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1 Introduction

Online information seeking has become an everyday task in lives of modern
people. In principle, we distinguish between two strategies to explore and discover
information spaces: search and navigation. Search implies a query formulation,
whereas navigation is the process of finding a way to a given target by following
hyperlinks. Navigation without a specific target is also referred to as browsing.

One of the main advantages of navigation as compared to search, which is
tightly related to our cognitive abilities as humans—is that recognizing what we
are looking for is much easier than formulating and describing our information
need in a couple of keywords [34]. In literature, the formulation of an information
need is also referred to as the vocabulary problem [29]. To overcome this problem
in the early days of the Web, the information space has been structured by hand
using predefined controlled vocabulary terms. As the Web continued to rapidly
grow, the biggest disadvantage of this approach—the static structure—became
more and more visible. Together with the rise of search engines, this led to
the vanishing of even famous websites using controlled vocabularies such as for
example DMOZ1.

A new way of organizing a set of resources emerged with the introduction of
social tagging systems. Prominent instances of social tagging systems on the Web
are, e.g., BibSonomy2, CiteULike3, Delicious4, and Flickr5, where BibSonomy
offers sharing of literature and bookmarks, CiteULike the sharing of citations,
Delicious the sharing of bookmarks, and Flickr the sharing of photos. These

1 DMOZ has been closed as of Mar 17, 2017, and it is no longer available under https://
www.dmoz.org. The editors have set up a static mirror under http://dmoztools.net/.

2 http://www.bibsonomy.org.
3 http://www.citeulike.org.
4 http://del.icio.us.
5 https://www.flickr.com.
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systems allow users to annotate a set of resources according to their needs with
freely chosen words also called tags. This free-form annotation approached the
vocabulary problem from a social angle and introduced new research directions,
i.e., for structuring and visualizing the information space. Moreover, new models
and theories for tag-based navigation have been developed and helped to estab-
lish it as a novel way of information access. Tag-based navigation is defined as
the process of finding a way between two resources of a social tagging system
following user assigned tags [38]. This way of exploring the information space is
usually supported by a tag cloud. The tag cloud is a user interface that visual-
izes the tags describing a given set of resources. In that sense, a tag cloud is a
textual representation of the topic or subject of the resource set and it captures
its aboutness [24]. Navigation and browsing in a social tagging system are com-
monly initiated, e.g., by a system-wide tag cloud, by traversing tag hierarchy or
by executing a search query typed into a traditional search box (see Sect. 3.1).
Using tags as search terms (see “Tag-based social search” in this book [67]) or
following recommended tags (see “Tag-based Recommendation” in this book [8])
are user activities very similar to tag-based navigation.

We organize our chapter in the following way. In Sect. 2, we describe the
fundamental social tagging process for shaping the information space of a social
tagging system. In Sect. 3, we discuss the tag cloud-based user interaction schema
in a social tagging system, layouts, usefulness and evaluation of tag clouds, and
visualization of trends in tagging data. We also give an overview of more complex
interfaces that integrate tag clouds or expose tag hierarchies to users. We discuss
clustering of tagging data in Sect. 4, as it is a way of dealing with one of the
main problems with tagging data—the lack of structure. In this section, we
give an overview over flat and hierarchical tag clustering. The flat tag clustering
produces groups of similar tags, whereas the hierarchical tag clustering produces
a tag hierarchy in which tags occupy a given hierarchy level based on, e.g., their
generality. We show how tag-based navigation is modeled in Sect. 5. In general,
models of user navigational behavior are used for providing navigational support
such as recommending or highlighting links, adapting the navigational hierarchy,
or even removing particular navigational links. In a particular case of tag-based
navigation user models can be used to, for instance, adapt a given tag-cloud,
include additional tags into the tag-cloud, or for ranking of resources whenever a
given tag from a tag-cloud is selected. Finally, we discuss the navigability of social
tagging systems from different theoretic perspectives in Sect. 6. Analyzing tag-
based navigation with a plethora of network-theoretic tools allows us to evaluate
and assess the quality, efficiency, and usefulness of the navigational structures
imposed by various social tagging systems. We can use this information to further
adapt and improve tag-based navigational constructs. For example, by measuring
the average distance between resources in a social-tagging system we obtain a
lower bound on the average number of clicks that a user needs to make to
traverse between any two given resources. In the cases where the average distance
exceeds a typical number of clicks that users make on the Web we have a strong
indication for a poorly designed navigational interface that, consequently, we
need to improve.
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2 Social Tagging

In a social tagging system, users assign tags to resources. This process shapes
the structure of the social tagging system and is called social tagging. The result
of such a human-based annotation of resources is referred to as a folksonomy—a
folk-generated taxonomy. A folksonomy is defined as a tuple F := (U, T,R, Y )
where U, T and R are finite sets, whose elements are called users, tags and
resources, respectively, and Y is a ternary relation between them, i.e., Y ⊆
U ×T ×R, called tag assignments. A folksonomy can also be seen as a tri-partite
hypergraph where the node set is divided into three disjoint sets - V = T ∪U ∪R
with hyperedges expressed by one tag, one user and one resource - t, u, r. The
presented definition follows the notion of Hotho et al. [44]. For further formal
definitions of folksonomies the interested reader may consult “Tag-based social
search” in this book [67].

As pointed out by Furnas et al., the social tagging process is the collective
effort of solving the vocabulary problem [28]. In this sense, tags are beneficial
for navigating the information space since they provide useful hints about a
resource collection. Understanding how users create tags is important for: (i)
designing user interfaces (see Sect. 3), (ii) designing clustering algorithms (see
Sect. 4), (iii) modeling tag-based navigation (see Sect. 5), (iv) studying the the-
oretic navigability of social tagging systems (see Sect. 6). Steps towards gaining
such understanding have been made by Golder and Huberman who studied the
regularities in the users’ activities and the tag frequencies in social tagging sys-
tems [31]. They also identified some of the problems that arise when users create
tags such as synonymy (multiple tags that share the same meaning, e.g., lit-
tle/small), polysemy (a tag that has many related meanings, e.g., wood (a piece
of a tree)/wood (an area with many trees)), or homonymy (a tag that has differ-
ent not related meanings, e.g., band (a musical group)/band (a ring)). Körner
et al. presented a different view on the social tagging process by characterizing
the users and their tagging motivations (see Table 1) [52]. The authors split the
users into at least two main groups depending on their motivation:

1. Categorizers—users who try to divide the resources into categories by assign-
ing tags sound with some personal or shared conceptualization.

2. Describers—users who try to assign tags that describe the resource best.

The categorizers assign tags to use them as a navigational aid and try to develop
a consistent taxonomy. Resources are tagged according to a common character-
istic important to the mental model of the user (e.g., “pictures”, “projects”,
“drafts”, or “archive”). The describers typically assign tags to support indexing
of resources, and thus support search and retrieval tasks. The assigned tags are
mainly descriptive and stemming from a dynamically changing open set of tags.
Although, this user separation is very nice from a theoretic point of view, in
the real world, social tagging system users probably belong to these two groups
simultaneously. For example, a user can use a very small categorization schema
while she is assigning a lot of descriptive tags. At the same time, a tag can be part
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(a) Resource tag list in BibSonomy (b) System-wide tag cloud in BibSonomy

(c) Tag hierarchy in tagFlake (d) Tag hierarchy in ELSABer

Fig. 1. Tag-based user interfaces. BibSonomy (see footnote 2) provides a resource-
specific tag list (a) to navigate between resources and a system-wide tag cloud (b) to
initiate browsing. Browsing can also be initiated by a tag hierarchy as implemented in
tagFlake (c) [21] and ELSABer (d) [56].

of a categorization schema and still be used as a descriptive tag. A more detailed
description of the different tag types, their intended usage and classification is
provided in “Tag-based social search” in this book [67].

3 User Interfaces and Visualization

Using tags to organize content introduced new research problems, i.e., exposing
the content through user interfaces that leverage the advantages of the free-
form annotation. In this section, we present interfaces developed to navigate the
content of a social tagging system, i.e., the tag cloud and other interfaces that
integrate tag clouds or facilitate tag-based browsing, e.g, through tag hierarchies.

Table 1. Tagging motivations as identified by Körner et al. in [52].

Categorizers Describers

Goal of tagging Later browsing Later retrieval

Change of vocabulary Costly Cheap

Size of vocabulary Limited Open

Tags Subjective Objective
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We also review research literature dealing with problems naturally arising with
the introduction of these interfaces, e.g., tag selection, tag cloud layouts and
usefulness, tag cloud evaluation, and trend visualization using tag clouds. Table 2
shows a brief summary of the contributions along the research lines discussed in
this section.

3.1 Tag Clouds

Tag clouds are widely adopted across many social tagging systems because they
visualize the information space in an intuitive way. A tag cloud is a textual
representation of the topic or subject of a resource as collectively seen by the
users and it captures the aboutness of the resource [24]. There are three possible
visualizations of the relationship between users, tags and resources in a social
tagging system. The first presents users and their connection to tags, the second
shows users connections to resources and the last presents tags and how they
connect to resources. From network theoretic perspective, these are all possible
combinations related to the bipartite projections of the tripartite tagging hyper-
graph. When using tag clouds, however, it is up to the operators of a given social
tagging system to decide which one of these combinations to offer.

Let us exemplify a tag cloud with the interaction schema of a user navigating
a tag-resource bipartite network [39,40]:

1. The system presents a tag cloud to the user for a given resource.
2. The user chooses a tag from the tag cloud.
3. The system delivers a list of resources tagged with the selected tag.
4. The user selects a resource from the list.
5. The resource is displayed and the process starts anew.

Table 2. User interfaces literature

Research line Research work

Tag selection Venetis et al. in [84], Skoutas and Alrifai in [80], Helic et al.
in [39,40]

Tag cloud layouts Gambette and Véronis in [30], Jafee et al. in [46], Bielenberg
and Zacher in [7], Kaser and Lemire in [48], Seifert et al. in [77],
Viegas et al. in [85], Eda et al. in [23]

Tag cloud usefulness Rivadeneira et al. in [73], Sinclair and Cardew-Hall in [78],
Lohmann et al. in [60], Bateman et al. in [4], Zubiaga in [94],
Kuo et al. in [53], Halvey and Keane in [32], Millen and
Feinberg in [65]

Tag clouds over time Lee et al. in [55], Collins et al. in [17], Dubinko et al. [22],
Russell in [74], Wagner et al. in [89]

Tag cloud evaluation Skoutas and Alrifai in [80], Venetis et al. in [84], Trattner et al.
in [82], Helic et al. in [39], Aouiche et al. in [2]

Integrated interfaces Kammerer et al. in [47], Lin et al. in [58], Helic and Strohmaier
in [36], Li et al. in [56], Di Caro et al. in [21] Vig et al. in [86–88]
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With this interaction schema, a user navigates on a tag-resource bipartite net-
work using resource-specific tag clouds (see Fig. 1(a)). In step three of the interac-
tion schema, the system may also provide a tag cloud that captures the aboutness
of the currently presented list of resources. To initiate tag-based navigation, a
social tagging system may present a system-wide tag cloud capturing the about-
ness of the whole social tagging system (see Fig. 1(b)) or a user-wide tag cloud
covering the tags assigned by the currently logged-in user (see Fig. 2(c)). Tag-
based browsing can be also initiated by a tag hierarchy. For example, tagFlake
by Di Caro et al. [21] and ELSABer by Li et al. [56] are user interfaces that
offer top down tag hierarchy browsing. Both interfaces work in a similar man-
ner. First, a tag hierarchy is presented on the left side of the screen. After a tag
is selected, the associated resources are displayed on the right side of the screen
(see Figure 1(c) and (d)).

Tag Selection. One of the first questions arising when designing a tag cloud
refers to the tag cloud size, i.e., which and how many tags should be displayed.
For example, there are systems presenting only twenty tags, whereas others offer
a much bigger number (see Fig. 2). Proposed by Venetis et al., the simple TopN
tag selection algorithm is very widely adopted [84]. To create a tag cloud, this
algorithm considers only tags assigned to a specific resource. The algorithm
selects the top n tags with the highest resource-specific frequency to present in
the tag cloud. If there are less than n tags available for a resource, the remain-
ing tag positions in the cloud are left empty. In the same work, Venetis et al.
proposed also algorithms for selecting top tags based on standard text features
and maximum resource coverage [84]. The tag selection problem has also been
studied by Skoutas and Alrifai who introduced a tag selection framework based
on frequency, diversity and rank aggregation [80].

Tag Could Layouts and Functionality. Figure 2(a), (b) and (c) shows the
basic tag cloud layout. However, more sophisticated approaches exist. For exam-
ple, Gambette and Veronis arranged tags in a tree structure (TreeCloud) so that
their semantic proximity is reflected (see Fig. 2(d)) [30]. Proposed by Jafee et
al., TagMaps is a unique layout using real geographical space to create a tag
cloud for large collections of geo-referenced photographs [46]. Bielenberg and
Zacher introduced a circular tag cloud layout and compared it to the typical
rectangular layout [7]. In the proposed circular layout, the distance to the center
and the font size of the tag represent its importance. In this layout, the distance
between tags in the cloud does not reflect their similarity. Different researchers
concentrated on the aesthetic issues regarding the tag cloud layouts. Kaser and
Lemire arranged tags in nested HTML tables in which tag relationships are con-
sidered. To tackle white spaces in tag clouds, emerging due to different font size
usage, they proposed to use the min-cut placement Electronic Design Automa-
tion algorithm [48]. In another work, Seifert et al. concentrated on the visual
issues in layouts and proposed a new algorithm utilizing arbitrary convex poly-
gons to bound tags and reduce white spaces [77]. Viegas et al. introduced Wordle,



Tag-Based Navigation and Visualization 187

(a) Flickr (b) BibSonomy

(c) CiteULike

(d) TreeCloud

(e) Faceted tag cloud

Fig. 2. Tag cloud layouts and functionality. Flickr (see footnote 5) (a) uses different
colors in the tag cloud to distinguish between automatically and user assigned tags.
BibSonomy (see footnote 2) (b) and CiteULike (see footnote 3) (c) use different font
sizes to indicate tag importance and popularity. Changing the layout from a cloud to an
alphabetically or frequency sorted list is offered by BibSonomy (b), whereas CiteULike
(c) allows tag filtering. TreeCloud (d) uses a tree structure to reflect semantic proximity
between tags [30]. In a faceted tag cloud (e), tags are classified into “Who”, “Where”,
“When” and “What” facets [82].

a distinctive layout that concentrates on the balance of colors, typography and
other visual features [85]. Eda et al. concentrated on experienced emotions when
using tag clouds and proposed a layout in which the font size is determined by
the tag’s entropy and not by its content popularity [23].
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In Sect. 3.2, we will show how tag clouds have been integrated into more com-
plex interfaces. The tag cloud interface itself, however, can also provide addi-
tional functionality, e.g., tag sorting, filtering or faceting. Rearranging tags to
present them as an alphabetically sorted list is helpful for finding the presence
or absence of a given tag (see Fig. 2(b)). Filtering of tags is useful for tag clouds
with large number of tags, i.e. system or user-wide tag clouds (see Fig. 2(c)). In a
faceted tag cloud, tags are structured according to a classification schema which
can be flat (see Fig. 2(e)) or hierarchical (see Fig. 1(d) and (c)). In Sect. 4, we
will discuss algorithms for flat and hierarchical tag clustering used to populate
these two types of interfaces with tags.

Tag Cloud Usefulness. Although tag clouds are very simple, they support
users in multiple ways. For example, Rivadeneira et al. identified tag clouds to
be useful for four different tasks [73]: (i) search: finding the presence or absence
of a given target, (ii) browsing: exploring the cloud without a particular target
in mind, (iii) gaining (visual) impression about a topic, (iv) recognition and
matching: recognizing the tag cloud as data describing a specific topic. In an
experiment on gaining impressions and recognition, Rivadeneira et al. studied
the tag font size and the cloud layout. The results suggested that the font size
has a strong effect on recognition. Although the different layouts changed the
accuracy of impression, they had no significant effect on recognition.

Sinclair and Cardew-Hall studied the usefulness of tag clouds for different
information retrieval tasks and found tag clouds especially useful for browsing
scenarios [78]. In such scenarios, tag clouds support discovery of items (resources,
users, or other tags) that a user might not have thought of or known about.

Halvey and Keane examined the usefulness of tag clouds for finding a spe-
cific target by comparing them to horizontal and vertical alphabetically sorted
lists [32]. Their results showed that tag clouds are outperformed by both list
types, suggesting that alphabetization aids users for orientation. They also exper-
imented with the tag cloud typography, i.e., font sizes and found out that targets
with larger font sizes are found more quickly. Regarding tag font size and posi-
tion in the cloud, they came to similar conclusion as Rivadeneira et al. in [73],
namely, that the font size strongly contributes to recall, whereas proximity to
the largest tag has no effect.

Bateman et al. concentrated on the visual features of tag clouds and how
they affect the visual search of a tag in the cloud [4]. They concluded that font
size has a more significant impact on finding a tag than other visual features
such as, e.g., color, tag string length and tag location.

Kuo et al. compared the usefulness of tag clouds and lists for summariz-
ing search results from the biomedical domain [53]. They considered tag clouds
superior to search result lists with respect to the presentation of descriptive
information. However, tag clouds performed significantly worse when presenting
relationships between concepts.

Lohmann et al. studied different tag cloud layouts, i.e., sequential lay-
out (alphabetical sorting), clustered layout (thematic clusters), circular layout
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(a) PTC

(b) SparkClouds

Fig. 3. Tag clouds over time. PTC (a) compares the popularity of a given tag between
multiple time periods [17]. In SparkClouds (b) a sparkline shows, e.g., if a tag is new
or if it has experienced high popularity in the system over a time period [55].

(decreasing popularity), and their ability to support typical information seeking
tasks [60]. For finding a specific tag, they suggest the sequential layout with
alphabetical sorting. The thematically clustered layout performed best for find-
ing tags that belong to a certain topic, whereas the circular layout with decreas-
ing popularity is more appropriate for finding the most popular tags.

Overall, literature suggests that visualizing tags, i.e., their font size and lay-
out of the cloud have significant effect on the tag cloud usefulness for tag-based
navigation. Furthermore, the presented findings highlight the intrinsic connec-
tion of tag-based navigation and the way tagging data is visualized.

Tag Clouds Over Time. Tag clouds are also useful for visualizing trends
and comparing resource collections over time. Research in this direction has
been conducted by Lee et al. who introduced SparkClouds [55] and by Collins
et al. who presented Parallel Tag Clouds (PTC) [17]. PTC is designed to con-
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Fig. 4. Query expansion using tags as implemented in BibSonomy (see footnote 2).
By clicking on the “ + ” sign of a related tag—tag assigned together with the search
tag (top left)—the query can be expanded to refine the set of presented resources.
Exploring the content using tags similar to the search tag is also possible (bottom
left).

sider and understand changes across multiple resource collections by presenting
their tag clouds simultaneously. It combines parallel coordinate plots visualiza-
tion [45] with tag clouds and can highlight the underuse and overuse of a tag (see
Fig. 3(a)). SparkClouds unifies sparklines [83] with typical tag cloud features to
visualize evidence of change across multiple tag clouds (see Fig. 3(b)).

As discussed later on, the maturity of a social tagging system influences
its navigability. Wagner et al. compared different methods for estimating the
system’s maturity, i.e., with respect to its semantic stability [89]. Taglines and
Cloudalicious are two prominent tools for visualizing the usage and semantic
stability of tags. Introduced by Dubinko et al., Taglines is a visualization work-
ing with the river metaphor—tags flow from left to right—and the waterfall
metaphor—tags are presented in fixed slots through which they can “travel”
over time [22]. With these metaphors, Taglines presents tags that possess a sig-
nificantly high occurrence frequency inside a given time period, compared to
outside this period. Proposed by Russel, Cloudalicious visualizes the evolution
of tags over time [74]. The tool works with Delicious tagging data and produces
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Fig. 5. MrTaggy as presented by Kammerer et al. in [47]. The MrTaggy browser allows
a user to specify a query and then rate both presented resources (right) and related
tags (left) by clicking on the arrows on the left. Clicking a tag arrow up or down refines
the query by adding or excluding the tag from the query. Clicking a resource arrow up
or down highlights similar results or excludes the resource from the result list.

a graph of the collective tagging activity for a given URL. It shows the relative
weights of the most popular tags for the URL. Indications of stabilization are
observed as the lines of the graph move from left to right. This pattern expresses
the collective opinion of the users with respect to the URL. An even more inter-
esting pattern in the graph are diagonal lines, as such lines suggest that users
changed the URL describing tags.

Tag Cloud Evaluation. Skoutas and Alrifai, and Venetis et al. conducted
research on tag cloud evaluation [80,84]. Both author groups propose very simi-
lar evaluation metrics for tag clouds with respect to coverage, overlap and selec-
tivity. Apart from the evaluation metrics, Skoutas and Alrifai introduced a user
navigation model that combined with the evaluation metrics allows tag cloud
evaluation with respect to navigation. Aouiche et al. proposed an entropy-based
metric for evaluating the informativeness of a tag cloud [2].
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Fig. 6. The DPNF interface as proposed by Lin et al. in [58]. The DPNF interface
integrates a search box to query the system and start navigation (top), controlled
vocabularies as facets (left) and a tag cloud (middle) to explore an image collection
(bottom).

Another method for evaluating tag clouds has been followed by Trattner
et al. who performed a user study to evaluate tag-based information access in
image collections [82]. In the study, they compared traditional and faceted tag
clouds with a baseline (search-only) interface. Both tag cloud types performed
better than the search-only interface with respect to a predefined search task.
Additionally, the authors observed that the faceted tag cloud is more difficult to
use initially, but it is considered as more powerful by the study participants in
the long run.

Helic et al. showed that the navigability assumption—the widely adopted
belief that tag clouds are useful for navigation—does not hold for every social
tagging system [39]. Furthermore, they showed that the usefulness of tag clouds
is sensitive to the adoption phase of the system, i.e., its maturity and that
the navigability assumption may only hold for more mature systems. One very
useful finding by Helic et al. is that the limitation of the tag cloud size to a
practically more feasible size, e.g., five, ten or more tags does not influence the
navigability. Depending on the maturity of the social tagging system and the tag
cloud type (e.g., system-wide or resource-specific), however, a tag could covers
hundreds or even thousands of resources. In such cases, the resources displayed
after a tag selection are often sorted by their reverse chronological order and
paginated which reduces the navigability. To tackle this problem, Helic et al.
introduced a generalized pagination algorithm and experimented with different
context preservation functions.
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(a) Directory user interface (b) Movie Tuner interface

Fig. 7. The directory user interface (a) as implemented in DMOZ (see footnote 1). The
typical interface elements include breadcrumbs, subcategories and related categories.
The Movie Tuner interface (b) as proposed by Vig et al. in [87]. The Movie Tuner
interface offers users to critique a resource with respect to tags, e.g., “less violent”
critique is applied to the movie Reservoir Dogs.

3.2 Integrated Interfaces

Very often tag clouds are integrated into more complex user interfaces that
allow a user to start, e.g., with a query formulation and then narrow down
the presented results using the tag cloud. Some social tagging systems, e.g.,
BibSonomy also allow users to expand or narrow down the query using related
or similar tags (see Fig. 4). Presented by Kammerer et al., MrTaggy is a very
similar interface that allows searching and browsing of resources and tags by
exploiting the relationships between them and the collected relevance feedback
(see Fig. 5).

The Dual-Perspective Navigation Framework (DPNF) by Lin et al. intro-
duced an interface seamlessly combining controlled vocabularies (metadata) and
free vocabularies (social tags) [58]. By combining both vocabulary types, DPNF
aims to provide better resource findability at each navigation step. In a user
study, the authors compared the DPNF interface with a tag-only and metadata-
only interface and concluded that the DPNF interface preforms best with respect
to lookup and exploratory search tasks.

Another more complex interface than the tag cloud is the directory inter-
face. It offers the following user interface elements: (i) breadcrumbs—provide a
complete path to the root category, (ii) subcategories—deliver a list of links to
more fine-grained categories, (iii) related categories—provide links to related cat-
egories. The directory interface is usually adopted in information systems with
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hierarchical organization of resources, e.g, DMOZ (see footnote 1) (see Fig. 7a).
In a social tagging system, the directory interface allows users to explore the
content by navigating along tags organized in a hierarchy. For each tag in the
tag hierarchy, the directory interface presents child tags as subcategories and tag
siblings as related categories. Tag hierarchies are usually obtained by the state of
the art hierarchical clustering algorithms discussed in Sect. 4.2. The navigability
of social tagging systems using the directory interface has been studied by Helic
et al. with simulations [36]. The authors discovered the limited ability of the user
interface to present a tag hierarchy in its entirety and identified the breadth of
hierarchy as the main problem reducing navigability.

Introduced by Vig et al., the Movie Tuner is fundamentally different from
the interfaces presented so far as it is designed on the intersection of tag-based
navigation and tag-based recommendation [87]. It allows a user to navigate a
social tagging system by applying critique to resources (e.g., movies) with respect
to tags (see Fig. 7b). This form of tag-based navigation is called tag-based cri-
tiquing. Unlike MrTaggy where a user can specify if a tag is relevant or not, Movie
Tuner allows users to specify how relevant a tag is. For example, a user could
explore the system for movies that are “less violent” than the movie Reservoir
Dogs. Similar to the directory interface, Movie Tuner also operates on a special
data structure called tag genome [86,88]. The tag genome captures the rele-
vance of tags to resources and addresses three limitations of the social tagging
process: (i) binary tag-resource relationships (the strength of the relationship
is not reflected), (ii) tag sparsity (not all relevant tags may be assigned) and
(iii) only positive tag-resource relationships (irrelevance of tags cannot be indi-
cated as they are not assigned). The Movie tuner interface uses a multi-objective
tag selection algorithm to choose the tags displayed for a given resource. The
optimized tag selection objectives are: critique value, popularity and diversity.
After applying a critique across one or multiple tags, the systems recommends
resources that satisfy the user’s critique. To respond to a user critique, the Movie
Tuner interface resorts to an algorithm that selects resources based on the dif-
ference to the critiqued tags and similarity to the original resource.

The presented ways of integrating tag clouds into more complex interfaces,
aim to achieve better overall user experience and to provide even better support
for tag-based navigation.

4 Tag Clustering

As pointed out in Sect. 2, synonymy, polysemy and homonymy have been iden-
tified as problematic regrading the semantic of tags. Another crucial issue with
social tagging data is the lack of structure. The efficiency of tag-based naviga-
tion and browsing, however, depends on the structure of the information space.
To this end, creating groups of resources meaningful to users by exploiting, i.e.,
semantic relationships between tags is of special importance for tag-based navi-
gation. Moreover, grouping tags that are semantically related to each other with
additional taxonomy relations between tag groups allows us to come up with hier-
archical tag-based interfaces. As various previous studies have shown users are
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able to efficiently navigate hierarchical interfaces—hence providing such inter-
faces in a social tagging system is particularly important for supporting users in
their explorations of the information space.

In this section, we present an overview of the state of the art algorithms
for clustering tagging data. They tackle the above problems by organizing tags
according to a classification schema. Depending on the classification schema,
there are flat (see Table 3) and hierarchical (see Table 4) clustering algorithms.
In general, the discussed tag clustering algorithms represent adaptations of exist-
ing state of the art clustering algorithms, e.g., K-Means, or Affinity Propaga-
tion. Unlike the algorithms for tag selection focusing on resource-specific tag
clouds, the algorithms presented here create tag clouds for resource collections.
For example, the flat clustering algorithms organize tags for the presentation
through a faceted tag cloud or a system-wide tag cloud. The hierarchical clus-
tering algorithms produce tag hierarchies suitable, e.g., for the directory interface
or for interfaces such as ELSABer and tagFlake. We pay special attention to hier-
archical clustering due to its importance for modeling tag-based navigation (see
Sect. 5). The algorithms reviewed in this section are divided into three different
classes: content-based, graph-based and machine learning.

4.1 Flat Tag Clustering

The content-based approach has been followed by Specia and Motta who pro-
posed an algorithm for creating semantically related clusters of tags based on
their co-occurrence [81]. The algorithm performs statistical analysis of the tag
space and constructs a co-occurrence vector for each tag. Clusters are then cre-
ated using cosine similarity between tags given their co-occurrence vectors. Zubi-
aga et al. introduced a content-based algorithm using unsupervised neural net-
works to obtain flat tag clusters [95]. Using language modeling techniques, the
clusters are then labeled with the most discriminative tag in a cluster.

The graph-based approach has been adopted by Begelman et al. who pro-
posed a recursive algorithm that uses spectral bisection to split a graph of con-
nected tags into two clusters [5]. Similar to Begelman et al., Au Yeung et al.
also introduced a graph-based clustering algorithm using a modularity function
to evaluate the quality of division [3]. The authors evaluated their algorithm
on three different networks based on users, co-occurrence of tags and context of
tags. Hereby, the best results have been achieved using context tags networks.

The machine learning approach has been followed by Remage et al. and
by Hassan-Montero and Herrero-Solana. Hassan-Montero and Herrero-Solana
proposed an algorithm for tag clustering that considers the semantic relation-
ships between tags [33]. Under a predefined number of clusters and a number
of selected relevant tags, the proposed algorithm resorts to K-Means cluster-
ing on a tag similarity matrix estimated by means of the Jaccard coefficient.
Ramage et al. studied the usage of K-Means clustering in an extended vector
space model that contains not only tags but also texts from web pages [72]. They
also proposed a novel generative algorithm based on latent Dirichlet Allocation
(LDA) that uses tags and web pages texts. They found that the usage of tags in
combination with web pages texts improves the cluster quality.
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4.2 Hierarchical Tag Clustering

In this section, we cover the following three hierarchical clustering algorithms
in a more detailed fashion: Hierarchical K-Means [20], Affinity Propagation [71]
and Generality in Tag Similarity Graph [41]. Among many other algorithms
presented here, these three algorithms are commonly used, simple to implement
and exist in different variations.

Hierarchical K-Means. K-Means is probably the most prominent clustering
algorithm [25,59]. The K-Means versions that we present here complement the
flat clustering version from the previous section. For example, Zhong introduced
a spherical online version of K-Means [93]. Dhillon et al. adapted the algorithm
to work with textual data by replacing Euclidian distance with cosine similar-
ity [20]. A combination of these two K-Means version creates a tag hierarchy in
a top-down manner. The algorithm starts by splitting the whole input data into
ten clusters. Clusters with more than ten samples are processed iteratively in
the same manner, whereas clusters with less than ten samples are considered as
leaf clusters. A special case is introduced to handle clusters with eleven samples
which initially would have been also split into ten clusters. This special case
gives freedom to the partitioning as it allows the division of clusters with eleven
samples not into ten but into three clusters. Each node in the hierarchy is rep-
resented by the nearest tag to the centroid. This tag is removed from the actual
tags contained in a cluster if the cluster is further partitioned.

Affinity Propagation. Affinity propagation has been originally proposed by
Frey and Dueck [26]. The input of the algorithm is a set of similarities between
data samples provided in a matrix. The diagonal of the matrix contains the
self-similarity values representing the suitability of the data sample to serve as a
cluster center. They are also called preferences. Specifying a number of desired
clusters is not needed, however, there is a correlation between the preference
values and the number of clusters (lower preference values imply a low number
of clusters and vice versa). Affinity propagation characterizes each data sample
according to its “responsibility” and its “availability” values. The responsibility
expresses the ability of the sample to serve as an exemplar for other samples,
whereas the availability shows the suitability of other data samples to be the
exemplars for a specific data sample. Affinity propagation exchanges messages

Table 3. Flat clustering

Algorithm type Example approaches

Machine learning Ramage et al. in [72], Hassan-Montero and
Herrero-Solana in [33]

Graph-based Begelman et al. in [5], Au Yeung et al. in [3]

Content-based Specia and Motta in [81], Zubiaga et al. in [95]
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between data samples and iteratively updates the responsibility and availabil-
ity values of each sample with a parameter λ as an update factor. By adding
structural constraints into the global objective function of affinity propagation,
Plangprasopchok et al. adapted the algorithm to create a taxonomy [71]. Another
approach to induce a hierarchy is to use the original version of affinity propa-
gation recursively in a bottom-up manner. The algorithm starts with a matrix
containing the top ten cosine similarities between the tags in a given dataset. The
minimum of those similarities acts as preference for all data samples. The clusters
are produced by selecting examples with associated data samples. Depending on
an adjustable parameter specifying the ratio between the desired number of clus-
ters and the data samples, the results are returned or another iteration starts. If
the number of selected clusters in the previous run was too high, the preference
values are lowered. Otherwise, they are increased. The sum of the connected data
samples normalized to unit length represents the centroid of the cluster, while
cosine similarity between the centroids of the clusters serve as input matrix for
the next iteration. This process is repeated until the top-level is reached. As the
output of the algorithm should be a hierarchy, each node in the hierarchy needs
to represent a unique tag. To this end, the nearest tag to the centroid is selected
as the tag representing the node. Additionally, the selected tag is removed from
the actual tags contained in the leaf cluster and it cannot be used in lower hier-
archy levels. The update factor λ can be dynamically adjusted in each iteration.
The algorithm terminates when a given number of iterations is reached or if the
clusters are stable for at least ten iterations.

Generality in Tag Similarity Graph. Introduced by Heymann and Garcia-
Molina, this algorithm receives a tag similarity graph as input [41]. The tag
similarity graph is an unweighted graph in which each tag is represented by
a node and two nodes have an edge between them if the similarity between

Table 4. Hierarchical clustering

Algorithm type Example approaches

Machine learning Dhillon et al. in [20], Zhong in [93] (K-Means),
Schmitz et al. in [75] (Association rules), Di Caro
et al. in [21] (LSA), Candan et al. in [12] (LSA),
Li et al. in [56] (Decision trees)

Graph-based

- Graph clustering Muchnik et al. in [66], Lancichinetti et al. in [54]

- Affinity propagation Frey and Dueck in [26], Plangprasopchok et al.
in [71]

Content-based

- Generality in tag similarity Heymann and Garcia-Molina in [41], Benz et al.
in [6], Helic and Strohmaier in [36]

- Other Schmitz in [76], Brooks and Montanez in [11]
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their respective tags is above some threshold. The algorithm starts by setting
the most general node (central node in the similarity graph) as root of the
hierarchy. All other nodes are added to the hierarchy in descending order of
their centrality in the similarity graph. For each candidate node, the similarity
between all currently present nodes in the hierarchy and the candidate node
is calculated. The candidate node is added as a child of the most similar node
in the hierarchy if their similarity is above a given threshold. Otherwise, the
candidate node is added as a child of the root. The algorithm makes three main
assumptions:

1. Hierarchy representation assumption—the edges representing a given hierar-
chy are also present in the similarity graph.

2. Noise assumption—there are noisy connections between unrelated tags
(mainly due to spamming activities).

3. General-general assumption—the noisy connections between tags occur more
often in the higher levels of a given hierarchy.

According to Heymann and Garcia-Molina, the hierarchy representation assump-
tion is essential for detecting hierarchies based on similarity measures. Since tag-
ging data exhibits a lot of noise [13], noisy tags would be of high degree in the
tag similarity graph. Thus, they would occupy high hierarchy levels which would
eventually reduce the ability of the produced hierarchy to guide navigation. This
makes the second assumption also fundamental as it accounts for noisy tag con-
nections. The general - general assumption is based on the intuition that higher
level (more general) tags are likely to co-occur by chance. Inserting the more
general (central) nodes in the similarity graph in the top of a hierarchy assures
short hierarchy distances between the most general tags.

The authors mention the possibility to use different similarity measures as
well as different centrality measures. Typical versions of the algorithm are degree
centrality as centrality measure and co-occurrence as similarity measure (Deg-
Cen/Cooc) and closeness centrality and Cosine similarity (CloCen/Cos). As
pointed out by Heymann and Garcia-Molina, more control over the properties
of the hierarchy is possible by dynamically adjusting the similarity threshold.

Other Algorithms. Muchnic et al. discussed an algorithm for condensing a
hierarchy based on metrics for estimating the hierarchy level of single nodes in
a network [66]. Clauset et al. presented a general approach for extracting hier-
archies from network data demonstrating that the existence of a hierarchy can
simultaneously explain and quantitatively reproduce several commonly observed
topological properties of networks, e.g., right-skewed degree distributions, high
clustering coefficients and short path lengths [16]. Lancichinetti et al. proposed
an approach for discovering hierarchies based on overlapping network commu-
nity structures [54]. They introduced a fitness function for estimating the quality
of cover and used it to find the most appropriate community for each network
node.
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Benz et al. computed the generality in tag similarity graph algorithm by
Heymann and Garcia-Molina by using co-occurrence as similarity measure and
degree centrality as centrality measure [6]. Additionally, they introduced an
extensive preprocessing of the data to remove synonyms and resolve ambiguous
tags. Helic and Strohmaier also adapted the generality in tag similarity graph
algorithm to control for the breadth in the top levels of the created hierarchy as
they identified it as a navigability reducing factor [36].

Li et al. presented the Effective Large Scale Annotation Browser (ELSABer)
to browse social annotation data [56]. The algorithm creates a hierarchy using a
decision tree and tag features containing, e.g., tag coverage, inverse coverage rate
and intersection rate. Schmitz et al. applied association rule mining to extract
hierarchies from tagging data concentrating on ontology learning and emergent
semantics [75]. Another algorithm for creating tag hierarchies has been presented
by Candan et al. who constructed a hierarchy by transforming the tag space into
a tag graph and then minimizing its spanning tree [12]. The algorithm uses a
similarity lower bound to prevent a context drifting of the tags in the hierarchy.
Di Caro et al. described an algorithm that extracts the most significant tags
from text documents (not from tagging data) and maps them to a hierarchy
so that descendant tags are contextually dependant on their ancestors within a
given document corpus [21]. Both algorithms by Di Caro et al. and by Candan
et al. applied latent Semantic Analysis (LSA).

Brooks and Montanez presented an agglomerative clustering algorithm to
induce a tag hierarchy using abstract tags and abstract tag clusters [11]. Schmitz
introduced a subsumption-based algorithm for inducing tag hierarchies [76]. The
algorithm uses co-occurrence statistics and builds a graph of possible parent-
child relationships. For each node, the best path to a root is calculated under
the consideration of reinforced possible parents. The paths are then composed
into a tree.

5 Modeling Navigation in Social Tagging Systems

As shortly mentioned in Introduction models of user navigational behavior have
been extensively used to improve information retrieval capabilities of the Web-
based information systems—the most famous example being the Google’s ran-
dom surfer model used to improve rankings of search results. Similarly to the ran-
dom surfer model various other navigational models have been applied for pro-
viding further navigational improvements such as adaptations of links and navi-
gational interfaces by, for example, inserting, highlighting or removing links. For
exactly these reasons navigational models have been also applied and adapted
for social tagging systems.

In this section, we present two main frameworks for modeling tag-based nav-
igation: Markov chains and decentralized search. Modeling navigation in tagging
systems has been recognized as an important step towards better understanding
of user navigation behavior [35], which in turn has major practical implications
such as implementing more efficient user interfaces [36].
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Markov chains have been regularly applied for modeling navigation on the
Web, i.e., on information networks [92]. On the other hand, decentralized search
approaches has been applied to study the navigational efficiency of broad and
narrow folksonomies [35], to evaluate a folksonomy from a pragmatic point of
view with respect to tag-based navigation [38] and to build directories for social
tagging systems [36].

As shown in Sect. 3.1, tag-based navigation is facilitated either by travers-
ing a tag hierarchy or by navigating between tags connecting resources on a
tag-resource network. For pragmatic reasons, however, tag-based navigation is
often modeled on a tag-tag network projected over a tag-resource network. Such
network mappings reduce complexity and are shown to be effective, e.g., in the
field of ontology learning [64].

5.1 Markov Chain Models

Navigation on the Web is the process of following links between web pages.
Markov chains model navigation on the Web by assigning transition probabili-
ties between web pages also called states [9,19,57,79]. Although Markov chain
models can also be of higher order (the transition probability between two states
depends on several previous states), first order Markov chains (the transition
probability depends only on the current state) are more commonly used due to
their simplicity. Navigation on the tag-tag network of a social tagging system
is modeled with Markov chains by representing each tag as a state. Transition
probabilities between states are then assigned according to the distance between
the tags in a tag hierarchy induced, e.g., by the algorithms presented in the
previous section.

5.2 Decentralized Search

Decentralized search is an algorithm designed by Kleinberg to explain the ability
of humans to efficiently search other people in huge social networks [49,50].
The algorithm has been since its invention also used to model navigation in
information networks. To model navigation, the decentralized search algorithm
passes messages between network nodes. In decentralized search, the message
holder forwards a message to one of its immediate neighbor nodes until the
intended message recipient (the target node) is found. For selecting the next step
in the navigation process, decentralized search resorts to a background knowledge
to rank the neighbors of the current node (also called candidate nodes) and
forward the message to one of them.

When modeling tag-based navigation, the background knowledge is a tag
hierarchy and the message is passed to the neighbor j with the shortest hierarchy
distance d(j, t) to the target node t.

In Fig. 8, we see an example of decentralized search in a tag-tag network
using a tag hierarchy as hierarchical background knowledge. The goal in this
example is to find a path between the start node 13 (marked yellow) and the
target node 33 (marked red). To select the next node, the algorithm looks up
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Fig. 8. Decentralized search using hierarchy as background knowledge as shown by
Helic et al. in [38]. (Color figure online)

the distance of the neighbors of the current node to the target node in the
hierarchical background knowledge. The neighbor with the shortest hierarchy
distance is then selected. For the first step, node 1 is selected since it is the only
adjacent node to 13. At step two, the set of neighbors of node 1 contains 11, 12,
13, 14, 21, 22 and 23 and the node with the shortest distance to the target node
is node 21 (number in boxes in (b) provides the distance of each node to the
target node). The procedure is repeated until the target node is reached. The
red arrows show the resulting path.

In the given example, the message is always passed to the node with the
shortest hierarchy distance. Thus, a distance greedy action selection is used
to model a confidently navigating user which is a plausible scenario in a social
tagging system. The action selections presented next are also applicable although
originally developed for modeling navigation on information networks [37]:

e-greedy: The e-greedy action selection chooses the candidate node j with the
shortest distance to the target node t with a probability 1−e. With a probability
e, another candidate node is chosen uniformly at random.

Softmax Rule: The softmax rule [10,18] chooses a candidate node with short-
est distance to the target node with a probability p(j) ∝ ecf(j). Hereby, f(j)
represents the fitness function calculated from the distances d(j, t), and c is the
user’s confidence in her intuition. For high values of c, the softmax rule selects
the candidate node with the shortest distance to the target nodes, thus, reduces
to greedy selection. For small values of c, the softmax rule is tuned to select
other candidate nodes based on f(j), thus, it models a user with low confidence.

Inverse Distance Rule: The inverse distance rule [63] is very similar to the
softmax rule as it selects the candidate node with a probability p(j) ∝ f(j)−c.
The parameter c expresses again the confidence. The main difference to the
softmax rule is the different probability distribution.

Dacaying e-greedy: The decaying e-greedy rule [37] is based on the idea that
humans do not possess sufficient intuition in the beginning of the navigation
process, but their intuition becomes better and better during the process. The
rule is based on a decay function that adapts e at every step of the navigation.
Different decay functions are possible, but normally e(t) = e0λ

−t is used. Hereby,
e0 is the initial value of e, and λ is a decaying factor at step t.
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6 Theoretic Navigability of Social Tagging Systems

In this Chapter we discuss the navigability of social tagging systems from the
network-theoretic perspective. Network-theoretic analysis of navigation allows
us to theoretically evaluate and assess the quality, efficiency, and usefulness of
the navigational structures imposed by various social tagging systems. Such the-
oretical analysis provides us with theoretical bounds on various aspects of social
tagging systems and provides the first evaluation results and first indications for
potential navigational bottlenecks and problems. Subsequently, we may remedy
the problems even before performing expensive usability tests with real users.
For example, network-theoretic tools allows us to study connectivity of vari-
ous parts of our information systems—in this way we can identify completely
disconnected or poorly connected groups of resources in our system.

So far, the theoretic navigability of social tagging systems has been studied
from four different perspectives on which we want to shed light in this section:
network theoretic, information theoretic, information foraging and tagging vs.
library approach. Each perspective emphasizes that the navigability of a social
tagging systems depends on the ability of the users to assign tags to resources,
i.e., to solve the vocabulary problem.

6.1 Network Theoretic Perspective

Adamic et al. studied navigation in power-law degree distributed networks and
showed that random walks naturally tend to select nodes with a high degree [1].
Based on this observation, they proposed a version of the decentralized search
algorithm that exploits the degree distribution for finding the target node by
passing the message to the candidate node with the highest degree. Such an algo-
rithm makes each power-law degree distributed network theoretically searchable.
Folksonomies—the data structures of social tagging systems—possess power-law
degree distributions (see “Tag-based social search” in this book [67]), thus, they
are easily navigable with Adamic’s algorithm. In the case of tag-based naviga-
tion, however, the navigability of a folksonomy cannot be measured in this way
as the algorithm does not exploit the semantic relationships between tags but
only the network topology. Furthermore, tag hierarchies created by the algo-
rithms presented in Sect. 4 are structures capturing not only semantic relation-
ships between tags but also other useful properties of the social tagging process
which cannot be neglected when looking at the network theoretic perspective of
tag-based navigation. To this end, in this section we concentrate on two aspects:
(i) the general navigability of a folksonomy as a graph and (ii) the ability of tag
hierarchies to guide navigation in such a graph.

Navigability of a Folksonomy as a Graph. Cattuto et al. described the nav-
igability of a folksonomy in terms of its “small world” network properties [13].
Small world networks are easy to navigate as all network nodes are reachable
within few steps. In a pioneer work, Watts and Strogatz defined the class of
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“small world” networks based on the characteristic path length and the cluster-
ing coefficient [91]. The characteristic path length is a global network topology
measure specifying the average shortest path distance for all possible node pairs.
The clustering coefficient is a local measure and specifies the extent to which the
neighbors of a given node form a clique. Since folksonomies are tri-partite graphs,
the above measures cannot be directly applied to study their the network prop-
erties. To this end, Cattuto et al. redefined the characteristic path length and
the clustering coefficient for three mode data. After comparing observed folk-
sonomies with two randomly generated folksonomies of equal size with respect
to both measures, they found that the observed folksonomies have extremely
high clustering coefficients and comparable to lower characteristic path lengths.
Cattuto et al. also noticed the small characteristic path length values (about 3.5)
which did not change significantly as observed folksonomies grew. This is a very
important observation since it implies that on average every resource, user and
tag is reachable from any other resource, user or tag within a couple of clicks.
This high reachability explains also why folksonomies support serendipitous dis-
covery [62].

Navigation Supported by Tag Hierarchies. The ability of tag hierarchies
to guide tag-based navigation has been studied by Helic et al. using the small
world network models [38]. In general, there are two types of small world network
models—lattice-based (ring lattice model by Watts and Strogatz [91] and 2D-
lattice model by Kleinberg [50]) and hierarchy-based (single hierarchy model by
Kleinberg [51] and multiple hierarchies model by Watts et al. [90]). Essentially,
those small world models generate networks in which the balance between the
local network structure (short range links) and the global network structure (long
range links) is used to guide navigation modeled, e.g., as decentralized search. In
the hierarchy-based models, this balance is regulated through the distance distri-
bution between the nodes of the hierarchies generating the network. Inspired by
the above observations and models, Helic et al. proposed a theoretic evaluation
of the suitability of tag hierarchies to support tag-based navigation in a tag-tag
network. For all connected node pairs in the network, they suggested to measure
the distance between the pair nodes in a given tag hierarchy and to create a
distance distribution. The theoretic suitability of the tag hierarchy to support
navigation is then estimated using this distance distribution. More precisely, the
authors introduced an indirect comparison of the distance distribution of a tag
hierarchy and the class of theoretically searchable networks according to Watts’
model. A direct comparison is not possible due to the following differences: (i)
in Watts’ model, the degree distribution is uniform, whereas the tag degree dis-
tribution has been shown to follow a power-law; (ii) in a tag hierarchy, tags
could be potentially attached everywhere in a hierarchy, which is not the case
in the model of Watts where they would be attached only to leaves. To tackle
these differences, Helic et al. adapted Watts’ model to tagging networks and
discussed the distance distributions of two synthetic tag hierarchies—the ran-
dom and the homophily-based hierarchy. The homophily distance distribution
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Fig. 9. Comparison of distance distributions for four hierarchical tag clustering algo-
rithms as shown by Helic et al. in [38]. (Color figure online)

describes a hierarchy that only supports short range connections in the tag-
tag network, whereas the random distance distribution mimics a tag hierarchy
with both short and long range connections. None of the distributions is optimal
(see Fig. 9(a)). The homophily distance distribution is dominated by short range
links, whereas the random distance distribution is dominated by long range links.
However, the homophilous tag hierarchy, which is lacking some long range links,
is theoretically more suitable to guide tag-based navigation.
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In Fig. 9, we also see a comparison between the distance distributions of tag
hierarchies created by the algorithms in Sect. 4.2 on a BibSonomy dataset6 and
the two synthetic distance distributions—random and homophily-based distri-
butions. The gray and the yellow areas represent the differences in the number
of short range links and long range links, respectively. The gray area is called the
Absent Short-Range Links area, whereas the yellow area is called the Additional
Long-Range Links area. Theoretically, both areas need to be greater than zero
but still rather small. Otherwise, the distance distribution will incorporate too
many long range links and will become similar to the random distance distri-
bution. The tag hierarchies created by DegCen/Cooc and CloCen/Cos versions
of the generality in tag similarity graph algorithm should perform best from a
theoretic point of view (see Fig. 9(b) and (c)) as they exhibit distance distri-
butions with many short range links mixed with a few long range links. The
distance distributions of the tag hierarchies induced by K-Means and Affinity
Propagation seem theoretically less suitable since they possess too many long
range links and too few short range links (see Fig. 9(d) and (e)).

6.2 Information Theoretic Perspective

The navigability of social tagging systems has also been studied by Chi and
Mytkowicz from an information theoretic perspective [14,15]. In their work, Chi
and Mytkowicz see social tagging as the collective effort of creating a mental map
summarizing an information space. They suggest that users can benefit from this
map as a navigational aid for efficiently exploring the information space. This idea
is very similar to the idea of using hierarchies induced from folksonomies as back-
ground knowledge for modeling tag-based navigation with decentralized search or
Markov models. With their work, the authors address the vocabulary problem—
the ability of users to efficiently assign tags to resources, thus, to create mental
maps of the information space. In their analysis, Chi and Mytkowicz calculated
three information-theoretic measures: (i) entropy—a measure of uncertainty in a
random variable, (ii) conditional entropy—a measure of the remaining entropy
of a random variable given the that the value of the second random variable is
known and (iii) mutual information—a symmetric measure of the independence
of two random variables. Chi and Mytkowicz applied these measures to a Delicious
folksonomy and found out that over time as the social tagging systems mature (i)
the tagging efficiency is decreasing, thus, tags lose their descriptiveness, (ii) tags
lose their ability to deliver conspicuous navigability and (iii) there is a decaying
ability of the users to navigate between tags and resources.

6.3 Information Foraging Perspective

Pirolli and Card proposed the information foraging theory to describe the human
information seeking in a digital environment [69]. In subsequent work, the
original theory has been adapted to model user navigation on the Web [27,70]
and to an elementary social information foraging model (SIF) [68].
6 http://www.kde.cs.uni-kassel.de/ws/dc09/.

http://www.kde.cs.uni-kassel.de/ws/dc09/
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In their work, the authors establish the SIF model as a useful mathematical
tool for studying how social collaboration influences information foraging. SIF
assumes that in the process of information foraging, hints (tags) are created
and shared between individuals which makes navigation easier and improves the
organization of the information space. The model presents a perspective that
goes hand in hand and complements the perspectives presented earlier in this
section. It also captures different aspects of the collective information forag-
ing, i.e., time, diversity of the hints, cost of cooperation and social capital of
the collaborators. SIF considers the effectiveness of the hints—tightly related
to the entropy and mutual information analysis from the information theoretic
perspective—in terms of their amount, validity, and interpretability by the for-
ager in a certain step during navigation. According to the model, lowering the
cost of effort associated with creating and sharing tags leads to higher productiv-
ity of the users of a social tagging systems. Click2Tag [43], a tagging technique
that follows this idea, is shown to have lower tagging costs compared to the
widely adopted “type-to-tag” approach.

6.4 Tagging vs. Library Approach

Macgregor and McCulloch discussed the advantages and disadvantages of the
“tagging approach” (resources are annotated by users with freely chosen tags)
and the “library approach” (resources are annotated by users with predefined
controlled vocabulary) [61]. They proposed a definition of a controlled vocab-
ulary and compared unrestricted free-form vocabularies emerged in social tag-
ging systems to controlled vocabularies. Macgregor and McCulloch pointed out
that controlled vocabularies have advantages in dealing with synonyms and
homonyms, thus, provide good semantic clues. Compared to free-form vocab-
ularies that exhibit a lot of noise introduced by the users, controlled vocabu-
laries can handle lexical anomalies. Macgregor and McCulloch concluded that
the precision and the recall of free-form vocabularies depend on the distribution
of the tags. Consequently, general tags exhibit high recall and suffer precision,
whereas specific tags suffer recall and enjoy precision. Heymann et al. made also
a comparison of the navigational characteristics of the “tagging approach” and
the “library approach” represented by tagging distributions and library terms
distributions, respectively [42]. In their comparison, the authors focused on three
major large scale organizational features of the tagging and library approaches:
consistency, i.e., ability to deal with synonyms, quality, i.e., with respect to
tag distributions and completeness, i.e., correspondence between tag and library
terms. These organizational features give a different perspective to the “vocabu-
lary problem” addressed from the information theoretic perspective by Chi and
Mytkowicz. Their results suggest that tagging systems tend to be at least to
some extent consistent, of high quality and complete. They found that: (i) syn-
onyms are not problematic, (ii) moderately common user tags are perceived as
even more helpful than library annotations assigned by an expert and (iii) top
tags correspond to library terms.
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7 Conclusion

In this chapter, we discussed the challenges researchers faced with the emergence
of social tagging systems offering a free-form annotation of resources using tags.
First, we presented the user interfaces that allow tag-based navigation, i.e., tag
clouds and tag hierarchies. We paid special attention to the tag clouds as the
most common interface that accounts for the unstructured nature of tagging
data. We reviewed literature focusing on tag cloud usefulness, layouts and eval-
uation. Furthermore, we discussed trend visualizations with tag clouds. We also
presented how tag clouds have been integrated into more complex user interfaces.
We summarized the most popular state of the art algorithms for tag clustering
used to populate, e.g., a tag cloud or to create a tag hierarchy. Lastly, we showed
how tag-based navigation have been modeled and provided an overview of the
different theoretic perspectives regarding the ability of folksonomies to support
tag-based navigation, i.e., the network theoretic, the information foraging and
entropy of information perspectives, and the “tagging approach” vs. “library
approach”.
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