
w

Cong Tian
Fumiko Nagoya
Shaoying Liu
Zhenhua Duan (Eds.)

 123

LN
CS

 1
07

95

7th International Workshop, SOFL+MSVL 2017
Xi’an, China, November 16, 2017
Revised Selected Papers

Structured Object-Oriented
Formal Language and Method



Lecture Notes in Computer Science 10795

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407



Cong Tian • Fumiko Nagoya
Shaoying Liu • Zhenhua Duan (Eds.)

Structured Object-Oriented
Formal Language and Method
7th International Workshop, SOFL+MSVL 2017
Xi’an, China, November 16, 2017
Revised Selected Papers

123



Editors
Cong Tian
Xidian University
Xi’an
China

Fumiko Nagoya
Nihon University
Tokyo
Japan

Shaoying Liu
Hosei University
Koganei-shi, Tokyo
Japan

Zhenhua Duan
Xidian University
Xi’an
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-90103-9 ISBN 978-3-319-90104-6 (eBook)
https://doi.org/10.1007/978-3-319-90104-6

Library of Congress Control Number: 2018940146

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The Structured Object-Oriented Formal Language (SOFL) provides an advanced
technology to enhance the application of formal specification, specification-based test-
ing and inspection, and specification animation for validation for industrial software
development. Specifically, SOFL integrates data flow diagram, Petri nets, and VDM-SL
to offer a visualized and formal notation for constructing specification; a three-step
approach to requirements acquisition and system design; specification-based inspection
and testing methods for detecting errors in both specifications and programs, and a set of
tools to support modeling and verification. The Modeling, Simulation and Verification
Language (MSVL) is a parallel programming language. Its supporting toolkit MSV has
been developed to enable us to model, simulate, and verify a system in a formal manner.

Following the success of the previous SOFL+MSVL workshop, the 7th International
Workshop on SOFL+MSVL was jointly organized in Xi’an on November 16, 2017 by
Shaoying Liu’s research group at Hosei University, Japan, and Zhenhua Duan’s
research group at Xidian University, China, with the aim of bringing together industrial,
academic, and government experts and practitioners of SOFL or MSVL to communicate
and to exchange ideas. Prof. Luke Ong of the University of Oxford was invited to give a
keynote talk on “New Inductive Invariants for Concurrency.” The workshop attracted 21
submissions on specification-based testing, specification inspection, model checking,
formal verification, formal semantics, and formal analysis. Each submission was rig-
orously reviewed by two or more Program Committee members on the basis of technical
quality, relevance, significance, and clarity, and 13 papers were accepted for publication
in the workshop proceedings. The acceptance rate was 61.9%.

We would like to thank ICFEM 2017 for supporting the organization of the
workshop, all of the Program Committee members for their great efforts and cooper-
ation in reviewing and selecting the papers, and our postgraduate students for their
help. We would also like to thank all of the participants for attending presentation
sessions and actively joining discussions at the workshop. Finally, our gratitude goes to
Springer for its continuous support in the publication of the workshop proceedings.

November 2017 Cong Tian
Fumiko Nagoya

Shaoying Liu
Zhenhua Duan
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Animation and Prototyping



Graphically Perceiving Characteristics of
the MCS Lock and Model Checking Them

Tam Thi Thanh Nguyen(B) and Kazuhiro Ogata(B)

School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan

{tamnguyen,ogata}@jaist.ac.jp

Abstract. The MCS list-based queuing lock (MCS) is a mutual exclu-
sion protocol whose variants have been used in Java virtual machines.
MCS is specified as a state machine in Maude, a rewriting logic-based
computer language and system. We have developed a tool (called SMGA)
that tales a finite computation generated from a state machine and
displays its graphical animations. MCS is used to describe how such
graphical animations help human beings perceive characteristics of the
state machine of MCS. Such characteristics can be confirmed by Maude
model checking facilities. The characteristics graphically perceived and
confirmed by model checking could be used as lemmas to theorem prove
that MCS enjoys some desired properties. SMGA can also display graph-
ical animations of counterexamples presented by the Maude LTL model
checker.

Keywords: Graphical animation · Maude · Model checking
Mutual exclusion protocols · State machine

1 Introduction

State machines can be used as mathematical models of various systems and their
properties can be used to formalize systems requirements. Thus, systems verifi-
cation can be conducted as formal verification of state machine properties. Two
major systems verification techniques are model checking and theorem proving.
Model checking can be automatically conducted but cannot basically deal with
infinite-state systems1. Theorem proving can directly deal with infinite-state
systems but requires human interaction. One of the most intellectual tasks in
theorem proving is conjecturing lemma.

We have developed a tool [3] that takes a finite computation of a state
machine and displays its graphical animation. The tool (called the state machine

This work was partially supported by JSPS KAKENHI Grant Number 26240008.
1 If you find a good abstraction that converts an infinite-state system to a finite-state
one and preserves the negation of a property concerned, the infinite-state system can
be formally verified by model checking the finite-state one [1,2], although you need
to prove the preservation of the negated property by the abstraction.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Tian et al. (Eds.): SOFL+MSVL 2017, LNCS 10795, pp. 3–23, 2018.
https://doi.org/10.1007/978-3-319-90104-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90104-6_1&domain=pdf
http://orcid.org/0000-0003-1864-1722
http://orcid.org/0000-0002-4441-3259
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graphical animation tool, or the SMGA tool, or simply SMGA) mainly aims at
helping human beings perceive characteristics appearing in state machine graph-
ical animations and conjecture lemmas that could be used to theorem prove state
machine properties. The MCS list-based queuing lock (the MCS protocol, the
MCS lock, or simply MCS) [4] is a mutual exclusion protocol whose variants
have been used in Java virtual machines. MCS is specified as a state machine
in Maude [5], a rewriting logic-based computer language equipped with model
checking facilities (the search command and the LTL model checker). SMGA
takes finite computations from the Maude specification of MCS and displays
their graphical animations. This paper describes how such graphical animations
help human beings perceive characteristics of the state machine of MCS appear-
ing in the animations. The Maude search command can be used to confirm
the guessed characteristics by exhaustively traversing the Maude specification of
MCS. If Maude refutes some, we can revise them based on the counterexamples
generated by Maude. Characteristics perceived by human beings in graphical
animations and confirmed by model checking would be likely to be able to be
used as lemmas for theorem proving. The paper also describes model checking
experiments that MCS enjoys the mutual exclusion property with the Maude
search command and the lockout freedom property with the Maude LTL model
checker. Two variants of MCS in which a complex atomic instruction comp&swap
is not used are analyzed with the LTL model checker as well. One variant does
not enjoy the lockout freedom property and then a counterexample is given by
the model checker. SMGA can also generate a graphical animation of a coun-
terexample.

The rest of the paper is organized as follows. Section 2 describes some prelim-
inaries, such as Kripke structures and LTL. Section 3 describes MCS. Section 4
describes Maude and how specify MCS in Maude. Section 5 reports on the case
study in which MCS and two variants have been analyzed with SMGA and
Maude. Section 6 mentions some existing related work, and Sect. 7 finally con-
cludes the paper.

2 Preliminaries

Let S be a set and π be an infinite sequence e0; ...; ei; . . . of S, where each ei ∈ S,
and then π(i) = ei (the ith element in π) and πi = ei; . . . (the ith suffix obtained
by deleting the first i elements from π) for each natural number i. Let e0; ...; en be
a non-empty finite sequence of S, and then (e0; ...; en)∞ = e0; ...; en; e0; ...; en; . . .
(the infinite sequence in which the finite sequence repeats infinitely often). Let
U be a universal set of symbols.

A Kripke structure (KS) K is a 5 tuple 〈S, I, P, L, T 〉, where S is a set
of states, I ⊆ S is the set of initial states, P ⊆ U is a set of atomic state
propositions, L is a labeling function whose type is S → 2P , and T ⊆ S × S is
a total binary relation. An element (s, s′) ∈ T may be written as s → s′ and
referred as a state transition.

A path of K is an infinite sequence s0; . . . ; si; si+1; . . . of S such that
(si, si+1) ∈ T for each natural number i. A computation of K is a path π of
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K such that π(0) ∈ I. Let P be the set of all paths of K and C be the set of all
computations of K. A finite prefix s0; . . . ; sn of a computation (or path) of K is
called a finite computation (or path) of K. The syntax of a formula ϕ in Linear
Temporal Logic (LTL) for K is ϕ:: = � | p | ϕ ∧ ϕ | © ϕ | ϕ U ϕ, where p ∈ P .
Let F be the set of all formulas in LTL for K.

An arbitrary path π ∈ P of K and an arbitrary LTL formula ϕ ∈ F of K,
K,π |= ϕ is inductively defined as K,π |= �, K,π |= p if and only if p ∈ L(π(0)),
K,π |= ¬ϕ1 if and only if K,π 
|= ϕ1, K,π |= ϕ1 ∧ ϕ2 if and only if K,π |= ϕ1

and K,π |= ϕ2, K,π |= © ϕ1 if and only if K,π1 |= ϕ1, and K,π |= ϕ1 U ϕ2

if and only if there exists a natural number i such that K,πi |= ϕ2 and for all
natural numbers j < i, K,πj |= ϕ1, where ϕ1 and ϕ2 are LTL formulas. Then,
K |= ϕ if and only if K,π |= ϕ for each computation π ∈ C of K.

The temporal connectives © and U are called the next operator and the until
operator, respectively. The other logical and temporal connectives are defined
as usual as follows: ⊥ � ¬�, ϕ1 ∨ ϕ2 � ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2 � ¬ϕ1 ∨ ϕ2,
♦ϕ � � U ϕ, �ϕ � ¬(♦¬ϕ), and ϕ1 � ϕ2 � � (ϕ1 ⇒ ♦ϕ2). The temporal
connectives ♦, � and � are called the eventually operator, the always operator
and the leadsto operator, respectively.

There are multiple possible ways to express states. In this paper, a state is
expressed as an associative-commutative collection of name-value pairs, where
a name may have parameters. Associative-commutative collections are called
soups, and name-value pairs are called observable components. That is, a state
is expressed as a soup of observable components. The juxtaposition operator
is used as the constructor of soups. Let oc1, oc2, oc3 be observable components,
and then oc1 oc2 oc3 is the soup of those three observable components. Since
the order is irrelevant because of associativity and commutativity, oc1 oc2 oc3 is
the same as some others, such as oc3 oc2 oc1. For soups ocs1, ocs2 of observable
components, ocs1 ⊆ ocs2 if and only if there exists a soup ocs3 of observable
components such that ocs1 ocs3 = ocs2, namely that there exists ocs1 in ocs2,
where each ocsi for i = 1, 2, 3 may be empty or a single observable compo-
nent. Examples of observable components are (glock: nop) and (pc[p1]: rs),
where glock and pc[p1] are names, nop and rs are values, and p1 is a parameter
of the name pc[p1]. An example of a soup of observable components is (glock:
nop) (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs). This represents (actually
partially) a state in which there are three processes each of which is located
at rs and there is one global variable glock that is shared by the three pro-
cesses and whose value is nop. Since the soup is associative and commutative,
even if some observable components are swapped, for example (pc[p2]: rs)
(pc[p1]: rs) (glock: nop) (pc[p3]: rs), it represents the same state.

3 MCS List-Based Queuing Lock

The MCS list-based Queuing lock (MCS protocol) has been invented by Mellor-
Crummey and Scott [4]. Variants of MCS protocol have been used in Java virtual
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machines, and therefore the inventors were awarded the 2006 Edsger W. Dijkstra
Prize in Distributed Computing2.

A pseudo-code of MCS protocol for each process p is as follows:

rs: “Remainder Section”
l1: nextp := nop;
l2: predp := fetch&store(glock, p);
l3: if predp 
= nop {
l4: lockp := true;
l5: nextpredp

:= p;
l6: repeat while lockp; }
cs: “Critical Section”
l7: if nextp = nop {
l8: if comp&swap(glock, p,nop)
l9: goto rs;
l10: repeat while nextp = nop; }
l11: lockednextp := false;
l12: goto rs;

There is one global variable glock shared by all processes participating in MCS
protocol. Its type is process IDs (or Pid). Initially, glock is nop, a dummy process
ID. Each process p maintains three local variables nextp, lockp and predp whose
types are Pid, Bool and Pid, respectively. Initially, nextp, lockp and predp are
nop, false and nop, respectively. nextp is used to construct a global queue of pro-
cesses (or process IDs). Basically, nextp refers to the next element of the queue
if p is in the queue. Since enqueuing an element into the queue and dequeuing
the queue are not atomically done, however, nextp may be nop even though p
is not the bottom element of the queue. predp refers to the previous element of
the queue while p is being put into the queue. lockp is the local lock on which
process p is spinning while lockp is true to wait for entering the critical section.
glock basically refers to the bottom element if the queue is not empty. Since the
two basic operations to the queue are not atomic, however, glock may not refer
to the real bottom element while some process IDs are being put into the queue.

To safely conduct the two basic operations to the queue non-atomically, two
atomic operations are used: fetch&store and comp&swap. fetch&store(x, v) does
the following atomically: tmp := x, x := v, and tmp is returned, where tmp
is a temporary variable. comp&swap(x, v1, v2) does the following atomically: if
x = v1, then x := v2 and true is returned; otherwise, false is returned.

4 Maude

Maude is a rewriting logic-based computer language and system that is
equipped with many functionalities, among which are model checking and
meta-programming. Maude is one of the direct successors of OBJ3, the most

2 https://www.podc.org/dijkstra/2006-dijkstra-prize/.

https://www.podc.org/dijkstra/2006-dijkstra-prize/
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famous algebraic specification language and system mainly designed by Joseph
A. Goguen. Therefore, Maude allows users to write specifications very flexibly.
For example, associative and/or commutative binary operators can be freely
used in specifications, making it possible to specify complex concurrent and dis-
tributed systems very succinctly.

As described, MCS protocol is formalized as a state machine whose states are
expressed as soups of observable components. When there are three processes, a
state is expressed as

(glock: G) (pc[p1]: L1) (pc[p2]: L2) (pc[p3]: L3) (next[p1]: P1)

(next[p2]: P2) (next[p3]: P3)(lock[p1]: B1) (lock[p2]: B2) (lock[p3]: B3)

(pred[p1]: Q1) (pred[p2]: Q2) (pred[p3]: Q3)

where G, Pi and Qi for i = 1, 2, 3 are process IDs, Li for i = 1, 2, 3 are locations,
such as rs, l1 and cs, and Bi for i = 1, 2, 3 are Booleans. Initially, G, each Pi and
each Qi are nop, each Li is rs, each Bi is false. The initial state will be referred
as init.

The state transitions are described in terms of rewrite rules as follows:

rl [want] : (pc[P]: rs) => (pc[P]: l1) .

rl [stnxt] : (pc[P]: l1) (next[P]: Q) => (pc[P]: l2) (next[P]: nop) .

rl [stprd] : (glock: Q) (pc[P]: l2) (pred[P]: Q1)

=> (glock: P) (pc[P]: l3) (pred[P]: Q) .

rl [chprd] : (pc[P]: l3) (pred[P]: Q)

=> (pc[P]: (if Q == nop then cs else l4 fi)) (pred[P]: Q) .

rl [stlck] : (pc[P]: l4) (lock[P]: B) => (pc[P]: l5) (lock[P]: true) .

rl [stnpr] : (pc[P]: l5) (pred[P]: Q) (next[Q]: Q1)

=> (pc[P]: l6) (pred[P]: Q) (next[Q]: P) .

rl [chlck] : (pc[P]: l6) (lock[P]: false) => (pc[P]: cs) (lock[P]: false) .

rl [exit] : (pc[P]: cs) => (pc[P]: l7) .

rl [rpnxt] : (pc[P]: l7) (next[P]: Q) => (pc[P]: (if Q == nop then l8

else l11 fi)) (next[P]: Q) .

rl [chglk] : (glock: Q) (pc[P]: l8) => (glock: (if Q == P then nop

else Q fi)) (pc[P]: (if Q == P then l9 else l10 fi)) .

rl [go2rs] : (pc[P]: l9) => (pc[P]: rs) .

crl [rpnxt2] : (pc[P]: l10) (next[P]: Q) => (pc[P]: l11)

(next[P]: Q) if Q =/= nop .

rl [stlnx] : (pc[P]: l11) (next[P]: Q) (lock[Q]: B)

=> (pc[P]: l12) (next[P]: Q) (lock[Q]: false) .

rl [gotrs] : (pc[P]: l12) => (pc[P]: rs) .

where want, stnxt, etc. are the labels of the rewrite rules.

5 Analysis of MCS Protocol

5.1 Invariant Model Checking with Search

For a state machine specification in Maude, a state S, a pattern P and a condition
C, the Maude search command exhaustively traverses the reachable states from
S to find states that match P and satisfy C:
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search [N] in Mod : S =>* P such that C .

where N is a natural number. The search command tries to find at most N
solutions. Note that a solution is basically a state A that matches P and satisfies
C, but since there may be more than one substitution σ such that σ(P) = A, there
may be more solutions than the number of such states and such substitutions
are called solutions of the search.

The mutual exclusion property that should be enjoyed by mutual exclusion
protocols, such as MCS protocol, says that there exists at most one process in
the critical section at any given moment. Therefore, the search command can be
used to check if MCS protocol enjoys the property as follows:

search [1] in MCS-INIT :

init =>* (pc[I]: cs) (pc[J]: cs) S .

where MCS-INIT is the module in which MCS protocol is specified in Maude, I
and J are Maude variables of process IDs, and S is a Maude variable of states
(or soups of observable components). If Maude finds a solution, MCS protocol
does not enjoy the property. Maude did not find any solutions, implying that
MCS protocol enjoys the property when there are three processes.

5.2 Graphical Animations of MCS Protocol

The graphical animation tool [3] has been implemented with DRAW-SVG [6]
that is designed and developed by Joseph LIARD. It is a free online draw-
ing application for designers and developers, making it possible to create fully
standard compliant SVG. We have used DRAW-SVG as an integrated draw-
ing tool within our tool to support users draw SVG pictures for any state
machines. Our tool is available on the website https://tamntt.bitbucket.io/
Research/GraphicalAnimation/. It allows users to design their own pictures of
animations. Figure 1 shows the picture we have drawn for MCS protocol when
there are three processes.

The graphical animation tool does not deal with state machines themselves
internally. Instead, what is fed into the tool is basically a finite computation of
a state machine. An example input file of MMCS is as follows:

###keys

glock pc[p1] pc[p2] pc[p3] next[p1] next[p2] next[p3] lock[p1] lock[p2]

lock[p3] pred[p1] pred[p2] pred[p3]

###textDisplay

###states

(glock: nop (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (next[p1]: nop)

(next[p2]: nop) (next[p3]: nop) (lock[p1]: false) (lock[p2]: false)

(lock[p3]: false) (pred[p1]: nop) (pred[p2]: nop) pred[p3]: nop) ||

(glock: nop (pc[p1]: rs) (pc[p2]: l1) (pc[p3]: rs) (next[p1]: nop)

(next[p2]: nop) (next[p3]: nop) (lock[p1]: false) (lock[p2]: false)

https://tamntt.bitbucket.io/Research/GraphicalAnimation/
https://tamntt.bitbucket.io/Research/GraphicalAnimation/
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Fig. 1. Picture of MCS protocol

(lock[p3]: false) (pred[p1]: nop) (pred[p2]: nop) pred[p3]: nop) ||

glock: nop (pc[p1]: l1) (pc[p2]: l1) (pc[p3]: rs) (next[p1]: nop)

(next[p2]: nop) (next[p3]: nop) (lock[p1]: false) (lock[p2]: false)

(lock[p3]: false) (pred[p1]: nop) (pred[p2]: nop) pred[p3]: nop

There are three segments in an input file as follows:

– ###keys: This is a list of keys which are names of observable components
in a state. The order in which the keys appear must be the same as the order
in which the corresponding observable components appear in each state.

– ###textDisplay: This part specifies how the value of an observable compo-
nent is displayed. If nothing is specified, it is displayed horizontally and its
top appears left most when displaying a queue or string list. There may be
the case, however, where its top should appear right most. Some values, such
as stacks, may have to be displayed vertically instead. The format used in
this part is as follows:

key::::option:::regex(0)++++....++++regex(i)

The format consists of three parts: key, option and regexs. A key appearing
in the key segment is written in the key part. REV, VER or VER-REV is
written in the option part. REV specifies a collection, such as queues and lists,
is displayed such that its top appears right most, VER specifies a collection,
such as stacks, is displayed vertically such that its top appears top most,
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and VER-REV specifies a collection is displayed vertically such that its top
appears bottom most. A list of regular expressions is written in the regexs
part. For example, we have an observable component in a state as (chan1 :<
false, pac(1) >< true, pac(2) > empty), and we want the tool will display
value of chan1 as empty < true, pac(2) >< false, pac(1) >, the textDisplay
segment is as follows:

chan1::::REV::::<_,_>++++empty

Two regular expressions < , > and empty are written in the regexs part.
They match texts, such as <false,p(1)>, <true,p(2)>, and empty. For the
case MCS, nothing is specified in the ###textDisplay part since values of
observable components are displayed horizontally and theirs top appear left
most.

– ###states: This is a finite computation of a state machine, namely a finite
sequence of states. The sign || is a separator used to distinguish adjacent
states.

After drawing the picture of a state machine, the user needs to edit properties
for texts on the picture so that the observable components of the state machine
can appear on the picture when the state machine is animated. As clicking a text
on the picture and choosing the icon of properties, a pop-up will be displayed
for editing properties. In this pop-up, the name as an ID for the text of an
observable component (name : value) is set for the text so that the value can be
displayed at the place where the text is located. The ID will be used for mapping
it to the values whose name is name appearing in an input data when we run
the graphical animation tool. For example, Fig. 2 shows glock is set as the ID
of the observable component (glock : nop) so that the nop is displayed at the
designated place on a state machine picture.

Fig. 2. Setting the property ID for displaying values of glock of MMCS

On the other hand, we want to display (name : value) pairs at different
locations such as process p1 at cs, process p2 at rs, . . . . Thus, we can draw
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SVG elements as rectangles to display for locations such as rs, cs, . . . , and draw
circles with texts for displaying every processes for every location. Then, we
will set properties for the circle and the text of every process at every location.
The property class of them will be also set is groups. And the property ID of
the circle, and the text of every process will be set as structure KEY V ALUE,
where KEY is the name, and V ALUE is the value of a name-value pair. By this
way, we can see that locations of processes are changed and displayed graphically
when the tool animate states. For example, Fig. 3 shows how to set properties
for the process p3 at location rs. To display the process p3 at the location rs, we
will set the property ID is pc[p3] rs for both the circle, and text element which
visualize process p3. And we will also set the property class is groups for them.

Fig. 3. Setting properties such as Class, ID for displaying the process p3 at the location
rs of MMCS

After getting a drawn picture of a state machine and importing a prepared
input file, the tool can run to play a graphical animation of the state machine.
The tool allows human users to adjust the duration of the speed of animation.
The unit of duration is millisecond. The smaller the duration is, the faster the
animation is played. Animations can be played step by step in addition to that
they can be played automatically from the beginning to the end. When an ani-
mation is played step by step, we can observe each state transition graphically.

The graphical animation tool basically takes a sequence of states and plays
it graphically. The main purpose of the tool is to help human users recognize
some useful patterns in animated computations, and therefore it is necessary to
generate a long sequence of states. The Maude search command can generate
sequences of states, but cannot generate very long sequences, such as a sequence
that consists of 100 or more states due to the state explosion problem. Thus,
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Fig. 4. A state such that p1 is at l10

we had written a meta-program in Maude to generate a long sequence of states.
We used the meta-program to generate a finite computation that consists of 200
states for MCS protocol.

The tool can select and display the states that satisfy a condition from the
input finite computation. The format of a defined condition is as follows:

(state[’key1’] op1 state[’key2’]) op2 (state[’key3’] op4 ’value’) ...

where key1, key2, and key3 are names of observable components in states and
keys appearing in the key segment of an input file, op1, op2, and op3 are
JavaScript comparison and logical operators, and value is a value. We asked
the tool to select and display the states such that the location of p1 is l10 by
using a condition that is defined as (state[‘pc[p1]’] == ‘l10’). The tool found 16
such states in the input finite computation. Figure 4 shows one of the 16 states.
The tool lets us know the state appear in the input finite computation at position
153. In the state, since p1 is at l10, p1 is dequeuing the global queue, while since
p2 and p3 are l4 and l5, p2 and p3 are enqueuing p2 and p3 into the global
queue, respectively, but none of them has completed. Given a state number n,
the tool displays the state at position n. We asked the tool to display the state
at position 153 and play the animation from the state step by step. Figure 5
shows the five states at positions 154, 155, 156, 157 and 158 from the top. In
state 153, p2 executes the assignment at l4, setting lockp2 true, and moves to l5
but has not yet completed enqueuing p2 into the global queue. In state 154, p2
executes the assignment at l5, setting nextp1 to p2, and moves to l6, when p2 has
eventually completed enqueuing p2 into the global queue. In state 155, glock is
p3, meaning that p3 is the bottom element of the global queue but p3 has not
completed enqueuing p3 into the global queue. In state 155, p1 leaves the loop
at l10 and moves to l11 but has not yet completed dequeuing the global queue.
In state 156, p3 executes the assignment at l5, setting nextp2 to p3, and moves
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Fig. 5. States 154, 155, 156, 157 and 158

to l6, when p3 has eventually completed enqueuing p3 into the global queue. In
state 157, p1 executes the assignment at l11, setting lockp2 false, letting know p2
is ready to enter the critical section, and moves to l12. In state 158, the global
queue consists of p2 and p3 in this order because lockp2 is false, nextp2 is p3,
lockp2 is true, nextp2 is nop, and glock is p3.

5.3 Perceiving Characteristics with Graphical Animations

By observing graphical animations of MCS, we have also found some character-
istics or patterns appearing in them. Although we do not prove those character-
istics in this paper, we will model check them in the next sub-section. Proving
the characteristics is one piece of our future work. In this sub-section, we present
some characteristics guessed by observing graphical animations of a finite com-
putation FC1000 that consists of 1000 states as follows:
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Characteristic 1:

If there is a process in the critical section cs, the local lock owned by each
process that wants to enter the cs is true.

Characteristic 2:

If a process p is at the location l3 and pred[p] = nop, there is no process
in the critical section cs.

Characteristic 3:

If a process p is at the location l6 and lock[p] = false, there is no process
in the critical section.

Characteristic 4:

If a process p1 is at the location l12, another process p2 is at l6, and
pred[p2] = p1 then the lock[p2] is false.

Characteristic 5:

If a process p1 is at the location l9 and another process p2 is at l4 then
the glock is p2.

Characteristic 6:

No state such that a process is at cs, l7, l8, l10, or l11 and another state
is at cs, l7, l8, l10, or l11.

Characteristic 7:

If there is a process is at l3, l4, l5, l6, cs, l7, l8, l10, or l11, glock 
= nop.

Besides taking a close look at several graphical animations of MCS to recognize
some characteristics appearing in the graphical animations, we can also ask the
tool to show us all states that satisfy some conditions. The tool supports us to
select the states among the ones in a given input file such that a condition is
fulfilled and to display their graphical representations. If some states are similar
each other, they will be clustered into one state representation as a state pattern.
For example, if we have a sequence of state such as A, B, C, A, D, E, B, . . . , the
tool will group same states, and display different states such as A, B, C, D, E.
Thus, we can define some conditions to filter satisfied states to check or confirm
some predicted characteristics, and reduce the amount of time for animations
observing. If the tool refutes guessed characteristics, we should correct them. An
example (called Cond1) of the conditions is as follows:

((state[’pc[p1]’] == ’l12’ ) || (state[’pc[p2]’] == ’l12’ ) ||

(state[’pc[p3]’] == ’l12’ )) && ((state[’pc[p1]’] == ’l6’ )

|| (state[’pc[p2]’] == ’l6’ ) || (state[’pc[p3]’] == ’l6’ ))
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Fig. 6. A state pattern clustered from four same states, which satisfies the condition
Cond1.

This condition can select the states such that there is a process p1 in the l12,
and there is another process p2 in the l6. By using the Cond1 for selecting
satisfied states from an input file in which the states segment is FC1000, we
found 130 states clustered into 66 state patterns. Figure 6 shows a state pattern
that satisfies the condition Cond1. This pattern is a representation of four same
states such as the state 102, 631, 668, and 769. We used Cond1 to check a guessed
characteristic (called Pre4) as follows:

If there is a process p1 in the l12, and there is another process p2 in the
l6 then lock[p2] = false.

However, we found some states do not satisfy characteristic Pre4. One of them
is shown in Fig. 7. In this state, process p2 is at l12, two processes p1 and p3
are at l6, lock[p1] = true, lock[p3] = false. Thus, we reviewed the graphically
displayed states that enjoyed Cond1. And we perceived that if a process p1 is at
the location l12, another process p2 is at l6, and pred[p2] = p1 then the lock[p2]
is false. This is the Characterictic4 which we have mentioned above. To check
our guess, we made another condition (called Cond2) as follows:

((state[’pc[p1]’] == ’l12’) && (((state[’pc[p2]’] == ’l6’) &&

(state[’pred[p2]’] == ’p1’)) || ((state[’pc[p3]’] == ’l6’) &&

(state[’pred[p3]’] == ’p1’)))) || ((state[’pc[p2]’] == ’l12’)

&& (((state[’pc[p1]’] == ’l6’) && (state[’pred[p1]’] == ’p2’))

|| ((state[’pc[p3]’] == ’l6’) && (state[’pred[p3]’] == ’p2’))))

|| ((state[’pc[p3]’] == ’l12’) && (((state[’pc[p2]’] == ’l6’)

&& (state[’pred[p2]’] == ’p3’)) || ((state[’pc[p1]’] == ’l6’)

&& (state[’pred[p1]’] == ’p3’))))

This condition can select the states such that there is a process p1 in the l12,
and there is another process p2 in the l6 such that pred[p2] = p1. We found 111
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Fig. 7. A state does not satisfy the characteristic Pre4.

states clustered into 51 state patterns, and perceived that all of them satisfied
Characterictic4.

Thus, the tool supports us usefully to perceive some characteristics appear-
ing graphical animations. When paired with an intuitively designed picture and
sequence of states, the tool can create well-crafted animated visualizations which
are effective at attracting viewers and supporting them to more conveniently
understand complex characteristics. After using graphical animations to get bet-
ter understandings of MMCS and recognizing some characteristics, we will model
check the characteristics by Maude to confirm them. Some of them may be
refuted by model checking, which allows human beings to revise such charac-
teristics based on the counterexamples given by a model checker and may help
them get better understandings of MMCS.

5.4 Confirming Characteristics with Maude

In this sub-section, we describe how to confirm the characteristics with the search
command in Maude.

We asked the Maude search command to find a state such that a given char-
acteristic (or property) is broken. If Maude finds a solution, the characteristic
is not enjoyed by MCS protocol. Otherwise, MCS enjoys the characteristic (or
the property) when there are three processes because we use them in the model
checking experiments. The seven characteristics guessed with the help of the
state machine graphical animation tool can be confirmed with the Maude search
command:

– Characteristic 1:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pc[J]: L2) (lock[J]: B)

S such that not ((L1 == cs and (L2 == l6)) implies B) .
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– Characteristic 2:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pred[I]: K) (pc[J]: L2)

S such that not ((L1 == l3 and K == nop) implies not (L2 == cs)) .

– Characteristic 3:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (lock[I]: B) (pc[J]: L2)

S such that not ((L1 == l6 and not B) implies not (L2 == cs)) .

– Characteristic 4:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pc[J]: L2) (lock[J]: B)

(pred[J]: K) S such that not ((L1 == l12 and L2 == l6 and K == I)

implies not B) .

– Characteristic 5:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pc[J]: L2) (glock: K)

S such that not (((L1 == l9) and (L2 == l4)) implies ( K == J)) .

– Characteristic 6:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pc[J]: L2) S such that

(L1 == cs or L1 == l7 or L1 == l8 or L1 == l9 or L1 == l10 or

L1 == l11) and (L2 == cs or L2 == l7 or L2 == l8 or L1 == l9 or

L2 == l10 or L2 == l11) .

– Characteristic 7:

search [1] in MCS-INIT : init =>* (glock: K) (pc[I]: L) S such that

not ((L == l3 or L == l4 or L == l5 or L == l6 or L == cs or L == l7

or L == l8 or L == l10 or L == l11) implies (not K == nop)) .

where MCS-INIT is the module in which MCS protocol is specified in Maude, I,
J, and K are Maude variables of process IDs, L, L1, and L2 are Maude variables of
locations, B is a Maude variable of Boolean, and S is a Maude variable of states
(or soups of observable components). Each of the seven search commands found
no solution, meaning that MCS enjoys the seven characteristics (or the seven
properties) when there are three processes. The model checking experiments,
however, do not guarantee that MCS enjoys the seven characteristics for an
arbitrary number of processes. We will theorem prove the seven characteristics
for an arbitrary number of processes in future by writing what are called proof
scores in CafeOBJ, a sibling language of Maude. We predict that some of the
seven characteristics could be used as lemmas when we theorem prove that MCS
enjoys the mutual exclusion property for an arbitrary number of processes.
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5.5 LTL Model Checking

In this sub-section and the following sub-sections, we suppose that there are
two processes p1 and p2 and let init denote the initial state in which the two
processes participate in MCS protocol.

To use Maude LTL model checker, users are supposed to specify atomic
propositions. Let us suppose we model check MCS protocol enjoys the lockout

Fig. 8. A counterexample for the lockout freedom property for MCS protocol in which
comp&swap is not naively used.
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freedom property when there are two processes. The lockout freedom property
says whenever each process wants to enter the critical section, it will eventually
be there. To express the property in LTL, we need two kinds of atomic proposi-
tions want(P) and crit(P), where P is a process ID. Users are also supposed to
specify a labeling function. For our purpose, we declare the three equations: eq
(pc[P] : l1) S |= want(P) = true ., eq (pc[P] : cs) S |= crit(P) = true .,
and eq S |= PROP = false [owise] ., where P is a Maude variable of process
IDs, S is a Maude variable of states (or soups of observable components), and
PROP is a Maude variable of atomic propositions. The three equations say a state
s satisfies want(P) if and only if (pc[P]: l1) ⊆ s and s satisfies crit(P) if
and only if (pc[P]: cs) ⊆ s.

Then, users are supposed to specify LTL formulas to check. The lockout
freedom property is expressed as wait(P) � crit(P). In Maude, the formula
is specified as eq lofree(P) = (want(P) |-> crit(P)) ., where the operator
|-> denotes the leadsto operator �.

Model checking that the Kripke structure formalizing MCS protocol satisfies
the lockout freedom property lofree(p1) for p1 is conducted by reducing the
term modelCheck(init,lofree(p1)). Maude model checker generates a coun-
terexample. This is because since we do not use any fairness assumptions, there
may be cases in which only p2 is given a processing resource, which may happen
if we use some unfair scheduler. Let us suppose we use a fair scheduler. If we
adopt a fair scheduler, the fair scheduler guarantees that each process terminates
any non-loop statements, such as assignments. For example, if p1 is at l1, p1 will
eventually move to either l6 or cs. To express the situation in which we adopt a
fair scheduler, we use four more kinds of atomic propositions dose(P), spin1(P),
spin2(P) and exit(P). For them, we declare four more equations eq (pc[P]
: rs) S |= dose(P) = true ., eq (pc[P] : l6) S |= spin1(P) = true ., eq
(pc[P] : l10) S |= spin2(P) = true . and eq (pc[P] : l11) S |= exit(P) =
true . in addition to the three equations for atomic propositions. The assump-
tion used is expressed as (want(P) |-> (crit(P) \/ spin1(P))) /\ (crit(P)
|-> (dose(P) \/ spin1(P))) spin2(P))) /\ (exit(P) |-> dose(P)) for pro-
cess P, which will be referred as fair(P). The LTL formula says that if P is
at l2, P will eventually move to l6 or cs, if P is at cs, P will eventually move
to l10 or rs, and if P is at l11, P will eventually move to rs. The LTL formula
to express the property under the assumption is (fair(p1) /\ fair(p2)) ->
lofree(P), which will be referred as lofuf(P), where -> is the logical implica-
tion. Reducing modelCheck(init,lofuf(p1)) does not generate any counterex-
amples, meaning that MCS protocol enjoys the lockout freedom property under
the assumption that a fair scheduler is adopted when there are two processes.

The rewrite rules chlck and rpnxt2 may be declared as follows:

rl [chlck’] : (pc[P]: l6) (lock[P]: B) => (pc[P]: (if B then l6

else cs fi)) (lock[P]: B) .

rl [rpnxt2’] : (pc[P]: l10) (next[P]: Q) => (pc[P]: (if Q == nop then l10

else l11 fi)) (next[P]: Q) .
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If we use chlck’ and rpnxt2’ instead of chlck and rpnxt2, reducing
modelCheck(init,lofuf(p1)) generates a counterexample. This is because the
assumption used does not prohibit a process only repeats a loop forever. Each
of the loops used in MCS protocol does not change anything if its condition is
true. Therefore, the two loops can be formalized as the rewrite rules chlck and
rpnxt2, which could make the assumption simpler.

5.6 A Naive Way to Disuse comp&swap

MCS protocol uses two atomic operators fetch&store and com&swap. We model
check the two properties for a variant of MCS protocol in which comp&swap is
not used. Figure 9 shows how to change the protocol.

Fig. 9. A modification such that comp&swap is disused.

The rewrite rule chglk is then replaced with the following two rewrite rules:

rl [chglk’] : (glock: Q) (pc[P]: l8) => (glock: Q) (pc[P]: (if Q == P

then l8’ else l10 fi)) .

rl [stglk] : (glock: Q) (pc[P]: l8’) => (glock: nop) (pc[P]: l9) .

Model checking the two properties for the variant, the search command does
not find any counterexamples for the mutual exclusion property but the LTL
model checker finds a counterexample for the lockout freedom property even if
a fair scheduler is adopted. Note that we can use exactly the same assumption
used to model check that MCS protocol enjoys the lockout freedom property.

A counterexample generated by Maude LTL model checker consists of a finite
computation from an initial state to a state leading to an infinite loop such that
a finite state sequence is repeated forever or leading to a deadlock state. The
counterexample generated by Maude LTL model checker for the lockout freedom
under the use of a fair scheduler consists of a finite computation that consists of
17 states leading to an infinite loop such that a finite state sequence that consists
of 9 states is repeated forever. We had extended the state machine graphical
animation tool so that a counterexample can be graphically animated [7]. Feeding
the counterexample generated by Maude LTL model checker, the extended tool
graphically animates it, repeating the loop part, which lets us realize only p2
enters and leaves the critical section repeatedly while p1 is waiting at l6 until
lockp1 becomes false. Figure 8 shows the 26 pictures of the states composing the
counterexample. The first 17 states is the finite computation, while the last 9
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Fig. 10. A correction of the wrong part.

states is the finite state sequence that repeats forever, making the loop. Note
that state 0 is the top state of the finite computation.

In state 8, p1 is at l2 and is enqueuing it into the global queue, and p2
is at l8 and is dequeuing the global queue. p2 checks the condition of the if
statement at l8. Since glock is not p2, p2 moves to l8’. In state 9, p1 executes
predp1 := fetch&store(glock, p1); at l2, making glock p1 and predp1 p2. In state
9, since predp1 is p2, the predecessor of p1 is p2 in the global queue, meaning
that p1 has not been extracted from the global queue. In what follows, since
predp1 is not nop, p1 sets nextp2 to p1 and lockp1 true, and waits at l6 until
lockp1 becomes false. In state 13, p2 executes glock := nop; at l8’. Therefore, in
state 14, glock is nop, meaning that the global queue is empty, although p1 is
waiting at l6 until lockp1 becomes false. This is way p1 is waiting at l6 forever
and only p2 enters and leaves the critical section repeatedly.

5.7 The Mellor-Crummey and Scott’s Way to Disuse comp&swap

Mellor-Crummey and Scott have also proposed how to implement MCS protocol
such that comp&swap is not used. Figure 10 shows their way to disuse comp&swap.

Accordingly, the Maude specification of MCS has been revised, and model
checking for the lockout freedom property has been conducted. No counterex-
ample was found.

6 Related Work

MCS protocol has been formally verified. Wang [8] has automatically conducted
formal proof that MCS protocol enjoys the mutual exclusion property for an
arbitrary number of processes but has not for the lockout freedom property.
Wang and Schmidt [9] have proposed a way to formally conduct symmetric sym-
bolic safety-analysis of concurrent software with pointer data structures. MCS
protocol has been used as an example to demonstrate the proposed technique.
They only consider the mutual exclusion property but not the lockout freedom
property. The second author of the present paper and Futatsugi [10] have semi-
formally proved that MCS protocol enjoys both the mutual exclusion property
and the lockout freedom property. Neither of them has taken into account the
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two variants of MCS protocol in which comp&swap is naively disused and the
Mellor-Crummey and Scott’s way to disuse of comp&swap is used. Schellhorn
et al. [11] have proposed a way to prove concurrent programs enjoy the lockout (or
starvation) freedom property. They proved MCS protocol as an example enjoys
the property. However, none of them has graphically animated MCS protocol.

Most formal specification languages, such as Z, B method, and Event-B,
are not executable, although some, such as VDM and VDM++, are semi-
executable. Therefore, some researches have been carried out, making formal
specifications written in such languages run, for example, by translating sub-sets
of such languages into programming languages. Running formal specifications is
called specification animation. Specification animation makes it possible to help
human users get better understandings of formal specifications. Therefore, spec-
ification animation have been used to improve some other activities, such as
refinement [12,13], inspection and formal specification construction [14,15], and
software monitoring [16]. Although specification animation does not necessarily
mean visual and graphical animations, some tools make it possible to play graph-
ical animations [15]. The formal specification language we have used is Maude.
Since Maude is executable, we do not need to develop any translators. Our app-
roach to use of Maude and the state machine graphical animation tool has been
directing a similar goal to those of these existing studies.

The second author of the present paper and Futatsugi have semi-formally
proved that MCS protocol enjoys both the mutual exclusion property and the
lockout freedom property, but have not formally proved. The semi-formal proofs
may have overlooked several subtle lemmas. The main purpose of the state
machine graphical animation tool helps human users recognize some useful pat-
terns from graphically animated computations. from which human users could
conjecture useful lemmas [3]. One piece of our future work is to recognize useful
patterns from several graphically animated computations, conjecture useful lem-
mas from the animated computations and formally verify MCS protocol enjoys
the mutual exclusion property and the lockout freedom property.

7 Conclusion

MCS was used to demonstrate how graphical animations of the state machine of
MCS help human beings perceive characteristics of the state machine appearing
in the animations. Graphical animations of a state machine are generated by
SMGA from finite computations of the state machine. Such guessed character-
istics can be confirmed by the Maude search command. If a counterexample is
found for a guessed characteristic, we could revise the characteristic based on the
counterexample. The characteristics graphically perceived and confirmed could
be used as lemmas to theorem prove that MCS enjoys desired properties, such
as the mutual exclusion property and the lockout freedom property. We also
described the model checking experiments with the Maude LTL model checker
that MCS and two variants enjoy the mutual exclusion property.
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Abstract. Formal methods mainly aim to improve software reliability
by systematic refinements and/or verifications between specifications and
implementations in mathematical ways. However, they are not enough
for validating whether the system functions meet the user’s requirements.
We propose a combination of software prototyping and formal meth-
ods to address this problem. Our prototype provides desirable behav-
iors of system functions, and supports the generation of test cases by
finding out input and output data related to the functions. This paper
describes a case study for integrating a GUI-aided approach to construct-
ing formal specifications and a testing-based verification of programs.
Our research shows a demand for additional work on verifying external
database accesses in automatic test case generation from formal specifi-
cations.

1 Introduction

Software testing is a practical way to evaluate software products by observing
its execution, even though it has a fundamental limitation [1]; testing can only
show the presence of errors, never their absence. Regarding quality assurance of
software, expensive costs and labor intensive works are inevitable for software
testing [2]. Practitioners in software developments always seek more effective
software testing methods and tools to reduce the risks of failure and to decrease
of the cost [3]. Especially, automated software testing tools are much-needed
for assisting agile software development. However, manual testing still remains
in practice. Automatic generation of tests from model-based formal specifica-
tions have been considered, such as Z [4], and Alloy language [5]. Despite many
researchers’ continuous efforts, this research area has many more issues to be
addressed in practical automatic software testing than we had expected. First,
construction of precise and rigorous formal specifications to accurately reflect
the client’s requirements is more difficult than researchers have claimed in the
literature. Since formal specifications require to use mathematics, such as set
theory, logics, and algebra, mathematical expressions may cause comprehension
c© Springer International Publishing AG, part of Springer Nature 2018
C. Tian et al. (Eds.): SOFL+MSVL 2017, LNCS 10795, pp. 24–35, 2018.
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gaps between the developers and clients. Second, formal specifications do not
handle intermediate changes of user’s requirements after a design approval. A
flexible response to intermediate change is a big challenge in formal methods [6].

We proposed a GUI-aided approach to constructing formal specifications [7],
and carried out case studies [8,9] with the intention of facilitating communi-
cations between software developers and the clients. The GUI-aided approach
suggests how to construct formal specifications from informal requirements, and
how to reduce intermediate changes of user’s requirements by adapting a tech-
nique for rapid GUI prototyping. Rapid prototyping is widely used in software
industry. A prototype in our proposed approach contributes to discovering func-
tional behaviors, including end-users’ implicit requirements [8]. Additionally, we
used the Structured Object-Oriented Formal Language (SOFL) [10] as a formal
specification language in order to define precisely and unambiguously required
functions. SOFL is formed by an integration of VDM-SL [11], Data Flow Dia-
gram [12], and Petri nets [13]. The functional behaviors specify as predicate
expressions in SOFL at a series of state transitions at the system level, and
translate a set of operations into the corresponding programs for producing out-
put data from input data. In other words, the formal specifications comprise a
set of the functional scenarios that require to be implemented as program paths
in the corresponding programs.

We take advantage of the GUI-aided approach to build formal specifications
with a comprehensible interface to the user for producing comprehensive test
cases of the user’s interest. The test case generation can be done using the test
strategy proposed previously in our research [14]. This strategy adopts a disjunc-
tive normal form approach [15] for deriving functional scenarios from the formal
specifications. This paper presents a case study to develop a travel reservation
system using both the GUI-aided approach for constructing formal specifications
and the specification-based testing strategy for testing the corresponding pro-
gram. In the case study, we generate test cases from a SOFL specification manu-
ally where each test case is composed of a test data and the expected result. Our
experience has given us a chance to discover a challenge to the testing method
that is how to verify external database accesses defined by a composite type with
many attributes.

The rest of this paper is organized as follows. Section 2 introduces the GUI-
aided approach, and explains a GUI model and formal specification in our case
study. Section 3 mentions the basic concept of specification-based testing, and
describes how to apply the specification-based testing in the case study. Section 4
discusses the relation between testing and prototyping. Lastly, in Sect. 5, we give
conclusions and point out future work.

2 A GUI-Aided Approach

As we mention above, our GUI-aided approach intends to apply the advantages
of rapid prototyping techniques for constructing formal specifications. Rapid
prototyping techniques in software developments make it possible to improve
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Fig. 1. A framework of a GUI aided Approach

communication between software developers and the clients, not to mention the
fact that they reduce the development cost. Figure 1 illustrates a framework of
the GUI-aided approach, which is composed of the three steps: rapid prototyping,
improved informal specification, and formal specification.

1. A developer begins to define an informal specification which is written in nat-
ural language at the rapid prototyping step. Informal specifications consist
of required functions, data resources, and constraints. Then, the developer
implements a GUI model for the purpose of showing the potential behav-
ior, discusses with the clients about desirable functions, and gets the clients’
feedback for refining the model. What is more, this interaction between the
developer and the client using the GUI model repeats until all necessary items
identify on behalf of improving the initial informal specification.

2. The developer improves the initial informal specification using the GUI model.
The second step demands to declare input data and output data, each param-
eter, and each value as necessary required functions. Therefore, we apply an
animation technique by giving a demonstration to the client. Our GUI model
incorporates buttons, menu bar, menu items, and event handlers. All event
handlers are not necessarily associated with any database, but they represent
system behaviors by a sequence of motions. The sequence of motions indicates
a hierarchical structure of the required functions and the corresponding input
and output data items with a button-related function.

3. Finally, the improved informal specification translates into a formal specifica-
tion. In the formal specification, all of the functions are defined by a sequence
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of modules, that are specified in a hierarchical fashion. Each module formally
defines a functional abstraction. To be precise, a module has a module name,
constant declarations, type declarations, variable declarations, an invariant
section, and a list of process names. Each process is associated with condi-
tional data flow diagram (CDFD). A CDFD represents an overall behavior
and an association with a module. On the bottom right-hand side in Fig. 1,
each small rectangle indicates an operation defined as a process in the related
module, and each directed line represents a data flow.

Fig. 2. A GUI model for Search Ticket

For example, our target system required to serve some necessary functions for
the purpose of finding reasonable flights from many airlines, travel agents and
travel sites by searching, comparing, and booking online. The case study was
started to write an informal specification based on this user requirement by one
designer. And then, the designer implemented GUI models depicted in Fig. 2 with
the aim of eliciting real requirement behind the apparent one. The models were
implemented under the Eclipse environment using Swing in Java. Through the
rapid prototyping step with eight research collaborators’ feedback, the informal
specification was improved for transforming into a formal specification.

Figure 3 represents a part of a module for the travel reservation system. The
keyword module indicates the beginning of a module, and a module introduces
the module name: Search Ticket Decom. The keyword type denotes type decla-
rations to define all necessary data types for specifying related data resources.
Each data resource is declared as a variable with an appropriate type. The
type declaration of BookingRequest shows the composite type which has many
attributes: departure airport, arrival airport, boarding date, seat class, and the
number of seats. Since each attribute has appropriate type, the developer needs
to consider the data structure respectively.
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Fig. 3. The module of Search Ticket Decom

Modules specify a set of processes for the sake of providing functional opera-
tions. A process defines a process name, input and output ports, pre-condition,
and post-condition. The pre-condition describes a constraint on the input data
flows before the execution of the process, while the post-condition provides a
constraint on the output data flows after the execution. SOFL requires to use
simple propositional logics, basic set theory and predicates for describing for-
mal specifications. For example, Fig. 4 describes the process Search Ticket which
defined by the functional operation of the GUI model depicted in Fig. 2.

A CDFD as depicted in Fig. 5 expresses two processes in the related module
Search Ticket Decom: the process Search Ticket for searching flight tickets based
a request, and the process Sort Ticket for sorting the search result. The process
Search Ticket takes one input data: search req, accesses a database: planes, and
produces three output data: no airline, no seat, and flight list. A sequence of
the motions comes from the button-related function based on the GUI model
illustrated in Fig. 2.

3 Specification-Based Testing

Model-based formal specification languages, such as VDM-SL [11], are typically
described using propositional and predicate logics given in terms of pre- and
post-conditions. Dick and Faivre [15] showed clearly to translate the pre- and
post-conditions of a VDM specification into disjunctive normal form (DNF). We
use this DNF approach for extracting the functional scenario which defines the
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Fig. 4. The process of Search Ticket

Fig. 5. A CDFD for Search Ticket Decom

specific functional requirement or service in terms of getting input and generating
output. A scenario can be specified by a predicate expression at the unit level or a
series of data flow sequences at the system level in SOFL. Automatic derivations
of functional scenarios from the pre- and post-conditions can be used parsers
[16] for analyzing the syntax of the formal specification written in the SOFL
specification.

Unfortunately, it is not easy to generate test cases for dealing with complex
input expressions in the functional scenarios, including operations of compound
data types, such as set, sequence, and composite type. More practical solutions
for automatic generation of test cases needs to handle complex input expres-
sions. Thus, we executed a case study for generation of test cases based on the
functional scenarios involving operations of compound data types by manual. It
had strong potential to provide a hint for automatic test case generation from
the formal specification.
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In this section, we will explain the test strategy based on DNF, how to derive
test conditions from the operational specification of the target system, test cases
(input-output pairs) in our case study and evaluation of the test results.

3.1 Test Strategy

Let S(Siv; Sov)[Spre; Spost] denote the specification of an operation S, where Siv

is the set of all input variables whose values are not changed by the operation,
Sov is the set of all output variables whose values are produced or updated by the
operation, and Spre and Spost are the pre- and post-conditions of S, respectively.

Definition 1
Let Spost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ · · · · · · ∨ (Cn ∧ Dn),
where Ci (i = 1,. . . , n) is the guard condition that contains no output variable in
Sov, and Di is the defining condition that contains at least one output variable
in Sov. Then, a functional scenario fs of S is a conjunction Spre ∧ Ci ∧ Di, and
such an expression (Spre ∧ C1 ∧ D1) ∨ (Spre ∧ C2 ∧ D2) ∨ · · · · · · ∨ (Spre ∧ Cn

∧ Dn) is called a functional scenario form (FSF). The conjunction Spre ∧ Ci is
called a testing condition of the scenario Spre ∧ Ci ∧ Di.

Definition 2
Let Siv = {x1, x2, . . . , xr} be the set of all input variables of operation S and
Type(xj) denotes the type of xj (j = 1,. . . , r). Then, a test case for S, denoted
by Tc, is a mapping from Siv to the set V alues ∪ {nil}:

Tc : Siv → V alues ∪ {nil}
Tc(x) ∈ Type(x) ∨ Tc(x) = nil,

where V alues = Type(x1) ∪ Type(x2) ∪ · · · · · · ∪ Type(xr) and nil denotes
the special value called “undefined”. With the above preparation, we define a
test strategy.

Test strategy
Let operation S have an FSF(Spre ∧ C1 ∧ D1) ∨ (Spre ∧ C2 ∧ D2) ∨ · · · · · ·
∨ (Spre ∧ Cn ∧ Dn) where (n ≥ 1). Let T be a test set for S. Then, T must
satisfy the condition (∀i∈{1,...,n}∃t∈T ·Spre(t) ∧ Ci(t)). The symbol ∀ which reads
“for all” is called the universal quantifier, and the symbol ∃ which reads “there
exists” is called the existential quantifier. The condition (∀i∈{1,...,n}∃t∈T ·Spre(t)
∧ Ci(t)) means that for each functional scenario, there exist some test cases in
test set T that satisfy its testing condition.

3.2 Test Conditions

We will explain how to generate test conditions by using the process
Search Ticket illustrated in Fig. 4. Each variable of {a, b, c, d, e} denotes a propo-
sitional function, which has a matching value between two different data
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Table 1. Test condition for the FSF

a b c d e Expected output

T T T T T f

T T T F h

T T T F h

T T F g

resources in the process Search Ticket or not. Variable f represents a sequence’s
operation, and variables g and h denote err messages.

a : i.departure = search req.departure
b : i.arrival = search req.arrival
c : i.flight schedule.date = search req.date
d : i.seat class.class = search req.class
e : i.vacancy inf.vacancy num >= search req.request seat num
f : flight list =conc(˜flight list, i)
g : no airline = “No service”
h : no seat = “No vacancy”

Then, a testing condition of the scenario Spre ∧ Ci ∧ Di derived from the
Spre and Spost in the process Search Ticket based on our test strategy as follows:

(∃(a∧b)∧∃(c∧ d∧e)∧f)∨(∃(a∧b)∧¬∃(c)∧g)∨(∃(a∧b)∧∃(c)∧¬∃(d∧e)∧h)

The symbol ¬ denotes negation of quantified statements. The conjunction
can be applied by DeMorgan’s law for generation of an FSF as follows:

(∃(a∧b)∧∃(c∧ d∧e)∧f)∨(∃(a∧b)∧∀(¬c)∧g)∨(∃(a∧b)∧∃(c)∧∀(¬d∨¬e)∧h)
≡ (∃(a ∧ b) ∧ ∃(c ∧ d ∧ e) ∧ f) ∨ (∃(a ∧ b) ∧ ∀(¬c) ∧ g) ∨ (∃(a ∧ b) ∧ ∃(c)∧
∀(¬d) ∧ h) ∨ (∃(a ∧ b) ∧ ∃(c) ∧ ∀(¬e) ∧ h)

The FSF contains four functional scenarios as follows:

1. (∃(a ∧ b) ∧ ∃(c ∧ d ∧ e) ∧ f)
2. (∃(a ∧ b) ∧ ∃(c) ∧ ∀(¬e) ∧ h)
3. (∃(a ∧ b) ∧ ∃(c) ∧ ∀(¬d) ∧ h)
4. (∃(a ∧ b) ∧ ∀(¬c) ∧ g)

In summary, we have four test requirements based on the FSF, which can be
satisfied with the values shown in Table 1. After the coding of the target system,
we prepared test cases by manual using this test requirements based on the FSF
derived from the formal specification.
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3.3 Test Cases and Evaluation of the Test Results

In our case study, a programmer implemented the Java program with the inten-
tion of identifying the relationship between the formal specification and the
corresponding program. The processes specified in SOFL were translated into a
class or a set of classes in the program. The source code for our target system
was implemented by 3.5 thousand of lines of code for about 33 hours. We exe-
cuted a black-box testing, and found 9 defects: 3 defects of incorrect or missing
functions, 5 defects of errors in data structures or external database access, and
1 defect of interface missing or erroneous as Table 2.

Table 3 represents the test case for the purpose of checking the source code
related with the process Search Ticket illustrated in Fig. 4. Besides, both of the
input values and the expected output values in the test cases are originated
from the test condition described in Table 1. Meanwhile, Table 4 shows the test
condition, test result, and classification of defects. By way of illustration, we
show the test case of No.2 in the Tables 3 and 4. In the test case, the number of
seats requested for a flight reservation exceeded the seat availability under the
condition of stored data in the external database. Despite less seat availability,
the system made a reservation as possible number of seats without providing a
detailed status. Not only that, it did not give any error message of shortage. This
incorrect operation was caused by an inappropriate manipulation in composite
data types.

Besides, we found fifth defects related data structures or external database
access. Some of these defects forced termination of system, when the source code
reads the data in the external database based on a request for booking flight.
These defects obviously have a relationship with the external databases and
the exception handlings associated with database accesses. The database related

Table 2. Test result

Classification of defects Number of defects

Incorrect or missing functions 3

Data structures or external database access 5

Interface missing or erroneous 1

Table 3. Test cases for the FSF

Departure Arrival Date Class Seats Expected output

HND CTS 2017/12/21 Economy 1 add in flight list

HND CTS 2017/12/21 Economy 4 “No vacancy”

HND CTS 2017/12/21 Business 1 “No vacancy”

HND CTS Null Economy 1 “No service”

HND NRT 2017/12/21 Economy 1 error message

...
...

...
...

...
...
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Table 4. Test analysis

Departure
& Arrival

Date Class Seat Result Classification of defects

T T T T Success

T T T F Failed Incorrect or missing functions

T T F F Success

T F T T Failed Interface missing or erroneous

F T T T Success

...
...

...
...

...
...

operations are not included in our GUI model. The model incorporates buttons,
menu bar, menu items, and event handlers, although the event handlers have no
association with any database.

4 Discussions

Prototypes are often used in usability testing, because they allow for interac-
tions between users and a product to be measured under controlled conditions.
Usability testing is a technique for evaluating the effectiveness, efficiency, and
user satisfaction in the software product or web service. Sauer and Sonderegger
[17] reviewed of the nine research literature that the majority of studies con-
cluded that few differences between computer and paper media or low and high
fidelities in usability testing.

Just a few of researches mentioned test case generation based on prototypes
and formal specifications. Treharne et al. [18] focused on a testing process based
on the use of a prototype. In this research, B-Method is used to define a formal
specification written in Abstract Machine Notation. Unfortunately, the research
does not expand possibilities for automatic test case generation.

Many research papers explain automatic test case generation based on UML
activity diagrams [19,20], or UML state chart diagrams [21]. However the UML
diagrams are neither a prototype nor formal language, the test case generation
algorithm may be useful for our future research.

5 Conclusions

This paper described an integrated methodology for constructing formal specifi-
cations by a GUI-aided approach and verifying programs by a specification-based
testing strategy. Then, we applied the GUI-aided approach for refining a formal
specification of a travel reservation system, implemented a program based on
the formal specification, and checked the program by specification-based testing
using functional scenarios derived from the formal specification. The GUI-aided
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approach aims to find out desirable functions in the early phase of develop-
ment through communications between software developers and the clients. The
specification-based testing strategy uses the advantage of formal methods for
verifying the correctness of programs, and it has a high potential for automatic
generations of tests.

In the purpose of assessing automatic test case generation from the formal
specification constructed by a GUI-aided approach, we executed a black-box
testing. The result shows that we need to consider carefully the generation of test
cases about the external databases and the exception handlings associated with
database accesses. We will investigate how to generate test cases for database
related operations, and exception handlings associated with database accesses
from the formal specifications as out future work.
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Abstract. In this paper, we introduce a new variation of graph search-
ing problem, namely, cooperative graph searching problem. We define
that a searcher is isolated if there is no other searchers on its close
neighborhood. In this variant, we add an additional constrain that every
searcher would not be isolated after each searching step. Therefore, we
can make sure that every searcher can be cooperated by another searcher.
We prove that the cooperative graph searching problem is NP-complete
on general graphs and propose polynomial-time algorithms for the prob-
lem on grid graphs.

Keywords: Graph searching · Mixed searching
Cooperative graph searching

1 Introduction

The graph searching problem was first proposed by Breisch [1]. Parsons con-
tributed some earlier works for the problem [2,3]. In the problem, a graph G
represents a system of tunnels. Initially, all the edges of G are contaminated by
a gas. An edge is cleared by some operations on G. A cleared edge is recontami-
nated if there is a path from an uncleared edge to the cleared edge without any
searchers. The objective is to use as few searchers as possible to make all edges
be cleared. The allowable operations are as follows:

1. Place a searcher on a vertex.
2. Remove a searcher from a vertex.
3. Move a searcher along an edge.

If an edge is only cleared by moving a searcher along the edge, then it is
called the edge searching problem. On the other hand, if an edge is cleared by
having two searchers on both its two ends, then it is called the node searching
problem. If both of clearing rules are allowed, then it is called the mixed searching
problem. The mixed searching problem was first proposed by Takahashi et al.
[4]. It is obvious that the mixed searching problem is a natural generalization of
edge and node searching problems. The mixed search number of G, denoted by
ms(G), is the minimum number k such that G is k-searchable by mixed search
rules.
c© Springer International Publishing AG, part of Springer Nature 2018
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These variants of graph searching problems are not only interesting theoret-
ically, but also have applications on problems like embedding tree queries [5,6],
key graph searching [7,8], selectivity estimation [9], subgraph matching [10,11],
min cut finding [12], and so on.

Since graph searching problems are so powerful, there are many variants of
searching game for finding more appropriate strategies proposed for modeling
real world problems. Blin proposed a searching problem named exclusive graph
searching problem [13]. Latter, Markou studied a monotone version of exclusive
graph searching [14]. Exclusive graph searching is a variant of mixed searching
with the following extra constrains:

1. Initially, place all the searchers in the graph.
2. Every vertex can contain only one searcher.

Dyer introduced the fast searching problem based on edge searching in which
we can traverse each edge only once [15]. Xue proposed algorithms for some
special graphs [16]. Even though there are so many variants of searching game,
most of them put emphasis on efficiency. However, in the real world, we should
care not only performance but also searchers’ safety. A searcher is isolated if there
is no another searcher on its neighbor vertex or on the same vertex. To avoid a
secondary distress/injure on rescue works and polices’ raids, each searcher has
better not to be isolated.

For guaranteeing that every searcher will not be isolated, we define a variant
of searching game, called the cooperative graph searching problem. Initially, we
have a graph G = (V,E) in which every edge e ∈ E is contaminated. Our target
is to clean all the edges and make sure all searchers are under cooperative for each
searching step. The clearing rules are based on mixed searching. However, for
making a possible cooperation between searchers. we have the following possible
operations.

1. Place a searcher on a vertex.
2. Place two searchers on the end-vertices of an edge.
3. Remove a searcher from a vertex.
4. Remove two searchers from the end-vertices of an edge.
5. Move a searcher along an edge.

For each step, only one operation above is allowed. We use Si = (Ei, Ci) to
denote the status after operation i is applied, where Ei (respectively, Ci) denotes
the set of uncleared (respectively, cleared) edges. A sequence of S0, S1, . . . , Sr

that clears the graph G is called a search strategy of G and is denoted as S.
By the definition, S0 = (E, ∅) and Sr = (∅, E). Note that Ei ∩ Ci = ∅ and
Ei ∪ Ci = E for each step i. Let |Si| denote the number of searchers on graph
after step i. Let |S| = maxi |Si denote the number of searchers used to clear
G. A search strategy is cooperative if for each step there is a searcher on some
vertex, then there is another searcher at its neighbor vertex or stay at the same
vertex. A cooperative search strategy is optimal if it uses the minimum number
of searchers to clear G. The cooperative graph searching problem on G is to find
an optimal cooperative search strategy to clear G.
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We say a graph G is k-searchable if we can clear G by using at most k
searchers. Similarly, G is k-cooperative searchable if G can be cleared by using at
most k searchers using a k-cooperative search strategy. The cooperative search
number of G, denoted by cos(G), is the minimum number k such that G is
k-cooperative searchable. Thus the decision version of the cooperative graph
searching problem is called the k-cooperative graph searching problem that asks
whether G is k-searchable or not?

2 Preliminary Results

Let G = (V,E) be a simple, finite, and undirected graph. For a vertex subset
W ⊆ V , let G[W ] be a subgraph of G that is induced by W . A clique is a
complete subgraph and an independent set is a subgraph that has no edge. Let
Kn (respectively, Pn and Cn) be a complete (respectively, path and cycle) graph
with n vertices. The following lemma shows some easy results.

Lemma 1. The following statements are true.

1. cos(Kn) = n − 1 for n ≥ 3.
2. cos(Pn) = 2 for n ≥ 2.
3. cos(Cn) = 4 for n ≥ 5.

Proof. For Kn, it is not hard to check that n − 2 searchers are not enough to
clear the graph. Since after the n − 2 searchers are on the graph, there are two
remaining vertices that cannot be guarded and therefore no way can clear the
edge between them without recontamination. However, we can clear Kn by the
following strategy.

1. Firstly, place 2 searchers on the end-vertices of an edge.
2. Then, place the remaining n − 3 searchers on any unguarded vertices one by

one.
3. Finally, move any one searcher to the remaining unguarded vertex.

Since Kn is a complete graph, all the searchers on vertices are adjacent. Thus,
it is a cooperative search strategy.

For Pn, let Pn = (v1, v2, . . . , vn}. To clear Pn, we first place two searchers on
v1 and v2. Then, move the searcher at v1 to v2 and then move a searcher on v2
to v3. The following steps are similar. That is, these two searchers cooperatively
search the path until to vn. Thus cos(Pn) = 2.

For Cn, The idea is similar to the search strategy of Pn. However, to avoid
recontamination, we need two team from different directions to clear the graph.
By the cooperative rules, the minimum number of each team is 2. Thus cos(Cn) =
4 for n ≥ 5. �	
Lemma 2. Let G′ be an induced subgraph of G. Then cos(G′) ≤ cos(G).
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Proof. Consider a cooperative search strategy S of no recontamination for clear-
ing G. Since S has no recontamination, all the searchers on a vertex can be
moved/removed only when the vertex is clear, i.e., no any contaminated inci-
dent edge. In S, we keep each step for cleaning edges in G′. We delete those
steps that clean edges which are not in G′. Thus, G′ can be cleared using the
modified strategy. Clearly, cos(G′) ≤ cos(G). �	
Theorem 1. For any graph G = (V,E), ms(G) ≤ cos(G) ≤ 2ms(G) and the
bound is tight.

Proof. Since cooperative graph searching problem is a special case of mixed
searching problem, the lower bound ms(G) ≤ cos(G) is obvious. Now consider
an optimal mixed search strategy S for G. In S, for each step if it violates the
cooperative search rules, then we add an extra searcher to a neighbor of the
target vertex which will violate the rules. For example, if we want to clear the
edge uv by moving a searcher from u to v, then there are the following two cases
that the cooperative rules will be violated.

1. the new coming searcher at v is isolated.
2. the missing searcher of u causes an isolated searcher on a neighbor of u.

For both cases, we can just place an extra searcher to v such that the edge uv
is cleared by both of its two ends having a searcher. Thus our upper bound is
obtained.

Finally, by Lemma 1, for n ≥ 3 ms(Kn) = cos(Kn) = n − 1 which meets
the lower bound. Similarly, for n ≥ 4 cos(Cn) = 2ms(Cn) = 4 which meets the
upper bound. Thus the bounds are tight. �	
Corollary 1. For any tree T , cos(T ) ≤ 2ms(T ) = O(lg n).

Lemma 3. Let G = (V,E) be a graph containing two cliques Km and Kn such
that V = Km ∪ Kn and m ≥ n ≥ |Km ∩ Kn|. Then, cos(G) = m − 1.

Proof. Since Km ⊆ G, by Lemmas 1 and 2, cos(G) ≥ m − 1. To show that
cos(G) = m − 1, we propose the following strategy to clear G by using m − 1
searchers.

1. Let u be in Km ∩ Kn and v be in Kn \ Km.
2. Place m − 1 searchers on Km \ {u}.
3. Move one searcher in Km \ Kn to u.
4. Remove all the searchers from Km \ Kn.
5. Place searchers on Kn \ (Km ∪ {v}).
6. Move any searcher on G to v.

For the above strategy, it is easy to check that we use at most m−1 searchers
to clear G if m ≥ n. It proves the lemma. �	

A graph G = (V,E) is a split graph if V can be partitioned into two sets C
and S such that the induced subgraph G[C] is a clique and G[S] is an independent
set. For convenience, we use G = (C ∪ S,E) to denote a split graph.
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Theorem 2. Let G = (C ∪ S,E) be a split graph. Then |C| − 1 ≤ cos(G) ≤
|C| + 1.

Proof. Since G[C] is a clique of G, by Lemmas 1 and 2, we obtain that |C| − 1
is a lower bound of cos(G). On the other hand, we can clear G by using |C| + 1
searchers as follows.

1. Place |C| searchers on vertices of C.
2. Place one extra searcher on S one after one.

It is not hard to check that the above strategy can clear G using |C| + 1
searchers. Therefore, we have this theorem. �	

3 NP-Completeness Result

A search strategy can be recontaminated if there is an edge which is cleared at
step i but becoming unclear at step j for j > i. However, for edge searching,
LaPaugh showed the following theorem.

Theorem 3 ([17]). If graph G is k-searchable, then there is a search strategy
using at most k searchers without recontamination.

By using a similar argument as the proof of Theorem 3, we can show the
following theorem. We omit the proof for this version.

Theorem 4. If graph G is k-cooperative searchable, then there is a cooperative
search strategy using at most k searchers without recontamination.

By Theorem 4, we may assume that the cooperative search strategy we con-
sidered does not be recontamination.

Lemma 4. The k-cooperative graph searching problem is in NP.

Proof. For any graph G = (V,E) and a given integer k, we design a nonde-
terministic polynomial-time algorithm that checks whether G is k-cooperative
searchable or not. The detailed algorithm is shown in Algorithm 1. It shows the
lemma. �	

Theorem 5 ([18]). The mixed searching problem is NP-Complete.

Theorem 6. The k-cooperative graph searching problem is NP-Complete.

Proof. By Lemma 4, the k-cooperative graph searching problem is in NP. To
complete the proof, the remaining work is to show it is NP-hard. Our reduction
is from the mixed searching problem.

For any graph G = (V,E), we construct an extended graph G′ = (V ′, E′) by
adding a universal vertex u. That is, V ′ = V ∪ {u} and E′ = E ∪ {uv | ∀v ∈ V }.
We claim that G can be mixed searched using at most k − 1 searchers if and
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Algorithm: k-cooperative searchable
Data: a graph G = (V,E) and an integer k
Result: G is k-cooperative searchable or not.
F ← E;
while F is not empty do

nondeterministically, select an uncleared edge e = uv ∈ F
if both end-vertices of e do not have a searcher then

place two searchers on the end-vertices of e
else

assume a searcher is at u;
if all the edges incident to u except uv are clear then

move the searcher at u to v
else

place a searcher on v
end

end
F ← F \ {e};
if the number of searchers used is greater than k then

return False
else

Remove searchers if they are not needed under the constraints of
cooperative search rules;

end

end
return True;

Algorithm 1. NP algorithm for checking k-cooperative searchable.

only if G′ can be cooperatively searched by at most k searchers. The only if
part is easy. In mixed searching, if v is the first vertex that is guarded by a
searcher, then we simultaneously place another searcher on vertex u. Thus, they
are cooperative since for each searcher on a vertex of V there is always a searcher
on u. Then following the mixed searching strategy on G we can clear G′ obeying
the cooperative searching rules.

On the other hand, if we can cooperatively search G′ by using at most k
searchers, then G can be mixed searched with k−1 searchers. Consider a cooper-
ative search strategy S that does not contain recontaminated edges by Theorem
4. Since u does not exist in G, we remove every step that clears an edge incident
to u. Let the resulting strategy be S ′. By definition S ′ is a mixed search strategy
that clears G. Since |S| = k and u is a universal vertex in G′, when there are k
searchers on G′, u must be guarded by one. Otherwise, we need extra searcher
to guard u for maintaining recontamination. Therefore |S ′| = k− 1. This proves
the theorem. �	

4 Polynomial-Time Algorithm for Grid Graphs

Grid graphs are a class of graphs that is the graph Cartesian product of path
graphs. Two dimensional grid graphs are the most representative case of grid
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graphs and have many applications. For example, we can simulate roads network
of modern planned cities by grid graphs, or simulate electronic circuits by grid
graphs with graph embedding skill. By definition, we can represent any two
dimensional grid graphs by a production of two paths Pm and Pn. We denote it
by Gm×n assuming that m ≥ n.

Theorem 7. For any grid graph Gm×n, n ≥ 3, cos(Gm×n) = n + 1.

Proof. We assume that in Gm×n there are m columns and n rows. We propose
the following strategy to clear Gm×n. It works column by column. We first clear
the first column by placing n searchers on vertices of it. Suppose that the i-th
column is cleared. We are going to clear the (i+1)-th column. For clearing edges
between i-th column and (i + 1)-th column, and obeying cooperative rules, we
need an extra searcher, namely, (n + 1)-th searcher to complete the work. The
clearing progress is shown in Fig. 1. Thus cos(Gm×n) ≤ n + 1. By applying a
separator theorem [19] on Gm×n, cos(Gm×n) ≥ n.

Assume that we want to clear the graph by using only n searchers. To clear
edge between two columns, our searchers have to guard vertices in these two
columns. Since we can only move one searcher in an operation, the first searcher
moving (or placing) to (i+1)-th column have to have a neighbor searcher at the
same row. Otherwise, it is not cooperative. Note that at this moment, all the n
searchers on column i cannot be moved (or removed); otherwise, a recontamina-
tion occurs. Thus n searchers are not enough to clear the graph Gm×n. Hence,
n < cos(Gm×n) ≤ n + 1, i.e., cos(Gm×n) = n + 1. �	
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Fig. 1. A progress for clearing Gm×n.

Grid graphs are an important class of interconnection networks. For a more
general model, some vertices may be failure. That is, we can remove these failed
vertices from G. To search such a grid, we use the same approach (column by
column) mentioned above to clear it. Assume that all the vertices of the i-th
column are good. Thus when we want to march to column i + 1, vertices on
column i + 1 are either good or bad. It divides the column into a set of paths.
In particular, some paths contain only one vertex. Thus for cooperative rules,
we need a searcher stand at the vertex on column i for supporting the searcher
marching to column i+1. For those paths of length at least two, we use the same
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technique to go to column i + 1. Assume that we have r P1’s in column i + 1.
By cooperative rules, we need r supporting vertices guarded on column i. The
remaining problem is that do we have enough searchers to do the job? In the
worst case, we have at least r missing vertices on column i+1. Thus, n searchers
are sufficient to guard vertices on column +1 and supporting vertices on column
i. However, we still need one extra searcher to help searchers on column i to
column i + 1. Therefore, we need n + 1 searchers for clearing this kind of grid
graphs. For the other special cases, the arguments are similar. We omit the detail
in this version. Finally, we have the following theorem.

Theorem 8. Grid graphs Gm×n without some vertices are (n + 1)-cooperative
searchable.

5 Conclusion

In this paper, we propose the cooperative graph searching problem, a new variant
of graph searching problem by including cooperative rules. The rules make sure
that no searcher will be alone or isolated during a searching process. We believe it
is more suitable to model some real world problems. We propose some properties
on graphs for this problem. In particular, we show that this problem is NP-
complete on general graphs and it can be solved on grid graphs. In [16], the
author solved the exclusive graph searching problem in polynomial time. We
believe that by a similar idea our algorithm can be generalized for generalized
grid graphs, i.e., k dimensional grid graphs for any k. In the future, we want to
study features of cooperative graph searching problem on other graph classes,
i.e., trees. We believe that this problem on trees can be solved in polynomial
time.
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Abstract. The OSEK/VDX standard has been widely adopted by auto-
motive manufacturers for vehicle mounted systems. The ever increasing
complexity of the system has created a challenge for examining the timing
properties of the developed OSEK/VDX applications in exhaustive way,
such as reachability property. Model checking as an exhaustive verifica-
tion technique has attracted great attentions in the automotive industry.
To verify OSEK/VDX applications by using model checking, a tentative
method has been proposed based on the model checker UPPAAL. How-
ever, the existing method is usually not scalable to verify a large-scale
OSEK/VDX application since the constructed application model is too
complex. In this paper, we propose an efficient approach to simplify the
application model for making UPPAAL more scalable in verifying large-
scale OSEK/VDX applications. We evaluated our approach based on a
series of experiments. The experimental results show that our approach
is not only capable of efficiently simplifying the OSEK/VDX application
models, but also of making the model checker UPPAAL competent in
dealing with the OSEK/VDX applications with industrial complexity.

1 Introduction

With the development of automotive industry and electronic technology, more
and more complex vehicle-mounted systems are deployed in vehicles. However,
how to reuse and transplant the developed systems has become a serious problem
for the automotive manufacturers, since there is no uniform development stan-
dard in the automotive industry. To finish off this problem, European Automobile
Manufacturer Association develops and promulgates a vehicle-mounted system
standard named OSEK/VDX [15] in 1994. The standard has now been widely
adopted by many automotive manufacturers and research groups to implement a
c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. Structure of the OSEK/VDX vehicle-mounted system.

practical and study vehicle-mounted system, e.g., the automotive manufacturers
BMW, Audi, Volkswagen, and the research groups IRCCyN, TOPPERS, etc.

In general, a developed OSEK/VDX vehicle-mounted system includes two
important components, one is operating system (OS), and the other one is appli-
cations. Currently, alongside the improvement of vehicle automation, more and
more OSEK/VDX applications are developed for assisting drivers based on the
OSEK/VDX OS. As shown in Fig. 1, a developed OSEK/VDX application con-
sists of multiple tasks. When the application is running on the OSEK/VDX
OS, tasks within the application are concurrently executed under the schedul-
ing of the OSEK/VDX OS, where a deterministic scheduler called static priority
scheduler is adopted by the OSEK/VDX OS to dispatch tasks, especially a ready
queue is used to manage the scheduling order of tasks. In addition, tasks can
invoke application interfaces (APIs) to dynamically change the scheduling order
of tasks, e.g., activate a higher priority task. As a result of the concurrency of
tasks and dynamic of scheduling, developers face the challenge of exhaustively
ensuring the timing properties of the developed OSEK/VDX applications such
as reachability property and scheduling property.

To exhaustively examine the timing properties of the developed OSEK/VDX
applications, model checking [6,7], currently as a reasonable solution, has
attracted great attentions in the automobile industry benefiting from its advan-
tages, e.g., model checking is an exhaustive technique, and moreover, many auto-
matic model checkers such as VCC [4], UPPAAL [9], Spin [10] and ESBMC
[16] have already been used to verify embedded systems. As to make the exist-
ing model checkers successfully verify the timing properties of the OSEK/VDX
applications, Libor et al. have proposed a method [21] based on the model
checker UPPAAL. In the method, to explicitly simulate the executions of an
OSEK/VDX application, all tasks within the application are simulated by con-
current processes (timed automata). In addition, a special concurrent process
for OSEK/VDX OS is added in the application model to realize the scheduling
behaviours. Although this method is in a position to verify the OSEK/VDX
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applications by using UPPAAL, it is often not capable of verifying a large-scale
OSEK/VDX application that consists of many tasks, because the constructed
application model holds too many concurrent processes. In the verification
stage, these concurrent processes will generate a large number of interleavings
which will easily trigger the state space explosion [8].

In this paper, we propose an efficient approach based on the sequentialization
idea in order to make UPPAAL more scalable in verifying the timing proper-
ties of the large-scale OSEK/VDX applications. The scalability of the existing
method is limited because of too many concurrent processes included in the
application model. To solve this problem, one of impactful ways is to reduce the
number of concurrent processes. In our approach, we translate a given multi-
tasks OSEK/VDX application into a sequential model and then use only one
concurrent process to simulate the application. Particularly, the OSEK/VDX
OS is embedded in the sequential translation algorithm to perform the schedul-
ing behaviours in order to further reduce the states of the application model.
Based on these efforts, the application model can be significantly simplified by
our approach.

Based on the proposed approach, we have implemented a prototype tool
with C++ language and conducted a series of experiments to evaluate the scal-
ability and efficiency of our approach. In the experiments, we firstly use app-
roach to translate the experimental applications into the equivalent sequential
models, and then employ model checker UPPAAL to carry out verification. In
addition, the existing method proposed by Libor is considered as comparison
object. The experimental results indicate that our approach is not only capable
of efficiently simplifying OSEK/VDX application models, but also of making
the model checker UPPAAL competent in dealing with OSEK/VDX applica-
tions with industrial complexity in contrast with the existing method. To the
best of our knowledge, our approach is first to apply model checking to examine
the timing properties of deterministic scheduler based concurrent programs by
means of the sequentialization technique. The main contribution of our paper is
that the proposed approach can be considered as a guideline to verify the other
deterministic scheduler based concurrent programs on timing properties, such
as round robin based concurrent programs.

The outline of this paper is as follows. The OSEK/VDX OS and a running
application are introduced in Sect. 2. The existing checking method is shown in
Sect. 3. In Sect. 4, our approach are stated based on the running application. To
show the scalability and efficiency of our approach, experiments and evaluation
are demonstrated in Sect. 5. We then compare our work with related work in
Sect. 6, and put conclusion and future work in the last Section.

2 Background of OSEK/VDX

2.1 OSEK/VDX OS

The OSEK/VDX standard is a widespread development specification for vehicle-
mounted system on a single CPU. It supports the implementation of a vehicle-
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Fig. 2. Structure of the OSEK/VDX OS and corresponding APIs.

mounted OS and the development of customized multi-tasks applications. In
general, as shown in Fig. 2, an OSEK/VDX OS consists of three primary pro-
cess modules: a scheduler module, a synchronization event module and a shared
resource module. In addition, these process modules also provide many useful
application interfaces (APIs) to allow developers to operate tasks, synchroniza-
tion events and shared resources declared in applications. The process modules
of the OSEK/VDX OS and corresponding APIs are as follow.

Scheduler Module. The OSEK/VDX OS allows developers to define two types
of tasks in application: basic task and extended task. A basic task holds three
states: running state, suspended state, and ready state. Compared with the basic
task, an extended task can take synchronization events, and holds a unique
state called waiting state. In the scheduling process, a deterministic scheduling
policy, which is a static priority scheduling policy with mix-preemptive strat-
egy (Full-preemptive strategy and Non-preemptive strategy), is adopted by the
OSEK/VDX OS to conduct the executions of tasks, where a ready queue is used
to manage the scheduling order of tasks. Furthermore, the OSEK/VDX sched-
uler provides several APIs for applications (e.g., TerminateTask, ActivateTask,
Schedule and ChainTask), and tasks within an application can invoke these APIs
to dynamically change the states of tasks. For example, when a task that is cur-
rently running invokes API ActivateTask(tk1) and the activated task tk1 is in
the suspended state, tk1 will be moved from suspended state to ready state by
the OSEK/VDX scheduler.

Synchronization Event Module. The OSEK/VDX OS also supports a
synchronization mechanism. The synchronization event module provides sev-
eral APIs (e.g., SetEvent, WaitEvent and ClearEvent), and tasks within an
application can invoke these APIs to implement the synchronous executions.
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For example, a running task t1 invokes the API WaitEvent(evt1), task t1 is
waited until the event evt1 occurs by being set in another task using the API
SetEvent(t1,evt1).

Shared Resource Module. The OSEK/VDX OS adopts the Priority Ceiling
Protocol to coordinate the task behaviours for accessing shared resources. The
shared resource module provides two APIs for applications, i.e., GetResource
and ReleaseResource. For example, if a task needs to access a shared resource
res1, it can invoke the APIs GetResource(res1) and ReleaseResource(res1) to
create a critical section for accessing the shared resource.

2.2 Running Application

As shown in Fig. 3, an OSEK/VDX application consists of two files, one is source
file, and the other is configuration file. The source file is used to present the
concrete behaviors of an application, which can be developed by C programming
language. The configuration file is used to configure application, e.g., define
tasks, synchronization events and shared resources. In a task configuration, the
attribute Type is to define the type of the task (Basic or Extended). The attribute
Priority is to set the priority of the task. Schedule is to indicate the scheduling
type of the task. If the attribute Schedule is set to Full, the task can be
preempted by higher priority tasks; otherwise, it is impossible. Autostart is to
specify the initial state of the task. If the attribute is set to True, the task starts
from ready state as its initial state (it will be inserted into the ready queue
according to its priority); otherwise, the task starts from suspended state.

The execution characteristics of the OSEK/VDX applications are expressly
explained by describing the executions of the running application shown in Fig. 3
in this paragraph. There are three tasks contask, plustask and minustask in
the running application. When the application starts, since only contask is in
the ready state (the attribute Autostart of contask is configured as True),
the OSEK/VDX scheduler moves contask from ready state to running state.
When contask is running on the processor, the API ActivateTask(plustask) or
ActivateTask(minustask) will be invoked in if-else branches. For instance,
if ActivateTask(plustask) is invoked, the OSEK/VDX scheduler is loaded to
respond to this API, and then plustask is activated (the OSEK/VDX scheduler
moves plustask from suspended state to ready state). At this moment, the cur-
rently running task contask will be preempted by the activated task plustask,
because the priority of contask is lower than that of plustask and the attribute
Schedule of contask is set to Full. Then, plustask will get processor to run
and go to suspended state when the API TerminateTask() is invoked (API
TerminateTask() is used to terminate a task, and the terminated task will be
moved from running state to suspended state by the OSEK/VDX scheduler).
When plustask is terminated, the OSEK/VDX scheduler will dispatch contask
to run again from the preempted point. Similarly, if ActivateTask(minustask)
is invoked by contask, minustask will preempt contask to run and terminate
itself when the API TerminateTask() is invoked.
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Fig. 3. Running application.

Execution Characteristics. According to the shown executions of the running
application, we can find the following execution characteristics.

– Tasks within an OSEK/VDX application are concurrently executed under
the scheduling of OSEK/VDX OS, and the running task can be explicitly
determined by the OSEK/VDX scheduler.

– Tasks can invoke APIs to change the states of tasks, and the changed task
states will dynamically update the scheduling order of tasks.

Due to the concurrency of tasks and dynamic of scheduling, how to exhaus-
tively examine the timing property of the developed OSEK/VDX applications
is becoming a challenge in the automotive industry. In the following sections, we
will demonstrate two exhaustive methods based on the model checker UPPAAL.
The first method feeds UPPAAL with a complex application model. In contrast
with the first method, the second method firstly translates a given OSEK/VDX
application into a sequential model and then employs UPPAAL to carry out
verification.

3 The Existing Method for OSEK/VDX Applications

3.1 Non-deterministic and Deterministic Schedulers

In the OSEK/VDX distributed application system, tasks within an application
are currently executed and the running task can be explicitly determined by the
OSEK/VDX scheduler based on the deterministic scheduling. For example, as
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Fig. 4. Example for deterministic and non-deterministic schedulers.

shown in Fig. 4, assuming that an OSEK/VDX application contains two tasks
t1 and t2 currently staying in the ready queue, and the priority of t1 is higher
than that of t2, the OSEK/VDX scheduler will make one task scheduling order
(t1, t2) and t1 is firstly selected as the running task. In general, we call this type
of scheduler as a deterministic scheduler.

Compared with the OSEK/VDX scheduler, multi-threaded programs in gen-
eral, such as SystemC and ANSI-C concurrent programs, usually take a non-
deterministic scheduling. Threads in such programs are concurrently executed,
but the running thread is hard to be explicitly determined because the sched-
uler selects the running thread from runnable or ready threads in an arbitrary
way. For example, as shown in Fig. 4, suppose there are two threads t1 and t2
in a SystemC multi-threaded program. If these two threads are currently in the
runnable or ready state, there exist two possible scheduling orders, one is (t1,
t2), and the other is (t2, t1), since this way of scheduling makes it hard to deter-
mine which of t1 and t2 can be the running thread in advance. We usually call
this type of scheduler as a non-deterministic scheduler.

In the scope of model checking, many advanced methods [1,18] have been pro-
posed for verifying the non-deterministic scheduler based concurrent programs.
However, these methods are not suitable to verify the deterministic scheduler
based OSEK/VDX applications. If we apply these methods to carry out verifi-
cation, a large number of unnecessary interleavings of tasks will be checked by
model checkers (i.e., the state space verified by the existing methods is larger
than the real state space of the target application). Furthermore, due to the
unnecessary interleavings, model checkers will often find a spurious bug which
makes the verification inexplicit. To overcome this problem, Libor has proposed a
method based on the model checker UPPAAL by means of a worthy application
model. The details of the method are stated below.

3.2 Application Model in UPPAAL

To explicitly verify a given OSEK/VDX application using UPPAAL, the key
problem is how to construct an application model to accurately simulate the
executions of the application. In the existing method, according to the execution
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Fig. 5. UPPAAL model for the running application.

characteristics of the OSEK/VDX applications, concurrent processes (timed
automaton) are used to simulate each tasks. In particular, a special concurrent
process for the OSEK/VDX OS is added in the application model to determine
the running task and respond to the APIs invoked from tasks. Based on the
application model, all of the possible interleavings of tasks will be verified by
UPPAAL, especially the unnecessary interleavings of tasks will be removed by
the scheduling of OSEK/VDX OS process in the verification stage.

As shown in Fig. 5, we can use the application model to simulate the running
application depicted in Fig. 3 and verify the application by using model checker
UPPAAL. The shown application model is a prototype of the real model. We
just show the details of the running application, the details of OSEK/VDX OS
is omitted, since the real model of the OSEK/VDX is too complex to demon-
strated here (the real OSEK/VDX OS model is described in papers [12,21]). In
the shown application model, the guard statements “runtid==1”, “runtid==2”,
“runtid==3”, and update statements “tid:=2”, “tid:=3” within the task con-
current processes (timed automata) are assistant statements used to restrict
the executions of the tasks that are not the currently running task (the cur-
rently running task ID is determined by the OS model). The red transitions are
assistant transitions used to return initial locations of tasks for realizing the acti-
vated behaviours (i.e., in the OSEK/VDX applications, a terminated task can
be activated again by other tasks using the API ActivateTask(tid), the existing
method thus adds an assistant transition in task concurrent processes to make
tasks return their initial state). In addition, the variables x, y and z are clocks
used to simulate the running time of task instructions. The running time of the
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task instructions generally is CPU cycles estimated from CPU specification. The
related work for computing the running time can be found in papers [17,19].

3.3 Advantages and Disadvantages of the Existing Method

The advantage of the existing method is that it can explicitly verify the timing
properties of the OSEK/VDX applications by using UPPAAL. However, we can
sensitively find that the existing method is not scalable to verify a large-scale
OSEK/VDX application which contains many tasks, because the method has to
use a lot of concurrent processes to simulate the executions of the application.
In the verification stage, these concurrent processes will easily make UPPAAL
meet its verification limitation.

4 Our Approach for Boosting UPPAAL

4.1 Key Idea of Our Approach

To boost UPPAAL more scalable in verifying a large-scale OSEK/VDX appli-
cation, we propose an efficient approach based on the sequentialization idea.
The scalability of the existing method is limited because the constructed appli-
cation is too complex. In our approach, we tackle this problem by translating
an OSEK/VDX application into an equivalent sequential model. Based on the
sequential model, we only need one concurrent process to simulate the appli-
cation. In the verification stage, UPPAAL just checks one concurrent process
rather than multiple processes compared with the existing method. The key
process of the sequential translation is that we symbolically execute an applica-
tion by means of an extended directed graph. In order to keep the equivalence
between the original application and the sequentialized model, the OSEK/VDX
OS model is embedded in the sequential algorithm to dispatch tasks and respond
to the APIs invoked from tasks.

4.2 Sequential Translation

There are two problems that should be addressed when we translate a multi-
tasks application into an equivalent sequential model, one is how to explicitly
perform the scheduling behaviours of OSEK/VDX OS, and the other is how to
compute the sequential model. In our approach, in order to explicitly perform
the scheduling behaviours of the OSEK/VDX OS, we embed an OSEK/VDX
OS model in the sequential algorithm for dispatching tasks and responding to
the APIs invoked from tasks. The embedded OS model is an extended version
shown in paper [21], consisting of two components. The first one is a set of data
structures used to record the scheduling data such as the states of tasks. The
second one is a set of functions used to dispatch tasks and respond to the APIs
based on the data structures. In addition, as to equivalently compute the sequen-
tial model of an OSEK/VDX application, an extended directed graph shown in
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Input: Application: Timed automata of tasks, configuration file
Output: Extended directed graph G
create a start node v0 and initialize a set V ;
initialize p and D in node v0 with the initial locations of task timed automata and

configuration file, V :={v0};
call OS model to determine the currently running task t in node v0 based on D of node v0;

create a node v1 and a set V ′, v1:=v0, V
′:={v1};

start the sequential translation from node v1 in directed edge (v0,v1);

while V ′ �= ∅ do
v∈V ′, V ′:=V ′\{v};
if running task t in node v is not null then

explore transitions of task t from the current location in symbolic way;
if explored transition holds an API then

create a new node v′, where v′:=v;

map the explored transition in directed edge (v,v′);
update p of node v′ with the current location of running task t in node v;
call OS model to respond to the API and determine running task t in

node v′ based on D of node v′;
V ′:=V ′∪{v′};

end
if explored transitions are branch statements then

according to the number m of branches, create m new nodes v′
1, ..., v

′
m, where

v′
1:=v,...,v′

m:=v;

map the explored branch statements in directed edges (v,v′
1),· · · ,(v,v′

m)
respectively;

update p of node v′
1, ..., v

′
m with the current location of running task t in node

v;

V ′:=V ′∪{v′
1, ..., v

′
m};

else
create a new node v′, where v′:=v;

map the explored transition in directed edge (v,v′);
update p of node v′ with the current location of running task t in node v;

V ′:=V ′∪{v′};
end

forall the vi ∈V ′ do
if vi = vj ∈V , then change the relationship of directed edge (v,vi) to (v,vj),

V ′:=V ′\{vi}; Otherwise, V :=V ∪{vi} (where, vi=vj means that p and D in
node vi are equal to p and D in node vj respectively);

end

end

end
return G;

Algorithm 1. Key processes of the sequential translation

Definition 1 is employed to carry out sequential translation. In the sequential
translation, we use the extended directed graph to execute the application in
symbolic way and call embedded OS model to determine the running task when
meeting an API, i.e., the context switch of tasks in OSEK/VDX applications
occurs at the invoked points of APIs.

Definition 1. The extended directed graph G is a triple G=(V , v0, E). Where,
V is a set of nodes with the start node v0 ∈ V . A node v ∈ V consists of two
variables p and D, p is an array with the size equaling to the task number used
to record the current locations of timed automata of tasks, and D is a set of data
structures used to store the scheduling data such as the states of tasks. E⊆V×V
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is a set of directed edges used to map the transitions of timed automata of tasks,
such as an action, a guard or a set of clocks to be reset.

Based on the extended directed graph and the embedded OSEK/VDX OS
model, the key processes of the sequential translation are formalized in Algo-
rithm1. The algorithm accepts the task timed automata used in UPPAAL [9] and
configuration file as inputs. In the sequential translation processes, it does not
compute the values of variables, instead, it just explores transitions of task timed
automata according to the executions of tasks by using the defined extended
directed graph. In the extended directed graph, nodes are in charge of recording
the current locations of task timed automata and the scheduling data. When the
algorithm starts the explorations from a node, if the explored transitions in task
automata are sequential statements and branch statements, it will create several
new nodes in the extended directed graph and then maps the explored transi-
tions in directed edges. If the explored transition holds an API, the algorithm
firstly passes the scheduling data recorded in the start node to the embedded
OS model and then calls embedded OS model to respond to the API and deter-
mine the next running task. Once the OS model completes its execution, a new
node is created and the current scheduling data is recorded by the new node,
where we stipulate that the invoked APIs monopolize one transition in task
timed automata. Particularly, if an OSEK/VDX application holds loops, it will
usually go back to a previous state. In the sequential translation processes, the
algorithm will construct a cyclic in the extended directed graph G in order to
reduce the same states of the application to be created. In the algorithm, if the
task locations p and the scheduling data D in a new node vi are equal to that
of an old node vj , a cyclic will be constructed. Based on the sequentialization
translation, we can obtain a sequential model that is equivalent to the original
application. The reason is that all execution traces in the original application
are held by the sequential model, especially these execution traces are under the
scheduling.

4.3 Example

To facilitate the understanding of the sequential translation of Algorithm1, we
demonstrate an example to show the details by sequentializing the running appli-
cation. In the shown example, the assistant statements and transitions used in
the existing method are omitted, because our algorithm does not need them in
the sequential translation. In addition, since the responding behaviours for APIs
invoked from tasks have been realized by the embedded OSEK/VDX OS model
in the sequential transition, the APIs in the task automata are annotated in the
sequential model.

As shown in Fig. 6, in the first step, the algorithm creates a start node v0,
and then initializes v0 with the initial locations of task timed automata and
configuration file (in node v0, all tasks start from initial locations L1 shown in
Fig. 5, and contask is in the ready state, plustask and minustask are in the
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Fig. 6. Sequential model for the running application.

suspended state). In the second step, the algorithm calls OS model to deter-
mine the currently running task based on the data D in node v0 and then
starts the sequential translation. In node v1, contask becomes the running task.
Thus, the algorithm successively explores the transitions of contask and maps
the explored statements in directed edges of G, e.g., two nodes v2 and v3 are
created, and the explored statements are mapped in directed edges (v1, v2) and
(v2, v3). When the algorithm explores task transitions from node v3 (contask
locates at L3, plustask and minusstask locate at L1), it will meet the con-
dition statements of while loop. Consequently, two node v4 and v5 are cre-
ated, and the loop condition statement and the negative condition statement
are mapped in directed edges (v3, v4) and (v3, v5), respectively. To explore task
transitions from node v5, the API TerminateTask is invoked by contask. The
embedded OS model is called to respond to the API and compute the states of
tasks. Then, the API is mapped in the edge (v5, v17). At this moment, all tasks
within the application are in the suspended state in node v17. If the algorithm
explores task transitions from node v4, according to the executions of contask,
five nodes (v6, v7, v8, v12, v13) are created for mapping the corresponding task
transitions, e.g., the APIs ActivateTask(plustask) and ActivateTask(minustask)
are mapped in directed edges (v7, v8) and (v12, v13), respectively. In edge (v7, v8),
the API ActivateTask(plustask) is invoked. The algorithm calls the embedded
OS model to respond to the API and compute the states of tasks by using the
scheduling data in node v8. contask is presently preempted by plustask in node
v8, and then the algorithm creates three nodes v9, v10 and v11 to successively map
the transitions of plustask. As seen in Fig. 6, the mapped statement in directed
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edge (v10, v11) is the API TerminateTask, OS model is then called for responding
to the API and computing the states of tasks in node v11 (in node v11, contask
becomes the running task again). Accordingly, the algorithm also maps the task
statements of minustask in directed edges (v13, v14), (v14, v15) and (v15, v11)
from node v13. After that, the algorithm creates one node to continue the execu-
tions of contask from node v11, and the explored transitions are mapped in the
corresponding directed edges. In the light of the sequential transition performed
by the algorithm, the OSEK/VDX applications can be equivalently translated
into the corresponding sequential models.

4.4 Advantages and Disadvantages of Our Approach

In the existing method, the application model of an OSEK/VDX application is
composed of task concurrent processes and OSEK/VDX process. In contrast
with the existing method, our approach translates an OSEK/VDX application
into a sequential model. Thus, we can use only one concurrent process to simu-
late the application. In addition, in our approach, the OSEK/VDX OS is embed-
ded in the sequential algorithm to dispatch tasks and respond to the invoked
APIs, which can significantly reduce the state space of the application model.
These efforts make our approach more scalable in dealing with the OSEK/VDX
applications. However, since the OSEK/VDX OS model is not included in the
application model in our approach, the scheduling time for responding differ-
ent APIs cannot be directly estimated if we intend to verify the timing prop-
erty about schedule. To overcome this shortcoming, we can use the worst-case
responding time of the OSEK/VDX OS to simulate the scheduling time. Even
though the scheduling time is an approximate time for different APIs, the target
system will straitly satisfy its design or specification if it passes the verification,
because the real time is less than the worst-case time.

5 Experiments and Discussion

5.1 Experiments

We implemented a prototype tool according to the proposed approach with C++
programming language. Based on the implemented tool, we have conducted a
series of experiments to evaluate the efficiency and scalability of our approach.
The task number and API number are the primary influence factors of the per-
formance of our approach. Thus, our approach is comprehensively investigated
on the OSEK/VDX applications by selecting experimental systems with the dif-
ferent task and processor numbers as benchmarks. The selected OSEK/VDX
applications are realistically represented by additionally taking into account the
non-preemptive scheduling behaviours, full-preemptive scheduling behaviours,
mix-preemptive scheduling behaviours, synchronous behaviours, and accessing
shared resource behaviours. In the selected benchmarks, each task within appli-
cations takes a clock and holds at least 100 states. In addition, the existing
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Table 1. Comparison: existing checking method VS Our approach

Existing method (UPPAAL) Our approach

Sequential translation UPPAAL

Benchmark #t #API #s Time Mb Time Mb #s Time Mb

Non-preemption 6 11 5651 20.1 27.7 0.18 3.19 1321 10.4 13.5

8 14 27253 114.3 113.9 0.26 3.64 5431 20.4 86.4

10 17 143835 521.7 423.2 0.30 4.11 23812 98.6 214.5

18 35 - T.O - 0.60 5.72 73853 243.8 517.2

Full-preemption 4 61 95671 78.1 61.7 0.14 2.98 19176 38.4 61.9

6 101 134371 509.8 398.4 0.19 3.34 21328 97.1 104.7

9 161 246990 887.1 984.7 0.29 4.05 44523 114.7 241.7

13 241 - - M.O 0.45 5.14 87246 345.2 507.1

Mix-preemption 5 101 213541 804.9 945.2 0.18 3.21 24518 99.4 108.7

9 161 - - M.O 0.30 4.22 42597 189.1 204.2

13 241 - - M.O 0.45 5.23 63868 357.9 412.3

13 313 - - M.O 0.41 4.78 88390 687.2 779.6

Synchronization 5 14 5443 21.3 28.1 0.18 3.16 1421 11.6 14.2

8 23 24159 109.8 107.5 0.26 4.01 5214 19.2 84.1

11 32 210241 607.2 514.9 0.42 4.53 14157 45.1 62.7

12 42 392329 879.8 798.3 0.45 5.11 27891 114.6 124.3

Shared resource 2 4 13907 54.9 48.6 0.21 3.41 2479 13.4 19.8

9 320 - - M.O 0.34 4.63 37589 118.2 267.9

12 480 - - M.O 0.41 5.84 88416 647.2 745.1

20 480 - - M.O 0.44 4.98 272614 998.2 994.1

checking method is considered as comparison object to show whether our app-
roach can make UPPAAL more scalable in verifying OSEK/VDX applications.

All experiments are conducted on the Intel Core(TM)i7-3770 CPU with 8G
RAM, and we set the time limit and memory limit to 1000 s and 1 GB, respec-
tively. In addition, in order to investigate the scalability of our approach, we
thoroughly evaluated our approach by not specifying any property in the exper-
iments to allow UPPAAL to explore the states of the target benchmarks as much
as possible. The experiment results are listed in Table 1. In the table, #t is the
number of tasks, #API is the times of invoked APIs by tasks, #s is the number of
explored states by UPPAAL. “Mb” and “Time” are the memory consumption
and time consumption measured in Mbyte and seconds, respectively. M.O. and
T.O. stand for that UPPAAL runs out of time and memory, respectively.

5.2 Discussion

The experimental results shown in Table 1 indicate that the existing checking
method fails to verify the benchmarks which contain a number of tasks and APIs
(e.g., lines 4, 8, 10 and 18). This is because, in the exisitng checking method, the
application model holds too many concurrent processes, thereby easily causing
the state space to experience exponential growth in the verification stage. In
addition, in the method, when an API is invoked by the running task, the states
of OSEK/VDX OS are explored, and this significantly increases the state space
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if an application holds a number of APIs. These drawbacks seriously limit the
efficiency and scalability of this method.

In contrast with the existing checking method, our approach can successfully
verify these benchmarks with lower costs (time and memory) and lesser states.
This is because, based on the sequential translation of our approach, the model
checker UPPAAL only verifies one concurrent process rather than multiple con-
current processes. In addition, we embedded the OSEK/VDX OS model in the
sequential translation algorithm to explicitly dispatch tasks and respond to the
invoked APIs, thereby resulting in the sequential model only holding the states
of the given application. These efforts can significantly improve the efficiency
and scalability of UPPAAL in verifying large-scale OSEK/VDX applications.

Based on the experimental results, we can optimistically find that our app-
roach can be used to verify an OSEK/VDX application with industrial complex-
ity, because our approach can successfully verify twenty tasks. To the best of
our experiences, a realistic OSEK/VDX application usually contains less-than
twenty tasks. In addition, based on the conducted experiments, we find that
the number of clocks taken by tasks is also an influence factor for limiting the
performance of our approach. In the future, the technique for reducing clocks [3]
will be used in order to make our approach more efficient and scalable.

6 Related Work

Currently, there have been many methods that apply model checking techniques
to verify the OSEK/VDX standard based software systems. In the scope of
checking developed OSEK/VDX OS, Chen and Aoki proposed a method [14] to
generate the highly reliable test-cases for checking whether the developed OS
conforms to the OSEK/VDX OS standard based on the model checker Spin.
In addition, Choi presented a method [22] to convert an open OSEK/VDX OS
named Trampoline [13] into formal models, and an incremental verification app-
roach is proposed to carry out the verification. Furthermore, a CSP-based app-
roach for checking the code-level OSEK/VDX OS is addressed in the paper [23].
All of these related works are different from our work, because our approach
focuses on the developed OSEK/VDX applications.

For the developed OSEK/VDX applications, Zhang shows a method [12]
based on the model checker Spin. The method is similar as Libor’s one, but
focuses on the safety properties. The scalability of the method is also limited
because of too many details of the OSEK/VDX OS and concurrent processes
included in the application model. To cut the states of OSEK/VDX OS from
application model, a new technique named EPG [11] is proposed based on the
SMT-based bounded model checking [2]. Even so, the method is not efficient
to check the OSEK/VDX applications which holds a lot of branches, since the
method will spend much time exploring all of the execution paths in order to
construct the corresponding transition system (application model), which will
seriously slow down the performance of the method. Compared with EPG tech-
nique, our approach uses an extended directed graph to execute OSEK/VDX
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applications in symbolic way rather than exploring execution paths, which is
more efficient than the EPG technique.

To verify concurrent programs with a scheduler, Liu and Joseph proposed
a transformational method [24] to specification and verification of concurrent
application programs executing on systems with limited resources. The method
allows the real-time and fault-tolerance requirements to be specified and ver-
ified in the traditional theory refinement and temporal verification in a single
notation. However, the method does not consider the issue of a possible imple-
mentation of the transformation for any existing operating system, and to the
best of our knowledge there does not exist any tool support to the transforma-
tional approach. In contrast with the method, our approach focuses on a realistic
system and the sequential translation is different from this method.

In the field of verifying concurrent programs using sequentialization tech-
nique, several methods have been proposed such as [5,20]. However, the exist-
ing methods focus on the non-deterministic scheduler based concurrent pro-
grams such as SystemC and ANSI-C, which are not suitable to sequentialize the
deterministic scheduler based OSEK/VDX application. In the existing methods,
random numbers are appended in the target programs to simulate the non-
deterministic scheduling behaviours, and several assistant functions included in
the sequential model are used to perform the API behaviours. Compared with the
existing methods, although our approach is based on the sequentialization idea,
we focuses on the deterministic scheduler based concurrent programs and uses an
extended directed graph to compute the sequential models of the OSEK/VDX
applications. Furthermore, the API behaviours are not included in sequential
model, which are performed by the embedded OS model. These techniques are
quite different from the existing methods.

7 Conclusion and Future Work

The timing properties of the OSEK/VDX applications is really hard to be
exhaustively examined. In this paper, we proposed an efficient approach to over-
come this problem by using model checker UPPAAL. In the proposed approach,
a sequential translation technique is used to simplify the application model for
making UPPAAL more scalable in verifying the complex OSEK/VDX applica-
tions. We have evaluated the proposed approach based on a series of experiments.
The experimental results indicate that our approach is not only capable of effi-
ciently simplifying the application models, but also of making UPPAAL compe-
tent in dealing with the OSEK/VDX applications with industrial complexity. In
the future, we attempt to apply the clock reduction technique in our approach
to make the approach more scalable in handling more complex OSEK/VDX
applications. In addition, we intend to extend our approach in verifying other
deterministic scheduler based concurrent programs.
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The Complexity of Linear-Time Temporal
Logic Model Repair
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Abstract. We propose the model repair problem of the linear-time tem-
poral logic. Informally, the repair problem asks for a minimum set of
states in a given Kripke structure M , whose modification can make the
given LTL formula satisfiable. We will examplify the application of the
model and study the computational complexity of the problem. We will
show the problem can be solved in exponential time but remains NP-hard
even if k is a constant.

1 Introduction

Model checking is the problem of deciding the satisfiability of a logical formula
expressing some desired specification for a given system model. It is an automatic
technique for verifying finite state concurrent systems [8]. It has been developed
in the context of temporal logic formula for the Kripke structure that represents
finite-state system, named “temporal logic model checking” [19]. The temporal
logic model checking finds its broad applications in verification, and has been a
very active field of research in the last three decades.

Important temporal logics in the verification include linear-time temporal
logic (LTL) [12], computational tree logic (CTL) [6], CTL* (a superset of CTL
and LTL) [10], along with their fragments and some other extensions. The com-
putational complexity of these model checking has been thoroughly studied in
the literature.

In order to understand the system behaviors and obtain more feedback or
application-specific information, a lot of work has extended the standard algo-
rithmic technique for variants of model checkings. In [3], Bruns and Godefroid
addressed a 3-valued interpretation to modal logic formulas on model struc-
tures, in which beyond the values of true and false, the third value ⊥ (means
unknown) is defined to represent incomplete state spaces and logic formulas.
They also presented a 3-valued CTL model checking algorithm. Chan introduced
temporal-logic queries in which some temporal-logic formula could be modified
for a special symbol, named a placeholder appearing exactly once and defined a
class of CTL queries in [5]. In [7], Clarke et al. devised new symbolic techniques
which analyze counterexamples and refine the abstract model correspondingly.
They also presented a refinement algorithm.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Tian et al. (Eds.): SOFL+MSVL 2017, LNCS 10795, pp. 69–87, 2018.
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We shall focus on one of the most fundamental fragments of logic, the propo-
sitional linear-time temporal logic, proposed in [12]. It is historically the first
temporal logic that has been used in formal specification and verification of
non-terminating computer programs [1,14]. Moreover, LTL is the most com-
monly used specification logic for reactive systems [17]. Like propositional model
counting generalizes SAT, LTL model counting introduces “quantitative” exten-
sions of model checking and synthesis [2,18,20]. In the field of verification, model
repair could be used to determine not only the existence of computations that
violate the specification, but also the number of such modified states. For exam-
ple, in a communication system, where messages are lost (with some probability)
in the channel, it is typically not necessary (or even possible) to guarantee a 100%
correct transmission. Instead, the number of executions that lead to a message
loss is a good indication of the quality of the implementation [11].

We propose the model repair with states and transition relations problem
for safety specifications expressed in LTL [15]. The LTL model repair problem is
described as computing the minimum set of states in a given Kripke structure M
that its atomic propositions can be modified to satisfy a given LTL formula. We
shall use this problem to formulate applications including verifying concurrent
programs. We also extend classic model checking algorithms for LTL to this
problem and demonstrate that the problem can be solved in singly-exponential
time. In addition, we prove that even for constant number of modified states,
the problem is NP-hard.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce
some basic notions. In Sect. 3, we explain an extended definition and algorithm
of LTL model checking, as well as model repair of LTL that modifies states in the
model, while in next Sect. 4, we analyze the hardness for the decision version of
LTL model repair problem. In Sect. 5, we show some results of another version of
LTL model repair that modifies transition relations in the model. In Sect. 6, we
give some examples to support the applicability of our approach. We conclude
the paper in Sect. 7.

2 Preliminaries

Some basic definitions and notes [8] are introduced in this section.

2.1 Kripke Structure

Definition 1. Let AP be a set of atomic propositions. A Kripke structure M
over AP is a quadruple M = (S, S0, R, L) where

1. S is a finite set of states.
2. S0 ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total, that is, for every state

s ∈ S there is a state s′ ∈ S such that R(s, s′)
4. L : S → 2AP is a function that labels each state with the set of atomic

propositions true in that state.
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a b

b c c

s0

s2

s1

Fig. 1. An example of Kripke structure.

Example 1. An example of Kripke structure M = (S, S0, R, L) is given in
Fig. 1, where AP = {a, b, c} S = {s0, s1s2}, S0 = {s0}, R = {(s0, s1),
(s0, s2), (s1, s0), (s1, s2), (s2, s2), }, L(s0) = {a, b}, L(s1) = {b, c}, L(s0) = {c}.

We are not always concerned with the set of initial states S0. In such cases,
we will omit this set of states from the definition. A path in the structure M
from a state s is an infinite sequence of states π = s0s1s2... such that s0 = s and
R(si, si+1) holds for all i ≥ 0.

2.2 Linear-Time Temporal Logic

Linear-time temporal logic (LTL) is proposed by Pnueli in 1977 [17]. The
language of LTL contains an infinite set of propositional variables V ar =
{p1, p2, · · · }, the Boolean connectives ¬, ∨ and ∧, and the temporal operators.

The LTL formulas are defined by the following expression:

ϕ := p|¬ϕ|(ϕ1 ∨ ϕ2)|(ϕ1 ∧ ϕ2)|Xϕ|Fϕ|Gϕ|ϕ1Uϕ2|ϕ1Rϕ2

We also define 	 := (¬p ∨ p), ⊥ := (¬p ∧ p). We adopt the usual convention
about omitting parentheses. For every formula ϕ and every n ≥ 0, we inductively
define the formula Xnϕ as follow: X0ϕ := ϕ, Xn+1ϕ := XXnϕ.

For temporal logic, there are five basic operators:

– X(“Next”): requires that a property holds in the second state of the path.
– F (“Finally”): is used to assert that a property will hold at some state of the

path.
– G(“Globally”): specifies that a property holds at every state on the path.
– U(“Until”): is used to combine two properties. It holds if there is a state on

the path where the second property holds and at every preceding state on
the path, the first property holds.

– R(“Release”): is the logical dual of the U . It requires that the second property
holds along the path up to and including the first state where the first property
holds. However, the first property is not required to hold eventually.

LTL formulas are evaluated with respect to paths. The syntax of state for-
mulas and path formulas are given by the following rules:
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– If p ∈ AP , then p is a state formula.
– If f and g are state formulas, then ¬f , f ∨ g and f ∧ g are state formulas.
– If f is a path formula, then E f and Af are state formulas.
– If f is a state formula, then f is also a path formula.
– If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, X f , F f , Gf , f U g and

f R g are path formulas.

2.3 LTL Model Checking

The behavior of a finite-state parallel program can be modeled as a Kripke
structure. Each infinite path starting from the initial states represents a possible
execution of the individual processes in the Kripke structure. In most cases,
the correctness requirements of the system can be expressed by a propositional
linear-time temporal logic formula. The system would be correct if only if every
possible execution sequence satisfies this formula; that is, every sequence starting
at the initial states in the corresponding Kripke structure satisfies the formula.
For these reasons, LTL model checking is important in verifying finite-state
parallel programs.

Definition 2 (LTL model checking). Given a Kripke structure M =
(S, S0, R, L), a state s ∈ S0 and an LTL formula g, whether there is an infi-
nite path π in the M starting from s such that M, s |= E g.

M = (S, S0, R, L) is a Kripke structure with s ∈ S0 and let g be a linear-time
temporal logic formula. Thus, g is a restricted path formula in which the only
state subformulas are atomic propositions. We hope to determine if M, s |= A g.
Notice that M, s |= A g if and only if M, s |= ¬E¬g. Consequently, it is sufficient
to be able to check the truth of formulas of the form Ef where f is a restricted
path formula.

In the LTL model checking problem, |S| denotes the size of the states in the
Kripke structure, as the |R| for the size of transition relations, and |f | for the
length of LTL formula f . In general, this problem is PSPACE-complete. The
model-checking problem is NP-hard for formulas of the form E f where f is a
restricted path formula.

Closures and Atoms. Let M = (S, S0, R, L) be a Kripke structure and let f
be a restricted path formula. Let f be a restricted path formula. It is sufficient to
consider only the temporal operators X and U, since F f = True U f, G f = ¬F¬f
and f1 R f2 = ¬[¬f1U¬f2].

The closure of f , CL(f) is the smallest set of formulas containing f and
satisfying:

– ¬f1 ∈ CL(f) ⇐⇒ f1 ∈ CL(f)
– f1 ∨ f2 ∈ CL(f) ⇒ f1, f2 ∈ CL(f)
– X f1 ∈ CL(f) ⇒ f1 ∈ CL(f)
– ¬X f1 ∈ CL(f) ⇒ X ¬f1 ∈ CL(f)
– f1 U f2 ∈ CL(f) ⇒ f1, f2, X[f1 U f2] ∈ CL(f)
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(In the above, we identify ¬¬f1 with ¬f1). Notice that the size of CL(f) is linear
in the size of f .

A normal atom is a pair A = (sA,KA) with sA ∈ S and KA ⊆ CL(f) ∪ AP
such that:

– For each proposition p ∈ AP , p ∈ KA ⇔ p ∈ L(sA)
– For every f1 ∈ CL(f), f1 ∈ KA ⇔ ¬f1 /∈ KA

– For every f1 ∨ f2 ∈ CL(f), f1 ∨ f2 ∈ KA ⇔ f1 ∈ KA or f2 ∈ KA

– For every ¬X f1 ∈ CL(f), ¬X f1 ∈ KA ⇔ X¬f1 ∈ KA

– For every f1 U f2 ∈ CL(f), f1 U f2 ∈ KA ⇔ f2 ∈ KA or f1,X[f1 U f2] ∈ KA.

The set of all atoms is denoted by At. A graph G(At,E) is constructed with
the set of atoms as the set of vertices and the edges defined as:

(A,B) ∈ E ⇔
{

(sA, sB) ∈ R; (1)
∀(X f1) ∈ CL(f), Xf1 ∈ KA ⇔ f1 ∈ KB (2)

Model Checking Algorithms. In the constructed graph, some related def-
initions and lemmas introduced in the following are configured to display the
model checking algorithms by tableau.

Definition 3. An eventuality sequence is an infinite path π in G such that if
f1 U f2 ∈ KA for some atom A on π, then there exists an atom B, reachable
from A along π, such that f2 ∈ KB.

Lemma 1. M, s |= E f iff there exists an eventuality sequence starting at an
atom (s,K) such that f ∈ K.

(⇐) the “only if” case is very trivial.
(⇒) assume that there is an eventuality sequence (s0,Ko), (s1,K1), . . . starting
at (s,K) = (s0,Ko) with f ∈ K. By definition, π = s0, s1, . . . is a path in M
starting at s = s0. We want to show that π |= f .

Actually, we prove a stronger claim: for every g ∈ CL(f) and every i ≥ 0,
πi |= g iff g ∈ Ki. The proof proceeds by induction on the structure of the
subformulas. Here we give the base case and the inductive step when g is either
¬h1, h1 ∨ h2, Xh1, or h1Uh2.

– If g is an atomic proposition, then by the definition of an atom, g ∈ Ki iff
g ∈ L(si).

– If g = ¬h1 then πi |= g iff πi
� h1. By the induction hypothesis, this is true

iff h1 /∈ Ki. By the definition of Ki, this guarantees that g ∈ Ki.
– For every f1 ∨ f2 ∈ CL(f), f1 ∨ f2 ∈ KA ⇔ f1 ∈ KA or f2 ∈ KA

– For every ¬X f1 ∈ CL(f), ¬X f1 ∈ KA ⇔ X¬f1 ∈ KA

– For every f1 U f2 ∈ CL(f), f1 U f2 ∈ KA ⇔ f2 ∈ KA or f1,X[f1 U f2] ∈ KA.

Definition 4. A nontrivial strongly connected component C of the graph G is
said to be self-fulfilling iff for every atom A in C and for every f1 U f2 ∈ KA

there exists an atom B in C such that f2 ∈ KB.
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Lemma 2. There exists an eventuality sequence starting at an atom (s,K) iff
there is a path in G from (s,K) to a self-fulfilling strongly connected component.

(⇒) the if case is trivial.
(⇐), assume that there is an eventuality sequence starting at an atom (s,K).
Consider the set C ′ of all atoms that appear infinitely often in the this sequence.
C ′ is a self-fulfilling strongly connected subgraph. The C ′ is a strongly connected
component or a strongly connected subgraph of a maximal strongly connected
component C of G. For the first case, it is simple. The other case, consider a
subformula g = h1U h2 and an atom (s,K) ∈ C such that g ∈ K. If h2 is not
in an atom of C, then the C ′ is not self-fulfilling, because the subformula g will
also appear in the atoms of C ′. It is a contradiction, and C is self-fulfilling.

Corollary 1. M, s |= E f iff there exists an atom A = (s,K) in G such that
f ∈ K and there exists a path in G from A to a self-fulfilling strongly connected
component.

Algorithm 1 can be used as the basis for an LTL model checking algorithm.
The complexity of this algorithm is PSPACE, O((|S| + |R|) · 2O(|f |)).

Algorithm 1. LTL Model Checking
Input:
1: Kripke structure M = (S, S0, R, L); LTL formula f
Output:
2: If M, s0 |= E f , return YES; otherwise, return NO
3: procedure Construct Graph(M, f)

return G(At,E)
4: end procedure
5:
6: procedure G2G′(G(At,E))

return G′(At′, E′, L′)
7: end procedure
8:
9: for all vertex A ∈ At′ with sA ∈ S0 do
10: if f ∈ KA then
11: if there exists a path in G′ from A to {B|L′(B) = 1} then
12: return M, sA |= E f
13: end if
14: end if
15: end for

return

3 Model Repair of LTL with States

We propose the model repair problem of LTL. This problem asks that if given
a Kripke structure M and an LTL formula is not satisfiable by the structure,
what is the least atomic proposition of states that be modified for satisfiability.
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Definition 5 (modified state). In a Kripke structure M = (S, S0, R, L), a
state s ∈ S is modified if the set of atomic propositions L(s) in the state s is
modified to another subset of 2AP .

Example 2. The Kripke structure M in Fig. 1 does not satisfy the LTL formula
g = b U(¬c), but if the atomic propositions of the state s2 is modified for {a, b},
then M, s0 |= Eg in Fig. 2.

a b

b c a b

s0

s2

s1

Fig. 2. A modified state s2 for the example Kripke structure.

Definition 6 (LTL model repair with states). A LTL model repair is a
tuple (M,ϕ). Given a Kripke structure M = (S, S0, R, L), an LTL formula ϕ,
output the least numbers of the states in M whose AP be modified such that the
Kripke structure satisfy ϕ.

3.1 Modified LTL Graph

For the LTL model repair problem, we first construct closure cl(ϕ) of ϕ, which
is the set of formulas related to the truth value of ϕ, then construct the refined
LTL graph of normal atoms and modified atoms.

The closure of ϕ, CL(ϕ) is the smallest set of formulas containing ϕ and
satisfying:

– ¬ϕ1 ∈ CL(ϕ) ⇐⇒ ϕ1 ∈ CL(ϕ)
– ϕ1 ∨ ϕ2 ∈ CL(ϕ) ⇒ ϕ1, ϕ2 ∈ CL(ϕ)
– X ϕ1 ∈ CL(ϕ) ⇒ ϕ1 ∈ CL(ϕ)
– ¬X ϕ1 ∈ CL(ϕ) ⇒ X ¬ϕ1 ∈ CL(ϕ)
– ϕ1 U ϕ2 ∈ CL(ϕ) ⇒ ϕ1, ϕ2, X[ϕ1 U ϕ2] ∈ CL(ϕ)

(In the above, we identify ¬¬ϕ1 with ϕ1) Notice that the size of CL(ϕ) is
linear in the size of ϕ.

A normal atom is a pair A = (sA,KA) with sA ∈ S and KA ⊆ CL(ϕ) ∪ AP
such that:
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– For each proposition p ∈ AP , p ∈ KA ⇔ p ∈ L(sA)
– For every ϕ1 ∈ CL(ϕ), ϕ1 ∈ KA ⇔ ¬ϕ1 /∈ KA

– For every ϕ1 ∨ ϕ2 ∈ CL(ϕ), ϕ1 ∨ ϕ2 ∈ KA ⇔ ϕ1 ∈ KA or ϕ2 ∈ KA

– For every ¬X ϕ1 ∈ CL(ϕ), ¬X ϕ1 ∈ KA ⇔ X¬ϕ1 ∈ KA

– For every ϕ1 U ϕ2 ∈ CL(ϕ), ϕ1 U ϕ2 ∈ KA ⇔ ϕ2 ∈ KA or ϕ1,X[ϕ1 U ϕ2] ∈
KA.

In the LTL model repair with states problem, there are some states in which
its atomic propositions should be modified for satisfying the LTL formula. Those
modified states also should be displayed in the LTL constructed graph. The
following modified atom is defined to show all the sets of modified states.

Definition 7 (modified atom). A modified atom is also a pair A′ = (sA,KA)
with sA ∈ S, KA ⊆ CL(ϕ) ∪ AP and let L′(sA) be a modified set of atomic
propositions which is different to L(sA) such that:

– For each proposition p ∈ AP , p ∈ KA ⇔ p ∈ L′(sA)
– For every ϕ1 ∈ CL(ϕ), ϕ1 ∈ KA ⇔ ¬ϕ1 /∈ KA

– For every ϕ1 ∨ ϕ2 ∈ CL(ϕ), ϕ1 ∨ ϕ2 ∈ KA ⇔ ϕ1 ∈ KA or ϕ2 ∈ KA

– For every ¬X ϕ1 ∈ CL(ϕ), ¬X ϕ1 ∈ KA ⇔ X¬ϕ1 ∈ KA

– For every ϕ1 U ϕ2 ∈ CL(ϕ), ϕ1 U ϕ2 ∈ KA ⇔ ϕ2 ∈ KA or ϕ1,X[ϕ1 U ϕ2] ∈
KA.

A new LTL graph G is constructed with the set of normal atoms and modified
atoms as the set of vertices. (A,B) is an edge of G if only if (sA, sB) ∈ R, and
for very formula Xϕ1 ∈ CL(ϕ),Xϕ1 ∈ KA and if only if ϕ1 ∈ KB . In the new
LTL graph G, the atoms is denoted as the set of normal atoms and modified
atoms

Definition 8 (modified LTL graph). A modified LTL graph is a tuple
Gm(V,E, σ) constructed with a Kripke structure M = (S, S0, R, L) and an LTL
formula ϕ, where:

– the set of vertices V is the set of normal atoms and modified atoms
– the edges E defined as:

(A,B) ∈ E ⇔
{

(sA, sB) ∈ R; (3)
∀(X ϕ1) ∈ CL(ϕ), Xϕ1 ∈ KA ⇔ ϕ1 ∈ KB (4)

– σ : V → {Black,Red} is a color function defined as: the normal atoms
are considered as black vertices and the modified ones are considered as red
vertices

For the construction of the modified LTL graph, the size of normal atoms may
multiplicand at most the exponential of the size of closure as O((|S|) · 2O(|ϕ|)),
where |S| is the size of the vertices in the Kripke structure M , the size of modified
atoms is the same. The size of edges of the graph Gm is about O((|R|) · 2O(|ϕ|)).
The size of modified LTL graph Gm(V,E, σ) that constructed with a Kripke
structure M = (S, S0, R, L) and an LTL formula ϕ is |Gm| = O((|S| + |R|) ·
2O(|ϕ|)).
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Next, some modified version of LTL model checking are given in the following.

Definition 9 (eventuality modified sequence). An eventuality modified
sequence is an infinite path π in modified LTL graph Gm such that if ϕ1 U ϕ2 ∈
KA for some atom A on π, then there exists an atom B, reachable from A along
π, such that ϕ2 ∈ KB.

From Lemma 1, if the LTL model repair has a solution, there exists an even-
tuality modified sequence starting from an atom (s,K) such that ϕ ∈ K in the
corresponding modified LTL graph.

In the modified LTL graph, a minimal eventuality modified sequence is an
eventuality sequence contained at the least read vertices in the graph.

Definition 10 (modified LTL graph problem). A modified LTL path prob-
lem Ω = Gm(V,E, σ) is translated from a LTL model repair problem (M,ϕ, k),
where the modified LTL graph Gm(V,E, σ) is constructed with the Kripke struc-
ture M = (S, S0, R, L) and the LTL formula ϕ, output a minimal eventuality
modified sequence starting at an atom(s0,K) such that s0 ∈ S0, ϕ ∈ K.

For this a minimal eventuality modified sequence, there are some atoms
that appear infinitely often in this sequence. These atoms are constructed as
a strongly connected graph which is a subgraph of a strongly connected compo-
nent of modified LTL graph G.

Definition 11. A nontrivial modified strongly connected component C of the
modified LTL graph Gm is said to be self-fulfilling iff for every atom A in C and
for every ϕ1 U ϕ2 ∈ KA there exists an atom B in C such that ϕ2 ∈ KB.

From Lemma 2, there exists an eventuality modified sequence starting from
an atom (s,K) such that ϕ ∈ K in the modified LTL graph if only if there is a
path in G from (s,K) to a self-fulfilling modified strongly connected component.

Corollary 2. There exists an eventuality sequence starting at an atom (s,K) iff
there is a path in G from (s,K) to a self-fulfilling strongly connected component.

This corollary can be proofed in the same way as the Lemma 2.

Definition 12 (optimal LTL graph). The optimal LTL graph problem is a
tuple (G(V,E), σ, F ), where

– G(V,E): is a directed LTL graph, V1, V2, · · · , Vn is a partition of V , and for
each Vi, i ∈ [n], Si1 , Si2 , · · · , Simj

is a partition of Vi with the same atomic
propositions;

– σ : Sij → {Black,Red} assigns each vertex in the partition v ∈ Sij some
color: the normal atoms are in Black-colored, as the modified atoms are in
Red-colored;

– F : is a finite set, f ∈ F is a element of F , for each vertex vi ∈ V , there are
Ai, Bi ⊆ F ;
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The problem is to decide whether G(V,E) contains a path P starting at a vertex
v0 ∈ V1 to a circle C which satisfy ∀vi ∈ C,∀f ∈ Bi,∃vj ∈ C, f ∈ Aj, such
that the P and the C intersect every Vi only one partition and contain the least
number of red partitions.

In the modified LTL graph constructed in this section, those vertexes with
the same sA ∈ S form Vi as a partition of V . In this group, the atoms with
the same atomic propositions are composed of Simj

as a partition of Vi. The
vertexes that constructed by normal atoms are Black-colored, as the vertexes
that constructed by modified atoms are Red-colored. The finite set F is used for
checking whether a circle C is self-fulfilling.

By this means, the optimal LTL graph problem is equal to the modified LTL
graph problem, since the Corollary 2. These two problems are equal to the LTL
model repair with states problem, for the Lemma 1.

3.2 Complexity of LTL Model Repair with States

In this section, we would show the algorithm of this problem. The main idea
is to search a path π with the first vertex s0 ∈ S0 that satisfy the given LTL
formula with the least changed states.

Given a modified LTL graph G(V,E) that define in the Sect. 3, whether there
is an eventuality sequence starting at an atom (s,K).

M, s |= E ϕ if only if there exists an atom A = (s,K) in G such that ϕ ∈ K
and there exists a path in G from A to a self-fulfilling circle with the least
number of red atoms. This optimal problem would translate into a decision
version introduced in following.

Definition 13 (k LTL graph). The k LTL graph problem is a tuple ((G(V,E),
σ, F ), k), where

– G(V,E): is a directed graph, V1, V2, · · · , Vn is a partition of V , and for each
Vi, i ∈ [n], Si1 , Si2 , · · · , Simj

is a partition of Vi with the same atomic propo-
sitions;

– σ : Sij → {Black,Red} assigns each vertex in the partition v ∈ Sij a some
color: the normal atoms are in Black-colored, as the modified atoms are in
Red-colored;

– F : is a finite set, f ∈ F is a element of F , for each vertex vi ∈ V , there are
Ai, Bi ⊆ F ;

The problem is to decide whether G(V,E) contains a path P starting at a vertex
v0 ∈ V1 to a circle C which satisfy ∀vi ∈ C,∀f ∈ Bi,∃vj ∈ C, f ∈ Aj, such that
the P and the C intersect every Vi only one partition and contain at most k red
partitions.

This problem is a decision problem with k, and only return the results YES
or NO. The optimal LTL graph can be reduced to this problem in polynomial
time.
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Lemma 3. A modified LTL problem is a tuple (M,ϕ). Given a Kripke structure
M = (S, S0, R, L), an LTL formula ϕ, there exist a algorithm to find an even-
tuality sequence starting at an atom (s0, k) which contain at least red vertices,
and its complexity is EXPTIME.

Proof. First, we define the k decision version of the LTL model repair problem
in the Definition 13. Then for each k from 1 to |S|, by using the graph combi-
nation and LTL model checking tableau algorithm mentioned in Sect. 2, there
are exponential vertex combination for the modified states, each case only take
O((|S| + |R|) · 2O(|ϕ|)) time to checking.

Algorithm 2. LTL Model Repair with states
Input:
1: Kripke structure M = (S, S0, R, L); LTL formula f
Output:
2: If M, s0 |= E f , return YES; otherwise, return k
3: procedure Algorithm 1(LTL Model Checking)

return YES or No
4: if YES then return YES
5: end if
6: if No then
7: for k do form 0 to |S|
8: {There exists Ck

|s| vertexes combination and each has at most |f |k cases modified
atomic propositions.}

9:
10: for all modified atomic propositions cases do
11: procedure Algorithm 1(LTL Model Checking) return YES or

NO
12: if YES then return k
13: end if
14: end procedure
15: end for
16: end for
17: end if
18: end procedure

return

Algorithm 2 is used for solving the LTL Model Repair with states problem.
The complexity of this algorithm is O(|s||s| · |f ||s| · (|S| + |R|) · 2|f |). It is in
EXPTIME.

4 Hardness of Decision Version

In this section, we show the hardness of decision version of LTL model repair
states problem with some parameter k corresponding the number of modified
states. This version problem is NP-hard even when k is fixed as a constant.
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Some decision version definitions and method of LTL model repair with states
are introduced in the following.

Definition 14 (k-satisfying LTL problem). A k-satisfying LTL problem is
a tuple (M,ϕ, k). Given a Kripke structure M = (S, S0, R, L), an LTL formula
ϕ and a non-negative integer k, can one modify at most k states’ AP in M such
that the Kripke structure satisfy ϕ.

In the modified LTL graph, consider LTL eventuality sequence as A k-LTL
path is an eventuality sequence contain at most k read vertices.

Definition 15 (k-LTL path problem). A k-LTL path problem Ω =
(Gm(V,E, σ), k) is translated from a k-satisfying LTL problem (M,ϕ, k), where
the modified LTL graph Gm(V,E, σ) is constructed with the Kripke structure
M = (S, S0, R, L) and the LTL formula ϕ, whether Gm(V,E, σ) have a k-LTL
path starting at an atom(s0,K) such that s0 ∈ S0) ϕ ∈ K.

The k-LTL path problem could be translated to the following graph problem.

Definition 16 (k-directed path problem). The k-directed path problem is a
tuple (G(V,E), σ, F, k), where

– G(V,E): is a directed graph, V1, V2, · · · , Vn is a partition of V , and for each
Vi, i ∈ [n], Si1 , Si2 , · · · , Simj

is a partition of Vi with the same atomic propo-
sitions;

– σ : Sij → {Black,Red} assigns each vertex in the partition v ∈ Sij a some
color: the normal atoms are in Black-colored, as the modified atoms are in
Red-colored;

– F : is a finite set, f ∈ F is a element of F , for each vertex vi ∈ V , there are
Ai, Bi ⊆ F ;

– k: is a non-negative integer.

The problem is to decide whether G(V,E) contains a k-LTL path P starting at
a vertex v0 ∈ V1 to a circle C which satisfy ∀vi ∈ C,∀f ∈ Bi,∃vj ∈ C, f ∈ Aj,
such that the P and the C intersect every Vi.

The following problem could be considered as a simple version of the k-
directed path problem, by taking the ending circle C as a vertex, then only
considering the path staring from the initial vertex and ending at the circle.

Definition 17 (path problem with paired vertexes). path problem with
paired vertexes:

Input: Give a directed graph G = (V,E), such that s, t ∈ V , S =
{{u1, v1}, {u2, v2}, · · · } with each ui, vi ∈ V and {ui, vi} ∩ {uj , vj} = ∅, for
i �= j.

Goal: Whether a path P form s, t, such that for each i, P uses at most one
of ui and vi.

The general problem is a simple version of the k-LTL path problem, which
consider the parameterized k as a constant, an fixed positive integer.
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Definition 18 (Zero-One Equations). Zero-One Equations (ZOE) problem
is given as follows:

Input: a m × n matrix A, all of whose entries are 0 or 1,
Goal: Find a n-vector X, all of whose entries are 0 or 1, such that AX = 1,

where 1 denotes the all-ones vector.

ZOE is a particularly clean special case of integer linear programming (ILP)
that is very hard in and of itself: the goal is to find a vector x of 0’s and 1’s
satisfying Ax = 1, where A is an m × n matrix with 0, 1 entries and 1 is the
m-vector of all 1’s. It is NP-complete problem [9].

Lemma 4. The path problem with paired vertexes problem is NP-hard.

Proof. Now the polynomial reduction of ZOE to path problem with paired ver-
texes is given in the following.

T1
T2

x11

x12xm2

xm1

xm3

xmk

x13

x1k

Tm−1Tm
Tj−1Tj

xj1

xj2

xj7

Fig. 3. Equation parallel edges.

Given an instance of ZOE, Ax = 1 (where A is an m × n matrix with 0, 1
entries, and thus describes m equations in n variables), the graph we construct
has the very simple structure s: a path that starts form s to t, contains m + n
parallel edges, the first m parallel edges is correspond to m equations, and the
last n edges is to n variables. For each equation xj1 + · · · + xjk = 1 involving k
variables, we have k parallel edges with k vertex, one for every variable appearing
in the equation. For example: if the mj equation is x1+x2+x7 = 1, this equation
could be considered as shown in Fig. 3.

And for each variable, we have two parallel path (corresponding to xi = 0
and xi = 1). The number of vertexes in the xi = 0 path is sum of xi in m
equations plus 1, the other path contains only one vertex. For the mj equation
is x1 + x2 + x7 = 1, so there are three vertexes xj

1, xj
2, xj

7 in the three parallel
edges the corresponding to mj equation. For the variable x1, there also a vertex
xj
1 in the path corresponding to xi = 0 as shown in Fig. 4. This paired vertexes

{xj1, x
j
1} is in the set S that in the path problem with paired vertexes.

This is the whole reduction graph in Fig. 5. Evidently, a path form starts
form S0 to Tm in this graph could traverse the m+n collections of parallel edges
one by one, choosing one edge from each collection. This way, the cycle chooses
for each variable a value 0 or 1 and for each equation, a variable appearing in it.

The problem of path problem with paired vertexes is the fix k simple version
for the k-LTL path problem. For the reduction of ZOE to path problem with
paired vertexes, it is NP-hard, even k fixed as a constant.
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Corollary 3. The k-LTL path problem is NP-hard, when k is fixed as a con-
stant.

We known that the LTL model checking and satisfiability problems are
PSPACE-completeness. Obviously, the model repair with states problem has a
PSPACE low bound, since LTL model checking can be easily reduced to the sub
problem of it. But from this corollary, it does not exist any PSPACE algorithm
in which the complexity form is O((|S| + |R|) · 2O(|f |)), even for approximate
algorithm with a finite constant approximate ratio, unless P = NP .

5 Model Repair with Transition Relations

In this section, another LTL model repair is defined by modifying the transition
relations in the Kripke Structure for satisfying a given LTL formula. This prob-
lem is described as computing the least the number of transition relations in a
Kripke structure M that should modified for satisfying a given LTL formula,
when M does not satisfy the LTL formula.

Definition 19 (modified transition relation). In a Kripke structure M =
(S, S0, R, L), a transition relations is modified if the original R(s, s′) has been
modified for R(s, s′′), in which s′′ is another state in the Kripke structure.
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Example 3. The Kripke structure M in Fig. 6 does not satisfy M, s0 |= E G(a),
the formula G(a), but if the transition relation R(s0, s2) in the M is modified
for R(s0, s0), then M, s0 |= EG(a) in Fig. 6.

a b

b c c

s0

s2

s1

Fig. 6. A modified transition relation for the example Kripke structure.

Definition 20 (LTL model repair with transition relations). A LTL
model repair is a tuple (M,ϕ). Given a Kripke structure M = (S, S0, R, L),
an LTL formula ϕ, output the least numbers of the transition relations that be
modified such that the Kripke structure satisfy ϕ.

In the similar method of Sect. 3, the LTL model repair with transition rela-
tions could be transition to the following problem.

Definition 21 (The k-LTL model repair with transition relations prob-
lem). The optional LTL edge problem is a tuple (G(V,E), σ, F, k), where

– G(V,E): is a directed graph, E1, E2, · · · , En is a partition of E, and for each
Ei, i ∈ [n], Wi1 ,Wi2 , · · · ,Wimj

is a partition of Ei with the same transition
relations;

– σ : Sij → {Black,Red} assigns each edge in the partition e ∈ Sij a some
color, the normal edges are in Black-colored, as the modified edges are in
Red-colored

– F : is a finite set, f ∈ F is a element of F , for each vertex vi ∈ V , there are
Ai, Bi ⊆ F ;

– k: is a non-negative integer.

The problem is to decide whether G(V,E) contains a path P starting at a vertex
v0 to a circle C which satisfy ∀vi ∈ C,∀f ∈ Bi,∃vj ∈ C, f ∈ Aj, such that the
P and the C intersect every Vi only one partition and contain the least number
of red partitions.

Using the similar algorithm, the LTL model repair with transition relations
has an EXPTIME algorithm.

Lemma 5. The LTL model repair with transition relations problem is in EXP-
TIME.
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For the hardness of decision version of LTL model repair transition relations
problem some parameter k corresponding the number of modified states. This
problem is NP-hard, even k fixed as a constant.

Corollary 4. The k-LTL model repair with transition relations problem is NP-
hard, when k is fixed as a constant.

6 Examples

In this section, we show some examples to support the applicability of our app-
roach on real programs.

6.1 MinMax Example

We show a simple process to present a more general fault model, which is shown
in Algorithm 3. The algorithm assigns the minimal and maximal values out of
three input values to least and most [13].

The fault is located in Line 13 of Algorithm 3, where input3 is assigned to
most (instead of least), which is one of five single fault diagnoses found by a
model-based debugger based on [16].

Algorithm 3. MinMax Example
1: int least = 0
2: int most = 0
3: if most < input1 then most = input1
4: end if
5: if most < input2 then most = input2
6: end if
7: if most < input3 then most = input3
8: end if
9: if least > input1 then least = input1
10: end if
11: if least > input2 then least = input2
12: end if
13: if least > input3 then most = input3
14: end if
15: return least ≤ most

6.2 Concurrent Program Example

The concurrent program example from [4] contains two processes A and B intro-
duced in the Algorithms 4 and 5. Two processes A and B are described to share
the control variables flags and turns, which are used to avoid concurrent access



The Complexity of Linear-Time Temporal Logic Model Repair 85

Algorithm 4. Process A
1: flag1A :=true
2: turn1B :=false
3: if flag1B and turn1B then
4: goto 3
5: end if
6: x := x and y
7: flag1A :=false
8: if turn1B then
9: flag2A :=true
10: turn2B :=true
11: if flag2B and turn2B then
12: goto 11
13: end if
14: y :=false
15: flag2A :=false
16: end if
17: goto 1

Algorithm 5. Process B
1: flag1B :=true
2: turn1B :=false
3: if flag1A and !turn1B then
4: goto 3
5: end if
6: x := x and y
7: flag2B :=true
8: turn2B :=false
9: if flag2A and !turn2B then
10: goto 9
11: end if
12: y := not y
13: x := x or y
14: flag2B :=false
15: flag1B :=false
16: goto 1

to the two common boolean variables x and y. The program is executed obeying
an entry and exit protocol that nondeterministically yields control to either A
and B, and stores its corresponding operation.

By analyzing the programs A and B, we can find that the program is not
correct, even under fair schedules. the fault is that in the Line 2 of process A,
the control variable turn1B is set to false. This could case both a deadlock and
a violation of the critical region of x. It should be turn1B := true. Even in those
small examples, however, detecting the error is not immediate for the non-expert.
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7 Conclusion

In the paper, we present an extend approach to performing model repair of linear-
time temporal logic, which asks the least atomic proposition of states that be
modified for satisfiability when given a Kripke structure M and an LTL formula
ϕ is not satisfiable by the structure. This paper gives an algorithm to solve this
problem, and the complexity of this algorithm is in EXPTIME.

For the decision version of the problem with a positive integer k for the num-
ber of modified states, we have given a reduction from ZOE problem to the fix
parameter constant for the modified number to prove that it remains NP-hard
even if k is a constant. This problem would be considered as the LTL satis-
fiability problem if given the states or transition relations of the model struc-
ture. Although LTL model checking and satisfiability problems are PSPACE-
completeness. There does not exist any PSPACE algorithm in which the com-
plexity form is O((|S|+ |R|) ·2O(|f |)) for the LTL model repair problem, even for
approximate algorithm with a finite constant approximate ratio, unless P = NP .

We also define the transition relations version of LTL model repair problem,
and show that it is in the same complexity.
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Abstract. To solve the problem that UML (Unified Modeling Lan-
guage) design model cannot be model-checked for its rough semantics,
an extension of UML, called xUML4MC, is defined by extending the
activity diagram with accurate syntax and semantics to model the activ-
ities of an object. Besides, the technique for automatical transformation
of xUML4MC model into MSVL (Modeling, Simulation and Verification
Language) model is also presented, which in turn can be verified with
model checking tool MSV. The formalism arms the classical visual spec-
ification language UML with the power of model checking, and helps to
promote the quality of software system.

Keywords: Unified Modeling Language · Visual specification
System modeling · Formal verification · Model checking

1 Introduction

Unified Modeling Language (UML) [1], an object-oriented visual modeling lan-
guage both adopted as the standard by Object Management Group (OMG) and
International Organization for Standardization (ISO) [2], is widely used to visu-
alize the analysis and design of the software system under development. UML
provides a variety of diagrams (e.g., Class Diagram, Activity Diagram) to model
the software system from different levels and perspectives, which can meet the
modeling meeds of all software development stages from requirement to deploy-
ment. However, UML is a semi-formal language, and it only can model the
design of the software in a rough level, especially in describing the activities of
an object. As a result, the correctness of the UML design model can hardly be
automatically verified by model checking [3] approach directly.

Modeling, Simulation and Verification Language (MSVL) [4,5] is an exe-
cutable subset of Projection Temporal Logic (PTL) [6–9] with framing tech-
nique. It provides a rich set of data types (e.g., char, integer, pointer, string),

This research is supported by the Industrial Research Project of Shaanxi Province
(No. 2017GY-076), the NSFC Grant No. 61672403.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Tian et al. (Eds.): SOFL+MSVL 2017, LNCS 10795, pp. 88–107, 2018.
https://doi.org/10.1007/978-3-319-90104-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90104-6_6&domain=pdf


Extending UML for Model Checking 89

data structures (e.g., array, list), semaphore, boolean and arithmetic expressions,
as well as powerful statements [10,11]. Further, Propositional Projection Tem-
poral Logic (PPTL), the propositional subset of PTL, has the expressiveness
power of the full regular expressions [12], which enable us to model, simulate
and verify the concurrent and reactive systems within a same logical system
[13]. MSVL has its specific model checking tool MSV and has been successfully
used to specification and verification of typical concurrent systems [14–18].

To solve the problem of model checking UML design models, we are motivated
to define a visual modeling language, called Extended UML for Model Checking
(xUML4MC), by extending UML with accurate syntax and semantics to model
the activities of an object. Thus, the system design model and the model checking
model are unified as one xUML4MC design model, which can be created at one
time by engineers when designing the system. Further, the algorithm to translate
from xUML4MC model to MSVL model is formalized, which in turn can be
model checked with model checking tool MSV.

The rest of the paper is organized as follows. In the next section, UML
and MSVL are briefly introduced. In Sect. 3, the visual modeling language
xUML4MC is defined. In Sect. 4, the algorithm to translate from xUML4MC
model to MSVL model is given. In Sect. 5, related works are addressed. Finally,
conclusions are drawn in Sect. 6.

2 Preliminaries

2.1 Unified Modeling Language

The Unified Modeling Language (UML) [1], a general-purpose, developmental,
modeling language, was proposed by Booch, Jacobson and Rumbaugh in 1994–
1995 to standardize the disparate notational systems and approaches to object-
oriented software design [19]. In 1997 and 2005, UML was adopted as a standard
by the OMG [2] and published by the ISO as an approved ISO standard [2]
respectively.

UML provides a variety of diagrams shown in Table 1 to model the software
system from different levels and perspectives. UML diagrams can be classified
into static diagrams and dynamic diagrams. Static diagrams are used to rep-
resent the architecture of the software system, whereas dynamic diagrams are
employed to describe the dynamic behavior of the system by showing collab-
orations among objects and changes to the internal states of objects. Besides,
UML provides package diagram to manage the analysis and design models from
different abstract levels while modeling complex software systems. The syntax
and semantics of class diagram and activity diagram of UML are extended in
xUML4MC, which are introduced in the next section.

To avoid being too complex, UML provides three kinds of extensibility mech-
anisms, i.e., stereotypes, tagged values and constraints, to let modeler add new
building blocks, modify the properties of existing ones and even change their
semantics. The stereotypes enable users to extend or create their own modeling
symbols, and the stereotype name can be written in double angle brackets within
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Table 1. The composition of UML

Major Area Diagrams Main Concepts

Structural

Class Class, Association, Generalization, Dependency, 
Realization, Interface

Component Component, Interface, Dependency, Realization
Composite structure Component, Port, Part, CollaborationUse, Connector, 

Role binding
Deployment Node, Component, Dependency, Location
Profile Stereotype, Metaclass, Profile, Extension, 

ProfileApplication, ElementImport, PackageImport

Dynamic

State machine State, Event, Transition, Action
Activity Initial, State, Activity, Final, Function call, Activity 

call, Action, Completion, Transition, Fork, Join
Sequence Interaction, Object, Message, Activation
Communication Frame, Lifeline, Message
Interaction overview Frame, InteractionUse, Interaction
Timing Frame, Message, Message label, Lifeline,

GeneralOrdering
Use case Use case, Actor, Association, Extend, Include, 

Generalization
Model 

management
Package Package, Subsystem, Model

Extensibility All Stereotypes, Tagged values, Constraint

the model element. The tagged values are used to add some extra information
(e.g., developer information and code testing) in the form of key-value pairs to
the model elements. The constraints are the semantic restriction on elements
in the form of text expressions of other implicitly interpreted language such as
mathematical symbols and OCL.

2.2 Modeling, Simulation and Verification Language

Modeling, Simulation and Verification Language (MSVL) is an executable subset
of PTL [6]. With MSVL, expressions can be regarded as the PTL terms and
statements as treated as the PTL formulas. In the following, we briefly introduce
the kernel of MSVL. For more deals, please refer to literatures [4,5].

Data Type. MSVL provides a rich set of data types. The fundamental types
include unsigned character (char), unsigned integer (int) and floating point num-
ber (float). Besides, there is a hierarchy of derived data types built with the
fundamental types, including string (string), list (list), pointer (pointer), array
(array), structure (struct) and union (union).
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Expression. The arithmetic expressions e and boolean expressions b of MSVL
are inductively defined as follows:

e ::= d | x | © e | � e | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2 | e1%e2

b ::= true | false | ¬b | b1 ∧ b2 | e1 = e2 | e1 ≤ e2

where d is an integer or a floating point number; x ∈ V is a static or dynamic
variable; ©e (�e) refers to the value of expression e at the next (previous) state.

Statement. The elementary statements in MSVL are defined as follows:

(1) Immediate Assign x⇐e
def= x = e ∧ px

(2) Unit Assignment x :=e
def= © x = e ∧ ©px ∧ skip

(3) Conjunction S1 and S2
def= S1 ∧ S2

(4) Selection S1 or S2
def= S1 ∧ S2

(5) Next next S
def= © S

(6) Always always S
def= �S

(7) Termination empty
def= ¬©true

(8) Skip skip
def= © ε

(9) Sequential S1;S2
def= (S1, S2)prj ε

(10) Local exist x : S
def= ∃x : S

(11) State Frame lbf(x) def= ¬af(x) → ∃ b:(�x = b ∧ x def= b)
(12) Interval Frame frame(x) def= �(ε̄ → ©(lbf(x)))
(13) Projection (S1, . . . , Sm)prjS

(14) Condition if b then S1 else S2
def= (b → S1) ∧ (¬b → S2)

(15) While while b do S
def= (b ∧ S)� ∧ �(ε → ¬b)

(16) Await await(b) def=
∧

x∈Vb
frame(x) ∧ �(ε ↔ b)

(17) Parallel S1||S2
def= ((S1; true) ∧ S2) ∨ (S1 ∧ (S2; true))

∨(S1 ∧ S2)
where x is a variable, e is an arbitrary expression, b is a boolean expression, and
S1, . . . , Sm, S are all MSVL statements. The immediate assignment x ⇐ e, unit
assignment x := e, empty, lbf(x) and frame(x) are basic statements, and the
left composite ones.

3 Structures of xUML4MC

The language xUML4MC is an extension of UML by introducing accurate syntax
and semantics to model the activities of an object. As shown in the rows with
gray background in Table 1, the extensions are made to the class diagram and
activity diagram, and the extension points are marked as the bold italic font.
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Except for keeping the other elements and diagrams of UML unchanged, the
extension in xUML4MC consists of fundamental notations and visual notations.
The former are used to describe the attributes and the details of activities of
the objects to be modeled, and the latter are used in class diagram and activity
diagram to model the object construction of the software and activities of each
object respectively.

3.1 Fundamental Notations

The fundamental notations of xUMLMC include data types, expressions as well
as elementary statements. The data types and expressions are mainly defined
with Object Constraint Language (OCL) [20].

Definition 1 (Data Type). The data types of xUML4MC consist of primitive
types and collections. The primitive types include boolean (Boolean), integer
(Integer), floating point number (Real) and string (String). The collection types
include set (Set(type)), sequence (Sequence(type)) and array (arrayname[len] :
type), where type can be any xUML4MC types or user-defined classes.

Definition 2 (Expression). Let d be a constant, x be a variable respectively,
and obj be an object. The arithmetic expressions e and boolean expressions b of
xUML4MC are inductively defined as follows:

e ::= d | x | obj.attr | e1 op1 e2 (op1 ::= + | − | ∗ | /)
b ::= true | false | e1 op2 e2 (op2 ::=< | > | >= | <= | = | <>)

b1 op3 b2(op3 ::= and | or | xor)

where e1, e2, . . . , en are well-formed expressions; op1, op2 and op3 denote the tra-
ditional arithmetic operator, rational operator and logical operator respectively;
attr (fun) refers to an attribute (a member function) of object obj.

Definition 3 (Elementary Statement). Let type be a data type, x be a
variable and obj be an object. The elementary statement s of xUML4MC are
inductively defined as follows:

s ::= x : type | x : type := e | x := e | x := obj.fun(e1, . . . , en)
| obj : Class(e1, . . . , en) | obj.fun(e1, . . . , en) | s1 and s2

where e, e1, . . . , en (n ≥ 0) are expressions; attr refers an attribute of object obj;
fun denotes a member function of object obj with n parameters; s1 and s2 are
both well-formed statements. s1 and s2 is called composed statement, and the
others are called basic statements. Intuitively, composed statement s1 and s2
means statements s1 and s2 execute at the same time.
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3.2 Visual Notations

The visual notations for class diagram and activity diagram of xUML4MC are
defined in Tables 2 and 3 respectively. The shapes used in class diagram, i.e.,
class, generalization, association and composition, are identical to that of UML.
Besides, the definitions of attributes and functions in class notation of UML are
also kept unchanged in xUML4MC.

Table 2. Visual notations for class diagram

Element Name Description 

Name

Attribute list

Function list

CLASS

Represents a class which consists of class name, attributes and 
member functions. The static attributes and function are marked 
with underline. Beside, the entry function of the UML model is 
identified with double underlines.  

Generalization 
Denotes the generalization relationship between the subclass and 
super class, which triangle shape is on the super class end and 
the line connects to the subclass. 

Association 
Represents the static relationship shared among the objects of 
two classes. Associations can be unidirectional or bidirectional, 
but must have multiplicity decorations. 

Composition 
Represents the whole-part relationship between two classes, 
which diamond shape is on the containing class end and the line 
connects to the contained class. 

The major visual notations used in activity diagram keep identical to that in
UML. Besides, we also make some necessary extensions for accurately modeling
the activities of an object:

– Attach the information of the corresponding function header to the initial
state, including function name, parameters and return type. For any activity
diagram, the initial state is unique which represents the entry of the diagram.

– Attach the return value of the activity to the final state. A activity diagram
may have many final states.

– Arm the action node with the elementary statements defined in Definition 3.
Note that the basic statements in an action node execute at the same time,
so they cannot exist contradiction. For example, the statement “x := 1 and
x := x + 1” does not allowed.

– Add a new function call symbol to represent calling a function which is mod-
eled in another separated activity. The function call symbol must be associ-
ated with the Object.

– Introduce a new reference symbol to represent a complicated processing step
which is detailed in another separate activity diagram.
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Table 3. Visual notations for activity diagram

Element Name Description

fun(params):type
Initial
State

Represents the entrance of the activity model. It 
includes function name, parameters and return type.

return e Final State
Represents the exit of an activity diagram. It may 
include a return value e of the activity diagram if it 
has.

s
Action
Node

Indicates some elementary statements are performed
at the same time, e.g., "x:Integer := 1", "x:=1 and
y:=2".

exp Decision
Denotes where a decision is necessary. The decision 
is described as a boolean expression exp in the
symbol.

FunName
(params)

fun Function
Call

Indicates a function being invoked and the function is
modeled in a separate activity diagram. It contains the 
name of the function and the possible arguments 
passed to the function.

Activename
(params)

Activity
Reference

Represents a reference to another activity. It contains
the name of the activity and the arguments passed to
the activity.

     sig
Signal
Send

Denotes sending an asynchronous signal sig without 
waiting for a receipt.

      sig
Signal
Accept

Denotes accepting the signal sig sent by an object. It 
will keep on waiting until the signal arrives.

Synchro-
nization

Shows the concurrent flows. Note that all concurrent
flows start at a synchronization symbol and end at 
another synchronization symbol.

Control
flow

Represents the control flow passing from one symbol
to another.

Object
flow

Represents the dependency between a symbol and an
object. It emphasizes the effect of the activity on the
object.
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3.3 System Modeling with xUML4MC

The general system modeling strategy with xUML4MC is similar to that with
UML in software system design. Besides, xUML4MC employs the extended activ-
ity diagrams to describe the detailed design of each member functions of the
classes in the class diagrams. What’s more, a static member function of a class
must be explicitly declared as the execution entry of the xUML4MC model. All
these diagrams are combined together to show the system design of the software
system.

In the following, we give an example of Car Sell System (CSS) to show how
to model with xUML4MC. Since the transformation of the xUML4MC model
into MSVL model only relies the class diagram and the activity diagrams of each
member functions of the classes, the other design diagrams are skipped here. As
depicted in Fig. 1, the class diagram of the CSS consists of five classes, among
which V ehicle is the super class of Car, and CarShop has two types of Car, and
the member function main() of class App is marked as the entry of the model.

2

Car

-type:String
-price:Integer

+Car(brand:String,
type:String, price:Integer)
+getType():String
+getPrice():Integer

cars

App

+main()

Vehicle
-brand:String

+Vehicle(brand:String)
+getBrand():String

CarShop

-count:Integer

+CarShop()
+addCar(car:Car)
+sellCar(person:Person):String

Person
-name:String
-cash:Integer

+Person(name:String, 
cash:Integer)
+getName():String
+getCash():Integer

Fig. 1. Class diagram of CSS

For each member function of the class diagram of CSS, we need to create a
activity diagram describing its processing logic. However, the constructor and
“get” methods of each class are rather simple, we only give the activity diagrams
of functions main and sellCar of classes App and CarShop respectively. The
activity diagram of function main is shown in Fig. 2(a), within which objects
car1, car2 and carshop as well as person are created firstly; then objects car1
and car2 are added to the object carshop; finally, object person is used as the
only parameter to call the member function sellCar of object carshop. The
activity diagram of sellCar of class CarShop is depicted in Fig. 2(b), which
compares each car’s price in object carshop with the person’s cash and returns
the best-fit car’s information.
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cash-price >= 0

sellCar(person:Person):String

NO

i:Integer  :=  0 and s:String and 
b:String and t:String and 
price:Integer and cash:Integer

b=cars[i].getBrand() and 
t:=cars[i].getType())

YES

i < count

YES

i := i+1

NO

(a) Activity diagram for the
method main of class App

(b) Activity diagram for the method 
sellCar of class CarShop

main()

car1:Car("Audi", "jeep", 50000)  and
car2:Car("Audi", "SUV", 30000)  and
carshop:CarShop()  and
person:Person("bob", 50000)

carshop.addCar(car1)
fun

carshop.sellCar(person)
fun

return s

price:=car[i].getPrice() and
cash:=person.getCash()

carshop.addCar(car2)
fun

i := count and
s:=b+t

Fig. 2. Activity diagrams of CCS

4 Translation of xUML4MC Model into MSVL Model

In case of the xUML4MC system model being created, the left work is to auto-
matically translate it into the MSVL model. To this end, a formal definition of
xUML4MC model is given, and a abstract syntax tree (AST) for describing the
syntax of the xUML4MC model is introduced. Besides, the algorithms for trans-
forming xUML4MC model to AST and AST to MSVL model are also formalized
respectively.

4.1 Formal Definition of xUML4MC Model

Although the xUML4MC model consists of many design diagrams of different
kinds, we only give the formal definitions of class diagram and activity diagram
needed for translation it into MSVL model.

Definition 4 (Class Diagram). The attribute Attr, parameter Param, func-
tion Fun, class node CNode, arc CArc among class nodes, and class diagram
CD are defined inductively as follows:

Attr ::= <visibility, type, name, isStatic, initV alue>
Param ::= <type, name>
Fun ::= <visibility, type, name, paramList, isStatic, isEntry>
CNode ::= <name, attrSet, funSet>
CArc ::= <arcType, nodeFrom, nodeTo,mulFrom,mulTo,

roleFrom, roleTo>
CD ::= <CNodeSet, CArcSet>
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where visibility denotes the visibility of an attribute or a function, and it takes
the value of VIS PUB (public), VIS PRI (private) or VIS PRO (protected); type
is the data type supported by xUML4MC; isStatic denotes whether the attribute
or function is static or not (1 for static and 0 for non-static); isEntry equals
1 represents the corresponding function is the execution entry of xUML4MC
model, otherwise it takes the value of 0; arcType represents the relationship
type among class nodes, the value of which ranges among ARC GEN (gener-
alization), ARC ASS (association), ARC COM (composition) and ARC DEP
(dependency). The definition of CArc indicates an arc departs from class node
nodeFrom and enters into nodeTo with the role names roleFrom and roleTo,
and the corresponding multiplicity are mulFrom and mulTo respectively.

Definition 5 (Activity Diagram). An activity diagram AD can be regard as
a directed graph, and the node notation ANode and arc AArc as well as the
diagram AD are defined inductively as follows:

ANode ::= <nodeType, content>
AArc ::= <arcType, nodeFrom, label, nodeTo>
AD ::= <className,ANodeSet,AArcSet, entryNode>

where nodeType denotes the type of the node notation and its values is given
in Table 4; content is an expression or an elementary statement contained in
the notation; arcType denotes the type of the flow line which can only take
the value of ARC CTR (control flow) or ARC OBJ (object flow); nodeFrom
and nodeTo represent the coming from and ending at node notations of flow
line respectively; label is the label on the control flow and it can only take the
value of “YES”/“NO” in case of the flow line departing from a decision shape;
className shows the name of the class which the activity diagram belongs to,
andentryNode gives the entrance node of the activity diagram.

Table 4. The value of node notation type [21]

Notation name Value Notation name Value

Initial state NT ET Final sate NT EX

Action node NT PR Function cll NT FC

Activity reference NT RF Decision NT DC

Synchronization NT FJ

Definition 6 (xUML4MC Model). An xUML4MC model xUML4MC
Model is defined as the pair xUML4MC Model ::= <CDSet,ADSet>, where
CDSet and ADSet are the sets of class diagrams and activity diagrams respec-
tively.
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4.2 Conversion from xUML4MC Model to Abstract Syntax Tree

On the whole, the execution of an xUML4MC model is in fact sequentially
traversing each activity diagrams from the entrance to the exit, but it involves
accessing the attributes of the related objects as well as handling the non-
sequential structures such as branch, loop and parallel. So, we cannot transform
these structures into MSVL code according to the traverse sequence directly. To
solve the problem, we introduce a data structure, named Abstract Syntax Tree
(AST), to analyze the syntax of an xUML4MC model.

Abstract Syntax Tree. The strategy of AST representing the syntax of
xUML4MC model can be depicted as the figure in Fig. 3, all the classes are
organized in a linked list and each class corresponds to a list node. A class node
mainly consists of four data items, of which parent and next point to the next
class node and parent class node respectively; firstAttr points to the attribute
list of the class. Since the visual notations in the activity diagram are identical to
that in the vMSVL [21], so the technique of Hierarchical Syntax Chart (HSC) in
[21] is introduced to describe the syntax of each activity diagrams of the member
functions, and the data item firstFunc of a class node points to the first HSC
node of the class.

AST next

parent

firstAttr

firstFunc

ClassNode

Attr1

Func1

Fig. 3. Structure of abstract syntax tree

The structure of HSC can be depicted as the figure in Fig. 4. In first level,
the HSC is the sequence of compound statements of functions, and the func-
tion body, a compound statement, is the sequence of statements in the function
body. If the compound statement includes if, while or parallel statements, their
corresponding execution breaches are also organized the sequence of compound
statements, e.g., the if statement in the body of function Fun1.

According to the above analysis, the data structure of AST is defined in
pseudo C Language as follows:

/∗ t ype o f the A t t r i b u t e ∗/
typedef struct Attr ibute {

DataType type ;
s t r i n g name ;
s t r i n g value ;
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struct Attr ibute ∗next ;
}Attr ;

/∗ t ype f o r l i s t o f ClassNode∗/
typedef struct ClassNode{

s t r i n g name ;
struct ClassNode ∗parent ;
struct Attr ∗ f i r s t A t t r ;
HSC f i r s tFunc ;
struct ClassNode ∗next ;

}CNode , ∗ AST;

Stmt1

YES NO

...

If(exp)

exit

...

...

...

...
Body of branch

YES
Body of branch

NO

...

Body of Fun1 Body of Fun2

Func1 Func2

firstFunc

ClassNode
...

Fig. 4. Structure of hierarchical syntax chart

In structure ClassNode, the member parent points to its parent class and
it equals NULL if no parent class exists; member firstFunc refers to the HSC
of the functions of the class. The definition of HSC can be found in [21].

For a given xUML4MC model, the algorithm for constructing its correspond-
ing AST consists of functions xUML4MCtoAST, Creat CN, handle CN, han-
dle AD, FC2ComStmt, and their relationships are shown in Fig. 5. Function
xUML4MCtoAST is the entry of the algorithm, which calls functions Creat CN,
handle CN and handle AD in sequence. Function Creat CN traverses the class
diagrams, and for each class node in the CNodeSet, it creates a CN node and
arranges them in the AST. For each CN node in the AST, function handle CN
first handles the attributes of the class as well as the relationships between CN
and other classes. Function handle AD is employed to deal with the activity
diagrams of the member functions. For each member function of a CN node,
it calls function FC2ComStmt to transform it into a HSC and add the HSC to
the tail of CN ’s HSC list. The code of function FC2ComStmt can be found in
literature [21]; the other functions are relative simple, and hence their code is
omitted here.
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Fig. 5. Algorithm for constructing AST

4.3 Conversion from AST to MSVL

Since xUML4MC is an object-oriented modeling language whereas MSVL is a
process-oriented one, we need to decompose the inheritance and encapsulation
of xUML4MC in AST before transformation it into MSVL.

Preprocessing AST. The basic strategy of preprocessing AST can be depicted
as the figure in Fig. 6. For each class in the AST (e.g., class A), we define a struct
in MSVL with the same name as the class (w.r.t. struct A), and the members of
the struct are idential to the attributes of the class. For each member function
of a class, we define a MSVL function named by the original function name
prefixed with the class name. Besides, for convenience of accessing the members
the MSVL struct in the function body, we insert a new parameter this with the
type of the MSVL struct to the head of the parameter list of the function. If the
function has a return value, we add another new parameter named Ret to the
tail of the parameter list. For example, corresponding to the function func1 of
class A, a MSVL function A fun1 is defined with two new parameters this and
Ret added to the head and tail of the parameter list respectively. For a class
having a parent class (e.g., class B), we add a new member Parent with type
of its parent class’s struct to its MSVL struct (w.r.t struct B). For the overload
of member functions (e.g., the two functions func2 in class B), we rename the
functions in MSVL with the original name suffixed with the index number (w.r.t.
B fun2 1 and B fun2 2).

The detailed rules for preprocessing AST are as follows:

R1. For each class node in the AST, add value of the class name with the prefix
“struct”.

R2. For the attributes with initial values of a class, add the corresponding
assignment statements to the beginning of the HSC of the class’s construc-
tor, and remove the initial values from the attribute nodes.

R3. For a class having a parent class par, add a new attribute node with the
name “ Parent” and type of par’s struct to its attributes list.
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struct A{
DataType attr1 and
DataType attr2

}

A_fun1(struct A *this, RtnType *Ret)

struct B{
DataType attr3 and
struct A _Parent

}

B_fun2_1(struct B *this, RtnType *Ret)
B_fun2_2(struct B *this, DataType param)

A
+attr1:DataType
+attr2:DataType

+func1():RtnType

B

+attr3:DataType

+func2():RtnType
+func2(param:DataType)

Fig. 6. Strategies for preprocessing AST

R4. For each initial node in the HSC of a class cls, add to the function name with
the prefix of cls’ name and “ ”, and add a new parameter with the name
“this” and type of cls’ struct to the head of the function’s parameter list. If
the function has a return value of type rtnType, add a new parameter with
the name “Ret” and type rtnType to the tail of the function’s parameter
list. Besides, for the functions with the same name in a class, add to the
name of each overloaded functions with the suffix “ ” and index number.

R5. For any statement stmt accessing an attribute attr of class cls in the cls’
HSC, replace all the occurrence of “attr” with the string “this →” con-
nected with the result of function call find attr(cls, attr).

R6. For any function call statement x := obj.fun(e 1, . . . , e n) (w.r.t. obj.fun
(e 1, . . . , e n)) in the HSC and obj is an instance of class cls, replace the
function call statement with the result of function call find func(cls, “obj”,
“fun”, paramTypeList) connected with the string “e 1, . . . , en,&x)”
(w.r.t. “e 1, . . . , en)”), where paramTypeList is the data type list of the
parameters e 1, . . . , en.

R7. For each final state node in a HSC, if it contains a return statement
return e, then replace the statement with ∗Ret := e.

According to the above rules, the algorithm for preprocessing AST consists
of 9 functions whose relationships are shown in Fig. 7. Function Preprocess is the
entry of the algorithm, and it traverse all class nodes in the AST. For each class
node CN , function Preprocess first calls functions Change ClassName, Han-
dle Attrs and Add Parent to rename the class (Rule R1), remove the init values
of attributes (Rule R2) and deal with the inherited attributes (Rule R3) respec-
tively, and then calls function Handle HSC to process the HSC of CN . For each
member function’s HSC, function Handle HSC calls functions Handle Func,
Replace V ars, Handle FuncCall and Change RetV alue in sequence to handle
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Fig. 7. Algorithm for preprocessing AST

the function header (Rule R4), replace the access of class’ attributes with mem-
bers of MSVL struct (Rule R5), handle the function (Rule R6) as well as deal
with the return statement (Rule R7) respectively. The code of the functions are
skipped here.

In case of an AST having been preprocessed, the algorithm AST2MSVL for
transforming it into MSVL code is defined as follows, where function Type-
Convert is used to convert the xUML4MC data type into the MSVL data type
according to translation rules in Table 5. For each class node in the AST, algo-
rithm AST2MSVL first creates a MSVL struct with the name and the attributes
of the class, and then calls the function HSC2MSVL to transform the HSC of the
class’ member functions into MSVL code. The code for function TypeConvert
is trivial and hence omitted here, and the code of function HSC2MSVL can be
found in literature [21].

AST2MSVL(AST ∗ as t ) {
s t r i n g msvlCode ;
struct ClassNode ∗CN = ast−>f i r s tCN ;
while ( temp != NULL) {

struct Attr ∗ a t t r = CN−>f i r s tA t t r −>next ;
s t r i n g s = CN−>name+”{”
while ( a t t r != NULL) {

s t r i n g type = TypeConvert ( at t r−>datatype ) ;
s = s + type + ” ” + a t t r −>name + ” and ” ;
a t t r = attr−>next ;

}
s = s+” } ; ” ;
msvlCode = msvlCode + s ;
msvlCode = msvlCode + HSC2MSVL(CN−>f i r s tFunc −>next ) ;

}
return msvlCode ;

}
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Table 5. Translation rules for data types between xUML4MC and MSVL

xUML4MC MSVL xUML4MC MSVL

Boolian bool Set list

Integer int Sequence list

Real float Array array

String string

4.4 Translation Example

For the xUML4MC model of CSS in Subsect. 3.3, we first convert it into AST
with algorithm xUML4MCtoAST, and the result is depicted in Fig. 8, where
we only give the class node of class Car (Fig. 8(a)) and the HSC of member
function sellCar of class CarShop (Fig. 8(b)) in details. The class node Car
has two attributes (i.e., type and price), three functions (i.e., Car, getType and
getPrice) and a parent class. The HSC of function sellCar has a “loop” structure
controlled by the attribute count of class CarShop and variable i, within which
an “if” structure is identified to choose an appropriate car by the price of the
car and the cash of the person.

Subsequently, we employ algorithm Preprocess to handle the AST according
to the 7 preprocessing rules mentioned above. The changes of the AST nodes’
content after preprocessing are attached as the text in the dashed boxes in
Fig. 8. For instance, the name of class node Car is replaced with struct Car,
the attributes inherited from class V ehicle are represented by adding a new
attribute node Parent of the type struct V ehicle, and the header of function
sellCar is replaced with CarShop sellCar(∗this : struct CarShop, person :
Struct Person, ∗ Ret : String).

Finally, we use algorithm AST2MSVL to transform the preprocessed AST
into MSVL model. For save space, here we only give the MSVL code for function
sellCar and classes Car and Carshop.

struct Car{
s t r i n g type and
int p r i c e and
struct Vehic l e Parent

} ;
struct Carshop{

struct Car ca r s [ 2 ]
} ;
CarShop se l lCar ( struct CarShop ∗ th i s , struct Person person

, s t r i n g ∗Ret ) {
frame ( i , s , b , t , p r i c e , cash ) and (

int i and i<==0 and empty ;
s t r i n g s and s t r i n g b and s t r i n g t and int p r i c e

and int cash ;
while ( i<t h i s . count ) {
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Car ge tPr i ce ( th i s −>ca r s [ i ] ,& p r i c e ) ;
Person getCash ( person , &cash ) ;
i f ( cash−pr i ce >=0){

Vechle getBrand ( th i s −>ca r s [ i ] . Parent ,&b) ;
Car getType ( th i s −>ca r s [ i ] ,& t ) ;
i := th i s −>count ;
s=b+t

} else {
i := i+1

}
} ;
∗Ret:= s

)
}

5 Related Works

So far, there already exist some literatures [22–25] on the field of model checking
UML models including class diagrams, sequence diagrams, state machine dia-
grams or their compositions. The main research works focus on model checking
UML model with classic tools such as SPIN or NuSMV, and the basic idea is to
transform the UML model into the specific modeling language (e.g., PROMEL,
SMV) model w.r.t. the model checking tool. Literature [22] translates both the
high-level and low-level sequence diagrams into SMV specifications and Linear
Temporal Logic (LTL) based constraint, and employs NuSMV to verify the con-
tainment relationship between sequence diagrams. Literature [23] creates the
PROMELA-based model from the interactions expressed in sequence diagrams,
and uses SPIN model checker to simulate the execution and to verify the execu-
tion state of an interaction written in LTL formula.

Some researchers also develop the specific tools to model checking UML mod-
els. Gnesi and Mazzanti [24] present an “on the fly” model checker UMC (UML
on the fly Model Checker) to verify the conformance of state machine diagrams.
The tool employs labeled transition systems as the system modeling language,
while the properties to be verified are specified in μ-ACTL, an extension of the
action based branching time temporal logic. Mullins and Oarga [25] present a
verification tool SOCLe that offers dynamic verification of extended OCL con-
straints on UML models. SOCLe first translates the UML model into an Abstract
State Machine by the UML compiler, and then transform it into an abstract
structure called UML-valued OO Transition System (OOTSUML) by ASM sim-
ulator, finally verifies the OCL constraints with the on-the-fly model checker
EOCL.

Compared to the exists works, our approach extends UML with strict syntax
and semantics to model the activities of the objects in the software system,
and automatically transforms the model into MSVL model for further model
checking. With the full system model in MSVL, one can model checking any
expected properties.
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TYPE_COM
i:Integer  := 0 and s:String and
b:String and t:String and
price:Integer and cash:Integer

YESTYPE_LOOP
i<count

sellCar(person:Person):String

type:String

<1> <2>

price:Integer

<3>

TYPE_IF
cash-price>=0 YES

TYPE_COM
i := i+1

TYPE_COM
b:=cars[i].getBrand() and

t:=cars[i].getType()

Car

parent

firstAttr

firstFunc

(a) AST for class Car of CSS

(b) HSC for sellCar of the class CarShop

...

TYPE_EXT
return s

TYPE_COM
price:=cars[i].getPrice() and
cash:=person.getCash()

NO

TYPE_COM
i := count and
s := b+t

_Parent:struct Vehicle

where

struct Car

struct CarShop

TYPE_LOOP
i<this->count

TYPE_EXT
*Ret:=s

TYPE_COM
Vehicle_getBrand(this->cars[i]._Parent,&b)
and Car_getType(this->cars[i], &t)

TYPE_COM
i:=this->count
and s:=b+t

TYPE_COM
Car_getPrice(this->cars[i], &price) and
Person_getCash(person, &cash)

...

firstFunc

CarShop

<1>Car(brand:String, type:String, price:Integer)
<2>getType():String
<3>getPrice():Integer

<1>Car_Car(*this:struct Car, brand:String,
type:String, price:Integer)

<2>Car_getType(*this:struct Car, *Ret:String)
<3>Car_getPrice(*this:struct Car, *Ret:Integer)

CarShop_sellCar(*this:struct Carshop,
person:struct Person,*Ret:String)

Fig. 8. The corresponding AST of the xUML4MC model of CSS
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6 Conclusion

In this paper, we present a visual modeling language xUML4MC by extend-
ing the widely used modeling language UML with accurate syntax and seman-
tics, and formalize the algorithms to automatically translate xUML4MC model
to MSVL model for model checking. The introduction of language xUML4MC
enables the software to be verified with model checking approach at the design
time, which helps to promote the quality of software as well as popularize of
the model checking technology in industry. In the near future, we will promote
the formalism to deal with the override of inherited methods. Besides, we will
develop a visual modeling tool based on the xUML4MC and apply the method
to verify some typical object-oriented software system, such as web service and
cloud computing.
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Abstract. Computer use is pervasive in our daily life and the increasing demand
for computer applications has penetrated into various domains. Construction
industry has become one of domains which are more reliable on the application
of computer to implement regulatory compliance checking. Like many safety
critical domains, the construction domain has its own set of international building
codes on construction projects which must comply with. With the increasing
complexity of construction projects, many manual compliance checking tech-
niques have shown some serious issues. First, the manual techniques are
error-prone due to human errors. Second, the complexity of a construction project
exceeds the human limit to deal with. Third, the evolution of a construction
project is inevitable and the human maintenance of a construction project is
almost impossible because either the memory of the original project design has
faked away or some development team members are gone. So, it has become a
new trend to employ computers to support automatic regulatory compliance
checking in construction industry. In this paper, we propose a novel framework to
support compliance checking with the emphasis on the foundation of automatic
regulatory compliance checking to certify whether a construction project com-
plies with some international building codes. An example is illustrated how
compliance checking is performed in the framework.

Keywords: Conformance checking � Compliance checking � Class diagram
Instance diagram � International codes

1 Introduction

Computer use is pervasive in our daily life and the increasing demand for computer
applications has penetrated into various domains. Construction industry has become
one of the latest industries to be more reliable on the application of computer to
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implement regulatory compliance checking. Like many safety critical domains, the
construction domain has its own set of international codes on construction projects
which must comply with. With the increasing complexity of construction projects,
many manual compliance checking techniques have some serious issues [1]. First, the
manual techniques are error-prone due to human errors. Second, the complexity of a
construction project exceeds the human limit to deal with. Usually, a construction
project should consider a set of international codes for different purposes. For instance,
a construction project should comply with ICC 2009 [2] as part of the overall con-
struction requirement and Energy code [3] for the energy conservation purpose. Third,
the evolution of a construction project is inevitable and the human maintenance of a
construction project is almost impossible because either the memory of the original
project design has faked away or some development team members are gone. So, it has
become a new trend to employ computers to support automatic regulatory compliance
checking in construction Industry.

Compliance checking is not new in the computer science community since more
and more safety critical industries require compliance checking [4–10, 40]. One of the
most important reasons is that the failure of a project in these industries can have a
serious consequence such as loss of life. Central to the compliance checking is that
developers must demonstrate that a system or a project indeed complies with the
relevant governmental or international standard documents. Thanks to advance in
Model Driven Engineering (MDE) [11], the automatic compliance checking has
become a feasible means in support of compliance checking in various safety critical
domains [12–21].

Like compliance checking in the safety critical domains, the compliance checking
in the construction industry has several obstacles which should be overcome. First, the
ambiguity issue must be solved since most international codes in construction industry
are written in a natural language like English [2]. Second, heterogeneity of the rep-
resentation of construction projects from various construction companies when carry-
ing out regulatory compliance checking is another touchy issue. Third, an appropriate
integration methodology of a construction project into a set of international codes in
construction industry should be sought.

In this paper, we propose to apply the conformance checking, which has been
widely used in the Model Driven Architecture (MDA) [11], in support of automatic
regulatory compliance checking in construction industry. Conformance checking aims
to ensure that an instance model conforms to its original model. Due to the four levels
of models, conformance checking can be performed at various levels. In the con-
struction industry context, we will apply conformance checking to level zero and one.
Namely, a domain model at level one is used to model a set of international codes and
represented in a class diagram in the Unified Modeling Language (UML) [22]. An
instance model denotes a specific construction project to be checked against interna-
tional codes. In MDA, a domain model usually includes constraints in the Object
Constraint Language (OCL) [23] since many kinds of constraints in a class diagram
cannot be represented. The conformance checking in MDA ensures that an instance
model is a valid instance of the domain model. In other words, an instance model
should satisfy all constraints in OCL as well as constraints given in a class diagram
such as the multiplicity restriction if the instance model conforms to a class diagram.
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In this case, regulatory compliance checking of whether a project complies with a set of
international codes is achieved.

Conformance checking at level one and zero is appropriate for conformance
checking in construction industry due to the nature of international codes. Unlike some
governmental and international standard documents, international codes in construction
industry place more specific restrictions on a construction project. For instance, ICC
2009 requires “Interior spaces intended for human occupancy shall be provided with
active or passive heating systems capable of maintaining a minimum indoor temper-
ature of 68° at a point 3 feet above the floor on the design heating day” [2]. Obviously,
this requirement can be well denoted by a class diagram, i.e. a domain model, where
the constraint on an indoor temperature can be converted to an OCL constraint. Fur-
thermore, a specific construction project can easily be converted to an instance model
of a domain model, which models a set of international codes the project must comply
with. As a result, conformance checking leverages the capability of compliance
checking in construction industry by ensuring that a specific construction project sat-
isfies all constraints in a class diagram. To lay out the foundation of a framework to
support automatic regulatory compliance checking in construction industry, we for-
malize compliance checking by means of conformance checking in this paper.

The paper is organized as follows. Section 2 illustrates an example which
demonstrates how conformance checking contributes to regulatory compliance
checking in construction industry. We lay out the foundation of automatic regulatory
compliance checking by formalization of conformance checking in Sect. 3. Section 4
presents some relevant work in support of compliance checking in various domains.
We finally draw a conclusion and present some future work in Sect. 5.

2 Related Work

Compliance checking has been widely discussed in the construction community and
manual checking of compliance checking has been proved to be time consuming, error
prone, and expensive. Instead, automatic compliance checking has been proposed to
tackle these problems and researchers in the construction community have presented
various techniques in support of automatic compliance checking [24]. Tan et al. pro-
posed an integration approach which combines building envelope design with building
codes and simulation by means of decision tables [18]. Specifically, a building code is
used to produce decision tables while information of a building project is represented as
a tree-like structure via an Extended Building Information Model (EBIM) [25]
including the building simulation output. Rules in the decision tables are checked for
the design facts shown in EBIM to validate whether the building project complies with
the building code. Ding et al. proposed an approach to represent building codes via
object-based rules and design via an Industry Foundation Classes (IFC)-based internal
model [26] to support compliance checking according to accessibility regulations. The
Construction and Real Estate Network (CONENET) [27] project of Singapore
employed a method to use semantic object in the FORNAX library to represent design
information while properties and functions in FORNAX objects are used to denote
regulatory rules [28]. The SMRTcodes project (International Code Council (ICC) 2012
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[29]) of the ICC adopted an approach to represent ICC codes in a tuple format and
represent designs using an IFC-based model for automatic compliance checking. An
approach given by Zhang et al. concentrated on the integration of NLP and logic
reasoning for automatic compliance checking [30]. Specifically, they employed NLP to
generate a Prolog program to model a building code while converting design infor-
mation for a construction project to a set of facts so running of the Prolog program can
achieve the goal of compliance checking.

On the other hand, conformance checking is not new in the MDE community [31,
32]. The UML specification presents a metamodel for UML diagrams and the speci-
fication includes well-formedness rules to enforce the constrains on UML diagrams
back to the first version [33]. Thus, conformance checking has been proposed to ensure
that a UML model satisfies the UML metamodel according to the UML specification.
Various tools have been implemented to support the syntax checking for a UML model
by means of conformance checking which enforces not only multiplicity but also all
OCL constraints in the UML metamodel [34].

With the rapid development of MDE, the UML specification allows to define a
domain specific language via the UML profile mechanism. The UML profile mecha-
nism facilitates conformance checking in support of a user defined metamodel which
extends the UML metamodel [35]. In this way, developers are able to define a specific
language via a UML profile and apply conformance checking to ensure that a specific
model satisfies the UML project, i.e. the specific language, according to some purpose.
For instance, OMG published a UML testing profile dedicated to Model-based testing.
Conformance checking thus ensure whether a specific testing procedure follows the
UML testing profile or not. Furthermore, conformance checking has been used to
support forward engineering recently. As progress has been made in MDE in the past
decade, many tools have the forward engineering feature which translate a design
model into some executable skeletal code such as C program and Java program to
reduce the implementation time. What programmers do is to fill out the detailed
implementation in the skeletal code. Thus, a state captured during an execution time
can be checked against its original class diagram via conformance checking, In this
way, conformance checking ensures that each valid program state does not violate the
class diagram given by the design phase [36].

3 An Illustrative Example of Compliance Checking

One challenging issue in support of regulatory compliance checking is how to denote
the regulatory requirements given in a set of international codes. Due to the ambiguity
issue in a document written in a natural language, various techniques have been pro-
posed. In this paper, we employ a class diagram in UML to formalize the international
codes in construction industry. However, before presenting the formalization of con-
formance checking, we would like to illustrate how a UML class diagram models the
text in an international code such as ICC 2009.

To formalize the text in an international code, we need to read carefully the code’s
text to identify all concepts and their relationships. In order to systematically analyze
the text, we first label an important noun or noun phrase as a concept and create a
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definition in a glossary if the noun or noun phrase is first encountered. We also study
the relationship between these concepts to create an association relationship. In doing
so, we are able to create a class diagram to model the text of an international code in
construction domain.

As an example, we consider the text retrieved from Section 1204.1 in ICC 2009,
which has the following text: “Interior spaces intended for human occupancy shall be
provided with active or passive heating systems capable of maintaining a minimum
indoor temperature of 68° at a point 3 feet above the floor on the design heating day”.
In this text, we retrieve the following concepts: interior spaces, heating systems, design
heating day, temperature, and above the floor. They are converted to UML classes
InteriorSpace, HeatingSystem, HeatingDay and Temperature respectively. Specifi-
cally, we have attributes temp and locAboveFlr to denote the temperature at the specific
point above the floor in class Temperature. Likewise, we have attribute isHD to denote
whether a heating day is a design heating day or not in class HeatingDay. Also, we find
an association between classes InteriorSpace and HeatingSystem to denote “Interior
spaces … shall be provided with active or passive heating systems.” The association
between classes InteriorSpace and Temperature denotes the temperature at a specific
location in an interior space required by the text “…maintaining a minimum indoor
temperature of 68° at a point 3 feet above the floor on the design heating day”.
Likewise, from the same part of the sentence, we have an association between classes
Temperature and HeatingDay to model the temperature on a heating day. A complete
class diagram is illustrated in Fig. 1(i) to illustrate the main concepts as well as their
relationship extracted from the text from Section 1204.1.

However, some constraints represented in the text of an international code cannot
be represented in a UML class diagram. In this case, we need to employ OCL to denote
such constraints. For instance, in the 1204.1 section, we cannot represent the restriction
on the minimum indoor temperature. Thus, we give an OCL constraint to enforce the
restriction which is shown in Fig. 1(ii).

Once a class diagram is given based on the text of an international code, we are able
to perform the automatic compliance checking by means of conformance checking in
MDE to validate whether a construction project satisfies the code or not. In this way,
we convert information from a construction project into an instance diagram and
employ the conformance checking to achieve the compliance checking purpose. As an
illustrative example, Fig. 2(i) shows an example of a construction project which
complies with the text of Section 1204.1 while Fig. 2(ii) shows an example of another
construction not complying with the same section. The former example shows two
temperatures measured on two different design heating days and both temperatures
satisfies the restriction of Section 1204.1. However, the latter example does not satisfy
the OCL constraint since an instance of class InteriorSpace, i.e. object t2, has 60° as the
value of the temperature at the point of 4 feet above the floor on a design heating day
and this does not satisfy the OCL constraint; while the other temperature has the value
of 76° at the point of 5 feet above the floor on the same design heating day.
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4 A Framework to Support Compliance Checking

According to the aforementioned example, we propose a new framework to support
compliance checking in construction industry. The framework supports the formal-
ization of a set of international building codes using UML class diagram as well as the
representation of a construction project via an instance model. First, we employ a UML

Fig. 1. A domain model and an OCL constraint for Section 1204.1

Fig. 2. Instance models showing two different construction projects
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class diagram to represent an international building code which a construction project
should comply with. At the same time, we adopt the Object Constraint Language to
denote the constraints in the code which cannot be represented in the class diagram. As
mentioned above, in order to leverage the communication between the designers of a
domain model and a construction project, a glossary table is provided to explain how
the concepts from an international building code are derived. Second, a construction
project is converted to an instance model according to a class diagram. Once these two
inputs are provided, conformance checking is carried out and a compliance checking
result is returned to designer of a construction project. The conformance checking part
in the framework will be built on the UML2 APIs [37], OCL APIs [23], and Eclipse
Modeling Framework (EMF) [38] in Eclipse. A diagram illustrating an overall structure
as well as the flow of compliance checking of the framework is shown in Fig. 3.

5 Formalization of Conformance Checking

In this section, we discuss the formalization of conformance checking for construction
industry. As mentioned before, one integral part to conformance checking is a domain
model which formally denotes a set of international codes and is given by a UML class
diagram. Thus, we first formalize a UML class diagram as follows.

Let set A be an alphabet and T represents a set of type names. All string name set
can be denoted as set S � Aþ : Set T includes all the types in UML such as Integer and
all UML classes. Set Classes � S denotes a set of class names. For each c 2 Classes,we
use tc 2 T to denote the type which is the same as the class name c. The attributes of a
class c 2 Classes are defined as a set Attributec of signatures a: tc ! t where a is the
attribute and tc is the type of the class (name) c. A set of associations is given by

Fig. 3. A framework to support compliance checking
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(i) a finite set of names Associations � S and

(ii) a function associates:
Associations ! Classesþ

as ! \c1; . . .; cn [ with n[ 2

�

Let as 2 Associations be an association with associates(as) = \c1; . . .; cn [ ,
which denotes an n-ary association as connects class c1; . . .; cn: Each association has a
role name at a class end. Role names are defined by a function

roles :
Associations ! Sþ

as ! \r1; ; ; rn [ with n[ 2

�

Intuitively, roles(as) = \r1; . . .; rn [ assigns each class ci for 1 � i � n par-
ticipating in the association as a unique role name ri. Let as 2 Associations be an
association with associates(as) = \c1; . . .; cn [ . The function multi(as) = <M1,���,Mn>
assigns each class a non-empty Mi � ℕ with Mi 6¼ f0g for all 1 6 i 6 n, where ℕ
denotes the set of all integers.

A generalization hierarchy � is a partial order on the set of classes Classes. For
c1; c2 2 Classes we have c1 � c2, if and only if the class c1 is a child class of c2 and c2
is a parent class of c1 in UML. In order to collect all parents of a give class, we define
the following function:

parent : Classes ! 2Classes

c ! fc0 jc0 2 Classes and c � c
0 g

�

Then the full set of attributes of class c is given by set Attribute�c which contains all
inherited attributes along a generation hierarchy as well as those directly defined in c.

Attribute�c ¼ Attributec
[

c0 2 parent ðcÞ
Attributec0

Another integral part to conformance checking is an instance model of a domain
model. An instance model is used to model a specific construction project which
consists of a set of objects as well as a set of links among them. Let I denote a mapping
from the domain of all class diagrams, called the UML domain, to the domain of all
instance diagrams, called the semantics domain. The semantics domain includes all
values, such as OclVoid, types defined in OCL, such as Integer, and user defined
classes. The domain of all instance diagrams includes some values such as ?, an
invalid value, �, a null value, (all integer numbers), true, and false for OCL pre-
defined values and types. So, I can be defined as .
Values � and enable the evaluation of an expression which includes undefined and
invalid values.

Furthermore, the semantics domain includes a set of instances of a class c 2
Classes in a class diagram which is denoted by an infinite set oid(c) = {o1; o2; . . .; on}.
Then the domain of a class c 2 Classes is defined as IClasses cð Þ ¼

S
foidðc0 Þjc0

2 Classes and c
0 � cg. Likewise, we can define I on the association. For each associ-

ation as 2 Associations with associates(as) = \c1; . . .; cn [ , IAssociates asð Þ ¼
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IClasses c1ð Þ � . . .� IClasses cnð Þ denotes all possible links among objects instantiated
from classes c1; . . .; cn according to association as. Next, an instance model for a class
diagram D is a structure (D) = { rClasses; rAttributes; rAssociations} which consists of the
following three parts:

i. The finite set rClasses(c) � oid(c) represents all instance of class c in an instance
model;

ii. Function rAttributes að Þ assigns attribute values to each object: rAttributes að Þ :
rClasses ðcÞ ! I tð Þ for each a: tc ! t 2 Attribute�c ; and

iii. The finite set rAssociations(as) � IAssociationsðasÞ denotes all valid links satisfying the
multiplicity restriction defined for the association as.

A constraint ocl in OCL can be evaluated on an instance diagram ins derived from a
class diagram d via the semantics function I: Constraints � Environment ! {true,
false}. An environment derived from an instance diagram and denoted as p consists of
a state r and a variable assignment b. The semantics function I is applied to the syntax
of all OCL structures. For instance, I is applied to an if statement in OCL as follows
and semantics for the rest OCL structure can be found [23]:

Iðif e1 then e2 else e3 endif ;pÞ ¼
I e2; pð Þ; if I e1; pð Þ ¼ true;
I e3; pð Þ; if I e1; pð Þ ¼ false;

?; otherwise

8<
:

For a specific constraint l, an environment p derived from an instance diagram ins,
which is an instance model of a domain model d, and a mapping function I, if I l;pð Þ ¼
true; then we say the environment p derived from instance diagram ins satisfies the
domain model d based on the constraint l, denoted as ins � ðI;pÞ l. If an instance
diagram ins satisfies a domain model d based on all the constraints in d, which is 8 l 2
d. Constraints, such that ins � ðI;pÞ l, then we say the instance diagram conforms to the
domain model denoted as ins � ðI;pÞ d. The conformance relationship � ðI;pÞ ensures
that an instance diagram is a valid instance of the domain model. Assume a domain
model d is derived from a code C and an instance diagram ins is based on a specific
project denoted as S. If we have ins � ðI;pÞ d, then we say the project S comply with the
code C.

6 Conclusion and Future Work

In this paper, we give the theoretical foundation of compliance checking in construc-
tion industry as well as a case study illustrating how conformance checking in MDE
aids to achieve the goal of compliance checking. One of the most important reasons we
choose conformance checking is that several frameworks are available to carry out
conformance checking in the MDE community. These frameworks have been proved
efficient in the execution of conformance checking and we wish the efficiency of these
frameworks can leverage the capability of compliance checking in construction
industry and shorten design time for a construction project. The formal definition of
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compliance checking provides the foundation of application of these frameworks in
construction industry, ensuring that conformance checking carried out by the frame-
work can be further proved to be correct in the support of compliance checking.

As a continuous step of the project, we will study the application of UML2 APIs,
and OCL APIs in the Eclipse Modeling Framework (EMF) to support the conformance
checking as illustrated earlier. EMF has been extensively applied as a framework to
support MDA. Various tools and plugins such as IBM Rational Architect [39] and
Eclipse Papyrus Plugin have been developed to support the EMF framework. The
UML2 APIs are a set of APIs to process a UML model such as a class diagram while
OCL APIs provide a set of APIs to aid OCL evaluation in a UML model. The UML2
and OCL APIs provide us with a programmatic method to automatically perform
conformance checking and we will employ these APIs as well as the EMF framework
to implement compliance checking in the next step.
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Abstract. With the rapid growing size of industry software, software reliability
has become a necessary factor to measure software quality. Software testing,
which can quantify and assess software reliability by establishing the model of
software reliability, is an important method to verify software reliability. SOFL
is an object-oriented structured formal language and engineering approach.
SOFL consists of Condition Data Flow Diagram (CDFD) and formal description
of CDFD called Module. It makes an accurate explanation of the software
function, which is the basis of reliability testing. However, the reliability testing
also need to consider the frequency of functional use, which cannot be expressed
by SOFL. Therefore, this paper explores an improved method named
DG-CDFD. It uses the state diagram to express the probability of transfer
between different states based on CDFD, and builds a reliability testing model.
Finally, this paper verifies the feasibility of this method through a case model
building.

Keywords: Reliability testing model � SOFL � Formal specification
Model building

1 Introduction

During the software development process, software testing is an indispensable link,
which guides users to find errors in the program, verifies and ensures the reliability of
software. The software reliability refers to: in the specified time, under the specified
conditions, the ability of software that does not cause system failure. The probability
measurement is called software reliability. Software reliability testing refers to testing
the software in order to ensure and verify its reliability. It uses the software running
profile, a statistical description of the actual use of software, to test the software
randomly [1, 2]. The software reliability testing emphasizes the random selection of
inputs according to the actual probability distribution, and emphasizes the coverage of
the test requirements. In software reliability testing, test cases must be designed
according to the probability distribution. So you can get more accurate reliability
assessment, and find out the influence of fault in software reliability.
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Formal methods can accurately define and standardize the requirements of the
software. Formal methods have rigorous mathematical logic, solid theoretical basis,
which are suitable for the reliability testing. SOFL (Structured Object-oriented Formal
Language) is a formal language, also an engineering method, having the characteristics
of high readability and modularity [3]. The general idea of using SOFL for software
reliability testing is to use the SOFL to formalize the specification, then convert the
specification into equivalent structural tables, generate test cases based on the menu,
and test the software. However, the test process is mainly concerned about the real-
ization of the function, but neglect the frequency of functional use, which derives from
the innate defect of SOFL. Therefore, this paper explores an improved method of
SOFL, which can reflect the probability and use it for the reliability test modeling. This
method not only has the advantages of SOFL formalization, but also concisely
expresses the different states in the reliability model. This method has a greater
advantage for reliability testing. In this paper, we will study the process of constructing
formalized testing model based on SOFL. First, the relevant knowledge of SOFL is
briefly summarized, and then the improved method is described. Finally, an APP - PD
software is taken as an example to verify the feasibility of the method.

2 The Method of Specification Formalization with SOFL

This section makes a brief introduction to the theory, and application of SOFL and so
on, so that the readers can understand the method proposed in this paper.

2.1 The Composition of SOFL Formal Specification

On the theoretical basis of SOFL, it is considered that the formal method is equivalent
to the process of designing a reliable software, that is, the formal method is the
combination of formal specification analysis, refinement and formal verification. The
role of SOFL is to construct a formal specification of requirements, as well as the
design of software systems. The three elements of the SOFL requirements specification
are the CDFD-Condition Data Flow Diagram, the Module, and the Process [3, 4].
CDFD describes the transition between each functional scene, as well as the flow of
data, data reading and writing relationships. The module encapsulates each CDFD and
expresses each data flow graph in a formalized language, and describes the pre-
conditions and post-conditions. The process is every block of data flow diagram,
including only the implementation of the process itself, with the input and output data
stream, pre-conditions and post-conditions to form a complete CDFD. For example,
Fig. 1 is an ATM CDFD [6]. Each CDFD corresponds to a Module. CDFD and
Module constitute a complete formal specification.
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2.2 The Composition of Reliability Testing Model

The software reliability testing model is an abstract description of software behavior
and software architecture, as well as function use frequency. The software behavior
includes the system input sequences, activities, conditions, output logic, data flow and
so on. The software architecture includes component diagrams, and deployment dia-
grams. The testing model can be described by many ways. Figure 2 is an example of a
testing model described by Markov Model. It reflects the probability of switching
between different states (weather).

Fig. 1. An example of ATM machine CDFD.

Fig. 2. An example of Markov model.
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3 The Improved Method of Building a Test Model

After the SOFL formalizes the specification, the CDFD diagrams in the specification
show different functional scenes and the links between the functional scenes. A CDFD
diagram contains some processes. Each process can be considered as a state when we
construct the model. Each process includes the following elements:

(1) Input data streams, including control data streams and active data streams;
(2) Output data streams, including control data streams and active data streams;
(3) Data storage reading and writing;
(4) Pre-conditions and post-conditions.

Therefore, the data stream of the input and output can be regarded as the conditions
of the transition between one state and other state. When the input data stream satisfies
the precondition, the state is activated. When the output data stream satisfies the
post-condition and matches the next phase when the precondition of the neighbor state
is transferred, it will be moved to the next state. The CDFD diagram can’t reflect
whether the input and output data streams can meet the pre-post condition. According
to the references [6, 7] and the idea of the Markov chain model, we consider of using
directed state diagram to improve the CDFD, This article gives a new definition called
DG-CFDF (Directed graph of CDFD).

A DG-CDFD D refers to an ordered triple (V(D), E(D), P(D)), where:

(1) V(D) is a set of nodes of the graph, which indicates the status of the software;
(2) E(D) is a set of edges of the graph, which indicates the pre and post conditions of

software state transfer;
(3) P(D)(P2[0,1]) represents the probability of the software states transfer.

The probability of state transition can be based on expert experience, system log
data and so on. In this paper, we use the average probability by the number of branches.

According to the definition, as shown in Fig. 1, an ATM machine CDFD can be
transferred to a state diagram. The transformation of the state diagram is shown in
Fig. 3.

Fig. 3. Test model of ATM.
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From Fig. 3 we can get the function of the scene of the three paths:

(1) M0 ! M1 ! M2 ! M;
(2) M0 ! M1 ! M2 ! M3 ! M;
(3) M0 ! M1 ! M2 ! M4 ! M.

And it can be known that the probability of executing the path (1) is P1 * P2 * P7,
and the probability of the other paths are the same. The number of test cases generated
for each path can be obtained. In addition, it should be noted that, because the CDFD
diagram has a hierarchical characteristics, a CDFD diagram may be a layer of CDFD in
a process of decomposition. Therefore, in the calculation of the current level CDFD,
each path probability needs to consider the next level corresponds to the path of the
probability of the process, and to be multiplied in order to get the correct probability.

After obtaining the complete test path of the system under test, the reliability test
model based on the formal language is completed. A reliability test case can be gen-
erated by the model and be used in reliability testing.

4 Case Study of DG-CDFD

4.1 The Steps of Building Model

This paper mainly uses the formal verification method of formalization method, and
uses SOFL to construct the software test model. The process is divided into three steps:

(1) SOFL formal language is used to describe the specification of the measured
system in detail to get a Completed functional scene.

(2) The method of DG-CDFD is used to transform the formal specification into an
equivalent model:

① In SOFL CDFD, each process is defined as a state Mi, where i is the state
identifier, and each CDFD has an initial state M0, and a final state M.

② In SOFL CDFD, the states can be connected by a directed edge E. Where E
consists of the pre-condition and the post condition of the process in CDFD,
and the direction of the transfer.

③ In DG-CDFD, the probability between two states should be signed on the
edge.

(3) The model is used to get the software profile and its probability.

This section describes the game information inventory and shared software (re-
ferred to as “PD software”) as an example, and also describes the method and process
of building the test model. In this section, we will briefly introduce the functional
modules of the PD software and present the process of transforming the requirements
of the PD system into the SOFL formal language model. In the process of formalizing
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the specification, the SOFL supporting tool [3, 5], i.e. a tool of SOFL, is used.
According to the functional scene of the system, the preconditions and post-conditions
of each process are analyzed and explained. Finally, the functional scene of the PD
system is transformed into a formalized reliability test model.

4.2 Formalize the Specification

We choose a mobile app PD as an example. PD system, is a community software,
similar to the forum. There are three user identities: visitors, registered users and
moderators. Visitors can access the system, browse news and topics and other contents,
but can not post, make comments or like and take other operations.

When we formalized the specification of PD software, we adopted the top-down
approach, that is, the functional scene of the topmost module of the whole software was
transformed into formal description firstly, and then decomposed.

PD software to the top of the function is divided into two parts: (1) login function;
(2) user access system functions.

If the user does not login the process, but directly access to the system, he will be in
the state of “visitor”. If the user login the system, he will be in the “player” state. The
player can apply for a moderator through the system function. So that you can com-
pletely cover the entire system of user identity. The function of the CDFD chart is
shown in Fig. 4.

In Fig. 4, Login process describes the landing function. Player process describes
the player to access the overall function of the system. The corresponding formalized
module is shown in Table 1.

The decomposition process of the Login process gives you the next level of CDFD
and its formal description. As the login is divided into three parts, one by phone
number registration, login, the second is through the QQ login, the third is through the
WeChat, the three process access to the data resource location is also different. After
the login process is broken down, the created file is Login_Decom.fModule, and the
corresponding CDFD diagram is shown in Fig. 5.

Fig. 4. The CDFD of PD system.
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Table 1. The module of PD System-pd.fModule.

pd.fModule

module pd;   //Module name

var  

type//data type

ext  ;

process Login(player : int) error_msg: int| succ: int 

pre player = 1;//precondition

post succ = -1 and error_msg = 1 or succ = 1 and error_msg = -1;//post condition

end_process;//process end

process Player(succ : int, visit : int) 

pre succ = 1 or visit = 1; post; 

end_process; 

Fig. 5. The decomposed process CDFD of login.
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Similarly, you can further mobile phone login, WeChat, QQ landing process to
further layered refinement, and finally get a complete formal needs, due to limited
space, where not repeat them one by one.

4.3 Modeling Process with the DG-CDFD

Using top-down modeling method, this paper transforms the top of CDFD graph into
test model, and then transforms the next level CDFD one by one. This paper uses the
login function module of the PD system for detailed description, and we take the
average probability by the number of branches.

The top of the CDFD as shown in Fig. 4, be converted into a state graph as Fig. 6.

According to Fig. 6 can be obtained in the process of the three functional paths:

(1) M0 ! Login ! Player ! M, the path probability is 0.5 * 0.5 * 1 = 0.25.
(2) M0 ! Player ! M, the path probability is 0.5 * 1 = 0.5.
(3) M0 ! Login ! M, the path probability is 0.5 * 0.5 = 0.25.

The decomposition of the known Login process is shown in Fig. 5, which is further
transformed into a model using the model, as shown in Fig. 7.

Fig. 6. Testing module of pd.cdfd.

Fig. 7. Testing module of Login_Decom.cdfd.
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Then, we can get the whole model of the system by combining all the state
diagrams, in which the login process is more detailed, as shown in Fig. 8.

Finally, we can get the functional paths of the frequency information with the
function:

(1) M0 ! log_byPhone ! Player ! M, P(1) = 0.2;
(2) M0 ! log_byQQ ! Player ! M, P(2) = 0.005;
(3) M0 ! log_byWechat ! Plyer ! M, P(3) = 0.005;
(4) M0 ! Player ! M, P(4) = 0.5;
(5) M0 ! log_byPhone ! M, P(5) = 0.2;
(6) M0 ! log_byQQ ! M, P(6) = 0.005;
(7) M0 ! log_byWechat ! M, P(7) = 0.005.

According to the functional path and its probability, we can design a reasonable test
case. Assuming we need to design 1000 test cases, use case design can be shown in
Table 2.

Fig. 8. PD system test model.

Table 2. Test cases table.

Serial number Case name Case number

1 Users use the phone number to log in successfully 200
2 Users use the QQ to log in successfully 50
3 Users use the Wechat to log in successfully 50
4 Visitors visit 500
5 The users failed to log in with the phone 200
6 The users failed to log in with the QQ 50
7 The users failed to log in with the Wechat 50
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In summary, we can see that we only need to top-down hierarchically transform the
CDFD graphs into state graphs with path probability, and then the probability of
executing all paths can be calculated, meaning of the probability of executing each
function scene.

5 Conclusion

Reliability testing technology has always been an important aspect of research in
software testing field. Formal language provides a possible approach to this technology.
SOFL language is a formal language for specification, providing the bases of the study
of this paper. This paper explores a DG-CDFD method of using both state graph and
SOFL formal specification to build a reliability testing model. so that SOFL can be
better used in reliability testing. This paper based on the case, constructs a reliability
test model of a mobile App, and verifies the feasibility of the method by comparison
experiment. Formal engineering methods can make the development process more
standard, the test process more accurate, and maintenance is more convenient. So the
formal method applied to the reliability test is inevitable. However, there are still some
limitations to this approach. Such as the extent of the application to a larger system, and
the complexity of using it. In addition, it still needs further study that how to use SOFL
testing model to create test cases automatically.
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Abstract. In social networks, there are many phenomena related to
randomness, such as interaction behaviors of users and dynamic changes
of network structure. In this work, a framework based on MSVL (Mod-
eling, Simulation and Verification Language) for verifying probabilistic
properties in social networks is proposed. First, a hidden Markov model
(HMM) is trained with the real social network dataset and implemented
by MSVL. Then, an observed sequence is input into the trained HMM
to obtain relevant information of the network, according to specialized
algorithms. Next, a probabilistic property is specified with a formula
of Propositional Projection Temporal Logic (PPTL). Finally, it is ver-
ified whether the MSVL model satisfies the PPTL property by model
checking. An example of Sina Weibo is provided to illustrate how the
framework works.

Keywords: MSVL · HMM · Social networks
Probabilistic properties · Verification

1 Introduction

In recent years, social network has become a hot research topic in various fields,
especially in the field of computer science. Studies on user behaviors in online
social networks can effectively reveal the evolution of network structures and
information transmission rules. It has theoretical significance to promote further
development of social networks.

In a social network, user behaviors have strong randomness and thus various
data have a stochastic characteristic. As for the research on randomness in social
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networks, some scholars study the issue based on statistical methods [1]. Other
scholars study the issue based on formal techniques, such as B [2] and Petri
net [3]. In our previous work, we study the privacy policy of social networks based
on MSVL (Modeling, Simulation and Verification Language) [4]. However, none
of these formal techniques has considered the randomness in social networks yet.

This paper utilizes MSVL to verify probabilistic properties in social networks.
The main contributions are as follows. (1) A framework based on MSVL for
verifying probabilistic properties in social networks is proposed. (2) The hidden
Markov model (HMM) is applied to MSVL and the HMM-related algorithms
are implemented with MSVL. (3) A social network application of Sina Weibo is
illustrated to show how this framework works. With these contributions, MSVL
can be used to verify probabilistic properties in social networks.

The rest of the paper is organized as follows. The theoretical basis of HMM,
MSVL and MSV Platform is briefly introduced in the next section. Section 3 gives
the framework based on MSVL for verifying probabilistic properties in social
networks. Then, Sect. 4 is devoted to a case study of Sina Weibo to illustrate the
whole procedure. Finally, related work is discussed in Sect. 5 and conclusions are
drawn in Sect. 6.

2 Preliminaries

2.1 Hidden Markov Model

A hidden Markov model (HMM) is a doubly stochastic process with an underly-
ing stochastic process that is not observable itself and can only be observed
through another set of stochastic processes which produce the sequence of
observed symbols [5]. An HMM is characterized by the compact notation
λ = (S, V, π,A,B), and the related character description is shown as follows.

– S = {s1, s2, ..., sN}: the set of hidden states, where N is the number of states
in the model.

– V = {v1, v2, ..., vM}: the set of observed states, where M is the number of
distinct observed states.

– π = {πi}: the initial state probability distribution, where πi = Pr(si at t = 1)
is the probability that the state is si at time 1.

– A = {aij}: the state transition probability distribution, where aij = Pr(sj at
t + 1|si at t) is the probability that the state is sj at time t + 1 provided the
state is si at time t.

– B = {bi(k)}: the observed state probability distribution in given state, where
bi(k) = Pr(vk at t|sj at t) is the probability that the observed state is vk
provided the state is sj at time t.

For convenience, we use a triple λ = (π,A,B) to indicate the complete param-
eter for the model. Let O = (o1, o2, . . . , oT ) be an observed sequence where
ot ∈ V is the observed state at time t, and let Q = (q1, q2, . . . , qT ) be a state
sequence where qt ∈ S is the state at time t. The three classic problems of HMM
are evaluation, decoding and training [5].
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1. The evaluation problem: given a model λ and an observed sequence O, how to
efficiently compute the P (O|λ), the probability of the observed sequence given
the model? It can be solved efficiently by the Forward-Backward algorithm.

2. The decoding problem: given a model λ and an observed sequence O, how to
choose a corresponding state sequence Q which is optimal in certain mean-
ingful sense? It can be solved efficiently by the Viterbi algorithm.

3. The training problem: given an observed sequence O, how to adjust the model
parameters λ to maximize P (O|λ)? It can be solved efficiently by the Baum-
Welch algorithm.

2.2 MSVL and MSV Platform

MSVL is a temporal-logic-based programming language which can be used for
modeling, simulation and verification of systems. It contains rich temporal oper-
ators, data structures and statements [6]. The basic temporal operators include
the projection operator prj, the frame operator frame, and the wait operator
await. The data types of MSVL include integer, float number, character, string,
array types, list types, pointer types and struct types. The main statements of
the language are given as follows, the detailed meaning of which statements is
given in [6].

(1)Empty : empty (2)Assignment : x = e, x ⇐ e
(3)Next : © p (4)Always : � p
(5)Sometimes : ♦ p (6)Projection : (p1, . . . , pm)prj p
(7)Sequence : p ; q (8)Parallel : p ‖ q
(9)Conditional : if b then p else q (10)While : while b do p
(11)StateFrame : lbf(x) (12)IntervalFrame : frame(x)
(13)Await : await(b) (14)Finally : fin(p)

Propositional Projection Temporal Logic (PPTL) [7] is a proposition subset
of Projection Temporal Logic (PTL), which excludes variables, quantifiers and
predicates in PTL. The syntax of PPTL formulas P over a countable set Prop
of atomic propositions is given as follows.

P ::= p | ¬P | P1 ∧ P2 | © P | (P1, . . . , Pm) prj P

where p ∈ Prop, P1, . . . , Pm are well-formed PPTL formulas, and © (next),
prj (projection) are temporal operators. The detailed meaning of these formulas
is given in [7]. For convenience, some derived formulas from elementary PPTL
formulas are shown as follows. Abbreviations like true and → are defined as
usual.

ε
def= ¬ © true more

def= ¬ε

P ;Q def= (P,Q) prj ε ♦P
def= true;P

�P
def= ¬♦¬P fin(P ) def= �(ε → P )
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Fig. 1. The MSV platform

The language MSVL is the executable subset of PTL, so MSVL and PPTL
are both in the PTL framework. This enables model checking within the same
logic notations, i.e. the unified model checking approach [4]. In this approach,
the system is modeled as a statement P using MSVL, and the desired property
of system is specified by a formula φ of PPTL. In order to check whether or not
the model P satisfies the property φ, the validity of the logic formula P → φ
need to be checked. If P → φ is valid, the system satisfies the property, otherwise
the system violates the property.

The corresponding tool for the unified model checking method is the MSV
platform, developed by C++ under the Windows system. It uses Parser Gener-
ator as the lexical and syntax analysis module of MSVL program and Graphviz
as the tool to diagram. As shown in Fig. 1, the MSV platform is the tool of exe-
cuting MSVL programs, which includes three modes: simulation, modeling and
verification. Simulation is to generate a model for the MSVL program, while
modeling is to generate all models. Verification is based on the above unified
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0

Fig. 2. The result of verification–satisfied

Fig. 3. The result of verification–unsatisfied

model checking approach. If the property is satisfied, the result is given that no
dot or edge is marked red, as shown in Fig. 2. If not satisfied, a counterexample
is given, as shown in Fig. 3.

3 Verifying Probabilistic Properties in Social Networks

In social networks, many phenomena happen randomly, such as user-interaction
behaviors and structural changes of the network. This paper proposes a frame-
work based on MSVL for verifying probabilistic properties in social networks, as
shown in Fig. 4.

The specific process of this framework consists of four steps. First, a dataset
related to randomness in a social network is crawled and preprocessed. Second,
an HMM is trained with the dataset and implemented with MSVL. After that, on
the basis of the trained HMM and an observed sequence, an appropriate HMM
algorithm is implemented to obtain relevant information of the social network.
Finally, probabilistic properties are specified with PPTL formulas and verified
in the MSV platform.
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Fig. 4. Method flow chart

Since an HMM is a probabilistic model using discrete variables to describe
the states, the process of preprocessing the crawled dataset is to discretize the
dataset. Then, the Baum-Welch algorithm and the dataset after preprocessing
is used to train the HMM. In the HMM, if the number of the hidden states is N
and the number of the observed state is M , the state set is S = {s1, s2, . . . , sN}
and the observed state set is V = {v1, v2, . . . , vM}. The element π of the HMM
is an array of length N , A is a matrix of N ∗ N and B is a matrix of N ∗ M .
So in the process of implementing the HMM with MSVL, the following data
structures are used:

– an array hidd list to represent the hidden state set S,
– an array ob list to represent the observed state set V ,
– an array start p to represent the initial state probability distribution π,
– a two-dimensional array trans p to represent that the state transition prob-

ability distribution A, and
– a two-dimensional array emit p to represent the observed state probability

distribution B.

Based on the trained HMM, an observed sequence and different algorithms,
such as Viterbi, Forward and Backward, are used to obtain relevant informa-
tion of social networks. Then, a probabilistic property is specified with a PPTL
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formula and the MSVL program is executed in the MSV platform for verifying
whether the property is satisfied or not. If the property if unsatisfied, a coun-
terexample is given, as shown in Fig. 3.

4 Case Study

A better understanding of the notion of user tie strength can help social media
sites serve their customers well, such as providing better recommendations and
more effective friend management tools, which arises the problem of tie strength
prediction [8]. In a social network, user interactive behavior is a random process.
To certain extent, it reflects the tie strength between users. Therefore, the user
interactive behavior can be viewed as the observed state and the user tie strength
as the hidden state in an HMM. In this case study, we apply the proposed
framework to a popular social network Sina Weibo to study the user tie strength
and the user interactive behavior.

Our experiment collects the interaction behavior data of 5000 user pairs
from April 2016 to April 2017 in Sina Weibo. The data contains three kinds
of interaction behavior between users: like, comment and forward. In order to
ensure the fairness of the data, five user pairs are selected randomly to train the
model, respectively. The results of the training show that the five HMM models
are very similar, and here we only show one trained model.

4.1 Modeling

In Sina Weibo, the relation between users can be observed such as following,
followed and friend, but the tie strength between users cannot be obtained from
these observations. Users can interact by liking, commenting and forwarding in
Sina Weibo. Clearly, each interaction behavior can lead to different impacts on
the tie strength of two users, and the frequency of the interaction behavior can
also affect it. So we apply the framework to Sina Weibo, in which the tie strength
between two users is taken as a Markov chain of the HMM and the interaction
events between two users is taken as a random process of the HMM. In this way,
the tie strength between two users can be obtained by analyzing the interactive
events in a period of time, as shown in Fig. 5.

In order to establish the HMM, the data need to be represented through
discrete values. Firstly, we define the tie strength between a user a and a user
b as weak (0) or strong (1) [9]. So the set of hidden states S = {0, 1} and
the number of states N is 2. Next, according to the interaction frequency, the
interaction behaviors between users a and b are labeled by never (0), occasional
(1), general (2) and regular (3). So the set of observed states V = {0, 1, 2, 3} and
the number of distinct observed states M is 4. The specific method of labeling
the user interaction behavior data is as follows.

In the dataset of Sina Weibo, the main interaction behaviors among users
are interbehavior = {Like, Comment, Forward}. We take a week (7 days) as
the time granularity, and use Like(a, b), Comment(a, b) and Forward(a, b) to
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Fig. 5. The elements of the HMM

represent the number of like, comment and forward behaviors between two users
a and b in a week, respectively. Then, the interaction data between the users
a and b is quantified according to interaction(a, b) = ω1 ∗ Like(a, b) + ω2 ∗
Comment(a, b) + ω3 ∗ Forward(a, b). In order to facilitate the experiment, the
value of ωi is weighted through subjective experience. Finally, the calculated
result of interaction(a, b) is normalized and labeled by four grades.

According the method described above, the data of user interaction behaviors
between a and b labeled with a sequence of length 52, consisting of 0, 1, 2 and
3. Then, the data is trained by the Baum-Welch algorithm to obtain the HMM.
The HMM is shown below.

π : (12 , 1
2 )

A :
(

0.7703 0.2297
0.2156 0.7844

)

B :
(

0.5067 0.3876 0.1057 0.0034
0.0147 0.3418 0.3672 0.2763

)

Finally, the above HMM is implemented with MSVL. We make use of five
arrays hidd list, ob list, start p, trans p, and emit p to represent the set of user
tie strength, the set of user interactive behavior, the probability distribution
of the initial user tie strength, the transition probability distribution of the
user tie strength, and the observed state probability distribution in given state,
respectively.

4.2 Verification

After building the HMM, we collect the interaction behavior data between two
users a and b for 2 months from May to June, 2017. According to the model
and the data, we intend to predict the changes of tie strength between a and
b in the two months, and verify whether the probabilistic property of the tie
strength meets the expectation. That is, given an HMM model and an observed
sequence, to find the hidden state sequence that most likely produces such an
observed sequence. This problem corresponds to the decoding problem of an
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HMM, and the classic algorithm is Viterbi. So the above model and the user
interaction data are used as the input of the MSVL program to implement the
Viterbi algorithm. The data structures used are shown as follows.

– An array ob seq to represent the interactive behavior of users for two months,
– a two-dimensional array result to record the probability values, and
– a two-dimensional array max to record the state sequence that produces the

maximum probability.

The specific calculation process is to calculate all possible paths and stores the
probability in the result array to find out the path with the largest probability.
That is, to find out the sequence of user tie strength change which is most
likely to produce such observed sequence. In detail, result[x, 0] represents the
probability of strong ties at the time of x + 1, and result[x, 1] represents the
probability of weak ties at the time of x + 1. The specific MSVL program is
shown in the Appendix.

In this case study, the following typical properties are described and verified.

Property 1. In the second moment, the probability of strong ties between two
users a and b is greater than 0.7.

The property is described with a PPTL formula, where an atomic proposition
needed is defined as:

p : result[1, 0] > 0.7.

The meaning of the proposition is that the probability of strong ties between
a and b is greater than 0.7 in the second moment. The PPTL formula fin (p)
need to be verified, and it is coded in MSV platform as fin p. It means that the
program will check the satisfiability of propositional p in the last state of the
interval. The verification result of the property is “unsatisfied” and a counterex-
ample is given by the MSV platform as shown in Fig. 6. The above result shows
that Property 1 is unsatisfied, i.e. the probability of strong ties between a and b
is not more than 0.7 in the second moment.

Property 2. In the third moment, the probability of strong ties between user
a and user b is less than weak ties between them.

The property is described with a PPTL formula, where an atomic proposition
needed is defined as:

p : result[2, 0] < result[2, 1].

The PPTL formula fin (p) need to be verified, and it is coded in MSV platform
as fin p. The verification result of the property is “satisfied” and the result is
given by the MSV platform as shown in Fig. 2.

Property 3. The tie strength between user a and user b is non-decreasing.
The property is described with a PPTL formula, where a few atomic propo-

sitions needed are defined as:

p0 : pre max node! = −1;
p1 : max node! = −1;
q : pre max node <= max node.
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Fig. 6. The result of verification–unsatisfied

In the above atomic propositions, max node represents the tie strength between
the users a and b, and pre max node represents the value of the previous state
of the max node. The meaning of propositions p0 and p1 is that pre max node
and max node are not initial values, respectively, and the proposition q means
that the current tie strength of users is not less than the previous state. The
PPTL formula �((p0 ∧ p1) → q) need to be verified, and it is coded in MSV
platform alw((p0 and p1) => q). It means that when the tie strength between
a and b is not initial, the tie strength always appears a non-decreasing trend.
The verification result of the property is “satisfied” and the result is given by
the MSV platform as shown in Fig. 2.

5 Related Work

In real-life systems, there are many phenomena that can be modeled by consid-
ering their stochastic characteristics. Scholars perform a lot of research in this
field in recent years. In order to model the random phenomena, discrete and con-
tinuous time Markov chains (DTMCs and CTMCs), Markov decision processes
(MDPs) and stochastic Petri nets are used in probabilistic model checking. Auto-
mated verification algorithms are proposed, which use the temporal logic CSL
to specify performance and reliability measures for CTMCs [10]. Model checking
algorithms are given for verifying DTMCs and CTMCs against specifications
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written in probabilistic temporal logics PCTL and CSL, including quantitative
properties with rewards [11]. A technique for automatically verifying quantita-
tive properties of probabilistic systems is provided, which models both stochas-
tic and nondeterministic behaviours with MDPs and specifies the probabilistic
safety properties with PCTL and LTL [12]. Generalized stochastic Petri net, a
modeling formalism that can be conveniently used for functional verification of
complex models of discrete-event dynamic systems and for evaluation of their
performance and reliability, is presented in [13].

Besides, temporal logics such as CTL and PTL are introduced with the prob-
ability to investigate the randomness phenomenon. The work [14] defines and
explains model checking of probabilistic deterministic and nondeterministic sys-
tems using the probabilistic computation tree logics PCTL and PCTL*. The
method introduces a new probabilistic model checking procedure to check the
compliance of target systems against some desirable properties, which specifies
the properties with PCTLkc and reports the obtained verification results with
a new version of interpreted systems. An approach to investigating probabilistic
model checking based on PPTL is presented, which characterizes models with
DTMCs and logic formulas of models with NFGinf [15]. And then the algo-
rithm for determining and minimizing the nondeterministic NFGinf following
the Safra’s construction is given.

6 Conclusions

This paper presents an MSVL-based framework for verifying properties of prob-
ability in social networks. First, an HMM is trained according to a real social
network dataset and implemented with MSVL. Next, an appropriate algorithm
is selected, which uses the trained HMM and an observed sequence as the input,
to obtain relevant information of social networks. Finally, a probabilistic prop-
erty is specified by PPTL, so that whether the MSVL program satisfies the
property can be verified. In future study, we will use other relevant algorithms
of HMMs to obtain more information about the user tie strength based on the
above case study, and verify probabilistic properties according to them. Besides,
we plan to extend the framework with other phenomena related to random-
ness in social networks and attempt to introduce continuous HMMs into the
framework.
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7 Appendix: The MSVL Program

function main(){

frame(N, M, start_p, trans_p, emit_p, ob_seq, cir_i, cir_j, result,

max, max_node, pre_max_node) and (

int pre_max_node<==-1 and int max_node<==-1 and skip;

//N: the number of states

//M: the number of distinct observed symbols

int N and int M and skip;

//Initialize N and M

input(N) and skip;

input(M) and skip;

//cir_i,cir_j: control loop variables

int cir_i <== 0 and skip;

int cir_j <== 0 and skip;

//start_p: the initial state probability distributions

float start_p[N] and skip;

//Initialize start_p

while(cir_i < N){

input(start_p[cir_i]) and skip;

cir_i <== cir_i + 1 and skip

};

int cir_i <== 0 and skip;

//trans_p: the state transition probability matrix

float trans_p[N,N] and skip;

//emit_p: the probability distribution matrix of observed values

// in the given state

float emit_p[N,M] and skip;

//Initialize trans_p

while(cir_i < N){

while(cir_j < N){

input(trans_p[cir_i,cir_j]) and skip;

cir_j <== cir_j + 1 and skip

};

cir_j <== 0 and skip;

cir_i <== cir_i + 1 and skip

};

cir_i <== 0 and skip;

//Initialize emit_p

while(cir_i < N){

while(cir_j < M){

input(emit_p[cir_i,cir_j]) and skip;

cir_j <== cir_j + 1 and skip

};

cir_j <== 0 and skip;

cir_i <== cir_i + 1 and skip

};
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//T: the length of the observed sequence

int T and skip;

//Initialize T

input(T) and skip;

//ob_seq: the observed sequence with length T

int ob_seq[T] and skip;

//Initialize ob_seq

cir_i <== 0 and skip;

while(cir_i < T){

input(ob_seq[cir_i]) and skip;

cir_i <== cir_i + 1 and skip

};

//Variables used for parameter passing

int *P <== start_p and skip;

int **A <== trans_p and skip;

int **B <== emit_p and skip;

int *O <== ob_seq and skip;

//Variables used for results

float result[T,N] and skip;
int max[T,N] and skip;

viterbi(N, M, P, A, B, T, O)

)

};

//Viterbi algorithm

function viterbi(int N, int M, int *start_p, int *A, int *B,

int T, int *O){

frame(max, tmp, i, j, k, count, max_v) and (

float tmp and skip;

int i <== 0 and skip;

int j <== 0 and skip;

int k <== 1 and skip;

int count <== 1 and skip;

float max_v and skip;

int max[T] and skip;

//Step 1: initialization

while (i < N){

result[0, i] <== start_p[i] * B[i, O[0]] and skip;

i <== i + 1 and skip

};

//Step 2: recursion

i <== 1 and skip;

while (i < T){

j <== 0 and skip;

//Calculate the maximum probability

while (j < N){
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tmp <== result[i - 1, 0] * A[0, j] * B[j, O[count]]

and skip;

max[i,j] <== 0 and skip;

k <== 1 and skip;

while(k < N){

if(result[i - 1, k] * A[k, j] * B[j, O[count]]>tmp)

then{

tmp <== result[i - 1, k] * A[k, j] * B[j, O[count]]

and skip;

//Record the node with maximum probability

max[i, j] <== k and skip

}else{

skip

};

//Record the maximum probability

result[i, j] <== tmp and skip;

output("result[", i, "][", j, "]: ", result[i, j], "\n")

and skip;

k <== k + 1 and skip

};

j <== j + 1 and skip

};

count <== count + 1 and skip;

i <== i + 1 and skip

};

//Step 3: termination

max_v <== result[T - 1,0] and skip;

max_node <== 0 and skip;

k <== 1 and skip;

//Find the maximum probability of the last state

while(k < N){

if(result[T - 1,k] > max_v)

then{

max_v <== result[T - 1, k] and skip;

pre_max_node <== k and skip;

max_node <== k and skip

}else{

skip

};

k <== k + 1 and skip

};

//Step 4: path backtracking

k <== T - 1 and skip;

//Find the node with maximum probability

while(k >= 1){

max[k] <== max_node and skip;

pre_max_node<==max_node and skip;

max_node <== max[k, max_node] and skip;

k <== k - 1 and skip

};

pre_max_node<==max_node and skip;

//Output results

k <== 0 and skip;

while(k < T){

output("max", k + 1, ":", max[k]) and skip;

k <== k + 1 and skip

}

)};

main()
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Abstract. This paper presents an approach to implementing MapRe-
duce processes with Modeling Simulation and Verification Language
(MSVL). This facilitates programmers not only to deal with large data
sets but also to verify properties of programs in a convenient way.

Keywords: MapReduce · Multi-core · Parallel · Big data
Cloud computing

1 Introduction

MapReduce [8] is a parallel computation model proposed by Google in Cloud
Computing [4] to deal with large data sets. With this model, Map processes
iterate over a large number of records (〈key, value〉 pairs) to extract something of
interest from each record. Usually, intermediate results are firstly generated,
and they are then shuffled and sorted. Further, Reduce processes aggregate
these processed intermediate results, and produce final outputs. The key idea of
MapReduce workflow is to provide a functional abstraction for Map and Reduce
operations.

To process large data sets effectively, several supporting platforms such as
Hadoop [1,26], Storm [21], and Spark [22] supporting MapReduce are emerged.
Hadoop is a distributed framework developed by Apache. The core of Hadoop is
that a Hadoop Distributed File System called HDFS [5], a Hadoop distributed
data base called HBase [17] and MapReduce technologies are implemented.
Storm is a free and open source distributed realtime computation system [2].
Storm makes it easy to reliably process unbounded streams of data, doing for
realtime processing what Hadoop did for batch processing. It can be used with
any programming language. Spark [3] is also an open source big data [14,15]
processing framework built around speed, ease of use, and sophisticated analy-
sis. Spark has several advantages compared to other big data and MapReduce
technologies like Hadoop and Storm.

MapReduce is a great solution for one-pass computations, but not very effi-
cient for use cases that require multi-pass computations. Each step in the data
processing workflow has one Map phase and one Reduce phase and we need to
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convert any use case into MapReduce pattern to leverage this solution. In most
of cases, the intermediate processes are also called “partition” and “combine”
processes. The output data of each step has to be stored in a distributed file sys-
tem before the next step can begin. Hence, this approach tends to be slow due
to replication and disk storage. Also, Hadoop solutions typically include clusters
that are hard to set up and manage. It also requires the integration of several
tools for different big data use cases. If you wanted to do something complicated,
you would have to string together a series of MapReduce jobs and execute them
in sequence. Each of those jobs was high-latency, and none could start until the
previous job had finished completely. In contrast, Spark allows programmers to
develop complex, multi-step data pipelines using Directed Acyclic Graph (DAG)
pattern. It also supports in-memory data sharing across DAGs, so that different
jobs can work with the same data.

Actually, Spark runs on top of existing Hadoop Distributed File System
(HDFS) infrastructure to provide enhanced and additional functionality. It pro-
vides support for deploying Spark applications in an existing Hadoop v1 cluster
or Hadoop v2 YARN cluster or even Apache Mesos [16]. We should view Spark
as an alternative to Hadoop MapReduce rather than a replacement to Hadoop.
It’s not intended to replace Hadoop but to provide a comprehensive and unified
solution to manage different big data use cases and requirements.

MapReduce processes are usually realized by two functions map() and
reduce() as well as two additional intermediate functions partition() and
combine() which can in turn be implemented by any programming languages
such as Java, C, C++, R [13] and Python etc.

In this paper, we would like to implement map(), partition(), combine() and
reduce() functions in Modeling Simulation and Verification Language (MSVL)
because of two reasons: (1) MSVL is a parallel programming language and can
easily be used to deal with parallel computations. (2) MSVL programs are sup-
ported by a compiler MC [20] and a model checker at code level [18]. Hence,
they can facilitate programmers to debug and verify their programs.

The main contribution of the paper is two-fold: (1) The principle for pro-
gramming map() and reduce() as well as partition() and combine() with MSVL is
summarized. (2) A unified model checking approach at code level [11,18,25] to
verifying programs for MapReduce implementation is demonstrated.

The paper is organized as follows. Section 2 briefly presents MSVL. Section 3
concisely introduces MapReduce work flow. In Sect. 4, we summarize the princi-
ple for programming map(), partition(), combine() and reduce() with MSVL; then,
a unified model checking approach at code level to verifying MSVL programs is
demonstrated. In Sect. 5, as a case study, a sparse matrix multiplication [7] prob-
lem is given to show how MapReduce can be realized and verified with MSVL.

2 Preliminaries

2.1 Modeling, Simulation and Verification Language

Modeling, Simulation and Verification Language (MSVL) [9,10] is an exe-
cutable subset of Projection Temporal Logic (PTL) [10]. The following is a brief
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introduction of syntax and semantics of MSVL. For more details, please refer to
[10]. With MSVL, expressions can be treated as terms, and statements can be
treated as formulas in PTL. The arithmetic and boolean expressions of MSVL
can inductively be defined as follows:

e ::= n | x | © e | -© e | f(e1, . . . , en)
b ::= true | false | ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1

where n ∈ R, set of real numbers, and x ∈ V, set of variables. The f() is a state
function. The usual arithmetic operations such as +, −, ∗ and % can be viewed
as two-arity functions. One may refer to the value of a variable at the previous
state or the next one. The statements of MSVL can be inductively defined as
follows.

Name Syntax Semantics

1 Termination empty
def
= ε

2 Assignment x := e
def
= ©x = e ∧ len(1)

3 Positive immediate assignment x <== e
def
= x = e ∧ px

4. State frame lbf(x)
def
= ¬af(x) → ∃b : ( -©x = b ∧ x = b)

5 Interval frame frame(x)
def
= �(more → ©lbf(x))

6 Next next φ
def
= ©φ

7 Always always φ
def
= �φ

8 Conditional if b then φ0 else φ1
def
= (b → φ0) ∧ (¬b → φ1)

9 Existential quantification exist x : φ(x)
def
= ∃x : φ(x)

10 Sequential φ0 ; φ1
def
= φ0; φ1

11 Conjunction φ0 and φ1
def
= φ0 ∧ φ1

12 While while b { φ } def
= (b ∧ φ)∗ ∧ �(ε → ¬b)

13 Selection φ0 or φ1
def
= φ0 ∨ φ1

14 Parallel φ0 ‖ φ1
def
= φ0 ∧ (φ1; true) ∨ (φ0; true) ∧ φ1 ∨ φ0 ∧ φ1

15 Projection (φ1, . . . , φm) prj φ
def
= (φ1, . . . , φm) prj φ

16 Synchronous communication await(c)
def
= frame(x1, x2, . . . , xn) ∧ �(ε ↔ c)

MSVL supports structured programming and covers some basic control flow
statements such as sequential, conditional and while-loop statements. Further,
MSVL also supports non-determinism and concurrent programming by includ-
ing selection, conjunction and parallel statements. Moreover, a framing technique
is introduced to improve the efficiency of program executions and synchronize
communication for parallel processes. In addition, MSVL has been extended
in a variety of ways recently. For instance, multi-types including integer, float,
string, char, pointer, array and struct, have been formalized and implemented
[19]. Hence, typed variables and functions over the extended data domain can
be defined. Further, a mechanism for internal and external function calls is for-
malized and implemented [24] recently. To execute MSVL programs, the normal
form of MSVL programs has been defined in [10] and a compiler for MSVL has
been developed [20]. Besides, to verify MSVL programs, a model checker at code
level [18] has also been realized.
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2.2 Cylinder Computation Model

In this section, Cylinder Computation Model (CCM) is briefly introduced. The
details for CCM can be found in [23]. The sequence expression is defined as
follows:

l ::= ∅ | ε | n | l1 · l2 | l1 ⊗ l2 | l∗

From the syntax, we can see that the sequence expression is an analogue of
regular expressions where ∅ denotes the empty set, ε empty sequence expression
and n ∈ N0, set of natural numbers. The concatenation (“·”), sum (“⊗”) of any
two sequence expressions, or Kleene closure (“∗”) of a sequence expression is
also a sequence expression. The semantics of sequence expressions can be found
in [23].

The syntax of CCM is given as follows:

CCM ::= ϕ ov (l) | (CCM1 ‖ CCM2)

where ϕ is an MSVL program and l a sequence expression. Over (ov) and parallel
(‖) are temporal operators. For a CCM program ϕ ov (l), if it is satisfiable, the
interpretation of ϕ is controlled by the sequence expression l. The semantics of
Cylinder Computation Model is given in [23].

3 MapReduce Work Flow

MapReduce is a parallel mechanism for dealing with large scale data sets. Steps
of a MapReduce execution are given in Fig. 1:

Fig. 1. Steps of MapReduce execution

where split i is an input data stream from external hardware file system while
output j is an produced output data stream to external hardware storage. A
group of Map operations first map the input data in the form 〈in key, in value〉
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in parallel into a list of an intermediate form 〈inter key, inter value〉. After that, in
the Shuffle and Sort phases, a number of Partition and Combine operations are
employed to generate another suitable intermediate form 〈inter key′, inter value′〉
so that, in the Reduce phase, a group of Reduce operations can eventually gen-
erate output results.

In summary, these signatures are as follows:
map() : (in key, in value) =⇒ list(inter key, inter value)
partition() : (inter key, number of partitions) =⇒ partition for inter key
combine() : (inter key, inter value) =⇒ list(inter key′, inter value′)
reduce() : (inter key′, list(inter value′)) =⇒ list(out value)

The principle of MapReduce is as follows:

• Programmers must specify:
map(k, v) =⇒ 〈k′, v′〉∗

reduce(k′, v′) =⇒ 〈k′, v′〉∗

All values with the same key are reduced together.
• The following two operations are optionally:
partition(k′, number of partitions) =⇒ partition for k′

– Often a simple hash of the key, e.g., hash(k′) mod n
– Divides up key space for parallel reduce operations combine(k′, v′) =⇒

〈k′, v′〉∗

– Mini-reducers that run in memory after the map phase
– Used as an optimization to reduce network traffic

• The execution framework handles everything else:
– Scheduling: assigns workers to map and reduce tasks
– “Data distribution”: moves processes to data
– Synchronization: gathers, sorts, and shuffles intermediate data
– Errors and faults: detects worker failures and restarts

Note that limited control over data and execution flow is permitted. All algo-
rithms must be expressed in m (map), r (reduce), c (combine) and p (partition).
We do not consider the following:

• Where mappers and reducers run;
• When a mapper or reducer begins or finishes;
• Which input a particular mapper is processing;
• Which intermediate key a particular reducer is processing;

In the above processes, the following points are useful: (1) Cleverly-
constructed data structures are significant since they bring partial results
together. (2) Sorting order of intermediate keys is useful because it facilitates us
to control order in which reducers process keys. (3) Partitioner and combiner are
sometimes necessary because we need to control a reducer to process a certain
key. (4) Preserving state in mappers and reducers is necessary because we need
to capture dependencies across multiple keys and values.

Notice that the following points are useful for local data aggregation. Ideal
scaling characteristics requires the following: the data size is double, then the
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running time is double while doubling the resources, then we can halve the
running time. As a matter of fact, we cannot achieve the ideal scaling character-
istics because synchronization requires communication which kills performance.
Accordingly, we can avoid unnecessary communications by means of reducing
intermediate data size via local aggregation and the help of combiners.

4 Principle of Programming with MSVL

We could use Hadoop or Sparke to build an environment for dealing with large
data sets and make use of the functionality provided by them. However, in
this paper, we concentrate on implementing MapReduce processes by means
of MSVL programming. Hence, we only show some principles of programming
map(), partition(), combine() and reduce() functions with MSVL.

4.1 Dealing with Hardware File Systems

Usually, large data sets are stored distributively on external storages. This sub-
section concerns with how to read from and write to external hardware file
systems. Since we deal with large scale data sets, the input or output file could
be very large. As a result, these files cannot be handled in memory locally and
must be dealt in a workable way. Since MSVL can call C functions as external
functions, we are able to call these functions on external file management such
as fopen(), fgets(), fputc(), fputs() and fclose() etc. to handle input and output
of batch data streams.

4.2 Partitioning Tasks into Parallel Computation Blocks

As you can see from Sect. 2, MSVL is a parallel programming language with sev-
eral parallel or concurrent constructs such as P and Q, P ||Q, (P1, . . . , Pm) prj Q
and P1 ov (l1)|| · · · ||Pm ov (lm) (CCM). Each of them has its own advantages
to handle different parallel computation tasks. In particular, parallel operation
(||) can be used to implement mappers and reducers while the other ones are
useful for realizing partitioner and combiners besides using other MSVL con-
structs. In addition, some shuffle and sort tasks may require various kinds of
MSVL constructs. A framework of shuffle and sort relevant to mappers, reduc-
ers, partitioners and combiners is shown in Fig. 2.

4.3 Constructing Data Structures

MSVL is of plenty of data types used to build various data structures so that data
can effectively be handled in local memory. In most of cases, 〈key, value〉∗ can be
managed by lists or arrays in MSVL. A complicated data consisting of several
components can be constructed by the type struct in MSVL. In particular, the
type pointer is useful to construct lists with an uncertain length.
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Fig. 2. Shuffle and sort

4.4 Verifying Programs

Since a compiler and a model checker at code level are available in MSVL, these
enable programmers to debug and verify their programs developed in MSVL
from time to time. These characteristics make MSVL more useful than other
programming languages such as Java, C/C++ and Python.

5 Case Study: Sparse Matrix Multiplication

Matrix multiplication, as a core problem in scientific computing, is challenging
for large scale sparse matrices. This section presents a MapReduce framework
for computing the product of two sparse matrices namely A · B, which is imple-
mented by MSVL programs. The matrix multiplication process includes the
following three tasks [6]: (1) Represent the matrix as a list of nonzero entries.
(2) Compute all products ai,k · bk,j where ai,k (resp., bk,j) is the entry in matrix
A (resp., B) in the ith (resp., kth) row and the kth (resp., jth) column. (3) Sum
products for each entry i, j. The details of these tasks are given in the following
subsections.

5.1 Matrix Representation

For the convenience of handling and storing, each nonzero entry in a matrix needs
to be rewritten into a quadruple 〈row, col, value,matrixID〉. Suppose that two
original sparse matrices A and B are stored in one file. In order to rewrite them,
we define two struct ReadData and Record to store initial records and the
processed data, respectively.

In the struct ReadData, the component data stores all original entries in
the rowNumth row of the matrix matrixID and idle represents the state of this
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memory block, where idle = 1 indicates the memory block is idle, idle = 2
means that entries of one row have been read into the idle memory block to be
processed and idle = 3 represents that the read entries in the memory block
are being processed. In the struct Record, data stores all nonzero entries in
one row which are in the form of the specified quadruple. Similar to ReadData,
idle = 1 means the memory block is idle, idle = 2 represents that entries
of one row are being processed and idle = 3 indicates that the process of these
entries has been completed.

1 struct ReadData
2 {
3 char *data and
4 int rowNum and
5 char matrixID and
6 int idle
7 };
8 struct Record
9 {

10 char *data and
11 int idle
12 };

We define a ReadData array rData[m] and a Record array wData[m] to
store the records before and after data processing, respectively. With MSVL, the
matrix rewriting process can briefly be specified as follows:

Init
def= ReadMatrix()||(HandleRecord(1)|| · · · ||HandleRecord(n))||

WriteRecord()

ReadMatrix reads entries of a row from the file into the memory when there is
an idle memory block rData[i] (rData[i].idle = 1). HandleRecord rewrites all
nonzero entries stored in rData[i] (rData[i].idle = 2) into the specified quadru-
ple and stores them in an idle memory block wData[j] (wData[j].idle = 1). After
processing, rData[i].idle is reset to 1 and wData[j] to 3. Thus, n HandleRecord
processes execute in parallel. Since there exists resource competition when these
processes check whether there are records unprocessed in rData (rData[i].idle =
2) and idle memory blocks in wData (wData[j].idle = 1), the Bakery Algorithm
[12] is adopted to solve the problem. WriteRecord writes the processed records
in wData (wData[j].idle = 3) into another file.

5.2 Map and Reduce of Matrix Multiplication in the First Phase

We use the column number of an entry in matrix A and the row number of an
entry in matrix B as the key to map these entries into different groups. A process
Map1 is defined to write the nonzero entries with the same key in A into the
same line and the ones in B into the next line in a file, which will be the input
in the late reduce phase. We define a struct KeyData to store nonzero entries
with the same key as follows:



156 N. Zhang et al.

1 struct KeyData
2 {
3 char *dataA and
4 char *dataB and
5 int key and
6 int idle
7 };

In the struct KeyData, the component dataA stores all nonzero entries in
the keyth column of matrix A, while dataB stores all nonzero entries in the
keyth row of matrix B. Further, idle has the same meaning with idle in
struct ReadData. A KeyData array rKeys[m] is defined to store the records
read from the file. The reduce process can be defined as follows:

Reduce1 def= ReadRecord1()||(Reducer1(0)|| · · · ||Reducer1(n))||
WriteRecord()

Similar to Init defined in Subsect. 5.1, ReadRecords1 reads entries from the
file into the memory line-by-line when there are idle memory blocks in rKeys.
Reducer1 computes all products of entries in A and B with the same key and
stores them in wData.

5.3 Map and Reduce of Matrix Multiplication in the Second Phase

In this phase, the pair (row, col) is taken as the key to group all the products.
After executing Map2, the entries with the same key are in the same line in a
file. We define another Record array rRec[m] to store records read from the
file. This reduce process can be defined as follows:

Fig. 3. Results of each phase
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Reduce2 def= ReadRecord2()||(Reducer2(0)|| · · · ||Reducer2(n))||
WriteRecord()

The function of ReadRecords2 is similar with ReadRecords1. The differ-
ence between them is that ReadRecords2 stores the entries in rRec[m], while
ReadRecords1 stores them in rKeys[m]. Reducer2 sums products with the same
key to obtain final entries.

We compile our MSVL programs to binary executable codes with the MSVL
compiler MC and obtain the results of each phase with two matrices A and B
as its input as shown in Fig. 3.

All the MSVL programs solving sparse matrix multiplication problem in the
MapReduce technique are placed in the AppendixA.

6 Conclusion

In this paper, we show that MSVL is useful for implementing MapReduce pro-
cesses. In particular, parallel constructs in MSVL can be used to realize mappers
and reducers. In the future, we will further deploy Hadoop, HDFS and HBase to
provide a platform accompanying with MapReduce processes realized by MSVL
to manipulate real distributed large scale data sets.

Appendix A: MSVL Program of Sparse Matrix
Multiplication
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Abstract. The “Vibration” method proposed in the literature offers a strategy
for generating test data from an atomic predicate in a specification with the aim
of achieving full path coverage in the program that implements the function
defined by the predicate. However, how to efficiently generate adequate test data
using the method from the same predicate to quickly traverse all of the related
paths in the program is still an open problem. In this paper, we describe a
prototype software tool we have built recently that supports the test data gen-
eration based on the principle of the “Vibration” method and an experiment to
evaluate the effectiveness of the “Vibration” method supported by the tool.

Keywords: Specification � Vibration testing � Predicate-based test generation

1 Introduction

Formal specification-based testing offers a rigorous and systematic approach to test data
generation and test result analysis [3, 10]. In many cases, it can be automatically
performed. In particular, it is superior to conventional functional testing techniques in
automatically deriving test oracle that can be used to automatically determine whether a
test finds bugs or not.

However, there are still many challenges as stated by Liu and Nakajima in [8]. One
of them is how to generate adequate test data from a formal specification that covers all
of the execution paths in the corresponding program. To tackle this problem, Liu and
Nakajima proposed a special test data generation method based on predicates, called
“Vibration” method (or V-Method), that is expected to efficiently generate adequate
test data to cover all of the corresponding paths in the program [1]. A small experiment
has shown that the V-Method is effective in achieving the path coverage.

To enable the V-Method to be automatically applied in test data generation, tool
support is necessary. But unfortunately, no software tool for V-Method has been built
so far. In this paper, we report a prototype tool for V-Method that we have recently
developed. The purpose is to facilitate users of the tool (or testers) to investigate the
relation between the important elements such as the vibration “distance” used in the
V-Method algorithm [1] and the path-coverage in the program. Apart from this major
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contribution, we also discuss how our tool is constructed by first formally specifying
the desired functionality using the SOFL specification language [2] and then imple-
menting it with C#. An experiment is conducted to investigate how effective the
V-Method is in terms of path-coverage in the program and by comparing with the
pairwise testing [6].

The remainder of this paper is organized as follows: Sect. 2 gives a brief intro-
duction to the SOFL specification and functional scenario-based testing. Section 3
introduces the principle of the V-Method and how it works specifically. Section 4
explains the functions of the supporting tool and the development process. In Sect. 5,
three experiments and their analysis are presented. Section 6 makes some discussions
and conclusions according to the research. Section 7 discusses the weakness of the
present work and how it can be improved in the future.

2 SOFL Specification and Functional Scenario-Based Testing

SOFL (Structured Object-oriented Formal Language) is one of the formal engineering
methods for industrial software development. It is characterized by integrating the
advantages of Data Flow Diagrams, Petri nets, and VDM-SL (Vienna Development
Method-Specification Language) [2]. The traditional data flow diagram (DFD) is for-
malized into condition data flow diagram (CDFD) by using Petri nets to provide an
operational semantics for DFD. Each CDFD is associated with a module in which all of
the components of the CDFD, such as processes, data flows, and data stores, are
precisely defined with a formal notation. CDFDs and their associated modules are
organized in a hierarchy formed by decomposing high level processes into sub-CDFDs.
Compared with other formal methods, the syntax of SOFL is much simpler and
therefore it can be used to easily write comprehensible formal specifications. Since our
discussion in this paper only needs the knowledge of a process specification in SOFL,
we merely focus on the introduction of SOFL process specification in this section.

The following is an example of process specification:

This detailed specification can be represented by an abstract version S (Siv,
Sov) [Spre, Spost] to facilitate our discussion on issues in relation to test data gener-
ation. In the abstract representation, Siv denotes the set of input variables and Sov the
set of output variables, and the pre- and post- conditions define the functionality of the
process in terms of the relation between input and output.

In the second author’s previous research, a concept of functional scenario
was proposed [5]. A set of functional scenarios can be derived from a formal speci-
fication, each defining an independent function in terms of input-output relation.
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Let Spost = ðG1 ^ D1Þ _ ðG2 ^ D2Þ _ . . . _ ðGn ^ DnÞ, where Gi is a guard
condition and Di a defining condition, and i = 1,…, n. Then, a functional scenario form
(FSF) of S is defined as ðSpre ^ G1 ^ D1Þ _ ðSpre ^ G2 ^ D2Þ _ . . . _ ðSpre ^
Gn ^ DnÞ, where Spre ^ Gi ^ Di is called functional scenario. For instance, a set of
functional scenarios derived from process A given above is as follows:

A distinct characteristic of a functional scenario is its independence in defining a
specific relation between input and output. Taking the advantage of this characteristic, a
scenario-based testing method has been proposed in [8, 9]. The central idea of this
method is: generate test data for each functional scenario at least one by satisfying each
atomic predicate of the test condition that is the conjunction of the pre-condition and
the guard condition ðSpre ^ GiÞ in a scenario. We have already built algorithms for
automatic test data generation based on atomic predicates [8], but those algorithms can
only produce one test data for each functional scenario at a time. Since a functional
scenario is usually refined into a collection of program paths, only one test data is
obviously insufficient to cover all of the related paths. To address this problem, on the
basis of the scenario-based testing, the V-Method for generating test data was put
forward in [1].

3 Introduction to V-Method

3.1 Principle of the V-Method

The purpose of the V-Method is to generate an appropriate test set automatically from
an atomic predicate, which is usually a relation, with the aim of attempting to traverse
all of the representative paths in the program. In this part, we will give a brief intro-
duction to the principle of the V-Method.

Let an atomic predicate from a functional scenario be E1 (x1, x2, …, xn) R E2 (x1,
x2, …, xn), where R is a relational operator, such as >, <, � , or � , and E1 and E2 are
expressions that contain all the input variables x1, x2, …, xn. Following the V-Method
to generate test data from the atomic predicate, we first generate a test data containing
specific values for all of the input variables x1, x2, …, xn that satisfy the predicate.
Then, we will generate another test data that also satisfies the predicate, but ensures that
the “distance” between the two expressions E1 and E2 meets a certain given condition.
In the case of both E1 and E2 being numeric expressions, the distance between them is
defined as absolute value of E1–E2. If necessary, we can repeatedly change the distance
according to the certain principle by increasing or decreasing it properly and then
generate more test data to satisfy the predicate. The test data generated in this way are
expected to efficiently cover the related paths in the program.

An algorithm to realize the V-Method was developed by the second author pre-
viously in [1]. We quote the algorithm in the Appendix in order to help the reader
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understand better our discussions where some variables and concepts involved in the
algorithm may be used. The essential idea of the algorithm has been explained briefly
previously. Readers can refer to publication [1] for a detailed explanation.

3.2 Example

We give a specific example to illustrate how the general principle of the V-Method
works.

Let x þ 5 [ y ^ z ¼ x þ y be a functional scenario where x + 5 > y is an
atomic predicate describing a test condition of the functional scenario and z = x + y is
the defining condition showing how the output variable z is defined using input vari-
ables x and y. Since the test condition contains only input variables, it is used as the
basis for test data generation. To begin with, an initial test data is generated to satisfy
the predicate x + 5 > y, for example, x = 3 and y = 2. Then, a “vibration” process of
repeatedly generating test data to satisfy both the predicate and the required distance
(e.g., 8) between x + 5 and y starts. To control the process of the “vibration”, we need
to determine several parameters used in the test data generation algorithm given in the
Appendix, such as “distance_up” (e.g., distance_up = 6) and “distance_down” (e.g.,
distance_down = 3). In general, the value of distance_up should be greater than that of
distance_down in order to allow as many times of “vibration” as necessary. For
instance, to generate the next test data with the above values of the parameters, we need
to generate a test data, say x = 5 and y = 2, to meet the atomic predicate x + 5 − y = 8
(ensuring the distance between the two expressions x + 5 and y is 8). Then, we can
increase the distance by adding the value 6 of distance_up to the value 8 of distance to
update the distance to value 14. Then, we can generate another test data to meet the
predicate x + 5 − y = 14, say x = 12 and y = 3. After this, we need to shorten the
distance by reducing the value 3 of distance_down from the current value 14 of
distance and use the result to update the distance (e.g., making distance = 11). Then,
we can generate another test data, say x = 7 and y = 1, to meet the atomic predicate
x + 5 − y = 11. Repeating this process, more necessary test data can be generated.

When the V-Method is used to generate test data manually, the values of all the
relevant parameters will be determined by humans. But if it is used to automatically
generate test data, the values of the parameters must be automatically decided. But how
to automatically make the decision to achieve pre-defined goals still remains an open
problem to be addressed. In this paper, we still cannot attack this problem due to the
lack of sufficient research, but focus on the software tool support as our contribution.

4 Supporting Tool for “Vibration” Method

We have built a prototype software tool, known as “Vibration Testing Tool” (VTT), to
support the V-Method using C# in the Visual Studio 2015 environment. The user of the
tool only needs to input the necessary initial values, click the button, and then the tool
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can automatically generate test data based on the V-Method. Figure 1 shows a snapshot
of the graphical user interface of the tool. It contains two parts: the upper-left corner
and the bottom-right corner are two function modules which provide the input bars for
users; the rest of the tool is output function part, including chart expression (showing
the changes of distance), the path coverage number, and the show boxes of the test data
generated.

The functions of the tool are designed using Condition Data Flow Diagrams
(CDFDs) together with the related modules of the SOFL specification language, which
are explained next.

4.1 Functions

Figure 2 is the CDFD defining the tool functions at an abstract level, which is drawn
with the SOFL Toolkits as reported in [11]. As the CDFD shows, the tool performs four
specific functions, but only two major functions are worth explaining in detail.

Receiving Initial Parameter Values and Produce Distance Values. As discussed
previously, there are several parameters used in the V-Method algorithm for test data
generation, such as distance, distance_up, distance_down, and number (the number of
test data to be generated). To use the V-Method, the tool first requires the user to supply

Fig. 1. GUI of VTT
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the initial values for all these parameters. Then, the tool will automatically produce a
set of distance values based on the initial values of the parameters for executing the
V-Method algorithm to automatically generate test set (a set of test data). The snapshot
in Fig. 1 shows a situation where all of the parameters are given an initial value and a
set of test data are automatically generated accordingly.

Automatically Generating Test Data. This function first receives an atomic predi-
cate, for example ax + b > y (linear relation), where a and b are two constants, and
x and y are input variables. The relational operator can be any of the follow-
ing: = , < > (inequality), < , > , � (less than or equal to), and � (greater than or
equal to). Under the condition that both the atomic predicate and the distance values
produced previously are satisfied, the tool will automatically generate the pre-defined
number of test data for the input variables. The tool also supports the interactive test
data generation. In this case, the test data are supplied manually by the user through the
GUI, but whether they satisfy the required condition of the V-Method will be auto-
matically checked. If the condition is violated, an appropriate error message will be
displayed to remind the user of what is wrong in his or her data.

4.2 Quality Assurance of the Tool Using SOFL

The quality of the tool itself is closely related to the quality of test data generation and
the enforcement of the V-Method. We have adopted the SOFL three-step specification
approach [2] first to construct a formal specification for the tool and then implements it
based on the specification. In this sense, our work demonstrates another case of
applying SOFL in practice.

Fig. 2. CDFD of VTT

176 P. Zhao and S. Liu



Following the SOFL three-step approach, we started with the construction of an
informal specification, abstractly describing the desired functions, data resources
necessary for realizing the functions, and constraints either on the functions or the data
resources. Figure 3 shows the informal specification of VTT.

On the basis of the informal specification, we then built a semi-formal specification
by doing three things. One is to group the related functions, data resources, and
constraints given in the informal specification into SOFL modules. Another activity is
to precisely define all of the necessary types and declare state variables for each
module. These types and variables are expected to be used in specifying the func-
tionality of related operations which we call processes in SOFL specifications. The final
activity is to specify the functionality of all of the related processes in each module
using pre- and post-conditions. While all of the data items of each process are formally
declared with well-defined types, the pre- and post-conditions are given informally,
usually in natural language such as English. The specification for the function Dis-
tance_Vibration given below characterizes the semi-formal specification of VTT.

While the semi-formal specification rather clearly defines the functions of the tool,
many expressions inside are still given informally and contain ambiguities. To form a
solid foundation for implementation, we have refined the semi-formal specification into
a formal specification in which all parts are described in the SOFL formal specification
language. Below is a module in the formal specification of VTT, which contains two
processes Generate_Test_data and Specific_Inputting, one function Distance_Vibra-
tion, and the necessary type and variable declarations. For brevity, we omit further
explanation of the specification.

Fig. 3. Informal specification of VTT
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5 Experiments

Three experiments, two small ones and one relatively big one in terms of the scale of
the program used for testing, are conducted for evaluation of the V-Method by com-
paring it with the “Pairwise testing” available in the literature. The reason we use
“Pairwise testing” for the comparison is that it is a popular technique for test data
generation in practice [6], often used in industry [7], and suitable for automation [1].
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The programs used for testing in the experiments are chosen from different application
domains in order to avoid biases and perform an objective evaluation. The role of our
tool VTT in the experiments focuses on automatic test data generation using the
V-Method and manual test data generation using the pairwise testing method, as well as
executing the target programs to report the path-coverage. These experiments also help
us demonstrate the practicability, feasibility, and efficiency of our tool VTT.

5.1 BMI (Body Mass Index) Calculation

BMI is a commonly used measure standard for measuring the degree of obesity (5
levels) and whether a person is healthy or not, and it is a relatively objective parameter
by body weight and stature. The formal specification of the BMI calculation process
and the reference standard (divided into five paths) are (Table 1):

In this case, the guard condition weight > 0. 63 * stature - 66. 15 is the atomic
predicate relation that will be used in generating test data. This relation is figured out by
the body weight standard formula and actual situation, which requires that the weight
of a human body not be below a certain value. Based on the pre- and post-conditions
and come historical data, we derive the initial values for all of the parameters in the
V-Method algorithm as distance = 13, distance_up = 15, distance_down = 3, and
number = 5. Using these input values, VTT generates 5 test data that cover all of the
paths in the program implementing the specification. That is, each change of the
distance value makes the test data cover a new path. A snapshot of the GUI for this
experiment is shown in Fig. 4. The input variable x denotes the stature and y the
weight, and for this example, we add two variables z and path in the tool to show the
results of the V-Method more intuitively, where z is the calculated BMI and path
visualizes the traversed path number by the corresponding test data. The chart at the
bottom-left of the GUI shows the changing of the distance values as the number of the
test data changes from 1 to 5.

On the other hand, we generate the same number of test data using the pairwise
testing. Specifically, we choose one value for the variable stature between 140 and 220
(possible range suitable for humans), and 5 values for the variable weight between 35
and 150 (reasonable range for most people) to produce 1 * 5 (= 5) test data.

Table 1. BMI reference standard

1 BMI < 18.5 Underweight
2 18.5 � BMI < 23 Normal
3 23 � BMI < 25 Overweight
4 25 � BMI < 30 Obese
5 BMI � 30 Clinically obese
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5.2 Balance Ratio Calculation

Balance ratio refers to the ratio of the balance and income of a family in a certain
period. It reflects the ability and saving awareness of the family to control spending,
and is the basis for future investment and financing. This function is defined in a SOFL
process specification given below.

Income and expenditure are the input variables, balance ratio is the output. The
guard condition in the only functional scenario of the post-condition is
income � expenditure.

On the basis of this predicate, a number of test data are produced. Figure 5 shows a
snapshot of the GUI for producing 12 test data for this process. where x, y, z and path
denote “income”, “expenditure”, “balance ratio” and “the covered path number”,
respectively.

Meanwhile, we also generate 12 test data using the pairwise testing, which is the
same as that of test data generated using the V-Method. Specifically, we evenly choose
three different values for the variable income between 1000 and 20000 (reasonable

Fig. 4. Test data generation for BMI calculation
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range of monthly income for people in China), and 4 values for the variable expen-
diture between 0 and 20000 (reasonable range for average people) to produce 3 * 4
(= 12) test data.

5.3 Train Fare System

The train fare system is used to calculate the cost for passengers’ tickets based on their
starting station and arrival station. It adopts fifty-seven stations in China. The calcu-
lation of the costs for train tickets based on the starting station number and the arrival
station number contains 1596 paths. The specification for the calculation is as follows:

Fig. 5. Test data generation for Balance ratio calculation
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In the specification, starting and arrival are the input variables and fare is the
output variable. In the post-condition, there are five 5 functional scenarios. We have
generated 2000 test data with the V-Method to cover 1318 paths in the program.
Figure 6 illustrates the situation of using our tool VTT to generate test data (only part
of them can be seen), where x and y denote input variables “starting” and “arrival”,
respectively.

In addition, we also generate 2000 test data using the pairwise testing, which is the
same as that of test data generated using the V-Method in this case. Specifically, we
choose 40 different values for the variable start between 1 and 55 (reasonable range of
stations we adopt as a starting in the system), and 50 values for the variable arrival
between 2 and 56 (reasonable range of stations that can be used as the arrival station) to
produce 40 * 50 (= 2000) test data.

5.4 Experiment Results and Analysis

To avoid biases in comparison with pairwise testing, we try to generate the equal
number of test data from both the V-Method and the pairwise testing method. As we
generate test data, we execute the program to check the path coverage. When all the test
data generated so far from one method have reached 100% of path coverage, the
generation of test data from both methods will terminate, and the number of the test
data generated so far from each method is then treated as the final test data generated
from that method. But when this strategy is impossible to achieve due to bugs in the

Fig. 6. Test data generation for Train fare system
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program, for example, in the case of the third experiment, we stop generating test data
when the recently generated test data do not traverse new paths in the program.

Table 2 shows the summary of the test results for the three systems using the two
test data generation methods. In terms of the effectiveness of achieving path-coverage,
obviously the V-Method is superior to the pairwise testing in all of the three cases. But
in terms of the number of test data used, the V-Method tends to use the same or more
test data than the pairwise testing, although the difference between the numbers of test
data generated using the two methods is not significant. However, considering the fact
that all of the test data can be automatically generated using the V-Method, supplying
more test data by the V-Method would not be a significant weakness. This little
weakness may be compensated by its superiority in automatically deriving test oracle
and analyzing test results based on it.

6 Discussion

The decision on “distance” values is the core issue in the V-Method. If the program
under test (PUT) contains a great number of paths, the “vibration” (or changing) of the
distance value should be more frequently done and its amplitude should be sufficiently
small so as to ensure more paths being traversed quickly. On the other hand, if the path
distribution in the program is dispersed due to the fact that the distance between input
variables is relatively big, then the distance vibration amplitude should sufficiently big
and the vibration frequency should be sufficiently low, in order to avoid too many
ineffective test data being produced.

It seems to be quite hard to provide a commonly recognized and universally
effective distance vibration frequency and amplitude for the V-Method. In general,
these values should be determined in accordance with the characteristics of the specific
programs under testing. The quality of the distance values can be generally judged
based on the fact of whether every newly produced test data after the distance value
being adjusted can make more paths traversed if more untraversed paths still remain.

We must also mention the limitation of our work presented in this paper. Currently,
the tool VTT can only support the automatic test data generation from relations
between two numeric expressions, not other types of expressions, such as set types,
sequence types, and map types. Therefore, our three experiments also use mere
numeric relations and the results are apparently limited. The effectiveness of the
V-Method with a more appropriate tool support will have to be investigated on broader
types of predicates in the future.

Table 2. Path coverage rate results

Programs (number of paths, number of test data) Pairwise testing V-Method

BMI calculation (5, 5) 80% 100%
Balance ratio calculation (10, 12) 50% 100%
Train toll system (1596, 2000) 61% 83%
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7 Conclusion and Future Work

In this paper, we have described a software tool called VTT to support the V-Method
available in the literature. The tool can be used in three steps: (1) determining the
atomic predicate from a functional scenario of the specification; (2) supplying initial
values for the parameters distance, distance_up, distance_down, and test data number
based on the program under testing; (3) automatically generating test data. Apart from
our contribution in building the tool, we have also carried out three experiments to
evaluate the effectiveness of the V-Method by comparing it with the pairwise testing.
The results show the superiority of the V-Method to the pairwise testing in all of the
three cases, but this conclusion is limited to relations between numeric expressions.

Our future work will focus on the improvement of our tool VTT to enable it to deal
with various types of non-numeric atomic predicates. Meanwhile, we will also try to
establish a theory for determining distance values between two expressions in an
atomic predicate. While this may be challenging in general, but the problem may be
alleviated if the application domain is limited to a specific one. Moreover, we will also
be interested in evaluating the V-Method on the basis of large-scale and complex
industrial program systems.
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Abstract. Formal specification can be an error-prone process for complex
systems and how to efficiently write correct specifications is still a challenge for
practitioners in industry. This paper presents a software tool to support the
scenario-based formal specification approach developed in the SOFL formal
engineering method. Using the tool, the current version of the formal specifi-
cation under construction can be automatically checked to ensure the internal
consistency and some further contents of the specification may be automatically
predicated to facilitate the user in completing the specification. To improve the
readability of the formal specification, the tool can also automatically translate
the textual format of the specification into a comprehensible tabular format. All
of these three functions can be helpful to prevent errors during the construction
of the specification. We discuss each of the functions by first presenting its
principle and then illustrating it with examples. We present a case study to show
how the tool supports the scenario-based specification approach. Finally, we
conclude the paper and suggest topics for future research.

Keywords: SOFL � Formal specification � Verification � Error prevention

1 Introduction

As a formal engineering method for practical software development, SOFL has pro-
vided a method for functional scenario-based inspection and testing of programs,
respectively [1]. The same concept has also been found to be effective in helping
construct formal specifications in practice [2] and verify their properties such as con-
sistency [3] and completeness [4].

However, writing a formal specification for a complex system tends to be
error-prone. This problem can be attributed to three factors according to the second
author’s experience in applying the SOFL method to develop realistic software sys-
tems. The first is that the practitioner who writes the formal specification may lack
competence of commanding the formal notation. The second is that the habit of writing
code may affect the practitioner in keeping the logical consistency and completing the
definition of the functionality. For example, when defining an update of a composite
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object, only some fields of the object are defined in the post-condition while the other
fields are undefined. This style may have no problem for programming but usually
results in an incomplete functional definition in the specification. The final factor has
something to do with inappropriate input or output variables and their types. Choosing
inappropriate variables and types may lead to errors in specification in most cases.

To deal with the above challenge, we believe that dynamically checking the con-
sistency of the current version of the specification and predicating the further necessary
contents of the specification as it is being constructed are an efficient way to build
correct formal specifications. To realize this goal, obviously a software tool needs to be
developed to support the process of constructing a specification. In our work, we
develop a tool to support the functional scenario-based formal specification approach
based on the SOFL specification language. Specifically, the tool supports three major
functions: (1) automatically checking the internal consistency of the current version of
the formal specification under construction, (2) automatically predicating further nec-
essary contents for the specification, and (3) automatically translating the textual format
of the specification into a comprehensible tabular format. All of these three functions
can be helpful to prevent errors during the construction of the specification. The result
of this research is expected to make the SOFL method more effective and practical in
industry where the current SOFL technology has been tested or applied in realistic
systems development.

The rest of this paper is organized into six sections. Section 2 briefly introduces the
essential idea of the scenario-based formal specification for a process using the SOFL
specification language. Section 3 explains the principles in detail. Section 4 shows the
structure of the tool, then gives some examples to explain how it works. Section 5
shows some related work in the field. Section 6 gives a discussion and concludes the
paper. Finally, Sect. 6 gives conclusion of this paper, and summarizes some research
directions for future work.

2 Scenario-Based Formal Specification

In this section, we briefly introduce the essential idea of the scenario-based formal
specification for a process using the SOFL specification language [5]. To this end, we
first need to explain the concepts of process and functional scenario, and then illustrate
the scenario-based approach to formal specification with an example.

2.1 Process Specification

A process is the essential component of a module in a SOFL formal specification. Its
specification is composed of the signature, pre- and post-conditions. The signature
shows the process name, input variables, output variables, and external variables. The
pre-condition sets a restriction on the input of the process while the post-condition
defines the relation between the input and the output that must be satisfied after the
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execution of the process. Below is an example showing the structure of a process
specification.

All of the types used to declare the input, output, and external variables in the
process must be clearly defined in the type section of the related module. A module is a
mechanism for defining a sub-system by describing its architecture using a condition
data flow diagram (CDFD) and specifying the functionality of every process occurring
in the CDFD. It also allows necessary constant identifiers, type identifiers, store
variables, type and store invariants to be defined properly, which can be used in process
specifications. Figure 1 illustrates the general structure of a SOFL module that is
divided into three parts. The first part is for declarations of necessary data items; the
second part is a collection of the process specifications; and the third part defines some
functions that may be applied in some process specifications.

Fig. 1. Structure of a module.

pre true
post x > 0 and y = 1 and message = “result1” or

x = 0 and y = 0 and message = “result2” or
x < 0 and y = -1 and message = “result3”

end_process

process Operate( x: real ) message: string
ext wr y: real

A Software Tool to Support Scenario-Based Formal Specification 189



2.2 Functional Scenarios

As mentioned in the Introduction, our collaboration with industry has helped us reveal
the fact that a process specification can be effectively constructed by building the
disjunction of functional scenarios. A functional scenario is a conjunction of the
pre-condition, a guard condition, and a defining condition. The guard condition is
defined as part of the post-condition and is characterized by including merely input
variables. The defining condition is also part of the post-condition but for defining
output variables in terms of their relation with input variables.

For example, let the process Test have the following specification:

In this specification, the post-condition is given as a disjunction of six functional
scenarios. Each functional scenario is a conjunction of a guard condition and the
corresponding defining condition, omitting the pre-condition of the process in the
original concept of functional scenario, because it applies to every such a conjunction
in the post-condition. For example, x = true and y < 0 and z = “output_1” is a
functional scenario whose guard condition is x = true and y < 0 and defining condition
is z = “output_1”. The original functional scenario should be w = true and x = true
and y < 0 and z = “output_1”.

2.3 Scenario-Based Formal Specification

By scenario-based formal specification, we mean that the post-condition of a process is
written by gradually adding functional scenarios one by one [6]. For instance, the
specification of the above process Test can be completed by gradually adding more
functional scenarios, as illustrated in Table 1.

This table shows a simple idea of gradually enriching the post-condition of the
process specification. Initially, the first functional scenario is written in the
post-condition by the developer, which also forms the current version of the
post-condition. Then, the second functional scenario is written to extend the existing
post-condition to form a new current version. This process continues until all of the
necessary functional scenarios are added in turn to form the final version of the
post-condition.

In such a process of completing the post-condition, there are two concerns. One is
whether each added functional scenario is internally consistent or not. For example, is

process Test( x: bool, y: real ) z: string 
ext rd w: bool
pre w = true
post x = true and y < 0 and z = “output_1” or 

x = true and y = 0 and z = “output_2” or 
x = true and y > 0 and z = “output_3” or 
x = false and y < 0 and z = “output_4” or  
x = false and y = 0 and z = “output_5” or  
x = false and y > 0 and z = “output_6” 

end_process  
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the first functional scenario in the example above, x = true and y < 0 and z = “out-
put_1”, satisfiable? If the answer is yes, the scenario is said to be consistent; otherwise,
it is not consistent. Obviously, this scenario is consistent. But it will become incon-
sistent if it is changed to x = true and y < 0 and y < 0 and z = “output_1”. Another
concern is whether the post-condition is complete or not. By completeness we mean
that for any input satisfying the pre-condition, there must exist an output that satisfies
the post-condition, that is, one of the functional scenario of the post-condition. Our
strategy for predicating further contents of the specification from the current partial
version is to achieve the completeness of the specification.

3 Principles

In this section, we discuss the basic principle for checking internal consistency,
predicating contents of specifications, and forming the tabular form in order to prevent
errors related to specification consistency and completeness and to improve the spec-
ification readability. The assumption for our work in this paper is that the
post-condition of the process under consideration must be written gradually in the
scenario-based manner. Of course, there are other styles of writing formal specifica-
tions, but since each style requires a different strategy for predication, we only focus on
the scenario-based style that has proved to be the most effective in practice in accor-
dance with the second author’s experience over the last twenty-five years.

3.1 Checking Internal Consistency

Checking the internal consistency is done at the functional scenario level. Whenever a
new functional scenario is added to the current version of the post-condition of the
process specification, its internal consistency will be automatically checked. Checking

Table 1. Scenario-based formal specification.

No. New functional
scenario added to the
post-condition

Current version of
the post-condition

1 x = true and y < 0 and z = “output_1” x = true and y < 0 and z = “output_1”
2 x = true and y = 0 and z = “output_2” x = true and y < 0 and z = “output_1” or

x = true and y = 0 and z = “output_2”
3 x = true and y > 0 and z = “output_3” x = true and y < 0 and z = “output_1” or

x = true and y = 0 and z = “output_2” or
x = true and y > 0 and z = “output_3”

4 x = false and y < 0 and z = “output_4” x = true and y < 0 and z = “output_1” or
x = true and y = 0 and z = “output_2” or
x = true and y > 0 and z = “output_3” or
x = false and y < 0 and z = “output_4”

… … …
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the syntax and type consistency does not fall into our scope because they can be
checked by a complier (or similar). What we are focusing on here is to check the
semantic consistency in order to ensure that the functional scenario is satisfiable.

Let f denote a functional scenario G and D (G is the guard condition and D the
defining condition) written by the developer (the user of our tool) with the following
structure of the guard condition G:

G1 and G2 and. . .and Gn:

The consistency checking is done through automatic testing. That is, a set of test
data is generated to evaluate whether the guard condition can be evaluated to true. If
yes, the checking will terminate; otherwise, more test data will be produced until either
the guard condition proves to be satisfiable or a predefined number of failure to do so
has been reached.

Several factors may affect the effectiveness or efficiency of the checking. One is
how the test data are generated. As far as this point is concerned, we adopt the
techniques for automatic test data generation from predicates developed by Liu and
NaKajima in [7]. Another factor is how to determine the number of test data that do not
evaluate the guard condition to true as the criterion to terminate the testing and to
support the conclusion that the guard condition is not consistent. This challenge has not
been successfully resolved; what we can do is to let the developer decide based on his
or her engineering judgement.

3.2 Automatic Checking the Internal Consistency

Let f denote the first functional scenario G and D (G is the guard condition and D the
defining condition) written by the developer (the user of our tool) with the following
structure of the guard condition G:

G1 and G2 and. . .and Gn:

Where each Gi (i = 1, …, n) is a relation (atomic predicate). Then, the following
specification content will be automatically predicated in principle:

G1 and G2 and. . .and not Gn and D1 or

G1 and G2 and. . .and not Gn�1 and not Gn and D2 or

. . .

not G1 and not G2 and . . . and not Gn and Dm:

In the above expression, m = 2n − 1. The predicated content should take both true
and false case for each constituent predicate Gi into account, where the total number of
the predicated functional scenarios is 2n − 1, the corresponding defining condition Dj

(j = 1, …, 2n − 1) may be the same for some different guard conditions. Therefore, in
practice, many of the predicated functional scenarios can be merged and therefore the
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less number of functional scenarios will be ultimately formed for the process specifi-
cation. The important property of such a specification is that its completeness, as
explained previously, is assured in the final specification.

When forming not Gi for each relation Gi, we also take different methods for
different kinds of relations. Specifically, we divide a relation into three kinds:

(1) Comparison between a string type variable and a string constant,
(2) Comparison between a boolean variable and a truth value, and
(3) Comparison between numeric variables and values.

For case (1), let us consider the example x = “Hosei University”. In this case, the
predicated negation (i.e., not Gi, where Gi denotes this equality) is:

x <> “Hosei University”

Which means that x is not equal to “Hosei University”. For case (2), let us consider
the example y = true. In this case, the predicated negation is:

y ¼ false:

For case (3), let us consider the example y > 3. In this case, the predicated negation
is:

y\ 3 or y ¼ 3:

Note that our algorithms for predication deal with the expressions generally, and
the reason we only use examples here for the discussion is to ensure a good readability
of the presentation so that the reader can easily understand our essential idea.

3.3 Automatic Translation to Tabular Form

The construction of tabular forms from the SOFL process specification is functional
scenario-based. Each scenario is translated into one tabular form, and the whole
functional scenario form of the specification, which is a disjunction of all functional
scenarios, is translated into a set of related tabular forms. Table 2 is an example of the
tabular form of one scenario. The table mainly includes two parts: guard condition part
and defining condition part, which are represented by GC and DC as well as the related
contents, respectively. The content of GC is further divided into a number of rows, each

Table 2. The tabular form of scenario.

Functional scenario

GC x = true ✓

y = 0 ✓

DC z = 1 ✓
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showing a relation (atomic constitute predicate) of the guard condition. If each relation
is marked with a tick symbol to draw the attention from the specification reader. The
same presentation style also applies to DC part.

To build a tabular form for a process specification, the following three steps are
taken:

Step1:
(1) Get all of the related information of variables.
(2) Obtain all of the functional scenarios from the specification.
Step2:
(1) Divide scenarios and predicates based on keywords, such as “and”, “or”.
(2) Find the guard condition or defining condition from each functional scenario.
Step3:
(1) Draw tabular forms based on scenarios.
(2) Show tabular forms to the user, and provide explanative messages to the user.
These three steps have properly implemented into our supporting tool.

4 Software Tool

We have developed a prototype tool to support the scenario-based formal specification
approach [8–12]. In this section, we will focus our discussion on the structure and
functions of the tool, and also present some case studies to demonstrate the feasibility
and usefulness.

4.1 Implementation Structure

The techniques for realizing the important functions have been implemented to certain
extent in our tool. The name of this tool is Scenario-based SOFL Writing Supported
Tool. Figure 2 shows the main GUI of the tool. The tool also includes conventional
functions, such as open file, save file, and edit text. The GUI mainly has three areas, the
management area (left part), the operating area (middle part), and the feedback area
(right part). The management area can show the structure of a module and the content
of a module. When the user selects a process in a SOFL module, its specification will
be displayed in the operating area. The user can edit the specification as he or she
wishes. In the feedback area, the user can select pieces of information displayed, such
as the set of scenarios and the feedback message of the process. Tabular forms pro-
duced by translation can also be displayed in this area.

4.2 Case Study

We use the tool to construct a process specification to test the usefulness of the three
functions supported by the tool. Since it is rather difficult to find a realistic operation
suitable for exploring various functions mentioned previously, we use an artificial
example suitable for our purpose in the case study. The operation Test is given as a
process in SOFL below.
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The process includes two input variables var1 and var2, one output variable var4,
and one external (or state) variable var3. Before the user writes the post-condition, the
tool first analyzes the process signature to get the necessary information of all the
variables and stores them in a table as shown in Table 3.

On the basis of the information in this table, the tool will automatically predicate
two functional scenarios as shown in Table 4, one describing the situation when the
Boolean variable var 2 is true and the other defining the situation when it is false.

Responding to the output of the tool, the user will then write specification contents
for the conditions C(var1), C(var3), and C(var4) in both functional scenarios. If the
user makes logical errors in writing the conditions, the tool is supposed to

process Test( var1: string, var2: bool ) var4: string
ext rd var3: real
pre true
post ......
end_process

Fig. 2. The UI of the tool.

Table 3. Variables.

Variable name Variable type Condition type

var1 string Guard condition
var2 bool Guard condition
var3 real Guard condition
var4 string Defining condition
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automatically check it and provide a feedback message. There are three possible logical
errors as shown in Table 5. The first error is when var1 = “GCcontent” is false, the
tool will update the set of scenarios. It only adds a new scenario that includes the failure
of var1 = “GCcontent”.

The second one is the different value range in predicates. We do not specify the
value of var3 in the beginning. So when the user adds a condition about var3 and set
the value of var3, it means a new value has been generated, and a mismatching appears.
So we need to modify the set of scenarios. The new set of scenarios is shown in
Table 6.

The third error is the self-contradiction of the defining condition. The tool will not
build a new scenario in the set of scenarios. Because the defining condition cannot
affect the structure of the set of scenario. It only represents the result of a scenario. So,
we only need to check the correction, then modify it.

Finally, a fallible situation will be shown to the user: different scenarios have the
same input and the different output. We can see, if var2 is equal to true, and var3 is
greater than 0, this situation satisfies both Scenario 1 and Scenario 2, so the defining
condition might be var4 = “output_1” or var4 = “output_2”. In SOFL, this situation
is allowed. For error prevention, we can show this feedback message to the user, as
shown in Table 7.

Table 5. Functional scenarios with logical errors.

Item The set of scenarios

Pre-
condition

True Scenario 1:
GC: var1 = “GCcontent”, var2 = true,
C(var3)
DC: C(var4)

Scenario 2:
GC:
not var1 = “GCcontent”, var2 = false,
C(var3)
DC: C(var4)

Scenario 3:
GC: var1 = “GCcontent”, var2 = false,
C(var3)
DC: C(var4)

Post-
condition

not var1 = “GCcontent”
and var2 = true

Table 4. The first functional scenarios predicated by the tool.

Existing information The set of scenarios

Item Name Type Scenario 1:
GC: C(var1), var2 = true, C(var3)
DC: C(var4)
Scenario 2:
GC: C(var1), var2 = false, C(var3)
DC: C(var4)

Input variable var1 string
var2 bool

External variable var3 real
Output variable var4 string
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Table 6. The change of value range.

Post-condition The set of scenarios

var1 = “GCcontent” and
var2 = true and var3 <=0

Scenario 1:
GC: var1 = “GCcontent”, var2 = true, var3 <=0
DC: C(var4)

Scenario 2:
GC: var1 = “GCcontent”, var2 = true, var3 > 0
DC: C(var4)

Scenario 3:
GC: var1 = “GCcontent”, var2 = false, var3 <=0
DC: C(var4)

Scenario 4:
GC: var1 = “GCcontent”, var2 = false, var3 > 0
DC: C(var4)

Table 7. The confliction between different scenarios.

Post-condition The set of scenarios Feedback message

var1 = “GCcontent” and
var2 = true and var3 >=0 and
var4 = “output_1” or
var1 = “GCcontent” and
var2 = true and var3 > 0 and
var4 = “output_2”

Scenario 1:
GC: var1 = “GCcontent”,
var2 = true, var3 >=0
DC: var4 = “output_1”

Scenario 2:
GC: var1 = “GCcontent”,
var2 = true, var3 > 0
DC: var4 = “output_2”

……

A contradiction
between scenarios.
Scenario 1 and
Scenario 2.

Fig. 3. The tabular forms.
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After all of the logical errors are removed, the tool will automatically generate the
tabular forms in the real-time manner. When a scenario has been written, the tool will
show all tabular forms of the scenario. Figure 3 shows the final result of the generation.

5 Related Work

There are some studies about the development or analysis of SOFL. Zhu and Liu have
presented a way to analyze SOFL [13], and have built a tool to support it. One of
fundamental functions is very important in this tool: Syntactic analysis of SOFL formal
specifications and automatic generation of functional scenarios. Another paper is
written by Liu, Hayashi, Takahashi, Kimura and Nakayama, they first explain the
concepts of the functional scenario form and the functional scenario in the context of a
VDM operation specification, then discuss the techniques for the transformation [14].
For capturing Complete and Accurate Requirement, Liu gives a series of theories and
explains how it can be achieved [4]. The readability of specifications for large-scale and
complex systems can be so poor, Liu and Wang describe a software tool that supports
the animation of specifications by simulating their functional scenarios using the
Message Sequence Chart (MSC) to review the adequacy of the specification [15].

For this paper, the most important related research is syntactic analysis of SOFL.
These related works provide some effective methods can be used to help us get the
most basic expression of post-condition. We can also further develop SOFL in com-
pleteness, requirement, verification and convenience.

6 Conclusion and Future Work

We have developed a prototype tool to support the functional scenario-based formal
specification approach that proves to be effective in practice. The tool offers three
functions, including automatic checking of the internal consistency of functional sce-
narios, automatically predicating more functional scenarios based on the current ones,
and automatically translating the formal specification into tabular forms to improve its
readability. We have conducted a case study that helps us demonstrate the usefulness of
the tool in preventing errors during the construction of the formal specifications.

In the future, we are interested in continuous working on the extension and
improvement of the tool to support more functions in a robust manner, including
automatic checking of internal consistency within functional scenarios and between
functional scenarios of different processes. Using the updated tool, we will also be
interested in conducting larger experiments to evaluate both the scenario-based formal
specification approach and the tool support.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number 26240008
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Abstract. An interpreter for an imperative programming language
called Minila has been formally specified in CafeOBJ, an executable spec-
ification language, and so have a virtually machine (VM) and a compiler.
The compiler transforms a Minila program into an instruction sequence
processed by the VM. Since the formal specifications are executable, it
is doable to test if for any concrete terminating program p the result
of interpreting p is the same as the one of processing by the VM the
instruction sequence generated from p by the compiler, where the result
is an environment, a variable-value pair collection. The equivalence is
called the Minila compiler correctness with respect to p. In addition to
test, properties of CafeOBJ specifications can be theorem proved by writ-
ing what are called proof scores in CafeOBJ and executing them with
CafeOBJ. The Minila compiler correctness for all terminating programs
in Minila has been theorem proved.
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1 Introduction

Human beings have heavily rely on software. It is impossible to even think about
our life without software. We have been facing what is called Internet of Things
(IoT) era in which almost all things are connected through the Internet and soft-
ware will become more and more important. Software must be trustworthy in
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the era. Main part of software is developed in high-level programming languages
from which low-level instruction sequences that can be dealt with by micropro-
cessors or virtual machines are generated with compilers that are also software.
Therefore, trustworthiness of software crucially depends on compilers. Almost
all compilers, however, have been certified with testing only and therefore safety-
critical project teams as well as compiler suppliers need to carefully check if the
compilers used in the projects conform to the semantics of the programming lan-
guage used [3]. Although testing is one important technique to certify software,
engineers as well as researchers in software have realized that it does not suffice
to truly certify software with testing only. Formal verification is one possible
promising technique that is complementary to testing to truly certify software
including compilers.

An interpreter for an imperative programming language called Minila1 has
been formally specified in CafeOBJ [4] (cafeobj.org), an executable specification
language, and so have a virtually machine (VM) and a compiler. The compiler
transforms a Minila program into an instruction sequence processed by the VM.
A CafeOBJ specification consists of a signature Σ and a set E of equations2. Σ
consists of a set of sorts including partial-order among sorts and a set of opera-
tors. Sorts are interpreted as sets of data values, partial-order among sorts are
then subset relations among those sets, and operators are basically interpreted
as functions over those sets, although some operators called constructors are
used to represent data values. Equations define properties of functions and data
values. An operator is in the form f :S1 . . . Sn -> Sn+1, where n ≥ 0, f is
the operator name, each Si is a sort, the sequence of sorts S1 . . . Sn is an arity
of f , and Sn+1 is the sort of f . If n = 0, the operator is called a constant. An
operator may be a constructor. If that is the case, constr follows the sort of
the operator. Terms are made of operators and variables. A variable of a sort
is a term of the sort. Given terms t1, . . . , tn of sorts S1, . . . , Sn, f(t1, . . . , tn)
is a term of sort Sn+1. If a sort S′ is a super-sort of a sort S (and then S is
a sub-sort of S′), terms of S are also those of S′. If the operator name con-
tains underscores , parameters are put at those underscores. For example, for
if then else fi : Bool S S -> S, if b then t1 else t2 fi is used as a term
of S, where Bool is the sort of built-in Boolean values, b is a term of Bool, and
t1, t2 are terms of S. An equation is in the form l = r, where l, r are terms of a
same sort. An equation can have a condition and is in the form l = r if c, where
c is the condition and a term of Bool. An equation can be used as a left-to-right
rewrite rule. If it has a condition, it can be used as a left-to-right rewrite rule
when the condition reduces to true that is the constant of Bool and is given the
expected meaning. This is how CafeOBJ specifications can be executed.

1 Minila consists of a minimal essence of procedural programming languages, such as
C, and has been used by the third author, et al. for educational purposes (www.
jaist.ac.jp/∼ogata/lecture/i217/).

2 A set of trans rules could be included in a CafeOBJ specification, but trans rules
are not used in this paper.

http://cafeobj.org
www.jaist.ac.jp/~ogata/lecture/i217/
www.jaist.ac.jp/~ogata/lecture/i217/
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Since CafeOBJ specifications can be executed, it is doable to test if for any
concrete terminating Minila program p the result of interpreting p is the same
as the one of processing by the VM the instruction sequence generated from
p by the compiler, where the result is an environment that is a variable-value
pair collection and used to record the value of each Minila variable in p. The
equivalence is called the Minila compiler correctness with respect to p.

In addition to testing, properties of CafeOBJ specifications can be theorem
proved by writing what are called proof scores in CafeOBJ and executing them
with CafeOBJ. The Minila compiler correctness for all terminating Minila pro-
grams has been theorem proved. The paper describes the theorem proof of the
Minila compiler correctness for all terminating Minila programs.

It is one strong point of CafeOBJ’s that CafeOBJ specifications can be used
for both theorem proving and testing thanks to their executability. Formal spec-
ifications written in some formal specification languages, such as VDM++, can
be tested because a class of VDM++ specifications can be executed, but can-
not be theorem proved. Formal specifications written in a language dedicated
to theorem proving, such as Isabelle/HOL and Coq, cannot be executed and
then cannot be tested, while executable programs can be derived from proofs
conducted by Coq, which is one strong point of Coq’s.

The rest of the paper is organized as follows. Section 2 briefly introduces for-
mal specification and verification in CafeOBJ. Section 3 describes Minila. Formal
verification of the Minila compiler is described in Sect. 4. Section 5 discusses some
issues related to the formal verification of the Minila compiler. Finally the paper
is concluded in Sect. 6.

2 Formal Specification and Verification in CafeOBJ

CafeOBJ is an algebraic specification language. Main ingredients of CafeOBJ
specifications are equations. As described, CafeOBJ specifications can be exe-
cuted by using equations as left-to-right rewrite rules with the CafeOBJ system.
Thanks to this executability, it is possible to not only test CafeOBJ specifi-
cations like ordinary programs, but also theorem prove properties of CafeOBJ
specifications by writing what are called proof scores3 in CafeOBJ and execute
them with the CafeOBJ system.

Let us consider the specification of generic lists:

mod! LIST (E :: TRIV) {

pr(PNAT)

[List]

op nil : -> List {constr}

op _|_ : Elt.E List -> List {constr} .

op _@_ : List List -> List .

3 The terminology “proof score” has been coined by Joseph Goguen [5]. The authors
suppose that since he was very enthusiastic to music, the terminology came from
“music score”.
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op len : List -> PNat .

op rev1 : List -> List .

op rev2 : List -> List .

op sr2 : List List -> List .

vars E E2 : Elt.E .

vars L1 L2 L3 : List .

eq [@1]: nil @ L2 = L2 .

eq [@2]: (E | L1) @ L2 = E | (L1 @ L2) .

eq len(nil) = 0 .

eq len(E | L1) = s(len(L1)) .

eq rev1(nil) = nil .

eq rev1(E | L1) = rev1(L1) @ (E | nil) .

eq rev2(L1) = sr2(L1,nil) .

eq sr2(nil,L2) = L2 .

eq sr2(E | L1,L2) = sr2(L1,E | L2) .

}

Basic units of CafeOBJ specifications are modules. PNAT is a module in which
Peano natural numbers are specified and reused in the module LIST that has a
parameter E. TRIV is a built-in module in which one sort Elt is declared. An
actual parameter LIST can take is basically a module in which there must be at
least one sort. Elt.E is the sort Elt in the parameter E and used as the sort of
list elements. List is the sort of lists. nil and | are the constructors of lists.
nil is the empty list and given elements a, b and c of the sort Elt.E, a | b
| c | nil is the list that consists of the three elements in this order. PNat is
the sort for Peano natural numbers and 0 and s are the constructors of Peano
natural numbers, representing zero and the successor function. @ , len, rev1,
rev2 and sr2 are functions that are defined in terms of equations. Equations can
be given labels, such as @1 and @2. E and E2 are variables of the sort Elt.E, and
L1, L2 and L3 are variables of the sort List. Equations are used as left-to-right
rewrite rules to rewrite terms. For example, (a | b | nil) @ (c | d | nil)
is rewritten as follows:

(a | b | nil) @ (c | d | nil)
→@2 a | ((b | nil) @ (c | d | nil))
→@2 a | b | (nil @ (c | d | nil))
→@1 a | b | c | d | nil

where →@1 and →@2 mean one-step rewrites with the equations @1 and @2,
respectively.

@ concatenates two lists. len returns the number of elements in a list. rev1
reverses a list, and so does rev2. rev1 is defined in the very standard way, while
rev2 is defined in a tail recursive call and uses sr2. rev2 may reverse a list faster
than rev1, but does rev2 really reverse any list? One possible way to confirm if
it does is to test several possible cases:

open LIST .

ops a b c d : -> Elt.E .
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red rev1(nil) = rev2(nil) .

red rev1(a | nil) = rev2(a | nil) .

red rev1(a | b | nil) = rev2(a | b | nil) .

red rev1(a | b | c | nil) = rev2(a | b | c | nil) .

red rev1(a | b | c | d | nil) = rev2(a | b | c | d | nil) .

close

where rev1 is used as an oracle. open begins the use of a module and close stops
the use of the module. An open-close environment makes an on-the-fly module
in which a given module is imported. Therefore, what can be declared in mod-
ules can be declared in open-close environments, such as constants. Command
red reduces a given term. Each of the five reductions in the open-close environ-
ment returns true, meaning that rev2 really reverses any list that consists of
up to four elements. To the best of our knowledge, parametrized modules, such
as functors in Standard ML and generics in Java, must be instantiated to use
them. CafeOBJ parametrized modules can be, however, used as they are with-
out instantiating them. Thus, the four constants of Elt.E denote really arbitrary
elements, and then the five reductions guarantee that rev2 reverses an arbitrary
list that consists of up to four elements.

The test does not, however, guarantee that rev2 really reverses a list that
consists of five or more elements. One possible way to guarantee if it really
reverses every list is to prove that rev2(L) = rev1(L) for all L:List. The proof
can be carried out by structural induction on L. The proof score is as follows:

open LIST .

red rev1(nil) = rev2(nil) .

close

open LIST .

op l1 : -> List . op e : -> Elt.E .

eq [IH]: rev1(l1) = rev2(l1) .

eq [lem1]: sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .

red rev1(e | l1) = rev2(e | l1) .

close

The first open-close fragment is the base case and the second one is the induction
case. l1 and e are fresh constants that represent an arbitrary list and an arbitrary
element. The equation IH is the induction hypothesis and the equation lem1 is a
lemma. Both reductions return true meaning that the proof succeeds, provided
that the lemma is proved. The proof of the lemma needs other lemmas:

eq [lem2]: (L1 @ L2) @ L3 = L1 @ (L2 @ L3) .

eq [lem3]: rev1(rev1(L1) @ L2) = rev1(L2) @ L1 .

eq [lem4]: L1 @ nil = L1 .

If lem1 is not used, the second reduction returns

sr2(l1,nil) @ (e | nil) = sr2(l1,e | nil)
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This allows us to conjecture one lemma candidate:

eq [lem0]: sr2(L1,nil) @ (E2 | nil) = sr2(L1,E2 | nil) .

However, the proof of lem0 requires a series of similar lemmas because nil and
E2 | nil in lem0 are too specific. One possible remedy is to make them more
generic, obtaining lem1. The reason why we do not use

eq [lem1’]: sr2(L1,nil) @ (E2 | L2) = sr2(L1,E2 | L2) .

is that CafeOBJ uses equations as left-to-right rewrite rules. There is no essential
difference between lem1 and lem1’ from an equational reasoning point of view
because there is no direction, while there is a significant difference between them
from a rewriting point of view because there is the left-to-right direction.

3 Minila

Minila is an imperative programming language and has five kinds of statements:
the empty statement (estm), assignment statements (V := E ;), conditional
statements (if E {S} else {S}), loop statements (while E {S}) and sequential
composition statements (S S), where S is a statement and E is an expression.
Natural numbers are only the data type available in Minila. The following is a
program (Psr) in Minila that computes the positive integral part of the square
root of the natural number stored in the variable x:

x := 20000000000000000 ;

y := 0 ;

z := x ;

while y =!= z {

if ((z - y) % 2) === 0 {

tmp := y + (z - y) / 2 ;

} else {

tmp := y + ((z - y) / 2) + 1 ;

}

if tmp * tmp > x {

z := tmp - 1 ;

} else {

y := tmp ;

}

}

Note that Peano natural numbers are used in the specifications that have been
used in the formal verification. As usual, non-zero is treated as true, while zero is
treated as false. All operators except for some used in Minila are very common.
The exceptions are =!=, === and -. For the first two, the notations are different
because = and == are given specific meanings in CafeOBJ, and for the third one,
it is given a different semantics because natural numbers are only the data type
used in Minila. Given two natural numbers m and n, m =!= n is 0 if m equals n
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and 1 otherwise, m === n is 1 if m equals n and 0 otherwise, and m - n is the
intended value if m ≥ n and errPNat that is an error otherwise.

Among the sorts used in the Minila specification are PNat for Peano natu-
ral numbers, PNat&Err for Peano natural numbers and an error number, Var
for Minila variables, Exp for Minila expressions, Stm for Minila statements,
Env for environments (maps of Var to PNat&Err, used to record assignments),
Env&Err for environments and an error environment, Stack for stacks, Instr for
instructions, Instr&Err for instructions and an error instruction, and IList for
instruction sequences. errEnv, errStack, errIList and errInstr are the error
environment, stack, instruction sequence and instruction, respectively. Stacks,
instruction sequences and environments are specified as instances of LIST par-
tially mentioned in the last section such that stacks are lists of PNat&Err,
instruction sequences are lists of Instr&Err and environments are lists of Var-
PNat&Err pairs. nil is renamed empStk for stacks, iln for instruction sequences
and empEnv for environments. Given an instruction list il and a natural number
pc, nth(pc,il) returns the instruction pointed by pc in il if pc is within the
bounds of il and errInstr otherwise. Given an environment ev, a variable x
and a value v of PNat&Err, lookup(ev,x) returns the value associated with x
if any and errPNat otherwise, and update(ev,x,v) returns the environment
obtained by updating ev with x and v.

Let N, N1, N2 and PC be CafeOBJ variables of PNat, NE be one of PNat&Err,
V be one of Var, E be one of Exp, S, S1 and S2 be ones of Stm, EV be one of Env,
EE be one of Env&Err, I be one of Instr, IL be one of IList and ST be one of
Stack.

The main part of the interpreter is the function interpret declared as fol-
lows:

op interpret : Stm -> Env&Err .

interpret takes a program (a statement) and returns a normal environment
in which computation results are found if the program has been successfully
interpreted and errEnv otherwise.

Excerpts from the set of equations defining interpret are shown:

eq interpret(S) = eval(S,empEnv) .

eq eval(S,errEnv) = errEnv .

eq eval((V := E ;),EV) = update(EV,V,evalExp(E,EV)) .

eq eval(if E {S1} else {S2},EV) = evalIf(evalExp(E,EV),S1,S2,EV) .

eq eval(while E {S},EV) = evalWhile(evalExp(E,EV),E,S,EV) .

eq eval(S1 S2,EV) = eval(S2,eval(S1,EV)) .

eq evalIf(errPNat, S1, S2, EV) = errEnv .

eq evalIf(N,S1,S2,EV) = if (0 < N) then {eval(S1,EV)} else {eval(S2,EV)} .

eq evalWhile(errPNat,E,S,EV) = errEnv .

eq evalWhile(N,E,S,EV)

= if (0 < N) then {eval(while E {S},eval(S,EV))} else {EV} .

evalExp interprets an expression under an environment and returns a natural
number or errPNat. The operator if then{ }else{ } is prepared for each sort S
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such that the first argument is Bool, the second and third arguments are S, the
second argument is selected if the first argument is true and the third argument
is selected if the first argument is false.

The virtual machine is a stack machine. Given an instruction sequence, it
uses a program counter, a stack and an environment to execute the instruction
sequence, and returns an environment or errEnv. The main part of the virtual
machine is the function run declared as follows:

op run : IList -> Env&Err .

Excerpts from the set of equations defining run are shown:

eq run(IL) = exec(IL,0,empStk,empEnv) .

eq exec(IL,PC,ST,errEnv) = errEnv .

eq [FI]: exec(IL,PC,ST,EV) = exec2(nth(PC,IL),IL,PC,ST,EV) .

eq exec2(errInstr,IL,PC,ST,EV) = errEnv .

eq exec2(I,IL,PC,errPNat | ST,EV) = errEnv .

eq exec2(push(N),IL,PC,ST,EV) = exec(IL,s(PC),N | ST,EV) .

eq exec2(load(V),IL,PC,ST,EV) = exec(IL,s(PC),lookup(EV,V) | ST,EV) .

eq exec2(store(V),IL,PC,empStk,EV) = errEnv .

eq exec2(store(V),IL,PC,N1 | ST,EV) = exec(IL,s(PC),ST,update(EV,V,N1)) .

eq exec2(add,IL,PC,empStk,EV) = errEnv .

eq exec2(add,IL,PC,N1 | empStk,EV) = errEnv .

eq exec2(add,IL,PC,N2 | N1 | ST,EV) = exec(IL,s(PC),N1 + N2 | ST,EV) .

eq exec2(jump(N),IL,PC,ST,EV) = exec(IL,PC + N,ST,EV) .

eq exec2(bjump(0),IL,PC,ST,EV)= exec(IL,PC,ST,EV) .

eq exec2(bjump(s(N)),IL,0,ST,EV) = errEnv .

eq exec2(bjump(s(N)),IL,s(PC),ST,EV) = exec2(bjump(N),IL,PC,ST,EV) .

eq exec2(jumpOnCond(N),IL,PC,empStk,EV) = errEnv .

eq exec2(jumpOnCond(N),IL,PC,N1 | ST,EV)

= if (N1 = 0) then {exec(IL,s(PC),ST,EV)} else {exec(IL,PC + N,ST,EV)} .

eq exec2(quit,IL,PC,ST,EV) = EV .

Among the instructions for the virtual machine are push(N), load(V), store(V),
add, jump(N), bjump(N), jumpOnCond(N) and quit. push(N) pushes N on the
stack and increments the program counter. load(V) gets the value associated
with V in EV by lookup(EV,V), pushes the value on the stack and increments the
program counter. If the stack is not empty, store(V) pops the stack, updates
the environment with V and the value extracted from the stack and increments
the program counter, and otherwise it leads to errEnv. If the stack contains
at least two values, add pops the stack twice, pushes the addition of the two
values extracted from the stack and increments the program counter, and other-
wise it leads to errEnv. jump(N) increases the program counter by N. bjump(N)
decreases the program counter by N if the program counter is greater than
or equal to N, and otherwise it leads to errEnv. If the stack is not empty,
jumpOnCond(N) pops the stack, increases the program counter by N if the value
extracted from the stack is not zero and increments the program counter oth-
erwise. If the stack is empty, jumpOnCond(N) leads to errEnv. quit returns the
environment as the result of the execution.
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gen(E) gen(S1) gen(S2)jumpOnCond(  ) jump(  ) jump(  )
if condition is true

(a) instructions generated for conditional statements

gen(E) gen(S)jumpOnCond(  ) jump(  ) bjump(  )
if condition is true

(b) instructions generated for loop statements

Fig. 1. Instructions generated for conditional and loop statements

The main part of the compiler is the function compile declared as follows:

op compile : Stm -> ILIST .

Excerpts from the set of equations defining compile are shown:

eq compile(S) = gen(S) @ (quit | iln) .

eq gen(V := E ;) = genExp(E) @ (store(V) | iln) .

eq gen(if E {S1} else {S2}) = genExp(E) @ (jumpOnCond(s(s(0))) |

(jump(s(s(len(gen(S1))))) | (gen(S1) @ (jump(s(len(gen(S2)))) |

gen(S2))))) .

eq gen(while E {S}) = genExp(E) @ ((jumpOnCond(s(s(0))) |

jump(s(s(len(gen(S))))) | gen(S)) @ (bjump(s(s(len(gen(S))

+ len(genExp(E))))) | iln)) .

eq gen(S1 S2) = gen(S1) @ gen(S2) .

Figure 1 shows the outlines of instructions generated for conditional and loop
statements.

interpret(Psr) returns the following environment, and so does
run(compile(Psr)):

(x , 20000000000000000) | (y , 141421356) |

(z , 141421356) | (tmp , 141421356) | empEnv

Therefore, we have successfully tested the Minila compiler correctness with
respect to Psr. We can test the correctness with other terminating Minila pro-
grams. To conclude the Minila compiler correctness with respect to all terminat-
ing Minila programs, however, we need to formally prove that for all terminating
Minila programs p interpret(p) = run(compile(p)).

4 Formal Verification

What we would like to do is to formally verify the correctness of the Minila com-
piler for all Minila programs. To this end, we need to formalize the correctness.
We basically define it by using the Minila interpreter as an oracle: (∀S :Stm)
run(compile(S)) = interpret(S). However, programs may not terminate. If
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that is the case, the formula does not hold. Then, we only take into account
terminating programs. Therefore, we define the correctness (CompCorr) of the
Minila compiler as follows:

(∀ S:Stm) tc(S) ⇒ run(compile(S)) = interpret(S)

where tc(S) says that S terminates. tc is defined as follows: tc(S) =
tc(S,empEnv). tc(S,EE) is defined as follows:

eq tc(S,errEnv) = true .

eq tc(estm,EV) = true .

eq tc(V := E ;,EV) = true .

ceq tc(if E {S1} else {S2},EV) = true if evalExp(E,EV) = errPNat .

ceq tc(if E {S1} else {S2},EV) = tc(S1,EV) if 0 < evalExp(E,EV) .

ceq tc(if E {S1} else {S2},EV) = tc(S2,EV) if evalExp(E,EV) = 0 .

ceq tc(S1 S2,EV) = tc(S2,eval(S1,EV)) if tc(S1,EV) .

To complete the definition of tc, we need to tackle the case “while E {S},”
which requires to define the new function as follows:

op eval : PNat&Err Stm Env&Err -> Env&Err {strat (0 1 0)}

eq eval(errPNat,S,EV) = errEnv .

eq eval(N,S,errEnv) = errEnv .

eq eval(0,S,EV) = EV .

eq eval(S,eval(N,S,EE)) = eval(s(N),S,EE) .

The LHS and RHS of the last equation are swapped because of a verification
purpose. We also need to give the strategy (0 1 0) to eval to control rewrit-
ing [6,7].

tc(while E {S},EV) is defined as follows:

(∃ N:PNat)tc(N,E,S,EV)

where tc(N,E,S,EV) is defined as follows:

(evalExp(E,eval(N,S,EV)) = 0 ∨ evalExp(E,eval(N,S,EV)) = errPNat) ∧
(∀ K:PNat) (K < N ⇒ tc(S,eval(K,S,EV)) ∧ K < N ⇒ 0 < evalExp(E,eval(K,S,EV)))

The most important lemma (Lem1) is as follows:

(∀ S:Stm)(∀ IL1,IL2:IList) (∀ ST:Stack)(∀ EE:Env&Err)
tc(S,EE) ⇒ eval(IL1 @ gen(S) @ IL2,len(IL1),ST,EE) =

eval(IL1 @ gen(S) @ IL2,len(IL1 @ gen(S)),ST,eval(S,EE))

The LHS of the conclusion part of Lem1 is the case in which IL1 has been
processed. Therefore, the program counter is len(IL1) and EE is the environment
obtained by processing IL1 under empEnv. The RHS is the case in which gen(S)
has been processed in the former case. Hence, the program counter is len(IL1
@ gen(S)) and the environment is eval(S,EE). Lem1 says that if S terminates
in EE, both cases are equal.

In addition to Lem1, we need some more lemmas to complete the formal
verification. One of those lemmas is
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(∀ S:Stm)(∀ IL1,IL2:IList) nth(len(LI1 @ gen(S)),LI1 @ gen(S) @ (I | LI2)) = I

Let the lemma be referred as Lem2. Let n be len(LI1 @ gen(S)). Lem2 says
that the nth instruction in LI1@gen(S)@(I|LI2) is I.

The following corollaries can be derived from Lem1 and Lem2:

tc(S,EE) ⇒
eval(gen(S) @ IL2,0,ST,EE) = eval(gen(S) @ IL2,len(gen(S)),ST,eval(S,EE))

nth(len(gen(S)),gen(S) @ (I | LI2)) = I

Note that quantifiers are omitted. The corollaries are referred as CorLem1 and
CorLem2.

CompCorr is proved by case splitting based on tc(s,empEnv). The case is
split into (1) in which it is true and (2) in which it is false. Case (1) is further
split into (1.1) in which eval(s,empEnv) is a normal environment and (1.2) in
which it is errEnv. The proof score of case (1.1) is as follows:

open VERIFY-COMP .

-- FRESH CONSTANTS

op s : -> Stm .

op ev : -> Env .

-- CASE SPLITTING HYPOTHESES

eq tc(s,empEnv) = true .

eq eval(s,empEnv) = ev .

-- LEMMAS

ceq eval(gen(S) @ IL2,0,ST,EE)

= eval(gen(S) @ IL2,len(gen(S)),ST,eval(S,EE)) if tc(S,EE) .

eq nth(len(gen(S)),gen(S) @ (I | LI2)) = I .

-- CHECK

red tc(s) implies run(compile(s)) = interpret(s) .

close

CorLem1 is written as a conditional equation. The proof score of case (1.2) is
obtained by replacing the RHS of the second case splitting hypothesis equation
with errEnv. The proof score of case (2) is obtained by replacing the RHS of the
first case splitting hypothesis equation with false and deleting the other three
equations.

Lem1 is proved by structural induction on S. In the induction case in which
“while e {e}” is taken into account, what to do is to show4

(∀ N:PNat)(∀ EV:Env) (∀ IL1,IL2:IList)(∀ ST:Stack)
(tc(N,e,s,EV) ⇒ concl(e,s,EV,IL1,IL2,ST))

4 (∀y : T2)(∀z : T3)((∃x : T1)p(x, y) ⇒ q(y, z)) is equivalent to (∀x : T1)(∀y : T2)(∀z :
T2)(p(x, y) ⇒ q(y, z)).
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where concl(E, S, EV, IL1, IL2, ST) is as follows:

eval(IL1 @ gen(while E {S}) @ IL2,len(IL1),ST,EV) =
eval(IL1 @ gen(while E {S}) @ IL2,len(IL1 @ gen(while E {S})),

ST,eval(while E {S},EV))

The induction hypothesis is

(∀ EV:Env)(∀ IL1,IL2:IList)(∀ ST:Stack) (tc(s,EV) ⇒ prem(s,EV,IL1,IL2,ST))

where prem(S, EV, IL1, IL2, ST) is as follows:

eval(IL1 @ gen(S) @ IL1,len(IL1),ST,EV) =
eval(IL1 @ gen(S) @ IL2,len(IL1 @ gen(S)),ST,eval(S,EV))

To tackle the induction case, we need several lemmas, one of which as follows:

(∀ N:PNat)(∀ E:Exp)(∀ S:Stm)(∀ EV:Env) (∀ IL1,IL2,IL3,IL4:IList)(∀ ST:Stack)
prem(S,EV,IL3,IL4,ST) ⇒ tc(N,E,S,EV) ⇒ concl(E,S,EV,IL1,IL2,ST)

The lemma is referred as Lem3. Lem3 is proved as follows: assuming the premise
prem(s, ev, IL3, IL4, st), tc(N,E,s,ev) ⇒ concl(E, s, ev, IL1, IL2, st) is proved
by structural induction on N. The induction case is split into two cases (1) in
which evalExp(e,eval(s(n),s,ev)) is 0 and (2) in which it is errPNat. Then,
case (1) is further split into two cases (1.1) in which eval(s,ev) is a normal
environment and (2.2) in which it is envErr, and so is case (2).

The proof score of case (1.1) is as follows5:

open VERIFY-COMP .

-- Import some modules.

pr(EVAL) pr(DEL)

The module VERIFY-COMP is opened and the two module EVAL and DEL are
imported. VERIFY-COMP contains the Minila interpreter, compiler and virtual
machine and some necessary things to express CompCorr and lemmas. EVAL
and DEL contain some auxiliary things for lemmas.

-- Fresh constants

ops n k a b : -> PNat . op e : -> Exp . op s : -> Stm . op ev : -> Env .

ops il1 il2 : -> IList . op stk : -> Stack .

Fresh constants are declared, representing arbitrary values of the corresponding
sorts.

-- Variants of prem(s,ev,IL3,IL4,stk)

eq exec2(nth(0,gen(s) @ IL4),IL3 @ gen(s) @ IL4,len(IL3),stk,ev)

= exec2(nth(0,IL4),IL3 @ gen(s) @ IL4,len(IL3 @ gen(s)),stk,eval(s,ev)) .

eq exec2(hd(gen(s) @ IL4),IL3 @ gen(s) @ IL4,len(IL3),stk,ev)

= exec2(nth(0,IL4),IL3 @ gen(s) @ IL4,len(IL3 @ gen(s)),stk,eval(s,ev)) .

5 Some descriptions on the proof score are inserted.
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Two variants of the premise prem(s,ev,IL3,IL4, stk) are declared.

-- tc(s(n),e,s,ev)

ceq evalExp(e,eval(K,s,ev)) = 0 if K = s(n) .

ceq evalExp(e,eval(K,s,ev)) = s(a) if K < s(n) .

ceq tc(s,eval(K,s,ev)) = true if K < s(n) .

The premise tc(s(n),e,s,ev) of what to prove is assumed, which is written as
equations.

-- Induction Hypothesis (IH)

-- Check the premise of IH

eq (k < n) = true .

red evalExp(e,eval(n,s,eval(s,ev))) = 0 .

red 0 < evalExp(e,eval(k,s,eval(s,ev))) .

red tc(s,eval(k,s,eval(s,ev))) .

We check if the premise of the induction hypothesis holds. Since each of the
three reductions is true, the premise holds.

-- The conclustion of IH

eq [IH]: exec(il1 @ gen(while e {s}) @ il2,len(il1),stk, eval(s,ev))

= exec(il1 @ gen(while e {s}) @ il2,len(il1 @ gen(while e {s})),stk,

eval(while e {s},eval(s,ev))) .

Therefore, the conclusion of the induction hypothesis holds, which is written as
an equation.

-- Lemmas

eq exec(genExp(E) @ IL2,0,ST,EE)

= exec(genExp(E) @ IL2,len(genExp(E)),evalExp(E, EE) | ST,EE) .

eq exec2(hd(genExp(E) @ IL2),IL1 @ genExp(E) @ IL2,len(IL1),ST,EV)

= exec2(nth(0,IL2),IL1 @ genExp(E) @ IL2,len(IL1 @ genExp(E)),

evalExp(E, EV) | ST,EV) .

eq exec2(bjump(len(IL1) + N),IL,len(IL1) + PC,ST,EV)

= exec2(bjump(N),IL,PC,ST,EV) .

eq exec2(bjump(len(IL1)),IL,PC + len(IL1),ST,EV)

= exec2(bjump(0),IL,PC,ST,EV) .

eq exec2(bjump(len(IL1)),IL,len(IL1),ST,EV) = exec2(bjump(0),IL,0,ST,EV) .

eq len(IL2 @ IL1) = len(IL1) + len(IL2) .

eq nth(N,IL) = hd(del(N,IL)) .

We use several lemmas. The first two equations are derived from the following
lemma:

(∀ E:Exp)(∀ IL1,IL2:IList) (∀ ST:Stack)(∀ EE:Env&Err)
exec(IL1 @ genExp(E) @ IL2,len(IL1),ST,EE) = exec(IL1 @ genExp(E) @ IL2,

len(IL1 @ genExp(E)),evalExp(E,EV) | ST,EE)

The lemma is proved by structural induction on E. The next three equations are
lemmas about the instruction bjump. The next two equations are basic lemmas
about standard functions of lists.
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-- Check the value of evalExp(e,ev)

red evalExp(e,ev) = evalExp(e,eval(0,s,ev)) .

red 0 < s(m) .

-- Therefore, 0 < evalExp(e,ev)

eq evalExp(e,ev) = s(b) .

Since each of the two reductions is true, evalExp(e,ev) is greater than 0, rep-
resented by s(b).

-- Case splitting hypothesis

op ev2 : -> Env .

eq eval(s,ev) = ev2 .

We assume eval(s,ev) is a normal environment.

-- Check (part 1)

-- 3-stepped verification to show

-- exec(il1 @ gen(while e {s}) @ il2,len(il1),stk,ev)

-- = exec(il1 @ gen(while e {s}) @ il2,len(il1),stk,eval(s,ev))

Since the set of equations used as a set of left-to-right rewrite rules is not con-
fluent, what we would like to show here does not reduce to true. So, it is shown
in three steps. An outline of the three stepped verification is as follows. Let us
suppose that we would like to show that lhs equals rhs but lhs = rhs does not
reduce to true. Instead of reducing lhs = rhs, we reduce (1) lhs = f(a), (2)
a = b and (3) f(b) = rhs. If all three terms reduce to true, we successfully show
lhs = rhs. It does not suffice, however, to divide the reduction into the three
steps because some equations cannot be applied as desired. We need to control
reductions so that the lemma can be applied. To this end, we give the strategy
(0 1 2 3 4 5 0) to exec2.

op pca : -> PNat . ops ila il1b il2b : -> IList .

eq pca = s(s((len(il1) + len(genExp(e))))) .

eq ila

= (il1 @ (genExp(e) @ (jumpOnCond(s(s(0))) | (jump(s(s(len(gen(s)))))

| (gen(s) @ (bjump(s(s((len(gen(s)) + len(genExp(e)))))) | il2)))))) .

eq il1b = il1 @ (genExp(e) @ (jumpOnCond(s(s(0)))

| (jump(s(s(len(gen(s))))) | iln))) .

eq il2b = (bjump(s(s((len(gen(s)) + len(genExp(e)))))) | il2) .

Some constants are prepared as abbreviations.

-- step 1 : lhs = f(x)

red exec(il1 @ gen(while e {s}) @ il2,len(il1),stk,ev)

= exec2(hd(gen(s) @ il2b),il1b @ gen(s) @ il2b,pca,stk,ev) .

-- step 2 : x = y

red ila = il1b @ gen(s) @ il2b .

red len(il1b) = pca .

-- step 3 : f(y) = rhs

red exec2(hd(gen(s) @ il2b),il1b @ gen(s) @ il2b,len(il1b),stk,ev)

= exec(il1 @ gen(while e {s}) @ il2,len(il1),stk,eval(s,ev)) .
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Each of the reductions is true.

-- From the 3 steped verification

eq [Check1]: exec(il1 @ gen(while e {s}) @ il2,len(il1), stk, ev)

= exec(il1 @ gen(while e {s}) @ il2,len(il1),stk,eval(s,ev)) .

Therefore, we have the equation Check1.

-- Check (part 2)

red exec(il1 @ gen(while e {s}) @ il2,len(il1 @ gen(while e {s})),stk,

eval(while e {s},eval(s,ev)))

= exec(il1 @ gen(while e {s}) @ il2,len(il1 @ gen(while e {s})),stk,

eval(while e {s},ev)) .

The reduction is true.

-- From the reduction

eq [Check2]: exec(il1 @ gen(while e {s}) @ il2,

len(il1 @ gen(while e {s})),stk,eval(while e {s},eval(s,ev)))

= exec(il1 @ gen(while e {s}) @ il2,

len(il1 @ gen(while e {s})),stk,eval(while e {s},ev)) .

Hence, we have the equation Check2.

-- Check (final)

start exec(il1 @ gen(while e {s}) @ il2,len(il1),stk,ev) =

exec(il1 @ gen(while e {s}) @ il2,len(il1 @ gen(while e {s})),stk,

eval(while e {s},ev)) .

apply Check1 at (1) .

apply IH at (1) .

apply Check2 at (1) .

apply reduce at term .

close

Finally, case (2.1) is discharged. CafeOBJ allows human users to apply a specific
equation to a specific position with the apply command in a given term by the
start command. Case (1.2) can be discharged likewise, and so can the two cases
of case (2). The base case can also be discharged.

Lem3 can be used to discharge the induction cases in which “while e {s}” is
taken into account when Lem1 is proved by structural induction on S. The other
induction cases and the base case can also be discharged likewise. Moreover, all
necessary lemmas can be proved as well. Therefore, we have proved CompCorr.

5 Discussion

Since Minila is simple, our formal verification of the Minila compiler (and virtual
machine) is a tiny step towards formal verification of real life compilers that
has been tackled in CompCert [8,9] (compcert.inria.fr). As described, compilers
heavily affect the correctness of software and then formal verification of compilers

http://compcert.inria.fr
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is one of the key technologies that make it possible to make our future IoT era
highly reliable. We do not think that it suffices to have one technique for formal
verification of compilers. We need to develop multiple such techniques so as
to make formal compiler verification techniques mature enough. Therefore, we
believe that our formal verification of the Minila compiler (and virtual machine)
is an important step towards the goal as well.

Programming language semantics in algebraic specification languages has
originated in the Goguen and Malcolm’s Algebraic Semantics of Imperative Pro-
grams (ASIP) [10], from which K is descended. OBJ3 [11], the predecessor of
CafeOBJ, has been used for ASIP. K [12–14] (www.kframework.org) is a rewrite-
based executable semantic framework dedicated to description of programming
language semantics. Several real-wold programming languages’ semantics, such
as ANSI C, Java and Python, has been described in K. K has been implemented
on the top of Maude [15] (maude.cs.illinois.edu) that is a sibling language of
CafeOBJ. Equations are main ingredients in ASIP, while rewrite rules are in K.
Our approach as well as K is also descended from ASIP and uses equations as
main ingredients. K provides several analysis techniques for programming lan-
guage semantics, but to our knowledge K has not been used to formally verify
any compilers. To extend our approach to make it possible to formally verify real
life compilers, such as C compilers and Java compilers, one possible approach
is to adopt techniques used in K to describe semantics of real life programming
languages. Since both K and our approach are descended from ASIP, sharing
algebraic techniques matured in the course of developments of algebraic specifi-
cation languages, such as CafeOBJ and Maude, this approach seems promising
as well as feasible.

What if the Minila interpreter contains flaws? Our formal verification implies
that the Minila compiler and virtual machine contain the same flaws. The Minila
interpreter is the semantics of Minila in the sense of ASIP, the requirements
that must be satisfied by the Minila compiler and virtual machine, and must be
carefully developed. The issue is shared by validation of formal specifications that
is to confirm that formal specifications really faithfully capture requirements or
clients’ intentions. Although the issue is very important in software development,
it is not that simple and the very crucial research topic that must be tackled by
engineers as well as researchers.

We assume that programs terminate to formally verify the Minila compiler.
Note that we do not need to verify programs terminate. The main proof tech-
nique we have used is structural induction. If we do not assume the termination,
we need to deal with infinity, which is beyond the scope in which structural
induction can be used. We need to utilize coalgebra and coinduction [16] to deal
with infinity. Fortunately, CafeOBJ has adopted hidden algebra [17,18] as one of
CafeOBJ logics, which is close to coalgebra and makes it possible to deal with
infinity.

The proof technique used in CompCert is to show that any safe programs in a
source language can be simulated by the compiled programs in a target language.
The same technique has been used to formally verify a compiler for a subset of

http://www.kframework.org
http://maude.cs.illinois.edu
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Java with Isabelle/HOL (www.cl.cam.ac.uk/research/hvg/Isabelle/) [19]. Their
approach uses state machines as the semantics of both source and target pro-
gramming languages, making it possible to deal with non-terminating programs.
We will carefully investigate their approach, making a comparison between theirs
and ours and clarifying the pros and cons of each approach.

The second author’s approach [1] assumes that if a given program S is non-
terminating, interpret(S) returns a constant env-non-halt, which is used to
define the correctness of the Minila compiler. His specification of interpret
in CafeOBJ, however, does not return env-non-halt even if a clearly non-
terminating program, such as while 0 === 0 { x := 0 ; }, is given. There-
fore, although both the first and second authors’ approaches are quite similar, the
assumption used in the second author’s approach would not be very reasonable.

Kokichi Futatsugi gave a tutorial on CafeOBJ [20] organized by the Compil-
ers and Languages Group at the Institute of Computer Languages, the Vienna
University of Technology in 2012. He talked about CafeOBJ specifications of
Minila interpreter, compiler and virtual machine, and the formal correctness
verification of part of the Minila compiler that was an arithmetic expression
compiler6, but not the Minila compiler described in the present paper.

6 Conclusion

The paper has reported on theorem proving the Minila compiler correctness
for all terminating Minila programs, meaning that for all terminating Minila
program p the result of interpreting p with the interpreter is the same as the one
of processing by the virtual machine the instruction sequence generated from p by
the compiler. The proof has been conducted by writing proof scores in CafeOBJ
and executing them with the CafeOBJ system. Specifications in CafeOBJ are
executable by using equations as left-to-right rewrite rules and proof scores are
those in CafeOBJ. The interpreter, the virtual machine and the compiler written
in CafeOBJ can be used as their prototype implementations and therefore can
be tested, such that for any concrete terminating Minila program p it is doable
to test that the result of interpreting p with the interpreter is the same as the one
of processing by the virtual machine the instruction sequence generated from p
by the compiler. It is one strong point of CafeOBJ’s that specifications written
in CafeOBJ can be used as ordinary executable programs, making it possible
to test them. Some possible future directions have been mentioned in the last
section.
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