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Abstract. In this paper, we introduce a new variation of graph search-
ing problem, namely, cooperative graph searching problem. We define
that a searcher is isolated if there is no other searchers on its close
neighborhood. In this variant, we add an additional constrain that every
searcher would not be isolated after each searching step. Therefore, we
can make sure that every searcher can be cooperated by another searcher.
We prove that the cooperative graph searching problem is NP-complete
on general graphs and propose polynomial-time algorithms for the prob-
lem on grid graphs.
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1 Introduction

The graph searching problem was first proposed by Breisch [1]. Parsons con-
tributed some earlier works for the problem [2,3]. In the problem, a graph G
represents a system of tunnels. Initially, all the edges of G are contaminated by
a gas. An edge is cleared by some operations on G. A cleared edge is recontami-
nated if there is a path from an uncleared edge to the cleared edge without any
searchers. The objective is to use as few searchers as possible to make all edges
be cleared. The allowable operations are as follows:

1. Place a searcher on a vertex.
2. Remove a searcher from a vertex.
3. Move a searcher along an edge.

If an edge is only cleared by moving a searcher along the edge, then it is
called the edge searching problem. On the other hand, if an edge is cleared by
having two searchers on both its two ends, then it is called the node searching
problem. If both of clearing rules are allowed, then it is called the mixed searching
problem. The mixed searching problem was first proposed by Takahashi et al.
[4]. It is obvious that the mixed searching problem is a natural generalization of
edge and node searching problems. The mixed search number of G, denoted by
ms(G), is the minimum number k such that G is k-searchable by mixed search
rules.
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These variants of graph searching problems are not only interesting theoret-
ically, but also have applications on problems like embedding tree queries [5,6],
key graph searching [7,8], selectivity estimation [9], subgraph matching [10,11],
min cut finding [12], and so on.

Since graph searching problems are so powerful, there are many variants of
searching game for finding more appropriate strategies proposed for modeling
real world problems. Blin proposed a searching problem named exclusive graph
searching problem [13]. Latter, Markou studied a monotone version of exclusive
graph searching [14]. Exclusive graph searching is a variant of mixed searching
with the following extra constrains:

1. Initially, place all the searchers in the graph.
2. Every vertex can contain only one searcher.

Dyer introduced the fast searching problem based on edge searching in which
we can traverse each edge only once [15]. Xue proposed algorithms for some
special graphs [16]. Even though there are so many variants of searching game,
most of them put emphasis on efficiency. However, in the real world, we should
care not only performance but also searchers’ safety. A searcher is isolated if there
is no another searcher on its neighbor vertex or on the same vertex. To avoid a
secondary distress/injure on rescue works and polices’ raids, each searcher has
better not to be isolated.

For guaranteeing that every searcher will not be isolated, we define a variant
of searching game, called the cooperative graph searching problem. Initially, we
have a graph G = (V,E) in which every edge e ∈ E is contaminated. Our target
is to clean all the edges and make sure all searchers are under cooperative for each
searching step. The clearing rules are based on mixed searching. However, for
making a possible cooperation between searchers. we have the following possible
operations.

1. Place a searcher on a vertex.
2. Place two searchers on the end-vertices of an edge.
3. Remove a searcher from a vertex.
4. Remove two searchers from the end-vertices of an edge.
5. Move a searcher along an edge.

For each step, only one operation above is allowed. We use Si = (Ei, Ci) to
denote the status after operation i is applied, where Ei (respectively, Ci) denotes
the set of uncleared (respectively, cleared) edges. A sequence of S0, S1, . . . , Sr

that clears the graph G is called a search strategy of G and is denoted as S.
By the definition, S0 = (E, ∅) and Sr = (∅, E). Note that Ei ∩ Ci = ∅ and
Ei ∪ Ci = E for each step i. Let |Si| denote the number of searchers on graph
after step i. Let |S| = maxi |Si denote the number of searchers used to clear
G. A search strategy is cooperative if for each step there is a searcher on some
vertex, then there is another searcher at its neighbor vertex or stay at the same
vertex. A cooperative search strategy is optimal if it uses the minimum number
of searchers to clear G. The cooperative graph searching problem on G is to find
an optimal cooperative search strategy to clear G.
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We say a graph G is k-searchable if we can clear G by using at most k
searchers. Similarly, G is k-cooperative searchable if G can be cleared by using at
most k searchers using a k-cooperative search strategy. The cooperative search
number of G, denoted by cos(G), is the minimum number k such that G is
k-cooperative searchable. Thus the decision version of the cooperative graph
searching problem is called the k-cooperative graph searching problem that asks
whether G is k-searchable or not?

2 Preliminary Results

Let G = (V,E) be a simple, finite, and undirected graph. For a vertex subset
W ⊆ V , let G[W ] be a subgraph of G that is induced by W . A clique is a
complete subgraph and an independent set is a subgraph that has no edge. Let
Kn (respectively, Pn and Cn) be a complete (respectively, path and cycle) graph
with n vertices. The following lemma shows some easy results.

Lemma 1. The following statements are true.

1. cos(Kn) = n − 1 for n ≥ 3.
2. cos(Pn) = 2 for n ≥ 2.
3. cos(Cn) = 4 for n ≥ 5.

Proof. For Kn, it is not hard to check that n − 2 searchers are not enough to
clear the graph. Since after the n − 2 searchers are on the graph, there are two
remaining vertices that cannot be guarded and therefore no way can clear the
edge between them without recontamination. However, we can clear Kn by the
following strategy.

1. Firstly, place 2 searchers on the end-vertices of an edge.
2. Then, place the remaining n − 3 searchers on any unguarded vertices one by

one.
3. Finally, move any one searcher to the remaining unguarded vertex.

Since Kn is a complete graph, all the searchers on vertices are adjacent. Thus,
it is a cooperative search strategy.

For Pn, let Pn = (v1, v2, . . . , vn}. To clear Pn, we first place two searchers on
v1 and v2. Then, move the searcher at v1 to v2 and then move a searcher on v2
to v3. The following steps are similar. That is, these two searchers cooperatively
search the path until to vn. Thus cos(Pn) = 2.

For Cn, The idea is similar to the search strategy of Pn. However, to avoid
recontamination, we need two team from different directions to clear the graph.
By the cooperative rules, the minimum number of each team is 2. Thus cos(Cn) =
4 for n ≥ 5. �	
Lemma 2. Let G′ be an induced subgraph of G. Then cos(G′) ≤ cos(G).
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Proof. Consider a cooperative search strategy S of no recontamination for clear-
ing G. Since S has no recontamination, all the searchers on a vertex can be
moved/removed only when the vertex is clear, i.e., no any contaminated inci-
dent edge. In S, we keep each step for cleaning edges in G′. We delete those
steps that clean edges which are not in G′. Thus, G′ can be cleared using the
modified strategy. Clearly, cos(G′) ≤ cos(G). �	
Theorem 1. For any graph G = (V,E), ms(G) ≤ cos(G) ≤ 2ms(G) and the
bound is tight.

Proof. Since cooperative graph searching problem is a special case of mixed
searching problem, the lower bound ms(G) ≤ cos(G) is obvious. Now consider
an optimal mixed search strategy S for G. In S, for each step if it violates the
cooperative search rules, then we add an extra searcher to a neighbor of the
target vertex which will violate the rules. For example, if we want to clear the
edge uv by moving a searcher from u to v, then there are the following two cases
that the cooperative rules will be violated.

1. the new coming searcher at v is isolated.
2. the missing searcher of u causes an isolated searcher on a neighbor of u.

For both cases, we can just place an extra searcher to v such that the edge uv
is cleared by both of its two ends having a searcher. Thus our upper bound is
obtained.

Finally, by Lemma 1, for n ≥ 3 ms(Kn) = cos(Kn) = n − 1 which meets
the lower bound. Similarly, for n ≥ 4 cos(Cn) = 2ms(Cn) = 4 which meets the
upper bound. Thus the bounds are tight. �	
Corollary 1. For any tree T , cos(T ) ≤ 2ms(T ) = O(lg n).

Lemma 3. Let G = (V,E) be a graph containing two cliques Km and Kn such
that V = Km ∪ Kn and m ≥ n ≥ |Km ∩ Kn|. Then, cos(G) = m − 1.

Proof. Since Km ⊆ G, by Lemmas 1 and 2, cos(G) ≥ m − 1. To show that
cos(G) = m − 1, we propose the following strategy to clear G by using m − 1
searchers.

1. Let u be in Km ∩ Kn and v be in Kn \ Km.
2. Place m − 1 searchers on Km \ {u}.
3. Move one searcher in Km \ Kn to u.
4. Remove all the searchers from Km \ Kn.
5. Place searchers on Kn \ (Km ∪ {v}).
6. Move any searcher on G to v.

For the above strategy, it is easy to check that we use at most m−1 searchers
to clear G if m ≥ n. It proves the lemma. �	

A graph G = (V,E) is a split graph if V can be partitioned into two sets C
and S such that the induced subgraph G[C] is a clique and G[S] is an independent
set. For convenience, we use G = (C ∪ S,E) to denote a split graph.



On the Cooperative Graph Searching Problem 43

Theorem 2. Let G = (C ∪ S,E) be a split graph. Then |C| − 1 ≤ cos(G) ≤
|C| + 1.

Proof. Since G[C] is a clique of G, by Lemmas 1 and 2, we obtain that |C| − 1
is a lower bound of cos(G). On the other hand, we can clear G by using |C| + 1
searchers as follows.

1. Place |C| searchers on vertices of C.
2. Place one extra searcher on S one after one.

It is not hard to check that the above strategy can clear G using |C| + 1
searchers. Therefore, we have this theorem. �	

3 NP-Completeness Result

A search strategy can be recontaminated if there is an edge which is cleared at
step i but becoming unclear at step j for j > i. However, for edge searching,
LaPaugh showed the following theorem.

Theorem 3 ([17]). If graph G is k-searchable, then there is a search strategy
using at most k searchers without recontamination.

By using a similar argument as the proof of Theorem 3, we can show the
following theorem. We omit the proof for this version.

Theorem 4. If graph G is k-cooperative searchable, then there is a cooperative
search strategy using at most k searchers without recontamination.

By Theorem 4, we may assume that the cooperative search strategy we con-
sidered does not be recontamination.

Lemma 4. The k-cooperative graph searching problem is in NP.

Proof. For any graph G = (V,E) and a given integer k, we design a nonde-
terministic polynomial-time algorithm that checks whether G is k-cooperative
searchable or not. The detailed algorithm is shown in Algorithm 1. It shows the
lemma. �	

Theorem 5 ([18]). The mixed searching problem is NP-Complete.

Theorem 6. The k-cooperative graph searching problem is NP-Complete.

Proof. By Lemma 4, the k-cooperative graph searching problem is in NP. To
complete the proof, the remaining work is to show it is NP-hard. Our reduction
is from the mixed searching problem.

For any graph G = (V,E), we construct an extended graph G′ = (V ′, E′) by
adding a universal vertex u. That is, V ′ = V ∪ {u} and E′ = E ∪ {uv | ∀v ∈ V }.
We claim that G can be mixed searched using at most k − 1 searchers if and
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Algorithm: k-cooperative searchable
Data: a graph G = (V,E) and an integer k
Result: G is k-cooperative searchable or not.
F ← E;
while F is not empty do

nondeterministically, select an uncleared edge e = uv ∈ F
if both end-vertices of e do not have a searcher then

place two searchers on the end-vertices of e
else

assume a searcher is at u;
if all the edges incident to u except uv are clear then

move the searcher at u to v
else

place a searcher on v
end

end
F ← F \ {e};
if the number of searchers used is greater than k then

return False
else

Remove searchers if they are not needed under the constraints of
cooperative search rules;

end

end
return True;

Algorithm 1. NP algorithm for checking k-cooperative searchable.

only if G′ can be cooperatively searched by at most k searchers. The only if
part is easy. In mixed searching, if v is the first vertex that is guarded by a
searcher, then we simultaneously place another searcher on vertex u. Thus, they
are cooperative since for each searcher on a vertex of V there is always a searcher
on u. Then following the mixed searching strategy on G we can clear G′ obeying
the cooperative searching rules.

On the other hand, if we can cooperatively search G′ by using at most k
searchers, then G can be mixed searched with k−1 searchers. Consider a cooper-
ative search strategy S that does not contain recontaminated edges by Theorem
4. Since u does not exist in G, we remove every step that clears an edge incident
to u. Let the resulting strategy be S ′. By definition S ′ is a mixed search strategy
that clears G. Since |S| = k and u is a universal vertex in G′, when there are k
searchers on G′, u must be guarded by one. Otherwise, we need extra searcher
to guard u for maintaining recontamination. Therefore |S ′| = k− 1. This proves
the theorem. �	

4 Polynomial-Time Algorithm for Grid Graphs

Grid graphs are a class of graphs that is the graph Cartesian product of path
graphs. Two dimensional grid graphs are the most representative case of grid
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graphs and have many applications. For example, we can simulate roads network
of modern planned cities by grid graphs, or simulate electronic circuits by grid
graphs with graph embedding skill. By definition, we can represent any two
dimensional grid graphs by a production of two paths Pm and Pn. We denote it
by Gm×n assuming that m ≥ n.

Theorem 7. For any grid graph Gm×n, n ≥ 3, cos(Gm×n) = n + 1.

Proof. We assume that in Gm×n there are m columns and n rows. We propose
the following strategy to clear Gm×n. It works column by column. We first clear
the first column by placing n searchers on vertices of it. Suppose that the i-th
column is cleared. We are going to clear the (i+1)-th column. For clearing edges
between i-th column and (i + 1)-th column, and obeying cooperative rules, we
need an extra searcher, namely, (n + 1)-th searcher to complete the work. The
clearing progress is shown in Fig. 1. Thus cos(Gm×n) ≤ n + 1. By applying a
separator theorem [19] on Gm×n, cos(Gm×n) ≥ n.

Assume that we want to clear the graph by using only n searchers. To clear
edge between two columns, our searchers have to guard vertices in these two
columns. Since we can only move one searcher in an operation, the first searcher
moving (or placing) to (i+1)-th column have to have a neighbor searcher at the
same row. Otherwise, it is not cooperative. Note that at this moment, all the n
searchers on column i cannot be moved (or removed); otherwise, a recontamina-
tion occurs. Thus n searchers are not enough to clear the graph Gm×n. Hence,
n < cos(Gm×n) ≤ n + 1, i.e., cos(Gm×n) = n + 1. �	
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Fig. 1. A progress for clearing Gm×n.

Grid graphs are an important class of interconnection networks. For a more
general model, some vertices may be failure. That is, we can remove these failed
vertices from G. To search such a grid, we use the same approach (column by
column) mentioned above to clear it. Assume that all the vertices of the i-th
column are good. Thus when we want to march to column i + 1, vertices on
column i + 1 are either good or bad. It divides the column into a set of paths.
In particular, some paths contain only one vertex. Thus for cooperative rules,
we need a searcher stand at the vertex on column i for supporting the searcher
marching to column i+1. For those paths of length at least two, we use the same
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technique to go to column i + 1. Assume that we have r P1’s in column i + 1.
By cooperative rules, we need r supporting vertices guarded on column i. The
remaining problem is that do we have enough searchers to do the job? In the
worst case, we have at least r missing vertices on column i+1. Thus, n searchers
are sufficient to guard vertices on column +1 and supporting vertices on column
i. However, we still need one extra searcher to help searchers on column i to
column i + 1. Therefore, we need n + 1 searchers for clearing this kind of grid
graphs. For the other special cases, the arguments are similar. We omit the detail
in this version. Finally, we have the following theorem.

Theorem 8. Grid graphs Gm×n without some vertices are (n + 1)-cooperative
searchable.

5 Conclusion

In this paper, we propose the cooperative graph searching problem, a new variant
of graph searching problem by including cooperative rules. The rules make sure
that no searcher will be alone or isolated during a searching process. We believe it
is more suitable to model some real world problems. We propose some properties
on graphs for this problem. In particular, we show that this problem is NP-
complete on general graphs and it can be solved on grid graphs. In [16], the
author solved the exclusive graph searching problem in polynomial time. We
believe that by a similar idea our algorithm can be generalized for generalized
grid graphs, i.e., k dimensional grid graphs for any k. In the future, we want to
study features of cooperative graph searching problem on other graph classes,
i.e., trees. We believe that this problem on trees can be solved in polynomial
time.
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