 〈μ, v〉γ(1)

c
≤ 〈Fλn, ‖vτ‖〉γ(1)

c
, v ∈ W, vn ≤ 0

}
. (106)

Herein, 〈·, ·〉γ(1)
c

again stands for the scalar or vector-valued duality pairing between

H−1/2 andH 1/2 on γ(1)
c , see also Sect. 5.2.Moreover,M is the dual space of the trace

spaceW (1) of V (1) restricted to γ(1)
c , i.e.M = H−1/2(γ(1)

c ) andW (1) = H 1/2(γ(1)
c ),

where M and W (1) denote single scalar components of the corresponding vector-
valued spacesM andW . Thus, the definition of the solution cone for the Lagrange
multipliers in (106) satisfies the conditions on λ of the Coulomb friction law in a
weak sense.
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Based on these considerations, the weak saddle point formulation is derived next.
Basically, this can be done by extending the standard weak formulation of nonlinear
solid mechanics as defined in (38) to two bodies and combining it with contact-
specific Lagrange multiplier contributions. Find u(i) ∈ U (i) and λ ∈ M(λ) such
that

−δWkin,int,ext(u(i), δu(i)) − δWco(λ, δu(i)) = 0 ∀ δu(i) ∈ V (i), (107)

δWλ(u(i), δλ) ≥ 0 ∀ δλ ∈ M(λ). (108)

Herein, the kinetic contribution δWkin as well as the internal and external contri-
butions δWint,ext to the overall virtual work of the two bodies do not change as
compared with the mesh tying case in (74) and (75). However, the contact contribu-
tion δWco and the weak constraints δWλ, including non-penetration and frictional
sliding conditions, are given in full length as

−δWco =
∫

γ(1)
c

λ(δu(1) − δu(2) ◦ χ) dA, (109)

δWλ =
∫

γ(1)
c

(δλn − λn) gn dA −
∫

γ(1)
c

(δλτ − λτ ) vτ ,rel dA, (110)

where χ : γ(1)
c → γ(2)

c defines a suitable mapping from slave to master side of the
contact surface, see also Sect. 3.4. In contrast to the mesh tying case, where this
mapping only came into play in the discrete setting, γ(1)

c and γ(2)
c cannot even be

guaranteed to be identical in the continuum framework for unilateral contact, because
they not only comprise the actual contact surfaces but the potential contact surfaces.
As explained in detail in Sect. 5.2, the integral expressions in the coupling bilinear
forms δWco and δWλ would need to be replaced by duality pairings 〈·, ·〉γ(1)

c
in

order to be mathematically concise. However, the integral diction in (74) and (75) is
preferred here due to readability. The coupling terms on γ(1)

c also allow for a direct
interpretation in terms of variational formulations and the principle of virtual work.
Whereas the contribution in (109) represents the virtual work of the unknown contact
tractionsλ = −t(1)c , the contribution in (110) ensures aweak, variationally consistent
enforcement of the unilateral contact constraints in normal direction as well as the
Coulomb friction law. The equivalence of the strong pointwise conditions given in
(102) and (103) and the corresponding variational inequalities in (110) can readily
be proven, see e.g. Wohlmuth (2011).

The main focus of this chapter is on mortar finite element methods for contact
mechanics in general, and on discrete dual Lagrange multiplier spaces in particu-
lar, rather than on the physical foundations of frictional sliding or other interface
effects. Many scientific questions investigated and answered in the following are
completely independent of the precise tangential contact model. Thus, for the sake
of simplicity, the weak formulation is restricted to the frictionless case from now on,
as well as the upcoming derivations concerning finite element discretization. Never-
theless, Coulomb friction is included in the actual implementation originating from
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this work, and special remarks on frictional sliding will be given where important,
e.g. when considering semi-smooth Newton type active set strategies in Sect. 6.4.
Without claiming that this list is exhaustive, details on the mortar finite element dis-
cretization of frictional contact can be found in Gitterle et al. (2010), Gitterle (2012),
Hüeber et al. (2008), Tur et al. (2009), Wohlmuth (2011), Puso and Laursen (2004b)
and Yang et al. (2005).

For frictionless sliding, the tangential part tτ of the slave side contact traction t
(1)
c

is supposed to vanish, and thus the set of frictional sliding conditions in (103) is
simply replaced by

tτ = 0. (111)

Considering appropriate solution spaces, it becomes obvious that frictionless contact
allows for a significant simplification of the convex cone of Lagrange multipliers,
which is now given as

M+ =
{
μ ∈ M | μτ = 0, 〈μn, w〉γ(1)

c
≥ 0, w ∈ W+

}
. (112)

Herein, W+ is a closed non-empty convex cone being defined by W+ = {w ∈
W, w ≥ 0}. The weak solution of the frictionless contact problem is then obtained
from the following saddle point formulation: Find u(i) ∈ U (i) andλ ∈ M+ such that

−δWkin,int,ext(u(i), δu(i)) − δWco(λ, δu(i)) = 0 ∀ δu(i) ∈ V (i), (113)

δWλ(u(i), δλ) ≥ 0 ∀ δλ ∈ M+. (114)

The contributions δWkin, δWint,ext and δWco remain unchanged as previously defined
in (74), (75) and (109). However, the weak contact constraints δWλ now reduce to

δWλ =
∫

γ(1)
c

(δλn − λn) gn dA. (115)

Strictly speaking, a scalar Lagrange multiplier λn would be completely sufficient to
enforce the non-penetration condition here. Yet, in view of the more general case
of frictional contact, a vector-valued Lagrange multiplier will also be employed for
the frictionless case in this contribution, which allows for the nice interpretation of
frictionless sliding as a special case of Coulomb’s law with F = 0 and the convex
cone of Lagrange multipliers M(λ) reducing toM+. As compared with the mesh
tying case in Sect. 5.2, it is noticeable that the weak formulation contains inequal-
ity conditions for unilateral contact. These require a particular numerical treatment
based on active set strategies, as will be explained in Sect. 6.4. As mentioned before,
all standard terms (representing kinetic, internal and external virtual work) are for-
mulated in the reference configuration, while the contact virtual work term δWco

and the constraints δWλ are typically formulated in the current configuration for the
considered finite deformation contact problems. This is convenient due to the fact
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that the contact mapping χ : γ(1)
c → γ(2)

c needs to be evaluated with respect to the
deformed geometry, anyway.

6.3 Finite Element Discretization

Similar to the tied contact case, all common types of first-order and second-order
finite element interpolations in 2D and 3D are considered here, which again define
finite dimensional subspaces U (i)

h and V (i)
h being approximations of U (i) and V (i),

respectively. The general notations of slave and master side displacement interpola-
tion given in (78), as well as the Lagrange multiplier interpolation defined in (80)
are still valid. Substituting everything into the contact virtual work expression δWco

in (109) yields

−δWco,h =
m(1)∑
j=1

n(1)∑
k=1

λT
j

(∫
γ(1)

c,h

�j N
(1)
k dA

)
δd(1)

k

−
m(1)∑
j=1

n(2)∑
l=1

λT
j

(∫
γ(1)

c,h

�j (N
(2)
l ◦ χh) dA

)
δd(2)

l . (116)

Herein, the only two differences to the mesh tying case lie in the integration domain
(spatial description γ(1)

c,h instead of material description �
(1)
c,h) and in the fact that

the discrete contact mapping χh : γ(1)
c,h → γ(2)

c,h now continuously changes due to a
relative movement of slave and master surfaces. Thus, as will be seen later on, it is
not sufficient to evaluate the mapping only once as for mesh tying, but the mortar
matrices D and M become deformation-dependent instead. Due to the fundamental
importance of the discrete mortar matrices, their blockwise definition is repeated
here, although only slightly modified as compared with (82) and (83), i.e.

D[j, k] = Djk Indim =
∫

γ(1)
c,h

�jN
(1)
k dA Indim, (117)

M[j, l] = Mjl Indim =
∫

γ(1)
c,h

�j(N
(2)
l ◦ χh) dA Indim, (118)

where j = 1, . . . ,m(1), k = 1, . . . , n(1), l = 1, . . . , n(2). In analogy to (84), the dis-
crete contact virtual work contribution can be expressed as

− δWco,h = δdT
SD

Tλ − δdT
MMTλ = δdT

⎡
⎣ 0

−MT

DT

⎤
⎦

︸ ︷︷ ︸
Bco(d)T

λ = δdTfco(d,λ), (119)
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where the discrete mortar contact operatorBco(d) and the resulting discrete vector of
contact forces fco(d,λ) = Bco(d)Tλ acting on slave andmaster sides of the interface
now depend nonlinearly on the current deformation state d.

Next, the focus is shifted towards the weak constraint contribution for frictionless
contact defined in (115), where more profound differences to the mesh tying case can
be expected. As shown in great detail in Hüeber (2008), the discretized version of the
weak formulation in (114) and (115) is equivalent to the following set of pointwise
conditions:

(g̃n)j ≥ 0, (λn)j ≥ 0, (g̃n)j(λn)j = 0, j = 1, . . . ,m(1), (120)

where the discrete weighted gap (g̃n)j at slave node j is given by

(g̃n)j =
∫

γ(1)
c

�j gn,h dA. (121)

Herein, gn,h is the discretized version of the gap function gn introduced in (24).
Examining the last two equations in more detail, an interesting analogy becomes
apparent. Basically, (120) represents nothing less than a discrete formulation of the
original KKT conditions in (102)with an additional weighting based on the Lagrange
multiplier shape functions�j. It is worth noting that although a segment-based (mor-
tar) approach has been followed, decoupled constraints at the discrete nodal points
are eventually enforced independently, just as it is well-known from traditional NTS
schemes. However, the nodal constraints (120) in the mortar formulation convey a
substantially increased level of information as compared with the truly nodal con-
straints in a NTS formulation, owing to the underlying variational approach which
is algebraically reflected in the weighted (integral) gap formulation in (121).

For the sake of completeness, it should be pointed out that the nodal decoupling of
constraints and thus the final formulation given in (120) is strictly speaking only valid
for dual Lagrange multiplier interpolation, see Hüeber (2008) for the corresponding
mathematical proof, which relies on biorthogonality as defined in (144). In the case
of standard Lagrange multiplier interpolation, the conversion of (114) and (115)
into (120) involves an additional, yet only slight, approximation, see Hüeber (2008).
Finally, the frictionless sliding constraint contained in the definition of the convex
cone M+ is readily enforced on a discrete nodal basis, i.e. (λτ )j = 0. To sum up,
the final space discretized but still time continuous problem formulation, consisting
of the semi-discrete equations of motion and the frictionless contact constraints for
all slave nodes also carrying discrete Lagrange multiplier degrees of freedom, can
be expressed as

Md̈ + Cḋ + fint(d) + fco(d,λ) − fext = 0, (122)

(g̃n)j ≥ 0, (λn)j ≥ 0, (g̃n)j(λn)j = 0, j = 1, . . . ,m(1), (123)

(λτ )j = 0, j = 1, . . . ,m(1). (124)
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While this finite element formulation has some strong similarities with the mesh
tying case in (86) and (87), it also contains three striking additional complexities.
Firstly, unilateral contact involves inequality constraints, which require a suitable
active set strategy as part of the global solution algorithm (cf. Sect. 6.4). Secondly,
normal and tangential contact directions need to be treated separately in order to
enforce the different underlying physical principles (non-penetration, frictionless or
frictional sliding). Thirdly, and most importantly from the viewpoint of implemen-
tation, the contact forces in (122) as well as the contact constraints in (123) and
(124) are deformation-dependent. This introduces an additional nonlinearity into the
global system and thus demands for an incessant re-evaluation of mortar coupling
terms including a consistent linearization for implicit time integration. Correspond-
ing extensions of the numerical integration scheme for the discrete contact operator
Bco(d) and the discrete weighted gaps (g̃n)j in both 2D and 3D will be presented in
the next three paragraphs.

Finally, a short outlook is also given on the weak constraint contribution for
frictional contact according to Coulomb’s law as defined in (110), although the
frictional part is not in the focus of interest here. Again, it has been shown in great
detail in Hüeber (2008) and can be readily understood that the discretized version
of the tangential part of the weak formulation in (108) and (110) is equivalent to the
following set of pointwise conditions:

�j := ‖(λτ )j‖ − F|(λn)j| ≤ 0,

(ṽτ ,rel)j + βj(λτ )j = 0, βj ≥ 0, �jβj = 0, j = 1, . . . ,m(1). (125)

where the discrete relative tangential velocity (ṽτ ,rel)j at slave node j is determined
such that it satisfies the requirement of frame indifference, see e.g. Yang et al. (2005)
and Gitterle et al. (2010) for further explanations. Similar to the non-penetration
condition, it can be observed that (125) basically represents a weak formulation
of the original Coulomb friction conditions in (103) with an additional weighting
based on the Lagrange multiplier shape functions �j. In the semi-discrete formula-
tion for Coulomb friction, the set of conditions in (125) would simply replace (124),
while (122) and (123) would remain unchanged. While by no means exhaustive, the
given outlook demonstrates that an extension of the proposed mortar finite element
framework towards any tangential constitutive law (e.g. Tresca friction, Coulomb
friction) is pretty straightforward. Most importantly, the discrete frictional expres-
sions such as the discrete relative tangential velocity (ṽτ ,rel)j do not require any
additional numerical integration efforts, but can rather be constructed from the well-
known mortar matrices D and M (including history values due to path dependency)
and the nodal tangent vectors τ

ξ
j and τ

η
j defined in (89).

The main steps for evaluating the entries of the mortar integral matrices D andM
in 3D will be presented in Sect. 7.3 in the context of tied contact and can be directly
transferred to unilateral contact. Concretely, this encompasses the definition of aver-
aged nodal normal vectors and the 3D mortar segmentation algorithm (cf. Fig. 18)
with its associated projection, clipping and triangulation procedures.
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6.4 Active Set Strategy and Semi-smooth Newton Methods

As mentioned before, the semi-discrete problem statement of unilateral contact
in (122)–(124), and in particular its final fully discretized version (i.e. after time dis-
cretization with the generalized-α method previously discussed in Sect. 4.3), causes
one major additional complexity with regard to global solution schemes as compared
with the mesh tying case, namely the contact specific inequality constraints, which
divide the set of all discrete constraints (i.e. the equivalent of all slave nodes) into
two a priori unknown sets of active and inactive constraints. Mathematically speak-
ing, this introduces an additional source of nonlinearity apart from the well-known
geometrical and material nonlinearities of nonlinear solid mechanics. To resolve
this contact nonlinearity, so-called primal-dual active set strategies (PDASS) will be
employed in the solution algorithms developed here.

The idea of any active set strategy in the context of unilateral contact is to find
the correct subset of all slave nodes which are in contact with the master surface at
the end of the currently considered time interval [tn, tn+1]. As discussed in Sect. 6.3,
the contact constraints can be enforced nodally at each slave node j ∈ S, with j =
1, . . . ,m(1), despite the fact that a segment-based mortar approach is employed here.
Consequently, the so-called active set A ⊆ S defines a subset of the set of all slave
nodes S, and the definition of the inactive set I = S \ A is straightforward. Before
considering possible formulations of active set strategies, the final KKT conditions
defined in (123) are repeated here, with the time index n + 1 being omitted in the
following for the sake of notational simplicity, i.e.

(g̃n)j ≥ 0, ∀ j ∈ S
(λn)j ≥ 0, ∀ j ∈ S

(g̃n)j(λn)j = 0, ∀ j ∈ S. (126)

The aforementioned definitions of the active set and the inactive set in combination
with the complementarity condition (g̃n)j(λn)j = 0 motivate a first, naive reformu-
lation of the KKT conditions using only equality constraints:

(g̃n)j = 0, ∀ j ∈ A
(λn)j = 0, ∀ j ∈ I

(g̃n)j(λn)j = 0, ∀ j ∈ S. (127)

Obviously, the PDASS in (127) suffers from a serious drawback: the contact nonlin-
earity, i.e. finding the correct active setA can not be resolved by a Newton–Raphson
type approach. This is due to the fact that no directional derivative of the sets them-
selves with respect to the nodal displacementsd can be extracted from (127). Instead,
the given formulation inevitably leads to two nested iterative solution schemes, with
the outer (fixed-point type) loop solving for the correct active set and the inner
(Newton–Raphson type) loop solving a constrained nonlinear finite element prob-



State-of-the-Art Computational Methods for Finite … 45

lem while the active set is fixed. Consequently, this approach does not provide the
desired efficiency and will not be followed any further in this contribution. Further
information on such a fixed-point type treatment of the active set in the context of
finite deformation mortar contact can for instance be found in Hartmann et al. (2007)
and Hesch and Betsch (2009).

Based on the above considerations, the basic idea of an alternative PDASS formu-
lation is to rearrange theKKTconditions such that aNewton–Raphson type algorithm
can be applied not only for geometrical and material nonlinearities, but also for the
nonlinearity stemming from contact itself, i.e. the active set search. The resulting
primal-dual active set approach is well-known from the general mathematical liter-
ature on constrained optimization, see e.g. in Hintermüller et al. (2002) and Qi and
Sun (1993), and can equivalently be interpreted as a semi-smooth Newton method.
Applications to classical NTS contact formulations can be found in Alart and Curnier
(1991), Christensen et al. (1998) and Strömberg et al. (1996), and small deformation
mortar contact has been investigated in Hüeber andWohlmuth (2005). Here, the first
successful consistent extension to a finite deformation mortar contact formulation
is presented, cf. also Popp et al. (2009, 2010). The main idea is to reformulate the
discrete KKT conditions within a so-called nonlinear complementarity (NCP) func-
tion, where all details for frictionless and frictional contact are given in the upcoming
paragraphs. For the sake of completeness, it should be mentioned that the concept
of NCP functions is also applicable to other well-known solid mechanics problems
involving inequality constraints such as computational plasticity. For a comprehen-
sive and more general overview, the reader is exemplarily referred to Hager (2010).

The first step for frictionless contact is to reformulate the discrete KKT-conditions
in (126) within a complementarity function Cj for each slave node j ∈ S as

Cj (d,λ) = (λn)j − max
(
0, (λn)j − cn(g̃n)j

) = 0, cn > 0. (128)

This is a nonlinear function of the discrete displacements as both the nodal normal
vector nj in (λn)j = nj · λj and the nodal weighted gap (g̃n)j defined in (121) depend
nonlinearly on d. It can be easily shown that the resulting equality constraint Cj = 0
is equivalent to the complete set of KKT inequality conditions in (126), and that
this equivalence holds for arbitrary positive values of the so-called complementarity
parameter cn. The concrete role of cn will be explained later in this paragraph.
Figure9 exemplarily illustrates the nodal complementarity function and emphasizes
the equivalence with the KKT conditions.

It is important to see that a distinction between the active set A and the inactive
set I is implicitly contained in the complementarity function Cj: the max-function is
non-smooth and thus consists of two different solution branches. In other words, Cj

provides a certain regularization of the non-smooth decision between each slave node
being currently active or inactive, yet without introducing any additional approxi-
mation. Thus, the resulting PDASS contains derivative information on the sets them-
selves and allows for the application of aNewton–Raphson type solution scheme also
for the nonlinearity stemming from contact. Consequently, all sources of nonlinear-
ities, i.e. finite deformations, nonlinear material behavior and contact itself, can be
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Fig. 9 Exemplary nodal
NCP function Cj (d,λ) as a
function of the nodal
weighted gap (g̃n)j and the
normal part of the nodal
Lagrange multiplier (λn)j for
a complementarity parameter
cn = 1. The equivalence
with the KKT conditions is
indicated in red color.
Reprinted with permission
from Popp et al. (2009), c©
2009 John Wiley & Sons,
Ltd.

Cj(d, λ) = 0

(g̃n)j

(λn)j
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treatedwithin one single iterative scheme.WhileCj is a continuous function, it is non-
smooth and has no uniquely defined derivative at the positions (λn)j − cn(g̃n)j = 0.
Yet, it is well-known from mathematical literature on constrained optimization that
the max-function can be classified as so-called semi-smooth function, and therefore
a semi-smooth (or generalized) Newton method can still be applied. The interested
reader is referred toHintermüller et al. (2002) andQi andSun (1993) formore detailed
information on semi-smoothNewtonmethods, for example including a concise proof
of their superlinear local convergence behavior. The actual linearization of the NCP
function in (128) is based on the concept of generalized derivatives (e.g. the general-
ized derivative of the max-function) and has been presented in the author’s original
work in Popp et al. (2009, 2010) alongwith the remaining parts of the global solution
algorithm.

It should be pointed out that the complementarity parameter cn represents a purely
algorithmic parameter. Although quite some similarities appear at first sight, cn is
in stark contrast to a penalty parameter, because it does not influence the accuracy
of results. Instead, the weak non-penetration condition in (126) will be satisfied
exactly, as can be expected from a Lagrange multiplier method. The choice of cn

only improves or deteriorates convergence of the resulting semi-smooth Newton
method. In Hüeber and Wohlmuth (2005), cn has been suggested to be chosen at the
order of Young’s modulus E of the contacting bodies to obtain optimal convergence.
Numerical investigations for 2D and 3D mortar contact in Popp et al. (2009, 2010),
though, have shown very little influence on semi-smooth Newton convergence along
a very broad spectrum of values for cn. Even for relatively large step sizes and fine



State-of-the-Art Computational Methods for Finite … 47

contacting meshes, the correct active set is usually found after only a few Newton
steps. Once the sets remain constant, of course, quadratic convergence is obtained
due to the underlying consistent linearization.

Examining the NCP function for frictionless contact in (128) in more detail
allows for an interesting and important observation: there exists a certain similar-
ity between the proposed PDASS with its algorithmic realization as semi-smooth
Newton method and the classical Augmented Lagrange method, see also the seminal
paper by Alart and Curnier (1991) in this context. Simply speaking, the Augmented
Lagrange approach as discussed in Alart and Curnier (1991) aims at a regularized
variational formulation, while the PDASS and NCP function concept applies at a
later stage with a regularized constraint enforcement. Again, no detailed derivation
of the Coulomb friction case is given here, but the interested reader is instead referred
to Hüeber et al. (2008), Gitterle et al. (2010), Gitterle (2012) and Wohlmuth (2011)
for all details on the semi-smooth Newton approach for frictional contact problems.

6.5 Solution Methods

Again, the final system consists of ndof + nco nonlinear discrete algebraic equa-
tions,where thenumber of constraints isnco = ndim · m(1).While standard (smooth)
Newton–Rapshon methods were the method of choice for mesh tying problems
in Sect. 5.5, the active set strategies now require a semi-smooth Newton approach
as discussed in the last paragraph. Nevertheless, for frictionless contact this non-
smoothness solely affects the contact constraints in normal direction in (123) or to
be more precise their reformulation as NCP function in (128). All remaining parts
of the nonlinear system, i.e. both the discrete equilibrium of forces in (122) and the
frictionless sliding conditions in (124) still show a smooth behavior.

As explained in Sect. 4.4, the Newton–Raphson method is based on a subsequent
linearization of the residual, here defined by the discrete balance of linear momentum
in (122) and the discrete contact constraints in (124) and (128). Each nonlinear
solution step (iteration index i) then consists of solving the resulting linearized system
of equations and applying an incremental update of the unknown displacements
dn+1 and Lagrange multipliers λn+1 until a user-defined convergence criterion is
met. Examining the residual in (122) in more detail, an important difference to the
mesh tying case becomes apparent: the contact operator Bco(d) defined in (119),
and thus the contact forces fco(d,λ), depend nonlinearly on the displacements and
yield additional contact stiffness blocks when being linearized, i.e.

[
Keffdyn(d

i
n+1) + (1 − αf)Kco(d

i
n+1,λ

i
n+1)

]
�di+1

n+1+
+(1 − αf)Bco(d

i
n+1)λ

i+1
n+1 = −reffdyn(d

i
n+1) − αfBco(dn)λn. (129)
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Herein, the contact stiffness Kco is defined as

Kco(d
i
n+1,λ

i
n+1) = ∂(Bco(dn+1)λn+1)

∂dn+1

∣∣∣∣
i

. (130)

Moreover, it should be pointed out that contact-related quantities from the last con-
verged time step n appear on the right-hand side of (129) due to the employed
generalized-α time integration in combination with a trapezoidal rule interpolation
of the contact forces. Similar to the mesh tying case, the interface forces are still
linear with respect to the discrete Lagrange multipliers. Consequently, it is possible
to solve directly for λi+1

n+1 in each iteration step and no incremental formulation is
needed.

Repeatedly performing semi-smooth Newton steps (iteration index i), each to be
solved for the primal-dual pair of discrete variables (�di+1

n+1,λ
i+1
n+1), yields the fol-

lowing solution algorithm within the time step [tn, tn+1]:

Algorithm 1

1. Set i = 0 and initialize the solution (d0
n+1,λ

0
n+1)

2. Initialize A0
n+1 and I0

n+1 such that A0
n+1 ∪ I0

n+1 = S
3. Find the primal-dual pair (�di+1

n+1,λ
i+1
n+1) by solving

K̃effdyn,co�di+1
n+1 + (1 − αf)Bco(d

i
n+1)λ

i+1
n+1 = −r̃effdyn,co, (131)

(λj)
i+1
n+1 = 0 ∀ j ∈ I i

n+1, (132)

�((g̃n)j)
i
n+1 + ((g̃n)j)

i
n+1 = 0 ∀ j ∈ Ai

n+1, (133)

�(τ
ξ
j )

i
n+1(λj)

i
n+1 + (τ

ξ
j )

i
n+1(λj)

i+1
n+1 = 0 ∀ j ∈ S, (134)

�(τ
η
j )

i
n+1(λj)

i
n+1 + (τ

η
j )

i
n+1(lj)

i+1
n+1 = 0 ∀ j ∈ S. (135)

4. Update di+1
n+1 = di

n+1 + �di+1
n+1

5. Set Ai+1
n+1 and I i+1

n+1 to

I i+1
n+1 := {

j ∈ S | ((λn)j)
i+1
n+1 − cn((g̃n)j)

i+1
n+1 ≥ 0

}
,

Ai+1
n+1 := {

j ∈ S | ((λn)j)
i+1
n+1 − cn((g̃n)j)

i+1
n+1 < 0

}
. (136)

6. If Ai+1
n+1 = Ai

n+1, I i+1
n+1 = I i

n+1 and ‖rtot‖ ≤ εr, then stop,
else set i := i + 1 and go to step (3).

Herein, the following abbreviations have been introduced for notational simplicity:

K̃effdyn,co = Keffdyn(d
i
n+1) + (1 − αf)Kco(d

i
n+1,λ

i
n+1), (137)

r̃effdyn,co = reffdyn(d
i
n+1) + αfBco(dn)λn. (138)
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Moreover, the variable εr denotes an absolute Newton convergence tolerance for the
L2-norm of the total residual vector rtot, which comprises the force residual and the
residual of the contact constraints (132)–(135). All types of nonlinearities including
the search for the correct active set are resolved within one single nonlinear solution
scheme, with the sets I i

n+1 andAi
n+1 being updated after each semi-smooth Newton

step.
The convergence behavior of the resulting solution scheme is very good. As long

as the correct active set is not found, and thus the contact typical non-smoothness is
not yet resolved, locally superlinear convergence rates are obtained, see e.g. Hinter-
müller et al. (2002). Once the sets are fixed, the nonlinear iteration scheme reduces
to a standard (smooth) Newton–Raphson method, and thus even locally quadratic
convergence rates are achieved in the limit owing to the underlying consistent lin-
earization. While not discussed here, similar observations can also be made for fric-
tional contact according to Coulomb’s law and the associated search for the correct
stick and slip sets, see e.g. Gitterle et al. (2010), Gitterle (2012) and Hüeber et al.
(2008).

In this section, an algebraic representation of the linearized system to be solved
within each semi-smoothNewton step is derived and globally assembledmatrix nota-
tions for the directional derivatives in (131)–(135) are provided. With the assembly
procedure itself being rather straightforward in finite element methods, only the final
results are given here. The final system to be solvedwithin each semi-smoothNewton
step can be expressed as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̃NN K̃NM K̃NI K̃NA 0 0
K̃MN K̃MM K̃MI K̃MA −aMT

I −aMT
A

K̃IN K̃IM K̃II K̃IA aDT
II aDT

IA
K̃AN K̃AM K̃AI K̃AA aDT

AI aDT
AA

0 0 0 0 II 0
0 NM NI NA 0 0
0 0 FI FA 0 TA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�dn+1,N
�dn+1,M
�dn+1,I
�dn+1,A
λn+1,I
λn+1,A

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̃N
r̃M
r̃I
r̃A
0
g̃A
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (139)

Herein, the scalar a := 1 − αf abbreviates the weighting factor introduced by
generalized-α time integration. Moreover, the nonlinear iteration index i as well
as the subscript ·effdyn,co of the residual vector r̃effdyn,co given in (137) and the effec-
tive stiffness matrix K̃effdyn,co defined in (138) have been omitted for the ease of
notation.

Again, as has been the case for mesh tying, the dual Lagrange multiplier approach
can be beneficially exploited to simplify the final linear system of equations. In a first
step, the Lagrange multipliers λn+1,I associated with inactive slave nodes are easily
condensed by simply extracting the identity λn+1,I = 0 from the fifth row of (139).
This basically removes the fifth row and the fifth column of the original saddle point
system.More importantly, based on the fourth row of (139), the Lagrangemultipliers
λn+1,A associated with active slave nodes can be expressed as
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λn+1,A = 1

a
D−T

AA
(
−r̃A − K̃AN�dn+1,N − K̃AM�dn+1,M

−K̃AI�dn+1,I − K̃AA�dn+1,A
)

. (140)

As will be discussed in Sect. 7.3, the active part of the mortar projection operator
P = D−1M can be defined as

PA = D−1
AAMA. (141)

Inserting (140) into the second and seventh row of (139) yields

⎡
⎢⎢⎢⎢⎢⎣

K̃NN K̃NM K̃NI K̃NA
K̃MN + PT

AK̃AN K̃MM + PT
AK̃AM K̃MI + PT

AK̃AI K̃MA + PT
AK̃AA

K̃IN K̃IM K̃II K̃IA
0 NM NI NA

a TAD−1
AAK̃AN a TAD−1

AAK̃AM a TAD−1
AAK̃AI − FI a TAD−1

AAK̃AA − FA

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎣

�dn+1,N
�dn+1,M
�dn+1,I
�dn+1,A

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎣

r̃N
r̃M + PT

Ar̃A
r̃I
g̃A

a TAD−1
AAr̃A

⎤
⎥⎥⎥⎥⎦ . (142)

While inevitable for standard Lagrange multiplier interpolation, the undesirable sad-
dle point structure of (139) with its typical zero diagonal block has successfully
been removed. Finally, it should be mentioned that the discrete Lagrange multipli-
ers, and thus their physical interpretation as contact tractions, are recovered from
the displacement solution in a variationally consistent way. This recovery can be
performed as a pure postprocessing step at the end of each time interval based on the
relation given in (140).

6.6 Numerical Example

The numerical example presented in this section demonstrates the applicability of the
proposed mortar contact formulations, including the parallel search algorithms and
dynamic load balancing strategies to be described in Sect. 7.2, for large-scale sim-
ulations on parallel high-performance computing (HPC) systems. The investigated
setup, illustrated in Fig. 10, consists of two thin-walled tori with a Neo–Hookean
material model (E = 3000, ν = 0.3, ρ0 = 0.1). The major and minor radius of the
two hollow tori is 76 and 24, respectively, and the wall thickness is 4.5. The lower
torus lies in the xy-plane and the upper torus is rotated around the y-axis by 45 degrees.
Both the chosen geometry and loading conditions are inspired by a very similar
analysis presented in Yang and Laursen (2008) to evaluate contact search strate-
gies. Transient structural dynamics using a generalized-α time integration scheme
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Fig. 10 Two torus impact –
stages of deformation

are considered for the solution within 500 time steps and a constant time step size
�t = 0.02. As can be seen from the exemplary snapshots of deformation in Fig. 10,
the lower torus is first accelerated towards the upper torus by a body force and then
a very general oblique impact situation with large structural deformations occurs.

The finite element mesh for this 3D impact model involves 4,255,360 first-order
hexahedral (hex8) elements and 13,994,880 degrees of freedom in total, with both
slave andmaster surfaces consisting of 204,800 contact elements each. The numerical
solution is performed in parallel on 120 processors within an overall simulation time
of approximately 48 h.

Figures11 and 12 further illustrate the complexity of the considered simulation
model with severe changes of the active contact set and an extremely fine mesh reso-
lution. While there always remains room for improvements of the parallel efficiency
(e.g. with respect to efficient linear solvers, see Sect. 9), the results nevertheless strik-
ingly emphasize that the implementation devised within this section is already very
mature in this regard.



52 A. Popp

Fig. 11 Two torus impact – exemplary cut through the contact zone at time t = 4 and visualization
of the finite element mesh

7 Algorithmic Aspects and Extensions

Going beyond the fundamental concepts of mortar finite element methods for mesh
tying and unilateral contact (including friction), the following paragraphs shall give
an overviewof certain important algorithmic aspects that are of utmost importance for
the acurate and efficient implementation of such mortar methods within a nonlinear
finite element code framework. Specifically, the topics of suitable discrete Lagrange
multiplier bases, parallel and high performance computing, numerical integration as
well as isogeometric analysis will be highlighted. Further details on each of these
topics can be found in the author’s original contributions (Popp et al. 2012;Wohlmuth
et al. 2012; Popp et al. 2013; Popp andWall 2014; Farah et al. 2015; Seitz et al. 2016).

7.1 Discrete Lagrange Multipliers

The discrete Lagrange multiplier space Mh and associated shape functions �j,
j = 1, . . . ,m(1), on the slave side of the mesh tying interface were already introduced
in Sect. 5.3, although not specified in detail. Yet, this choice of the discrete Lagrange
multiplier space is crucial for both the mathematical properties and the numerical
efficiency of the resulting mortar approach. There exists a vast amount of literature
discussing all relevant characteristics associated with the choice ofMh, such as inf-
sup stability of the underlying mixed formulation and optimal a priori error bounds,
see e.g. Bernardi et al. (1994), Ben Belgacem (1999), Seshaiyer and Suri (2000)
and Wohlmuth (2000). With stability investigations and a priori error estimates not
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Fig. 12 Two torus impact –
active contact set lower torus
(1=active)

being in the focus of interest of this contribution, the following considerations rely
on the fact that there exists a well-established framework of proofs and rigorous
mathematical analyses, which guarantees the applicability of all discrete Lagrange
multiplier spaces discussed here tomortarmesh tying problems. For a comprehensive
overview, the reader is referred to Wohlmuth (2001) and the references therein.

Throughout this chapter, two different families of discrete Lagrange multipliers,
namely standard and so-called dual Lagrange multipliers, will be distinguished.
Standard Lagrange multipliers represent the classical approach for mortar methods
(cf. Ben Belgacem 1999; Seshaiyer and Suri 2000) and are usually taken from the
finite dimensional subset W (1)

h ⊂ W (1) on the slave side of the interface, where
W (1) is the trace space of V (1), as explained in Sect. 5.2. Thus, standard mortar
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methods typically lead to identical shape functions for Lagrange multiplier and slave
displacement interpolation, i.e. �j = N (1)

j .
In contrast, the dual approach is motivated by the observation that the Lagrange

multipliers physically represent fluxes (tractions) on the mesh tying interface in
the continuous setting. This duality argument is then reflected by constructing dual
Lagrange multiplier shape functions based on a so-called biorthogonality condition
with the displacements inW (1)

h , see e.g.Wohlmuth (2000).While they are, in general,
not continuous and cannot be interpreted as a trace of conforming finite elements,
the biorthogonality condition assures that the Lagrange multiplier shape functions
�j are again well-defined and satisfy all required approximation properties. One
crucial advantage of the dual approach lies in the fact that it heavily facilitates the
treatment of typical mortar coupling conditions at the interface, while at the same
time preserving the mathematical optimality of the method. Going back to (85), the
discrete mesh tying condition can alternatively be expressed as

dS = D−1MdM := PdM , (143)

where P = D−1M represents the discrete interface coupling operator. As will be
demonstrated later on for both mesh tying and unilateral contact problems, dual
Lagrange multipliers avoid the necessity of solving a mass matrix type of system
when evaluating (143), but localize the coupling conditions instead. Algebraically,
this advantageous property of dual Lagrange multipliers can be observed by the
mortar matrix D in (82) reducing to a diagonal matrix. This allows for very efficient
condensation procedures of the discrete Lagrange multiplier degrees of freedom,
which completely remove the undesirable saddle point structure of the underlying
mesh tying and later unilateral contact systems, see Sects. 5.5 and 6.5.

While the construction of standard Lagrange multiplier bases is absolutely
straightforward, the construction of dual Lagrangemultiplier bases shall exemplarily
be highlighted here for the simple first-order interpolation case in 2D. Details on how
to define dual Lagrange multiplier shape functions �j using the so-called biorthog-
onality relationship with the standard displacement shape functions N (1)

k have first
been presented in Scott and Zhang (1990) andWohlmuth (2000). A common notation
of the biorthogonality condition is

∫
�

(1)
c,h

�j N
(1)
k dA0 = δjk

∫
�

(1)
c,h

N (1)
k dA0, j, k = 1, . . . ,m(1). (144)

Herein, δjk is the Kronecker delta, and the most common choice m(1) = n(1) is
assumed. For practical reasons, the biorthogonality condition is typically applied
locally on each slave element e, yielding

∫
e
�j N

(1)
k de = δjk

∫
e
N (1)
k de, j, k = 1, . . . ,m(1)

e , (145)
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where m(1)
e represents the number of Lagrange multiplier nodes of the considered

slave element. Taking into account the assumption that all nodes also carry discrete
Lagrange multiplier degrees of freedom, m(1)

e is simply the number of nodes of the
current slave facet. Comparing (144) and (82) also clearly reveals why dual shape
functions reduce the mortar matrix D to a diagonal matrix. The dual shape functions
resulting from (144), or rather from the elementwise version in (145), have the same
polynomial order as the employed standard shape functions, i.e. pλ = p. Moreover,
it can easily be shown that the biorthogonality condition guarantees a partition of
unity property, i.e.

∑
j �j = 1, j = 1, . . . ,m(1)

e , see Flemisch and Wohlmuth (2007)
for a proof.

As a simple example, the first-order finite element interpolation case in 2D shall
be considered in the following. Obviously, this case leads to line2 shaped mortar
interface segments. With the Jacobian of line2 segments being constant, the dual
Lagrangemultiplier shape functions determined by (145) are independent of element
distortion, and can be defined a priori instead:

�1(ξ) = 1

2
(1 − 3ξ), �2(ξ) = 1

2
(1 + 3ξ). (146)

Figure13 illustrates these dual shape functions along with their standard counter-
parts, i.e. the first-order slave displacement shape functions N (1)

j . In contrast to the
corresponding standard Lagrange multiplier case, dual Lagrange multiplier shape
functions can no longer be positive everywhere in order to fulfill the biorthogonal-
ity condition. However, integral positivity is still guaranteed. Moreover, the above
defined �j are indeed locally linear polynomials and satisfy a partition of unity
property, but nonetheless they represent discontinuous functions.

In general, dual shape functions depend on the actual distortion of the individual
underlying finite element, and cannot be defined a priori for non-constant slave
element Jacobian determinants. In that regard, the first-order case in 2D illustrated
abovewas a special case. Instead, a local linearmassmatrix systemof sizem(1)

e × m(1)
e

must be solved on each slave element. Details on these quite intricate constructions
can for example be found in Wohlmuth (2001), Flemisch and Wohlmuth (2007),
Lamichhane et al. (2005), Lamichhane andWohlmuth (2007),Wohlmuth et al. (2012)
and Popp et al. (2012).

N
(1)
2N

(1)
11

0

Φ1 Φ2

−1

0

2

Fig. 13 Slave side displacement shape functions N (1)
j (left) and dual Lagrange multiplier shape

functions �j (right) for a line2 element
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7.2 Parallel Computing

The mortar-based mesh tying and contact algorithms developed throughout this con-
tribution are designed for the use on large interconnected computer systems (clusters)
with many central processing units (CPUs) and a distributed main memory. Being
able to efficiently run large simulations in parallel requires strategies for the par-
titioning and parallel distribution of the problem data, i.e. finite element meshes
(consisting of nodes and elements) as well as global vectors and matrices, into sev-
eral independent processes, each assigned to a corresponding processor. For the sake
of simplicity, the term processor refers to an independent processing unit through-
out this chapter without implying any specific hardware configuration (such as a
single-core or multi-core architecture). Within the finite element based multiphyiscs
research code BACI that has been co-developed by the author at the Institute for
Computational Mechanics of TUM, this so-called domain (or data) decomposition
functionality is provided by the third-party library ParMETIS, see e.g. Karypis and
Kumar (1998).

An example of such decompositions is visualized in Fig. 14 for a simple partition-
ing including only two processors, see also Gee (2004). It can be seen that each node
in themesh is uniquely assigned to one specific processor, and the same holds true for
the elements. In addition, some nodes and elements at the transition between differ-
ent processors must be stored redundantly within all adjacent processors. Therefore,

partition of processor 1

partition of processor 2

domain and mesh
owned nodes

non−owned nodes

elements integrated

elements integrated

by processor 2

by processor 1
elements integrated

by both processors

Fig. 14 An example of overlapping domain decomposition and parallel assembly involving two
independent processors
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this type of partitioning is commonly denoted as overlapping decomposition. For the
methods developed in this chapter, it is sufficient to consider only the most straight-
forward case of minimal overlap between the individual partitions, i.e. an overlap of
one layer of elements or nodes, respectively. Obviously, this concept of overlapping
decomposition fits quite naturally to the typical tasks within a finite element pro-
gram: first, each processor performs an elementwise integration of its own partition
of the computational domain including the (relatively few) elements at the inter-
processor boundaries. Then, the resulting quantities (e.g. local element load vectors
and stiffness matrices) are assembled into the respective FE nodes of each processor.
Thus, overlapping domain decomposition as described above provides a very elegant
way of processing finite element integration and assembly, which is completely free
of communication due to the distributed storage of the resulting global vector and
matrix objects. While this rough introduction is by far not complete or rigorous from
the viewpoint of parallel software design, it is sufficient for the following ideas on
redistribution and load balancing to be comprehensible. For further details on the
C++ based implementation of parallel (i.e. distributed) matrix and vector objects as
well as the associated linear algebra, the interested reader is exemplarily referred
to the documentation of open-source libraries of the Trilinos Project conducted by
Sandia National Laboratories Heroux (2005).

Returning to the efficient parallel treatment of mortar methods and the derived
mesh tying and contact algorithms, an exemplary mesh tying problem setup con-
sisting of two cubic bodies as depicted in Fig. 15 is considered now. In total, the
FE model contains 681,476 volume elements (with 2,136,177 displacement degrees
of freedom) and 15,041 contact interface elements, which are distributed in parallel
among several processors. As explained in the last paragraph, this partitioning gener-
ated via the ParMETIS library is in a sense optimal for the integration and assembly
of the individual volume finite elements of the two bodies, i.e. the corresponding
workload is equally distributed among all processors. For both tied and unilateral
contact interaction, however, additional (but conceptually similar) tasks have to be
performed locally at the interface: as will be explained in detail in Sect. 7.3, comput-
ing the interface contributions to the overall discrete problem formulation involves
the mortar segmentation process, integration and assembly of the mortar matrices D
andM, to name only the most important tasks. Especially in three dimensions and for
large interfaces, these computations may become quite time-consuming, so that they
actually carry considerable weight as compared to the remaining time needed for
FE evaluation and linear solvers. In contrast to NTS formulations, the high approxi-
mation quality of mortar methods comes at a price here. Unfortunately, the parallel
distribution of the mortar interface itself is not optimal at all, which can easily be
seen in Fig. 15. In this context, it is important to commemorate the slave-master con-
cept typically used for implementing contact algorithms, where the interface-related
workload is completely assigned to the slave side (or non-mortar side) whereas the
master side (or mortar side) is passive. Thus, in the given example, the slave side of
the interface (and thus the entire workload related to mesh tying) is associated with
only 4 out of 16 processors.
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Fig. 15 Parallel redistribution and load balancing – initial partitioning for exemplary mesh tying
problem setup using 32 processors (left) and strong scaling diagram (right)

The right hand side of Fig. 15 illustrates typical results for the parallel efficiency
of the presented mortar algorithms in a so-called strong scaling diagram. Therein,
the computation time for numerical integration and assembly of all interface-related
quantities T is plotted against the total number of processors nproc with logarithmic
scales applied to both axes. Perfect scalability of the examined numerical algorithm
is represented by a straight line with a negative slope of −1, thus representing the
evident relation

T = c

nproc
with c > 0. (147)

It can clearly be seen that no perfect scalability is achieved with the presented
algorithms without load balancing (blue curve in Fig. 15). This is due to the non-
optimal distribution of the slave surface among the participating processors as already
described above. The results clearly motivate the development of an efficient paral-
lel redistribution and load balancing strategy for mortar finite element methods. The
approach proposed in the following is based on three steps, where the first one is
of fundamental importance and is therefore needed for both mesh tying and contact
applications. In contrast, the second and third step are purely contact-specific.

The rather simple basic idea of the first step is an independent parallel distribu-
tion of the finite elements in the domain and the mortar elements at the mesh tying
or contact interface in order to achieve optimal parallel scalability of the compu-
tational tasks associated with both, i.e. integration and assembly in �(1) and �(2)

as well as integration and assembly on γ(1)
c and γ(2)

c . Again using ParMETIS, this
redistribution of the interface elements can readily be performed during problem
initialization at t = 0. Results for the test model introduced above are also visualized
(green curve in Fig. 15), thus demonstrating that this simple modification already
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allows for excellent parallel scalability within a wide range concerning the number
of processors nproc. However, dependent on the considered problem size, parallel
redistribution only makes sense up to a certain nproc. It is quite natural that such a
limit exists, because there are of course some computational costs associated with the
proposed redistribution procedure itself. If too many processors are used in relation
to the problem size, these costs (mainly due to communication) become dominant
and redistribution is no longer profitable beyond this point.

As already mentioned, this strategy can be further refined for unilateral contact
applications. In contrast to mesh tying, contact interfaces are characterized by two
additional complexities: the actual contact zone is not known a priori and it may
constantly and significantly vary over time. Thus, in a second and third step, the
proposed redistribution strategy is adapted such that it accommodates these addi-
tional complexities. Concretely, it can be seen from the Hertzian contact example in
Fig. 16 that parallel redistribution must be limited to the actual contact area instead
of the potential contact area, because the entire computational effort of numerical
integration and assembly is connected with the former. Moreover, whenever finite
deformations and large sliding motions occur, the described redistribution needs to
be performed dynamically, i.e. over and over again. Such a dynamic load balancing

Fig. 16 Motivation for parallel redistribution exemplified with a Hertzian contact example – the
active contact region (bottom right) is relatively small as comparedwith the potential contact surface
(i.e. thewhole hemisphere).Without redistribution only 6 out of 16 processorswould carry the entire
workload associated with contact evaluation (bottom left)
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Fig. 17 Nodally averaged
normal vector nk at a slave
node k with four adjacent
slave facets e1 to e4. The
element normal vectors n(e)

k
are exemplified for elements
e2 and e4. Reprinted with
permission from Popp et al.
(2010), c© 2010 John Wiley
& Sons, Ltd.

k e2
e3

e1 Γ(1)
c,he4

nk

n(4)k n(2)
k

strategy is then typically triggered by a suitable measure for the workload of each
individual processor. The parallel balance of the workload among all processors is
monitored and a simple criterion whether to apply dynamic load balancing within
the current time step or not can be formulated as

IF

(
Tmax

Tmin
> r

)
� redistribute. (148)

Herein, the minimum and maximum computation times of one individual processor
in the last time step are denoted as Tmin and Tmax, respectively. The parameter
r > 1 represents a user-defined tolerance. For example, choosing r = 1.2 implies
that at most 20% unbalance of the parallel workload distribution are tolerated. Of
course, the rather simple condition in (148) can easily be extended to incorporate
more sophisticated criteria for dynamic load balancing. However, already the short
overview given here shows that redistribution and load balancing provide an efficient
tool for increased parallel efficiency of mortar algorithms for mesh tying and contact
simulations. Corresponding numerical examples (see e.g. Section6.6) demonstrate
that the proposed approach is actually indispensable when considering large-scale
applications.

7.3 Numerical Integration

A very efficient, yet at the same time highly accurate coupling algorithm, which per-
forms integration not on the slave surface �

(1)
c,h itself, but on its geometrical approxi-

mation with piecewise flat segments, has been proposed in Puso (2004) and will also
be employed here. For further details and an in-depth mathematical analysis of this
algorithm, the reader is also referred to Puso and Laursen (2004a, b) and Dickopf
and Krause (2009). This scheme is referred to as segment-based integration scheme
in the following.

In Fig. 18, the main steps of the 3D numerical integration algorithm for the mortar
integrals in D and M are illustrated. In the following, the algorithm is outlined for
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proj. master
proj. slave

master

slave

auxiliary plane auxiliary plane

auxiliary plane auxiliary plane

x(1)0 x(1)0

n0 n0

clip polygon integration cell

Fig. 18 Main steps of 3D mortar coupling of one slave and master element pair. Construct an
auxiliary plane (top left), project slave and master nodes into the auxiliary plane (top right), perform
polygon clipping (bottom left), divide clip polygon into triangular integration cells and perform
Gauss integration (bottom right)

one pair of slave and master elements (s, m), which are close to each other and thus
form an arbitrary overlap.
Algorithm 2

1. Construct an auxiliary plane for numerical integration based on the slave element
center x(1)

0 and the corresponding unit normal vector n0.
2. Project all nes slave element nodes x(1)

k , k = 1, . . . , nes onto the auxiliary plane

along n0 to obtain the projected slave nodes x̃(1)
k . Steps 1 and 2 can also be

interpreted as a geometrical approximation of the slave surface removing element
warping.

3. Project all nem master element nodes x(2)
l , l = 1, . . . , nem onto the auxiliary plane

along n0 to obtain the projected master nodes x̃(2)
l .

4. Find the clip polygon of the projected slave and master elements in the auxiliary
plane by applying a clipping algorithm, see e.g. Foley (1997).

5. Establish ncell triangular integration cells by applying Delaunay triangulation to
the clip polygon. Each integration cell consists of three vertices x̃cell

v , v = 1, 2, 3
and is interpolated by standard triangular shape functions on the well-known
integration cell parameter space

η̃ =
{
(ξ̃, η̃)|ξ̃ ≥ 0, η̃ ≥ 0, ξ̃ + η̃ ≤ 1

}
.

6. Define ngp Gauss integration points with coordinates η̃g, g = 1, . . . , ngp on each
cell and project back along n0 to slave and master elements to obtain ξ(1)(η̃g)

and ξ(2)(η̃g).
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7. Perform Gauss integration of Djk(s,m) and Mjl(s,m), j, k = 1, . . . , nes and
l = 1, . . . , nem on all integration cells

Djk(s,m) =
ncell∑
c=1

⎛
⎝ ngp∑

g=1

wg �
(1)
j (ξ(1)(η̃g))N

(1)
k (ξ(1)(η̃g)) Jc

⎞
⎠ , (149)

Mjl(s,m) =
ncell∑
c=1

⎛
⎝ ngp∑

g=1

wg �
(1)
j (ξ(1)(η̃g))N

(2)
l (ξ(2)(η̃g)) Jc

⎞
⎠ . (150)

where Jc, c = 1, . . . , ncell is the integration cell Jacobian determinant.

Expressions (149) and (150) represent contributions to Djk and Mjl given by one
slave and master element pair (s, m). Total quantities are obtained by summing up
all slave and master element pair contributions. As pointed out in Puso (2004), the
above algorithm relies on the fact that the clip polygons of all slave and master
element pairs are convex. For further explanations on prerequisites and properties
of this numerical integration procedure, the reader is referred to the original paper
by Puso (2004).

In this work, seven point integration is used, which allows to exactly integrate
polynomials of up to order five. This order of accuracy is sufficient to exactly inte-
grate (149) and (150) for tri3 surface facets and unwarped quad4 surface facets.
Typical constant stress patch tests on flat interfaces could even be satisfied with
much fewer quadrature points. However, it should be pointed out that in the case
of surface facet warping, the mapping between slave and master sides introduces
rational polynomial functions into the integrands in (149) and (150), and thus the
numerical quadrature rule can never reproduce the exact integral value in such cases.
However, numerical results including mesh refinement studies on curved mesh tying
interfaces demonstrate that the suggested choice of seven Gauss points per inte-
gration cell provides a sufficiently accurate quadrature rule. Figure19 illustrates the
generation of integration cells for 3Dmortar coupling with a more complex example.

While Algorithm 2 undoubtedly provides the highest achievable accuracy for the
numerical integration of Djk and Mjl in 3D, some computationally more efficient
alternatives have also been suggested in the literature. One prominent example is
the simplified integration algorithm proposed in Fischer and Wriggers (2005, 2006)
and later reused in De Lorenzis et al. (2011) and Tur et al. (2009), which will be
referred to as element-based integration scheme in the following. Instead of thor-
oughly sub-dividing the mesh tying or contact interface into mortar segments, the
numerical integration is simply performed element-wise in that approach, deliber-
ately ignoring kinks of the functions to be integrated. Consequently, the devised
integration schemes may indeed offer an appealing computational efficiency, but
inevitably bring about difficulties with respect to accuracy of numerical integration.
Even the exact satisfaction of a simple two-dimensional patch test, as investigated
in Fischer and Wriggers (2005), is strongly influenced by the total number of Gauss
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Fig. 19 Main steps of 3D mortar coupling for a representative mesh tying example

points chosen per slave element. An interesting improvement of this approach is
suggested in Unger et al. (2007), where adaptive refinement of the integration cells
is performed based on a hierarchical quadtree structure. Simply speaking, refinement
is only performed close to the kinks of the integrands in (149) and (150) and thus
the associated error of numerical integration can be reduced.

In contrast to the 2D case, an extension of the segmentation and integration algo-
rithm to second-order interpolation needs some additional considerations for three-
dimensional mortar mesh tying problems. As explained above, the presented method
for first-order interpolation is based on the projection of flattened surface elements.
This approach has been directly extended to quadratic finite elements in Puso et al.
(2008), and is also employed here. The basic idea in Puso et al. (2008) is to subdivide
quadratic surface elements into linearly interpolated segments as exemplarily illus-
trated in Fig. 20 for quad9 facets. Numerical integration according to Algorithm 2 is
then performed on the subsegments. As an example, consider the following mapping
between parent element and subsegment space of subsegment sub3 for the quad9
element in Fig. 20, which is given by

ξsub3(ξ(1)) =
[
2ξ(1) − 1
2η(1) − 1

]
. (151)

Similarmapping rules canalsobe readilyestablished for tri6 andquad8 surface facets.
It is important topointout that theapproximationintroducedbysubdividingmortarele-
ments only affects the integration domain itself, which no longer reflects the quadratic
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Fig. 20 Subdivision of interface elements with second-order interpolation. Exemplarily, a quad9
element is split into fourquad4 subsegments sub1–sub4, towhich the3Dmortar integrationalgorithm
is then applied nearly unchanged. Reprinted with permission from Popp et al. (2010), c© 2010 John
Wiley & Sons, Ltd.
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Fig. 21 Tori impact problem – averaged integration time per Newton step (left) and relative error of
computed displacement field (right)

finite element surfaces correctly. Yet, bymaking use of the aforementioned geometric
mappings from parent element space to subsegment space and vice versa, one is still
able to properly evaluate the higher-order shape function products in (149) and (150).

Numerical integration using the segment-based scheme and the element-based
scheme has been thoroughly compared with regard to accuracy and computational
efficiency in Farah et al. (2015). To illustrate the main conclusions that can be drawn
from such comparisons, the two tori impact example already introduced in the pre-
vious section is revisited here. Therefore, the average required integration times for
one Newton step within each time step are plotted in the left subfigure of Fig. 21. In
addition, the accuracy of the integration schemes is validated by the right subfigure of
Fig. 21, which visualizes the deviations of the relative L2-norm of the displacements
with respect to a reference solution basedon segment-based integrationwith 12Gauss
points per integration cell. Using 37 or 64 Gauss points per integration cell does not
significantly change the displacement norm compared to 12Gauss points.

For this example, the segment-based integration is testedwith 3 and 7Gauss points
per integration cell, and the element-based integrationmethod employs 4 to 64Gauss



State-of-the-Art Computational Methods for Finite … 65

points per slave element. For the segment-based integration, 3 Gauss points per inte-
gration cell is the smallest sensible number of integration points. Thus, it can be seen
thatcomparedtothesegment-based integration, theelement-based integrationmethod
has the ability to significantly reduce the number of integration points. In addition, it
is obvious that the required integration time scales linearlywith the employed number
of integration points, which iswhy all curves in Fig. 21 have a similar shape. The char-
acteristic shape of the curves depends strongly on the active set. Thus, ups and downs
of the curves occur due to time steps with a correspondingly high or low number of
nodes being in contact. From time step 190 onwards, the curves are zero-valued due to
the fact that the two tori are not in contact anymore. Interestingly, theL2-displacement
errors are only marginal and decrease with more and more integration points. Even 4
Gauss points per element are sufficient for theL2-displacement error being negligible.
However,with 4Gauss points per element, only7%of integration timeof the segment-
based integrationemploying7integrationpointsperintegrationcellarerequired.All in
all, it becomes obvious that the element-based integration scheme allows for dramatic
reductionsof thecomputationalcosts forpracticalapplications,whilestillmaintaining
a sufficient level of accuracy. Further details on this topic can be found in the author’s
original work in Farah et al. (2015).

7.4 IsogeometricAnalysis (IGA)

Robust and accurate contact discretizations for nonlinear finite element analysis have
been an active field of research in the past decade and a new class of formulations
emerged with the introduction of isogeometric analysis (IGA) (Hughes et al. 2005).
IGAis intended tobridge thegapbetweencomputer aideddesign (CAD)andfiniteele-
ment analysis (FEA)byusing the smoothnon-uniformrationalB-splines (NURBS)or
T-splines common in CAD also as a basis for the numerical analysis. The use of such
smooth basis functions has some advantages over classical Lagrange polynomials for
FEAsuchasapossiblyhigheraccuracyperdegreeof freedom(Evansetal.2009;Groß-
mannetal.2012)and,more importantly,ahigher inter-elementcontinuity.Whilefinite
elements based on Lagrange polynomials are limited to C0 inter-element continuity
independent of the polynomial order p, NURBS can be constructed with a maximum
of Cp−1 continuity. This high continuity results, amongst others, in a smooth surface
representation which makes the application to computational contact mechanics par-
ticularly appealing, which has already been anticipated in the original proposition of
IGA in Hughes et al. (2005).

As a consequence, in thepast fiveyears variousdiscretization techniqueshavebeen
developed for IGAor transferred fromfinite element based contactmechanics to IGA,
such as node-to-segment (Matzen et al. 2013),Gauss-point-to-segment (Temizer et al.
2011; De Lorenzis et al. 2011; Dimitri et al. 2014; Dimitri 2015; Lu 2011; Sauer and
De Lorenzis 2015) andmortar methods (Temizer et al. 2011; De Lorenzis et al. 2011;
Temizeretal.2012;DeLorenzisetal.2012;KimandYoun2012;Dittmannetal.2014).
We refer to the recent review in De Lorenzis et al. (2014) for a comprehensive dis-
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cussion of suchmethods, comparisons to their finite element counterparts and further
references. In addition to the mentioned methods based on an isogeometric Galerkin
approximation, the higher inter-element continuity of NURBS basis functions allows
for the use of collocation methods, see Reali and Hughes (2015) for a general intro-
duction andDeLorenzis et al. (2015), Kruse et al. (2015) for an application to compu-
tational contact mechanics. Besides the discretization technique, computational con-
tact algorithmscanbedistinguishedwith respect to theunderlying solutionprocedure.
While Gauss-point-to-segment approaches are, due to their lack of inf-sup stability
(see e.g. Temizer et al. 2011; Dimitri et al. 2014 for numerical investigations), usually
combinedwithapenaltyapproach, seeDimitri et al. (2014),Dimitri (2015),Lu(2011),
Sauer andDeLorenzis (2015), node-to-segment andmortar formulations can be com-
binedwithpenaltymethods (Temizer et al. 2011;DeLorenzis et al. 2011),Uzawa-type
algorithms (Temizer et al. 2012), Lagrange multiplier methods (Kim and Youn 2012;
Dittmann et al. 2014) or augmented Lagrange methods (De Lorenzis et al. 2012). In
contrast topenaltymethods, theothermentionedmethodsfulfill thecontactconstraints
in a discrete sense exactly. In the context of domain decomposition in IGA, optimality
and stability of standard mortar methods have only very recently been investigated in
Hesch and Betsch (2012), Apostolatos et al. (2014), Dornisch et al. (2015), Brivadis
et al. (2015),where also the constructionof dualB-spline basis functions has beenout-
lined theoretically.

In this section, the so-called dual mortar method is investigated mainly for contact
mechanics usingNURBS basis functions. In contrast to standardmortar methods, the
use of dual basis functions for theLagrangemultiplier based on themathematical con-
cept of biorthogonality enables an easy elimination of the additional Lagrange multi-
plier degrees of freedom from the global system. This condensed system is smaller in
size and no longer of saddle point type, but positive definite. A very simple and com-
monlyusedelement-wiseconstructionof thedualbasis functionscandirectlybe trans-
ferredtotheIGAcase.TheresultingLagrangemultiplierinterpolationsatisfiesdiscrete
inf-sup stability andbiorthogonality, however, the reproductionorder is limited toone.
In thedomaindecompositioncase, this results ina limitationof thespatial convergence
order toO(h3/2) in theenergynorm,whereas forunilateral contact, due to the lower reg-
ularity of the solution, optimal convergence rates are still met.

Givensomestill tobedefinedbasisfunctions�asabasisofMh anddiscretevector-
valued Lagrange multipliersλj at each control point on the potential contact surface,
the Lagrangemultiplier field on the slave side is approximated by

λ ≈ λh =
ncp∑
a=1

�aλa. (152)

While dual mortar methods are meanwhile well-established in finite elements, the
presentwork, to the author’s knowledge, is the first application of dual basis functions
in the context of IGA for both domain decomposition andfinite deformation frictional
contact.Dualbasis functionsarecharacterizedbyfulfillingabiorthogonalitycondition
(Wohlmuth 2000):
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∫
γ(1)
c,h

�aR
(1)
b dγ = δab

∫
γ(1)
c,h

R(1)
b dγ , (153)

with the Kronecker symbol δab. Different methods to construct such dual bases exist,
and we want to follow the most simple one, where the dual basis functions have the
samesupport as theirprimalcounterparts, fulfill apartitionofunityandareconstructed
via element-wise linear combinations of the primal shape functions (Flemisch and
Wohlmuth2007;Wohlmuth2001;LamichhaneandWohlmuth2007;Lamichhaneetal.
2005). On each element e one readily obtains

�j

∣∣
e = aejkR

(1)
k

∣∣
e, Ae = [aejk ] ∈ �ncpe×ncpe , (154)

with the coefficient matrix for each element

Ae = De M−1
e ,

De = [de
jk ], de

jk = δjk

∫
e
R(1)
k de,

Me = [me
jk ], me

jk =
∫
e
R(1)
j R(1)

k de, j, k = 1, . . . , ncpe.

(155)

Intheconstructionofthecoefficientmatrix,thelocalintegrationforeveryslaveelement
is only performedon that part of the element domain, forwhich a feasible projection to
themastersurfaceispossible.Thisiscrucialfortheconsistenttreatmentofpartiallypro-
jectingelements incomplexcontact scenarios, ashasbeen investigated forLagrangian
finite elements in Cichosz and Bischoff (2011) for two-dimensional mortar formula-
tionsandinPoppetal. (2013)forthegeneral three-dimensionalcase.Toproperlydetect
the integration domain and reduce the integration error to aminimum, a segmentation
process for isogeometric contact analysiswill bedescribed later on. For awell-defined
construction of dual shape functions according to (155), the primal shape functions
are required to have a non-zero integral value on the integration domain. Higher-order
Lagrange polynomials do, in general, not meet this requirement which necessitates
the use of a local basis transformation of the primal basis to obtain well defined dual
shape functions, see Popp et al. (2012),Wohlmuth et al. (2012). NURBS, on the other
hand, are positive on the entire element, such that the construction (154), (155) is well
definedwithout any furthermodifications and for any approximation order. For a two-
dimensional contact problem, i.e. a one dimensional contact boundary, an exemplary
set of primal and dual basis functions of second-order is depicted in Fig. 22.

It should be pointed out that the dual basis functions generated by (154), (155) only
guarantee a partition of unity. Consequently, the global approximation order is lim-
ited to one in the L2-norm, independent of the local approximation. Since the dual
NURBS do not posses the optimal reproduction order, optimal convergence rates as
proven in Brivadis et al. (2015) cannot be guaranteed. For dual mortar methods based
onLagrangepolynomialsoptimalitycanberecoveredbyatransformationoftheprimal
basis (Lamichhane andWohlmuth 2007) or by extending the support of the basis func-
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Fig. 22 Primal (top) and dual (bottom) basis functions for a one dimensional B-spline example. The
equations for the shape functions in the central element are given to underline the desired biorthog-
onality and partition of unity. Reprinted with permission from Seitz et al. (2016), c© 2016 Elsevier
B.V.

tions (Oswald andWohlmuth 2001). An extension of the latter approach to B-splines
is outlined in Brivadis et al. (2015), but in general still unsolved. However, for contact
problems the solution is typically inHt(�(i))3 with t < 5/2, such that a priori estimates
are already limited by the regularity of the solution. Even this simple construction of
dual shape functions meets the requirements in Wohlmuth et al. (2012) for optimal a
priori estimates for the displacements in theH 1-norm of orderO(h3/2).

Although the presented element-wise construction of dual shape functions yields
sub-optimal convergence in domain decomposition applications, they may still be
interesting for unilateral contact applications. In this case, the spatial convergence
is usually limited by the reduced regularity of the solution, such that even the sim-
ple element-wise construction gives optimal convergence in finite element analysis
(Wohlmuthetal.2012).Hence, inournumericalexamplebelow,wewant to investigate
the spatial convergence properties of the isogeometric dual mortar contact algorithm
in detail. We therefore use a two dimensional Hertzian-type contact of a cylindrical
body (radiusR) with a rigid planar surface under plane strain conditions. The two hor-
izontal upper boundaries undergo a prescribed vertical displacement. To avoid singu-
larities in the isogeometric mapping, we introduce a small inner radius (radius r), see
Fig. 23 for the geometric setting, thematerial parameters and the coarsestmesh.Again
meshes using second and third-order NURBS basis functions are used as depicted in
Fig. 23for thecoarsest level,wheredifferentBézierelementsaremarkedwithdifferent
shading. In this setup half of the elements on the potential contact surface are located
within one ninth of the circumferential length andCp−1 continuity is ensured over the
entire active contact surface. In the convergence study, uniform mesh refinement via
knot insertion is performed on each of the patches resulting in a constant local ele-



State-of-the-Art Computational Methods for Finite … 69

Fig.23 Hertziancontact-ProblemsetupandcoarsestmeshwithBézierelementsindifferentshading.
Reprinted with permission from Seitz et al. (2016), c© 2016 Elsevier B.V.

ment aspect ratio. Although only relatively small deformations are to be expected, we
use a fully nonlinear description of the continuum using nonlinear kinematics and a
Saint–Venant–Kirchhoffmaterial under plane strain assumption aswell as the nonlin-
ear contact formulation.

InTables1and2,wecomparedifferent refinement levelsandstudy theconvergence
behavior in terms of the energy norm. Since no analytical solution is available, we use
the finest mesh of level 7 with standard third-order NURBS as a numerical reference
solution. Tables1 and 2 give the error decay over six refinement levels for both a stan-
dardanddualLagrangemultiplier interpolationofsecondandthird-ordertogetherwith
the numerical convergence order in each step. In the limit, all methods converge with
the expected order ofO(h3/2) in the energy norm and also the absolute error values are
quantitatively very similar. Only the N 3 standard case gives a slightly higher order in
the last step since the next level of thismesh is chosen as the numerical reference solu-
tion. Inviewof these results, theuseofdual shapefunctions for theLagrangemultiplier
instead of primal ones does not come at the expense of a reduced accuracy but yields
equally accurate resultswhile reducing the total systemsize to the number of displace-
mentdegreesof freedomonly. Incontrast to thedomaindecompositioncaseabove, the
convergence is now limited by the regularity of the solution, such that both standard
anddual interpolationsconvergewith thesameorder.Theuseofhigher-orderNURBS,
i.e. third-order inTable2or evenhigher seemsquestionable from this viewpoint, since
no faster convergence isgained fromthehigher-order interpolationwithuniformmesh
refinement.

8 InterfaceModeling –Wear andThermomechanics

Since contact can readily be interpreted as a special type of interface problem, it seems
advisable not to isolate contact mechanics, but rather to address it in the context of a
broader class of problems denoted as computational interface mechanics. Apart from
thecomputationaltreatmentofcontactinteractionandfriction,computationalinterface
mechanics also comprises other related physical phenomena such aswear, thermome-
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Table 1 Hertzian contact - spatial convergence for second-order NURBS

Mesh h ‖uN 2

std − uref‖E O(hx) ‖uN 2

dual −
uref‖E

O(hx)

1 1 2.5817e-1 – 3.1851e-1 –

2 0.5 1.4832e-1 0.80 8.8465e-2 1.85

3 0.25 4.7978e-2 1.63 4.0948e-2 1.11

4 0.125 1.5946e-2 1.59 1.5791e-2 1.37

5 0.0625 5.7112e-3 1.48 5.5474e-3 1.51

6 0.03125 1.9859e-3 1.52 1.9624e-3 1.50

Table 2 Hertzian contact - spatial convergence for third-order NURBS

mesh h ‖uN 3

std − uref‖E O(hx) ‖uN 3

dual −
uref‖E

O(hx)

1 1 1.6407e-1 – 1.6171e-1 –

2 0.5 8.1487e-2 1.01 1.2201e-1 0.41

3 0.25 2.9319e-2 1.47 5.2129e-2 1.23

4 0.125 1.0849e-2 1.43 1.9212e-2 1.44

5 0.0625 3.9370e-3 1.46 6.8044e-3 1.50

6 0.03125 1.3038e-3 1.59 2.4698e-3 1.46

chanics and phase boundaries. Put in short terms, computational contact and interface
mechanics are concerned with the treatment of complex interface effects at different
length scales ranging fromatomisticmodels tomicro- andmeso-scalemodels and fur-
ther to classical continuum models at the macro-scale. The nature of many interface
phenomena even requires a multi-scale perspective and associated models to bridge
the spectrum of relevant length scales. Exemplarily, the following two sections shall
highlight the application of the numerical methods discussed above (i.e. in particu-
larmortar finite elementmethods) towearmodeling and thermo-mechanical interface
problems. All details on the resulting schemes can be found in the author’s original
contributions (Farah et al. 2016, 2017; Seitz et al. 2018).

8.1 WearModeling

Contact mechanics including wear is one of the main causes for subsequent failure
of machines and component damage and thus highly important for industrial applica-
tions. It is a process ofmaterial removal associatedwith frictional effects,whichmight
result in finite shape changes due to the accumulation of wear.Wear is a very complex
phenomenon, which relates a geometrical setting including external conditions with
tribologicalmaterial behavior in the contact zone, and therefore correct predictions of
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wear effects are quite difficult tomake, seeMeng and Ludema (1995). Themainwear
types from the classifications in Popov (2010) and Rabinowicz (1995) are abrasive,
adhesive corrosive and fretting wear. Nevertheless, there are many more wear types
for different materials and load cases. The formulation predominantly employed for
wear calculations is the phenomenological law by Archard (1953), which was firstly
proposed by Holm (1946). It relates the worn volume with the normal contact force,
a characteristic sliding length and a problem-specific wear parameter. Archards’s law
is also employed in this contribution as general wear description without discussing
microscopical effects of special wear types.

In general, there are two different classes of wear treatment in computational con-
tact mechanics: either only the consideration of very small amounts of wear or finite
wear resulting in significant shapechanges.Thefirst class is usually treatedby tailored
modifications of the gap function, which results in slightly overlapping bodies (Farah
etal.2016;Rodríguez-Temblequeetal.2012;Serreetal.2001;Strömberg1996).How-
ever, this contribution will focus on the second class, which treats finite wear effects.
Standard remeshing procedures are employed in various contributions to prevent bulk
elements from degeneration (McColl et al. 2004; Molinari et al. 2001; Öqvist 2001;
PõdraandAndersson1999;Paulin et al. 2008;Sfantos andAliabadi 2006).Analterna-
tive approach to guarantee propermeshquality is theArbitrary–Lagrangean–Eulerian
formulation, where the mesh movement is considered as pseudo-elasticity problem,
see Stupkiewicz (2013).Most of the solution procedures for wear evolution are based
on an explicit forward-Euler time integration scheme. Concretely, the standard con-
tact problem is evaluated and only afterwards wear is calculated as a post-processing
quantity for the last time step or even for a certain number of time steps. This incre-
mental procedure is widely employed for the finite element method (Lengiewicz and
Stupkiewicz 2012; McColl et al. 2004; Öqvist 2001; Põdra and Andersson 1999) and
for theboundary elementmethod (Rodríguez-Tembleque et al. 2012;Serre et al. 2001;
Sfantos and Aliabadi 2006, 2007). Wear algorithms based on implicit time integra-
tion schemes are predominantly available for small amounts ofwear andusually intro-
duce additional unknowns into the linearized system of equations, see Ben Dhia and
Torkhani (2011), Jourdan and Samida (2009), Strömberg (1996). Up to the authors’
knowledge, the algorithm shown in Stupkiewicz (2013) is the only contribution in the
context of finite element analysis that treatswear implicitly in a finite deformation and
finite wear regime. Yet, it is limited to quasi-steady-state contact scenarios.

Restrictions to periodic cycling and prescribed relative movement of the involved
bodies are often made in order to simplify the wear algorithm, see Argatov (2011),
ArgatovandTato (2012),Lengiewicz andStupkiewicz (2013), Páczelt et al. (2012) for
reciprocal sliding andPáczelt andMróz (2005, 2007); Stupkiewicz (2013) for general
steady-state simulations. This assumption may be valid for classical tribological test
configurations like pin-on-cylinder tests, but it is certainly not applicable to general
scenarios.

Theunderlyingcontact frameworksfor thewearalgorithmsexistingin literatureare
mostly based on node-to-segment contact formulations, see for example Lengiewicz
and Stupkiewicz (2012); Strömberg et al. (1996). Nowadays, the mortar method is
undoubtedly themostpreferredchoice for robustfiniteelementdiscretizations incom-
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putational contactmechanics. Finite deformationmortar algorithmswith andwithout
frictional effects can exemplarily be found in Popp et al. (2010), Puso and Laursen
(2004b), Puso et al. (2008), Yang et al. (2005). Still, the only wear algorithm based on
mortar finite element discretization that can be found in the literature is given in Cav-
alieri and Cardona (2013), where only small wear effects without shape changes are
considered.

Theprimaryaimofthissection,whichsummarizes theauthor’srecentoriginalwork
in Farah et al. (2017), is to simulate finite wear effects for arbitrary load paths in a
fully implicit manner. To prevent element degeneration due to the loss of material,
an Arbitrary–Lagrangean–Eulerian formulation with a nonlinear pseudo-elasticity
assumption for themeshmotion is employed.Thedeveloped implicit partitionedalgo-
rithm is based on the configurationally consistent split between a Lagrangean step,
where the finite deformation contact problem is solved and a shape evolution step,
which realizes the finite configuration change due to wear. The wear equation based
on Archard’s law is enforced in a weak sense to follow the mortar idea and wear is
already included in the Lagrangean step as an additional contribution to the gap func-
tion, which leads to an artificial penetration of the involved bodies. Within the shape
evolution step, this non-physical overlap is then removed. Additional unknowns due
to the Lagrange multiplier approach for contact and due to the wear discretization are
eliminatedbycondensationprocedureswithin theLagrangeanstep toguaranteeanon-
increased system size. Within each time step, the Lagrangean step and the shape evo-
lution step are repeated until convergence of the overall nonlinear coupled problem is
obtained.

Thenumerical exampleshownhere isadapted fromStupkiewicz (2013) tocompare
the presented implicit wear algorithmwith a monolithic steady-state wear algorithm.
Steady-stateassumptionsarevalid forperiodically repeatedcontactandfrictional slid-
ingproblemswithmanycycles, suchaspin-on-disc, reciprocatingpin-on-flat, andpin-
on-cylinder tribological tests. Usually, these problems are based on splitting the time
scale into a fast time of the finite deformation problem and a slow time for the shape
evolution due towear, see Lengiewicz and Stupkiewicz (2012), Lengiewicz and Stup-
kiewicz (2013), Stupkiewicz (2013). However, within ourwear framework,we define
astate-independentfixedslip incrementper integrationpoint to simulatea steady-state
sliding process.Concretely, the 2Dpin-on-flat example consists of a hyper-elastic pin,
which is pressed into an infinitely long rigid plane, see Fig. 24.

The pin ismoved laterally with a constant velocity of v = 1000mm
s . Consequently,

the absolute value of the integration point slip increment is given as ||uτ ,rel|| = v�t.
The simulation is performed within 5 pseudo-time steps with �t = 200 s. Friction-
less sliding is assumed, which leads to a formulation of Archard’s law in terms of the
normal contact pressure. Thewear coefficient is assumed constant in thematerial con-
figuration and defined as kw = 10−7 MPa−1. The pin is loaded at its top edge with a
normal forceF = 20 N

mm acting in negative y-direction. The strain energy function for
the hyper-elastic material model is of neo-Hookean type and given as
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Fig. 24 2D pin-on-flat problem: reference configuration with dimensions (left) and material con-
figuration with material displacements after 5 pseudo time steps (right). Reprinted with permission
from Farah et al. (2017), c© 2017 JohnWiley & Sons, Ltd.

� = μ

2
(IC − 3) − μ log(

√
IIIC) + λ

2

(
(
√
IIIC − 1)

)2
. (156)

Here, IC and IIIC are the invariants of the Cauchy–Green tensor. Furthermore, λ
andμ represent the so-calledLamé parameters, which are correlatedwith theYoung’s
modulusE and the Poisson’s ratio ν via

λ = Eν

(1 + ν)(1 − 2ν)
and μ = E

2(1 + ν)
. (157)

TheYoung’smodulus ischosenasE = 20MPaand thePoisson’s ratio isν = 0.3.This
2D simulation is based on a plane-strain assumption and volumetric locking effects
are avoided by the F-bar formulation for the employed 4-node quadrilateral elements,
seedeSouzaNetoet al. (1996).The resultingmaterial (i.e.worn) configuration isvisu-
alized in the Fig. 24. Here, the material displacements, which connect reference and
materialconfiguration,areillustrated.Itcanbeclearlyseenthatnotonlynodesattached
to the contact boundary are relocated but also inner nodes are properly adapted by our
ALEapproach.This guarantees a verygoodmeshquality in theworn configuration. In
addition, the evolution of the contact boundary is shown in Fig. 25.

Here, we compare our results with the simulation from Stupkiewicz (2013). Our
methodmatches the results fromliteratureverywell,whichdemonstrates thatourwear
algorithmcanalsobeappliedforsuchsteady-statewearsimulations.Furthernumerical
examples as well as the entire background for numerical method development can be
found in Farah et al. (2016, 2017).
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Fig. 25 Worn shape of the
pin after 5 pseudo time steps
with �t = 200 s compared to
results from Stupkiewicz
(2013). Reprinted with
permission from Farah et al.
(2017), c© 2017 JohnWiley
& Sons, Ltd.
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8.2 ThermomechanicsModeling

In many engineering applications, frictional contact, thermomechanics and elasto-
plastic material behavior come hand in hand. Just one class of typical well-known
examplesaremetal formingand impact/crashanalysis,where, athighstrain rates, ther-
mal effects need to be taken into account. The thermo-mechanical coupling appears in
several forms: firstly and most obviously, there is heat conduction across the contact
interface. Secondly, the dissipation of frictional work leads to an additional heating
at the contact interface. Thirdly, also plastic work within the structure is transformed
to heat. Vice versa, the current temperature may influence the elastic and especially
the plastic material response. All this necessitates robust and efficient solution algo-
rithms for fully coupled thermo-elasto-plastic contact problems, which has been an
active research topic over the past 25years.

Early implementations of thermo-elastic contact based on well-known node-to-
segment (NTS)contact formulations incombinationwithapenaltyconstraint enforce-
ment can be found in Johansson and Klarbring (1993), Oancea and Laursen (1997),
Wriggers andMiehe (1994), Zavarise et al. (1992), Agelet De Saracibar (1998), Pan-
tuso et al. (2000),Xing andMakinouchi (2002).Within the last decade,more sophisti-
cated variationally consistent contact discretizations based on themortarmethodhave
been developed and applied to thermo-mechanical contact in Hansen (2011), Khoei
et al. (2015), Temizer (2014), Dittmann et al. (2014), Hüeber and Wohlmuth (2009).
In addition, those algorithms satisfy the contact constraints exactly (at least in a weak
sense) by using either Lagrange multipliers or an augmented Lagrangian functional
instead of a simple penalty approach.Due to an easier implementation and other bene-
fits like symmetric operators,most of the citedworks above employ some sort of parti-
tionedsolutionschemeforsolvingthestructuralproblem(atconstant temperature)and
thermal problem (at constant displacement) sequentially. In thermo-plasticity, those
partitioned schemes based on an isothermal split are only conditionally stable (Simo
etal.1992).Onlyafewresearchershaveemployedmonolithicsolutionschemes,which
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solve for displacements and temperatures simultaneously (Zavarise et al. 1992; Pan-
tuso et al. 2000; Dittmann et al. 2014; Hüeber andWohlmuth 2009).

Numerical algorithms for finite deformation thermo-plasticity go back to the sem-
inal work by Simo et al. (1992), which is based on the isothermal radial return map-
ping algorithm presented in Simo (1988). Both partitioned and monolithic solution
approaches are discussed in Simo et al. (1992). Several extensions to this algorithm
have been presented later, e.g. amonolithic formulation in principle axes (Ibrahimbe-
govicandChorfi2002)andavariant including temperature-dependent elasticmaterial
properties (Canajija and Brnić 2004). In a different line of work, a variational formu-
lation of thermo-plasticity has been developed in Yang et al. (2006), where the rate of
plastic work converted to heat follows from a variational principle instead of being a
(constant) material parameter as in Simo et al. (1992). A comparison to experimen-
tal results is presented in Stainier andOrtiz (2010) to support this variational form.We
pointoutthatbothapproachestodeterminetheplasticdissipation,i.e.Simoetal.(1992)
andYang et al. (2006), are applicablewithin the algorithm for thermo-plasticity that is
illustratedhere.Besides thementioned radial returnmapping andvariational formula-
tions, a different numerical algorithm to isothermal plasticity at finite strains has been
developedinSeitzetal. (2015).Basedonfundamental ideasfromHagerandWohlmuth
(2009), the plastic deformation at everyquadrature point is introduced as an additional
primary variable and the plastic inequality constraints are reformulated as nonlinear
complementarity functions. This allows for a constraint violation during the nonlinear
solution procedure, i.e. in the pre-asymptotic range ofNewton’smethod,while ensur-
ing their satisfaction at convergence.As usual in computational plasticity, thematerial
constraints are enforced at eachmaterial point independently, such that the additional
unknowns can be condensed directly at quadrature point level. It could be shown in
Seitz et al. (2015) that due to this less restrictive formulation, a higher robustness can
be achieved, which allows for larger time or load steps.

The author’s recent original work in Seitz et al. (2018) aims at developing amono-
lithic solution scheme for the thermo-elasto-plastic frictional contact problem based
on a new approach.Mortar finite elementmethods with dual Lagrangemultipliers are
applied for the contact treatment using nonlinear complementarity functions to deal
withboththeinequalityconstraintsarisingfromfrictionalcontactaswellasplasticityin
a unifiedmanner. This bears novelty both for the numerical formulation of anisotropic
thermo-plasticity within the bulk material as well as for the fully nonlinear thermo-
mechanical contact formulation at the interface. Furthermore, full compatibility of
the algorithms for thermo-plasticity and thermo-mechanical contact is demonstrated.
Concerning plasticity, an extension of Seitz et al. (2015) to coupled thermo-plasticity
within a monolithic solution framework is presented. Similar to the isothermal case,
the use of Gauss-point-wise decoupled plastic deformation allows for a condensation
of the additionally introduced plastic unknowns, where now also thermo-mechanical
coupling termshave tobeaccounted for.Thenovel thermo-mechanical contact formu-
lation represents a fully nonlinear extension of Hüeber andWohlmuth (2009) includ-
ing a consistent linearization with respect to both the displacement and temperature
unknowns.Moreover, theuseofdualLagrangemultiplierswithin amortar contact for-
mulation enables the trivial condensation of the discrete contact Lagrangemultipliers
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Fig. 26 Squeezed
elasto-plastic tube – Initial
configuration and mesh

such that the final linearized system to be solved consists of displacement and tem-
perature degrees of freedom only. Our new thermo-mechanical contact formulation
is applicable for both classical finite elements based on Lagrange polynomial basis
functions as well as isogeometric analysis using NURBS basis functions, for which
an appropriate dual basis has recently been proposed in Seitz et al. (2016). Owing to
the variational basis of the mortar method, the thermo-mechanical contact patch test
on non-matching discretizations is satisfied exactly and optimal convergence rates are
achieved (Seitz et al. 2016) (Fig. 26).

While the reader is referred to Seitz et al. (2018) for all details of the formulation,
we would at least like to present a fully coupled thermo-elasto-plastic contact exam-
ple to demonstrate the robustness and efficiency of the developed algorithm. Similar
to the example in Seitz et al. (2015) and originally inspired by Hager and Wohlmuth
(2009), a squeezedmetal tubewith an inner and outer radius of 4 cm and 5 cm, respec-
tively, and a length of 40 cm is analyzed. In the middle of the tube it is squeezed by
two rigid cylindrical tools with an inner and outer of radius 4.5 cm and 5 cm, respec-
tively, and a length of 16 cm. The material properties are the ones given in Seitz et al.
(2018), with plastic isotropy, i.e. y11 = y0. Between the tools and the tube, frictional
contact with a temperature dependent friction coefficient is assumed with the initial
coefficient of frictionμ0 = 0.25, the reference temperature T0 = 293K and the dam-
age temperature Td = 1793K. The tools are initially in stress free contact and per-
form a vertical displacement of u(t) = (1 − cos( t

1 sπ)) · 17.5 cm over time. Figure27
illustrates the plastic strain and temperature distribution at different times. Due to the
symmetry of the problem, only one eighth of the entiremodel is discretizedwith about
20.000 elements, and the results are reflected for visualization purposes. First-order
hexahedral elements with an F-bar technology are used to avoid volumetric locking,
see de SouzaNeto et al. (1996) for the original isothermal formulation of this element.
In the early deformation stages, plastic deformation and therefore heat generation is
mainly located directly beneath the contact zone (see Fig. 27), whereas later the main
plastic deformation occurs at the side of the tube,where the highest peak temperatures
are reached (see Fig. 27).After contact is released, thermal conduction tends to equili-
brate the temperature inhomogeneity, see Fig. 27. To illustrate the efficient nonlinear
solutionprocedure usingNewton’smethodwith a consistent linearization, Fig. 28dis-
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Fig.27 Squeezedelasto-plastic tube–Deformedconfigurationsatdifferent times includingaccumu-
latedplastic strain and temperaturedistribution (results of aneighthmodel reflected for vizualization)

Fig. 28 Squeezed
elasto-plastic tube –
Convergence of different
residuals in Newton’s method
for t = 0.5 s
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plays the convergence behavior of different residual contributions in the time step of
maximal tool velocity (t = 0.5 s). All residuals clearly exhibit a quadratic rate of con-
vergence asymptotically, until they are at some point limited bymachine precision.
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9 SummaryandOutlook

In thiscontribution,mortarfiniteelementmethodshavebeenreviewedin thecontextof
nonlinear solidmechanics,witha special emphasisonunilateral contact and frictionas
well as more complex interface problems. As a first step, somewell-established basic
principles ofmortarmethods have exemplarily been recapitulated formesh tying (tied
contact). The concepts of both standard and dual Lagrange multiplier interpolation
were addressedwith a focus on the latter. Themost important favorable feature of dual
Lagrange multiplier techniques is the resulting localization of the occurring interface
constraints based on a biorthogonalization procedure. Algebraically, this is reflected
in the possibility to easily condense the discrete Lagrange multiplier degrees of free-
dom (DOFs) associated with the non-matching mortar interfaces from the final linear
systems of equations. Moreover, several important algorithmic aspects for an accu-
rate and efficient implementation ofmortar methods within a nonlinear finite element
code framework have been discussed, including the construction of suitable discrete
Lagrangemultiplier bases, efficient parallel algorithms for highperformance comput-
ing,accuratenumerical integrationproceduresandanextensionof themortarapproach
to isogeometric analysis using NURBS.

In many engineering applications, however, an accurate treatment of non-penet-
ration and Coulomb friction conditions at the contact interfaces is not sufficient to
draw all technically relevant conclusions. Stress analysis and lifetime prediction of
blade-to-discjoints inaircraftenginesisanillustrativeexamplefor thisstatement.Such
analyses require adetailedmodelingand simulationof themanifoldphysical phenom-
ena occurring at the contact interfaces. This possibly includes anisotropic friction, the
dependency of friction coefficients on state variables (e.g. temperature), heat trans-
mission, dissipation due to frictional sliding and surface degradation due to wear. As
an outlook towards such challenging application scenarios in interfacemechanics and
real-lifeengineering, recentextensionsofmortarfiniteelementmethodsforwearmod-
elingand thermomechanical contactmodelinghavebeen illustrated.Forallmentioned
applications,mortarmethodsprovidean important algorithmicbuildingblock inorder
toobtainmoreaccuratenumericalsolutionsthanpossibletodate,oreventogaininsight
intophenomena that havehardlybeenaccessible for computational analysis until now.
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Advanced Discretization Methods
for Contact Mechanics

Peter Wriggers

Abstract Modeling of contact problems is essential for many problems in engi-
neering in order to predict the behaviour and response of various systems. One can
think of pile driving, complex bearings, connections in Civil Engineering, of vehicle
road interaction, machines and forming processes in Mechanical Engineering and
of MEMS and electrical circuits in Electrical Engineering. All these systems need
predictions of the behaviour, durability and efficiency. Hence models are needed that
have to be solved by numerical methods due to their complexity. This contribution is
aimed at modeling of contact in solid mechanics. Due to the necessity to use numeri-
cal methods for the solution of most contact applications this paper will focus mainly
on numerical simulation models. Here especially new methodologies are considered
that are non-standard and open the possibility for more general application ranges
when compared to conventional approaches.

1 Theoretical Background for Contact Mechanics

This chapter will provide a short introduction into the theoretical background of
contact mechanics. More sophisticated and elaborate treatments may be found in
textbooks, e.g. Johnson (1958), Wriggers (2006) and Laursen (2002).

1.1 Contact Geometry

This section summarizes relations which are necessary to formulate the geometrical
contact conditions. In detail the penetration and the relative slip in the contact area
are discussed. The first condition also includes the non–penetration condition which
is used classically in contact mechanics.
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Fig. 1 Contacting
continuum bodies

We assume that two bodies which undergo large deformations can come into
contact. Let Bγ , γ = 1, 2, denote the two bodies of interest and ϕγ the associated
deformation that maps points Xγ ∈ Bγ of the reference configuration onto points
xγ = ϕγ (Xγ ) of the current configuration, see Fig. 1.

For contact a special non–penetration condition has to be formulated. Here we
denote by �c ⊂ ∂Bγ a possible contact surface of the bodies Bγ , see Fig. 1 for an
illustration of this concept. At this contact surface both bodies touch each other in
the current configuration. Hence the surface part of body B1, denoted by ϕ1(�1

c )

has the same size and shape as the surface part of body B2, denoted by ϕ2(�2
c ) in

the current configuration. The surface part ϕ1(�1
c ) is here called slave surface which

is in contact with the current master surface ϕ2(�2
c ). The latter plays the role of a

(moving) reference surface, see Fig. 2.
We parametrise the master surface in its reference and current configuration by

the convective coordinates ξ 1, ξ 2 and use ξ = {ξ 1, ξ 2} as abbreviation. Thus we
considermaterial curves in the reference and deformed configuration:X2 = ̂X2(ξ) ⊂
�2
c and x2 = x̂2t (ξ) ⊂ ϕ2

t (�
2
c ). Then the local deformation gradient of the master

surface is given by F2 := a2α ⊗ A2α based on the tangent vectors of the contact
surface a2α := x̂2t,α(ξ) and the tangent vectors at the same surface pointA2

α := ̂X2
,α(ξ)

with respect to the surface in the initial configuration.1

1Here we use the standard relations a2α · a2β = δ
β
α and A2

α · A2β = δ
β
α . Furthermore ( ),α denotes

differentiation with respect to the convective coordinate ξα .
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Fig. 2 Contact geometry, closest point projection

Penetration. As the first relevant function for the contact geometry we define a
penetration function on the current slave surface ϕ1(�1

c )

gN+ = ‖ x1 − x̂2 (ξ̄) ‖ for[ x1 − x̂2(ξ̄) ] · n̄2 < 0 (1)

Here (ξ̄) is the minimizer of the distance function for a given slave point x1

d̂1(ξ) =‖ x1 − x̂2(ξ) ‖−→ MIN , (2)

see Fig. 2 for the geometrical setup. The values (ξ̄) are obtained by writing the
necessary condition for the minimum of the distance function (2)

d

dξα
d̂1(ξ) = x1 − x̂2(ξ)

‖ x1 − x̂2(ξ) ‖ · x̂2,α(ξ) = 0 . (3)

The solution of (3) requires the orthogonality of the first and second term. Since
x̂2,α(ξ) is the tangent vector a2α the first term must denote the normal n2. Thus we
have the condition n2 · a2α = 0 which means that the current master point x̂2(ξ) is
the orthogonal projection of a given slave point x1 onto the current master surface
ϕ2(�2

c ).
Here and in the following we will denote by a bar over a quantity its evaluation

at the minimal distance point (ξ̄) which means that these values denote the solution
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point of (3). Thus n̄2 := (ā21 × ā22) / ‖ā21 × ā22‖ is the outward unit normal on the
current master surface at the master point where ā2α are tangent vectors at x̂

2(ξ̄ 1, ξ̄ 2).
The penetration function gN+, see (1), enters as a local kinematical variable the

constitutive function for the contact pressure. Contrary

[ x1 − x̂2(ξ̄) ] · n̄2 ≥ 0

represents the classical non–penetration condition for finite deformations.2

The variation of the penetration function in (1) leads with the orthogonality con-
dition n̄2 · x̂2,α(ξ̄)δξα = 0 to

δgN+ = [ η1 − η̂
2
(ξ̄) ] · n̄2 (5)

with η being the virtual displacement or test function.
Tangential Relative Velocity and Tangential Relative Slip. The tangential rel-

ative slip between two bodies is related to the change of the solution point (ξ̄) of the
minimal distance problem. Thus one can compute the time derivative of ξα from (3)

d

dt
{ [ x1 − x̂2(ξ̄) ] · ā2α } = [ v1 − v̂2(ξ̄) − ā2β

˙̄
ξβ ] · ā2α + [ x1 − x̂2(ξ̄) ] · ˙̄a2α = 0 .

(6)

With the time derivative of the tangent vector ˙̄a2α = v̂2,α(ξ̄) + x̂2,αβ(ξ̄)
˙̄

ξβ we obtain
˙̄

ξβ from the following system of equations

H̄αβ
˙̄

ξβ = R̄α (7)

with

H̄αβ = [ āαβ + gN+ b̄αβ ] , R̄α = [ v1 − v̂2(ξ̄) ] · ā2α + gN+ n̄2 · v̂2,α(ξ̄) . (8)

āαβ and b̄αβ are the first and second fundamental form of the deformed surface, well
known from differential geometry.

With the above computed time derivative of the convective coordinates the tan-
gential relative velocity function on the current slave surface ϕ1

t (�
1
c ) can be defined

by the Lie derivative of the tangential vector

2For the analysis of small deformation problems the kinematical relation (1) can be linearizedwhich
yields

	gN+ = [u1 − û2(ξ̄) ] · N̄2 + g0 . (4)

uγ represents the displacement field which is introduced in the kinematically linear case to connect
the current and the reference configuration via: xγ = Xγ + uγ . The variable g0 denotes the initial

gap between the two bodies which is given by g0 = [X1 − X̂2(ξ̄)] · N2
and the normal N̄2 = (Ā2

1 ×
Ā2
2) / ‖Ā2

1 × Ā2
2‖ is related to the reference configuration.
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Lv gT := ˙̄
ξα ā2α . (9)

Equation (9) determines per definition the evolution of the tangential slip gT which
enters as a local kinematical variable the constitutive function for the contact tangen-

tial stress, see next section. The rate ˙̄ξα in (9) at the solution point (ξ̄ 1, ξ̄ 2) has been
already computed in (7). It can be shown that (9) provides an objective measure for
the tangential slip, see e.g. Wriggers (2006).

In case of no relative movement in tangential direction (stick condition) we have
Lv gT = gT = 0.

1.2 Contact Contribution to the Variational Form

In large deformation analysis using numerical solution procedures classically the
weak form of the local equilibrium equations is used.

Within the weak form G the constraint equations which govern the contact inter-
action have to be taken into account. This can be done inmany different ways, see e.g.
Wriggers (2006). Here we will restrict ourselves to the Lagrangian multiplier and the
penalty method. The existence of an a priori unknown contact state yields additional
constraints to the continuum problem. Thus the weak form has to be extended by an
extra term GC

G =
2
∑

γ=1

⎡

⎣

∫

Bγ

1

2
S · δC dB −

∫

Bγ

ρ0 b̂ · η dB −
∫

�γ

t̂ · η d A

⎤

⎦+ GC (10)

For the continuum contribution a form that is based on the initial configuration Bγ

is used with S being the second Piola-Kirchhoff stress tensor. C = FT F is the
right Cauchy Green tensor which can be computed using the deformation gradient
F = Gradϕ. Its variation is given by δC = FT Grad η + Grad ηT Fwhereη denotes
the variation or test function, also known as δu. The applied loads are the body forces
ρ0 b̂ and the surface tractions t̂ .

For the second Piola Kirchhoff stress one has to formulate a constitutive equation
that describes the material behaviour of the solids. Here many different constitutive
equations are available for different applications such as elasticity, elasto-plasticity
and visco-elasticity to name only a few, for details and applications within the finite
element method see Wriggers (2008). In this contribution we will assume hypere-
lastic materials which lead to a nonlinear functional dependency of the second Piola
Kirchhoff stress tensor on the right Cauchy-Green tensor S = f (C).

The GC term that includes the contact constraint can be written with
δgT = δξ̄ α ā2α , see (9), as
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GC =
∫

�c

(tN δgN+ + tT α δξα) d�. (11)

GC is only valid within the active contact zone �c. It is obvious that the contribution
of contact to the weak form is split into a normal and a tangential part. The quantity
tN denotes the normal and tT α the tangential contact stress components. In case of
no penetration and stick, the contact stresses are known as Lagrangian multipliers.
These can only be computed from the general equilibrium equations and thus enter
the weak form as unknowns.

The variation of the gap and the relative tangential deformations are described by
δgN , see (5), and δξα , respectively.

The covariant components of the tangential part of the stress vector in (11) are
given by tT α = tβT āαβ where āαβ = ā2α · ā2β .

In case of a penalty formulation one can assume that linear springs replace the
normal and tangential contact stresses. This leads to a contact part of the weak form
for the penalty approach at a contact surface �c

GP
C =

∫

�C

(

εN gN+δgN+ + εT gT · δgT

)

d� . (12)

Note that the contact formulations above are only valid for the non-penetration and the
tangential stick case. Once sliding occurs the tangential stress can only be computed
from a constitutive equation which is discussed next.

1.3 Frictional Contact

In case of the tangential contact one has to distinguish between stick and slip state.
Here the slip condition is formulated analog to the yield condition in the theory of
plasticity, for details see Laursen (2002) and Wriggers (2006).

For the classical Coulomb law with constant friction coefficient μ the slip condi-
tion can be written as

f s = ||tT || − μtN |gN | ≤ 0 . (13)

If f s < 0 holds, the bodies stick together and the relative displacement matches
the elastic displacement. The tangential stress follows as

tT = εT (gT − gs
T ) . (14)

where gT is the total relative tangential movement at an incremental step and tsT is
the relative sliding. Note that the latter can be zero, if no slip has occurred during the
total deformation of the bodies.
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Frictional sliding is always linked to dissipation. Since the equilibrium state is
equivalent to a minimum of remaining power in the system, the dissipated power D
during sliding has to be maximal

D = tT · ġs
T ≥ 0 . (15)

Including the constraint f s ≤ 0 multiplied by a Lagrange parameter λ ≥ 0 this can
be written as a Lagrange functional

L = tT · ġs
T − λ f s ≥ 0 (16)

whose minimization leads to
ġs
T = λ

tT
||tT || . (17)

Equation (17) denotes the evolution equation for the plastic slip.
The solution of the set of equations which govern the tangential movement is

obtained by a radial-return algorithm. The formulation of this algorithm, see e.g.
Wriggers (2006), leads to update formulae for tangential stress and tangential gap.
It is summarized in Fig. 3 where after a predictor step either no correction occurs in
the stick case or a correction takes place in case of slip. Here the evolution of the slip
is computed within a time step 	t = tn+1 − tn using an Euler backward integration
rule. Thus the index n denotes the time at the previous step while n + 1 is related to
the current time.

Predictor step:

ttr,n+1
T = εT (gn+1

T − gs,n
T )

fs,tr = ||ttr,n+1
T ||−μ tN

stick:

fs,tr ≤ 0

gs,n+1
T = 0

tn+1
T = ttr,n+1

T

slip:

fs,tr > 0

gs,n+1
T = gs,n

T +
fs,tr

εT
ntr

tn+1
T = ttr,n+1

T − fs,tr ntr

ntr =
ttr,n+1
T

||ttr,n+1
T ||

Fig. 3 Radial-return algorithm for friction
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2 Isogeometric Contact Formulations

Isogeometric analysis is a discretization scheme which uses basis functions emanat-
ing from computer aided geometric design (CAGD), such as B-Splines, NURBS,
T-splines, subdivision surfaces, etc., instead of traditional C0-continuous Lagrange
finite element polynomials. It has been shown in numerous studies that isogeometric
analysis provides more precise and efficient geometric representations, high accu-
racy combined with robustness, simplifies mesh refinement schemes, smooth basis
functions with compact support, accurate derivatives and stresses, and the potential
to integrate CAGD and analysis processes.

In this approach smooth, compactly-supported basis functions are employed that
can improve the modeling of contact problems, especially ones in which sliding is
significant. This observation is based on the fact, that C0-continuous finite element
basis functions often create serious convergence problems in the analysis of sliding
contact due to non-smooth surface discretization. In order to alleviate these problems
various surface smoothing algorithms have been developed in the literature. The
formulations are based on either a Hermitian, Spline or Bézier interpolation that is
used to discretize themaster surface defining the normal and tangent vector field. This
leads to a C1 or even C2 continuous interpolation of the surface. Related work can
be found for two- and three dimensional discretizations of deformable solids being
in contact in Eterovic and Bathe (1991), Pietrzak and Curnier (1999), Padmanabhan
and Laursen (2001),Wriggers et al. (2001) and Krstulovic-Opara et al. (2002). These
interpolations lead in general to a more robust behaviour of the iterative solution
algorithms for contact since normal and tangent fields are continuous. However they
do not increase the order of convergence since the higher order approximations
involve only the surface but not the bulk behaviour of the solids.

Here we study contact problems with isogeometric analysis. For this we sum-
marize basic properties of NURBS. Of particular importance is that the NURBS
surface discretization will be inherited directly from the NURBS volume discretiza-
tion, thereby circumventing the need for additional surface smoothing techniques and
the difficulties associated with such approaches. The resulting discretization scheme
is applied to three-dimensional contact calculations utilizing a penalty-function reg-
ularized knot-to-surface (KTS) algorithm. However it is found that a mortar-based
KTS approach behaves better than the standard KTS approach.

The comparison studies indicate thatNURBSprovide better contact pressures than
C0-continuous Lagrange finite elements of the same order. In all cases, the NURBS
contact pressures were pointwise-positive whereas higher order C0-continuous
Lagrange finite element results exhibited non-physical negative values. The numer-
ical results for NURBS are encouraging and suggest their use in finite deformation
contact analysis.

As will be shown this approach yields highly robust schemes but still needs a
high effort when implementing these discretizations, see e.g. Temizer et al. (2011),
de Lorenzis et al. (2011), Temizer et al. (2012), de Lorenzis et al. (2012) and Dimitri
et al. (2014). The NURBS based methods can be applied to many different problems
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and have the advantages that the contact surface remains smooth evenwhen the solids
in contact undergo very large deformations.

2.1 Isogeometric Treatment of Contact

Within the numerical contact treatment, B1 will be identified as a slave body
whereas B2 is the master, see Sect. 1.1. Within this convention, the master surface is
parametrized via convective coordinates ξα , α ∈ {1, 2}, that define covariant tangent
vectors aα = x(2)

,α . Using the metric aαβ := aα · aβ with inverse components aαβ , the
contravariant vectors aα := aαβaβ are induced. The components of the symmetric
curvature tensor follow from bαβ = aα,β · n2.

Two major steps within the numerical implementation are the closest point pro-
jection, and the linearization of δgN , see e.g. Wriggers (2006). The closest point
projection defines a residual, see (3),

fα(ξ 1, ξ 2) = aα(ξ 1, ξ 2) · [x1 − x2(ξ 1, ξ 2)
]

(18)

thatvanishesat theprojectionpointcorresponding to {ξ̄ 1, ξ̄ 2} forallα: fα(ξ̄ 1, ξ̄ 2) = 0.
Since fα(ξ 1, ξ 2) is a nonlinear function in ξ 1 and ξ 2 when higher order NURBS are
used to discretize the surface an iterative process starting from a guess {ξ 1, ξ 2} has to
be applied. It requires the tangent

Kαβ := fα,β = aα,β(ξ 1, ξ 2) · (x1 − x2(ξ 1, ξ 2)) − aαβ(ξ 1, ξ 2) (19)

that will be used in a local Newton algorithm to find the closest point {ξ̄ 1, ξ̄ 2}.
On the other hand, the linearization of δgN associated with the projection point

reads

	δgN = n2 · (η2
,α 	ξα + δξα 	x2,α) + δξα bαβ 	ξβ + gN δn2 · 	n2 (20)

with the variations δn2 = −(η2
,α · n2 + bαβ δξβ)aα and

δξβ = Hαβ[(η1 − η2) · aα − gNn2 · η2
,α] where Hαβ are the inverse components of

Hαβ , given in (8). Similar expressions follow for the increments 	η2 and 	ξα . In
the following, for simplicity the variables associated with the projection point are
not denoted explicitly via the ¯(•) notation.

NURBS Discretization of the Volume. It is clear that both the closest point
projection and the linearization of δgN need the evaluation of aα,β . The contact
geometrywill be aNURBS surface that is directly inherited from the volumeNURBS
discretization. Therefore, in order to evaluate aα,β and subsequently discretize the
contact contributions to the weak form, the NURBS discretization of the volume is
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introduced next. In what follows, standard NURBS terminology is employed, see
e.g. Piegl and Tiller (1996) and Cottrell et al. (2009) for further details.

Let
i be the open non-uniform knot vector associated with a patch along the i-th
dimension with mi = ni + pi + 1 knots:


i = { ξ i
0, . . . , ξ

i
pi

︸ ︷︷ ︸

pi+1 equal terms

, ξ i
pi+1, . . . , ξ

i
ni , ξ

i
ni+1, . . . , ξ

i
mi

︸ ︷︷ ︸

pi+1 equal terms

} .
(21)

Here, pi is the polynomial order of the accompanying B-spline basis functions, ξ i
j

is the j-th knot and ni + 1 would be the number of accompanying control points in
a one-dimensional setting. In a three-dimensional setting, a volume is parametrized
by

V(ξ 1, ξ 2, ξ 3) =
c1
∑

d1=0

c2
∑

d2=0

c3
∑

d3=0

Rd1d2d3(ξ
1, ξ 2, ξ 3)Pd1d2d3 (22)

where Pd1d2d3 are the control points and Rd1d2d3 ≥ 0 are the rational B-spline
(NURBS) basis functions. The latter are defined via a tensor product in a four-
dimensional space based on homogeneous coordinates (Piegl and Tiller 1996). The
projected form in the three-dimensional space is

Rd1d2d3(ξ
1, ξ 2, ξ 3) = wd1d2d3

W (ξ 1, ξ 2, ξ 3)
B1
d1(ξ

1) B2
d2(ξ

2) B3
d3(ξ

3) (23)

with Bi
di
as a nonrational B-spline basis function. The normalizing weightW is given

in terms of the weights wd1d2d3 > 0 and Bi
di
via

W (ξ 1, ξ 2, ξ 3) =
c1
∑

d1=0

c2
∑

d2=0

c3
∑

d3=0

wd1d2d3B
1
d1(ξ

1) B2
d2(ξ

2) B3
d3(ξ

3). (24)

The knot vectors together with the associated control points and the accompanying
weights constitute a patch.

The continuity and order of Bi
di
depends on
i only. If
i has no repeated interior

knot ξ i
j , j ∈ [pi + 1, ni ], then the order-pi basis function Bi

di
has continuity C pi−1.

Every repetition of a knot decreases the continuity by one order at this knot. The order
of NURBS parametrization will be denoted byN p in subsequent sections, while the
order of Lagrange polynomials employed will be denoted byLp. The approximation
spaces based on a linear interpolation N 1 and L1 are identical.

In a finite element setting, all degrees of freedom (x) are discretized via the same
NURBS basis functions used for the geometric description. The unique knot spans
are conveniently chosen as the integration domains (elements). The counterparts
of the h- and p-refinement procedures for FEM discretizations based on Lagrange
polynomials are the knot insertion and order elevation procedures in the NURBS
setting. While p-refinement preserves the number of nodes, order elevation leads
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to an increase in the number of control points. When the two must be conducted
together, the k-refinement procedure will be employed where knot refinement pre-
cedes order elevation (Cottrell et al. 2009). This has the advantage that a higher
degree of smoothness can be achieved within the patch across non-repeated knot
entries and the final number of control points is less compared to the case where knot
refinement precedes.

For the numerical evaluation of the weak forms emanating from Lagrange
or NURBS based discretizations, 2p Gauss-Legendre quadrature points will be
employedwithin each element for order-p approximations. This ensures a converged
quadrature. See Hughes et al. (2010) for a recent discussion of efficient quadrature
schemes appropriate for isogeometric analysis.

NURBSDiscretization of the Surface. NURBS surface parametrization is inher-
ited from the volume parametrization in a straightforward fashion. For example, let
ξ 1− := ξ 1

0 . By construction (Piegl and Tiller 1996)

V(ξ 1
−, ξ 2, ξ 3) =

c2
∑

d2=0

c3
∑

d3=0

R−
d2d3

(ξ 2, ξ 3)P−
d2d3 (25)

where P−
d2d3

:= P0d2d3 and, including the weighting factor,

R−
d2d3

(ξ 2, ξ 3) := w0d2d3B
2
d2

(ξ 2) B3
d3

(ξ 3)
∑c2

d2=0

∑c3
d3=0 w0d2d3B

2
d2

(ξ 2) B3
d3

(ξ 3)
. (26)

Hence, only the knowledge of the knot vectors 
2 and 
3 and a reduced set of
control points together with the accompanying weights are sufficient to characterize
the surface associated with ξ 1−.

The same principle applies for ξ 1+ := ξ 1
c1+p1+1 and all other dimensions. Hence,

in general, a surface patch (in particular a contact patch) is directly inherited from
the volume patch and has the same parametrization but only with two dimensions
α ∈ {1, 2} that correspond to any two of the three dimensions. The corresponding
knot vectors are 
α with associated B-spline basis functions Bα

dα
and parametric

space coordinates ξα that are conveniently chosen as the convective coordinates for
contact computations. The surface parametrization is therefore

S(ξ 1, ξ 2) =
c1
∑

d1=0

c2
∑

d2=0

Rd1d2(ξ
1, ξ 2)Pd1d2 . (27)

This can now be used within the contact formulation as a discretization of the con-
tacting surfaces.
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2.2 Knot-to-Surface Contact Algorithm

The classical node-to-surface (NTS) algorithm of computational contact mechanics
cannot be directly employed with NURBS because the control points are not interpo-
latory. The straightforward extension of NTS to the isogeometric setting corresponds
to a knot-to-surface (KTS) algorithm. Herein gN = 0 is enforced during contact
directly at the quadrature points associated with the projection onto the master sur-
face. Each quadrature point corresponds to a unique value (ξ 1, ξ 2) ∈ [0, 1] × [0, 1].
Following (Fischer and Wriggers 2005, 2006; Ziefle and Nackenhorst 2008; Franke
et al. 2010), the same procedure will be employed for Lagrange polynomial inter-
polations as well. The number of Gauss-Legendre quadrature points per direction
employed for the evaluation of the contact contributions to the weak form will be
noted explicitly.

In the following, some aspects of the KTS algorithm are investigated qualitatively.
All examples presented in this section employ the penalty method to regularize the
contact constraints, see (12).

Figure4 shows various discretizations for a deformable body compressed against
another one in a purely mechanical setting at a coarse discretization. Here the lower
body is chosen as the master body. The upper body is ten times stiffer with respect
to compression and shear. The L1/N 1-discretization displays the typical problem
in contact mechanics, namely that at coarse discretizations the interface resolution
is unsatisfactory. The L2-discretization provides a much better resolution with the
same number of degrees of freedom.However, the discontinuity in smoothness on the
master surface is clearly visible at the contact interface. Such discontinuities lead to
convergence difficulties in classical contact algorithms and various smoothing algo-
rithms have been designed to alleviate such difficulties. The N 2-discretization with
the same number of elements does not involve any repeated interior knots. Conse-
quently, a qualitatively well-resolved C1-continuous contact interface is visible. This
is a potential advantage that is beneficial particularly for the simulation of frictional
contact with large sliding.

The same example in a three-dimensional setting is provided in Fig. 5 employ-
ing an N 2-discretization. Here, the slave body is compressed onto the master body
(5 loading steps) and subsequently it is rotated through 45◦ (10 loading steps) and
dragged along the diagonal of the master surface (30 loading steps). During the twist

Fig. 4 Two-dimensional contact of two deformable bodies using L1/N 1-, L2- and N 2-
discretizations
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Fig. 5 Three-dimensional contact of two deformable bodies based on an N 2-discretization

and drag stages, the slave surface traverses multiple element boundaries. Again, both
the master and slave surfaces are C1-continuous. In all applications of the KTS algo-
rithm, the active-set search is embedded within the Newton-Raphson iterations for
the nonlinear system. The load steps are chosen such that convergence is achieved in
at most 10 Newton-Raphson iterations. Within this setup and at the given resolution,
one cannot achieve convergence with L1/N 1- or L2-discretizations.

While the straightforward application of the KTS algorithm delivers qualitatively
satisfactory results, quantitative investigations are necessary to establish the quality
with which the contact constraints are satisfied, for more details see Temizer et al.
(2011) and de Lorenzis et al. (2011).

2.3 Relaxation of Contact Constraints: Mortar KTS

Although qualitatively good results were obtained so far, the standard KTS approach
delivers an excessively stiff contact constraint enforcement for both Lagrange and
NURBS discretizations, see e.g. Temizer et al. (2011). The degree of freedom pro-
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vided by the polynomial approximation cannot satisfy the constraints accurately
pointwise at the quadrature points. This results e.g. in pressure oscillations near the
edge of a contact interface.

Inordertorelaxtheover-constrainedcontactformulation,earliermortarapproaches
areapplied to theKTSalgorithm.For recentapplicationsofmortar-basedcontactalgo-
rithms with further references, the reader is referred to Puso et al. (2008), Hesch and
Betsch(2009),Turetal.(2009),HüeberandWohlmuth(2009).Inthiswork,theoriginal
KTS contact constraints are relaxed based on an averaging of the normal penetration,
as described in Tur et al. (2009) within a Lagrange multiplier setting. The application
of integration techniques that accompany various mortar approaches, e.g. Puso et al.
(2008)will not be tackled in this contribution, for details see e.g. Temizer et al. (2011)
and de Lorenzis et al. (2012).

For conciseness, the surface parametrization in Eq. (27) is expressed as
S = ∑

I R
IPI where RI is the rational basis function associated with the control

point at position PI . Subsequently, the pressure distribution is not defined locally as
for standard KTS but through a discretization as for all other degrees of freedom:

pN =
∑

I

RI pI
N . (28)

The pressure degrees of freedom (control pressures) are defined within a penalty
approach as

pI
N = εNg

I
Nχ I (29)

where g I
N are averaged control point penetrations:

g I
N = 〈

gN R
I
〉 :=

∫

Rc
o
gN RI δA

∫

Rc
o
RI δA

. (30)

The active-set is associated with points where χ I = 1:

χ I =
{

1 if g I
N > 0

0 if g I
N ≤ 0

. (31)

ThismortarKTS formulation clearly leads to an extended coupling among the contact
patch degrees of freedom compared to the standard KTS treatment.

Popp et al. (2009) has suggested that no averaging is necessary for the interior
nodes of a Lagrange element. However, an interior node is not a concept that is
applicable for NURBS discretizations. Therefore, to retain a full analogy, the same
procedure is employed for Lagrange discretizations in a straightforward fashion by
replacing RI with appropriate nodal shape functions. See Fischer and Wriggers
(2006) and Puso et al. (2008) for earlier mortar approaches with L2-discretizations.

To demonstrate the effects of relaxation, the contact pressure and frictional shear
stress is computed for an example in which two elastic bodies come into contact,
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see Fig. 6a. The upper block is first pressed against a surface and then twisted, for
details see Temizer et al. (2012). The geometrical setup and the deformation for
this example is depicted in Fig. 6b where a block is first pressed and then rotated
by 180◦ on an another deformable body. For the discretization a quadratic NURBS
N 2 interpolation was used. The stress field at the contact surface is shown in Fig. 7.
Part (a) depicts the frictional shear stresses tT after at the final rotation which was
achieved in incremental 40 steps. The contact normal pressure tN is depicted in part
(b) of Fig. 7.

As was be observed, the KTS algorithm delivers qualitatively satisfactory results
for various two- and three-dimensional finite deformation thermomechanical con-
tact problems. However, quantitative investigations on the classical Hertz contact
problem highlight a need for the relaxation of the mechanical contact constraints,
see Temizer et al. (2011). Hence the relaxed mortar KTS approach provides superior
results in comparison to the standard KTS algorithm for NURBS discretizations as

Fig. 6 a Initial configuration of the block; b deformations after pressing and rotating

Fig. 7 a Initial configuration of the block; b deformations after pressing and rotating
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well as for its application to Lagrange discretizations. Based on the mortar KTS
approach the following conclusion regarding NURBS discretizations for contact
problems can be made: (1) at a fixed resolution, NURBS discretizations produce
results that are significantly less sensitive to changes in the r -refinement and the
order of approximation compared to Lagrange discretizations, (2) for a fixed order,
NURBS discretizations deliver monotonically improving results with increasing res-
olution whereas Lagrange discretizations deliver a non-monotonic improvement, (3)
NURBS-based mortar KTS approach guarantees a pointwise-positive contact pres-
sure distribution for all orders whereas C0-continuous Lagrange finite elements may
produce non-physical negative pressures.

In summary, the developed mortar KTS approach delivers robust and accurate
results for NURBS-based isogeometric contact treatment. Hence NURBS-based iso-
geometric analysis is a viable technology for contact problems undergoing finite
strains.

3 Virtual Element Method for Contact

The virtual element method (VEM) is a recently developed Galerkin finite element
approach that accommodates polygonal or polyhedral elements in two and three
dimensions, respectively (see for example Beirão da Veiga et al. (2013), Beirão da
Veiga et al. (2014) and, for problems in elasticity, Beirão Da Veiga et al. (2013), Gain
et al. (2014)).

The objective here is to present a VEM formulation for contact between elastic
bodies. The motivation for using the VEM lies in the ability to impose the contact
constraints with the use of arbitrary, that is non-matching, meshes for the two bodies.
Thus, there is no need to have the same numbers of nodes on the two candidate
contact faces, nor is it necessary to match nodes across the two surfaces. Instead,
the algorithm developed here makes provision for the insertion of new nodes on an
interface, based on the distribution of nodes on the opposite boundary. This step is
easily accommodated in an otherwise standard approach, see e.g. Wriggers et al.
(2016).

The contact constraint is imposed using either a Lagrange multiplier or penalty
approach, see Sect. 1.2. The formulation and examples are confined to a low-order
VEM formulation in two dimensions, in which the shape functions along the element
edges are linear. Note however the method is easily extended to higher-order VEM
schemes and three dimensions.

3.1 Formulation of the Virtual Element Method

Within the virtual element method one creates a discretization scheme that allows for
arbitrarily shaped elements. Even for a linear interpolation these elements can have
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an arbitrary number of nodal points that define convex but also non-convex geome-
tries. The domains �e are partitioned into non-overlapping polygonal elements. A
lowest-order approach is adopted, so that nodes are placed only at the vertices of the
polygonal elements. The construction of such virtual elements is performed in a two
step process. In the first step one obtains from the weak form a term that ensures
consistency and in a second step one has to design a proper stabilization. This process
has some features in common with the development of reduced order finite elements.

Generally the virtual element method relies on the split of the ansatz space into a
part �uh and a remainder

uh = �uh + (uh − �uh) . (32)

The projection �uh is defined at element level for a linear interpolation by

�uh = Ha =
[

1 0 x 0 y 0
0 1 0 x 0 y

]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a1
a2
. . .

a6

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (33)

The linear ansatz for the deformation along the element edge is given for a boundary
segment k of the virtual element, defined by the local nodes (1)–(2) by, see right side
of Fig. 8,

(uh)k = (1 − ξk)u1 + ξk u2 = Mk 1 u1 + Mk 2 u2 with ξk = xk
Lk

(34)

where, for example, Mk 1 is the ansatz function along a segment k related to node
(1), ξk is the local dimensionless coordinate and u1 is the nodal value at that node,
see Fig. 8.

Fig. 8 Virtual element with
nV nodes and local boundary
segment of the element
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The unknown parameters ai in (33) that define �uh can be computed in terms of
the unknown nodal displacements (uh)k by using the identity,3 see Beirão Da Veiga
et al. (2015),

∇�uh |e = 1

�e

∫

�e

Grad uh d� = 1

�e

∫

�e

uh ⊗ N d� (35)

where N is the normal at the boundary �e of the domain �e. From (33), the gradient
of the projection is thus given by

∇�uh |e =
[

a3 a5
a4 a6

]

(36)

which is constant at element level. The right hand side of (35) yields with (34)

1

�e

∫

�e

uh ⊗ N d� = 1

�e

nV
∑

k=1

∫

�k

[

ux (xk)Nk
x ux (xk)Nk

y

uy(xk)Nk
x uy(xk)Nk

y

]

Lk d� (37)

where we have used Nk = { Nk
x , Nk

y }T and u = { ux , uy }T , and nV are the number
of segments of the element. Now, by inspection, the parameters a3 , . . . , a6 can be
expressed as functions of the nodal displacements (uh)k . This projection determines
the ansatz �uh on (33) within an element only up to a constant strain field and has
to be supplemented by a further condition to ensure uniqueness. For this purpose
we adopt the condition [see for example Beirão Da Veiga et al. (2013)] that the sum
of the nodal values of uh and of its projection �uh are equal. This yields for each
element �e

1

nV

nV
∑

I=1

�uh(x I ) = 1

nV

nV
∑

I=1

uh(x I ) , (38)

where xI are the coordinates of the nodal point I and the sum includes all boundary
nodes. From this relation one can then compute the parameters a1 and a2.4

With (36) the displacement gradient is known. Thus the deformation gradient
related to the projection �uh can be computed as

F|e = 1 + ∇�uh |e . (39)

The simplest possible formulation for a finite deformation virtual element is a
split into a constant part of the deformation gradient and an associated stabilization
term. This was performed for the linear case in Beirão Da Veiga et al. (2013). The

3Note that this simple and efficient computation of the virtual ansatz space is only valid for linear
interpolations. For quadratic interpolations one has to use the weak form (10).
4Since the parameters ai describing the projection never enter the formulation explicitly the name
virtual elements was introduced.
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same approach can be found in the work of Beirão Da Veiga et al. (2015) and Chi
et al. (2017) for the nonlinear case. Here we employ the same approach by starting
from the weak form (10). Thus we have, by summing up all element contributions
for the ne virtual elements,

G(u) =
ne

A
e=1

[

G�(�uh |e) + Gstab(uh |e − �uh|e)
]

. (40)

The first part in this equation can be computed by using (39). This yields

G�(�uh |e)=
∫

�e

[

S( F|e) · 1
2

δC( F|e) − ρ0 b̂ · �ηh

∣

∣

e

]

d� −
∫

�σ
e

t̂ · �ηh

∣

∣

e d� .

(41)
For more details, we refer to Wriggers et al. (2017) and Wriggers and Hudobivnik
(2017).

Several approaches to stabilization can be followed. One way to formulate the
stabilization partGstab is to use the split in Eq. (32), see Beirão da Veiga et al. (2013).
The stabilization term is then constructed as a sumover all nodes of a positive-definite
function involving the remainder of (32)

Gstab = γ

2

nV
∑

I=1

[

uI − H̄(x I )a
] · [η I − H̄(x I )δa

]

. (42)

where γ is a stabilization parameter. In Beirão Da Veiga et al. (2015) this parameter
is replaced by a term that depends on the norm of the constitutive tensor ‖ ∂ P

∂F (Fe)‖,
and hence on the deformation of the solid. An alternative stabilization parameter
1
4 tr[ ∂ P

∂F (Fe)], referred to as a trace-based stabilization, was recently proposed in Chi
et al. (2017). Both stabilization parameters yield a far better approximation than the
constant parameter γ . However, such a term presents a challenge when linearizing
in a Newton procedure.

Another stabilization approach was developed in Wriggers et al. (2017) which
is based on an approach introduced in Krysl (2015) for stabilized finite elements.
The essence of the approach is to introduce a new weak form ̂G and to define the
stabilization contribution by

Gstab(uh |e − �uh |e) = Ĝ�(uh |e) − Ĝ(�uh |e) . (43)

The second term on the right side ensures the consistency since for �e → 0 also
Gstab → 0. The total weak form is now given by

G(uh) = G�(�uh) + ̂G(uh) − ̂G�(�uh) , (44)

and in which for example
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̂G(uh) =
ne
∑

e=1

∫

�e

S[F(uh |e)] · 1
2

δC[F(uh |e)]d� . (45)

The terms involving �uh can be integrated as (41). It remains to devise a procedure
for computing the term (45) involving the displacement uh |e which can be found in
Wriggers et al. (2017).

3.2 Contact Approach Using VEM

Due to the possibility of adding additional nodes within a virtual element contact
can be treated in an efficient way. This section provides the basic ideas.

Node insertionalgorithm.VEMenables us to add abitrarily newnodes to existing
discretizations and elements. Thus it allows for an enforcement of contact constraints
at nodal level by using the kinematics described above. The advantage is that the
changesmade to the element calculation areminimal. Adding a node does not change
the basis or integration procedure of the virtual element method as this does not
depend on the number of nodes. It only amounts to adding one term to the integration
loop. Only the displacement vector and thus the stiffness matrix has to be extended
by the additional degrees of freedom. This affects elements with inserted nodes but
leaves the surrounding elements unchanged.5

Figure9 illustrate the general procedure used to discretize the contact interface
when using the virtual element method. This yield the algorithm:

1. Check nodalwise for contact using the standard search algorithms.
2. For nodes at master or slave surface that come into contact a new node will be

introduced at the element boundary (arrows indicate the insertion of new nodes
at master or slave surface) where contact was established, see Fig. 9.

3. These nodes are the basis for the ansatz functions needed to formulate the contact
constraints using a penalty method or Lagrangian multiplier.

In order find the new node in the contact interface one has to establish the contact
conditions the gap between the master and slave elements of the two bodies has to
be described and computed. Since we use linear virtual elements this task leads to a
closed form solution.

Let us define a projection, see Fig. 10, that denotes the closest distance of a slave
node s to the master element m. This projection defines the gap gs related to a slave
node s. This orthogonal projection is computed from

5In general the virtual element method leads to stiffness matrices that have the same nodal degrees
of freedom as finite elements. Thus VEM fits in the standard FEM framework and hence the VEM
can easily be combined with standard finite elements. This can be additionally explored to create a
node-to-node contact approach for contact situations with non-matching meshes that is very simple
to formulate.
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Fig. 9 Non-matching mesh and additional new contact nodes within a VEM discretization

Fig. 10 Kinematics for projection slave to master

(xm+1 − xm) · [xs − xm(ξ̄ )] = 0 (46)

where xi are the coordinates of the relevant nodes. For straight contact interfaces
this equation has the analytical solution

ξ̄ = 1

lm
amT · (xs − xm) (47)



108 P. Wriggers

with the tangent vector amT = (xm+1 − xm) / lm and the length of the master segment
lm = ‖xm+1 − xm‖. With this relation the projection can be performed for any slave
node that is possibly in contact. This projection defines a new node at the master
element which then is given by

xm(ξ̄ ) = (1 − ξ̄ ) xm + ξ̄ xm+1 . (48)

Once the projection is known the gap related to a slave node gs can be computed
from

gs = [xs − xm(ξ̄ )] · nm = [xs − xm] · nm (49)

and used to check for contact. The vector nm = e3 × amT is the normal vector where
e3 is a unit vector perpendicular to the two-dimensional plane.

If the projection is extended also to nodes of the master surface being projected
onto the slave surface then the local coordinate - here we use η as surface coordinate
on the slave surface - is given by

η̄ = 1

ls
asT · (xm − xs) (50)

with the tangent vector asT = (xs+1 − xs) / ls and the length of the slave segment
ls = ‖xs+1 − xm‖. Again the projection point leading to a new VEM surface node
is then defined by

xs(η̄) = (1 − η̄) xs + η̄ xs+1 . (51)

Once the contact nodes are established by the above process the contact interface
can be discretized.6 For this purpose ansatz functions for the gap as well as for
Lagrange multipliers have to be formulated.

Hence the gap function within a segment c (contact element) will be formulated
using the interpolation for the displacements at the master surface7

u1
h =

2
∑

I=1

NI (ξ) uI with N1(ξ) = 1 − ξ and N2(ξ) = ξ (52)

and for the slave surface

u2
h =

2
∑

I=1

NI (η) uI with N1(η) = 1 − η and N2(η) = η (53)

at each side of the contact area. This leads to a continuous function for the gap:

6For large sliding, one has to start this update algorithm at every incremental step of the Newton
procedure in order to obtain the current local contact connections.
7This interpolation is the same as in (34) and thus consistent with the VEM formulation.
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gN c =
[

2
∑

I=1

NI (ξ) u1
I −

2
∑

I=1

NI (η) u2
I

]

· n1
c + gc(ξ) . (54)

Here uα
I are the displacement vectors of bodies �α of the nodal pair associated with

the contact segment c, n1
c is the constant normal vector related to the master surface

that is defined as the surface of body �1 within the contact segment c and gc(ξ) is
the initial gap between the surfaces.

Since the initial gap gc(ξ) is independent of the displacement field, the variation
of (54) is given by, see also (4),

δgN c =
[

2
∑

I=1

NI (ξ) η1
I −

2
∑

I=1

NI (η) η2
I

]

· n1
c . (55)

Lagrange multiplier formulation. To enforce the contact constraints for the
frictionless case by a Lagrange multiplier the following term has to be added the
weak form, see (11). Here �c is the total contact area that is part of the surface of
both bodies, λN = tN the Lagrange multiplier and gN the gap function along the
interface between the contacting bodies

∫

�c

λN δgN d� +
∫

�c

δλN gN d� . (56)

which has to be added to the weak formulation describing the motion of the two
bodies (10) and (44).

Within the Lagrange multiplier method we have to approximate the multipliers
along the contact interface. The Lagrange multiplier is defined at the master surface
�1
c . Here we use a linear function, leading to the ansatz

λh =
2
∑

A=1

MA(ξ) λA with M1(ξ) = 1 − ξ and M2(ξ) = ξ . (57)

Approximations (55) and (57) can be now inserted in the contact integral (56) appear-
ing in the weak form, leading to

∫

�c

λN δgN d� ≈
nc
∑

c=1

1
∫

0

(

2
∑

A=1

MA(ξ) λA

)

×
[

2
∑

I=1

NI (ξ) η1
I −

2
∑

I=1

NI (η) η2
I

]

· n1
c lc dξ

(58)

where nc denotes all contact segments that are active, ξ and η are the surface coor-
dinates of the contacting solids at the contact element c and lc is the length of the
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contact element. Furthermore the second part of (56) has to be approximated using
the same ansatz. This yields

∫

�c

δλN gN d� ≈
nc
∑

c=1

1
∫

0

(

2
∑

A=1

MA(ξ) δλA

)

×
[

2
∑

I=1

NI (ξ) u1
I −

2
∑

I=1

NI (η) u2
I

]

· n1
c lc dξ + gc(ξ)

(59)

where nc are the active contact nodes in �h
c .

Since the surface coordinates ξ and η coincide in this formulation, the integrals
in (57) and (58) can be evaluated explicitly for linear ansatz functions. This yields

∫

�c

λN δgN d� ≈ 〈λ1 , λ2〉 lc
6

{[

2 1
1 2

] (

η1
n 1

η1
n 2

)

−
[

2 1
1 2

] (

η2
n 1

η2
n 2

)}

(60)

where ηα
n I = ηα

I · n1
c . With this result the matrix form of (56) can be written for one

contact element c as

〈η̂T
, δλ̂

T 〉
[

0 CL

CT
L 0

] {

û
λ̂

}

(61)

with

ûT = 〈u1n 1 , u1n 2 , u2n 1 , u2n 2〉, λ̂
T = 〈λ1 , λ2〉 andCT

L = lc
6

[

2 1 −2 −1
1 2 −1 −2

]

. (62)

Penalty formulation
In the case of the penalty method, we have to discretize the first term in (12) where
now tN = ε gN (εN is the penalty parameter). This leads with (55) to

∫

�c

εN gN δgN d� = εN

nc
∑

c=1

1
∫

0

2
∑

A=1

NA(ξ) gN c A(ξ))

2
∑

I=1

NI (ξ)δgN c I (ξ) lc dξ(63)

with

gN c A = [

u1
A − u2

A

] · n1
c and δgN c I = [

η1
I − η2

I

] · n1
c . (64)

Using the notation from above, the ansatz in (63) yields a matrix formulation for one
contact element c

η̂
T C P û (65)
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with

C P = lc
6

⎡

⎢

⎢

⎣

2 1 −2 −1
1 2 −1 −2

−2 −1 2 1
−1 −2 1 2

⎤

⎥

⎥

⎦

(66)

3.3 Numerical Examples

In this section numerical studies are presented to demonstrate the robustness, conver-
gence and accuracy of the method. It can be shown that the virtual element contact
approach fulfills the patch test.

Example:ContactingBeams. In this example two clamped beams are considered
that come into contact during the deformation. The setup is shown in Fig. 11. In this
case a linear elastic constitutive relation is used within a small strain assumption.

Both beams have the same size (length l = 20, height h = 1) and overlap each
other by one third of their length. The initial distance between both beams is g0 = 0.2.
The right beam (E = 7000, ν = 0.3) is loaded with a force in its middle (point A).
Due to its deflection it will come into contact with the stiffer beam on the left (E =
70,000, ν = 0.3). In Fig. 12 the stress σxx and the deformed meshes are depicted.

The graph in Fig. 13 shows the load-displacement-curve for the loading point
A and the end of the left beam (point B). Initially the contact gap is open. With
increasing load the contact is established and the stiffness of the system increases.

Note that the beam on the left was discretized using rectangular nE = 540 virtual
elements. Thebeamon the rightwas discretizedwithnE = 500 elements in a different

Fig. 11 Setup of two contacting beams

Fig. 12 Stress in x-direction of two contacting clamped beams
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Fig. 13 Load-displacement-
curve for the loading point A
and the end point B of the
contacted beam
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fashion using a Voronoi type mesh. This takes full advantage of the possibilities of
the virtual element method, allowing for complex and non-standard element shapes.
This different meshing does not affect at all the contact procedure.

Example: Hertz - Large deformations. In this example we will show that the
algorithm also works for nonlinear problems. Here the classical Hertz problem is
investigated where both bodies are made of Neo Hookean material which leads to
the constitutive relation for the second Piola-Kirchhoff stress

S = �

2
(J 2 − 1)C−1 + μ ( 1 − C−1)

which has to be used in (40). Here the constants � and μ are the Lame constants.8

The two bodies will undergo finite deformations. Only one half of the problem is
discretized due to symmetry.

Figure14 shows the problem where already small deformations have occurred.
The lower body is fixed at the bottom while the upper body is loaded by a surface
traction at the upper part. At the symmetry line the usual symmetry conditions are
formulated which lead to fixing the horizontal displacement components at that line.
Load and material parameters are selected such that finite deformations can occur.

In Fig. 15 the final deformation stage is depicted that is reached after eight load
steps. The convergence behaviour in the last load step is shown in Fig. 16. It depicts
the typical behaviour: in the first four increments linear convergence is observed that
is related to the contact search with changing interface connections. Once the contact
connection is established quadratic convergence occurs.

From these results it is clear that the virtual element method provides a good basis
for treating contact problems as well in the linear as nonlinear range.

8The same constitutive relation is used for the stabilization term (45), however with different Lame
constants.
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Fig. 14 Hertz problem for
finite deformations

Fig. 15 Final deformation
stage for Hertz problem
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Fig. 16 Final deformation
stage for Hertz problem

4 Contact Domain and Third Media Approaches

Another group of contact formulations was developed in the last years by Labra et al.
(2008), Onate et al. (2008) and Oliver et al. (2009). These methods are based on a
domain method that introduces a contact domain between approaching deformable
bodies. In Oliver et al. (2009) and Hartmann et al. (2009) a frictional contact domain
method for large deformation problems is presented. The authors formulate the con-
tact constraints within a contact domain, that can be interpreted as a fictive inter-
mediate region which connects potential contact surfaces. This contact domain is
discretized by a non-overlapping set of patches that are interpolated from the dis-
placement fields at the contact surfaces. Hence the contact formulation is related to
a different, strain-like set of constraints for the normal and tangential gaps. Within
this contact domain, classical formulations for contact constraints, like normal and
tangential gaps are applied.

Another approach relies on the introduction of a third medium, see Wriggers
et al. (2013). It avoids the complexity of the classical schemes related to the exact
formulation and enforcement of the contact constraints. The constraints follow as a
direct consequence from finite strain measures and thus are implicitly formulated. As
can be seen from Fig. 17, the contacting bodies will be imbedded in a medium. This
mediumwill have assigned specificmaterial properties that on one hand approximate
rigid body movements before contact and on the other hand account for the contact
constraints whenever necessary. In this section we will introduce the basic formu-
lation for such third medium approach that is here formulated for the frictionless
case. Since the formulation differs quite a bit from the classical contact formulation
we have first to introduce the basics of the continuum formulation that includes also
anisotropic behaviour close to contact.

The kinematics and weak form for the contacting bodies Bα are already discussed
in Sect. 1.2. Thus it remains only to introduce the constitutive relations that are used
in the examples of this section.
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Fig. 17 Contacting bodies
B1 and B2 imbedded in a
medium B3

4.1 Continuum Mechanics Background

The second Piola-Kirchhoff stress for body Bα follows from the strain energy func-
tion by

Sα = 2
∂W α

∂Cα . (67)

For simplicity strain energy functions of St. Venant-Kirchhoff or Neo-Hookean
type are selected to model the constitutive behaviour of the solids coming in contact.
The St. Venant-Kirchhoff energy has the form

W α = �α

8
(I 21 − 6I1 + 9) + μα

4
(I 21 − 2I2 − 2I1 + 3) . (68)

Here the Lame constants

�α = Eανα

(1 + να)(1 − 2να)
and μα = Eα

2(1 + να)

are given in terms of the Young’s modulus Eα and Poisson’s ration να for the two
bodies. In the case of the Neo-Hookean model we use the strain energy function

W α = K α

2
(J − 1)2 + μα

2
(tr̂C − 3) (69)
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where K is the bulkmodulus and̂C = J− 2
3 C is the isotropic part of the right Cauchy-

Green deformation tensor which is motivated by a multiplicative split of the defor-
mation gradient F = J

1
3̂F into a volumetric and an unimodular part.

4.2 Continuum Formulation for the Medium

Again the weak form (10) can be formulated. This leads to

∫

BM

SM · 1
2
δCM dV = 0 (70)

where δCM denotes the variation of the strains within the third medium. The sec-
ond Piola-Kirchhoff stress for the third medium BM follows from the strain energy
function by

SM = 2
∂WM

∂CM . (71)

Within the third medium the surface tractions were neglected as well as the body
forces. Thus the medium can be seen as a nonlinear spring system between the
contacting bodies.

Since the properties of the thirdmediumwill change depending upon the approach
of the bodies a special strain energy function has to be selected. The properties of the
strain energy have to approximate the contact constraint. The idea is that a layer of
the embedding medium will transport the forces between the contacting bodies and
no penetration will be allowed. In case of frictionless contact the material properties
have to be highly anisotropic since no tangential forces are allowed at the contact
interface. Thus the strain energy of the embedding body has to be able to model

1. the change of the properties from isotropic behaviour to anisotropic behaviour
between two bodies when these come close to each other.

2. the increase of the stiffness of the mediumwhen bodies come close to each other
to avoid penetration.

In general the strain energy function for the third medium WM will consist of an
isotropic and an anisotropic part where the constitutive parameters can change due
to the deformation states of the bodies. Thus the strain energy function consists of an
isotropic and an anisotropic part: WM = WM

iso + WM
aniso, see Schröder (2009). Here

the the isotropic part is given by

WM
iso = a1 I1 + a2 I2 + a3 I3 − d ln(

√

I3) (72)

with the material parameters a1, a2, a3 ≥ 0 and d = 2a1 + 4a2 + 2a3. These have to
be selected for the medium BM where the material constants have to bemuch smaller
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than the parameters of the bodies Bα in order to approximate rigid body motions of
the bodies coming into contact. Hence the material parameters have to fulfill

a1,2,3 � �α and a1,2,3 � μα .

The anisotropic part of the strain energy function of themedium can be formulated
using only one distinct direction of anisotropy in case of frictionless contact. A simple
strain energy is given by

WM
aniso = cM

[

1

a4 + 1

]

(1 − J4)
a4+1 with J4 = tr(C Mn) . (73)

Note that this anisotropic part is only activated when the bodies come close to each
other. One criterium is the volume change provided by J = in the third medium.
Thus for J < 0.7 the anisotropic function (73) is added to the isotropic part of the
third medium (72). For J ≥ 0.7 the anisotropic part is neglected: WM

aniso = 0.
In (73) the parameter cM is associated to the stiffness of the third medium. From

assumption 2 above it can be concluded that cM depends upon the approach (gap) gN
between bodies B1 and B2, see Fig. 2, and an additional material parameter a5 which
represents the basic stiffness in the preferred direction. A simple choice is provided
by the function

cM(gN ) = a5
g2N

(74)

which is valid for gN ≤ dc where dc is a threshold distance denoting that the approach
is close enough to include anisotropic behaviour. For gN > dc the constitutive param-
eter cM will be selected as cM = 0 and the isotropic part of the third medium will
stabilize the solution of the general problem. The definition of the gap gN is not the
same as in (1) for the third medium it is provided in the next Sect. 4.3.

The interface between the two contacting bodies B1 and B2 can only transmit
tractions in normal direction in case of frictionless contact. This is accounted in the
anisotropic strain energy by assuming that the structural tensor Mn can be expressed
by Mn = n ⊗ n. Here n is the contact normal that will be determined next.9

4.3 Kinematics at the Interface

As can be seen in Fig. 2, the approach of the bodies is related to the gap gN and
the normal n. These geometrical quantities are related to the deformation ϕα and
can change. Usually the contact constraints are formulated based on the kinematical
quantities gap gN and normal vector n. Within the proposed approach, however, we

9In case of friction two additional different structural tensors have to be defined that are associated
with the tangents at the deformed surface of bodies Bα , e.g, Mα

1 = ϕα
,1 ⊗ ϕα

,1 and Mα
2 = ϕα

,2 ⊗ ϕα
,2

are defined.
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want to avoid the computation of these quantities since they involve rather complex
search procedures and complicated geometrical relations, especially in large defor-
mation contact. Thus another method has to be designed that is able to detect contact
without explicitly computing the gap gN .

Since we introduced in our method the third medium that imbeds the bodies
coming into contact it is natural to use the deformation state of this intermediate
continuum to quantify the gap gN and compute the normal vector n between the
bodies. It is clear that during the approach of two bodies the third medium will
be compressed highly. Thus the deformation state of the third medium will be a
good indicator for the approach when a certain compression has already occurred in
the third medium. The obvious way to obtain directional values is to compute the
eigenvalues and eigenvectors of a strain measure. In this case, since we are dealing
with large deformations, we solve within the third medium the eigenvalue problem
of the right Cauchy Green tensor

(C − ω 1 ) e = 0 (75)

where ω is the principal strain and e the associated eigenvector. After solving the
eigenvalue problem we can write

C =
3
∑

i=1

ωi ei ⊗ ei . (76)

In the representation the minimum eigenvalue ωmin ∈ ωi denotes the highest com-
pression and the associated eigenvector emin the direction of the highest compression.
Now this eigenvector defines the normal direction of the interface between the two
contacting bodies. Thus n = emin can be used in the anisotropic part of the strain
energy function (73).10

While the gap is never computed directly the eigenvalue ωmin can be used instead
to change the stiffness in the anisotropic part of the strain energy function. Thus
equation (74) can be rewritten as

cM(gN ) = a5
ωi
min

, (77)

where i controls the increase behavior of the stiffness. Furthermore ωi
min can be used

as a switch criterium that defines the threshold at which the anisotropic strain energy
function is include to model the contact constraints, thus

ωmin ≥ εlimit ⇒ cM(gN ) = 0 or ωmin < εlimit ⇒ cM(gN ) = a5
ωi
min

. (78)

10Note that in case of ωmin → 0 the third medium approaches a two dimensional contact interface.
Hence the eigenvector emin will be equivalent to the normal vector n of the contact interface which
means that the new formulation converges to a classical contact setting for ωmin → 0.
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A reasonable choice for εlimit is provided by εlimit = 0.5.
The associated finite element formulation is standard. One can use all types of

finite elements for finite deformation analysis. Only the constitutive relations dis-
cussed above have to be introduced for the two bodies and the third medium. These
special materials were introduced in the program FEAP, see Zienkiewicz and Taylor
(2000).

4.4 Comparison to a Standard Contact Formulation

To illustrate the benefits of the proposed method we compare it to a standard con-
tact formulation. Here we use the commercial software program ABAQUS with its
predefined master-slave contact definitions to model the contact in the classical way
In order to obtain comparable results, we take the Neo-Hookean material model 69
into account, which is also implemented in ABAQUS. The material parameters for
the bodies are chosen as K1 = K2 = 3000 and μ1 = μ2 = 3000. For the medium
in our formulation we apply a1,2,3 = 1, a4 = 23 and a5 = 1. Furthermore, the same
switch criterion is given by

cM(gN ) = 0 for ωmin ≥ 0.5 or cM(gN ) = a5
ω2
min

for ωmin < 0.5 .

The setup of the contact problem and the results for the vertical displacements in
the middle of the upper edge of the lower body for the proposed formulation can be
found in Fig. 18. In this example, we prescribe displacements u = [0 − 2.4]T at the
upper half of the ellipse as boundary conditions.

Fig. 18 Original setup of
the contact problem
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The initial mesh is provided in Fig. 19 and the deformed configuration can be seen
in Fig. 20 which shows also the stress distribution of the vertical stresses σ22.

Fig. 19 Mesh in the initial configuration

Fig. 20 Deformed configuration and vertical stress field
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(Avg: 75%)
S, S22

−1.730e+03
−1.573e+03
−1.416e+03
−1.259e+03
−1.101e+03
−9.442e+02
−7.870e+02
−6.298e+02
−4.727e+02
−3.155e+02
−1.583e+02
−1.126e+00
+1.561e+02

Fig. 21 Plot of the σ22 stress distribution for the calculation with ABAQUS

In Fig. 21 the deformed configuration and the σ22 stress distribution using the are
depicted for the simulation using ABAQUS.

The difference between the ABAQUS simulation and the proposed formulation is
around 4.6% for the maximal contact pressure. This deviation is due to the different
contact approaches in connectionwith prescribed displacement boundary conditions.
ABAQUS uses a Lagrangemultiplier approach where the contact force is determined
from the constraint condition. In the thirdmedium approach the bodies do not overlap
each other, moreover the medium stays between the bodies – even if it is compressed
to a very small size and can therefore cause slightly higher pressures.

Of course, in this example, the mesh for the third medium can be only inserted
close to the possible contact interface (when known) which would lead to a more
efficient treatment and would avoid not necessary meshing.

The contact formulation using the third medium is based on the eigenvalues of
the strain tensor and a constitutive equation of the medium change that changes
its properties form isotropic to anisotropic close to contact. The magnitude of the
eigenvalue in themedium related to themovement of the bodies define the parameters
and directional properties of the intermediate medium. It has been shown that this
methodology automatically detects contactwithinfinite deformation analysiswithout
a complex geometrical computation. Further results can be found in Wriggers et al.
(2013).
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Finite Wear and Soft
Elasto-Hydrodynamic Lubrication:
Beyond the Classical Frictional Contact
of Soft Solids

Stanisław Stupkiewicz

Abstract Two classes of contact problems are discussed, namely finite-wear and
soft-EHL problems, which go beyond the classical framework of frictional contact
problems. The focus is on the finite-deformation effects and on the computational
strategies adequate for the modelling of those problems. By finite wear we mean
here the class of contact and wear problems in which finite deformations and finite
shape changes due to wear are allowed. The soft-EHL regime of hydrodynamic
lubrication is encountered in the case of lubricated contact of compliant solids, such
as elastomers or soft tissues, when a relatively low hydrodynamic pressure suffices
to significantly deform the solid. In each case, the respective continuum formulation
is first introduced, followed by the description of the finite-element treatment and by
representative numerical examples.

1 Introduction

Contact is usually modelled by considering only two most important interaction
modes, i.e. by enforcing the non-penetration condition and by introducing friction
forces. The non-penetration condition imposes a unilateral constraint on the relative
motion of the contacting bodies in the direction normal to the contact surface, while
friction is associated with the relative motion in the tangential direction. Despite the
severe complexity of tribological interactions, friction ismost frequentlymodelled by
the classical Amonton–Coulomb friction model, which involves only one parameter,
the friction coefficient, even if more advanced friction models exist and could, in
principle, be applied in relevant situations, provided themodel parameters are reliably
determined from experiment or from micromechanical considerations.

It seems that continuum formulations of frictional contact problems have already
reached a considerable level of maturity, and efficient computational techniques
exist for this class of problems (Laursen 2002; Wriggers 2006). In this chapter, we
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discuss two classes of contact problems that go beyond the classical framework dis-
cussed above. Specifically,we focus onwear andon elasto-hydrodynamic lubrication
(EHL), in both cases with full account of finite deformations. Clearly, both wear and
EHL have already been subject of intense research, but the finite-deformation effects
(including finite shape changes in the case of wear problems) are significantly less
recognized.

Finite deformations are typical for soft solids such as polymers, including rubber-
like materials, soft tissues, some biomaterials, and others. Focusing on contact inter-
actions, we shall treat all those materials as hyperelastic solids, thus neglecting their
complex constitutive behaviour that may involve viscoelasticity, history-dependent
behaviour, multiphysics couplings, etc. This is admissible because contact formu-
lations and their computational treatment are essentially independent of the bulk
material response. Hence, the contact techniques developed can be combined with
virtually any solid model, hyperelasticity being the simplest one in the finite defor-
mation regime.

The first part of this chapter is concerned with modelling of finite wear problems.
Wear is a process of material removal from a surface that is subjected to frictional
contact interaction.Wear processes are usually slow, and thus noticeable effects result
from repeated contacts and accumulation of wear over a long period. By finite wear
we mean here a general class of wear problems in which finite deformations are
allowed as well as finite shape changes due to wear (Lengiewicz and Stupkiewicz
2012). The approach adopted here for the modelling of progressive wear belongs
to the class of incremental solution strategies. An overview and discussion of the
relevant computational strategies is presented in Sect. 4.5. Note that wear is a very
complex processwith several very distinctmechanisms. The activity of the individual
wear mechanisms heavily depends on the materials, on surface properties of the
contact pair, as well as on the actual contact conditions. The related aspects of
constitutive modelling of wear are not discussed here, and we adopt the classical
Archard wear law (Archard 1953).

The second part of this chapter is concernedwithmodelling of soft-EHL problems.
Contact in the EHL regime occurs when the contacting surfaces are fully separated
by the fluid and when the hydrodynamic pressure in the lubricant film is sufficiently
high to cause significant elastic deflections of one or both contacting bodies. The
EHL theory (Dowson and Higginson 1977; Hamrock et al. 2004) is a well developed
theory with classical applications such as gears and rolling-contact bearings, which
belong to the class of so-called hard-EHL problems. There is, however, a growing
interest in the soft-EHL regime in which the pressure is relatively low, but the elastic
deflections are significant becauseoneor both contactingbodies are highly compliant.
At the same time, the pressure is not high enough to cause significant increase of
lubricant viscosity (on the contrary, the piezoviscous effect is crucial in the hard-EHL
problems).

The chapter is organized as follows. The standard formulation of the finite-
deformation, finite-slip frictional contact problem is briefly described in Sect. 2 as a
background for further developments. In Sect. 3, theArchard-typewear law is consis-
tently formulated in the finite-deformation framework. The continuum formulation
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of the finite-wear problem is then provided in Sect. 4 followed by the discussion of the
time-integration schemes and computational strategies for modelling of progressive
wear. Selected illustrative numerical examples are reported in Sect. 5.

The second part of the chapter, Sects. 6, 7 and 8, is devoted to the soft-EHL
problems at finite deformation. Section6 introduces the Reynolds equation which
is the basic tool for the modelling of the lubricant flow in the thin channel between
the contacting surfaces. Formulation of the soft-EHL problem is provided in Sect. 7.
In particular, the EHL couplings are discussed, including the non-standard coupling
that results from the finite-deformation effects, and the finite-element treatment is
commented briefly. Finally, illustrative numerical examples are provided in Sect. 8.

2 Finite-Deformation Frictional Contact Problem

Presented below is the standard formulation of the frictional contact problem at finite
deformation and finite slip. The formulation is based on the master–slave approach
and on the notion of the closest-point projection. For the details and for a broader
overview, see themonographs byLaursen (2002) andWriggers (2006) and references
cited therein.

Consider two hyperelastic bodies B(i), i = 1, 2, that occupy domains �(i) in the
reference configuration. The boundary of �(i) is divided into three non-overlapping
parts: displacements and tractions are prescribed on �(i)

u and �
(i)
t , respectively, while

�(i)
c is the potential contact surface. Deformation of each body is described by the

corresponding deformation mapping ϕ(i),

x(i) = ϕ(i)(X(i), t), (1)

where X(i) ∈ �(i), x(i) ∈ ω(i), and ω(i) = ϕ(i)(�(i), t) denotes the current configura-
tion.

One of the contact surfaces, say �(1)
c , is selected as the slave surface, and the

contact pair is defined by projecting a point x(1) of the deformed slave surface γ (1)
c =

ϕ(1)(�(1)
c , t) onto the deformed master surface γ (2)

c = ϕ(2)(�(2)
c , t). The projection

point is denoted by x̄(2). Let us introduce parameterization of the master surface
γ (2)
c by convective coordinates ξ = {ξ 1, ξ 2} so that we have x̄(2) = x(2)(ξ̄), and ξ̄ =

{ξ̄ 1, ξ̄ 2} are the coordinates of the projection point.
The basic kinematic contact variables are the normal gap gN and the sliding

velocity vT that are defined as follows:

gN = (x(1) − x̄(2)) · n, vT = ˙̄ξατ α, (2)

wheren = n(2), the unit outer normal to themaster surface, is adopted as the normal of
the contact pair, τ α = ∂x(2)/∂ξα , α = 1, 2, is the tangent basis, and repeated indices
are implicitly summed over. Further, the spatial (Cauchy) traction vector t = t(2) is
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adopted as the contact traction that is decomposed into the normal and tangential
components tN and tT , respectively,

t = tNn + tT , tN = t · n, tT = tTατ α, (3)

where t(2) = σ (2)n, σ (2) is the Cauchy stress, and τ α is the cobasis, such that τ α ·
τ β = δα

β , where δα
β is the Kronecker delta.

The kinematic variables gN andvT and the contact tractions tN and tT are related by
the contact constraints, which can be interpreted as a kind of constitutive equations.
Specifically, the normal interaction is governed by the unilateral contact condition,

gN ≥ 0, tN ≤ 0, gN tN = 0, (4)

and the tangential interaction is assumed to be governed by the Coulomb friction
law,

‖tT ‖ + μtN ≤ 0, ‖vT ‖tT = vT ‖tT ‖, ‖vT ‖(‖tT ‖ + μtN ) = 0. (5)

Equilibrium of the two-body system is written in the form of the following virtual
work principle,

G(ϕ, δϕ) = G1(ϕ
(1), δϕ(1)) + G2(ϕ

(2), δϕ(2)) + Gc(ϕ, δϕ) = 0 ∀ δϕ, (6)

where ϕ = {ϕ(1),ϕ(2)}, and the virtual displacements δϕ(i) (test functions) vanish
on �(i)

u . Here, Gi is defined individually for each body and denotes the virtual work
of internal and external forces, excluding the contact forces, thus

Gi (ϕ
(i), δϕ(i)) =

∫
�(i)

P(i) · Grad δϕ(i)dV −
∫

�
(i)
t

T∗(i) · δϕ(i)dS, (7)

where P(i) is the first Piola–Kirchhoff stress, T∗(i) is the surface traction prescribed
on the boundary �

(i)
t , and Grad is the gradient operator relative to the reference

configuration. The virtual work Gc of the contact forces takes the following form

Gc(ϕ, δϕ) =
∫

�
(1)
c

(TN δgN + TTαδξ̄ α)dS. (8)

The contact contribution is here integrated over the undeformed slave surface �(1)
c .

The nominal contact tractions TN and TT have thus been introduced,

TN = j (1)tN , TT = j (1)tT , (9)
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such that TN and TT refer to the unit area in the undeformed configuration �(1) of
the slave body. Here, j (1) is the area transformation factor of the slave surface so that
ds(1) = j (1)dS(1).

The virtual work principle (6) constitutes the basis of the finite-element treatment.
It must be complemented by a suitable regularization technique in order to enforce
the contact conditions (4) and (5). In the examples reported below, the augmented
Lagrangian method is used for that purpose (Alart and Curnier 1991; Pietrzak and
Curnier 1999), see Lengiewicz et al. (2011) for the details of the respective AD-based
formulation and finite-element implementation.

3 Archard-Type Wear Law

3.1 Nominal and Spatial Wear Rate

Wear is a process of removal of material from a solid surface subjected to a contact
interaction. In a continuum description, the wear rate is defined as the volume (or
mass) removed per unit area and unit time. Once finite deformations of the con-
tacting bodies are allowed, the notions of volume and area must refer to a specific
configuration of the body, and hence a nominal and spatial wear rate can be defined.

The nominal wear rate Ẇ (i) refers to the undeformed configuration �(i) and is
defined in terms of the respective elementary volume dV (i) and surface area dS(i),
thus

Ẇ (i)dt = dV (i)

dS(i)
= 1

�
(i)
0

dm(i)

dS(i)
, (10)

where �
(i)
0 is the mass density in the undeformed configuration. Similarly, the spatial

wear rate ẇ(i) refers to the current configuration ω(i),

ẇ(i)dt = dv(i)

ds(i)
= 1

�(i)

dm(i)

ds(i)
, (11)

where dv(i) and ds(i) are the corresponding elementary volume and surface area,
respectively, and �(i) is the mass density in the current configuration. The following
transformation rule applies to the two wear rates,

j (i)ẇ(i) = J (i)Ẇ (i), (12)

where j (i) = ds(i)/dS(i) is the area transformation factor that follows from the Nan-
son’s formula (nds = JF−T NdS), and J (i) = dv(i)/dV (i) = det F(i) is the determi-
nant of the deformation gradient F(i) = ∂x(i)/∂X(i).
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3.2 Archard Wear Law at Finite Deformation

The classical wear law of Archard (1953) is adopted here, however, the framework
is general, and other wear laws can equally be used. In the original form of the
Archard law, the wear volume is assumed to be proportional to the normal force
and sliding distance. In the continuum formulation, this corresponds to the wear rate
being proportional to the normal pressure and sliding velocity. Assuming that the
Coulomb friction law holds, the normal contact pressure is proportional to the sliding
friction stress, hence the Archard law can be equivalently expressed in terms of the
latter.

Now, the product of the (spatial) friction stress tT and sliding velocity vT is
recognized as the frictional dissipation rate density, namely

ḋ = tT · vT , Ḋ(i) = j (i)ḋ. (13)

Here, ḋ is the spatial density of frictional dissipation rate that is referred to the area
in the current configuration ω(i), while Ḋ(i) is the nominal density that is referred to
the area in the undeformed configuration �(i), hence the area transformation factor
in Eq. (13)2.

The Archard wear law can now be formulated in terms of the frictional dissipation
rate, thus

Ẇ (i) = K (i) Ḋ(i), (14)

where K (i) is the wear coefficient. In this formulation, wear volume is proportional
to the energy dissipated due to friction, which provides an energetic interpretation of
the Archard wear law (cf. Mróz and Stupkiewicz 1994; Fouvry et al. 1996; Ramalho
and Miranda 2006). This formulation provides also a natural way to generalize the
Archard law to the case of more complex friction laws, including anisotropic friction
(e.g., Mróz and Stupkiewicz 1994).

Alternatively, proportionality between the spatial quantities can be postulated,
thus leading to the Archard wear law in the following form:

ẇ(i) = k(i)ḋ. (15)

By applying the transformation rule (12), the corresponding nominal form is the
following:

Ẇ (i) = 1

J (i)
k(i) Ḋ(i), (16)

which is not equivalent to the spatial one (14). In fact, Eqs. (14) and (16) imply
the transformation relationship k(i) = J (i)K (i) between the wear coefficients K (i)

and k(i), so that if one of them is a constant then the other one is not a constant,
as it depends on the deformation in the subsurface layer. The difference between
the two forms vanishes when the material is incompressible (J (i) = 1) or when the
deformation is small.
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Considering that the wear coefficients may, in principle, depend on contact vari-
ables, e.g., on the contact pressure, sliding velocity, temperature, etc., the choice
between the nominal or spatial form of the Archard wear law is merely free. In par-
ticular, there is no experimental evidence that would justify the choice of one or the
other form. In the following, the nominal form (14) of the Archardwear law is chosen
because, in practice, the wear volume would rather be measured in the undeformed
configuration. The nominal wear rate can thus be considered a measurable quan-
tity. Secondly, the computational treatment of the spatial form (16) is more involved
because the nominal wear rate Ẇ (i), which is used in the computational framework,
as discussed below, depends then not only on the contact quantities, but also on the
deformation in the bulk material (through J (i)).

Note that, in an alternative approach (Dragon-Louiset 2001; Peigney 2004; Stolz
2007), the wear criterion is formulated in terms of the thermodynamic driving force
for the propagation of a damage interface within the contact subsurface layer. In that
case, evaluation of the wear criterion also involves the stresses or strains in the bulk
material.

Referring to the finite-element treatment based on the master–slave approach
discussed in Sect. 2, we note that the nominal wear rate of the slave surface can be
directly determined in terms of the nominal friction traction TT , namely

Ẇ (1) = K (1) Ḋ(1), Ḋ(1) = j (1)ḋ = j (1)tTα
˙̄ξα = TTα

˙̄ξα. (17)

The nominal wear rate of the master surface is then given by

Ẇ (2) = j (2)

j (1)
K (2) Ḋ(1) = j (2)

j (1)
Ẇ (2)

∗ , Ẇ (2)
∗ = K (2) Ḋ(1), (18)

where Ẇ (2)∗ dt can be interpreted as the incremental wear volume of themaster surface
per unit area of the undeformed slave surface. It is recalled that the wear rates Ẇ (1)

and Ẇ (2) correspond to the contact pair (x(1), x̄(2)) that is defined by the closest-point
projection at the current time instant, as discussed in Sect. 2.

4 Finite-Wear Problem

4.1 Finite-Wear Kinematics: Three Configurations

In addition to finite deformation, the two contacting bodies B(i) are now assumed to
undergo finite shape changes due to wear at the contact interface. It is thus convenient
to introduce three configurations of the body B(i): the initial configuration �̂(i), the
time-dependent undeformed (worn) configuration �(i), and the current (deformed)
configurationω(i), cf. Fig. 1. The shape transformation mapping�(i) is introduced to
describe the shape change due to wear, while, as before, the deformation is described
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ϕ(i)(·, t2)
Ω̂(i)

Ω(i)(t1)

Ω(i)(t2)

ω(i)(t1)

ω(i)(t2)

Ψ(i)(·, t1)

Ψ(i)(·, t2)

ϕ(i)(·, t1)

Fig. 1 The three configurations �̂(i), �(i) and ω(i) at two time instants t1 and t2 > t1, shown for
one body only (reproduced from Lengiewicz and Stupkiewicz 2012)

by the deformation mapping ϕ(i), thus

X(i) = �(i)(X̂(i), t), x(i) = ϕ(i)(X(i), t), t ∈ [0, T ], (19)

where X̂(i) ∈ �̂(i),X(i) ∈ �(i) and x(i) ∈ ω(i). For t > 0, the initial configuration �̂(i)

plays the role of a fixed referential domain for the time-dependent undeformed con-
figuration �(i). If the initial configuration �̂(i) is a stress-free (natural) configuration
then the undeformed configuration �(i) is also stress-free.

The finite wear problem at hand comprises two subproblems. The basic unknown
in the shape-evolution subproblem is the shape transformation mapping �(i) which
is driven by the wear rate. The wear rate results from the deformation subproblem
in which the basic unknown is the deformation mapping ϕ(i) that is governed by
the equilibrium equation and constitutive relations, along with boundary and contact
conditions. As the undeformed configuration �(i), which plays the role of a material
reference configuration, evolves in time due to wear, the deformation problem is not
a standard one. However, it can be transformed into a standard frictional contact
problem, such as that discussed in Sect. 2, by introducing separation of time scales,
see Sect. 4.2 below.

As mentioned, the time evolution of the undeformed configuration �(i) results
from wear. It is governed by the following relationship, the shape evolution law, that
links the nominal wear rate Ẇ (i), see Sect. 3.1, and the time derivative of the shape
evolution mapping �(i),

�̇(i) · N(i) =
{−Ẇ (i) on �(i)

c ,

0 on ∂�(i) \ �(i)
c ,

(20)

where ∂�(i) is the boundary of�(i),�(i)
c is the potential contact surface, andN(i) is the

unit outer normal in the undeformed configuration �(i). Equation (20) is formulated
in the undeformed configuration �(i), i.e., for all X(i) ∈ ∂�(i). Accordingly, �̇(i)

denotes here �̇(i) = �̇(i)(X̂(i)(X(i), t), t), in view of the one-to-one correspondence
between X(i) and X̂(i) that is imposed by the shape transformation mapping �(i).
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In order to make the notation compact, the above convention is followed below
whenever it is convenient and unambiguous.

Note that the shape evolution law (20) prescribes only the normal component of
�̇(i) on the boundary ∂�(i). The tangential component is here free, and so is the
distribution of �̇(i) in the interior of �(i).

4.2 Separation of Time Scales

The wear process is usually very slow compared to the time scale of the deformation
problem. The rate of change of the worn configuration �(i) is thus negligible at this
time scale. In otherwords, thewear rate is negligible compared to the sliding velocity,
for instance. It is thus the accumulation of wear over a long time period that leads to a
significant change of the worn configuration and to a significant variation of contact
conditions.

Let us thus introduce two time scales, namely the τ -scale of the deformation
problem and the t-scale of the shape changes due to wear. Keeping the shape trans-
formation mapping �(i) unaltered, the deformation mapping ϕ(i) is now expressed
in the following form,

X(i) = �(i)(X̂(i), t), x(i) = ϕ
(i)
t (X(i), τ ), t ∈ [0, T ], τ ∈ [t, t + 
τ ], (21)

where X(i) ∈ �
(i)
t , �(i)

t = �(i)(�̂(i), t), and 
τ is a characteristic or representative
time of the deformation problem, for instance, one cycle of a cyclic loading program.
As long as t and τ are varied simultaneously, the deformation mapping ϕ

(i)
t (X(i), τ )

introduced above is equivalent to that specified by Eq. (19)2.
However, the separation of the two time scales can now be assumed such that

the deformation problem is analyzed at fixed t and thus for fixed �
(i)
t . As a result,

the deformation problem becomes a standard frictional contact problem, as briefly
introduced in Sect. 2, which can be formulated and solved in a standard manner.

Solving the deformation problem at a fixed slow time t yields the deformation
mappings ϕ

(1)
t (X(1), τ ) and ϕ

(2)
t (X(2), τ ) for τ ∈ [t, t + 
τ ], and all other quanti-

ties involved, such as the contact variables (tN , tT , vT ). Furthermore, the wear rate
Ẇ (i)

t (X(i), τ ) can be computed for all pointsX(i) = �(i)(X̂ (i), t) on the potential con-
tact surface �(i)

c using a suitable wear law, for instance, the Archard law discussed
in Sect. 3.2. Computation of the wear rate Ẇ (i)

t is merely a postprocessing task, as
all influential variables are known from the solution of the deformation problem.

The increment 
W (i)
t (X(i)) of wear accumulated at X(i) ∈ �(i)

c during the time
period [t, t + 
τ ] can then be computed by integrating the wear rate Ẇ (i)

t , thus


W (i)
t (X(i)) =

∫ t+
τ

t
Ẇ (i)

t (X(i), τ )dτ, (22)
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and the average wear rate at the t-scale, denoted by Ẇ (i)
t (X(i)), can be defined as

Ẇ (i)
t (X(i)) = 
W (i)

t (X(i))


τ
. (23)

Upon adopting the assumption of separation of time scales, it is the average wear rate

Ẇ (i)
t (X(i)) that is used in the shape evolution law (20) instead of the instantaneous

wear rate Ẇ (i) in the original finite-wear problem.
In order to apply the assumption of time scale separation, it is required that the

shape change associatedwith thewear increment
W (i)
t accumulated over one defor-

mation cycle is sufficiently small so that its effect on the solution of the deformation
problem is negligible. The averagewear rate at the t-scale can then be determined as a
postprocessing quantity at the τ -scale, and the problemof shape evolution due towear
and the deformation problem are incrementally decoupled. In fact, this decoupling
is implicitly assumed in many simulation approaches (e.g., Podra and Andersson
1999; Oqvist 2001; McColl et al. 2004; Hegadekatte et al. 2006; Paulin et al. 2008;
Gallego et al. 2010).

Note that, in a general case, specification of the deformation problem at the τ -scale
may be nontrivial. In fact, friction is a path-dependent phenomenon, and suitable
boundary and initial conditions must thus be applied in order to properly describe
the complex evolution of stick and slip zones accompanied by thewear-induced shape
evolution. In some specific situations, the related problems are easily overcome, for
instance, when each loading cycle starts with an open contact (e.g., Paulin et al. 2008;
Gallego et al. 2010) or when gross sliding occurs during the loading cycle so that the
contact memory is erased.

4.3 Quasi-steady-state Wear Problems

A quasi-steady-state wear problem is defined such that the deformation problem
corresponding to a fixed slow time t is a steady-state frictional contact problem once
formulated in an appropriate Eulerian frame. Typical examples of quasi-steady-state
wear problems are the pin-on-disc tribological test and rolling contact. For instance,
in the former case, the reference frame would be attached to the pin, and the disc
would be analyzed in an Eulerian frame, or in an arbitrary Lagrangian–Eulerian
(ALE) frame in the case of deformable disc.

In a quasi-steady-state wear problem, the deformation subproblem and thus also
the deformation mappings ϕ(i) do not depend on the fast time τ , so that we have

X(i) = �(i)(X̂(i), t), x(i) = ϕ
(i)
t (X(i)), t ∈ [0, T ], (24)

while, as in the general case, the deformation problem is parameterized by the slow
time t of the shape evolution problem. The average wear rate at the t-scale is then
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simply equal to the actual wear rate at the τ -scale, thus

Ẇ (i)
t (X(i)) = Ẇ (i)

t (X(i)), (25)

and Ẇ (i)
t (X(i)) does not depend on τ .

In a steady-state frictional contact problem, the motion is decomposed into a
background motion which is a rigid-body motion in the undeformed configuration
(treated in an Eulerian description) and deformation (treated in a Lagrangian descrip-
tion). This corresponds to a kind of ALE formulation. As the contacting bodies are
here assumed hyperelastic, i.e., their behavior is time- and history-independent, and
the inertial effects are neglected, the Eulerian rigid-body motion does not affect the
deformation problem, except that relative sliding velocity must be properly defined.

The velocity v(i) of a material point with the position x(i) in the deformed con-
figuration ω(i) results solely from the background motion with velocity V(i) in the
undeformed configuration �(i). Specifically, we have

v(i) = F(i)V(i), (26)

where F(i) = ∂x(i)/∂X(i) is the deformation gradient. The sliding velocity vT is then
defined as the tangential component of the relative velocity,

vT = vα
T τ α, vα

T = (v(1) − v̄(2)) · τ α, (27)

where τα is the tangent basis, τ α is the cobasis, and v̄(2) = v(2)(x̄(2)) is the velocity of
the projection point x̄(2), see Sect. 2.With thismodification, formulation of the steady-
state contact problem is identical to that of the general contact problem discussed in
Sect. 2.

4.4 Time Integration of Shape Evolution Problem

In order to arrive at a feasible computational scheme, a time integration scheme must
be applied to the time-continuous shape evolution problem (20). First-order explicit
and implicit Euler schemes are discussed below. A second-order explicit scheme that
employs sensitivity analysis in order to arrive at a more accurate approximation of
wear increments has been proposed by Lengiewicz and Stupkiewicz (2012).

In the following, two subsequent discrete time instants tn and tn+1 = tn + 
t
are thus considered, and a subscript is used to denote the quantities evaluated at a
discrete time instant, e.g., �

(i)
n+1(X̂

(i)) = �(i)(X̂(i), tn+1). Application of the Euler
time integration scheme to the shape evolution law (20) gives

(
�

(i)
n+1(X̂

(i)) − �(i)
n (X̂(i))

)
· N(i)

n+θ (X̂
(i)) = −
t Ẇ (i)

n+θ (X̂
(i)), (28)
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for X̂(i) ∈ �̂(i)
c , while the above condition can be formally extended to the whole

boundary ∂�̂(i) by setting Ẇ (i)
n+θ (X̂

(i)) = 0 for X̂(i) ∈ ∂�̂(i) \ �̂(i)
c . The explicit

forward-Euler scheme and the implicit backward-Euler scheme are obtained for
θ = 0 and θ = 1, respectively.

The incremental shape update scheme (28) prescribes only the normal compo-
nent of the increment of the shape transformation mapping. In order to completely
determine �

(i)
n+1 on the boundary, additional assumptions must be adopted concern-

ing its tangential increment on the boundary ∂�̂(i). For instance, one can assume
that the shape transformation is such that the points on the contact boundary �(i)

c
are transformed along the normal direction. This yields the following shape update
scheme:

�
(i)
n+1(X̂

(i)) = �(i)
n (X̂(i)) − 
t Ẇ (i)

n+θ (X̂
(i))N(i)

n+θ (X̂
(i)). (29)

The time increment 
t in the incremental scheme (28) or (29) is in general
independent of the characteristic time 
τ of the deformation problem. In fact, 
t
can be adopted much larger than 
τ , and its value is actually dictated by the desired
accuracy of the time integration scheme and possibly by its stability (see below).

Explicit forward-Euler time integration schemeAsalreadymentioned, theexplicit
scheme is obtained by setting θ = 0. Eq. (29) can be then be rewritten in the following
form

X(i)
n+1 = X(i)

n − 
t Ẇ (i)
n (X(i)

n )N(i)
n (X(i)

n ), (30)

whichis thebasisofasimpleandpopularshapeupdateschemethatemploysremeshing
after the contact problem is solved at each time step (e.g., Podra andAndersson 1999;
Oqvist 2001; McColl et al. 2004; Hegadekatte et al. 2006; Paulin et al. 2008). In the
context of the finite-element method, the shape update (30) is applied to the boundary
nodes. Subsequently, the positions of the interior nodes are determined in a suitable
remeshing procedure.

The explicit scheme is simple and easy to implement, but it is only conditionally
stable so that the time increment must satisfy the stability condition


t < 
tcr, 
tcr ∼ h

E
. (31)

As shown by Johansson (1994), the critical time increment 
tcr is proportional to
the characteristic mesh size h and inversely proportional to the elastic modulus E . In
realistic conditions, the critical time increment may be very small so that the scheme
becomes computationally expensive. Conditional stability of the explicit scheme is
illustrated by the numerical example reported below.

An approach alternative to the nodal shape update scheme resulting from Eq. (30)
has beenproposedbyLengiewicz andStupkiewicz (2012). In that approach, the shape
parametrization is independent of the finite-element discretization. Time-dependent
shape parameters are introduced for that purpose and the shape evolution law is
then enforced approximately through a minimization problem in which evolution
of shape parameters is fitted to the wear profile resulting from the finite-element
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solution of the deformation subproblem. As illustrated by Lengiewicz and Stup-
kiewicz (2012), independent shape parametrization with a reduced number of shape
parameters improves stability of the explicit scheme. To improve accuracy, it can
be combined with a second-order explicit scheme that employs shape sensitivity
analysis (Stupkiewicz et al. 2010).

Implicit backward-Euler time integration scheme In the case of the fully implicit
time integration scheme (θ = 1), the shape update schemes (28) and (29) involve the

normal N(i)
n+1 and the wear rate Ẇ (i)

n+1, both evaluated at tn+1. The former explicitly

depends on the unknown shape transformation mapping �
(i)
n+1, the latter depends

on the unknown solution ϕ
(i)
n+1 of the deformation subproblem at tn+1, and thus

it also implicitly depends on �
(i)
n+1. The two subproblems are thus coupled and

the problem must be solved simultaneously for ϕ
(i)
n+1 (displacements) and �

(i)
n+1

(shape transformation). Of course, the size of the problem increases due to additional
unknowns.

However, the benefit is that the implicit scheme is unconditionally stable, so
the time increment is limited only by the desired accuracy and not by the stability
condition. In practice, significantly larger time increments can be used as compared
to the explicit scheme, thus leading to a computationally efficient scheme.

Illustrative example: time integration schemes A numerical example, taken from
Stupkiewicz (2013), is provided here to illustrate accuracy and stability of the explicit
and implicit time integration schemes and, in particular, the influence of the elas-
tic modulus and finite-element size on the critical time increment, as predicted by
Eq. (31).

Consider a hyperelastic (neo-Hookean) pin in plane-strain conditions of the geom-
etry shown in Fig. 2. Its lateral boundaries are constrained in the lateral direction and
are free to move in the vertical direction. The pin is pressed into a moving rigid plane
by a constant uniform traction that is applied at the top surface. Frictionless contact is
considered in this example, and the wear rate is thus assumed to be proportional, with
a constant wear coefficient, to the product of contact pressure and sliding velocity.
Details concerning geometry and material and process parameters can be found in
Stupkiewicz (2013).

The Young’s modulus E is varied between 10 and 640MPa so that, for a fixed
prescribed loading, the deformation and the initial contact area are relatively small
for E = 640MPa (small deformation regime in Fig. 2) and they are relatively large
for E = 10MPa (finite deformation regime, results corresponding to E = 20MPa
are shown in Fig. 2).

Wear-induced evolution of the shape of the contact surface is presented in Fig. 3.
The shape evolution problem has been integrated using the explicit and the implicit
scheme, both with large time increments (
t = 200 s, 5 time steps, solid lines) and
with small time increments (
t = 5s, 200 time steps, dashed lines). It can be seen
that, in the small-deformation regime, the time increment 
t = 200 s is higher than
the critical one for the explicit scheme, and the corresponding results exhibit numer-
ical instability, while the instability is not observed for the smaller time increment
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Small deformation regime, E = 640 MPa

Finite deformation regime, E = 20 MPa

Fig. 2 Two-dimensional pin-on-flat problem in the small-deformation regime (top) and in the finite-
deformation regime (bottom). Finite-element mesh in the undeformed configuration and equivalent
stress σeq in the deformed configuration are shown at the initial time instant t = 0 (left) and at the
final time instant t = 1000 s (right) (reproduced from Stupkiewicz 2013)
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Fig. 3 Two-dimensional pin-on-flat problem: small-deformation (top) and finite-deformation (bot-
tom) regime. Shape evolution obtained in 5 time steps (
t = 200 s, solid lines) and in 200 time
steps (
t = 5 s, dashed lines) using the explicit (left) and implicit (right) time integration scheme
(reproduced from Stupkiewicz 2013)


t = 5s. At the same time, the implicit scheme is capable of accurately reproduc-
ing significant configuration changes in just 5 time steps. In the finite-deformation
regime, the explicit scheme is stable and the accuracy of both schemes is similar.
This confirms that the critical time step increases with decreasing elastic modulus,
cf. Eq. (31).

A quantitative assessment of accuracy and stability of the two time integration
schemes is presented in Fig. 4. The figure shows the solution error as a function
of the time increment 
t which has been varied between 1.56 s (640 time steps)
and 200s (5 time steps). Additionally, the Young’s modulus E is varied for a fixed
mesh density of 80 × 80 elements, and the mesh density is varied for a fixed Young’s
modulus E = 640MPa. The solution error has been computed as the Euclidean norm
of the difference of the final nodal positions at the contact surface with respect to the
reference solution obtained using the time increment of 0.78 s (1280 time steps).

In the case of the implicit scheme, the solution error increases with increasing
time increment in an approximately linearmanner. This is expected because the Euler
scheme is first-order accurate. Similar behavior is observed for the explicit scheme at
relatively small time increments. However, a sudden increase of the error is observed
at larger time increments. This is related to the instability of the explicit forward-Euler
scheme. When the mesh density is increased, for instance, from 20 × 20 to 40 × 40
elements so that the element size is decreased by a factor of two, the sudden increase
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Δ Δ

ΔΔ

Fig. 4 Two-dimensional pin-on-flat problem: solution error as a function of time increment 
t for
the explicit (top) and implicit (bottom) time integration scheme. Additionally, the elastic modulus
E is varied for the mesh of 80 × 80 elements (left) and mesh density is varied for E = 640 MPa
(right) (reproduced from Stupkiewicz 2013)

of the error occurs for a twice smaller time increment. Similar effect is observed
when the Young’s modulus is varied. Thus, in agreement with the theoretical result
of Johansson (1994), see also Eq. (31), the critical time increment is proportional to
the element size and inversely proportional to the elastic modulus.

4.5 Shape Update Strategies: Discussion

The incremental solutionprocedures reported in the literature for the progressivewear
problems are usually based on the explicit forward-Euler time integration scheme.
This is because computer implementation of the explicit scheme is considerably
simpler than implementation of the implicit scheme. The typical explicit procedure
amounts to solving the contact problem for the known current shape of the contacting
bodies. Knowing the solution of the contact problem, the wear rate can be computed
directly as a postprocessing quantity. The wear depth increment is then obtained by
multiplying the wear rate by the time increment, the shape is updated accordingly,
and the solution proceeds to the next time step. This procedure has been used in
combination with the finite-element method (Johansson 1994; Podra and Andersson
1999; Oqvist 2001; McColl et al. 2004; Hegadekatte et al. 2006; Paulin et al. 2008;
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Lengiewicz and Stupkiewicz 2012), with the boundary element method (Serre et al.
2001; Sfantos and Aliabadi 2006a; Rodriguez-Tembleque et al. 2012), and with
specialized contact solvers (Gallego et al. 2010; Andersson et al. 2011).

When finite configuration changes due to wear are considered, the shape update
necessarily involves remeshing (Podra and Andersson 1999; Oqvist 2001; McColl
et al. 2004; Hegadekatte et al. 2006; Paulin et al. 2008; Lengiewicz and Stupkiewicz
2012). Alternatively, assuming that the shape changes are small, the shape change
can be modelled by simply adding the accumulated wear depth to the initial normal
gap (Johansson 1994; Serre et al. 2001; Rodriguez-Tembleque et al. 2012).

As discussed above, the explicit scheme is conditionally stable, and the related
instabilities are commonly encountered in computational practice (Johansson 1994;
Podra and Andersson 1999; Oqvist 2001; McColl et al. 2004; Sfantos and Aliabadi
2006a; Lengiewicz and Stupkiewicz 2012). The critical time increment decreases
with increasing elastic modulus and with decreasing element size, cf. Eq. (31). It
follows that mesh refinement increases the computational cost not only due to the
increased number of unknowns but also due to the increased number of time steps
in view of the stability condition enforced on the time increment. Thus, in problems
of practical interest, the solution may be prohibitively expensive.

On the contrary, the implicit backward-Euler scheme is unconditionally stable so
that the time increment is constrained only by the desired accuracy of the solution.
Application of the implicit scheme requires that the wear increment (or shape trans-
formation resulting from wear) constitutes an additional unknown in the problem.
Since the implementation is significantlymore involved, the implicit scheme is by far
less frequently applied to progressive wear problems (Strömberg 1997; Jourdan and
Samida 2009; Ben Dhia and Torkhani 2011; Stupkiewicz 2013; Farah et al. 2017).

In the small-deformation framework adopted by Strömberg (1997), the configu-
ration changes are neglected so that the wear depth could be adopted as an additional
unknown to be added to the initial normal gap.

In the approach of Jourdan and Samida (2009), the shape transformation due to
wear is restricted to the outer layer of elements only, and the computational treat-
ment is based on the non-smooth contact dynamics method (Jean 1999). The result-
ing finite-element equations are not fully linearized so that the iterative solution
scheme is effectively a modified Newton method. In the implicit scheme developed
by Ben Dhia and Torkhani (2011), the coupled wear–deformation problem is not
fully linearized either, and the shape transformation is determined using a fixed-
point iteration method.

A fully-coupled implicit scheme applicable for quasi-steady-state wear problems
has been developed by Stupkiewicz (2013). In this scheme, the shape transformation
mapping �(i) and the deformation mapping ϕ(i) constitute the global unknowns of
the problem, the former is determined from an auxiliary elasticity problem which is
driven by wear increments on the contact boundary. As a result, a kind of an arbitrary
Lagrangian–Eulerian (ALE) formulation is obtained in which the shape transfor-
mation (i.e., the mesh motion in the finite-element context) is resolved simultane-
ously with the displacements, all in a fully-implicit monolithic manner. The resulting
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finite-element equations are solved using the Newton method, and its quadratic con-
vergence is achieved thanks to full linearization of the governing equations.

A general ALE-like scheme has been recently developed by Farah et al. (2017).
The incremental scheme is partitioned into a Lagrangian step and a shape evolution
step. The Lagrangian step corresponds to the deformation subproblem, and it is per-
formed for a fixed shape of the contacting bodies. However, wear effects within this
step are accounted for by adding the accumulated wear increment to the normal gap.
In the shape evolution step, the accumulated wear depth is, in a sense, transferred
from the normal gap to the new updated mesh. The shape evolution step employs an
auxiliary elasticity problem, similar to that used by Stupkiewicz (2013). This parti-
tioned scheme can be iterated until convergence is achieved. The implicit finite wear
framework is combined with a state-of-the-art finite-element contact formulation
employing dual mortar methods (Popp et al. 2013).

It is worth mentioning that several asymptotic or simplified approaches are avail-
able in the literature, which constitute an alternative to the direct incremental schemes
discussed above (e.g., Peigney 2004; Paczelt and Mróz 2005; Sfantos and Aliabadi
2006b; Argatov 2011; Lengiewicz and Stupkiewicz 2013; Menga and Ciavarella
2015). These are not discussed here.

5 Finite Wear: Illustrative Examples

Three illustrative examples are provided in this section. The examples are taken from
our earlier work (Lengiewicz and Stupkiewicz 2012; Stupkiewicz 2013), where the
details can be found along with an extended discussion of the results.

5.1 Reciprocating Pin-on-flat Problem

A two-dimensional problem is first considered that corresponds, in a simplified man-
ner, to the reciprocating pin-on-flat tribological test. This example is aimed at illus-
trating the concept of separation of time scales, as discussed in Sect. 4.2.

An elastic pin is pressed into an elastic block and a reciprocating motion is
enforced under constant normal force, see Fig. 5 for the geometry and finite-element
mesh used in the computations. Both the pin and the block undergo finite defor-
mations and finite configuration changes due to wear. Details concerning geometry,
frictional contact and material parameters can be found in Lengiewicz and Stup-
kiewicz (2012).

The formulation and the computational treatment rely here on the concept of
two time scales and time-scale separation. The fast time scale τ corresponds to one
loading cycle during which the pin is slid to the right and to the left with a fixed
amplitude A, starting at the center of the block. The deformation subproblem that
is solved at each slow time scale instant t includes an initial stage during which the
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(c)(b)(a)

Fig. 5 Reciprocating pin-on-flat problem: initial (unworn, top) and final (worn, bottom) unde-
formed and deformed configurations at the beginning of the initial stage (a), at the beginning of the
actual loading cycle (b), and in the right-most position after one quarter of the loading cycle (c)
(reproduced from Lengiewicz and Stupkiewicz 2012)

pin is brought to contact in the left-most position, Fig. 5a, and then it is slid towards
the center of the block, Fig. 5b. This ensures that the actual loading cycle starts in
the condition of fully developed frictional sliding. Subsequently, the pin is slid the
distance of A to the right, Fig. 5c, then the distance of 2A to the left, and finally the
distance of A to the right, which completes the loading cycle in a single deformation
subproblem.Following the assumption of scale separation, shape changes due towear
are suppressed at the fast time scale. After the deformation subproblem is solved and
the corresponding wear increment is computed, the shape evolution subproblem is
solved, here using the explicit scheme. The resulting finite shape changes are clearly
visible in Fig. 5.

A study of accuracy of the explicit time integration scheme, including also the
second-order explicit scheme that employs sensitivity analysis, can be found in
Lengiewicz and Stupkiewicz (2012).

5.2 Elastic Ball–Rigid Flat Problem

In this example, an elastic ball is slid against a rigid surface under constant nor-
mal load, see Stupkiewicz (2013) for a detailed description. The problem is thus a
quasi-steady-state wear problem, and the deformation subproblem is a steady-state
frictional contact problem in a frame attached to the ball, cf. Sect. 4.3.

The ball radius is R = 5mm, the elastic properties are specified by E = 100GPa
and ν = 0.3, and the normal force is F = 100N. Considering that the counter-body
is rigid, the reduced elastic stiffness of the contact pair is approximately equal to
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that of two elastic bodies made of steel. The Hertzian pressure is then p0 = 2.1GPa,
and the Hertzian contact radius is a = 0.15mm. These are realistic conditions that
correspond to the small-deformation regime. A finite-deformation counterpart has
also been studied by Stupkiewicz (2013)—the corresponding results are not provided
here.

Loading is applied at the mid-plane of the ball so that only one quarter of the
ball can be analyzed considering the symmetry with respect to a plane parallel to
the sliding direction. As the elastic strains are small, the undeformed and deformed
configurations are very close one to the other. Note that frictional contact is here
considered. Otherwise the problem would be axially symmetric. The initial and the
final shape of the ball are shown in Fig. 6.

The contact pressure at two instants is shown in Fig. 7. The initial pressure at t = 0
is not included in Fig. 7 because the finite-element mesh is too coarse to reasonably
reproduce the Hertzian pressure distribution (the element size in the contact area is
0.125mm, while the Hertzian contact radius is a = 0.15mm). It can be seen that
the pressure is uniform, and its value decreases as the contact area increases due to
progressive wear. This response is easily explained by observing that the counter-
surface is planar and rigid. As the elastic strains and displacements are small, the
worn contact surface is also planar, see Fig. 6b. Accordingly, wear induces a kind
of rigid-body motion of the ball in the normal direction. This rigid-body motion is
then associated with a uniform wear rate which, through the wear model, induces
a uniform contact pressure. Note that the related features of the quasi-steady-state
wear problems constitute the basis for simplified asymptotic models (e.g., Paczelt
and Mróz 2005; Lengiewicz and Stupkiewicz 2013).

The results reported above were obtained using the implicit scheme with a fixed
time increment 
t = 100 s (actually, at the very beginning of the process, substep-
ping was needed to achieve convergence so that 17 time steps were needed in total
to complete the simulation). By numerical experiments, the critical time increment
of the explicit time integration scheme has been estimated to be approximately equal
to 
tcr ≈ 0.1s. Accordingly, the explicit scheme would require about 10,000 time

Fig. 6 Elastic ball–rigid flat problem: equivalent stress σeq in the deformed configuration (the
undeformed configuration is nearly identical) at the initial time t = 0 (a) and at the final time
t = 1000 s (b) (reproduced from Stupkiewicz 2013)
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Fig. 7 Elastic ball–rigid flat problem: contact pressure (in MPa) at t = 100 s (a) and t = 1000 s
(b) (reproduced from Stupkiewicz 2013)

steps to complete the simulation. Even though the computational cost of one time
increment in the implicit scheme is higher than that of the explicit scheme due to the
increased number of global unknowns, the implicit scheme is more efficient than the
explicit one, and the gain in computational cost is significant (about two orders of
magnitude).

5.3 Rigid Ball Sliding Against Elastic Half-Space

In this example, a rigid ball is repeatedly slid against an elastic half-space, see Stup-
kiewicz (2013) for details. Wear due to repeated sliding will thus result in formation
of a wear groove on the half-space. This arrangement corresponds, for instance, to
the ball-on-disk test, provided the curvature of the sliding path (and wear groove) on
the disk is negligible. The problem is a quasi-steady-state problem so that the elastic
half-space can be analyzed in an Eulerian frame with the coordinate system attached
to the rigid ball. Specifically, an Eulerian description of the rigid-body motion in
the undeformed configuration is adopted, while the deformation due to the contact
interaction is treated in a Lagrangian manner, see Sect. 4.3. Other relevant tribolog-
ical tests are illustrated in Fig. 8. In the case of the reciprocating pin-on-flat test,
the periodic pin-on-flat arrangement is only an approximation since this problem is
actually not a quasi-steady-state problem.

Referring to the pin-on-disk test, the disk wears due to the repeated contact at
each revolution of the disk. Hence, the wear rate governing the evolution of the wear
groove must be averaged along the sliding path, and the corresponding parameter L ,
the sliding length per cycle, must be specified. In the case of the pin-on-disk test, L
is the circumference of the circular sliding path. This parameter is independent from
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Fig. 8 Periodic pin-on-flat arrangement as an approximation of three tribological tests (reproduced
from Lengiewicz and Stupkiewicz 2013)

the actual dimensions of the computational domain, the latter being restricted to the
neighbourhood of the contact zone in order to reduce the computational cost.

Two sets of material parameters are considered that correspond to the finite-
deformation and the small-deformation regime. Details are provided in Stupkiewicz
(2013). The deformed finite-element mesh and the contact pressure at the initial and
final time instant are shown in Fig. 9 for the case of the finite-deformation regime.

Thewear groove is here uniformalong the slidingdirectionwhich is a consequence
of quasi-steady-state conditions. Accordingly, the shape transformation mapping �

is also uniform along the sliding direction, and it is sufficient to prescribe it as
a two-dimensional field at one cross-section only. The number of corresponding
degrees of freedom in the finite-element model is thus a small fraction of the total
number of degrees of freedom, and the additional computational cost of solving
the coupled problem of deformation and shape evolution, as referred to the cost of
the deformation problem alone, is small. The fully coupled implicit scheme is thus
particularly attractive for this class of problems.

In the finite-deformation regime, conditional stability of the explicit scheme is not
a crucial issue, as already illustrated in the previous examples. The situation is again
very different in the case of the small-deformation regime. Figure10a presents the
corresponding evolution of the contact pressure obtained using the implicit scheme.
Initially, the Hertzian pressure distribution corresponds to the initial circular contact
zone. Once the wear groove forms, the contact zone becomes elongated and so is the
contact pressure distribution. A characteristic feature of the pressure distribution is
observed for t ≥ 100 s which results from the elastic contact interaction of the ball
with a nearly cylindrical groove. Specifically, the pressure profile is uniform along
the direction perpendicular to the sliding direction, except at the outer edge where
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Fig. 9 Rigid ball–elastic half-space problem in the finite-deformation regime: equivalent stress σeq
in the deformed configuration (top) and contact pressure (bottom) at (a) t = 0 and (b) t = 1000 s
(reproduced from Stupkiewicz 2013)

a small pressure spike is formed. This pressure distribution is shown in detail at the
bottom of Fig. 10a.

In this example, the finite-element mesh (not shown, see Stupkiewicz (2013))
consists of 65,600 hexahedral elements, and the total number of unknowns is 219,432
of which only about 3,400 are the displacement-like quantities corresponding to
the shape transformation mapping �. The additional computational cost related to
the application of the implicit time integration scheme is thus very small. This is
because the number of additional unknowns associatedwith the shape transformation
mapping is small compared to the total number of unknowns (less than 2%). The
benefit due to stability of the integration scheme is thus obvious. Specifically, it
has been checked that the critical time increment of the explicit scheme is here not
greater than 0.5–1s, thus at least 1000–2000 time steps would be needed to obtain
a stable solution using the explicit scheme. The corresponding computational cost
would thus be approximately two orders of magnitude higher than that of the implicit
scheme for which the simulation required only 26 time steps.
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Fig. 10 Rigid ball–elastic half-space problem in the small-deformation regime for the homoge-
neous (a) and inhomogeneous (b) half-space. Top figures show evolution of the contact pressure
(subsequent graphs correspond to t = 0, 50, 200, 500, 1000 s) and a detailed view of the contact
pressure at t = 1000 s is shown in the bottom figures. Results corresponding to the homogeneous
half-space are reproduced from Stupkiewicz (2013)

Additional results obtained for an inhomogeneous surface layer are also included
in Fig. 10b. Here, it is assumed that the elastic half-space is coated with a functionally
graded (FGM) layer in which the elastic modulus and the wear coefficient depend
on the depth. Both parameters increase linearly towards the surface starting from
their reference values characteristic for the homogeneous substrate. As the material
is removed and the wear groove is formed, the material characterized by a lower
elastic modulus and a lower wear coefficient is thus gradually exposed. The local
wear coefficient is thus non-uniform across the wear groove. As a result, the contact
pressure increases towards the groove edges where the wear coefficient is the highest,
see Fig. 10b.
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5.4 Finite Wear: Summary

In Sects. 3, 4 and 5, a class of non-standard finite-wear contact problems has been
discussed, and, in particular, illustrative numerical examples have been presented in
Sects. 4.4 and 5.

The distinctive feature of the formulation proposed by Lengiewicz and Stup-
kiewicz (2012) and described in Sect. 4 is that finite changes of configuration are
considered that result from both wear and deformation. This general setting implies
that some care must be taken when formulating the problem. For instance, a distinc-
tion is made between the nominal and the spatial wear rate, and the wear law, e.g., the
classical Archard law, must be adequately formulated, as discussed in Sect. 3. Also,
the finite configuration changes have consequences for the finite-element treatment,
here discussed in the context of the master-slave approach.

As the second important ingredient, the concept of two time scales has been
introduced with the fast time scale of the deformation subproblem and the slow time
scale corresponding to the shape evolution problem. Now, assuming separation of the
two time scales allows one to partially decouple the two subproblems. Importantly,
upon adopting this assumption, the deformation subproblem becomes a standard
frictional contact problemwhich is not affected by the shape changes due to wear and
thus can be solved using standard techniques of computational contact mechanics.
This has been illustrated by the reciprocating pin-on-flat problem in Sect. 5.1.

Finally, the concept of two time scales provides a framework for developing var-
ious computational strategies for time integration of the shape evolution problem.
The most common approach is based on applying the explicit forward-Euler scheme
which is easy to implement, but which suffers from conditional stability. Alterna-
tive strategies include the approach employing the unconditionally-stable implicit
backward-Euler scheme that has been studied in Sect. 4.4 and successfully applied
to more advanced problems in Sects. 5.2 and 5.3. In particular, in the case of the rigid
ball–elastic half-space problem, a high-quality solution of this three-dimensional
problem has been obtained at a relatively low computational cost thanks to the appli-
cation of the implicit scheme. To the best of our knowledge, similar results are not
available in the literature, and this is because the application of the usual explicit
time-integration scheme would be associated with a very high computational cost
due to the severe constraint on the time step, as imposed by the stability criterion.

6 Hydrodynamic Lubrication

6.1 Introduction to Soft-EHL

Hydrodynamic lubrication is a contact regime in which the contacting solids are
fully separated by a thin film of fluid (lubricant) such that the load is fully transferred
by the hydrodynamic pressure that develops in the fluid. When the hydrodynamic
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pressure is sufficiently high to elastically deform the contacting bodies, the thickness
of the gap between the bodies changes, which in turn influences the fluid flow. This
introduces the elasto-hydrodynamic coupling which is characteristic for the elasto-
hydrodynamic lubrication (EHL) regime. Finally, when one or both contacting bod-
ies are highly compliant (or soft), a relatively low pressure suffices to significantly
deform the bodies, and this lubrication regime is usually called soft-EHL. Alterna-
tively, it is called elastic-isoviscous regime, as the effect of the pressure dependence
of fluid viscosity is not essential, and the viscosity can be assumed constant, con-
trary to the elastic-piezoviscous (or hard-EHL) regime in which the related effects
are crucial. The focus of the remainder of this chapter is on the soft-EHL problems
and, in particular, on the related finite-deformation effects.

Representative examples of soft-EHL problems include elastomeric seals, wind-
screen wipers, wet tyres, and others. However, the soft-EHL regime is also charac-
teristic for many biotribological systems, such as synovial joints, contact-lens lubri-
cation, eye–eyelid contact, human skin contact, and oral processing of food (e.g.,
Dowson 1995; de Vicente et al. 2005; Adams et al. 2007; Jones et al. 2008). Clearly,
additional difficulties are encountered in the modelling of biotribological systems,
which are associated with the modelling of the complex constitutive behaviour of
soft tissues and biological fluids. The related effects are not discussed here.

In the context of hydrodynamic lubrication, the fluid flow in the thin channel
between the contacting bodies is usually described using the well-known Reynolds
equation (Reynolds 1886). The Reynolds equation is obtained from the Navier–
Stokes equation by integrating it over the film thickness under several assumptions
of which the most important one is that the film is thin so that the flow is laminar
and fluid inertia is negligible (Dowson and Higginson 1977; Hamrock et al. 2004).
The resulting partial differential equation, introduced in Sect. 6.3 below, relates the
hydrodynamic pressure (assumed constant across the film) and the film thickness. In
the usual setting, the film thickness is assumed known, and unknown is the pressure.
Transition from the Navier–Stokes equation to the Reynolds equation is associated
with a dimension reduction so that the Reynolds equation is formulated on the lubri-
cation surface, and the corresponding problem is thus two-dimensional in the general
three-dimensional case.

Two phenomena are considered in the modelling of an EHL problem, namely
the fluid flow in the thin channel between the contacting bodies and the elastic
deflections of the bodies. As mentioned above, the fluid subproblem is conveniently
modelled using the Reynolds equation that relates the hydrodynamic pressure and
the film thickness. At the same time, the film thickness is influenced by the elastic
deflections of the bodies as a result of the action of the hydrodynamic pressure. The
two subproblems are thus strongly coupled.

The EHL problem is thus, in fact, a particular kind of a fluid–structure interaction
(FSI) problem in which the fluid part is modelled using the Reynolds equation upon
adopting the thin-film approximation. In principle, the general FSI approach can
alternatively be applied, in which the Navier–Stokes equation is directly used for the
fluid part. This general approach offers several advantages by relaxing the assump-
tions behind the Reynolds equation. At the same time, whenever those assumptions
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are reasonably satisfied, the two approaches yield similar results (e.g., Almqvist et al.
2004; Hajishafiee et al. 2017), while the approach based on the Reynolds equation
is expected to be significantly more efficient due to the reduced number of degrees
of freedom and due to the ease of spatial discretization.

In the classical EHL theory, the solid subproblem is modelled within the linear-
elasticity framework. The elasticity problem is then usually formulated for a half-
space so that specialized, highly efficient solution methods can be applied (Dowson
andHigginson 1977;Hamrock et al. 2004).While both assumptions (linear elasticity,
half-space approximation) are well justified in the case of the hard-EHL problems,
this is not necessarily so in the case of the soft-EHL problems in which finite defor-
mations may be encountered. Furthermore, the size of the contact zone may be
comparable to the size of the contacting bodies so that the half-space approximation
is then not adequate.

In realistic conditions, the lubricant film is very thin so that surface roughness
may significantly influence the fluid flow and the overall behaviour of the contact
pair. However, the related effects are not discussed in the following, and the presen-
tation of the Reynolds equation is restricted to the case of smooth surfaces. Let us
only mention here that several approaches are readily available for the modelling
of roughness effects through the so-called flow factors introduced first by Patir and
Cheng (1978) and reinterpreted later in the rigorous framework of the homogeniza-
tion theory (Bayada and Faure 1989; Buscaglia and Jai 2000; Bou-Said and Kane
2004; Bayada et al. 2006; Almqvist et al. 2011; Waseem et al. 2017).

6.2 Lubrication Surface and Film Thickness

The Reynolds equation is usually formulated on a planar lubrication surface. Below,
a more general form is provided for a non-planar surface. The presentation is here
restricted to a time-independent lubrication surface, while the general case of a time-
dependent lubrication surface is discussed in detail in the recent work of Temizer
and Stupkiewicz (2016).

Let us consider the flow of a fluid (lubricant) in a thin channel between two
physical surfaces γ

(i)
l , i = 1, 2, that represent the contact boundaries of the two

contacting bodies in the current configuration, see Fig. 11. The physical surface
γ

(i)
l is parametrized by the convected curvilinear coordinates ξ (i),α , α = 1, 2, so
that the position of a material point in the current configuration is represented by
x(i) = x(i)(ξ (i), t) for x(i) ∈ γ

(i)
l .

We also introduce the lubrication surface S on which the lubricant flow will be
described. It is assumed that the lubrication surface S is located between the physical
surfaces γ

(i)
l . This imposes a constraint on the deformation (motion) of the physical

surfaces because S is here assumed time-independent. Actually, the case of the time-
independent lubrication surface is most relevant when one of the physical surfaces
is rigid so that the lubrication surface can be identified with this rigid surface.
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Fig. 11 Physical surfaces γ
(i)
l and lubrication surface S

Note that there is some ambiguity in the choice of the location of the lubrication
surface S between the physical surfaces γ

(i)
l when the distance between the physical

surfaces is finite (though still sufficiently small so that the Reynolds approximation
holds). The results of the computational study reported by Stupkiewicz et al. (2016),
see also Fig. 23, show that the solution of the EHL problem is not much afftected by
the location of the lubrication surface, and this aspect is not discussed here in detail.

Position of a point on the lubrication surfaceS is denoted byy, and parametrization
ofS by curvilinear coordinates η = {η1, η2} is introduced so that y = y(η) for y ∈ S.
This parametrization introduces the tangent basis gα and the co-basis gα such that

gα = ∂y
∂ηα

, gα · gβ = δα
β , α, β = 1, 2, (32)

where δα
β is the Kronecker delta. Let ν denote the unit normal to S, pointing in the

direction from γ
(2)
l to γ

(1)
l , thus gα · ν = 0.

Consider now a scalar field φ = φ(η) defined on S. The surface gradient of φ

can be expressed as

gradS φ = ∂φ

∂ηα
gα, (33)

where the repeated (Greek) indices are implicitly summed over. It follows that the
surface gradient of a scalar field is a vector tangent to S. Similarly, the surface
divergence of a vector field φ = φ(η) defined on S can be expressed as

divS φ = ∂φ

∂ηα
· gα. (34)

For future use, we also recall the surface-divergence theorem for a continuously
differentiable tangential vector field φ (thus φ · ν = 0),
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∫
S
divS φ ds =

∫
∂S

φ · m dl, (35)

where m is a unit vector tangent to S that is simultaneously an outward normal to
∂S.

One of the basic assumptions in the derivation of the Reynolds equation is that
the thickness of the lubricant film, denoted by h = h(η, t), is small compared to the
dimensions of the lubrication surface S. Even though the present formulation admits
finite deformations of the contacting bodies, the above assumption restricts those
deformations such that the film thickness is sufficiently small so that the Reynolds
approximation holds. In typical conditions, the film thickness is indeed small except
in the inlet and outlet zones in which the two contacting surfaces diverge and the
film thickness may no longer be small. However, the hydrodynamic pressure buildup
is concentrated in the zone where the film thickness is relatively small (note that
the Poiseuille term discussed below depends on h3). Accordingly, even if the film
thickness is relatively large in the inlet and outlet zones, and thus the assumption of
small film thickness may be violated there, the related effect on the solution in the
actual contact zone is not substantial.

Since the fluid film thickness is here considered finite, though small, there is some
ambiguity in defining its measure. In the following we adopt the definition based on
the inverse-orthogonal projection, as illustrated in Fig. 11, but alternative options
are also possible (cf. Temizer and Stupkiewicz 2016). The film thickness h is thus
decomposed into the measures h(i) of the gap between the physical surfaces γ

(i)
l and

the lubrication surface S,
h = h(1) − h(2), (36)

where h(i) is defined by the inverse-orthogonal projection of a point y ∈ S onto γ
(i)
l

along the normal ν,
h(i) = (x̄(i) − y) · ν. (37)

Here, x̄(i) = x(i)(ξ̄ (i), t) is the inverse-orthogonal projection of y onto γ
(i)
l , defined

such that x̄(i) = y + h(i)ν, and a bar over the symbol denotes the quantity evaluated
at the projection point.

6.3 Reynolds Equation

The Reynolds equation expresses the mass balance of the fluid contained in the thin
channel between the physical surfaces γ

(1)
l and γ

(2)
l (e.g., Hamrock et al. 2004). For a

time-independent non-planar lubrication surface S, the mass balance equation takes
the following form:

∂(�h)

∂t
+ divS(�q) = 0, (38)
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where q is the fluid flux vector tangent to S, to be specified below, and � is the
density.

For an incompressible fluid (relevant for the soft-EHL), the density � is constant
and the Reynolds equation expresses the balance of volume, viz.

∂h

∂t
+ divS q = 0. (39)

In the Reynolds approximation of the fluid flow within the thin film, the fluid
flux q comprises two components: the Poiseuille term is proportional to the pressure
gradient and corresponds to the parabolic profile of the fluid velocity across the film,
while the Couette term is proportional to the average tangential velocity, see Fig. 12.
Specifically, the fluid flux is given by the following expression,

q = − h3

12μ
gradS p + hvT , (40)

where p is the pressure, vT is the mean tangential velocity of the two physical
surfaces, andμ is the fluid viscosity, which is here assumed constant, but its pressure-
dependence can be easily accounted for. It is recalled that the Reynolds equation is
formulated on the lubrication surfaceS so that all quantities depend on the curvilinear
coordinates η and time, thus, for instance, p = p(η, t).

In view of the kinematics introduced by the inverse-orthogonal projection and by
the definition of the film thickness h, Eqs. (36)–(37), the mean tangential velocity
vT is defined as

vT = 1

2

(
v̄(1)
T + v̄(2)

T

)
, (41)

where v̄(i)
T = v(i)(ξ̄ (i), t) is the tangential velocity of the physical surface γ

(i)
l at the

projection point x̄(i),

flowflow
Couette Poiseuille

v̄(1)
T

v̄(2)
T

Fig. 12 Fluid velocity across a thin channel: Couette and Poiseuille contributions



Finite Wear and Soft Elasto-Hydrodynamic Lubrication . . . 155

v(i)
T = v(i) − v

(i)
N ν, v(i) = ∂x(i)

∂t
, v

(i)
N = v(i) · ν. (42)

The Reynolds equation (39)–(40) is accompanied by the standard essential and
natural boundary conditions, namely

p = p∗ on ∂pS and q · m = q∗ on ∂qS, (43)

where p∗ is the pressure prescribed on the boundary ∂pS, q∗ is the flux prescribed
on the boundary ∂qS, and m is a unit vector tangent to S and normal to ∂S, pointing
outwards of S. Note that cavitation, if considered, introduces additional boundary
conditions on an unknown cavitation boundary, see Remark 3.1.

The first term in the Reynolds equation (39) is the time derivative of the film
thickness h = h(η, t). This derivative is evaluated at fixedη and, in viewof Eqs. (36)–
(37), it involves differentiation of the position x̄(i) of the projection point (for fixed
η). Note that the coordinates ξ̄ (i) of the projection point depend on time so that we
have x̄(i) = x(i)(ξ̄ (i)(η, t), t). The time derivative of h(i) at fixed η is thus equal to

∂h(i)

∂t
=

(
v̄(i) + ∂x(i)

∂ξ (i),α
˙̄ξ (i),α

)
· ν = v̄

(i)
N + (τ̄ (i)

α · ν) ˙̄ξ (i),α, (44)

where τ (i)
α denotes the tangent basis associated with the parametrization of the phys-

ical surface γ
(i)
l by ξ (i), and we have

∂h

∂t
= v̄

(1)
N − v̄

(2)
N +

(
τ̄ (1)

α
˙̄ξ (1),α − τ̄ (2)

α
˙̄ξ (2),α

)
· ν. (45)

Note that, in general, τ̄ (i)
α · ν 
= 0 since the physical surfaces are not necessarily

parallel to the lubrication surface. It follows from Eq. (45) that the time derivative
of the film thickness h involves not only the normal velocities v̄

(i)
N of the physical

surfaces, but also the term related to the motion of the physical surfaces that are
(locally) inclined with respect to the lubrication surface. This is further discussed in
Sect. 6.6 in the case of a planar lubrication surface.

For future use, we provide here the formula for the surface traction acting on the
physical surface γ

(i)
l :

t(i) = −pn(i) − μ

h

(
v̄(i)
T − v̄(i±1)

T

)
− h

2
gradS p, (46)

where n(i) is the unit outward normal to γ
(i)
l . The first term is the normal traction due

to the hydrodynamic pressure. The second and the third term are due to the viscous
shear stresses in the fluid that act on the solid surfaces (Hamrock et al. 2004, Sect. 7.3).
Specifically, the second term results from the Couette flow, and v̄(i±1)

T denotes here
the tangential velocity of the countersurface, i.e. i ± 1 = 2 for i = 1 and i ± 1 = 1
for i = 2. Accordingly, the second term is proportional to the tangential relative
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velocity, and it acts on the two surfaces in the opposite direction. The third term
results from the Poiseuille flow. This term is proportional to the pressure gradient,
and it acts on the two surfaces in the same direction.

6.4 Weak Form of the Reynolds Equation

The weak form of the Reynolds equation (39) is obtained by following the standard
procedure. Equation (39) is first multiplied by a test function δp, which vanishes on
∂pS, and integrated over the lubrication surface S, thus

∫
S

(
∂h

∂t
+ divS q

)
δp ds = 0 ∀ δp. (47)

By using the identity

divS(q δp) = (divS q)δp + q · gradS δp (48)

and by applying the divergence theorem (34) to the term divS(q δp), Eq. (47) is then
transformed to the following weak form,

∫
S

(
∂h

∂t
δp − q · gradS δp

)
ds +

∫
∂qS

q∗δp dl = 0 ∀ δp, (49)

where the boundary integral over ∂pS vanishes because the test function δp vanishes
on ∂pS.

6.5 Cavitation

Cavitation is an important phenomenon in hydrodynamic lubrication, although, for
highly compliant solids, the effect of cavitation on friction is limited (Persson and
Scaraggi 2009). The popular mass-conserving cavitation model is briefly presented
below. This model is often referred to as the JFO model as it follows the pioneering
work of Jakobsson and Floberg (1957) andOlsson (1965). The formulation presented
below is based on that developed by Lengiewicz et al. (2014), where more details
can found, including the references to the earlier work.

When cavitation occurs, the lubrication surface S is divided into the full-film
region S f and the cavitated region Sc with the cavitation boundary, denoted by �,
separating the two regions, cf. Fig. 13. The position of the cavitation boundary �

constitutes a part of the solution hence the cavitation problem belongs to the class of
free-boundary problems.
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Fig. 13 Cavitation: full-film
region S f and cavitated
region Sc mΣ

Sc

Sf

m

∂S

Σ
vT

Cavitation occurs when the hydrodynamic pressure drops to the cavitation pres-
sure pcav, and the pressure is constant and equal to the cavitation pressure p = pcav
in the cavitated region, viz.

p ≥ pcav on S and p = pcav on Sc. (50)

In the cavitated region, the fluid is a mixture of liquid, vapor, and gas, and its density
� is thus lower than the density �0 of the intact fluid,

� ≤ �0 on S and � = �0 on S f . (51)

Since the focus is here on soft-EHL problems, the intact fluid is assumed incompress-
ible so that the density � = �0 is constant in the full-film region S f . Introducing the
relative density �̄ = �/�0 and assuming for simplicity that pcav = 0, conditions (50)
and (51) can be compactly written in the form of the following complementarity
conditions,

p ≥ 0, �̄ − 1 ≤ 0, p(�̄ − 1) = 0 on S, (52)

which resemble the unilateral contact conditions (4).
Since the density is no longer constant, the Reynolds equation is now written in

the following form, cf. Eq. (38),

∂(�̄h)

∂t
+ divS(�̄q) = 0, (53)

In the full-film region S f the flux is defined by Eq. (40), while in the cavitated region
Sc the flux is assumed to comprise only the Couette term, thus

q = hvT on Sc, (54)

which can be formally obtained from Eq. (40) by putting gradS p = 0, in agreement
with the assumption that the pressure is constant in in the cavitated region.

The mass-balance equation (53) is accompanied by the continuity condition that
enforces the mass balance on the cavitation boundary �,
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(�̄+q+ − �̄−q−) · m� = 0 on �, (55)

wherem� is the unit vector tangent toS, normal to�, and oriented outwards fromSc.
The superscripts ‘+’ and ‘−’ denote the limit values of the corresponding quantities
as the cavitation boundary � is approached from the full-film and cavitated side,
respectively.

The weak form of the Reynolds equation combined with the above mass-
conserving cavitation model can by obtained by following the procedure outlined in
Sect. 6.4, applied to the full-film region S f and to the cavitation region Sc separately,
and by exploiting the continuity condition (55). This leads to the following weak
form ∫

S

(
∂(�̄h)

∂t
δp − �̄q · gradS δp

)
ds = 0 ∀ δp, (56)

where it has been additionally assumed that the Dirichlet boundary condition (43)1 is
prescribed on the whole boundary ∂S so that the boundary term vanishes. However,
this form is not suitable for the finite-element implementation because it is not com-
patible with the upwind scheme that is needed to stabilize the advection equation in
the cavitated region, see Remark 3.2 below.

An alternative weak form is obtained by applying the divergence theorem only
to the pressure-gradient part of the flux q, which yields the following weak form
(Lengiewicz et al. 2014, Appendix A)

∫
S

(
�̄h3

12μ
gradS p · gradS δp +

(
divS(�̄vT h) + ∂(�̄h)

∂t

)
δp

)
ds

+
∫

�

(�̄+ − �̄−)hvT · m� δp dl = 0. (57)

We note that the last term in the above weak form involves the jump of the rela-
tive density �̄ along the cavitation boundary �. Actually, the relative density �̄ is
continuous on the rupture boundary and suffers discontinuity on the reformation
boundary, see Remark 3.1. Considering that the position of the cavitation boundary
� is unknown, the jump term in the weak form (57) is an undesired feature from
the point of view of finite-element implementation. In the approach developed by
Lengiewicz et al. (2014), a continuous finite-element approximation of the relative
density �̄ (actually, of the void fraction λ = 1 − �̄) has been introduced so that the
jump term vanishes, and a direct finite-element treatment is possible. The jump of �̄

on the reformation boundary is then approximated by a continuous solution with a
high gradient.

The lubrication and cavitation problem is governed by the weak form (57) and
by the complementarity conditions (52). After a small modification, the problem
can be formulated as a linear complementarity problem (LCP) that can be solved
using the methods available for this class of problems (Giacopini et al. 2010). In the
computational scheme developed by Lengiewicz et al. (2014), the complementarity
conditions (52) are enforced by introducing a non-smooth constraint function that
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relates two independent unknown fields, the pressure p and the relative density
�̄. This two-field formulation can be transformed to a single-field formulation in
which a single variable is used, along with the complementarity conditions (57),
to represent the two physical fields, see also Hajjam and Bonneau (2007). A single-
field formulation is also employed in the classical Elrod–Adams cavitation algorithm
(Elrod and Adams 1974; Elrod 1981) in which the fluid is assumed compressible in
the full-film region so that the pressure and the density are related by a one-to-one
function. The formulation outlined above is applicable for an incompressible fluid.

Remark 3.1 The mass-flux continuity condition (55) and the cavitation condition
(52) imply the well-known boundary conditions of the JFO theory. Specifically, on
the film rupture boundary, where vT · m� < 0, the relative density �̄ is continuous
so that we have

p+ = 0 and (gradS p)+ · m� = 0. (58)

On the reformation boundary, where vT · m� > 0, the relative density �̄ suffers
discontinuity which, in view of condition (55), implies discontinuity of the pressure
gradient, thus

p+ = 0 and
�̄+h3

12μ
(gradS p)+ · m� = (�̄+ − �̄−)hvT · m�. (59)

The formulation developed by Lengiewicz et al. (2014) and outlined above is based
on the general continuity condition (55), and the boundary conditions (58) and (59)
are not employed directly.

Remark 3.2 In the cavitated region, the lubrication and cavitation problem becomes
a pure advection problem because the pressure gradient vanishes in that region
in view of the condition (50)2. The standard Galerkin finite-element formulations
are not suitable for such problems (Zienkiewicz and Taylor 2000), and upwinding
schemes are usually used to stabilize the problem. However, the popular streamline
upwind/Petrov–Galerkin (SUPG) method (Brooks and Hughes 1982) is not effective
in the case of the weak form (56), because it involves the test-function gradient,
which is not affected by the upwind correction when low-order (linear) elements are
used. Accordingly, the alternative weak form (57) is needed, for which the SUPG
method works well, see Lengiewicz et al. (2014) for details.

6.6 Traditional Form for a Planar Lubrication Surface

The Reynolds equation is usually formulated on a planar lubrication surface, which
also includes the case of an unwrapped cylindrical surface of a journal bearing.
The compact vector notation employed so far in Sect. 6 is not popular either. For
completeness, the traditional form of the Reynolds equation is thus included below.
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Assume thus that the physical surface γ
(2)
l is planar and so is the lubrication

surface S which is represented by a domain in the (x, y)-plane so that the normal ν
is aligned with the z-axis. The Reynolds equation (39)–(40) can then be written in
the following form:

∂

∂x

(
h3

12μ

∂p

∂x

)
+ ∂

∂y

(
h3

12μ

∂p

∂y

)

= ∂

∂x

(
h

2

(
v(1)
x + v(2)

x

)) + ∂

∂y

(
h

2

(
v(1)
y + v(2)

y

)) + ∂h

∂t
, (60)

where v(i)
x , v(i)

y and v(i)
z are the components of the velocity v(i). The time derivative

of the film thickness h is now given by the following formula:

∂h

∂t
= v(1)

z − v(2)
z − v(1)

x

∂h

∂x
− v(1)

y

∂h

∂y
, (61)

see (Hamrock et al. 2004, Sect. 7.3). As in the general case, cf. Eq. (45), in addition
to the contribution of the normal velocity components v(i)

z , ∂h/∂t comprises the term

related to the tangential (in-plane) motion of an inclined physical surface γ
(1)
l . Note

that γ
(2)
l is assumed to be planar and parallel to the (x, y)-plane hence it does not

contribute to ∂h/∂t .

7 Formulation of the Soft-EHL Problem

This section presents the formulation and the finite-element treatment of the soft-
EHL problem. The formulation and its implementation are restricted to steady-state
conditions, and one of the contacting bodies is assumed to be rigid and is repre-
sented by a rigid surface. Finite deformations of the other body, which is assumed
hyperelastic, are fully accounted for.

7.1 Solid Part

Consider first the solid subproblem formulated for the hyperelastic body (i = 1, the
index is omitted in the following), the other body (i = 2) is assumed to be rigid.
In the finite-deformation framework, the reference configuration � and the current
configurationω are introduced alongwith the deformationmapping x = ϕ(X), where
X ∈ � and x ∈ ω. The virtual work principle, i.e. the weak form of equilibrium, has
the standard form,
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Gs(ϕ, δϕ; p) =
∫

�

P · Grad δϕ dV −
∫

�l

T · δϕ dS = 0 ∀ δϕ, (62)

where �l is the lubricated contact surface in the reference configuration and T is the
nominal surface traction resulting from the hydrodynamic interaction on�l , which is
here, for simplicity, assumed to be the only loading. The formulation can be extended
in the standard manner to include other loads, such as prescribed surface traction,
body forces, unilateral contact, etc. The pressure field p has been introduced as an
additional argument of the functional Gs to indicate that the solid subproblem is
coupled to the fluid subproblem through the dependence of the traction T on p.

The virtual work principle can be written in an equivalent form with the traction
term evaluated in the current configuration and expressed in terms of the spatial
surface traction t,

Gs(ϕ, δϕ; p) =
∫

�

P · Grad δϕ dV −
∫

γl

t · δϕ ds = 0 ∀ δϕ, (63)

where γl = ϕ(�l) is the lubricated contact surface in the current configuration, and
the spatial (Cauchy) traction t is given by Eq. (46). For a hyperelastic solid, the
first Piola–Kirchhoff stress P is governed by the elastic strain energy functionW (F)

according to

P = ∂W

∂F
, F = Grad ϕ, (64)

where F is the deformation gradient.

7.2 Fluid Part

As discussed in Sect. 6, the fluid subproblem is governed by the Reynolds equation
that is formulated on the lubrication surface S. When one of the physical surfaces
is rigid, as assumed here, it is convenient to define the lubrication surface as the
projection of the deformed lubricated contact surface γl onto the rigid countersurface,
thus S = P(γl), where P(x) denotes the orthogonal projection of point x ∈ γl onto
the rigid countersurface, see Fig. 14. It is stressed that the deformed lubricated contact
surface γl = ϕ(�l) depends on the solution of the solid subproblem and so does S.

As a special case of the general weak form (49), the weak form of the steady-state
Reynolds equation with the Dirichlet boundary condition prescribed on the whole
boundary, i.e. ∂pS = ∂S, takes the following simple form:

G f (p, δp;ϕ) =
∫
S

q · gradS δp ds = 0 ∀ δp, (65)
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rigid surface

deformable surface

rigid surface

deformable surface

x

S = P(γl)

γl

xi

P(xi)

Sh = P(γh
l )

P(x)

γh
l

Fig. 14 The solution-dependent lubrication surface S (Sh) is defined by the projection of the
lubricated contact surface γl (γ h

l ) onto the rigid countersurface: continuum (top) and discretized
(bottom) setting. The dashed line in the top figure indicates an intermediate surface that could also
be adopted as the lubrication surface, see Stupkiewicz et al. (2016) and Temizer and Stupkiewicz
(2016)

where ϕ has been introduced as an additional argument of the functional G f to
indicate the respective coupling, e.g., through the film thickness h.

The cavitation is not considered here to make the formulation of the coupled
soft-EHL problem possibly simple. In fact, adding the cavitation does not change
the general structure of the problem, and it is included in the illustrative examples
provided in Sect. 8.

7.3 Elasto-Hydrodynamic Coupling

The strong coupling of the two subproblems introduced above constitutes the essen-
tial feature of the EHL problems. Specifically:

(i) the lubricant film thickness h, which influences the lubricant flow through the
Reynolds equation, depends on the deformation of the solid, cf. Eqs. (36)–(37);

(ii) the load, i.e. the surface traction t in the virtual work principle (63), depends on
the hydrodynamic pressure p and its gradient, cf. Eq. (46);

(iii) the lubrication surfaceS, onwhich theReynolds equation is formulated, depends
on the deformation of the solid through the projection S = P(γl).

The first and the second coupling are characteristic for all EHL problems. The third
coupling is solely due to the finite-deformation effects, and it is not present in the
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small-deformation framework that is usually adopted in the EHL theory. Note also
that the effect of the shear stresses on the deformation of the solid is usually neglected
in the EHL theory, and only the pressure loading is considered. However, in soft-EHL
problems, this assumption is not necessarily valid, see Stupkiewicz and Marciniszyn
(2009). The couplings listed above have already been symbolically indicated in the
weak forms (63) and (65) by including p and ϕ as the arguments of the functionals
Gs and G f , respectively.

7.4 Finite-Element Treatment

Following the standard approach, the finite-element approximation of the unknown
fields of placement ϕ and pressure p is introduced,

ϕh =
∑
i

N (ϕ)

i ϕi , ph =
∑
i

N (p)
i pi , (66)

whereϕi = Xi + ui denotes the placement of the i-th node, N (ϕ)

i is the corresponding
basis function, Xi is the position of the node in the reference configuration and ui is
the nodal displacement, which is the actual unknown in the standard finite-element
formulation. Similarly, pi denotes the nodal pressure and N (p)

i the corresponding
basis function. Recall that the pressure field is defined on the lubrication surface S
while the displacement is defined in the bulk domain �. In the Galerkin method, the
test functions are approximated using the same basis functions, thus

δϕh =
∑
i

N (ϕ)

i δϕi , δph =
∑
i

N (p)
i δpi . (67)

Discretized weak forms are now obtained by introducing the approximations
(66)–(67) into the weak forms (63) and (65), viz.

Gh
s (U, δU; P) = Gs(ϕ

h, δϕh; ph) = 0 ∀ δU, (68)

and
Gh

f (P, δP; U) = Gs(p
h, δph;ϕh) = 0 ∀ δP, (69)

where U and P denote the global vectors of unknown nodal displacements and
pressures, respectively. Since Gh

s is linear in δU and Gh
f is linear in δP we have

Gh
s (U, δU; P) = Rs(U; P) · δU, Gh

f (P, δP; U) = R f (P; U) · δP, (70)

so that the problem can be written in the residual form,
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Rs(U; P) = 0, R f (P; U) = 0, (71)

or, with a view to applying a monolithic solution scheme, in the following form,

R̄(Ū) = 0, R̄ = {Rs, R f }, Ū = {U, P}. (72)

In the monolithic scheme, the nonlinear equation (72) is solved simultaneously
with respect to all unknowns, and the Newton method is used here for that purpose.
The tangent matrix required by the Newton method can be efficiently obtained using
the automatic differentiation (AD) technique (Korelc 2009; Korelc and Wriggers
2016). Since Eq. (72) governing the coupled problem is highly nonlinear, conver-
gence of the iterative Newton scheme cannot be guaranteed. This problem can be
circumvented by applying a kind of continuation method in which the desired solu-
tion is obtained by gradually increasing the load (or by varying another influential
parameter) and by using the converged solution as the initial guess for the subse-
quent solution corresponding to the increased load. This approach proved successful
in solving a wide range of fully-coupled finite-deformation soft-EHL problems (e.g.,
Stupkiewicz and Marciniszyn 2009; Stupkiewicz et al. 2016); selected examples are
presented in the next section.

8 Soft-EHL: Illustrative Examples

Three illustrative examples of the soft-EHLproblems that involve finite deformations
of the solid are briefly described in this section. The examples are taken from our
earlier work (Stupkiewicz 2009; Stupkiewicz et al. 2016), where more details can be
found.

8.1 Reciprocating O-Ring Seal

In this section, selected results are presented for the reciprocating elastomeric O-ring
seal that has been studied in detail by Stupkiewicz (2009), see also Stupkiewicz and
Marciniszyn (2009). Due to the simple geometry (circular cross section), the O-ring
seal is a suitable benchmark problem, and it is frequently studied in various contexts
(e.g., Fatu and Hajjam 2011; Yang and Salant 2011; Shin et al. 2016).

The general geometrical setup of a hydraulic seal is shown in Fig. 15. Due to the
action of the sealed pressure, the seal is compressed between the housing and the rod,
and this is accompanied by visibly finite deformations, see Fig. 16. The reciprocating
motion of the rod results in the buildup of the hydrodynamic pressure at the rod–
seal interface, and the analysis below is limited to the steady-state hydrodynamic
lubrication during the outstroke (the rod moves towards the air side, U > 0) and
instroke (the rod moves towards the sealed pressure side, U < 0). The unilateral
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sealed γl

γc
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pressure

γp
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h

Fig. 15 Reciprocating O-ring seal: schematic of the problem

ps = 0 ps = 5MPa

Fig. 16 O-ring seal: finite-element mesh (mesh density 2) in the undeformed configuration (left)
and in the deformed configuration for two values of the sealed pressure ps . The housing and the
rod are rigid and are represented by solid lines (reproduced from Stupkiewicz 2009)

contact with the housing is also included in the model, and both the rod and the
housing are assumed to be rigid. Axial symmetry with respect to the rod axis is
assumed so that the problem is two-dimensional, and thus the Reynolds equation
becomes one-dimensional.

The seal is assumed to be hyperelastic, governed by the Mooney–Rivlin material
model. All the geometrical, material and process parameters can be found in Stup-
kiewicz (2009). Note that the maximum sealed pressure, ps = 5MPa, exceeds the
shear modulus of the seal,μ = μ1 + μ2 = 3.66MPa. Five mesh densities have been
used in the computations with the total number of unknowns ranging from about
1,000 for mesh density 1 to 190,000 for mesh density 16. The mass-conserving cav-
itation model, cf. Sect. 6.5, is not employed in this example. Instead, the cavitation
condition is approximately enforced using the penalty method (Wu 1986).

Figure17 shows the hydrodynamic pressure and the film thickness for two values
of the sealed pressure ps . It can be seen that a characteristic ridge is formed at outlet,
i.e. on the right (left) in the case of the outstroke (instroke). The pressure profiles
corresponding to the outstroke and instroke are very similar except for fine details
at the inlet and outlet. In particular, a small pressure dimple is observed at the outlet
during the instroke, while, at the same location, which corresponds to the inlet during
the outstroke, the pressure increases monotonically. A similar dimple is not formed
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Fig. 17 O-ring seal: the effect of the sealed pressure ps on the hydrodynamic pressure p (left)
and film thickness h (right) for the rod speed U = 100mm/s (mesh density 16). Position x = 0
corresponds to the position of the center of the cross section in the undeformed configuration, see
Fig. 16 (reproduced from Stupkiewicz 2009)

Fig. 18 O-ring seal: convergence with mesh refinement in terms of the pressure p (left) and of the
film thickness h (right) (reproduced from Stupkiewicz 2009)

at the outlet during the outstroke because the pressure would then decrease below
zero, which is prevented by the cavitation condition.

As mentioned above, five mesh densities have been used in the computations to
check the performance of the computational scheme and convergence with mesh
refinement. In particular, it has been observed that spurious oscillations of pressure
and film thickness may occur in some situations. This is illustrated in Fig. 18 which
shows convergence of the solution with mesh refinement. The oscillations of the film
thickness have a zigzag-like appearancewhich is related to the piecewise-linear finite-
element approximation of the displacement field on the boundary. The approximation
of the hydrodynamic pressure is here piecewise-polynomial and hence the wavy
appearance of the pressure oscillations.
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Fig. 19 O-ring seal: effect of the rod speed U and mesh density on the film thickness h for mesh
density 4 (left) and mesh density 8 (right). The more severe lubrication conditions, the finer mesh
is needed to avoid spurious oscillations (reproduced from Stupkiewicz 2009)

Different orders of approximation of the pressure have been tested in a quest for
a remedy to the spurious oscillations. However, the only remedy found is the mesh
refinement, as can be observed inFig. 18. In the case shown inFig. 18 (outstroke, ps =
1MPa, U = 400mm/s), an oscillation-free solution is obtained for mesh density 4
or higher.

The spurious oscillations are further illustrated in Fig. 19 showing the effect of
the rod speed and mesh density. It can be seen that the higher the mesh density, the
lower the rod speed at which the oscillations appear. Figure19 shows the results for
mesh densities 4 and 8; further reduction of the oscillations is obtained for mesh
density 16, see Fig. 15c in Stupkiewicz (2009). This trend is also visible in the other
cases studied.

The general conclusion resulting from the convergence studies is that the spurious
oscillations occur in severe lubrication conditions, and the severer the lubrication
conditions, the finer mesh is necessary to avoid the oscillations. This applies to the
finite-element treatment of the Reynolds equation, as illustrated above, but also to
the discontinuous Galerkin method that has also been tested, see Stupkiewicz (2009).
The low speed of the rod, which results in a small film thickness, is the main factor
that promotes the oscillations. Severe conditions are also associated with higher
sealed pressures. Interestingly, a solution with mild oscillations may still provide a
reasonable estimation of the actual profile of the pressure and the film thickness once
the oscillations are filtered out, see Fig. 18.

8.2 Rigid Cylider Sliding Against a Coated Layer

In this example, a rigid cylinder is sliding against a soft layer with a harder thin coat-
ing, see Fig. 20. A hyperelastic neo-Hookean model is adopted for both the layer and
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rigid substrate

rigid cylinder

elastic coating

elastic layer

Hlayer

Hcoating

2R

W

V = 2U

Fig. 20 Rigid cylider sliding against a coated layer (reproduced from Stupkiewicz et al. 2016)

Fig. 21 Coated layer: detail
of the deformed
finite-element mesh for two
values of the load W . A
much finer mesh is used in
the actual computations
(reproduced from
Stupkiewicz et al. 2016)

W = 0.1N/mm

W = 1N/mm

the coating. Steady-state hydrodynamic lubrication is studied in a coordinate system
attached to the cylinder. A kind of arbitrary Lagrangian-Eulerian (ALE) description
is thus adopted for the layer in which the material flows through the (deformed)
finite-element mesh. However, since the layer is elastic, the solid formulation is
standard; only the local velocity v of the material points must be adequately deter-
mined in terms of the nominal sliding speed V according to v = FV, where F is the
local deformation gradient. For the material and geometrical parameters used in the
computations, the reader is referred to Stupkiewicz et al. (2016).

Figure21 shows the deformation pattern induced by the lubricated contact. Note
that, for better visualization, a coarsemesh is shown inFig. 21, and a significantlyfiner
mesh has been used in the actual computations. Figure22 shows the hydrodynamic
pressure and the film thickness corresponding to the load W varying between 0.1
and 1N/mm. To illustrate the effect of finite deformations, which are clearly visible
in Fig. 21, the results obtained using the geometrically linear model, i.e. according to
the classical EHL theory, are also included in Fig. 22 (indicated by dashed lines). It
can be seen that both the pressure and the film thickness are not predicted correctly
when the finite-deformation effects are neglected, particularly at the higher loads.
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Fig. 22 Coated layer: the hydrodynamic pressure p (left) and the film thickness h (right) as a
function of the load W (nominal entrainment speed μU = 0.1N/m). Dashed lines indicate the
results of the geometrically linear model (reproduced from Stupkiewicz et al. 2016)

Fig. 23 Coated layer: influence of the position of the lubrication surface S (specified by parameter
α, see text) on the pressure p (left) and on the film thickness h (right) forμU = 0.1N/m (reproduced
from Stupkiewicz et al. 2016)

As described in Sect. 7.4, the lubrication surfaceS is here defined as the projection
on the lubricated contact surface γl onto the rigid countersurface, i.e. S = P(γl).
Alternatively, surface γl itself (i.e. S = γl) or an intermediate surface (such as that
indicated by the dashed line in Fig. 14) could be chosen as the lubrication surface. The
effect of this choice is small, as illustrated in Fig. 23. Parameter α = 0 corresponds
to S = P(γl) and α = 1 corresponds to S = γl . Intermediate values of α are also
possible, see Stupkiewicz et al. (2016), but the results are not sensitive to the variation
in α, as can already be deduced from Fig. 23.



170 S. Stupkiewicz

8.3 Elastic Ball Sliding Against a Rigid Plane

In this last example, a hyperelastic ball is slid against a rigid plane in the steady-
state hydrodynamic lubrication regime. A constant normal force W is applied at the
horizontal mid plane, which is allowed to move vertically as a rigid plane. Further,
the symmetry with respect to the vertical mid plane aligned with the sliding direction
is exploited so that only one quarter of the ball is included in the model. The setup
corresponds to the ball-on-disc test under pure sliding, assuming that the curvature of
the sliding path is neglected. The material and geometrical parameters can be found
in Stupkiewicz et al. (2016).

The finite-element mesh, shown in Fig. 24, has been refined in the vicinity of
the contact zone, with the finest mesh along the trailing edge of the contact zone.
Figure24 shows also the σzz component of the Cauchy stress in the deformed con-
figuration. At the highest load W = 40N, the radius of the contact zone is equal to
approximately 50% of the ball radius. The ball is thus deformed in the finite-strain
regime, well beyond the Hertzian contact conditions.

Maps of the lubricant film thickness h are shown in Fig. 25 for selected values of
the loadW and entrainment speedU , the latter defined as one half of the sliding speed
V , thusU = V/2. The entrainment speed is here provided in the form of the product
μU , μ being the fluid viscosity, since the entrainment speed enters the Reynolds
equation only through this product. Hence, the effect of increasing the sliding speed
(and the entrainment speed) by the factor of two is the same as if the viscosity was
increased by the factor of two.

It can be seen in Fig. 25 that a characteristic ridge is formed along the trailing edge
of the contact zone. At lower loads and at higher entrainment speeds, the point of the
minimum film thickness is located on the symmetry axis, at the rear of the contact
zone. Otherwise, there are two minima located at the side lobes. These qualitative
features agree well with the results obtained using the classical EHL theory (Hooke
1995).

Fig. 24 Elastic ball sliding against a rigid plane: the finite-element mesh (left) and the σzz com-
ponent of the Cauchy stress (in MPa) in the deformed configuration at the load W = 40N (right).
The inlet is on the left (reproduced from Stupkiewicz et al. 2016)
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µU = 0.078 N/m µU = 0.78 N/m µU = 7.8 N/m
W

=
5
N

W
=

10
N

W
=

40
N

Fig. 25 Elastic ball: maps of the lubricant film thickness h (in mm, position in mm, inlet on the
left) (reproduced from Stupkiewicz et al. 2016)

The profiles of the pressure p and the film thickness h along the symmetry axis
are shown in Fig. 26. In order to illustrate the finite-deformation effects, the results
obtained using the fully nonlinear model (solid lines) are compared to the results
obtained using two simplified models. The predictions of the geometrically linear
model, in which the configuration changes are neglected as in the classical EHL
theory, are denoted by dash-dotted lines. It can be seen that the difference is quite
substantial, both in terms of the pressure and the film thickness, for instance, the
maximum pressure is 10–15% higher and the minimum film thickness is 10–15%
lower in the case of the classical EHL theory. Secondly, the dashed lines depict the
results obtained using the geometrically nonlinear model in which the shear (friction)
stresses are neglected. It follows that the effect of shear stresses is here negligible.
However, as shown by Stupkiewicz et al. (2016), this effect becomes visible, though
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Fig. 26 Elastic ball: pressure p (left) and film thickness h (right) along the symmetry plane y = 0
for μU = 0.078N/m. Solid lines denote the nonlinear model, dashed lines denote the nonlinear
modelwithout friction stresses, dash-dotted lines denote the geometrically linearmodel (reproduced
from Stupkiewicz et al. 2016)

Fig. 27 Elastic ball: friction
coefficient as a function of
μU and W . The individual
lines correspond to the load
W equal to 1, 5, 10, 20 and
40N (from the top to the
bottom) (reproduced from
Stupkiewicz et al. 2016)

still not substantial, when the entrainment speed μU is increased by one or two
orders of magnitude (the respective results are not shown here for brevity).

Interestingly, despite the visible finite deformation effects on the pressure and
film thickness, as illustrated in Fig. 26, the friction coefficient is not visibly affected.
Figure27 shows the friction coefficient, defined in the standard manner by dividing
the friction force by the normal force, as a function of the entrainment speed μU . It
can be seen that the results of the fully nonlinearmodel and of the geometrically linear
model are practically identical while the entrainment speed μU changes by nearly
three orders of magnitude and the friction coefficient changes by about two orders
of magnitude. The predicted friction coefficient shows also a very good agreement
with the regression equation that has been obtained by fitting the predictions of the
classical EHL theory (de Vicente et al. 2005).
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8.4 Soft-EHL: Summary

In Sects. 6, 7 and 8, we have reviewed the recent progress in the modelling of the
soft-EHL problems in the finite-deformation regime. Consistent treatment of the
finite-deformation effects in the soft-EHL has several consequences that make the
corresponding formulation and its computer implementation distinct from the clas-
sical EHL theory.

Finite deformations of one or both contacting bodies may imply finite changes
of the lubrication surface, see, e.g., the coated-layer example studied in Sect. 8.2.
Accordingly, the Reynolds equation, which is the main tool used for the modelling
of the lubricant flow, should be formulated on a non-planar lubrication surface.
The corresponding non-classical formulation of the Reynolds equation, provided in
Sect. 6, has been here restricted to the case of a time-independent lubrication surface.
A detailed discussion of the general case of a time-dependent lubrication surface can
be found in Temizer and Stupkiewicz (2016).

At finite deformation, the lubrication surface, as well as its discretization in the
computational scheme, depends on the deformation of the solid, and thus it depends
on the solution of the EHL problem. This introduces an additional EHL coupling
that is not present in the small-strain framework of the classical EHL theory.

Further, an adequate computational method must be used to resolve the finite
deformations of the solid. In particular, the elastic half-space approximation, typically
used in the classical EHL theory, is not applicable. The finite-element method is here
a natural choice, as it provides a general method for treating geometrical andmaterial
nonlinearities.

The finite-deformation effects mentioned above are fully accounted for in the
computational scheme that is briefly described in Sect. 7.4. So far, the computer
implementation is restricted to the case of steady-state problems in which one of
the bodies is rigid. Extension to transient lubrication problems for two deformable
bodies is a challenging task for future work. The present computational scheme is
based on the finite-element method and employs a fully-coupled monolithic solution
scheme which proves to perform well.

Representative numerical examples that illustrate the finite-deformation effects
have been provided in Sect. 8. Interestingly, in the case of the hyperelastic ball sliding
against a rigid plane, the friction coefficient is not affected by the finite deformation
of the ball, and the geometrically linear theory delivers accurate predictions of the
friction coefficient also at high loads, at which the ball deforms significantly. This
result has also been confirmed experimentally, see Fig. 2 in Stupkiewicz et al. (2016).
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Contact Modeling in the Discrete
Element Method

Jerzy Rojek

Abstract The discrete element method (DEM) is a wide family of numerical meth-
ods for discrete and discontinuous modelling of materials and systems which can be
represented by a large collection of particles (discrete elements). The DEM assumes
that the discrete elements interact with one another by contact forces. This chapter
presents basic aspects of contact modeling in the DEM. The main assumptions, theo-
retical formulation and numerical algorithm of the DEM are presented. In this work,
the DEM formulation employing spherical particles and the soft-contact approach is
considered. Basic contact models for the particle interaction are reviewed. Elemen-
tary contact mechanisms, including elasticity, plasticity, damping, friction and cohe-
sion are discussed. Selected contact models combining these effects are described.
Their performance in modelling single dynamic or quasi-static contact events is
analysed. The analysis is focused on the evolution of contact forces during single
collisions. Although the force-type interaction is mainly discussed, the moment-type
interaction is also introduced. Formulation of the DEM contact taking into account
thermal effects as well as thermomechanical coupling finishes this review.

1 Introduction

The term discrete element method (DEM) comprises a family of numerical methods
for analysis of discontinuous problems of mechanics of systems of particles (discrete
elements) interacting with one another by contact. The DEM is a relatively new
numerical method, it was introduced in the 70-s and 80-s of the 20th century in the
pioneering works by Cundall (1971), Cundall and Strack (1979) and Walton (1982,
1983). TheDEMwas further developed in the works ofWilliams et al. (1985), Bardet
and Proubet (1991), Moreau (1994) and many others. It has become a powerful
tool for predicting the behaviour of various particulate and non-particulate materials
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which can be represented by systems of particles, such as soils (Widuliński et al.
2009), powders (Martin et al. 2003), rocks (Cundall 1987; Potyondy and Cundall
2004; Rojek et al. 2011; Zubelewicz and Mroz 1983), concrete (Hentz et al. 2004;
Wu et al. 2013), ceramics (Senapati and Zhang 2010) and even metals (Fleissner
et al. 2007).

Discrete elements can be of an arbitrary shape (Rothenburg and Bathurst 1992;
Tao et al. 2014; Cundall 1988), however, spherical particles are often a preferable
choice (Cundall 1987; Widuliński et al. 2009; Plassiard et al. 2009) because of the
simplicity of the formulation and the computational efficiency of contact detection
algorithms for spherical objects. The present review will deal with the discrete ele-
ment formulation employing spherical particles.

The contact algorithm plays an essential role in the discrete element method. The
contact forces control themotion of the discrete elements and govern themacroscopic
behaviour of the particle assembly. Two different approaches to contact treatment in
the DEM can be identified, the so-called soft-contact approach (Cundall and Strack
1979; Cundall 1987; Potyondy and Cundall 2004) and the hard-contact concept
(Hong and McLennan 1992; Haff and Werner 1987; Richardson et al. 2011). The
soft-contact approach employs regularization of the contact constraints, while the
hard-contact approach uses the methods of nonsmooth analysis to solve the problem
with unilateral contact constraints.

In the soft-contact DEM formulation, a small overlap of the particles is allowed –
the contact non-penetration conditions are satisfied approximately, only. The contact
between the particles is assumed to last much longer than the time step, and the
contact force evolution is analysed.

In the hard-contact approach, particle penetration is not allowed. The change of
the particlemomentumdue to a collision is determined. The collision time is assumed
to be very short and therefore it can be neglected. The contact force variation is not
analysed.

In the present work, the soft-contact approach is considered. This approach allows
us to adopt a suitable contactmodel for single particle collisions aswell as an adequate
model to obtain a required macroscopic behaviour. The present chapter is aimed to
present basic concepts of contact modelling in the discrete element method.

The outline of the present chapter is as follows. The formulation of the discrete
element method is presented in Sect. 2. Basic assumptions, equations of motion and
time integration scheme are briefly described. Section3 is devoted to contact mod-
elling. Contact conditions are formulated, the penalty regularization of the contact
constraints is introduced. Elementary contact mechanisms included in contact mod-
els are presented. Selected more complex contact models for force-type interaction
are reviewed in Sect. 4. Their formulation and performance in simple problems are
presented. The moment-type interaction is introduced in Sect. 5. An extension of the
discrete element method on thermal and thermomechanical problems is presented
in Sect. 6. Formulation of the thermal and thermomechanical contact is briefly dis-
cussed.
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2 Discrete Element Method Formulation

2.1 Basic Assumptions

Dynamics of a system of interacting rigid cylindrical (in 2D) or spherical (in 3D)
particles will be considered. Both translational and rotational motion of the particles
will be taken into account. Initial positions and velocities (both linear and angular
ones) of the particles are assumed to be known. The particles are subjected to an
external load including point forces and moments, gravity and background damping
(due to the interaction of particles with surrounding medium). The particles are
assumed to interact by contact with one another and with other obstacles.

The problem to be solved is formulated as an initial-value problem defined by the
ordinary differential equations (equations of motion) and appropriate initial condi-
tions supplemented with contact constraints.

2.2 Equations of Motion

The motion of discrete elements (particles) is governed by the standard Newton–
Euler equations of rigid body dynamics. The translational and rotational motion of
the centre of mass of the i-th spherical or cylindrical element (Fig. 1) is described by
the following equations:

mi üi = Fi , (1)

Ji ω̇i = Ti , (2)

where ui is the element centroid displacement in a fixed (inertial) coordinate frame X :

ui = xi − X i , (3)

ωi – the angular velocity, Fi – the resultant force, Ti – the resultant moment about
the central axes, mi – the element mass, and Ji is the moment of inertia which is

Fig. 1 Motion of a discrete
element

X

u

x
w
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given by:

Ji = 1

2
mi R

2
i for a cylinder, (4)

Ji = 2

5
mi R

2
i for a sphere, (5)

Ri being the i-th particle radius. The form of the rotational Eq. (2) is valid for spheres
and cylinders (in 2D) and it is simplifiedwith respect to a general form for an arbitrary
rigid bodywith the rotational inertial properties represented by a second order tensor.
The vectors Fi and Ti are sums of:

(i) all forces and moments applied to the i-th element due to an external load, F ext
i

and T ext
i , respectively,

(ii) force- and moment-type contact interactions with neighbouring spheres and all
other obstacles, F cont

i j and T cont
i j , respectively, j = 1, . . . , nci , where n

c
i are the

number of elements being in contact with the i-th discrete element,
(iii) forces and moments resulting from external (background) damping, F damp

i and
T damp
i , respectively.

Thus, the vectors Fi and Ti can be written as follows:

Fi = F ext
i +

nci∑

j=1

F cont
i j + F damp

i , (6)

Ti = T ext
i +

nci∑

j=1

sci j × F cont
i j +

nci∑

j=1

T cont
i j + T damp

i , (7)

where sci j is the vector connecting the centre of mass of the i-th element with the
contact point with the j-th element (Fig. 2).

C

Fij

j
Ci

cont

sij
c

Tij
cont

Fig. 2 Contact interaction between two discrete elements
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2.3 Time Integration Scheme

Equations of motion (1) and (2) are integrated in time using the explicit central
difference scheme. The time integration operator for the translational motion at the
n-th time step is as follows:

ün
i = Fi

n

mi
, (8)

u̇n+1/2
i = u̇n−1/2

i + ün
i �t , (9)

un+1
i = un

i + u̇n+1/2
i �t . (10)

The first two steps in the integration scheme for the rotational motion are identical
to those given by Eqs. (8) and (9):

ω̇n
i = Ti

n

Ji
, (11)

ω
n+1/2
i = ω

n−1/2
i + ω̇n

i �t . (12)

The vector of incremental rotations �θi is calculated as

�θi = ω
n+1/2
i �t , (13)

Knowledge of the incremental rotation suffices to update the tangential contact
forces. If necessary it is also possible to track the total change of rotational position
of particles (Argyris 1982). Then, the rotation matrices between the moving frames
embedded in the particles and the fixed global frame must be updated incrementally
using an adequate multiplicative scheme (Rojek et al. 2001).

Explicit integration in time yields high computational efficiency of the solution
for a single step. The disadvantage of the explicit integration scheme is its conditional
numerical stability imposing the limitation on the time step �t . The time step �t
must not be larger than a critical time step �tcr

�t ≤ �tcr (14)

determined by the highest natural frequency of the system νmax

�tcr = 2

νmax
. (15)

Exact determination of the highest frequency νmax would require solution of the
eigenvalue problem defined for the whole system of connected rigid particles. The
maximum frequency of the whole system can be estimated as the maximum of
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natural frequencies νe
i of subsets of connected particles surrounding each particle e,

cf. Belytschko et al. (1985):

νmax ≤ νD
max , where νD

max = max
i,e

νe
i (16)

3 Contact Modelling

3.1 Contact Conditions

The contacting pairs of discrete elements are identified by different search proce-
dures. The contacting particles should satisfy contact constraints. The contact con-
straints can be expressed in terms of contact interactions and appropriate kinematic
parameters.

It is assumed that the contact is concentrated at a point called the contact point
and the contact interaction between two particles i and j consists of a concentrated
force Fcont

i j and a concentrated moment Tcont
i j applied at the contact point (Fig. 2). The

moment-type resistance will be discussed later on, here, the force interaction will be
examined.

The contact force Fcont
i j can be decomposed into the normal and tangential com-

ponents, (Fcont
n )i j and (Fcont

t )i j , respectively

Fcont
i j = (Fcont

n )i j + (Fcont
t )i j = (Fcont

n )i jni j + (Fcont
t )i j , (17)

where ni j is the unit vector normal at the contact point defined as follows

ni j = x j − xi
‖x j − xi‖ (18)

It is assumed that the normal and tangential contact can be decoupled and can be
considered separately. The Signorini conditions for the unilateral (without adhesion)
contact in the normal direction can be written as follows1:

Fcont
n ≤ 0 , g ≥ 0 , Fcont

n g = 0 , (19)

where g is the gap between the particles (see Fig. 3):

g = di j − Ri − R j (20)

di j being the distance between the particle centres

1In the next part of this section indices denoting the elements will be omitted.
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Fig. 3 Definition of geometrical and kinematical parameters in the contact of two particles
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Fig. 4 Graphs of contact laws: a unilateral normal contact, b tangential Coulomb friction contact

di j = ‖x j − xi‖ (21)

The first inequality in Eq. (19) expresses the intensility condition (no tensile force is
allowed), the second one specifies the impenetrability condition, and the third condi-
tion, called the complementarity condition, enforces the alternative, either Fcont

n < 0
and g = 0 or Fcont

n = 0 and g > 0. The unilateral normal contact law is illustrated
graphically in Fig. 4a. In the adhesive (bilateral) contact, the tensile contact force
is allowed, and the geometric inequality constraint (19)2 is replaced by the equality
constraint g = 0 (Curnier 1999). A rigorous mathematical treatment of the bilateral
contact is much more complicated than that of the unilateral contact.

The tangential interaction is typically caused by interparticle friction. The com-
plementary conditions for the frictional sliding contact in the tangential direction can
be written as follows, cf. Klarbring (1999):
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φt ≤ 0 , λt ≥ 0 , φtλt = 0 , (22)

where φt is the slip criterion and the non-negative parameter λt is defined by the slip
law:

vrt = λt
Fcont

t

‖Fcont
t ‖ . (23)

where vrt is the relative tangential velocity at the contact point:

vrt = vr − vrnni j . (24)

with vr and vrn being the total and normal relative velocities at the contact point given
by

vr = (u̇ j + ω j × scji ) − (u̇i + ωi × sci j ) , (25)

vrn = vr · ni j , (26)

where u̇i and u̇ j are the translational velocities of the particle mass centres, ωi and
ω j – the angular particle velocities, and sci j are scji – the vectors connecting the
particle mass centres to the contact points.

There are various models for the threshold of sliding, cf. Raous (1999). The most
commonly used model is the Coulomb friction model, for which the slip criterion is
given by:

φt = ‖F cont
t ‖ − μ|F cont

n | ≤ 0 (27)

whereμ is theCoulomb friction coefficient. The graph corresponding to theCoulomb
friction contact is given in Fig. 4b. The Coulomb friction coefficient is usually
assumed constant, however, it can also be taken as a variable, for instance, dependent
on the sliding velocity.

3.2 Regularization of the Contact Conditions

The discrete element method based on the soft contact approach imposes a penalty-
type regularization of the unilateral (normal) and frictional contact constraints. The
penalty regularization of the normal contact conditions is accomplished by taking

Fcont
n = kng , if g < 0 , (28)

where kn is a certain penalty parameter. The contact conditions (19)1 and (19)3 are
still valid. The impenetrability condition (19)2 is satisfied approximately, only. A
certain overlap between the contacting particles

h = −g > 0 (29)
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Fig. 5 Graphs of regularized contact laws: a normal contact, b tangential Coulomb friction contact

is allowed. The penalization is exact if kn → ∞. We should remember, however,
that large penalty values lead to small critical time steps given by Eq. (15). The
penalization of the normal contact is illustrated graphically in Fig. 5a.

The regularization of the frictional constraints is carried out by introducing into
Eq. (23) a tangential penalty kt

vrt − λt
Fcont

t

‖Fcont
t ‖ = Ḟ

cont
t

kt
, (30)

Equation (30) shows that the penalty regularization of the Coulomb frictional con-
straints introduces a decomposition of the total slip velocity vrt into the reversible
and irreversible parts, vrrt and virrt , respectively:

vrt = vrrt + virrt , (31)

where

vrrt = Ḟ
cont
t

kt
, (32)

virrt = λt
Fcont

t

‖Fcont
t ‖ . (33)

The graph corresponding to the regularized Coulomb friction model is shown in
Fig. 5b, where the tangential contact force Fcont

t has been plotted as a function of
the relative tangential displacement evaluated by integrating the relative tangential
velocity

urt =
∫

vrt dt . (34)
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3.3 Physical Interpretation of the Penalty Regularization

Penalization of the normal and tangential contact constraints is equivalent to spec-
ifying additional constitutive relations on the interface. Thus, the elastic behaviour
has been introduced above for compression in the normal contact, and the frictional
contact has been reformulated as a problem analogous to that of elastoplasticity.

The overlap of the contacting particles h defined by Eq. (29) is assumed to rep-
resent an effect of a local deformation of the particles at the contact point due to the
contact interaction (Fig. 6). This assumption gives a possibility to define different
force–overlap relationships in order to represent better various deformation mecha-
nisms at the contact zone. Similarly, different force–slip relationships can be defined
for the tangential contact.

It must be remarked that it is assumed that the particle deformation due to contact
is localized and it does not affect other particle contacts. This assumption is justified
if the deformation of real particles is relatively small.

3.4 Elementary Contact Deformation Mechanisms

Contact models may take into account different deformation mechanisms and phys-
ical phenomena involved in contact. Typical elementary contact deformation mech-
anisms and associated effects are summarized below.

Elasticity
The contact force in the normal or tangential direction is given by a linear or nonlinear
function of a displacement-type variable u. A linear elastic model defines the force
through the relation

F = ku , (35)

where k is a constant stiffness parameter, and the displacement-type variable u can
represent the particle overlap or the tangential relative displacement. A nonlinear

Fig. 6 Overlap of the
contacting particles
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elastic model is characterized by a variable stiffness. The displacement in an elastic
contact model is completely reversible.

Plasticity
A linear or nonlinear force–displacement relationship is obtained from the response
of particles undergoing plastic deformation due to contact pressure. The displacement
in an ideally plastic contact model is completely irreversible. The theory of plasticity
provides a suitable framework for modelling the friction.

Viscosity
A contact force due to a viscous response at the contact interaction is defined by a
force–velocity relationship:

F = ηu̇ , (36)

where η represents viscous properties of the contact interface. It can be assumed
constant in a linear viscous model or variable in a nonlinear model. A viscous model
can be used to represent physical phenomena such as damping or creep.

Friction
Friction being a dissipation mechanism opposing the tangential relative motion of
contacting particles is sometimes called dry damping, cf. Zonetti et al. (1999), as
opposed to velocity dependent viscous damping mentioned above. The Coulomb
model is the most popular model of friction. The graph presenting the contact force
in the Coulomb model is presented in Fig. 4b.

Cohesion/adhesion
Modelling of cohesive materials such as rocks or concrete with discrete elements
requires accounting for cohesion or adhesion in the contactmodel. Cohesive/adhesive
bonds are introduced between contacting particles. These bonds transfer contact
forces opposing the separation of particles in the normal direction as well as the
relative motion in the tangential direction.

Damage
Damage represents deterioration of mechanical material properties such as stiffness
and strength caused by the development of internal cracks. Accounting for damage
effects in the contact allows us to consider a gradual deterioration of mechanical
properties represented by cohesive bonds.

Fracture
Accumulated damage can lead to a complete deterioration of the cohesive bonds. The
cohesive bonds can also be assumed to be broken in a brittle way when the strength
of the cohesive bonds is exceeded. In this way initiation and development of fracture
in the material can be modelled in the discrete element method.

Thermal effects
Contact with friction is accompanied by heat generation. The heat generated through
friction is absorbed and conducted by the particles. An increasing temperature of
contacting particles may affect mechanical contact properties such as the contact
stiffness, viscosity or friction coefficient (Shillor et al. 2004). Formulation of the
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contact model accounting for thermal effects as well as thermal and thermomechan-
ical formulation of the discrete element method will be presented further on.

Contactmodels in the discrete elementmethodusually incorporate differentmech-
anisms and effects described above which allow us to model complex behaviour of
real materials. Contact models similarly to constitutive material models are often
represented graphically by rheological schemes. The rheological schemes are built
from rheological elements representing elementarymechanisms. Typical rheological
elements are shown in Fig. 7.

Fig. 7 Rheological elements
and plots of the
corresponding constitutive
relationships: a linear spring,
b nonlinear spring, c linear
dashpot, d slider
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The linear and nonlinear springs (Fig. 7a, b) represent elastic properties in a rhe-
ological scheme, the linear dashpot (Fig. 7b) corresponds to the viscous effects
described by Eq. (36), the slider (Fig. 7d) is used for the friction, the slider alone
represents the non-regularized Coulomb friction model, when connected in series
with a spring, it can represent the regularized Coulomb friction model.

4 Selected Contact Models

4.1 Linear Viscoelastic Contact Model with Coulomb Friction

Formulation of the model

The model presented here is similar to the model proposed in the pioneering work by
Cundall and Strack (1979). The rheological scheme of the model is shown in Fig. 8.
The normal contact force is represented by the viscoelastic Kelvin–Voigt element
composed of a linear spring connected in parallel with a linear dashpot. The element
corresponding to the tangential contact force is constituted by a spring in series with
a slider.

The normal contact force Fcont
n transmitted by the Kelvin–Voigt element is com-

posed of the elastic part transferred by the spring Fe
n and the viscous damping part

transferred by the dashpot Fd
n :

Fcont
n = Fe

n + Fd
n (37)

The elastic part is evaluated according to the linear relationship analogical to Eq.
(28)

Fe
n = kng , (38)

where kn is the normal contact stiffness and g is defined by Eq. (20). The formula
(38) is used for g < 0. A negative value of g denotes a particle overlap. If g ≥ 0 the
elastic contact force is set to zero (Fe

n = 0).
The damping part is evaluated according to the linear relationship analogical

to Eq. (36)
Fd
n = cnvrn , (39)

Fig. 8 Rheological scheme
of the viscoelastic contact
model with the Coulomb
friction
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where cn is the normal viscous damping parameter and vrn is the normal relative
velocity at the contact defined by Eq. (26).

The tangential part of the contact model presented graphically in Fig. 8 corre-
sponds to the regularized Coulomb friction model described in Sect. 3.2. The stiff-
ness of the linear spring kt corresponds to the penalty parameter introduced in Eq.
(30). The slider is blocked until the slip criterion (27) is achieved. The graph of the
tangential contact force versus relative tangential displacement is shown in Fig. 5.

The analogy of the regularized frictional contact model to the elastoplasticity
commented above, allows us to calculate the friction force employing the radial return
algorithm analogous to that used in elastoplasticity. First a trial state is calculated

F trial
t = F old

t − ktvr t�t , (40)

and then the slip condition is checked

φ trial = ‖F trial
t ‖ − μ|Fn| . (41)

If φ trial ≤ 0, we have the case of stick contact and the friction force is assigned the
trial value

F new
t = F trial

t , (42)

otherwise (slip contact) a return mapping is performed

F new
t = μ|Fn| F trial

t

‖F trial
t ‖ . (43)

Evaluation of the model parameters

There are different approaches to evaluating the contact stiffness kn in the DEM. It
can be taken as uniform in the whole discrete element assembly (Rojek et al. 2005)
or it can be calculated locally, usually assuming that it depends on the contacting
particle size (Potyondy and Cundall 2004) and it can be given by certain functions
of the particle radii Ri and R j :

kn = fk(Ri , R j ) . (44)

Different assumptions for the form of the functions fk(Ri , R j ) have been discussed
by Rojek et al. (2012). Here, one of them will be presented.

The spring modelling contact elasticity can be treated as equivalent to an elastic
bar of a non-uniform cross-sectional area (Fig. 9), consisting of two segments, with
the lengths

Li = Ri , L j = R j (45)

and the cross-sectional areas

Ai = αiπ(Ri )
2 , A j = α jπ(R j )

2 (46)
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Fig. 9 Schematic
connection of two particles
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where 0 ≤ αi ,α j ≤ 1 are the coefficients defining the areas of the segments as frac-
tions of the particle cross-sectional area.

The system of the two bar segments can be treated as two springs connected in
series. The axial force Fe transferred by the whole system is equal to the forces in
the segments i and j , Fe

i and Fe
j :

Fe = Fe
i = Fe

j (47)

The overall axial deformation of the system, assumed as equal to the overlap g
(g < 0), can be decomposed to the deformations of both segments, gi and g j

g = gi + g j (48)

The force–displacement relationships for each bar can be written in the following
form:

Fe
i = kingi (49)

Fe
j = k j

ng j (50)

where and kin and k j
n are stiffnesses of the segments i and j . Substituting Eqs. (38),

(49) and (50) into Eq. (48) and taking into account Eq. (47) we obtain the following
equation for the stiffness kn:

1

kn
= 1

kin
+ 1

k j
n

(51)

which can be transformed to the form

kn = kin k
j
n

kin + k j
n

(52)
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Expression (52) is identical to that used by Potyondy and Cundall (2004).
Using the assumptions (45) and (46) the stiffness of the segments i and j can be

expressed as follows:

kin = Ei Ai

Li
= αiπEi Ri (53)

k j
n = E j A j

L j
= α jπE j R j (54)

where Ei and E j are Young’s moduli of the materials of the segments (or of the
particles) i and j . Introducing the relationships (53) and (54) into the formula (52)
and assuming Ei = E j = E and αi = α j = α, we obtain the expression for the
equivalent stiffness K in the following form:

kn = απER∗ (55)

where R∗ is the effective radius defined in terms of the particle radii, Ri and R j

1

R∗ = 1

Ri
+ 1

R j
. (56)

For equal size particles (Ri = R j = R), Eq. (55) takes the form:

kn = 1

2
απER (57)

The value of the tangential stiffness parameter kt is, in principle, independent
of the normal stiffness parameter, however, it is usually defined with respect to it
assuming a certain ratio β of the normal and tangential stiffness

β = kt
kn

(58)

The ratio β is very important, since it has a large influence on the macroscopic
behaviour reproduced by the DEM model. Equivalent macroscopic properties, such
as the Young’s modulus or the Poisson’s ratio can be presented as functions of the
ratio kt/kn , cf. Marczewska et al. (2016).

The damping coefficient cn can be related to the critical damping Ccr of the
considered system:

ζ = cn
Ccr

(59)

where ζ is called the damping ratio. It is a non-negative dimensionless parameter (ζ ≥
0). Zero damping ratio, ζ = 0, indicates no damping, 0 < ζ < 1 – underdamping,
ζ = 1 – critical damping, and ζ > 1 – overdamping. The critical damping Ccr for
the system of two rigid bodies with masses mi and m j , connected with a spring of
the stiffness kn , cf. Taylor and Preece (1992)
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Ccr = 2
√
m∗kn . (60)

where the effective mass m∗ is defined by

1

m∗ = 1

mi
+ 1

m j
. (61)

The damping ratio ζ can be expressed in terms of the coefficient of restitution (COR)
e, cf. Nagurka and Huang (2006)

ζ = − ln e√
π2 + (ln e)2

. (62)

The coefficient of restitution e in the normal direction is defined as the ratio ofmoduli
of the relative normal velocities after and before impact, vend

rn and v0
rn, respectively:

e = |vend
rn |

|v0
rn|

. (63)

The relationship (62) is plotted in Fig. (10).
The viscous damping is used in the discrete element method as a mechanism

allowing to dissipate energy in particle collisions, and achieve different response of
the system to dynamic loading, including quasistatic response if an adequate damping
is combined with a slowly applied loading. It must be remarked, however, that the
viscous damping introduces certain inconsistencies in the contact model, which will
be discussed in the first of numerical examples below.

Numerical examples

Collision of two balls with given initial velocities

The viscoelastic Kelvin–Voigt contact model is used to simulate a collision of two
equal balls of radius R = 10mm moving along one line with equal but opposed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 d
am

pi
ng

 ra
tio

 - ξ

COR

Fig. 10 Relationship between the coefficient of restitution and the damping ratio
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velocities v = 10m/s. The mass density ρ = 8000kg/m3 has been assumed. The
contact stiffness kn has been evaluated according to Eq. (57) taking the Young’s
modulus E = 200GPa, and the coefficient α = 0.04. The effective contact stiffness
kn = 1.26 · 108 N/m has been evaluated. Different values of damping characterized
by coefficients of restitution (COR) e = 0.1, 0.5, 0.8 and 1 have been considered.
The value e = 1 corresponds to an ideally elastic collision.

The gap between the balls and the velocity of one of the balls during the collision
are plotted as functions of time in Fig. 11 for different damping. The duration of the
collisions corresponds to the interval with negative values of the gap (see Fig. 11a. It
can be seen Fig. 11b that after the collision the balls bounce off each other with the
velocity dependent on the damping. In the elastic collision, the velocity of the ball
after the collision is the same as before the collision. In the inelastic collisions, the
velocity of the ball after the collision is lower than before the collision. The higher
the damping is (or in other words, the lower the COR is), the lower the rebound
velocity is.

Evolution of the total contact force and its components is plotted in Fig. 12 for
different damping.The elastic, damping and total contact forces are given as functions
of time in Figs. 12a, b and c, respectively. By comparing Figs. 11 and 12, it can be
seen that the elastic force is proportional to the gap in agreement with Eq. (38), and
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Fig. 12 Evolution of contact forces during collision of two balls in the linear Kelvin–Voigt model
for different values of COR (the solid parts of the curves represent loading and the broken ones –
unloading)
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the damping force is proportional to the velocity in agreement with Eq. (39). It can be
observed in Fig. 12b that the damping force acquires a certain non-zero value at the
beginning of the collision, and it has a non-zero value at the end of the collision. This,
with the zero damping force before and after the collision, leads to discontinuity of
the damping component during the analysed period of time. Due to the discontinuity
of the viscous damping force, the total contact force Fcont

n displayed in Fig. 12c is
also discontinuous at the beginning and end of the collision while real contact forces
are continuous.

Moreover, due to the viscous damping the total contact force Fcont
n is cohesive

in the final stage of the collision (g < 0 and vrn > 0), while the contact forces in
cohesionless particle systems are always repulsive.

The inconsistencies of the linear viscoelastic contact model can be mitigated, at
least partially, by replacing the linear spring and dashpot with appropriate nonlinear
spring and damping elements as proposed by Hunt and Crossley (1975).

The curves of the total force versus gap for different damping are displayed in
Fig. 12d. In the ideally elastic case (COR = 1), the loading and unloading force–gap
relations coincide. In the damped collisions, the loading and unloading curves do not
coincide and form a hysteresis loop. The area within the loop is a measure of energy
lost during the collision (Lin and Hui 2002).

Contact of two spheres under step loading

A contact of two equal balls of radius R = 10mm subjected to step compressive
loading F = 20kN has been analysed using the linear viscoelastic Kelvin–Voigt
model. The same material properties as in the previous example have been assumed.
The initial conditions are defined by the zero gap and zero ball velocities. Effect of
the damping has been studied taking different values of coefficients of restitution
COR = 0.05, 0.5, 0.8 and 1.

Figure 13 shows the time response of the systems in terms of the gap, velocity of
one of the balls and total contact force. It can be seen that in the system with zero
damping (COR = 1) the balls oscillate with the period which is in perfect agreement
with the theoretical value

T = 2π

√
m∗

kn
= 72.6 µs .

Themean value of the gap (actually the overlap) oscillations coincides with the static
state of equilibrium under the applied force

g = Fn

kn
= −159.1 µm .

The oscillations of the systems with damping are attenuated and the quasistatic state
of equilibrium is achieved with the gap calculated above.

This shows a possibility to use the dynamic formulation to solve static problems
which is a basic principle of the dynamic relaxation method, employed both in the
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Fig. 13 Evolution of contact kinematic variables and contact forces during contact of two spheres
under step loading for different values of COR

discrete element method (Rojek et al. 2013) and the finite element method (Joldes
et al. 2011). In the elastic linear problems solved by the dynamic relaxation method,
the solution in the transient period is not important, and different values of damping
allow us to arrive at the same static solution. The dynamic relaxation method can
also be applied with certain cautiousness to path dependent problems.

Contact of two spheres under linearly increasing loading

The system of two balls, the same as in the previous example and with the same
initial conditions, has been subjected to a compressive loading increasing linearly
from 0 to 20kN in the time interval from 0 to 0.5 s. Then, for t > 0.5 s the loading
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has been kept constant. The contact of the balls has been analysed using the linear
viscoelastic Kelvin–Voigt model with different values of damping defined by the
coefficients of restitution COR = 0.1, 0.5 and 1.

Figure 14 shows the time response of the systems with different damping in
terms of the gap, velocity of one of the balls and total contact force. The solution
with zero damping (COR = 1) is characterized with oscillations. The oscillations
are attenuated in the solutions with damping. For a sufficiently high level of the
damping (low values of COR), the response in terms of the gap and contact force
is practically linear, in agreement with the linear increase of the applied force. A
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Fig. 14 Evolution of contact kinematic variables and contact forces during contact of two spheres
under linearly increasing loading for different values of COR
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Fig. 15 Comaprison of the numerical and theoretical contact force during contact of two spheres
under linearly increasing loading

perfect agreement of the contact force with the applied force can be observed in
Fig. 14, which confirms that the loading and response can be considered quasistatic.
This demonstrates a possibility to reproduce quasistatic conditions in an incremental
form (cf. also Fig. 15), which is important for the analysis of nonlinear and path
dependent problems.

4.2 Viscoelastic Hertz–Mindlin–Deresiewicz Model

Formulation of the model

This model combines the Hertz-type viscoelastic model for the normal interaction
with the Mindlin–Deresiewicz model of friction acting in the tangential direction.
The rheological scheme of the model is similar to that shown in Fig. 8, the difference
consisting in replacing the linear springs with nonlinear ones.

The Hertz model employs a nonlinear relationship for the evaluation of the elastic
contact force based on the analytical solution of the contact problem between elastic
spheres (Hertz 1882; Johnson 1985):

Fe
n = −KnHzh

3
2 , (64)

where h (h = −g) is the amount the particles’ overlap and the contact stiffness
parameter KnHz is given by the following formula:

KnHz = 4

3
E∗√R∗ , (65)

where E∗ is the effectivemodulus of elasticity defined in terms of theYoung’smoduli,
Ei and E j , and the Poisson’s ratios, νi and ν j , of the two contacting particles
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1

E∗ = 1 − ν2
i

Ei
+ 1 − ν2

j

E j
, (66)

and R∗ is the effective radius defined by Eq. (56). Please note that the contact force
has been defined in Eq. (64) in terms of the overlap h instead of the gap g and the
minus sign has been introduced in order to keep consistency with the earlier used
sign convention treating the compressive contact forces as negative.

In the framework of theDEM, a viscous damping is commonly added to the elastic
Hertz force in order to dissipate energy at particle collisions. A linear damping given
by Eq. (39) is sometimes taken, cf. Lee (1994). More advanced models, however,
use nonlinear damping terms in connection with the Hertzian elastic contact. Hunt
and Crossley (1975) have derived the following general form of nonlinear damping

Fd
n = ηnh

pvq
rn . (67)

Tsuji et al. (1992) have proposed the damping term as abovewith p = 1/4 and q = 1:

Fd
n = ηnh

1
4 vrn . (68)

The damping dissipation coefficient ηn used in Eq. (68) can be related to the nonlinear
spring stiffness KnHz and the coefficient of restitution e as follows (Navarro and
de Souza Braun 2013):

ηn = √
5
√
m∗KnHz

ln e√
π2 + (ln e)2

. (69)

Different analytical relationships between the damping ratio and coefficient of resti-
tution in the nonlinear viscoelastic contact model have been derived by (Jankowski
2006). Possibilities of improvements of viscous damping for the Hertz elastic contact
are still investigated (Zdancevičius et al. 2017).

The Hertzian normal contact model is commonly combined with the tangential
contact model according to Mindlin and Deresiewicz (1953). A full implementation
of the Mindlin–Deresiewicz theory leads to complex algorithms, cf. (Renzo and
Maio 2004; Kruggel-Emden et al. 2008), therefore different simplifications have
been proposed. Employing the Mindlin and Deresiewicz solution for the constant
normal force Tsuji et al. (1992) derived the formula for the tangential force:

Ft = kturt , (70)

where the tangential stiffness kt is calculated as follows:

kt = 8G∗√R∗h , (71)
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the effective shear modulus is defined in terms of the particles shear moduli, Gi and
G j , and the Poisson’s ratios, νi and ν j , by the following relationship

1

G∗ = 2 − νi

Gi
+ 2 − ν j

G j
, (72)

the effective radius R∗ is defined by Eq. (56), h is the particle overlap and the
relative tangential displacement at the contact point urt is obtained by integration of
the relative tangential velocity:

urt =
∫ t

0
vr t dt . (73)

The tangential force Ft is limited by the Coulomb condition

Ft ≤ μ|Fn| . (74)

In order to improve an agreement with the full Mindlin–Deresiewicz theory Renzo
and Maio (2004); Maio and Renzo (2005) proposed a correction to the model devel-
oped by Tsuji et al. (1992) consisting in scaling the stiffness given by Eq. (71) by
the factor 2/3.

kt = 2

3

(
8G∗√R∗h

)
, (75)

Numerical example

Collision of two balls with given initial velocities

The viscoelastic Kelvin–Voigt contact model with the nonlinear Hertzian elastic
component and the damping component evaluated according to Eqs. (68) and (69)
has been used to simulate a collision of two equal balls analysed previously with the
linear Kelvin–Voigt contact model. The same ball size (radius R = 10mm), prop-
erties (mass density ρ = 8000kg/m3, Young’s modulus E = 200GPa) and initial
conditions (velocities v = 10m/s) as previously have been assumed. The set of data
has been completed with the Poisson’s ratio ν = 0.3. Similarly as previously, differ-
ent values of damping characterized by coefficients of restitution COR = 0.1, 0.5,
0.8 and 1 have been considered.

The evolution of the gap between the balls and the velocity of one of the balls for
different damping have been plotted in Fig. 16a and b, respectively. It can be seen
that the lower the COR is, the longer the impact and the lower the rebound velocity
are.

The elastic, damping and total contact forces are plotted as functions of time in
Fig. 17a, b and c, respectively. It can be observed in Fig. 17b that the damping contact
force in the present model is no longer discontinuous on the contrary to the damping
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Fig. 16 Evolution of contact kinematic parameters during collision of two balls in the nonlinear
Kelvin–Voigt model for different values of COR (the solid parts of the curves represent loading and
the broken ones – unloading)

force in the linear Kelvin–Voigt contact model displayed in Fig. 12b. Therefore, the
total contact force in Fig. 17c is not discontinuous, either. The other imperfection of
the linear Kelvin-Voigt model, manifested in cohesive interaction in the final stage of
impact is not eliminated in the nonlinear Kelvin-Voigt model presented here, which
can be noticed in Fig. 17c and d. Figure12d shows the curves of the total force versus
the overlap (the negative gap) for different damping. It can be seen that similarly to
the linear model, the loading and unloading force–gap relations for the ideally elastic
case coincide, and in the damped collisions, the loading and unloading curves form
a hysteresis loop. This time, unlike in the linear model, the loading and unloading
curves are smooth functions for the zero gap.

4.3 Walton-Braun Elastoplastic Model

Formulation of the model

Viscous damping can be considered as a mechanism representing inelastic particle
deformation during particle collision. Plastic deformation is dependent on the dis-
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Fig. 17 Evolution of contact kinematic parameters and contact forces during collision of two balls
in the nonlinear Kelvin–Voigt model for different values of COR (the solid parts of the curves
represent loading and the broken ones – unloading)
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Fig. 18 Force versus
particle overlap in the
Walton–Braun model

h

kL

F

kU

0

Fmax

h hmax

placement type variable, therefore rate-independent hysteretic contact models such
as the model proposed by Walton and Braun (1986) seem to be more appropriate
for modelling collisions associated with plastic deformations. The Walton–Braun
model assumes a linear force–overlap relationship, but the unloading slope (stiff-
ness) is higher than the loading slope (stiffness), which leads to a certain residual
irreversible overlap when the force drops to zero. This allows us to treat this model
as elastoplastic with elastic unloading. The force as a function of the particle overlap
is plotted in Fig. 18. Please note that although the plot is in the first quadrant of the
graph, the convention of the contact force sign (compressive contact force – negative)
has been kept by taking the negative of force for the vertical axis. The force is given
by:

F =
⎧
⎨

⎩

−kLh if h ≥ hmax (loading),
−kU (h − h0) if h0 < h < hmax (un-/reloading),
0 if 0 < h < h0 (no contact) .

(76)

The residual overlap h0 representing the plastic deformation of the contacting
particles can be easily obtained as

h0 = hmax

(
1 − kL

kU

)
(77)

The reloding path follows the unloading path until the maximum overlap is achieved
and the loading path is reactivated.

Energy is dissipated due to spring force hysteresis. The coefficient of restitution
e, given by

e =
√
kL
kU

, (78)

is independent of the impact velocity, which is in disagreement with experimental
observations. A more realistic coefficient of restitution can be obtained using a vari-
able unloading stiffness kU increasing with the maximum absolute force, Fmax , or
the maximum overlap, hmax , achieved before unloading Walton and Braun (1986),
so that:
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kU = kL + SFmax (79)

or
kU = kL + Bhmax , (80)

where S and B are certain constants. For the Walton-Braun contact model with
variable unloading, the coefficient of restitution depends on the relative velocity of
approach v0

r as follows Walton and Braun, 1986:

e =
√

ω0

Sv0
r + ω0

, (81)

where

ω0 =
√
2kL
m

. (82)

Numerical example

Collision of two balls with given initial velocities

The Walton–Braun contact model has been applied to simulate a collision of two
equal balls of radius R = 10mm and of the same density ρ = 8000kg/m3. The
loading stiffness has been assumed kL = 1.25 × 108 N/m, which is approximately
close to the average stiffness in the Hertzian model (in the considered range) used
in the numerical example in Sect. 4.2. The variable unloading stiffness has been
taken according to Eq. (79) assuming S = 101/m. The problem has been analysed
assuming different initial velocities: v = 10, 20, 30 and 40m/s. The evolution of the
gap (overlap) between the balls and the velocity of one of the balls in the analysed
cases have been plotted in Fig. 19.

The curves have been plotted for the collision time only (until the residual overlap
has been achieved during unloading at each case). The coefficients of restitution for
the analysed cases evaluated using the general formula (63) and predicted by the
specific formula (81) for the Walton–Braun model are given in Table1. It can be
observed that the values obtained in both ways coincide. It can also be observed the
values of the coefficients of restitution decrease with an increase of impact velocity,
which agrees with experimental observations.

The contact forces for different impact velocities are plotted as functions of the
time and overlap in Fig. 20a and b, respectively. It can be observed in Fig. 20a that the
highest the impact velocity is, the shorter the collision time is. Figure20b shows that
the loading stiffness for different velocities is the same and the unloading stiffness
increase with the impact velocity since higher maximum forces are achieved for
higher velocities. It is assumed that the collision endswhen the force during unloading
decreases to zero. A certain residual overlap corresponds to this instant.
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Fig. 19 Evolution of contact kinematic parameters during the collision of two balls in the Walton–
Braun elastoplastic model for different values of impact velocities: a evolution of the gap (overlap),
b evolution of the ball velocity (solid parts of the curves represent the loading and broken parts of
the curve – the unloading)

Table 1 Coefficients of restitution for the Walton–Braun model with variable unloading

v0 (m/s) v0r (m/s) vr (m/s) e, Eq. (63) e, Eq. (81)

5 10 2.8230 0.28230 0.28231

10 20 4.0744 0.20373 0.20373

15 30 5.0250 0.16750 0.16750

20 40 5.8228 0.14557 0.14557

4.4 Storåkers plastic model

Formulation of the model

The plastic deformation of the contacting spherical particles has been assumed in
the model proposed by Storåkers et al. (1997), Storåkers et al. (1999). This model
considers a general viscoplastic behaviour combining strain hardening plasticity and
creep. Here, a simplified formulation of the model without strain rate effects will
be presented. Such a model has been used by Olsson and Larsson (2012) to study
powder compaction.
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Fig. 20 Evolution of contact forces during the collision of two balls in the Walton–Braun elasto-
plastic model for different values of impact velocities: a force versus time, b force versus overlap
(solid parts of the curves represent the loading and broken parts of the curves – the unloading)

Two particles of radii Ri and R j are considered. The plastic properties of the
particles’ material are assumed to follow the Hollomon stress-strain relationship

σ = σ0ε
m (83)

where σ0 andm are material constants. The normal interaction force F in the Storåk-
ers model is given by the following equation Olsson and Larsson (2012):

F = −21−m/231−mπc2+mσ0(R
∗)1−m/2h1+m/2 , (84)

where R∗ is the effective radius defined by Eq. (56), h is the particle overlap, the
parameter c depends on the strain hardening exponent m:

c = √
1.43 exp(−0.97m) . (85)

For the ideal plasticity, when m = 0 and σ = σY , Eq. (84) is reduced to:

F p = 6πc2σY R
∗h , (86)
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Fig. 21 Force versus
particle overlap in the model
combining plastic loading
according to the Storakers
model with the elastic
Hertzian unloading
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where c2 = 1.43. The linear relationship (86) provides an expression for the stiffness:

k = 6πc2σY R
∗ , (87)

which can be used for the loading in the Walton–Braun model.
The Storåkers model has been derived neglecting elastic deformation, cf. Larsson

et al. (1996). In such amodel, the unloadingwould be governed by the rigid behaviour
(no change of deformation during the unloading). Assuming that the loading curve is
valid for an elastoplastic material Olsson and Larsson (2012) combined the Storåkers
model with the elastic unloading according to the Hertz model. The contact force
versus particle overlap for this model is plotted schematically in Fig. 21. The force
during the elastic unloading as well as for the reloading is given by the formula
adapted from Eq. (64):

F = −4

3
E∗√R∗(h − h0)

3
2 , (88)

where h0 is obtained from Eq. (88) taking Fep = Fmax and h = hmax .
Although the Storåkers model was derived for frictionless contact, it was com-

bined with the regularized Coulomb friction model by Olsson and Larsson (2012).

Numerical example

Contact of two spheres under compressive axial load

Twoequal spheres of radius R = 10mmwith plastic properties givenbyEq. (83) have
been considered assuming different values of hardening exponent m = 0, 0.05, 0.1
and 0.2. The yield stress σY = 200MPa has been assumed for the ideal plasticity
(m = 0). TheHollomon constantsσ0 corresponding to the strain hardening exponents
m have been evaluated assuming that all the curves pass through the point correspond-
ing to the yield point in the elasto-plastic model: (σY /E,σY ) (taking the Young’s
modulus E = 200GPa). Thus, the following pairs of the Hollomon constants have
been determined: (m = 0, σ0 = 800 MPa), (m = 0.05, σ0 = 1480 MPa), (m = 0.1,
σ0 = 1375 MPa) and (m = 0.2, σ0 = 2363 MPa). The corresponding stress–strain
curves are plotted in Fig. 22.
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Fig. 22 Stress–strain curves
for different strain hardening
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Fig. 23 Force versus
particle overlap in the
Storakers model in
comparison the Hertz model
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The compressive loading has been introduced by prescribing the displacements
to the particle centres. The evolution of the contact forces F predicted by Storåkers
models as functions of the particle overlap h is shown in Fig. 23 in comparison to
the Herz model.

4.5 Thornton Elastoplastic Model

Themodel proposed by Thornton (1997) considers an interaction of two spheres with
elastic-perfectly plastic properties. The interaction includes elastic and elastoplastic
loading combined with elastic unloading. The force–overlap relationship for loading
and unloading is plotted in Fig. 24.
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Fig. 24 Force versus
particle overlap in the
elasto-plastic Thornton
model

h

Fe

Fmax

h0 hmax

F

hy

Fy

Elastic loading

The contact force F at the initial stage of loading induces elastic deformation at the
contact and it is given by the Hertz law, cf. Eqs. (64) and (65):

F = 4

3
E∗√R∗h

3
2 , (89)

where h is the amount the particles overlap, E∗ is the effective modulus of elasticity
defined by Eq. (66), and R∗ is the effective radius defined by Eq. (56).

The Hertzian contact pressure distribution is given by the following relationship:

p = p0

[
1 −

( r
a

)2
] 1

2

, (90)

where a is the radius of the contact area, r is the distance from the axis of symmetry
and

p0 = 3F

2πa2
. (91)

The contact area radius a is related to the particle overlap h as follows:

a2 = R∗h (92)

It is assumed that the loading is purely elastic below a certain value Fy (Fig. 24)
corresponding to the initial yielding at the contact – when the maximum contact
pressure p0 under an increasing compressive load reaches the yield limit σy , called
the contact yield stress (Fig. 25):

p0(a = ay) = σy . (93)
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Fig. 25 Contact pressure
distribution in the
elasto-plastic Thornton
model
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Combining Eqs. (89), (91), (92) and (93) we can easily obtain the following formulae
for the limit elastic contact force Fy and corresponding overlap hy :

Fy = π3R∗2σ3
y

6E∗2 , (94)

hy = π2R∗σ2
y

4E∗2 . (95)

For the spheres of the same size and with the same properties, Eqs. (94) and (95)
have the following form:

Fy = π3R2(1 − ν2)σ3
y

6E2
, (96)

hy = π2R(1 − ν2)σ2
y

2E2
. (97)

It should be remarked that the contact yield stress σy should not be identified with
the uniaxial yield stress σY . It has been shown by Vu-Quoc et al. (2000) that

σy = AYσY , (98)

where AY is a certain parameter dependent on the material properties and yield
criterion. For theHuber–Mises criterion and Poisson’s ratio ν = 0.3, we obtain AY =
1.61, for ν = 0.4 we obtain AY = 1.74.

Elastoplastic loading

After the yielding, the contact pressure distribution with the cut-off corresponding
to the contact yield stress σy (see Fig. 25) is assumed. Given the contact pressure
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distribution shown in Fig. 25 the contact force can be obtained from the following
formula:

F = Fe − 2π
∫ ap

0
(p(r) − σy) dr , (99)

where Fe is the elastic Hertz force corresponding to the contact area a, and the inte-
gral term is defined for the area with uniform contact pressure with radius ap. After
integrating Eq. (99) with pressure distribution according to Eq. (90) and perform-
ing further transformation the linear force–displacement relationship for the plastic
loading is obtained in the following form, cf. Thornton (1997):

F = Fy + πσy R
∗(h − hy) . (100)

Elastic unloading

It is assumed that the unloading is performed according to the Hertzian law, however,
due to plastic deformation the contact curvature is smaller, and the unloading is
performed assuming a certain curvature defined by the radius R∗

p 1/R∗
p (1/R∗

p <

1/R∗). The radius R∗
p is determined from the assumption that with the contact area

developed by the actual force Fmax and the curvature 1/R∗
p is the same as it would be

obtained with the curvature 1/R∗ and the equivalent elastic force Fe, which is given
by, cf. Fig. 24:

Fe = 4

3
E∗√R∗h

3
2
max , (101)

The idea of equivalence of the contact area has been explained in Fig. 26. It can be
expressed by the following equivalence:

Fmax R
∗
p = FeR

∗ , (102)

Then, the force during unloading is given as follows:

F = 4

3
E∗

√
R∗

p(h − h0)
3
2 , (103)

The residual overlap h0 can be determined taking Eq. (103) for hmax

h0 = hmax −
(

3Fmax

4E∗√R∗
p

) 2
3

. (104)

Numerical examples

Collision of two balls with given initial velocities

Performance of the Thorntonmodel will be demonstrated in simulations of collisions
of two equal balls of radius R = 10mm.The followingproperties have been assumed:
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Fig. 26 Definition of the
curvature for the elastic
unloading in the
elasto-plastic Thornton
model

R

Rp

a

Fmax

Fe

mass density ρ = 8000kg/m3, Young’s modulus E = 200GPa, Poisson’s ratio nu =
0.3, and the contact yield stress σy = 200MPa. The problem has been analysed for
different values of velocities in two ranges – lower velocities: 0.005, 0.010 and
0.015m/s, and higher velocities: 0.5, 0.1 and 1.5m/s.

The results for the lower velocities are presented in Figs. 27 and 28, and the results
for the higher velocities in Figs. 29 and 30. The evolution of the gap between the
balls and the velocity of one of the balls for lower velocities have been plotted in
Fig. 27a and b. It can be seen that the lower the impact velocity is, the longer the
impact is. The coefficients of restitution for the analysed cases evaluated using the
general formula (63) are given in Table2. It can be observed that the values of the
coefficients of restitution decrease with an increase of impact velocity, which agrees
with experimental observations.

The contact forces for lower impact velocities are plotted as functions of the time
and overlap in Fig. 28a and b, respectively. It can be observed in Fig. 28a that the
highest the impact velocity is, the shorter the collision time is. Figure28b shows
that the loading curve for different velocities is the same for different velocities. It
can be observed in Fig. 28b that the incipient yielding occurs at a very early stage
of loading therefore a very small part of the loading is purely elastic. Most of the
loading is characterized by a linear relationship given by Eq. (99). The nonlinear
force–displacement relationship is observed for the unloading for lower velocities.
The results for higher velocities plotted in Fig. 30 show that practically the whole
range of loading is characterized by the linear force–displacement relationship, and
the unloading is very close to a linear behaviour. This shows that a linear elastoplastic
model such as theWalton–Braunmodel can be sufficiently accurate for higher impact
velocities or higher forces.
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Fig. 27 Evolution of contact kinematic parameters during the collision of two balls in the Thornton
elastoplastic model in a range of low impact velocities: a evolution of the gap, b evolution of the
ball velocity (solid parts of the curves represent the loading and broken parts of the curve – the
unloading)

4.6 Cohesive Elastic–perfectly Brittle Model

Modelling of cohesive materials such as rocks or concrete requires a model which
takes into account a tensile interaction between discrete elements. This model
assumes cohesive bonding between neighbouring particles. These bonds can be bro-
ken under load allowing us to simulate initiation and propagation ofmaterial fracture.
After decohesion, standard cohesionless contact conditions are assumed.

Contact laws for the normal and tangential direction for the elastic perfectly
brittle model are shown in Fig. 31. When two particles are bonded the contact forces
in both normal and tangential directions are calculated from the linear constitutive
relationships:

F cont
n = kng , (105)

F cont
t = kt urt , (106)

where: F cont
n – normal contact force, F cont

t – tangential contact force, kn – interface
stiffness in the normal direction, kt – interface stiffness in the tangential direction,
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Fig. 28 Evolution of contact forces during the collision of two balls in the Thornton elastoplastic
model for a range of low impact velocities: a force versus time, b force versus overlap (solid parts
of the curves represent the loading and broken parts of the curves – the unloading)

g – gap/overlap, urt – tangential relative displacement. It should be remarked that
unlike Eq. (38), formula (105) is used for both negative and positive values of the
gap g.

Cohesivebonds are broken instantaneouslywhen the interface strength is exceeded
in the tangential direction by the tangential contact force or in the normal direction
by the tensile contact force. The failure (decohesion) criterion can be written as:

F cont
n ≤ Rn , (107)

‖F cont
t ‖ ≤ Rt , (108)

where: Rn — interface strength in the normal direction, Rt — interface strength in
the tangential direction.

In the absence of cohesion the normal contact force can be compressive only
(Rn ≤ 0) and tangential contact force can be nonzero due to friction if Rn < 0 or
zero otherwise. The friction force is evaluated according to the regularized Coulomb
friction model.



216 J. Rojek

-200

-150

-100

-50

 0

 50

 0  20  40  60  80  100  120  140

ga
p 

[μ
m

]

time [μs]

initial velocity = 0.5 m/s
initial velocity = 1.0 m/s
initial velocity = 1.5 m/s

residual gap

-0.5

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100  120  140

ve
lo

ci
ty

 [m
/s

]

time [μs]

initial velocity = 0.5 m/s
initial velocity = 1.0 m/s
initial velocity = 1.5 m/s

(a)

(b)

Fig. 29 Evolution of contact kinematic parameters during the collision of two balls in the Thornton
elastoplastic model in a range of higher impact velocities: a evolution of the gap, b evolution of
the ball velocity (solid parts of the curves represent the loading and broken parts of the curve – the
unloading)

5 Moment Type Interaction

Contactmodel in the discrete elementmethod except for forces can include amoment
type interaction (Wang et al. 2015). In a general case, there can be a moment inter-
action between bonded and unbonded particles. Here, the moment type interaction
between unbonded particles will be presented.

A moment type interaction allows to compensate deficiencies of the discrete ele-
ment model due to an idealized shape of spherical particles. It provides resistance to
a relative rotation of contacting particles (discrete elements). The relative motion of
two particles i and j can be described by a relative angular velocity ωr given by

ωr = ωi − ω j . (109)

The relative angular velocityωr can be decomposed into the components normal and
tangent to the contact plane, ωrn and ωrt , respectively:

ωr = ωrn + ωrs = ωrn · n + ωrs . (110)
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Fig. 30 Evolution of contact forces during the collision of two balls in the Thornton elastoplastic
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Fig. 31 Force–displacement relationships for the elastic perfectly brittle model: a in the normal
direction, b in the tangential direction
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Table 2 Coefficients of restitution for the Thornton model

v0 (m/s) v0rel (m/s) vrel (m/s) e, Eq. (63)

0.005 0.010 0.00706 0.7060

0.010 0.020 0.01197 0.5987

0.015 0.030 0.01627 0.5424

0.5 1.0 0.2269 0.2269

1.0 2.0 0.3815 0.1908

1.5 3.0 0.51717 0.1724

The normal component can be obtained by projection of the velocity vector ωr onto
the unit normal vector n:

ωrn = ωr · n . (111)

Then, the tangent component is obtained from Eq. (110) as follows

ωrs = ωr − ω rnn . (112)

The motion defined by the tangent component ωrn is called rolling, and that defined
by the normal component ωrt is referred to as twisting.

Analogously, the contact interaction moment T c between the particles can be
decomposed into two components – normal and tangential to the contact plane, Tn i
Ts, respectively:

T c = Tn + Ts = Tn n + Ts . (113)

Models of twisting and rolling resistance can be defined analogously to sliding
friction models. Amodel of twisting resistance can be defined in terms of the angular
velocity component ωrn and the component Tn of the contact moment.

For the model of twisting resistance the Kuhn–Tucker conditions can be written
analogously to the conditions (22) as follows:

φ n ≤ 0 , λn ≥ 0 , φ nλn = 0 , (114)

where λn is defined by the non-associated rolling law:

ωrn = λn
Tn

||Tn|| , (115)

and φ n is given by the following equation:

φ n = ‖Tn‖ − anμ|Fn| , (116)
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an is a parameter which has dimension of length determining the limit moment of
twisting resistance. It has been assumed that this moment is proportional to the
normal contact force Fn and Coulomb friction coefficient μ.

Analogously, a model of rolling resistance can be defined. The Kuhn–Tucker
conditions for the model of rolling resistance can be written as follows:

φs ≤ 0 , λs ≥ 0 , φsλs = 0 , (117)

where λs is defined by the non-associated law of rolling:

ωrs = λ s
Ts

||Ts|| , (118)

and φs is given by
φs = ‖Ts‖ − as|Fn| , (119)

where the limit moment of rolling resistance. depends on the normal contact force
Fn and the parameter as which has dimension of length. This definition is consistent
with the concept of rolling friction employed in engineering, where the parameter as
is called the coefficient of rolling friction.

The conditions (114)–(116) and (117)–(119) can be regularized introducing the
penalty coefficients krotn and krots into the twisting and rolling laws (115) and (118)

Ṫn = krotn

(
ωrn − λn

Tn

||Tn||
)

, (120)

Ṫs = krots

(
ωrs − λs

Ts

||Ts||
)

. (121)

After regularization themodels of twisting and rolling resistance are similar to elasto-
plasticmodelswith non-associated plastic flow rules, and the penalty coefficients play
roles of the moduli of elasticity.

6 Discrete Element Method for Thermal and
Thermomechanical Problems

In many problems, the contact is associated with thermal effects such as heat gener-
ation through friction or heat transfer at the contact between particles with different
temperatures. The discrete element method can be extended to model thermal and
thermomechanical problems.
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6.1 Formulation of the Discrete Element Method for Heat
Conduction Problem

Thermal formulation of the discrete element method introduced here is based on the
assumption that the temperature difference inside particles is negligible and the tem-
perature can be considered uniform within particles. Following this assumption heat
conduction inside particles is neglected whereas heat transfer to and from particles
through their boundary is considered. Such a simplification of the heat conduction
problem is typical for the lumped capacitance model, also called the lumped system
analysis (Cengel 2007). This assumption is justified for the discrete element model
employing relatively small particles and it is consistent with the formulation of the
mechanical problem. Similarly as the mechanical problem is governed by the contact
interaction, the heat conduction problem is governed by the conductive heat transfer
at the particle contacts.

The schematic of the heat transfer for a single particle is shown in Fig. 32. The
thermal model is expressed mathematically by the heat balance equation, which can
be written for a single particle in the following form:

mici θ̇i = Qi , (122)

where: mi – particle mass, ci – specific heat, θi – particle temperature, Qi – heat
sources or heat fluxes per single particle. Qi includes externally supplied heat source
Qext

i , heat generated internally within the particle Qgen
i , heat conducted through the

contact interface Qcont
i j , and convective and radiative heat transfer between particles

and environment on the free surface, Qconv
i and Qrad

i

Qi = Qext
i + Qgen

i +
nc∑

j=1

Qcont
i j + Qconv

i + Qrad
i (123)

Fig. 32 Schematic of the
heat conduction problem for
a discrete element
(reproduced from Rojek
(2014))
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where nc is the number of particles being in contact with the i-th particle.

6.2 Model of Thermal Contact

When two solid bodies of different temperature come into contact heat flows from
the body with higher temperature to the body with lower temperature until a thermal
equilibrium is achieved. If we take two particles with massesmi andm j , heat capac-
ities ci and c j , and temperatures θi and θ j , and bring them into contact, if there no
heat exchange with exterior, the thermal equilibrium is achieved at the temperature
θ given by

θ = miciθi + m jc jθ j

mi ci + m jc j
(124)

The time necessary to reach equilibrium depends on the heat flux through the contact
interface Qcont

i j (in J/s). It is commonly assumed that the the heat flux through the
contact interface is proportional to the temperature jump (θi − θ j ), contact area Acont,
and a certain coefficient hcont called thermal contact conductance (Cooper et al. 1969):

Qcont
i j = −hcontAcont(θi − θ j ) (125)

The contact area Acont can be related to the local particle size

Acont = βR∗2 (126)

where R∗ is the equivalent radius defined by Eq. (56) and β is a certain dimensionless
parameter which should be calibrated for a given discrete element model.

It is sometimes convenient to express heat transfer at the contact in terms of one
parameter H cont = hcontAcont, then Eq. (125) can be rewritten as Zhang et al. (2011):

Qcont
i j = −H cont(θi − θ j ) (127)

In general case of a contact of different bodies or particles, the thermal contact
conductance is dependent on the surface roughness, material properties, interface
temperature and interface pressure (Cooper et al. 1969. In the discrete elementmodel,
however, the thermal contact conductance hcont does not represent the thermal resis-
tance of the interface, only, but it should also take into account the influence of the
thermal conductivity λ ot the particle material. It should be treated as a microme-
chanical parameter which should give required macroscopic properties of the bulk
material.
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6.3 Time Integration of the Discrete Element Method for
Thermal Problem

Heat conduction Eq. (133) can be integrated in time using the explicit forward Euler
scheme

θn+1
i = θni + Qn

i �t

mic
. (128)

The explicit time integration scheme expressed by Eq. (128) is conditionally
stable. The time integration step is limited by the critical step �t thermcr which can
be estimated by the critical value for the one-dimensional heat conduction problem
(Hughes 1987)

�t thermcr ≈ lmin

2a
, (129)

where lmin is the minimum particle centre distance and s is the thermal diffusivity

a = λ

ρc
. (130)

6.4 Formulation of the Discrete Element Method for a
Coupled Thermo-Mechanical Problem

The mechanical and thermal phenomena can be analysed jointly as a coupled
thermo-mechanical problemusing thediscrete elementmodel (Rojek2014).Thermo-
mechanical problem defined in the framework of the discrete element method by the
system of coupled equations formed by the equations of motion (1) and (2) and the
heat balance equation (122)

mi üi = Fi , (131)

Ji ω̇i = Ti , (132)

micθ̇i = Qi (133)

with appropriate initial conditions. Coupling of Eqs. (131) and (132) with Eq. (133)
can be obtained considering such effects as:

• frictional heat generation,
• thermal expansion of the particles and its effect on particle interaction (thermal
stresses),

• temperature dependence of mechanical contact parameters (due to temperature
dependence of material macroscopic properties),

• modification of the geometrical configuration of thermal problem determined by
the solution of mechanical problem.
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6.5 Thermomechanical Contact

Friction considered in themechanical problem is associatedwith heat generation. The
heat is absorbed by the particles increasing their temperature and can be conducted
to other particles by heat transfer at the contact. These coupled phenomena can
be taken into account in the contact model considered in the formulation of the
thermomechanical model. The schematic of the thermomechanical contact model is
shown schematically in Fig. 33.

Heat generation through frictional dissipation is calculated using the following
formula

Qgen = χ |Ft v
ir
rt | , (134)

where Ft is the friction force, vir
rt is the irreversible part of the relative tangential

velocity, and 0 ≤ χ ≤ 1 is the part of the friction work converted to heat. Heat
generated at the contact point is absorbed by the contacting particles

Qgen = Qgen
i j + Qgen

j i (135)

If the particles are of the same materials, it is assumed that the heat is absorbed
equally by the particles:

Qgen
i j = Qgen

j i = 0.5Qgen (136)

In a general case, when the particle thermal properties can be different, heat absorbed
by each of the contacting particles is assumed to be proportional to the thermal
effusivity of the particle materials

Qgen
i j

Qgen
j i

= αQgen

(1 − α)Qgen
= ei

e j
(137)

with the effusivity e being defined as

e = √
λρc (138)

(a) (b)

Fig. 33 Thermomechanical contact schematic for a pair of particles: a mechanical contact inter-
action, b thermal contact effects (reproduced from Rojek (2014))
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whereλ is the thermal conductivity, c is the specific heat capacity, and ρ is the density.
The heat partition coefficient α is given by the following equation

α = ei
ei + e j

(139)

Solution of Thermomechanical Coupled Problem in the Discrete Element
Method

The system of coupled equations is solved using the staggered solution scheme, in
which the mechanical and thermal problems are analysed separately.

1. Solution of the mechanical problem.
Equations (131) and (132) are integrated in time using the explicit central differ-
ence scheme. Employing the equations for the known configuration at the time
tn the solution for the time tn+1 is obtained in the following way:

ün
i = Fn

i

mi
, (140)

u̇n+1/2
i = u̇n−1/2

i + ün
i �t , (141)

un+1
i = un

i + u̇n+1/2
i �t , (142)

ω̇n
i = Tn

i

Ji
, (143)

ω
n+1/2
i = ω

n−1/2
i + ω̇n

i �t , (144)

�ψi = ω
n+1/2
i �t . (145)

Thermal expansion of the particles and resulting thermal components of the
interaction forces are considered in the solution of the mechanical problem.
In many problems, thermally induced stresses may material damage or failure
(Wanne 2009; Leclerc et al. 2018). Heat generated by friction is evaluated in
Eqs. (131) and (132) and passed to Eq. (133).

2. Solution of the thermal problem
Heat conduction Eq. (133) is integrated in time using the explicit forward Euler
scheme

θn+1
i = θni + Qn

i �t

mic
. (146)

The thermal problem is solved on themodified particle configuration determined
in the solution of the mechanical problem. Particle temperatures evaluated in the
solution of the thermal problem are passed to the solution of the mechanical
problem.

The explicit time integration scheme of the coupled thermomechanical problem
is conditionally stable. The time integration step is limited by the critical step �tcr:
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�tcr = min(�tmech
cr ,�t thermcr ) , (147)

where �tmech
cr is the critical time step for the solution of the mechanical problem

depending on the highest eigenfrequency of the discrete system �max

�tmech
cr = 2

�max
, (148)

and �t thermcr is the critical time step for the solution of the thermal problem. The
critical time step for the solution of the thermal problem can be estimated according
to Eq. (129).

Concluding remarks

A brief overview of the basic concepts of the discrete element method and most
popular contact models used in this method has been made in this chapter. Contact
models used in the DEM intend to reproduce complex phenomena associated with
contact between particles (discrete elements) using models composed of relatively
simple rheological elements reproducing elementary contact mechanisms.

Many applications of the DEM show that even with simple contact models, it
is possible to reproduce the complex macroscopic behaviour of the bulk material
modelled by a collection of discrete elements. The contact model in the DEM plays
a role of a constitutive model at the micro- or mesoscopic level. The DEM can be
used to model cohesionless granular materials as well as various cohesive materials.
The DEM in a simple way takes into account discontinuities existing in the material
or occurring under loading. The DEM is a suitable tool to model failure of materials
and structures characterized by multiple fracturing.

It must be remarked that the DEM is not a simple method for a user. The choice of
a suitable contact model and evaluation of appropriate model parameters requires a
certain experience and knowledge. The author dares hope this work will be useful to
understand the physical background and mathematical representation of the contact
phenomena in the DEM.

Acknowledgements The author would like to thankMr. Nikhil Madan for performing simulations
and preparing the plots for the numerical examples included in this chapter.
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