
10
Rating-Based Collaborative Filtering:

Algorithms and Evaluation

Daniel Kluver1(B) , Michael D. Ekstrand2, and Joseph A. Konstan1

1 GroupLens Research, Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, USA

{kluver,konstan}@cs.umn.edu
2 People and Information Research Team (PIReT),

Department of Computer Science, Boise State University, Boise, USA
michaelekstrand@boisestate.edu

Abstract. Recommender systems help users find information by recom-
mending content that a user might not know about, but will hopefully
like. Rating-based collaborative filtering recommender systems do this
by finding patterns that are consistent across the ratings of other users.
These patterns can be used on their own, or in conjunction with other
forms of social information access to identify and recommend content
that a user might like. This chapter reviews the concepts, algorithms, and
means of evaluation that are at the core of collaborative filtering research
and practice. While there are many recommendation algorithms, the ones
we cover serve as the basis for much of past and present algorithm devel-
opment. After presenting these algorithms we present examples of two
more recent directions in recommendation algorithms: learning-to-rank
and ensemble recommendation algorithms. We finish by describing how
collaborative filtering algorithms can be evaluated, and listing available
resources and datasets to support further experimentation. The goal of
this chapter is to provide the basis of knowledge needed for readers to
explore more advanced topics in recommendation.

1 Introduction

One problem with online collections is information overload - when presented
with too much information people have trouble making informed decisions. While
the tools for searching, visualizing, and navigating these large collections intro-
duced in previous chapters of this book can help users find content, even these
tools can be insufficient if an online collection is big enough, or if the user is
unsure of exactly what content they are interested in. Ideally, a system should
know what kind of items each user is interested in without ever being told. Then
the system can focus on presenting each user only those items that they are most
likely to be interested in.

This idea has led to a proliferation of strategies for helping users focus only
on the items they will like. The most basic strategy is to focus on the most
c© Springer International Publishing AG, part of Springer Nature 2018
P. Brusilovsky and D. He (Eds.): Social Information Access, LNCS 10100, pp. 344–390, 2018.
https://doi.org/10.1007/978-3-319-90092-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90092-6_10&domain=pdf
http://orcid.org/0000-0002-2810-7243
http://orcid.org/0000-0002-7788-2748

Rating-Based Collaborative Filtering: Algorithms and Evaluation 345

popular items, or those that are reviewed most favorably by other users. While
not personalized for a given user, these strategies can quickly guide users to
the best content the system has to offer. It isn’t even that hard to do basic
personalization within these simple strategies. For example, if a system knows
what genres of music a user tends to listen to, then the system can focus on
presenting popular artists from that genre.

In the early 1990s, these strategies set the stage for collaborative filtering rec-
ommendation systems. The insight behind collaborative filtering recommender
systems is that people have relative stable tastes. Therefore, if two people have
agreed in the past they will likely continue to agree in the future. A key part
of this insight – and the major difference between this and the personalization
strategies that came before – is that it does not matter why two users agree. They
could share tastes in books because they both like the same style of book binding,
or they could share taste in movies due to a nuance of directing; a collaborative
filtering recommender system does not care. So long as the two users continue
agreeing, we can use the stated preferences of one user to predict the preferences
of another. Since we need very little supplementary information, collaborative
filtering algorithms are applicable in a wide range of possible circumstances.

Since the mid 1990s, collaborative filtering recommender systems have
become very popular in industry. Companies like Amazon, Netflix, Google, Face-
book and many others, have deployed collaborative filtering algorithms to help
their users find things they would enjoy. The popularity of these deployments
has pushed the field of recommender systems, leading to faster, more accurate
recommender systems. These improvements have been coupled to changes in how
we think about deploying collaborative filtering systems to support users. Col-
laborative filtering systems were originally seen as a filter which could separate
the interesting items from the uninteresting ones, hence the term collaborative
filtering. As the field has advanced, it become more common to think of these
algorithms as recommending a short list of the best items for a user. Even if
there are plenty of good items that go unrecommended, the a recommendation
algorithm is doing its job if it’s list contains the best of the best for a given user.

Like other forms of social navigation, collaborative filtering algorithms rely
on the connections and patterns made possible by large bodies of users. Despite
this, collaborative filtering algorithms are not typically social in the traditional
sense: while one user’s behavior does directly affect other users’ experiences, this
is rarely made clear to the users. Most recommender system users are blissfully
unaware of how their actions benefit not only themselves, but other users with
similar tastes.

This chapter describes the foundational collaborative filtering algorithms and
methods for evaluating these algorithms for use in a given application. In par-
ticular we will focus on rating based algorithms, in which user preference is mea-
sured by numerical ratings. After presenting the most common algorithms for
rating based collaborative filtering, we will present two more recent approaches,
a learning to rank algorithm and ensemble methods. While these approaches are
still popularly deployed today, many extensions and applications of the algo-
rithms we describe go well beyond what we can present here. Later chapters

346 D. Kluver et al.

in this book are dedicated to recommendation algorithms that leverage social
connections (Chap. 11 [44]), social tags (Chap. 12 [8]), user reviews (Chap. 13
[51]), implicit (non-rating) preference feedback (Chap. 14 [35]), and ways to rec-
ommend new social connections (Chap. 15 [25]). The goal of this chapter is to
describe the foundational algorithms that are built upon in these later chapters.
We also cover topics such as algorithm evaluation that are relevant throughout
the following chapters.

1.1 Examples of Recommender Systems

There are many different ways recommendation algorithms can be incorporated
into an online service. The most simple is the “streaming” style service, which
is oriented around a stream of recommended content. Two examples of this
are streaming music services like Pandora1 and the Jester joke recommender2.
Screenshots of these services is shown in Figs. 1 and 2. Both services share the
same design: the user is presented with content (music or jokes). After each
item the user is given the opportunity to evaluate the item. These evaluations
influence the algorithm which then picks the next song or joke. This process
repeats until the user leaves. Jester is known to use a collaborative filtering
algorithm [24]. Interested readers can find more information about jester and
even download a rating dataset for experimentation from the Jester web page.
As a commercial product, less is known about Pandora’s algorithm. However, it
is reasonable to assume that they are using a hybrid algorithm that combines
collaborative filtering information with their catalog of song metadata.

A quite different way to use recommendation algorithms can be seen in cat-
alog based websites like MovieLens3. MovieLens is a movie recommender devel-
oped by the GroupLens research lab. On the surface MovieLens is similar to
other movie catalog websites such as the Internet Movie DataBase (IMDB) or
The Movie DataBase (TMDB). All three have pages dedicated to each movie
detailing information about that movie and search features to help users find
information about a given movie. MovieLens goes further, however, by employ-
ing a collaborative filtering algorithm. MovieLens encourages users to rate any
movie they have seen, MovieLens then users these ratings to provide personal-
ized predicted ratings which it shows alongside a movie’s cover art in both movie
search and detail pages. These predictions can help users rapidly decide if it is
worth learning more about a movie. Users can also ask MovieLens to produce
a list of recommended movies, with the top 8 most recommended movies for a
user being centrally positioned on the MovieLens home page, this can be seen
in Fig. 3.

A third common way to use recommendation algorithms is in e-commerce
systems, perhaps the most notable being Amazon4. Amazon is an online store

1 https://www.pandora.com/.
2 http://eigentaste.berkeley.edu/.
3 https://movielens.org/.
4 https://www.amazon.com/.

https://www.pandora.com/
http://eigentaste.berkeley.edu/
https://movielens.org/
https://www.amazon.com/

Rating-Based Collaborative Filtering: Algorithms and Evaluation 347

Fig. 1. Screenshot of the Pandora music streaming service

Fig. 2. Screenshot of the Jester joke recommender

348 D. Kluver et al.

Fig. 3. Screenshot of the MovieLens home page

which started as a bookstore, but has since diversified to a general purpose online
storefront. While the average user may not notice the recommendations in Ama-
zon (or at the very least may think little of them) much of the Amazon storefront
is determined based on recommendation algorithms. A screenshot of the Ama-
zon main page for one author is shown in Fig. 4 with recommendation features
highlighted. Since only a small proportion of users use reviews on Amazon it
is likely that Amazon uses data beyond ratings in their collaborative filtering
algorithm. Unlike MovieLens, getting information and recommendation is not
the primary motivation of Amazon users. Therefore, while the basic interfaces
may be similar, the way recommendations are used, and the algorithm properties
that a system designer might look for, will be different.

As these examples show, recommendation algorithms can be useful in a wide
range of situations. That said, there are some commonalities: each service has
some way of learning what users like. In MovieLens and the streaming services
users can explicitly rate how much they like a movie, joke, or song. In Amazon
purchase records and browsing history can be used to infer user interests. Each
service also has some way of suggesting one or more item to the user based on
their recommendation algorithm. It will be helpful to keep these examples in
mind as they will help anchor the more abstract algorithm details covered in
this chapter to a specific context of use.

Rating-Based Collaborative Filtering: Algorithms and Evaluation 349

Fig. 4. Screenshot of the Amazon home page

1.2 A Note on the Organization of Recommendation Algorithms

Every year dozens of new recommendation algorithms are introduced. It should
be no surprise, therefore, that there have been various attempts organizing these
algorithms into a taxonomy or classification scheme for collaborative filtering
algorithms. The purpose of any such organization is to allow better communica-
tion about how an algorithm works, and what other algorithms it is similar to,
by describing where that algorithm is in a taxonomy.

To some degree these classifications have been useful; chapters in this book,
for example, are organized based on important distinctions between different
types of algorithms. Other distinctions that have been made are less useful,
either because algorithms have advanced to the point where a distinction has no
meaning, or because the classification itself has been used inconsistently. In this
chapter we will restrict ourselves to categorizations that we feel are useful for
communication. That said, we note that other works on recommender systems
that a reader might explore are still organized under some of these traditional
taxonomies. Therefore we will introduce some of these distinctions now so the

350 D. Kluver et al.

reader can be aware of them if they wish to read other resources on recommen-
dation algorithms.

One important distinction that has been made between algorithms is between
collaborative filtering algorithms (like those discussed in this chapter) and
content-based algorithms. Collaborative filtering algorithms, as was described
earlier, operate by finding patterns in user behavior that can be used to predict
future behavior. The traditional example of this would be that two users tend
to like the same things, therefore when one use likes something, we can predict
the other user will as well. Content based algorithms, on the other hand, focus
on relationships between users and the content they like. A traditional example
of this would be an algorithm that learns which genres of music a user likes and
recommends songs from that genre. While still meaningful, the line between col-
laborative and content based filtering has become somewhat blurry as modern
algorithms have sought to combine the strengths of both algorithms. Readers
can still expect to see this distinction made in new publications (including this
one) as the algorithms that are both content based and collaborative filtering
algorithms are still in the minority.

Within the specific range of collaborative filtering algorithms, the most com-
mon taxonomy separates so-called model-based algorithms and memory-based
algorithms. The division was first made in a 1998 paper [9] where memory-based
algorithms were defined as those that operate over the entire dataset, where
model-based algorithms are those that use the dataset to estimate a model
which can then be used for predictions. For recommender systems this split
is problematic as many algorithms can be described sufficiently as a memory-
based algorithm or a model-based algorithm depending on how the algorithm is
optimized and deployed.

More recently this same distinction has been used more usefully to separate
based on the basic design of an algorithm [66]. Model-based algorithms are those
that use machine learning techniques to fit a parametrized model, while memory-
based algorithms search through the training data to find similar examples (users
or items). These examples are then aggregated to compute recommendations.

While still common we personally find this latter separation does not do a
great job of communicating about the distinctions between algorithms. There-
fore we will eschew this taxonomy and present algorithms grouped, and labeled,
by their mathematical structure or motivation. In the next section we will cover
the basic concepts and mathematical notation that will be used throughout this
chapter. The section after that will describe baseline algorithms: simple algo-
rithms which seek to capture broad trends in rating data. Section 4 will describe
nearest neighbor algorithms: the group of algorithms that have historically been
called memory based algorithms, which work by finding similar examples which
are used in computing recommendations. Section 5 will describe Matrix Factor-
ization Algorithms: a group of algorithms that share a common and powerful
mathematical model inspired by matrix factorization. Section 6 will describe
Learning to Rank Algorithms: algorithms that focus on ranking possible rec-
ommendations, instead of predicting what score a user will give a particular

Rating-Based Collaborative Filtering: Algorithms and Evaluation 351

item. Section 7 will briefly mention other groups of algorithms which we do not
explore in depth: graph based algorithms, linear regression based algorithms, and
probabilistic algorithms. Section 8 will describe ensemble methods: ways to com-
bine multiple recommenders. Finally, Sect. 9 will explore metrics and evaluation
procedures for collaborative filtering algorithms.

2 Concepts and Notation

In this section we will discuss the core concepts and mathematical notations
that will be used in our discussion of recommendation algorithms (summarized in
Table 1). The two most central objects in a recommendation system are the users
the system recommends to and the items the system might recommend. These
terms are purposely domain neutral as different domains often have domain
specific terms for these concepts.

One user represents one independently tracked account for recommendation.
Typically this represents one system account, and is assumed to represent one
person’s tastes. We will denote the set of all users as U with u, v, w ∈ U being
individual users from the set.

One item represents one independently tracked thing that can be recom-
mended. In most systems its obvious what services or products should map to
an item in the recommendation algorithm; in an e-commerce system like Ama-
zon or Ebay, each product should an item. In a movie recommender each movie
should be an item. In other domains there might be more uncertainty; in a music
recommender should each song be an item (and recommended individually) or
should each an album be an item? We will denote the set of all items as I with
i, j, k ∈ I being individual items from the set.

Most traditional collaborative filtering recommender systems are based on
ratings: numeric measures of a user’s preference on an item. Ratings are collected
from users on a given rating scale such as the 1-to-5 star scale used in MovieLens,

Table 1. Summary of mathematical notation

Users The set of all profiles in the system U

A profile in the system, usually one person u, v, w ∈ U

Items The collection of things being recommended I

A member of the collection of items i, j, k ∈ I

Rating A measure of a user’s preference for an item rui ∈ R

User’s ratings The set of all items rated by one user Iu

The vector of all ratings made by one user ru

Item’s ratings The set of all users who have rated one item Ui

The vector of all ratings made on one item ri

Score/Prediction An algorithm’s score assigned to a user and item S(u, i)

352 D. Kluver et al.

(a) Unary rating scales from Facebook
(left) and Twitter (right) (b) Binary rating scale from YouTube

(c) 5 point rating scale from MovieLens,
and a larger, 10 point scale from IMDB

(d) A very large continuous rating scale
used in the Jester joke recommender

Fig. 5. Examples of various rating scales used in the wild. (https://www.facebook.
com/, https://twitter.com/, https://www.youtube.com)

Amazon, and many other websites or the ten star scale used by IMDB5 (see
Fig. 5c for examples). Rating scales are almost always designed so that larger
numbers indicate more preference: a user should like a movie they rated 5/5
stars more than they like a movie they rated 4/5 stars. The rating user u assigns
to item i will be denoted rui.

While there are many different rating scales that have been used, the choice
of rating scale is often not relevant for a recommendation algorithm. Some inter-
faces, however, deserve special consideration. Small scales which can only take
one or two values such as a binary (thumbs up, thumbs down) scale (see Fig. 5b)
or unary “like” scales (see Fig. 5a) may require special adaptions when applying
algorithms designed with a larger scale in mind. For example, when working
with the unary “like” scale it can be important to explicitly treat non-response
as a form of rating feedback.

While the algorithms in this chapter are focused on rating-based approaches,
it is important to understand that they only need a numeric measure of prefer-
ence. In this way these algorithms can be used with for many different forms of
preference feedback. Chapter 14 in this book [35] covers recommendation based
on implicit feedback (measurements of user preference that are not ratings). One
of the strategies covered are ways to convert common types of data into ratings
that can be used with the algorithms in this chapter.

Recommender systems often organize the set of all ratings as a sparse rating
matrix R, which is a |U |× |I| matrix. R only has values at rui ∈ R where user u
has rated item i; for all other pairs of u and i, rui is blank. The set of all items
rated by a user u is Iu ⊂ I, the collection of all ratings by one user can also be
expressed as a sparse vector ru. Similarly, the set of all users who have rated
one item i is Ui ⊂ U , and the collection of these ratings can be expressed as a
sparse vector ri.
5 http://www.imdb.com/.

https://www.facebook.com/
https://www.facebook.com/
https://twitter.com/
https://www.youtube.com
http://www.imdb.com/

Rating-Based Collaborative Filtering: Algorithms and Evaluation 353

As the rating matrix R is sparsely observed, one of the ways collaborative
filtering algorithms can be viewed is matrix completion. Matrix completion is the
task of filling in the missing values in a sparse matrix. In the recommendation
domain this is also called the prediction task as filling in unobserved ratings
is equivalent to predicting what a target user u would rate an item i. Rating
predictions can be used by users to quickly evaluate an unknown item: if the
item is predicted highly it might be worth further consideration.

Like we described in MovieLens, one use of predictions is to sort items by
predicted user preference. This leads to the view of a recommender algorithm
as generating a ranking score. The ranking task is to generate a personalized
ranking of the item set for each user. Any prediction algorithm can be used to
generate rankings, but not all ranking algorithms produce scores that can be
thought of as a prediction. Algorithms that focus specifically on the ranking
task are known as learning-to-rank recommenders and will be discussed towards
the end of this chapter.

Both prediction and ranking oriented algorithms produce a score for each
user and item. Therefore, we will use the syntax S(u, i) to represent the output
of both types of algorithm. Almost every algorithm we discuss in this chapter
will produce output as a score for each user and item.

One of the most interesting applications of collaborative filtering recommen-
dation technology is the recommendation task. The recommendation task is to
generate a small list of items that a target user is likely to want. The simplest
approach to this is Top-N recommendation which takes the N highest ranked
items by a ranking or prediction algorithm. More advanced approaches involve
combining ranking scores with other factors to change the properties of the list
of recommendations.

For each task there are associated metrics which can be used to evaluate
the algorithm. Prediction algorithms can be evaluated by the accuracy of their
prediction, and ranking algorithms can be compared to how users rank items.
Recommendation algorithms are a particular challenge to evaluate, however, as
users are sensitive to properties such as the diversity of the recommendations,
or how novel the recommended items are. Evaluation is an important concept in
the study of recommender systems, especially as some algorithms are partially
defined by specific evaluation metrics. We will discuss evaluation approaches in
more detail in Sect. 9.

3 Baseline Predictors

Before describing true collaborative filtering approaches, we will first discuss
baseline predictors. Baseline predictors are the most simple approaches for rat-
ing. While a baseline predictor is rarely the primary prediction algorithm for a
recommender system, the baseline algorithms do have their uses. Due to their
simplicity, baseline predictors are often the most reliable algorithms in extreme
conditions such as new users [37]. Because of this, baseline predictions are often
used as a fallback algorithm in cases where a more advanced algorithm might fail.

354 D. Kluver et al.

Baseline predictions can also be used to establish a minimum standard of perfor-
mance when comparing new algorithms and domains. Finally, baseline prediction
algorithms are often incorporated into more advanced algorithms, allowing the
advanced algorithms to focus on modeling deviations from the basic, expected
patterns that are already well captured by a baseline prediction.

The most basic baseline is the global baseline, in which one value is taken
as the prediction for every user and item S(u, i) = μ. While any value of μ is
possible, taking μ as the average rating minimizes prediction error and is the
standard choice. The global baseline can be trivially improved by using a different
constant for every item or user leading to the item baseline S(u, i) = μi and the
user baseline S(u, i) = μu respectively. In the item baseline μi is an estimate of
the item i’s average rating. This allows the item baseline to captures differences
between different items. In particular, some items are widely considered to be
good, while others are generally considered to be bad. In the user baseline μu

is an estimate of the user u’s average rating. This allows the user baseline to
capture differences between how users tend to use the rating scale. Because most
rating scales are not well anchored, two users might use different rating values
to express the same preference for an item.

This discussion leads us to the generic form of the baseline algorithm, the
user-item bias model, given in Eq. 1.

S(u, i) = μ + bu + bi (1)

Equation 1 has three variables: μ, the average rating in the system; bi, the item
bias representing if an item is, on average, rated better or worse than average;
and bu the user bias representing whether the user tends to rate high or low on
average. By combining all three baseline models we are able to simultaneously
account for differences between users and items, albeit in a very naive way.
This equation is sometimes referred to as the personalized mean baseline as it is
technically a personalized prediction algorithm, even though the personalization
is very minimal.

This model can be learned many ways [40], but are most easily learned with
a series of averages, with μ being the average rating, bi being the item’s average
rating after subtracting out μ and bu being the user’s average rating after sub-
tracting out μ and bi [21]. The following equations can be used to compute μ,
bi and bu:

μ =

∑
rui∈R rui

|R| (2)

bi =

∑
u∈Ui

(rui − μ)
|Ui| (3)

bu =

∑
i∈Iu

(rui − bi − μ)
|Iu| (4)

One problem that can lead to poor performance from the user-item baseline
is when a user or item has very few ratings. Predictions made on only a few
ratings can be very unreliable, especially if the prediction is extremely high or

Rating-Based Collaborative Filtering: Algorithms and Evaluation 355

low. One way to fix this is to introduce a damping term β to the numerator of
the computation. Motivated by Bayesian statistics, this term will shrink the bias
terms towards zero when the number of ratings for an item is small while having
a negligible effect when the number of ratings is large.

bi =

∑
u∈Ui

(rui − μ)
|Ui| + β

(5)

bu =

∑
i∈Iu

(rui − bi − μ)
|Iu| + β

(6)

Damping parameter values of 5 to 25 have been used in the past [22,37], but for
best results β should be re-tuned for any given system.

4 Nearest Neighbor Algorithms

The first collaborative filtering algorithms were nearest neighbor algorithms.
These algorithms work by finding similar items or users to the user or item we
wish to make predictions for, and then uses ratings on these items, or by these
users, to make a prediction. While newer algorithms have been designed, these
algorithms are still in use in many live systems. The simplicity and flexibility
of these basic approaches, combined with their competitive performance, makes
them still important algorithms to understand.

Readers with a background in general machine learning approaches may be
familiar with nearest-neighbor algorithms, as these algorithms are a standard
technique in machine learning. That said, there are many important details in
how recommender systems experts have deployed the nearest neighbor algorithm
in the past. These details are the result of careful study in how to best predict
ratings in the recommender system domain.

4.1 User-User

Historically, the first collaborative filtering algorithms were user-based nearest
neighbors algorithm, sometimes called the user to user algorithm or user-user
for short [58]. This is the most direct implementations of the idea behind collab-
orative filtering, simply find users who have agreed with the current user in the
past and use their ratings to make predictions for the current user. User-based
nearest neighbor algorithms were quite popular in early recommender systems,
but they have fallen out of favor due to scalability concerns in systems with
many users.

The first step of the user-user algorithm for a given user u and item i is to
generate a set of users who are similar to u and have rated item i. The set of
similar users is normally referred to as the user’s neighborhood Nu, with the
subset who have rated an item i being Nui. Once we have the set of neighbors
we can take a weighted average of their ratings on an item as the prediction.
Therefore the most important detail in the user-based nearest neighbor algorithm
is the similarity function sim(u, v).

356 D. Kluver et al.

A natural and widely-used choice for sim(u, v) is a measurement of the cor-
relation between the ratings of the two users; usually, this takes the form of
Pearson’s r [27]:

sim(u, v) =
∑

i(rui − μu)(rvi − μv)
√∑

i(rui − μu)2
√∑

i(rvi − μv)2
(7)

Alternatively, the rank correlation in the form of Spearman’s ρ (the Pearson
correlation of ranks rather than values) or Kendall’s τ (based on the number of
concordant and discordant pairs) can be used. In addition to statistical measures,
vector space measures such as the cosine of the angle between the users’ rating
vectors can be used:

sim(u, v) =
ru · rv

‖ru‖2‖rv‖2 (8)

In non-rating-based systems, the Jaccard coefficient between the two users’
purchased items is a natural choice.

In most published work, Pearson correlation has produced better results than
either rank-based or vector space similarity measures for rating-based systems
[9,27]. However, Pearson correlation does have a significant weakness for rating
data: it ignores items that only one the users has rated. In the extreme, if
two users have only rated two items in common their correlation would be 1.
Unfortunately, its unlikely that two users who do not watch the same things
would truly be that similar. In general, correlations based on a small number of
common ratings trend artificially towards extreme values. While these similar
neighbors may have high similarity scores, they often do not perform well as
neighbors whose similarity scores are based on a larger number of ratings.

Significance weighting [27] addresses this problem by introducing a multiplier
to reduce the measured similarities between between users who have not rated
many of the same items. The significance weighting strategy is to multiply the
similarity by min(|Iu∩Iv|,T)

T , where T is a threshold of “enough” co-rated items.
This causes the similarity to linearly decrease between users with fewer than T
common rated items. Past work has found T = 50 to be reasonable, with larger
values showing no improvement [27].

There is a natural, parameter-free way to dampen similarity scores for users
with few co-occurring items. If items a user has not rated are treated as having
the user’s average rating, rather than discarded, the Pearson correlation can
be computed over all items. When computing with sparse vectors, this can be
realized by subtracting each user’s mean rating from their rating vectors, then
comparing users by taking the cosine between their centered rating vectors and
assuming missing values to be 0. This results in the following formula:

sim(u, v) =
r̂u · r̂v

‖r̂u‖2‖r̂v‖2 (9)

=

∑
i∈Iu∩Iv

(rui − μu)(rvi − μv)
√∑

i∈Iu
(rui − μu)2

√∑
i∈Iv

(rvi − μv)2
(10)

Rating-Based Collaborative Filtering: Algorithms and Evaluation 357

This is equivalent to the Pearson correlation, except that all of each users’
ratings contributes to their term in the denominator, while only the common
ratings are counted in the numerator (due to the normalized value for missing
ratings being 0). The result is similar to significance weighting. Similarity scores
are damped based on the fraction of rated items that are in common; if the users
have 50% overlap in their rated items, their resulting similarity will be greater
than the similarity between users with the same common ratings but only 20%
overlap due to additional ratings of other items. This method has the advantage
of being parameter-free, and has been seen to perform at least as well [15,16,20].

After picking a similarity function, the next step in predicting for a user u
and item i is to compute the similarity between user u and every other user. For
systems with many users approximations such as randomly sampling users [29]
can improve performance, possibly at a tradeoff of prediction accuracy. Once
similarities have been computed the system must choose a set of similar users
Nu. Various approaches can be taken here, from using all users to a limited num-
ber or only those that are sufficiently similar. Past evaluations have suggested
that using the 20 to 60 most similar users performs well and avoids excessive
computations [27]. Additionally, by filtering the users the algorithm can avoid
the noise that would be introduced by the lower quality neighbors.

Once the algorithm has a set of neighbors Nu the prediction for item i is
simply the weighted average of the neighboring users’ ratings. Direct averages,
without the weighting term, have been used in the past, but tend to perform
worse. Let Nui refer to the subset of Nu containing all users in Nu who have
rated item i.

S(u, i) =

∑
v∈Nui

sim(u, v) ∗ rvi
∑

v∈Nui
|sim(u, v)| (11)

These predictions can often be improved by incorporating basic normalization
into the algorithm. For example, since users have different average ratings we
can take a weighted average of the item’s offset from the user’s average rating.

S(u, i) = μu +

∑
v∈Nui

sim(u, v) ∗ (rvi − μv)
∑

v∈Nui
|sim(u, v)| (12)

More advanced normalization is also possible by using z score normalization in
which all ratings are first reduced by the user’s average rating, and then divided
by the standard deviation in the users rating.

The user-based nearest neighbors approach tends to produce good predic-
tions, but is often outperformed by newer algorithms. In this regard, the algo-
rithm is listed here mostly for reference value. Other than its accuracy, one core
issue with the performance of the user-based recommender is its slow predict time
performance. Most modern recommender systems have a very large number of
users which makes finding neighborhoods of users expensive. For good results
neighborhood finding should be done online and cannot be extensively cached for
performance improvements. This computation makes user-based nearest neigh-
bors very slow for large scale recommender systems, but it remains viable option
for a recommender system with many items but relatively few users.

358 D. Kluver et al.

4.2 Item-Item

The item-based nearest neighbor algorithm (sometimes called the item to item
or item-item algorithm for short) is closely related to user-user [61]. Where user-
user works by finding users similar to the given user and recommending items
they liked, item-item finds items similar to the items the given user has pre-
viously liked and uses those to make recommendations. Instead of computing
similarities between users, item-item computes similarities between items, and
uses an average rating over the item neighborhood to make predictions. Unlike
user-user, item-item is well suited to modern systems which have many more
users than items. This allows item-item some key performance optimizations
over user-user which we will address shortly.

To make a prediction for user u and item i item-item first computers a neigh-
borhood of similar items Nui. In practice it is common to limit this neighborhood
to only the k most similar items. k = 30 is a common value from the academic
research, however, different systems may require different settings for optimal
performance [61]. Item-item then takes the weighted average of user u’s ratings
on the items in this neighborhood, and uses that as a prediction.

S(u, i) =

∑
j∈Nui

sim(i, j) ∗ ruj
∑

j∈Nui
|sim(i, j)| (13)

This equation can be enhanced by subtracting a baseline predictor from the
ratings rui so the algorithm is only predicting deviation from baseline. If this is
done, the baseline should be added back in after the fact to make a prediction.
Note this will have no effect if the global or per-user baselines are used. The
following equation shows how a baseline predictor could be subtracted, using
B(u, i) to represent the baseline

Pu,i = B(u, i) +

∑
j∈Nui

sim(i, j) ∗ (ruj − B(u, j))
∑

j∈Nui
|sim(i, j)| (14)

Generally item-item uses the same similarity functions as user-user, simply
replacing the user ratings with item ratings.

The cosine similarity metric is the most popular similarity metric for item-
item recommendation. Past work has shown that cosine similarity performs bet-
ter than other traditionally studied similarity functions [61].

The key to getting the best quality predictions using cosine similarity is
normalizing the ratings [61]. Evaluations have shown that subtracting the user’s
average rating from the ratings before computing similarity leads to substantially
better recommendations. In practice we have found that subtracting the item
baseline or the user-item baseline leads to improvements in performance [20].

sim(i, j) =
∑

u∈U (rui − B(u, i)) ∗ (ruj − B(u, j))
√∑

u∈U (rui − B(u, i))2 ∗ √∑
u∈U (ruj − B(u, j))2

(15)

Both Pearson and Spearman similarities have been tried for item-item pre-
diction, but do not tend to perform better than cosine similarity [61]. Just like

Rating-Based Collaborative Filtering: Algorithms and Evaluation 359

Pearson similarity for the user-user algorithm, signficance weighting can improve
prediction quality when using Pearson similarity with item-item.

One key advantage of the item-item algorithm is that item similarities and
neighborhoods can be shared between users. Since no information about the
given user is used in computing the list of similar items, there is no reason
that the values cannot be cached and re-used with other users. Furthermore, in
systems where the set of users is much larger than the set of items, we would
expect the average item to have very many ratings. Many ratings per items leads
to relatively stable item similarity scores, meaning that these can be cached for
a much larger amount of time than user-user similarity scores.

This insight has led to the common practice of precomputing the item-item
similarity matrix. With a precomputed list of similar items the specific item
neighborhood used for prediction can be found with a quick linear scan, using
only information about the given user’s past ratings. This speeds up predict-time
computation drastically, making item-item more suitable for modern interactive
systems than the user-user algorithm.

The cost of this speed-up is a regularly-occurring “model build” in which the
similarity model is recomputed. This frequently is done nightly to ensure that
new items are included in the model and are available to recommend. Since this
model build is not interactive, it can run on a separate bank of machines from
the live system and be scheduled to avoid peak system use.

The improvements from precomputing similarities can be made even larger
by truncating the stored model. For reasonably large systems storing the whole
item-item similarity matrix can take a lot of space. Many items have low to no
similarity with all but a small percent of the system. Since these dissimilar items
will almost never be used in an actual item neighborhood, there is no point to
store them. By keeping only the most useful potential neighbors, the model size
on disk and in memory can be reduced and predict time performance can be
increased. Therefore it is common to keep only the n most similar items for any
item in the model as “potential neighbors”. Past work has shown that larger
models do perform slightly better than smaller models, but that the advantages
disappear after some point. In the original work on item-item, the point at
which a larger model has no benefit is around 100 to 200 items [61]. Work based
on larger datasets have also found larger models (500 items or more) to more
effective; suggesting that, like all other parameters, the best value for the model
size will vary from system to system [17,37].

With the various tweaks and optimizations the research community has found
since item-item was first published, item-item can be a strong algorithm for rec-
ommendation. While it is slightly outperformed by newer algorithms, it is still
very competitive when well tuned [18,19]. Furthermore, item-item is easier to
implement, modify, and explain to users than most other recommendation algo-
rithms. For these reasons, item-item is still a competitive algorithm for large scale
recommender systems, and still sees modern deployment despite more recent,
slightly more accurate, algorithms being offered [59].

360 D. Kluver et al.

Variants. Nearest-neighbor algorithms are the best-known approaches for col-
laborative filtering recommendation. Because of this, they have been modified in
many interesting ways. One variant is an inversion of the user-user algorithm: the
K-furthest neighbors algorithm by Said et al. [60] The K-furthest neighbors algo-
rithm makes neighborhoods based on the least similar users, instead of the most
similar users. The idea behind this is to enhance the diversity of the recommen-
dations made. User evaluations comparing nearest neighbor recommendation to
furthest neighbor recommendation shows that the two are relatively close in user
satisfaction, even if the predictions made by nearest neighbor recommendation
are much more accurate.

Another interesting variant to nearest neighbor recommendation is Bell and
Koren’s Jointly Derived Neighborhood Interpolation Weights approach [3]. The
key insight of this approach is that the quality of the similarity function directly
determines the quality of the user recommendation in a neighborhood model.
Therefore, these similarity scores should be directly optimized, instead of rely-
ing on ad-hoc similarity metrics. One key advantage of this is that the similarity
scores can be jointly optimized, which makes the algorithm more robust to inter-
actions involving multiple neighbors. A similar approach has also been taken by
Ning and Karypis’ SLIM algorithm [49].

Many variants of nearest-neighbor algorithms use some external source of
information to inform the similarity function used. One example of this is the
trust aware recommendation framework [46], which re-weights user similarity
scores based on an estimated degree of trust between two users. In this way
the algorithm bases predictions on more trusted users. This same approach
could be used with other forms of information such as content based similar-
ity information.

5 Matrix Factorization Algorithms

Nearest-neighbor algorithms are good at capturing pairwise relationships
between users or items. They cannot, however, take advantage of broader struc-
ture in the data, such as the idea that five different items share a common topic,
or that a user’s ratings can be explained by their interest in a particular feature.
To explicitly represent this type of relationship requires a fundamentally differ-
ent approach to recommendation. One such approach is the use of latent feature
models such as the popular family of matrix factorization algorithms.

Rather than modeling individual relationships between users or items, latent
feature models represent each user’s preference for items in terms of an underly-
ing set of k features. Each user can then be described in terms of their preference
for each latent feature, and each item can be described in terms of its relevance
to each feature. These item and user feature scores can then be combined to
predict the user’s preference for future items.

All matrix factorization algorithms encode each user’s preference numeri-
cally in k-dimensional vectors pu and each item’s relevance to features in k-
dimensional vectors qi. We will use puf to indicate the value representing a

Rating-Based Collaborative Filtering: Algorithms and Evaluation 361

user’s preference for a given feature f and qif to indicate the value represent-
ing an item’s relevance to feature f . Once these vectors are computed, we can
compute a user u’s preference for a particular item i as the linear combination
of the user feature vector and the item feature vector.

S(u, i) = pu · qi =
k∑

f=1

pufqif (16)

Under this equation, S(u, i) will be high if and only if those feature u prefers
(with high scores is pu) are also those feature i is relevant to (with high scores
in qi).

It is common to organize the vectors pu into a |U | × k matrix named P and
the vectors qi into a |I| × f matrix named Q. This allows all scores for a given
user to be computed in a single matrix operation su = pu × QT. Likewise, all
scores for every user can be computed as S = P × QT These operations may be
more efficient than repeatedly computing S(u, i) in some linear algebra packages.

As with neighborhood based algorithms, this approach can easily be improved
by directly accounting for a user’s average rating and an item’s average rating.
This can be done as before, by normalizing ratings against a baseline predictor.
However, it is much more common to introduce the bias terms directly into the
model, and to learn these values simultaneously with learning matrices P and
Q. This results in a biased matrix factorization model [40]:

S(u, i) = μ + bu + bi + pu · qi (17)

The goal in matrix factorization algorithms is to find the vectors pu and qi

(as well as extra terms like μ, bu, bi) that lead to the best scoring function for
a given metric. One interesting difference between this and a nearest neighbor
style algorithm is that the same core model and scoring equation algorithm can
lead to many different algorithms depending on how pu and qi are learned. We
will be presenting three approaches for learning pu and qi, in this section we will
see how to optimize pu and qi for prediction accuracy. In the following section
we will address an algorithm that learns pu and qi to optimize how accurately
the algorithm ranks pairs of items.

The algorithms we describe are a few of many possible matrix factorization
algorithms. One of the interesting aspects of this model is that it has become
a standard starting point for many novel algorithm modifications. SVD++ [40]
and SVDFeature [12], for example, extend Eq. 17 by adding terms to incorporate
implicit feedback and additional user or item feature information. By combining
Eq. 17 with new terms to accommodate new data, and new ways of optimizing
the model for different goals, many interesting algorithm variants are possible.

5.1 Training Matrix Decomposition Models With Singular Value
Decomposition

One way to train a matrix factorization model for predictive accuracy, and the
reason these are often called SVD algorithms, is with a truncated singular value
decomposition (SVD) of the ratings matrix R.

362 D. Kluver et al.

R ≈ PΣQT (18)

Where P is an |U | × k matrix of user-feature preference scores, Q is an |I| × k
matrix of item-feature relevance vectors, and Σ is a k × k diagonal matrix of
global feature weights, called singular values. In a true algebraic SVD, P and Q
are orthogonal, and this product is the best rank-k approximation for the original
matrix R. This means that the matrices P and Q can be used to produce scores
that are optimized to make accurate predictions of unknown ratings.

Singular value decompositions are not bounded to a particular k; the number
of non-zero singular values will be equal to the rank of the matrix. However, we
can truncate the decomposition by only retaining the k largest singular values
and their corresponding columns of P and Q. This accomplishes two things: first,
it greatly reduces the size of the model, and second, it reduces noise.

Ratings are known to contain both signal about user preferences and random
noise [38]. If the ratings matrix is a combination of signal and noise, then con-
sistent and useful signals will contribute primarily to the high-weight features
while the random noise will primarily contribute to the lower wright features.
For convenience, the columns of P and Q are often stored in a pre-weighted form
so that Σ is not needed as a separate matrix. With this we see that the scoring
function is simply S(u, i) = pu · qi.

There are two important and related difficulties with the singular value
decomposition for training a matrix factorization model. First, it is only defined
over complete matrices, but most of R is unknown. In a rating-based system,
this problem can be addressed by imputation, or assuming a default value (e.g.
the item’s mean rating) for unknown values [62]. If the ratings matrix is nor-
malized by subtracting a baseline prediction before being decomposed, then the
unknown values can be left as 0’s and the normalized matrix can be directly
decomposed with standard sparse matrix methods.

The second difficulty is that the process of computing a singular value decom-
position is very computationally intensive and does not scale well to large matri-
ces. Unlike with the first problem there is no natural solution to this. Because
of this problem it is uncommon for matrix decomposition algorithms to operate
based on a pure singular value decomposition.

Despite these limitations, using a singular value decomposition to compute
pu and qi is still an easy way to build a basic collaborative filtering algorithm
for experimentation. Optimized algorithms for computing matrix decompositions
can be found in mathematical computing packages such as MATLAB. However,
for the reasons mentioned above this is not a reasonable approach for production
scale recommender systems.

5.2 Training Matrix Decomposition Models With Gradient Descent

The goal of matrix factorization is to produce an effective model of user prefer-
ence. Therefore the algebraic structure (singular value decomposition) is more
of a means to an end rather than the end itself. In practice it is common to
sidestep the problems inherent in using a singular value decomposition and

Rating-Based Collaborative Filtering: Algorithms and Evaluation 363

instead directly optimize P and Q against some metric over our training data.
This way we can simply ignore missing data opening up a range of speed-ups
over a singular value decomposition. Simon Funk pioneered this approach to
great affect by using gradient descent to train P and Q to optimize the popular
mean squared error accuracy metric [22]. Similar algorithms are now a common
strategy for latent factor style recommendation algorithms [41].

Since our goal is a matrix decomposition with minimal mean squared error,
we can learn a decomposition by treating the problem as an optimization prob-
lem: learn matrices P (m × k) and Q (n × k) such that predicting the known
ratings in R with the multiplication PQT has minimal (squared) error. As mean
squared error is easily differentiable, optimization is normally done via either
stochastic gradient descent or alternating least squares.

Stochastic gradient descent is a general purpose optimization approach used
in machine learning to optimizing a mathematical model for a given loss function
or metric, so long as the metric is easy to take the derivative of. First the
computer starts with an arbitrary initial value for the model parameters, in this
case the matrices P and Q as well as the bias terms. Then, it iterates through
each training point, in our case a user, item and rating: (u, i, rui). Based on this
point it computes an update to the model parameters that will reduce the error
made on that training point. The specific update rules are derived by taking the
derivative of an error function with respect to the training point, in this case
the error function is the squared error. These updates are repeated many times
until the algorithm converges upon a local optimum.

The update rules to train a biased matrix factorization model to minimize
squared error using gradient descent are:

εui = μ + bu + bi + pu · qi − rui (19)
μ = μ + λ(εui − γμ) (20)

bu = bu + λ(εui − γbu) (21)
bi = bi + λ(εui − γbi) (22)

Puf = Puf + λ(εui ∗ Qif − γPuf) (23)
Qif = Qif + λ(εui ∗ Puf − γQif) (24)

To apply these these update rules we first compute εui, which represents the
prediction error: S(u, i) − rui. This update rule should be applied to each of
the k features. Then, the update for each variable should be computed before
applying the updates.

The gradient descent process uses a learning rate λ that controls the rate
of optimization (0.001 is a common value), and γ is a regularization term (0.02
is a common value). This regularization term penalizes excessively large user-
feature and item-feature values to avoid overfitting. This update rule should be
applied until some stopping condition is reached, the most common stopping
condition being a specified number of iterations. To get the best performance, k,
λ, and γ, and the stopping condition should be hand tuned using the evaluation
methodologies discussed in Sect. 9.

364 D. Kluver et al.

Once learned, the set of variables μ, bu, bi, P and Q serves as the model for
the algorithm. Given these values creating a prediction is as easy as applying
Eq. 17. Like with item-item this model is normally computed offline. Tradition-
ally the model is rebuilt daily or weekly (depending on how long it takes to
rebuild a model and how actively new ratings, items, and users are added to
the system). With this type of recommender model it is also possible to per-
form online updates [57] which allow a model to account for ratings, items, and
users added after the model is built with a minimal loss of accuracy. In practice
online and offline model updates can be combined to balance between complete
optimization and interactive data use.

Matrix factorization approaches provide a memory-efficient and, at recom-
mendation time, computationally efficient means of producing recommendations.
Computing a score in a matrix factorization algorithm requires only O(K) work
(assuming that the factors are precomputed and stored for O(1) lookup), this is
true no matter how many items, users, or ratings are involved. Furthermore, by
taking account of the underlying commonalities between users and items that
are reflected in users’ preferences and behaviors it makes very accurate predic-
tions. Because of this matrix factorization algorithms are very popular and are
one of the most common algorithms in the research literature.

6 Learning to Rank

As the original collaborative filtering algorithms focused on the prediction task,
most of the research into the recommendation task has been designed around
how we can use predictions to make good quality recommendations. The most
common approach to doing this is also the most obvious: sort items by pre-
diction. This approach is called the “Top-N recommendation”, and is still used
by systems like MovieLens and remains quite popular today. That said, other
approaches have been developed for directly targeting the quality of a recom-
mendation list.

Learning-to-rank algorithms are a recently popular class of algorithms from
the broader field of machine learning. As their name suggests, these algorithms
directly learn how to produce good rankings of items, instead of the indirect
approach taken by the Top-N recommendation strategy. While there are several
approaches, most learning-to-rank algorithms produce rankings by learning a
ranking function. Like a prediction, a ranking function produces a score for each
pairing of user and item. Unlike predictions, however, the ranking score has no
deliberate relationship with rating values, and is only interesting for its ranked
order.

Because learning-to-rank algorithms are designed around ranking and recom-
mendation tasks, instead of prediction, they often outperform prediction algo-
rithms at the recommendation task. However, because their output has no rela-
tion to the prediction task, they are incapable of making predictions. Many rec-
ommender systems do not display predicted rating to users; in such systems a
learning-to-rank algorithm can lead to a much more useful recommender system.

Rating-Based Collaborative Filtering: Algorithms and Evaluation 365

The heart of most learning to rank algorithms is a specific way to define
ranking or recommendation quality. Unlike prediction algorithms, where “accu-
racy” is easy to define, there are many ways to define ranking and recommenda-
tion quality. Furthermore, unlike prediction errors, ranking and recommendation
errors are poorly suited for use in optimization. A small change to a model might
lead to a small, but measurable prediction accuracy change but have no effect
on the output ranking. Therefore the core work in many learning-to-rank algo-
rithms is in designing easy-to-optimize measurements that approximate common
ranking metrics. Once these new metrics are defined, standard optimization tech-
niques can be applied to standard recommendation models such as the biased
matrix factorization model from Eq. 17.

Learning-to-rank is an active area for research into recommender system algo-
rithms with new algorithms being developed every year. To get a taste of this
type of algorithm we will explain the Bayesian Personalized Ranking (BPR)
algorithm [56]. First published in 2009, BPR is one of the earliest and most
influential learning-to-rank algorithms for collaborative filtering recommenda-
tion. BPR will be discussed again in Chap. 14 in this book [35], as it was origi-
nally designed for implicit preference information. We discuss it here because it
is trivial to modify for use with rating data, and the structure and development
of the BPR algorithm serves as a good example of learning-to-rank algorithms
in general.

6.1 BPR

BPR is a pairwise learning-to-rank algorithm, which means that it tries to pre-
dict which of two items a user will prefer. If BPR can accurately predict that
a user will prefer one item over another we can use that prediction strategy to
rank items and form recommendations. This approach has two advantages to
prediction based training: first, BPR tends to produce better recommendations
than prediction algorithms. Secondly, BPR can use a much wider range of train-
ing data. As long as we can deduce from user behavior that one item is preferred
over another, we can use that as a training point.

BPR was originally designed for use with implicit unary forms of preference
feedback, instead of ratings. For example, with unary data such as past purchases
we can generate pairs by assuming that all purchased items are liked better than
all other items. With a traditional ratings dataset we can generate training points
by taking pairs of items that the user rated, but assigned different ratings to.

To predict that a user will prefer one item over another, BPR tries to learn
a function P (i >u j) – the probability that user u prefers item i to item j. If
P (i >u j) > 0.5 then, according to the model, user u is more likely to prefer i
over j than they are to prefer j over i. Therefore if P (i >u j) > 0.5 we would
want to rank item i above item j. There are many different functions that could
be used for P , BPR uses the popular logistic function.

The logistic function allows us to shift focus from computing a probability
to computing any number xuij which represents a user’s relative preference for
i over j (or j over i if xuij happens to be negative). The logistic transformation

366 D. Kluver et al.

then defines P as P (i <u j) = 1/(1 + e−xuij). While we could build algorithms
to directly optimize xuij its easier to change variables one more time by defining
xuij = S(u, i)−S(u, j) for some scoring function S. The way the logistic function
works we have P (i >u j) > 0.5 if and only if S(u, i) > S(u, j). Furthermore, the
probability P will be more confident (closer to 0 or 1) if S(u, i) is substantially
greater or smaller than S(u, j). Therefore to optimize P (i >u j) for predictive
accuracy we need to optimize S so that it ranks items correctly. For the same
reason, once we train S we can use S directly for ranking.

Based on this formalization we arrive at the BPR optimization criteria, which
is the function BPR seeks to optimize. The optimization criteria depends on
some scoring function S(u, i), and a collection of training points (u, i, j) which
represent that u has expressed a preference for item i over item j. Given these,
the optimization criteria is the product of the probability BPR assigns to each
observed preference P (i >u j) = 1/(1 + e−(xui−xuj)). A good ranking function
should maximize these probabilities, therefore we seek to maximize performance
against this criteria. The full derivation of this, as well as the complete optimiza-
tion criteria can be found the original BPR paper by Rendle et al. [56].

Almost any model can be used for the scoring function S. All that is required
is that the derivative of S with respect to its model parameters can be found.
Therefore any algorithm that can be trained for accuracy using gradient descent
can also be trained using BPR’s optimization criteria to effectively rank items.
We will cover BPR-MF, which uses a matrix factorization model. In particular,
we will give update rules for the non-biased matrix factorization seen in Eq. 16.
Only minor modifications would be needed to derive update rules for a biased
matrix factorization model.

As with all matrix factorization models we have two matrices P and Q
representing user and item factor values which need to be optimized so that
S(u, i) = pu · qi provides a good ranking. P and Q can be optimized for the
BPR optimization criteria using stochastic gradient descent by applying the fol-
lowing update rules:

For a given training sample (u, i, j) representing the knowledge that user u
prefers item i over item j:

εuij =
e−(S(u,i)−S(u,j))

1 + e−(S(u,i)−S(u,j))
(25)

Puf = Puf + λ (εuij ∗ (Qif − Qjf) + γ ∗ Puf) (26)
Qif = Qif + λ (εuij ∗ Puf + γ ∗ Qif) (27)
Qjf = Qjf + λ (−εuij ∗ Puf + γ ∗ Qjf) (28)

Where λ is the learning rate and γ is the regularization term. Like the equations
for updating a traditional matrix factorization algorithm, εuij in this equation
represents the degree to which S does or does not correctly rank items i and j.

When training BPR algorithms, the order in which training points are taken
can have a drastic impact on the rate at which the algorithm converges. Rendle
et al. [56] showed that the naive approach of taking training points grouped by
user can be orders of magnitude slower than an approach that takes randomly

Rating-Based Collaborative Filtering: Algorithms and Evaluation 367

chosen training points. Therefore, for simplicity, Rendle et al. recommend train-
ing the algorithm by selecting random training points (with replacement) and
applying the update rules above. This process can be repeated until any preferred
stopping condition, such as iteration count, has been reached.

Unsurprisingly, the BPR-MF algorithm is much better than classic algo-
rithms at ordering pairs of items under the AUC metric. On other recommender
metrics BPR-MF only shows modest improvements over traditional algorithms.
The trade-off of this, however, is that BPR-MF, like most learning-to-rank algo-
rithms, cannot make predictions. Theoretically, advanced techniques could be
used to turn the ranking score into a prediction, however, in practice we find
this does not lead to prediction improvements over prediction centered algo-
rithms. Therefore for a website that uses both recommendations and predictions
using separate algorithms for the two tasks might be essential.

7 Other Algorithms

The algorithms highlighted in this chapter provide an overview of the most
influential and important recommender systems algorithms. While these few
algorithms provide a basic grounding of most recommender algorithms, there
are many more algorithms than covered in this chapter. Briefly, we want to
mention a few other key approaches and techniques for generating personalized
recommendations that have proved successful in the past.

7.1 Probabilistic Models

Probabilistic algorithms, such as those based on a Bayesian belief network, are
a popular class of algorithms in the machine learning field. These algorithms
have also seen increasing popularity in the recommender systems field recently.
Many probabilistic algorithms are influenced by the PLSI (Probabilistic LSI)
[30] and LDA (latent Dirichlet allocation) [7] algorithms. The basic structure
of these models is to assume that there are k distinct clusters or profiles. Each
profile has a distinct probability distribution over movies describing the movies
that cluster tends to watch and, for each movie a probability distribution over
ratings for that cluster. Instead of directly trying to cast a user into only one
cluster, each user is a probabilistic mixture of all clusters [31]. This can be
thought of as a type of latent feature model, each user has a value for each of
k clusters (features) and each movie has a preference score associated with each
of k clusters (features). One of the key advantages of these probabilistic models
is that they are easier to update with new user or item information, due to the
wealth of standard training approaches for probabilistic models [63].

7.2 Linear Regression Approaches

Many algorithms have incorporated linear regression techniques into their for-
mulation. For example, the original work introducing the item-item algorithm

368 D. Kluver et al.

experimented with using regression techniques in addition to the similarity com-
putations. For each pair of items a linear regression is used to find the best
linear transformation between the two items. This transformation would then
be applied to get an adjusted rating to be used in the weighted average. While
this showed some promise for very sparse systems the idea showed little promise
for more traditional recommender systems.

A more recent implementation of this idea is the Slope One recommendation
algorithm [45]. In slope one we compute an average offset between all pairs of
items. We then predict an item i by applying the offset to every other rating
by that user, and performing a weighted average. The slope one algorithm has
some popularity, especially as a reference algorithm, due to how simple it is to
implement and motivate. Outside of nearest neighbor approaches, linear regres-
sion approaches are also a common way to combine multiple scoring functions
together, or combine collaborative filtering output with other factors to create
ensemble recommenders.

7.3 Graph-Based Approaches

Graph-based recommender algorithms leverage graph theoretic techniques and
algorithm to build better recommender systems. Although uncommon, these
algorithms have been a part of recommender systems research community since
the early days [1]. In traditional recommender system websites like MovieLens
or Netflix there is rarely a natural graph to consider, therefore these algorithms
tend to impose a graph by connecting users to items they have rated. By also
connecting items using content information you can use graph-based algorithms
to combine content and collaborative filtering approaches [32,52].

Some services, however, have both recommendation features and social net-
work features. In these websites it is natural to assume that a person to person
connection is an indicator of trust. This leads to the set of trust based rec-
ommendation algorithms in which a person to person trust network is used as
part of the recommendation process. Many of these algorithms use graph based
propagation of trust as a core part of a recommendation algorithm [33,46].

8 Combining Algorithms

Most recommender system deployments do not directly tie the scores output
by one of the above algorithms to their user interface. While these algorithms
perform well, there usually are further improvements that can be made by com-
bining the output of these algorithms with other algorithms or scores. Generally
there are three reasons to perform these modifications: business logic, algorithm
accuracy/precision, and recommendation quality. The first of these reasons –
business logic – is both the most simple, and ubiquitous. Many recommender
systems modify the output of their algorithm to serve business purposes such as
“do not recommend items that are out of stock” or “promote items that are on
sale”.

Rating-Based Collaborative Filtering: Algorithms and Evaluation 369

The second of these reasons – algorithm accuracy – leads researchers to
develop and deploy ensemble algorithms. Ensemble algorithms are techniques
for combining arbitrarily algorithms into one comprehensive final algorithm. The
final algorithm normally performs better than any of its constituent algorithms
independently. The design, development, and training of ensemble algorithms is
a large topic in the broader machine learning field. As a comprehensive discus-
sion of ensemble algorithms is out of scope for this chapter we will try to give a
brief overview to the application of ensembles in the recommender systems field.

The final reason to combine algorithms – recommendation quality – is more
complicated. Properties like novelty and diversity have a large impact on how
well users like recommendations. These properties are very hard to deliberately
induce in collaborative filtering algorithms as they can be in tension with rec-
ommending the best items to a user. Several algorithms have been developed
to modify a recommendation algorithm’s output specifically for these proper-
ties. While these algorithms are not ensembles in the traditional sense they are
another way to moderate the behavior of a recommendation algorithm based on
some other measure. These algorithms will be discussed after describing strate-
gies for ensemble recommendation.

8.1 Ensemble Recommendation

The most basic approach to an ensemble algorithm is a simple weighted linear
combination between two algorithms Sa and Sb

S(u, i) = α + βa ∗ Sa(u, i) + βb ∗ Sb(u, i) (30)

The simplest way to learn this is to have the developer directly specify the
weightings. While this may sound naive there are several places where this can
be appropriate, especially when the parameters are picked based on difficult to
optimize metrics such as a user survey.

Linear Regression. A more attractive technique to train a linear model may
be to use traditional linear regression to learn the best α and β parameters to
optimize accuracy. You could imagine simple training Sa and Sb on all available
training ratings and then using their predictions and the same training ratings
to predict α and β. Unfortunately, this is not recommended – the core issue is
that the same ratings should not be used when training the sub-algorithms and
when training the ensemble as it leads to overfitting.

Ideally you want to train the ensemble on ratings that the sub-algorithms
have not seen so that the ensemble is trained based on the out-of-sample error
of each algorithm. The easiest way to do this would be to randomly hold out
some small percent of training data (say 10%) and to use that withheld data to
train the regression to minimize squared error. The problem with this approach
to training a linear ensemble, however, is that it withholds a large amount of
data, which might effect the overall algorithm performance.

370 D. Kluver et al.

Stacked Regression. An alternate approach, without this problem is Breiman’s
stacked regression algorithm [10]. Breiman’s algorithm trains regression param-
eters by first producing a k subsets of the dataset by traditional (ratings based)
crossfolding. Then each sub-algorithm is trained independently on each of the k
folds of the algorithm. Due to the way crossfold validations are made this means
that each of the original training ratings has an associated algorithm which has
never seen that rating. When generating sub-algorithm predictions for any given
training point (as needed to learn the linear regression) the algorithm which has
never seen that training point is used. Once the linear regression has been trained
the sub-algorithms should then be re-trained using the overall set of data. For
a more comprehensive description of this procedure consult Breiman’s original
paper [10].

All ensemble algorithms work best when very different algorithms are being
combined. So an ensemble between item-item (with cosine similarities) and item-
item (with Pearson similarities) is unlikely to show the same improvement as an
ensemble between item-item and a content-based algorithm [17].

In MovieLens, for example, we could imagine making a simple content-based
algorithm by computing each user’s average rating for each actor and director.
While not necessarily the best algorithm, this content based algorithm would
likely outperform a collaborative filtering algorithm for movies with very few
ratings. Therefore, an ensemble of a content based algorithm and a collaborative
filtering algorithm might show improved accuracy over a content based algorithm
on its own.

This example does lead to one interesting observation: there are many cases
where we would want to create an ensemble and we know the conditions when
one algorithm might perform better than another. The actor-based recommender
would be our best recommender when we have next to no ratings for a movie,
as we get more ratings, however, we should trust the collaborative filtering algo-
rithm more. A linear weighting scheme does not allow for this type of adjustment.

Feature Weighted Linear Stacking. The feature weighted linear stacking
algorithm, introduced by Sill el al., is an extension to Breiman’s linear stacked
regression algorithm [64]. Feature weighted linear stacking allows the relative
weights between algorithms to vary based on features like number of ratings
on an item. This algorithm is most noteable for being very popular during the
Netflix prize competition, a major collaborative filtering accuracy competition,
where it was the key facet of the second best algorithm. In feature weighted
linear stacking algorithms are linearly related as per Eq. 30, the difference is
that the weights β are themselves a linear combination of the extra features. Sill
et al. show that this model can be learned by solving a system of linear equations
using any standard toolkit for solving systems of linear equations. Details of this
solution, especially including information to assist in scaling are provided in the
paper by Sill et al. [64].

While ensemble methods have provided much better predictive accuracy than
single algorithm solutions, and could theoretically be applied to learning-to-rank
problems as well, it should be noted that they can also become much more

Rating-Based Collaborative Filtering: Algorithms and Evaluation 371

complex than a traditional recommender. While it is easy to overlook technical
complexity when designing an algorithm, technical complexity can be a signif-
icant barrier to actually deploying large ensembles in the field. Noteably, after
receiving code for a 107-algorithm ensemble Netflix went on to only actually
implement two of these sub-algorithms [2]. Ensemble methods can be much more
complex and time invasive to keep up to date and can require much more process-
ing when making predictions which can lead to slower responses to users. There-
fore, when considering ensembles, especially very large ones, designers should
consider if the improved algorithm accuracy is worth the increased system com-
plexity.

8.2 Recommending for Novelty and Diversity

This brings us to the third reason that a recommender system might modify
the scores output from a recommendation algorithm: to increase the quality of
recommendations as reported by users. Research into recommendation systems
has shown that selecting only good items is not enough to ensure that a user
will find a recommendation useful [69,70]. Many other properties can effect how
useful a recommendation is to a user. Two that have been shown to be important,
and have been the focus of some research are novelty and diversity.

Novelty and diversity are properties of a recommendation that measure how
the items relate to each other or the user. Novelty refers to how unexpected or
unfamiliar the user is with their recommendations [53]. If a recommendation only
contains obvious recommendations they are neither novel, nor useful at helping
a user find new items. Diverse recommendations cover a large range of different
items. One flaw with many recommender systems is that their recommendations
are all very similar to each other, which limits how useful the recommendations
are. For example, a top-8 recommendation consisting of only Harry Potter movies
would neither be novel (as those movies are quite well known), nor would it be
diverse (since the recommendation only represents a small niche of the user’s
presumably broader interests).

There have been several different approaches to modifying an algorithm’s
score to favor (or avoid) properties like novelty or diversity. We will focus on
two broad strategies, the first is well suited to combining algorithms with item
specific metrics such as how novel an item is, the second is well suited to metrics
measured over the entire recommendation list. While these strategies have been
pioneered for use with novelty and diversity, they can be applied with any metric.
For example, when recommending library items, users may be disappointed by
recommendations on item that have a waitlist and cannot be borrowed immedi-
ately. These strategies could be used to modify recommendations to favor items
without a waitlist, increasing user satisfaction. Specific metrics for novelty and
diversity will be discussed alongside algorithm evaluation in Sect. 9.4.

The most common way to combine algorithms with some metric to increase
user satisfaction is to use a simple linear combination between the original algo-
rithm score Sa and a some item level measurement of interest [6,67,69]. For
example, the number of users who have rated an items |Ui| (or its inverse 1/|Ui|)

372 D. Kluver et al.

is normally measured to allow manipulating novelty. By blending the score from
an algorithms with 1/|Ui| we can promote items that have fewer ratings and
enhance the novelty of recommended items. These scores are normally used only
when ranking, typically an unmodified rating prediction is still used even when
the prediction is blended for recommendation.

The other major approach for modifying recommendations is an iterative re-
ranking approach. In these approaches items are added to a recommendation set
one at a time, with the ranking score recomputed after each step. This approach
has two advantages. First, re-ranking allows hard constraints when selecting
items. For example, the iterative function could reject any more than two movies
by a given director. Secondly, the iterative approach allows measurements such
as the average similarity of an item with the other items already chosen for
recommending. This is often necessary when manipulating diversity, as diversity
is a property of the recommendation, not one specific item. This was in fact
the approach taken by the first paper to address diversity in recommendation
[65]. The cost of this approach over re-scoring is slightly higher recommend time
costs.

A primary example of the iterative re-ranking algorithm is the diversity
adding algorithm introduced by Ziegler et al. [70]. To generate a top 10 recom-
mendation list, this algorithm first picks the top 50 items for a user as candidate
items. The size of the candidate set represents a trade off between run time
cost and flexibility of the algorithm to find more diverse items. From the top
50 items, the best predicted item is immediately added to the recommendation.
After that, for each remaining candidate the algorithm computes an sum of the
similarity between that candidate and each item in the recommendation. The
algorithm then sorts by inverse similarity sum to get a dissimilarity rank for each
potential item. The overall item weight is then a weighted average of the pre-
diction rank and the dissimilarity rank (with weights chosen beforehand). The
item with the smallest score by this weight is added to the recommendation.
This process repeats, with updated similarity scores, until the desired ten item
recommendation list has been made.

Re-scoring and re-ranking algorithms are an easy way to promote certain
properties in recommendations. Both algorithms can be relatively inexpensive
to run, and can be added on top of an existing recommender. Additionally these
approaches are very easy to re-use for a large variety of different recommendation
metrics beyond just novelty and diversity.

9 Metrics and Evaluation

The last topic we will discuss in this chapter is how to evaluate a recommendation
algorithm. This is an important concept in the recommender systems field as it
gives us a way to compare and contrast multiple algorithms for a given problem.
Given that there is no one “best” recommendation algorithm, it is important to
have a way to compare algorithms and see which one will work best for a given
purpose. This is true both when arguing that a new algorithm is better than
previous algorithms, and when selecting algorithms for a recommender system.

Rating-Based Collaborative Filtering: Algorithms and Evaluation 373

One key application of evaluations in recommender systems is parameter tun-
ing. Most recommendation algorithms have variables, called parameters which
are not optimized as part of the algorithm and must be set by the system
designer. Parameter tuning is the process of tweaking these parameters to get
the best performing version of an algorithm. For example, when deploying a
matrix factorization algorithm the system designer must choose the best num-
ber of features for their system. While we have tried to list reasonable starting
points for each parameter of the algorithms we have discussed in this chapter,
these are at best a guideline, and readers should carefully tune each parameter
before relying on a recommendation algorithm.

In this section we will mostly focus on Offline evaluation methodologies.
Offline evaluations can be done based only on a dataset and without direct
intervention from users. This is opposed to online evaluation which is a term for
evaluations done against actual users of the system, usually over the internet.

Offline evaluations are a common evaluation strategy from machine learning
and information retrieval. In an offline evaluation we take the entire ratings
dataset and split it into two pieces: a training dataset (Train), and a test dataset
(Test); there are several ways of doing this, which we describe in more detail
shortly. Algorithms are trained using only the ratings in the training set and
asked to predict ratings, rank items, or make a recommendation for each user.
These outputs are then evaluated based on the ratings in the test dataset using
a variety of metrics to assess the algorithm’s performance.

Just as there are several different goals for recommendation (prediction, rank-
ing items, recommending items) there are many different ways to evaluate recom-
mendations. Furthermore, while evaluating prediction quality may be straight-
forward (how well does the prediction match the rating), there are many different
ways to evaluate if a ranking or recommendation is correct. Therefore, there are
a great number of different evaluation metrics which score different aspects of
recommendation quality. These can be broadly grouped into prediction metrics,
which evaluate how well the algorithm serves as a predictor, ranking quality
metrics, which focus on the ranking of items produced by the recommender,
decision support metrics, which evaluate how well the algorithm separates good
items from bad, and metrics of novelty and diversity that evaluate how novel
and diverse the recommendations might appear to users. Depending on how an
algorithm might be used metrics from one or all of these sections might be used
in an evaluation, and performance on several metrics might need to be balanced
when deciding on a best algorithm.

9.1 Prediction Metrics

The most basic measurement we can take of an algorithm is the fraction of items
it can score, known as the prediction coverage metric or simply the coverage met-
ric for short. The coverage metric is simply the percent of user item pairs in the
whole system that can be predicted. In some evaluations coverage is only com-
puted over the test set. Beyond convenience of computation, this modification
focuses more explicitly on how often the algorithms cannot produce a score for

374 D. Kluver et al.

items that the user might be interested in (as evidenced by the user rating that
item) [27]. This metric is of predominantly historic interest, as most modern
algorithm deployments use a series of increasingly general baseline algorithms
as a fallback strategy to ensure 100% coverage. That said, coverage can still
be useful when comparing older algorithms, or looking at just one algorithm
component in isolation.

Assuming that an algorithm is producing predictions, the next most obvious
measurement question is how well its predictions match actual user ratings. To
answer this we have two metrics Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). In the following two equations Test is a set containing
the test ratings rui and the associated users and items.

MAE(Test) =

∑
(u,i,rui)∈Test |S(u, i) − rui|

|Test| (31)

RMSE(Test) =

√∑
(u,i,rui)∈Test(S(u, i) − rui)2

|Test| (32)

Both MAE and RMSE measure the amount of error made when predicting for
a user, and are on the same scale as the ratings. The biggest difference between
these two metrics is that RMSE assigns a larger penalty to large prediction
errors when compared with MAE. Since large prediction errors are likely to be
the most problematic, RMSE is generally preferred.

Both the RMSE and MAE metrics measure accuracy on the same scale as
predictions. This can be normalized to a uniform scale by dividing the metric
value by the size of the rating scale (maxRating − minRating), yielding the
normalized mean average error (nMAE) and normalized root mean squared error
(nRMSE) metrics. This is rarely done, however, as comparisons across different
recommender systems are often hard to correctly interpret do to differences in
how users use those systems.

Prediction metrics can be computed for an entire system or individually for
each user. RMSE, for example, can be computed for the system by averaging
over all test ratings, or computed per user by averaging over each user’s test
ratings. Due to the differences between people, most algorithms work better
for some users than they do for others. Measuring per-user error scores lets us
understand and measure how accurate the system is for each user. By averaging
the per user metric values we can then get a second measure of the overall
system.

While the difference between per-user error and system-wide (or by rating)
error may seem trivial it can be very important. Most deployed systems have
power users who have rated many more items than the average user. Because
they have more ratings these users tend to be overrepresented in the test set,
leading to these users being given more weight when estimating system accuracy.
Averaging the per user accuracy scores avoids this issue and allows the system
to be evaluated based on its performance for all users.

Rating-Based Collaborative Filtering: Algorithms and Evaluation 375

9.2 Ranking Quality

A more advanced way of evaluating an algorithm is to ask if the way it orders
or ranks items is consistent with user preferences. There are several ways of
approaching this, the most basic being to simply compute the Spearman ρ or
Pearson r correlation coefficients between the predicted ratings and test set
ratings for a user. As noted by Herlocker et al. [27] Spearman’s ρ is imperfect
because it works poorly when the user rates many items at the same level.
Additionally, both metrics assign equal importance to accuracy at the beginning
of the list (the best items) and the end (the worst items). Realistically, however,
we want a ranking metric that is most sensitive at the beginning of the ranking,
where users are likely to look, and less sensitive to errors towards the end of the
list, where users are unlikely to look.

A more elegant metric for evaluating ranking quality is called the discounted
cumulative gain metric DCG. DCG tries to estimate the value a user will receive
from a list. It does this by assuming each item gives a value represented by
its rating in the test set, or no value if unrated. To make DCG focus on the
beginning of the list, these values are discounted logarithmically by their rank,
so the maximum gain of items later in the list is smaller than the potential gain
early in the list. The DCG metric is defined as follows:

dcg(u,Rec) =
∑

i∈Rec

rui

max(1, logb(ki))
(33)

Where ki refers to the rank order of i, Rec is an ordered list of items representing
an algorithms recommendation for the user u, and b is the base of the logarithm.
While different values are possible, DCG is traditionally computed with b = 2.
Other values of b have not been shown to yield meaningfully different results
[36].

The DCG metric is almost always reported normalized as the normalized
discounted cumulative gain metric nDCG. nDCG is simply the DCG value nor-
malized to the 0–1 range by dividing by the “optimal” discounted cumulative
gain value which would be given by any optimal ranking

ndcg(u) =
dcg(u, prediction)
dcg(u, ratings)

(34)

A similar metric to this is the half life utility metric [9]. Half life utility uses
a faster exponential discounting function. The half life utility is as follows:

HalfLife(u) =
∑

i∈Rec

max(rui − d, 0)
2(ki−1)/(α−1)

(35)

Half life utility has two parameters. The first is d which is a score that should
represent the neutral rating value. A recommendation for an item with score d
should neither help nor hurt the user, while any item rated above d should be
good recommendations. d should also be used as the “default” rating value for

376 D. Kluver et al.

rui where a user does not have a rating for that item, In this way unrated items
are assigned a value of 0. The α variable controls the speed of exponential decay
and should be set so that an item at rank α has a roughly 50% chance of actually
being seen by the user.

One common modification on these metrics is to absolutely limit the recom-
mendation list size. For example, the nDCG@n metric is taken by computing
the nDCG over the top-n recommendations only. Any item in the test set but
not recommended is ignored in the computation. This is reasonable if you know
there is a hard limit to how many items users can view, or if you only care about
the beginning n elements of the list.

9.3 Decision Support Metrics

Another common approach to evaluating recommender systems is to use metrics
from the information retrieval domain such as precision and recall [14]. These
metrics treat the recommender as a classifier with the goal of separating good
items from other items. For example, a good algorithm should only recommend
good items (precision) and should be able to find all good items (recall). Decision
support metrics give us a way of understanding how well the recommendation
could support a user in deciding which items to consume.

The basic workflow of all decision support metrics is to first perform a rec-
ommendation, then compare that recommendation against a previously selected
“relevant item set”. The relevant item set represents those items that we know
to be good items to recommend to a user. You then count how many of the
recommended items were relevant and how many were not.

For items in a larger scale system, a choice needs to be made about which
items to consider relevant. The easiest choice would be to take all rated items in
the test set as good items, which evaluates an algorithm on its ability to select
items that the user will see. More useful, however, is the practice of choosing
a cutoff such as four out of five stars at which we consider a recommendation
’good enough’. Best practices recommend testing with multiple similar cutoffs
to ensure that results are robust across various choices for defining relevant
items. Evaluation results that favor one algorithm with items rated 4 and above
as “good”, but another algorithm if 4.5 and above are “good”, deserve more
careful consideration.

Once this decision has been made there remains an issue of how to treat the
remaining “non relevant” items. In traditional information retrieval work it is
often reasonable to assume that every item that is not known to be relevant can
be considered not relevant, and therefore bad to recommend. This assertion is
much less reasonable in the recommender system domain, while some of these
items are known to be rated poorly, many more have simply never been rated.
There are likely many good items for each user that has not been rated and
would therefore be considered not relevant. It has been argued that not having
complete knowledge of which items a user would like may make these metrics
inaccurate or suffer from a bias [4,13,28]. Ultimately, this problem has not been

Rating-Based Collaborative Filtering: Algorithms and Evaluation 377

solved, and most evaluations settle for the assumption most non-rated items are
not good to recommend, and the evaluation bias caused by this will be minor.

Related to the above issue of how to treat not relevant items is the question of
how to compute recommendations. There have been various different approaches
taken, and these have been shown to lead to different outcomes in the evaluation
[5]. Commonly recommendations are done by taking the top-n predicted items,
in which case these metrics would be labeled with that n such as precision@20
for precision computed over the top-20 list. n should be picked to match inter-
face practices, so if only eight items are shown to a user, algorithms should be
evaluated by their precision@8.

The other important consideration is which candidate set of items the recom-
mendations should be over. Many different candidate set options have been used,
but the most common options are either all items, or the relevant item set plus
a random subsample of not relevant items. Some work has used the set of items
that the user rated in the test set as a recommendation candidate set; while this
does avoid the issue of how to treat unrated items, this evaluation methodology
also provides different results which are believed to be less indicative to user
satisfaction with a recommender [5].

Once the set of good items has been picked and recommendations have
been generated, the next step is to compute a confusion matrix for each user.
A confusion matrix is a two by two matrix counting how many of the rele-
vant items were recommended, how many of the relevant items were not recom-
mended, and so forth (Table 2).

Table 2. A confusion matrix

Good items Not good items

Recommended items True positives (tp) False positives (fp)

Other items False negatives (fn) True negatives (tn)

There are several metrics to compute based on this given confusion matrix.

– precision - tp
tp+fp - The percent of recommended items that are good

– recall (also known as sensitivity) - tp
tp+fn - The percent of good items that

are recommended
– false positive rate - fp

fp+tn - the percent of not good items that are recom-
mended

– specificity - tn
fp+tn - The percent of not good items that are not recommended

These metrics, especially precision and recall, are traditionally reported and
analyzed together. This is because precision and recall tend to have an inverse
relationship. An algorithm can optimize for precision by making very few rec-
ommendations, but doing that would lead to a low recall. Likewise, an algorithm
might get high recall by making very many recommendations, but this would

378 D. Kluver et al.

Fig. 6. An example ROC curve. Image used with permission from [21].

lead to low precision. An ideal algorithm will therefore want to balance these
two properties finding a balance that recommends predominantly good items,
and recommends almost all of the good items. To make finding this balance eas-
ier researchers often look at the F-score, which is the harmonic mean between
precision and recall

F =
2 ∗ precision ∗ recall

precision + recall
(36)

Another way to summarize this information is with the use of an ROC curve.
An ROC curve is a plot of the recall on the y-axis against the false positive rate
on the x-axis. An example ROC curve is given in Fig. 6. The ROC curve will
have one point for every recommendation list length from recommending only
one item to recommending all items. When the recommendation list is small, we
expect a small false positive rate but also a small recall (hitting the point (0,
0)). Alternatively, when all items are recommended the false positive rate and
recall will both be 1. Therefore the ROC curve normally connects the point (0, 0)
to (1, 1). The ROC curve can be used to evaluate an algorithm broadly, with a
good algorithm approaching the point (0, 1) which means it has almost no false
positives, while still recalling almost every good item. To make this property
easier to compare numerically it is also common to compute the area under the
ROC curve, referred to as the AUC metric. It has been pointed out [56] that
the AUC metric also measures the fraction of pairs of items that are ranked
correctly.

As mentioned earlier, it is often incorrect to assume that items that are not
rated highly by a user are by definition bad items to recommend. That does not
mean, however, that there are no bad recommendations, just like we can say

Rating-Based Collaborative Filtering: Algorithms and Evaluation 379

highly rated (4 or more stars out of 5) items are clearly good, we can say poorly
rated items (one or two stars out of five) are clearly bad. Using this insight,
we can define the fallout metric. In a typical information retrieval evaluation
fallout is the same as the false positive rate. In a recommender system evaluation,
however, we can explicitly focus on how often bad items are recommended, and
compute the percent of recommended items that are known to be bad. If one
algorithm has a significantly higher fallout than another we can assume that it
is making significant mistakes at a higher rate, and should be avoided.

One issue with the precision metric is that, while it rewards an algorithm for
recommending good items, it does not care where those items are in a recom-
mendation. Generally, we want good items recommended as early in the list as
possible. To evaluate this we can use the mean average precision metric (MAP),
which is the mean of the average precision over every user. The average precision
metrics takes the average of the precision at each of the relevant items in the
recommendation. If an item is not recommended then it contributes a precision
of 0.

MAP@N =
∑

u∈U averagePrecision@N(u)
|U | (37)

averagePrecision@N(u) =
1

|goodItems|
∑

i∈goodItems

precision@rank(i) (38)

By taking the mean average precision we place more importance on the early
items in the list than the later items, as the first item is used in all N precision
computations, while the last one is only used in one.

Another approach for checking that good items are early in the recommenda-
tion is the mean reciprocal rank metric (MRR). Instead of looking at how many
good items or bad items an algorithm returns, mean reciprocal rank looks at how
many items the user has to consider before finding a good item. For any user,
their rank (ranku) is the position in the recommendation of the first relevant
item. Based on this we can take reciprocal rank as 1/ranku and mean reciprocal
rank is the average reciprocal rank over all users. A larger mean reciprocal rank
means that the average user should have to look at fewer items before finding
an item they will enjoy.

MRR =
∑

u∈U 1/ranku

|U | (39)

9.4 Novelty and Diversity

There are several other properties of a recommendation that can be measured.
The most commonly discussed are novelty and diversity. These properties are
believed to be very important in determining whether a user will find a set
of recommendations useful, even if they are unrelated to the pure quality of
the recommendation. Understanding the effect these properties have on user
satisfaction is still one of the ongoing directions in recommender systems research
[18].

380 D. Kluver et al.

It is important to compare these metrics along with other metrics, such as
accuracy or decision support metrics, as large values for these metrics are often
seen along with large losses in quality. At the extreme a random recommender
would have very high novelty and diversity, but would score bad on all other
metrics. Generally speaking, good algorithms are those that increase novelty or
diversity without meaningfully decreasing other measures of quality.

Novelty refers to how unexpected or unfamiliar the user is with their recom-
mendations [53]. Recommendations that mostly contain familiar items are not
considered novel recommendations. Since the goal of a recommender is to help
its users find items they would not otherwise see, we expect that a good rec-
ommender should have higher novelty. The most obvious, and common, way to
estimate novelty offline is to rely on some estimate of how well known an item is.
The count of users who have rated an item, referred to as the item’s popularity,
is commonly used for this. More popular items are assumed to be better-known
and less novel to recommend [11].

Diverse recommendations cover a large range of different items. One flaw
with many recommender systems is that they focus too heavily on some small
set of items for a given user [34]. So knowing that a user liked a movie from the
Star Wars franchise, for example, might lead the algorithm to only recommend
science fiction to a user, even if that user likes adventure films in general. The
most common way of understanding how diverse a set of recommendations is, is
to measure the total or average similarity between all pairs of items in the recom-
mendation list [68,70]. This inter-list similarity (ILS) measure can be seen as an
inverse of diversity, the more similar recommended items are, the less diverse the
recommendation is. Ideally a similarity function that is based on the item itself,
or item meta-data is used, as it allows diversity to be measured independent of
properties of the ratings and predictions. Where sim is the similarity function,
the diversity of a recommendation list Rec can be defined as:

ILS(Rec) =
2

|Rec| ∗ (|Rec| − 1)

∑

i∈Rec

∑

j �=i∈Rec

sim(i, j) (40)

9.5 Structuring an Offline Evaluation

The heart of a good offline evaluation is how the train and test datasets are
generated. Without a good process for splitting train and test datasets, the
evaluation can fail to produce results, produce misleading results, or produce
statistically insignificant results. To avoid this, simple standard approaches for
generating train and test datasets have been developed. The standard approach
to producing train and test datasets is user-based K-fold crossfolding.

In user-based K-fold crossfolding the users are split into K groups, where
typical values of K are 5 or 10. For each of the K groups we generate a new train
and test dataset split. For dataset split n, all users not in fold n are considered
train users and all their ratings are allocated to the training dataset. The users
in group n are then test users, and their ratings are split so that some can be in
the train dataset (to inform the algorithm about that user’s tastes) and the rest

Rating-Based Collaborative Filtering: Algorithms and Evaluation 381

go to the test dataset. Typically either a constant number of ratings, such as
ten per user, or a constant fraction, such as ten percent of ratings per user, are
allocated for testing. Testing items can either be chosen randomly, or the most
recent items can be chosen to emphasize the importance of the order in which a
user makes ratings.

User-based K-fold crossfolding has several benefits. First, by performing a
user based evaluation we know that each user will be evaluated once and only
once. This ensures that our conclusions give equal weight to each user, with no
user evaluated more or less than the others. Secondly, by ensuring that there are
a large number of training users we know that we are evaluating the algorithm
under a reasonably realistic condition, with a reasonable amount of training
data. Finally, through replication we can measure statistical confidence around
our metric values, as each train and test can be considered relatively indepen-
dent. With user-based crossfolding it is common to treat each user as its own
independent sample of the per-user error when computing statistical significance.

There are several other approaches for structuring an offline evaluation that
have been used in the past. These approaches are typically designed to focus
the evaluation on a single factor, or to support new and interesting metrics.
For example, Kluver and Konstan used a modified crossfold strategy to look at
how the algorithm changes as it learns more about users [37]. The key insight
in this strategy is to initially perform a crossfold where the maximum number
of training points is retained. New test sets with fewer training points per user
can then be made by subsampling the training set, but leaving the test alone.
By keeping the test set constant across different sample sizes, biases related to
the size of the test set are avoided and a fair comparison can be drawn between
algorithm properties at different number of training ratings for a user.

Another interesting approach is the temporal evaluation [42,43]. Temporal
evaluations have been used to look at properties of the recommender system over
time as the collaborative filtering changes. In a temporal evaluation the dataset
is split into N equal sized temporal windows. This allows N −1 evaluations to be
done for each window after the first where the train set is all windows before the
given window, and the test set is the target window. Applying normal metrics
this way can give you an understanding of how an algorithm might behave over
time in a real deployment [42]. Temporal analysis also allows for interesting new
metrics such as temporal diversity [43] that measure properties of how frequently
recommendations change over time.

9.6 Online Evaluations

Not every comparison can be done without users. While offline evaluations are
good for rapid development, online testing is needed to truly understand how
a given system’s users will respond to a given algorithm. Because the users are
a central part of the recommender system, an algorithm that works well in an
offline evaluation may have unexpected properties when it interacts with real
users. Since it is these properties that determine which algorithm makes users
most happy, we recommend that offline evaluation be used to choose a small set
of algorithms and tunings that are then compared using a final online evaluation.

382 D. Kluver et al.

There are several ways to perform an online evaluation, each with its own
benefits and drawbacks:

Lab Study - In a lab study users are brought into a computer lab and asked
to go through a series of steps. These steps may involve using a real version
of the website, an interactive survey, or an in depth interview. An example
lab study might bring users into the lab so eye tracking can be performed to
evaluate how well a recommender chooses eye catching content for the home
page. Lab studies give the experimenter a large amount of control over what
the user does. The drawback of this flexibility, however, is that lab studies often
do not create a realistic environment for how a recommender system might be
used. Additionally, lab studies are typically limited in how many users they can
involve as they often require space and supervision from an experimenter.

Virtual Lab Study - Virtual lab studies are similar to lab studies but are per-
formed entirely online and without the direct supervision of the experimenter.
This deployment trades some of the control of a lab study for much larger scale,
as virtual lab studies can involve many more users in the same amount of time
as a lab study. These normally take the form of purpose built web services that
interact with the recommender and guide the user through a series of actions
and questions. While almost any form of data about user behavior and prefer-
ence can be used with a virtual lab study, surveys are particularly popular. An
example virtual lab study might guide users through rating on several different
interfaces and then survey users to find out which they prefered. A well designed
survey can be easy for a user to complete remotely, and very informative about
how users evaluate the recommender system.

Online Field Study - Online field studies focus on studying how people use a
deployed recommender system. Generally there are two approaches to online
field studies. In the first, existing log data from a deployed system is used to try
to understand how users have been behaving on the system. For example, rating
data from a system could be analyzed to understand how often users enter a
rating under a current system.

Alternatively, a change can be made to a deployed system to answer a spe-
cific question. New forms of logging could be introduced, or new experimental
features deployed for a trail period. This can allow answering more specific ques-
tions about user behavior. For example, a book recommender system might set
the goal that 80% or more of users find a book within 5 min of accessing the
service. Logging could be added to the system to allow measuring how often
users find books, and in how long so that performance can be directly compared
with this goal.

Online field studies are ideal for understanding how a system is used or for
measuring progress against some goal for the recommender system as a whole.
Online field studies are not as suited for comparing different options. Likewise,
online field studies are limited by their connection to a deployed live system,
which might preclude studying possibly disruptive changes. Finally, online field
studies often do not allow asking follow-up questions without resorting to a

Rating-Based Collaborative Filtering: Algorithms and Evaluation 383

secondary evaluation, for example, while a researcher might know what users do
in a situation, they will not be able to ask why.

A-B Test - A-B tests can be seen as an extension of an online field study. In
an A-B test two or more versions of an algorithm or interface are deployed to
a given website, with any user seeing only one of these versions. By tracking
the behavior of these users, a researcher can identify differences in how users
interact with the algorithm in a realistic setting. An example A-B test might
deploy two algorithms to a recommender service for two months and then look
at user retention rates. If one algorithm leads to fewer users having another visit,
then we can say that algorithm is likely worse. Being an experimental extension
to online field studies, A-B tests share the same weaknesses: it can be hard to
understand what is causing the results that it finds.

Within these options virtual lab studies are most common when the goal
is to understand why users perceive algorithms differently, and A-B tests are
preferred when the goal is simply to pick the “best” algorithm by one or more
user behavior metrics.

Online evaluations are a complicated subject, and the description here only
scratches the surface. Several texts are available that go into depth on the various
ways to design a user experiment to answer any number of questions, including
those of algorithm performance. In particular, we recommend the book “Ways of
knowing in HCI” [50], which contains in depth coverage of a broad range of research
methods which are applicable in this scenario. With that said, there are some con-
siderations that are specific to recommender systems which we will discuss.

Since all recommender systems require a history of user data to work with,
ensuring that this information is available is important when considering the
design of a study. This decision is closely tied to how participants for the study
will be recruited. If recruiting from an existing recommender system a lab study
or virtual lab study can simply request user account information and use that
to access ratings. Better yet, in a virtual lab study, links to the study could be
pre-generated with a user-specific code so that users do not need to log in.

If recruitment for a lab study does not come from an existing recommender
system, than typically the first stage of the study is to collect enough ratings
to make useful recommendations. As this is the same problem faced when on-
boarding users to a recommender system this is a well studied problem. The com-
mon solution is to present users with a list of items to rate [23,54,55]. There are
many different ways to pick which order to show items in to optimize how useful
the ratings are for recommending, the time that it takes to get a certain number
of ratings, or both. For a good review of this field of work see the 2011 study by
Golbandi et al. [23], which also includes an example of an adaptive solution to col-
lecting useful user ratings. If time is not a major factor, however, a design where
users search to pick items to represent their tastes may have some benefits [48].

Just as with offline evaluations, comparing reasonable algorithms is essential
to producing useful results. Starting with offline evaluation methodologies can
be a good way to make sure only the best algorithms are compared. When
comparing novel algorithms, it can often help to include a baseline algorithm as
a comparison point whose behavior is relatively well known.

384 D. Kluver et al.

When using a survey, often as part of a virtual lab study, it is important
to choose well written questions. Some questions can be ambiguous making it
hard to assign meaning to their answers. A survey question is useless to an
experimenter if many users do not understand it. To support experimenters,
several researchers have put together frameworks to support online, user centered
evaluations of recommender systems [39,53]. These frameworks split the broader
subject of how well the algorithm works into smaller factors tuned for specific
properties of a recommender system. Each of these factors are also associated
with well designed survey questions which are known to accurately capture a
user’s opinion. When possible we recommend using one of these frameworks as
a resource when designing an online evaluation.

9.7 Resources for Algorithm Evaluation

There are plenty of resources available to help explore ratings-based collaborative
filtering recommender systems. In particular, there are open source recommender
algorithm implementations, and rating datasets available for non-commercial
use. These resources have been developed in an effort to help reduce the cost of
research and development in collaborative filtering.

In recent years there has been a push in the recommender systems community
to support reproducible recommender systems research. One major result of this
call has been several open source collections of recommender systems algorithms
such as LensKit6, Mahout7, and MyMediaLight8. By publishing working code
for an algorithm the researchers can ensure that every detail of an algorithm is
public, and that two people comparing the same algorithm don’t get different
results due to implementation details. More importantly, however, these toolkits
allow programmers who are not recommender systems experts to use and learn
about recommender systems algorithms and benefit from the work of the research
community.

The other noteworthy resource for exploring and evaluating recommender
systems is the availability of public ratings datasets. These datasets are released
by live recommender systems to allow people without direct access to a recom-
mender service and its user base to participate in recommender system devel-
opment. Some notable examples of datasets are the MovieLens movie rating
datasets9, described in detail in Harper and Konstan’s 2015 paper [26], the Jester
joke rating dataset10 described in the 2001 paper by Goldberg et al. [24], the
Book-Crossing book rating dataset11 introduced in 2005 paper by Ziegler et al.
[70] and the Amazon product rating and review dataset12 first introduced in

6 https://lenskit.org/.
7 https://mahout.apache.org/.
8 http://mymedialite.net/.
9 available at http://grouplens.org/datasets/movielens/.

10 available (with updates) at http://eigentaste.berkeley.edu/dataset/.
11 available at http://www2.informatik.uni-freiburg.de/∼cziegler/BX/.
12 available at http://jmcauley.ucsd.edu/data/amazon/.

https://lenskit.org/
https://mahout.apache.org/
http://mymedialite.net/
http://grouplens.org/datasets/movielens/
http://eigentaste.berkeley.edu/dataset/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://jmcauley.ucsd.edu/data/amazon/

Rating-Based Collaborative Filtering: Algorithms and Evaluation 385

McAuley and Leskovec’s 2013 paper [47]. These datasets, and many more avail-
able online, are available for anyone to download and use to learn about, and
experiment with, recommender system algorithms. Most of the recommender
systems toolkits have code for loading these datasets and performing offline
evaluations already built.

While most directly applicable towards offline evaluations, these resources
can also help with online evaluations. Open source libraries can be used to quickly
prototype recommender systems either for incorporation in an existing live sys-
tem or for a lab or virtual lab study. Likewise, research datasets can be used
to power a collaborative filtering algorithm for use in a lab or virtual lab study
design in which new ratings will be collected from research participants. This can
allow anyone with access to research participants to perform online evaluations
to deeply understand how users react to collaborative filtering technologies.

10 Conclusions

In this chapter we have presented the central concepts, algorithms, and means
of evaluation in ratings based collaborative filtering. While recommendation
systems construed broadly is still an active area of research, research on pure
ratings-based collaborative filtering algorithms is becoming more rare. Indeed, it
is increasingly rare to see a new pure ratings-based algorithm make a significant
improvement in offline evaluations. Instead, research into collaborative filtering
recommender systems has started focusing on new problems and new sources
of information. Many of these more recent directions for collaborative filtering
research have become the basis for the future chapters in this book.

The next five chapters of this book will explore more advanced techniques for
recommendation based on different forms of information and recommendation
tasks. Taken as a whole, these chapters serve as an excellent introduction to the
state of the art in collaborative filtering recommender systems. Chapter 11 will
explore recommendation based on online social networking [44], Chap. 12 will
explore recommendation based user volunteered tags [8], Chap. 13 will explore
recommendation based on publicly shared user opinions on sites like Amazon or
Twitter [51], Chap. 14 will explore recommendation based on implicit feedback
[35], and finally, Chap. 15 will explore how to use a recommender algorithms to
recommend person-to-person connections in online social websites [25].

References

1. Aggarwal, C.C., Wolf, J.L., Wu, K.L., Yu, P.S.: Horting hatches an egg: a new
graph-theoretic approach to collaborative filtering. In: Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 1999, pp. 201–212. ACM. (1999). https://doi.org/10.1145/312129.312230

2. Amatriain, X., Basilico, J.: Netflix recommendations: beyond the 5 stars (part
1). http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.
html

https://doi.org/10.1145/312129.312230
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html

386 D. Kluver et al.

3. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In: Proceedings of the 2007 Seventh IEEE Interna-
tional Conference on Data Mining, ICDM 2007, pp. 43–52. IEEE Computer Society
(2007). https://doi.org/10.1109/ICDM.2007.90

4. Bellogin, A.: Performance prediction and evaluation in recommender systems: an
information retrieval perspective. Ph.D. thesis. Universidad Autnoma de Madrid
(2012)

5. Bellogin, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recom-
mender systems: an algorithmic comparison. In: Proceedings of the Fifth ACM
Conference on Recommender Systems, RecSys 2011, pp. 333–336. ACM (2011).
https://doi.org/10.1145/2043932.2043996

6. Bieganski, P., Konstan, J., Riedl, J.: System, method and article of manufacture
for making serendipity-weighted recommendations to a user, 25 December 2001.
US Patent 6,334,127

7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022. http://dl.acm.org/citation.cfm?id=944919.944937

8. Bogers, T.: Tag-based recommendation. In: Brusilovsky, P., He, D. (eds.) Social
Information Access. LNCS, vol. 10100, pp. 441–479. Springer, Cham (2018)

9. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. Technical report MSR-TR-98-12, Microsoft Research,
May 1998. http://research.microsoft.com/apps/pubs/default.aspx?id=69656

10. Breiman, L.: Stacked regressions. Mach. Learn. 24(1), 49–64 (1996). https://doi.
org/10.1023/A:1018046112532

11. Celma, Ò., Herrera, P.: A new approach to evaluating novel recommendations. In:
Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008,
pp. 179–186. ACM (2008). https://doi.org/10.1145/1454008.1454038

12. Chen, T., Zhang, W., Lu, Q., Chen, K., Zheng, Z., Yu, Y.: SVDFeature: a toolkit
for feature-based collaborative filtering. J. Mach. Learn. Res. 13(1), 3619–3622
(2012). http://dl.acm.org/citation.cfm?id=2503308.2503357

13. Cremonesi, P., Garzottto, F., Turrin, R.: User effort vs. accuracy in rating-based
elicitation. In: Proceedings of the Sixth ACM Conference on Recommender Sys-
tems, RecSys 2012, pp. 27–34. ACM (2012). https://doi.org/10.1145/2365952.
2365963

14. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on
Recommender Systems RecSys 2010, pp. 39–46. ACM (2010). https://doi.org/10.
1145/1864708.1864721

15. Ekstrand, M.: Similarity functions for user-user collaborative filtering. http://
grouplens.org/blog/similarity-functions-for-user-user-collaborative-filtering/

16. Ekstrand, M.: Similarity functions in item-item CF. https://md.ekstrandom.net/
blog/2015/06/item-similarity/

17. Ekstrand, M., Riedl, J.: When recommenders fail: predicting recommender failure
for algorithm selection and combination. In: Proceedings of the Sixth ACM Confer-
ence on Recommender Systems, RecSys 2012, pp. 233–236. ACM (2012). https://
doi.org/10.1145/2365952.2366002

18. Ekstrand, M.D., Harper, F.M., Willemsen, M.C., Konstan, J.A.: User perception of
differences in recommender algorithms. In: Proceedings of the 8th ACM Conference
on Recommender Systems, RecSys 2014, pp. 161–168. ACM (2014). https://doi.
org/10.1145/2645710.2645737

https://doi.org/10.1109/ICDM.2007.90
https://doi.org/10.1145/2043932.2043996
http://dl.acm.org/citation.cfm?id=944919.944937
http://research.microsoft.com/apps/pubs/default.aspx?id=69656
https://doi.org/10.1023/A:1018046112532
https://doi.org/10.1023/A:1018046112532
https://doi.org/10.1145/1454008.1454038
http://dl.acm.org/citation.cfm?id=2503308.2503357
https://doi.org/10.1145/2365952.2365963
https://doi.org/10.1145/2365952.2365963
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1145/1864708.1864721
http://grouplens.org/blog/similarity-functions-for-user-user-collaborative-filtering/
http://grouplens.org/blog/similarity-functions-for-user-user-collaborative-filtering/
https://md.ekstrandom.net/blog/2015/06/item-similarity/
https://md.ekstrandom.net/blog/2015/06/item-similarity/
https://doi.org/10.1145/2365952.2366002
https://doi.org/10.1145/2365952.2366002
https://doi.org/10.1145/2645710.2645737
https://doi.org/10.1145/2645710.2645737

Rating-Based Collaborative Filtering: Algorithms and Evaluation 387

19. Ekstrand, M.D., Kluver, D., Harper, F.M., Konstan, J.A.: Letting users choose
recommender algorithms: an experimental study. In: Proceedings of the 9th ACM
Conference on Recommender Systems, RecSys 2015, pp. 11–18. ACM (2015).
https://doi.org/10.1145/2792838.2800195

20. Ekstrand, M.D., Ludwig, M., Konstan, J.A., Riedl, J.T.: Rethinking the recom-
mender research ecosystem: reproducibility, openness, and LensKit. In: Proceed-
ings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp.
133–140. ACM (2011). https://doi.org/10.1145/2043932.2043958

21. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender
systems. Found. Trends Hum.-Comput. Interact. 4(2), 81–173 (2011). https://doi.
org/10.1561/1100000009

22. Funk, S.: Netflix update: try this at home. http://sifter.org/∼simon/journal/
20061211.html

23. Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender
systems using decision trees. In: Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, WSDM 2011, pp. 595–604. ACM
(2011). https://doi.org/10.1145/1935826.1935910

24. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time
collaborative filtering algorithm. Inf. Retrieval 4(2), 133–151 (2001). https://doi.
org/10.1023/A:1011419012209

25. Guy, I.: People recommendation on social media. In: Brusilovsky, P., He, D. (eds.)
Social Information Access. LNCS, vol. 10100, pp. 570–623. Springer, Cham (2018)

26. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM
Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015). https://doi.org/10.1145/
2827872

27. Herlocker, J., Konstan, J.A., Riedl, J.: An empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms. Inf. Retrieval 5(4), 287–310
(2002). https://doi.org/10.1023/A:1020443909834

28. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). https://
doi.org/10.1145/963770.963772

29. Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating
choices in a virtual community of use. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI 1995, pp. 194–201. ACM
Press/Addison-Wesley Publishing Co. (1995). https://doi.org/10.1145/223904.
223929

30. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 1999, pp. 50–57. ACM (1999). https://doi.org/10.
1145/312624.312649

31. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf.
Syst. 22(1), 89–115 (2004). https://doi.org/10.1145/963770.963774

32. Huang, Z., Chung, W., Chen, H.: A graph model for E-commerce recommender
systems. J. Am. Soc. Inf. Sci. Technol. 55(3), 259–274 (2004). https://doi.org/10.
1002/asi.10372

33. Jamali, M., Ester, M.: TrustWalker: a random walk model for combining trust-
based and item-based recommendation. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2009,
pp. 397–406. ACM (2009). https://doi.org/10.1145/1557019.1557067

https://doi.org/10.1145/2792838.2800195
https://doi.org/10.1145/2043932.2043958
https://doi.org/10.1561/1100000009
https://doi.org/10.1561/1100000009
http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
https://doi.org/10.1145/1935826.1935910
https://doi.org/10.1023/A:1011419012209
https://doi.org/10.1023/A:1011419012209
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1023/A:1020443909834
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/223904.223929
https://doi.org/10.1145/223904.223929
https://doi.org/10.1145/312624.312649
https://doi.org/10.1145/312624.312649
https://doi.org/10.1145/963770.963774
https://doi.org/10.1002/asi.10372
https://doi.org/10.1002/asi.10372
https://doi.org/10.1145/1557019.1557067

388 D. Kluver et al.

34. Jannach, D., Lerche, L., Gedikli, F., Bonnin, G.: What recommenders recommend
– an analysis of accuracy, popularity, and sales diversity effects. In: Carberry, S.,
Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899,
pp. 25–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38844-
6 3

35. Jannach, D., Lerche, L., Zanker, M.: Recommending based on implicit feedback.
In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp.
510–569. Springer, Cham (2018)

36. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. 20(4), 422–446 (2002). https://doi.org/10.1145/582415.
582418

37. Kluver, D., Konstan, J.A.: Evaluating recommender behavior for new users. In:
Proceedings of the 8th ACM Conference on Recommender Systems, RecSys 2014,
pp. 121–128. ACM (2014). https://doi.org/10.1145/2645710.2645742

38. Kluver, D., Nguyen, T.T., Ekstrand, M., Sen, S., Riedl, J.: How many bits per
rating? In: Proceedings of the Sixth ACM Conference on Recommender Systems,
RecSys 2012, pp. 99–106. ACM (2012). https://doi.org/10.1145/2365952.2365974

39. Knijnenburg, B., Willemsen, M., Gantner, Z., Soncu, H., Newell, C.: Explaining
the user experience of recommender systems. User Model. User-Adap. Interact.
22(4), 441–504. https://doi.org/10.1007/s11257-011-9118-4

40. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2008, pp. 426–434. ACM. https://
doi.org/10.1145/1401890.1401944

41. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

42. Lathia, N., Hailes, S., Capra, L.: Temporal collaborative filtering with adaptive
neighbourhoods. In: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2009, pp. 796–797.
ACM (2009). https://doi.org/10.1145/1571941.1572133

43. Lathia, N., Hailes, S., Capra, L., Amatriain, X.: Temporal diversity in recommender
systems. In: Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2010, pp. 210–217.
ACM (2010). https://doi.org/10.1145/1835449.1835486

44. Lee, D., Brusilovsky, P.: Recommendations based on social links. In: Brusilovsky,
P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 391–440.
Springer, Cham (2018)

45. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collabora-
tive filtering. In: Proceedings of SIAM Data Mining (SDM 2005) (2005). https://
arxiv.org/abs/cs/0702144

46. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the
2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 17–24. ACM
(2007). https://doi.org/10.1145/1297231.1297235

47. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: Understanding rat-
ing dimensions with review text. In: Proceedings of the 7th ACM Conference on
Recommender Systems, pp. 165–172. RecSys 2013. ACM (2013). https://doi.org/
10.1145/2507157.2507163

48. McNee, S.M., Lam, S.K., Konstan, J.A., Riedl, J.: Interfaces for eliciting new user
preferences in recommender systems. In: Brusilovsky, P., Corbett, A., de Rosis,
F. (eds.) UM 2003. LNCS (LNAI), vol. 2702, pp. 178–187. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-44963-9 24

https://doi.org/10.1007/978-3-642-38844-6_3
https://doi.org/10.1007/978-3-642-38844-6_3
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/2645710.2645742
https://doi.org/10.1145/2365952.2365974
https://doi.org/10.1007/s11257-011-9118-4
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/1571941.1572133
https://doi.org/10.1145/1835449.1835486
https://arxiv.org/abs/cs/0702144
https://arxiv.org/abs/cs/0702144
https://doi.org/10.1145/1297231.1297235
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1007/3-540-44963-9_24

Rating-Based Collaborative Filtering: Algorithms and Evaluation 389

49. Ning, X., Karypis, G.: Slim: Sparse linear methods for top-n recommender systems.
In: Proceedings of the IEEE 11th International Conference on Data Mining, ICDM
2011, pp. 497–506, December 2011. https://doi.org/10.1109/ICDM.2011.134

50. Olson, J.S., Kellogg, W.A. (eds.): Ways of Knowing in HCI. Springer, New York
(2014). https://doi.org/10.1007/978-1-4939-0378-8

51. O’Mahoney, M., Smyth, B.: From opinions to recommendations. In: Brusilovsky, P.,
He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 480–509. Springer,
Cham (2018)

52. Phuong, N.D., Thang, L.Q., Phuong, T.M.: A graph-based method for combining
collaborative and content-based filtering. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI
2008. LNCS (LNAI), vol. 5351, pp. 859–869. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89197-0 80

53. Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender
systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems,
RecSys 2011, pp. 157–164. ACM (2011). https://doi.org/10.1145/2043932.2043962

54. Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl,
J.: Getting to know you: learning new user preferences in recommender systems.
In: Proceedings of the 7th International Conference on Intelligent User Interfaces,
IUI 2002, pp. 127–134. ACM (2002). https://doi.org/10.1145/502716.502737

55. Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in rec-
ommender systems: an information theoretic approach. ACM SIGKDD Explor.
Newslett. 10(2), 90–100 (2008). https://doi.org/10.1145/1540276.1540302

56. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI
Press. http://dl.acm.org/citation.cfm?id=1795114.1795167

57. Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix fac-
torization models for large-scale recommender systems. In: Proceedings of the
2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 251–258. ACM
(2008). https://doi.org/10.1145/1454008.1454047

58. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open
architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work, CSCW 1994, pp. 175–186.
ACM (1994). https://doi.org/10.1145/192844.192905

59. Rogers, S.K.: Item-to-item recommendations at Pinterest. In: Proceedings of the
10th ACM Conference on Recommender Systems, RecSys 2016, pp. 393–393. ACM
(2016). https://doi.org/10.1145/2959100.2959130

60. Said, A., Fields, B., Jain, B.J., Albayrak, S.: User-centric evaluation of a k-furthest
neighbor collaborative filtering recommender algorithm. In: Proceedings of the
2013 Conference on Computer Supported Cooperative Work, CSCW 2013, pp.
1399–1408. ACM (2013). https://doi.org/10.1145/2441776.2441933

61. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, WWW 2001, pp. 285–295. ACM. https://doi.org/10.1145/
371920.372071

62. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of dimension-
ality reduction in recommender system - a case study. In: WebKDD 2000. http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.8381

63. Shan, H., Banerjee, A.: Generalized probabilistic matrix factorizations for collabo-
rative filtering. In: IEEE International Conference on Data Mining, pp. 1025–1030.
IEEE Computer Society (2010). https://doi.org/10.1109/ICDM.2010.116

https://doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1007/978-1-4939-0378-8
https://doi.org/10.1007/978-3-540-89197-0_80
https://doi.org/10.1007/978-3-540-89197-0_80
https://doi.org/10.1145/2043932.2043962
https://doi.org/10.1145/502716.502737
https://doi.org/10.1145/1540276.1540302
http://dl.acm.org/citation.cfm?id=1795114.1795167
https://doi.org/10.1145/1454008.1454047
https://doi.org/10.1145/192844.192905
https://doi.org/10.1145/2959100.2959130
https://doi.org/10.1145/2441776.2441933
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.8381
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.8381
https://doi.org/10.1109/ICDM.2010.116

390 D. Kluver et al.

64. Sill, J., Takacs, G., Mackey, L., Lin, D.: Feature-weighted linear stacking.
arXiv:0911.0460 [cs], http://arxiv.org/abs/0911.0460

65. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.)
ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44593-5 25

66. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv.
Artif. Intell. (2009). http://www.hindawi.com/journals/aai/2009/421425/abs/

67. Weng, L.T., Xu, Y., Li, Y., Nayak, R.: Improving recommendation novelty based
on topic taxonomy. In: 2007 IEEE/WIC/ACM International Conferences on Web
Intelligence and Intelligent Agent Technology Workshops, pp. 115–118 (2007)

68. Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommen-
dation lists. In: Proceedings of the 2008 ACM Conference on Recommender Sys-
tems, RecSys 2008, pp. 123–130. ACM (2008). https://doi.org/10.1145/1454008.
1454030

69. Zhang, Y.C., Saghdha, D.Ò., Quercia, D., Jambor, T.: Auralist: introducing
serendipity into music recommendation. In: Proceedings of the Fifth ACM Inter-
national Conference on Web Search and Data Mining, WSDM 2012, pp. 13–22.
ACM (2012). https://doi.org/10.1145/2124295.2124300

70. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommenda-
tion lists through topic diversification. In: Proceedings of the 14th International
Conference on World Wide Web, WWW 2005, pp. 22–32. ACM (2005). https://
doi.org/10.1145/1060745.1060754

http://arxiv.org/abs/0911.0460
http://arxiv.org/abs/0911.0460
https://doi.org/10.1007/3-540-44593-5_25
http://www.hindawi.com/journals/aai/2009/421425/abs/
https://doi.org/10.1145/1454008.1454030
https://doi.org/10.1145/1454008.1454030
https://doi.org/10.1145/2124295.2124300
https://doi.org/10.1145/1060745.1060754
https://doi.org/10.1145/1060745.1060754

	10Rating-Based Collaborative Filtering: Algorithms and Evaluation
	1 Introduction
	1.1 Examples of Recommender Systems
	1.2 A Note on the Organization of Recommendation Algorithms

	2 Concepts and Notation
	3 Baseline Predictors
	4 Nearest Neighbor Algorithms
	4.1 User-User
	4.2 Item-Item

	5 Matrix Factorization Algorithms
	5.1 Training Matrix Decomposition Models With Singular Value Decomposition
	5.2 Training Matrix Decomposition Models With Gradient Descent

	6 Learning to Rank
	6.1 BPR

	7 Other Algorithms
	7.1 Probabilistic Models
	7.2 Linear Regression Approaches
	7.3 Graph-Based Approaches

	8 Combining Algorithms
	8.1 Ensemble Recommendation
	8.2 Recommending for Novelty and Diversity

	9 Metrics and Evaluation
	9.1 Prediction Metrics
	9.2 Ranking Quality
	9.3 Decision Support Metrics
	9.4 Novelty and Diversity
	9.5 Structuring an Offline Evaluation
	9.6 Online Evaluations
	9.7 Resources for Algorithm Evaluation

	10 Conclusions
	References

