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Abstract. We discuss an extension of the coordination modeling lan-
guage Paradigm. The extension is geared towards data-dependent inter-
action among components, where the coordination is influenced by pos-
sibly distributed data. The approach is illustrated by the well-known
example of a bakery where tickets are issued to serve clients in order.
Also, it is described how to encode Paradigm models with data in the
process language of the mCRL2 toolset for further analysis of the coordi-
nation.

1 Introduction

The so-called IWIM model for the coordination of concurrent components as
proposed by Farhad Arbab and co-workers [3,6] distinguishes ideal workers and
ideal managers. Among others, IWIM forms the conceptual framework for the
coordination language Manifold [4,7]. The central ideas of IWIM evolved into the
theory of Reo connectors [5], which exploits constraint automata for its semantics
and whose distributed implementation approach separates coordination from
parallelism [11].

Rather than considering hierarchies of components with atomic workers at
the bottom layer and one overall manager at the top as for IWIM, the coordina-
tion modeling language Paradigm [9] takes networks of components as starting
point, where each component exhibits both worker and manager activity. The
worker activity is the internal behavior of the component that executes as local
transitions asynchronously from other components; the manager activity con-
sists of the synchronous interaction with other (groups of) components governed
by so-called consistency rules. In terms of constraint automata, consistency rules
comprise the atomic dataflow among synchronizing components. However, via
a mechanism of phases and traps it is guaranteed that the local behavior, the
worker level of a component, remains aligned with the global behavior, the man-
ager level of the component.

In this paper an extension to Paradigm including data is proposed. In this
extension, consistency rules incorporate the local variables of the components
and expressions thereof, in particular to compare or communicate their value. So,
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our data extension will be geared towards interaction and coordination thereof.
Cast in terms of Reo, the data constraints are enriched with data and values.
For Paradigm with data, the local memory of components can be accessed (via
their ports) at the coordination level. Consequently, the communicated data
itself can be stored too. However, this requires that the phases-and-trap mech-
anism of Paradigm needs to be adapted, somewhat complicating the semantics.
An encoding scheme for Paradigm, without data, into the model checking tool-
suit mCRL21, as proposed in [1], brings the advantage of formal analysis of the
coordination among components. For a concrete coordination problem, we will
describe a Paradigm model with data of a bakery, describe its encoding in mCRL2’s
specification language.

Outline Sect. 2 provides a formal definition of Paradigm with data and pro-
vides its operational semantics. Section 3 illustrates and further explains the
underlying concepts for the case of a bakery where clients need to be served in
order of arrival. Section 4 discusses how formal analysis of Paradigm using the
mCRL2 toolset can be obtained. Section 5 wraps up the paper.

2 Formal Definitions

We subsequently introduce components with variables, Paradigm models and
consistency rules with data, and configurations with local transitions and global
transfers among them. An example illustrating the above notions is presented
in the next section.

Definition 1. Let, for some index set I, a number of local variables vi of
type Di, respectively, be given. Put E =

∏
i∈I Di. Furthermore, fix a set of

actions A. For E and A, a Paradigm component C is a tuple C = (Σ,T, Ψ)
where

(i) for some set S, the elements of which are called states, Σ = S × E is the
set of extended states of C

(ii) T ⊆ Σ × A × Σ is the transition relation of C
(iii) Ψ = (Φ1, . . . , Φn), for some n � 0, is a tuple of partial functions, called the

roles of C, where each Φ : P(T ) ↪→ P(P(Σ)) is such that if σ ∈ θ, θ ∈ Φ(ϕ),
and 〈σ, a, σ′〉 ∈ ϕ then also σ′ ∈ θ.

By definition, an extended state σ ∈ Σ is a pair σ = (s, e) of a state s ∈ S and
a tuple of ‘current’ values of the variables. We write σ

a−→ σ′ for a transition
in T , rather than 〈σ, a, σ′〉 ∈ T . For a role Φ, i.e. a coordinate of Ψ , an element ϕ
of dom(Φ) is called a phase of Φ. An element θ of Φ(ϕ) is called a trap of ϕ. The
idea is, a transition, σ

a−→ σ′ starting from an extended state σ in a trap θ of a
phase ϕ say, does not move outside of the trap. Hence, it is required for such a
transition σ

a−→ σ′ that the extended state σ′ lies in θ too. So, in phase ϕ, once
having entered θ, control is trapped in θ. The phases constituting dom(Φ) of a

1 See www.mcrl2.org.

www.mcrl2.org
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role Φ will typically partially overlap, their overlaps being traps. One may think
of a trap as a final stage within a phase. Reaching a trap of a phase indicates
that a transfer to another phase is about to happen.

Suppose ϕi ∈ Φi, for i = 1, . . . , n, for the roles Φ1, . . . , Φn of component C,
and suppose σ

a−→ σ′ is a transition of C, i.e. an element of T , such that the
transition σ

a−→ σ′ is an element of each ϕi too. Then the transition σ
a−→ σ′ is

called an admitted transition with respect to the phases ϕ1, . . . , ϕn.

Definition 2.

(a) A Paradigm model with data consists, for some index set H, of a tuple
(Ch)h∈H of Paradigm components

Ch = (Σh, Th, Ψh )

with their own local variables and actions, as well as extended states in Σh,
transition relations Th, and roles Ψh = (Φh,1, . . . , Φh,nh

), for h ∈ H.
(b) A consistency rule γ for (Ch)h∈H consists, for an index set R, of a tuple

(Cr(Φr) : ϕr(er)
θr−−→ ϕ′

r(e
′
r) )r∈R where Φr is a role of component Cr, ϕr

and ϕ′
r are phases of Φr, er and e′

r are values for the variables of Cr, and
θr is a trap of ϕr.

(c) A set of consistency rules Γ is called closed if for each rule (Cr(Φr) :
ϕr(er)

θr−−→ ϕ′
r(e

′
r) )r∈R of Γ , if there exists, for some r ∈ R, a state sr

of Cr for which both (sr, er), (sr, ēr) ∈ θr, then Γ contains, for some ē′
r, a

rule γ̄ of the form (Cr(Φr) : ϕr(ēr)
θr−−→ ϕ′

r(ē
′
r) )r∈R as well.

For clarity we assume that different components have distinct names for states,
variables, and actions, and hence distinct roles, phases, and traps. However, in
a consistency rule, a component may have multiple occurrences, viz. in different
roles. Also, a component may not be involved in a consistency rule at all. The
rules are called consistency rules in Paradigm because the requirement of each θr

to be a trap of phase ϕr guarantees that the ‘coarse-grained’ rule can only be
applied if consistent with the current ‘fine-grained’ local state of each component
involved. The closedness condition on sets of rules will guarantee that global
behavior, to be defined in a minute, cannot be essentially influenced by local
behavior respecting the traps mentioned in a rule.
Next, we define the behavior of a Paradigm model, with intra-component behav-
ior (a so-called local transition) affecting the extended state of a single com-
ponent vs. inter-component behavior (a global transfer) exchanging values and
changing phases based on a trap in some of the roles of a number of components.

Definition 3. Let Π = (Ch)h∈H be a Paradigm model and let Γ be a closed set
of consistency rules for Π.

(a) A configuration of Π is a tuple 〈sh, eh, ψh〉h∈H , where for each index h ∈ H,
(sh, eh) is an extended state of component Ch, and ψh = (ϕh,1, . . . , ϕh,nh

)
is a tuple of phases such that ϕh,i ∈ Φh,i, for i = 1, . . . , nh.
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(b) A local transition 〈sh, eh, ψh〉h∈H
a−→ 〈s′

h, e′
h, ψh〉h∈H of Π is an admitted

transition of one of the components of Π, i.e. for some h0 ∈ H it holds that
(i) 〈sh0 , eh0〉 a−→ 〈s′

h0
, e′

h0
〉 is an admitted transition for component Cho

with
respect to the phases ψh0 = (ϕh0,1, . . . , ϕh0,nh0

), and (ii) sh = s′
h and eh =

e′
h for each index h �= h0 in H.

(c) A global transfer 〈sh, eh, ψh〉h∈H
γ−→ 〈sh, e′

h, ψ′
h〉h∈H of Π based on a con-

sistency rule γ = ( Ĉr(Φr) : ϕr(êr)
θr−−→ ϕ′

r(êh) )r∈R updates phases and
values as prescribed by γ, i.e. (i) if, for h ∈ H, i = 1, . . . , nh, it holds that
Ch = Ĉr and Φh,i = Φr, for some index r ∈ R, then (sh, eh) ∈ θr, eh = êr

and e′
h = êr, ϕh,i = ϕr and ϕ′

h,i = ϕ′
r, and (ii) if, for h ∈ H, Ch �= Ĉr for

each r ∈ R then eh = e′
h, and, for h ∈ H, i = 1, . . . , nh, Φh,i �= Φr for each

r ∈ R then ϕh,i = ϕ′
h,i.

A configuration 〈sh, eh, ψh〉h∈H of a Paradigm model Π = (Ch)h∈H holds for
each component Ch the current extended state (sh, eh) as well as the current
phase ϕh,i for each role Φh,i of Ch.

Note, in a local transition 〈sh, eh, ψh〉h∈H
a−→ 〈s′

h, e′
h, ψh〉h∈H , say for com-

ponent Ch0 , component Ch0 nor any of the other components changes phase; the
tuple of phases ψh is for each component the same in the source configuration
〈sh, eh, ψh〉h∈H and the target configuration 〈s′

h, e′
h, ψh〉h∈H of the transition.

However, the transition must be admitted for Ch0 , i.e. it must be present in all
of the phases ϕh0,i of ψh0 for component Ch0 .

For a global transfer based on a consistency rule γ to apply, the current
phases ϕh,i of role Φh,i must match the phases of Φr, if Ch = Ĉr and Φh,i = Φr.
Also, the extended states of the components Ĉr involved must lie in the traps θr,
for all r ∈ R. States remain unaffected, but values of variables may change for the
components mentioned in the rule, presumably because of the interaction. Phases
may change too for the components mentioned, from ϕh,i = ϕr to ϕh,i = ϕ′

r,
which are both phases within the role Φh,i = Φr. Components Ch and phases ϕh,i

not mentioned by consistency rule γ remain the same.
We have the following result.

Theorem 1. Let Π = (Ch)h∈H be a Paradigm model, and let Γ be a closed set
of consistency rules for Π. Suppose

〈sh, eh, ψh〉h∈H
γ−→ 〈sh, e′

h, ψ′
h〉h∈H and 〈sh, eh, ψh〉h∈H

a−→ 〈s′
h, e′′

h, ψh〉h∈H

for configurations 〈sh, eh, ψh〉h∈H , 〈sh, e′
h, ψ′

h〉h∈H , and 〈s′
h, e′′

h, ψh〉h∈H of Π, a
consistency rule γ in Γ , and a local transition for a. Then also

〈sh, eh, ψh〉h∈H
γ−→ 〈sh, ē′

h, ψ′
h〉h∈H

for suitable values ē′
h, for h ∈ H.

The theorem is a direct consequence of the closedness condition for the set
of consistency rules. It states that the execution of a local transition cannot
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disable the execution of a consistency rule. This is the loose coupling in Paradigm
between the interaction between components and actions of the components
of their own. The reverse obviously doesn’t hold. A local transition that was
admitted before, may be forbidden by one of the phases put in place by the
execution of a consistency rule. Care has to be taken to deal with variables
that are set by local transitions as well as by global transfer. To ensure non-
interference of the global (manager) and local (worker) level, one may want to
restrict reading or updating of variables to happen outside of the traps involved
in consistency rules that may change the value of the different variables.

3 An Example Paradigm Model

We illustrate the formal definitions of the previous section by modeling in
Paradigm with data the handling of clients in a busy bakery. Clients entering
the shop take a ticket from a ticket dispenser and wait for their turn. The client
having the ticket displayed is being served. The baker increments the display
after having handled a client and next serves the clients holding the ticket with
the new number.

3.1 STDs for the Components

We first model the basic behavior of the components by means of state-transition
diagrams (STD).

Client processes are introduced by the state-transition diagram below. Each
client carries an integer variable c to hold a ticket number. Initially c is set to 0.
A client subsequently obtains a ticket from the ticket machine, action getTicket,
shows the ticket to the baker (action showTicket), clarifies his or her wishes
(action clarify), and finally thanks the baker and leaves (action thankLeave).
Note, apart from initialization, there is no explicit assignment to variable c in
the STD. Also, we don’t bother to distinguish multiple instances of the Client
process. Incorporating another variable, id say, holding the identity of a client
would cater for this.

process Client with variable c

0[c = 0] 1 2 3 4
getTicket showTicket clarify thankLeave

The ticket machine is modeled by the process Machine which has an integer
variable m for the number of the ticket it dispenses. Starting from initial value 1
for m, the machine may provide a ticket with the current value of m while
moving to state 1 (action provide) and returns to state 0 on an increment of the
value of m (action incr). The incr-action is decorated with an assignment, viz.
the increment m := m + 1 of variable m.
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process Machine with variable m

0[m = 1] 1

provide

incr[m := m+1]

The Baker process models the workflow for the baker. Starting from the initial
state 0, with initial value 0 for the integer variable b of the process, the process
cycles through its four states. First the baker aims to increment the display
(action incrDisplay), next the baker welcomes the client holding the number
displayed (action welcome) and helps the client (action help). The baker closes
the cycle by some thanks and greetings (action thankGreet). Note, also here no
explicit assignments to the variable b are present; changes to b will come from
the interaction with the Display process described below.

process Baker with variable b

0[b = 0] 1

23

incrDisplay

welcome

help

thankGreet

The Display process is similar to the Machine process. It switches between
two states. The Display process holds an integer variable d, initially set to 1.
However, here we have chosen not to have an update of the variable in the STD
as we have for the machine. As variation, the display gets incremented in the
interaction with the baker. This is captured by the consistency rules modeling
the interplay of these two processes.

process Display with variable d

0[d = 1] 1

lightDown

lightUp

3.2 Roles of the Components

As discussed above, in Paradigm a component can have multiple roles. At the
level of the roles the interaction with other components takes place. The phase-
and-trap discipline of Paradigm ensures that STD and roles remain aligned dur-
ing execution: a local transition cannot change the current phase or move out of
a trap.
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A Client process has two roles, NeedTicket and NeedService, in which it inter-
acts with the Machine process and Baker process, respectively. The variable c
of the Client process may be read and/or written during this interaction and is
therefore displayed as parameter of the phases involved.

The role NeedTicket has two phases, NotTaking and Taking. The phase
NotTaking only allows the action getTicket modeling that a ticket needs to be
obtained first. When state 1 is reached in the STD the trap requestMachine has
been entered, signaling that in the role NeedTicket the component is prepared
to leave phase NotTaking (and ready to enter phase Taking, as we shall see).
Phase Taking models a client in possession of a ticket. When state 2 has been
reached, the trap useDone is entered. As required for a trap, the transitions for
actions clarify and thankLeave do not leave trap useDone.

role NeedTicket of process Client displaying variable c

NotTaking(c)
requestMachine

0 1 2 3 4
getTicket clarify thankLeave

Taking(c)
useDone

0 1 2 3 4
showTicket clarify thankLeave

The Machine process in its single role GiveTicket interacts with the Client
processes in their roles NeedTicket. The role GiveTicket has two phases,
Available and Unavailable, that manage the variable m, as indicated. Both
phases have a single-state trap, trap readyToProvide for phase Available, which
indicates that a new ticket is available for issue when the trap is reached, and
trap providingDone of phase Unavailable, that indicates that the current ticket
number has been issued and the variable m needs to be adapted (as it actually
will be in phase Available). Note, since variable m is updated when transition
incr[m := m + 1] is taken, the consistency rule (CM3) presented below doesn’t
have an increment of its parameter.

role GiveTicket of process Machine with variable m

Available(m) readyToProvide 0 1

incr[m := m + 1]

Unavailable(m)
providingDone0 1

provide



Extending Paradigm with Data 231

The Baker process has two roles, role NeedTurnNumber for interaction with
the Display process, and role NeedNextClient for interaction with all Client
processes. Role NeedTurnNumber distinguishes the phases NotUsing and Usage,
that are connected by trap requestNextNumber from phase NotUsing to phase
Usage and by trap done the other way around. The number of the client at turn
is kept in the variable b of process Baker.

role NeedTurnNumber of process Baker with variable b

NotUsing(b) Usage(b)

requestNextNumber 0 1

23

thankGreet

done

0 1

23

incrDisplay

welcome

help

When the Baker process needs to know the next ticket number to store
it in its variable b, this is provided by the Display process, in its single role
ShowingNumber. In phase Offering the value of the variable d of process Display
is guaranteed to be updated upon reaching trap nextNumber. To enforce such
an update, phase Offering is switched to phase Passive, which will move control
of Display to state 1 from which a next increment is possible once, and which
is, via trap ready, switched back to phase Offering. Note, when changing phase
from phase Passive to phase Offering as prescribed by consistency rule (BD3),
given in the next subsection, the variable d will be incremented. Different from
the modeling of role GiveTicket of the Machine process presented above, the role
ShowingNumber of the Display process doesn’t update the variable d itself.

role ShowingNumber of process Display displaying variable d

Offering(d)
nextNumber 0 1

lightUp

Passive(d)
ready0 1

lightDown

The role NeedService of the Client process deals with the client-side in the
interaction with the Baker process. The role has two phases, NotServed and
HavingTurn, each making use of the variable c of the Client process during
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interaction, viz. to match the ticket number announced by the baker. Only in
case of a match, the Client process will change phase to HavingTurn, based
on the trap requestBaker. To highlight, be it a bit sketchy, that traps aren’t
necessarily comprised of a single state, the trap ordered of phase HavingTurn
allows a transfer back to the phase NotServed again.

role NeedService of process Client displaying variable c

NotServed(c)
requestBaker

0 1 2 3 4
getTicket showTicket thankLeave

HavingTurn(c)
ordered

0 1 2 3 4
clarify thankLeave

The role NeedNextClient of process Baker takes care of the baker’s part in the
interaction with a client. When having reached trap idle in phase FinishingHelp
(finishing helping a previous client), a transfer will take place (by consistency rule
(BC1) discussed below) to phase StartingHelp. Similarly, in phase StartingHelp
on reaching trap started a transfer will take place (now by consistency rule
(BC2)) to phase Helping, in which the client is actually served. After trap
ready has been reached in phase Helping, the Baker process will switch to phase
FinishingHelp in role NeedNextClient.

role NeedNextClient of process Baker

FinishingHelp(b) StartingHelp(b) Helping(b)

idle0 1

23

incrDisplay

thankGreet

started

0 1

23

welcome

served

0 1

23
help

3.3 Interactions Among Components

The interaction between the Client processes, in their roles NeedTicket, and the
Machine process, in its role GiveTicket, arranges that every client entering the
bakery is provided with a uniquely numbered ticket. The three consistency rules
(CM1), (CM2), and (CM3) below describe how phases change once proper traps
have been entered.
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⊗
{

Client(NeedTicket) : NotTaking(0)
requestMachine−−−−−−−−−→ Taking(n)

(CM1)
Machine(GiveTicket) : Available(n)

readyToProvide−−−−−−−−−→ Unavailable(n)

Client(NeedTicket) : Taking(n)
useDone−−−−−→ NotTaking(n) (CM2)

Machine(GiveTicket) :Unavailable(n)
providingDone−−−−−−−−→ Available(n) (CM3)

The first consistency rule, rule (CM1), is a synchronous transfer of phases, as
indicated by the ⊗-symbol and enclosing braces. Given that (i) the Client pro-
cess, in role NeedTicket, has reached trap requestMachine of phase NotTaking,
while (ii) the Machine process, in role GiveTicket resides in trap readyToProvide
of phase Available, then (i) the Client process switches to phase Taking of
role NeedTicket, while (ii) the Machine process simultaneously changes to phase
Unavailable of role GiveTicket. Moreover, (i) the Client process is assumed to
(still) hold the initial value 0, while (ii) the Machine process has with a (pre-
sumably fresh) ticket number n, then the value n is copied from the Machine
process to the Client process. For consistency rules (CM2) and (CM3) the Client
and Machine process act independently. Based on (CM2), the Client process can
change phase, from Taking to NotTaking, via trap useDone. Based on (CM3),
the Machine process can change phase, from Unavailable to Available, via trap
providingDone.

The interaction between the Baker and Display process is governed by the
three consistency rules (BD1), (BD2), and (BD3). A similar effect is achieved
as for rules (CM1) through (CM3). However, the actual update of variable m is
done for the Machine process at the STD-level by the transition from state 1 to
state 0 executing action incr[m := m+1]. Here, for process Display the update is
accomplished at the level of role ShowingNumber by rule (BD3), which passes the
parameter value m for phase Passive to phase Offering as parameter value m+1.

⊗
{

Baker(NeedTurnNumber) :NotUsing(n)
requestNextNumber−−−−−−−−−−−→ Usage(m)

(BD1)
Display(ShowingNumber) : Offering(m)

nextNumber−−−−−−−→ Passive(m)

Baker(NeedTurnNumber) : Usage(n)
done−−−→ NotUsing(n) (BD2)

Display(ShowingNumber) : Passive(m)
ready−−−→ Offering(m+1) (BD3)

The interaction of the Baker and Client processes in their respective roles
NeedNextClient and NeedService is more tied up compared to the interactions
described above. All three consistency rules (BC1), (BC2), and (BC3) prescribe
simultaneous phase transfer for the two processes. Moreover, the value of the
variable b of the Baker process must be equal to the variable c of the Client
process; they must both have the value n.
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⊗
{

Baker(NeedNextClient) :FinishingHelp(n)
idle−−→ StartingHelp(n)

(BC1)
Client(NeedService) : NotServed(n)

requestBaker−−−−−−−→ NotServed(n)

⊗
{

Baker(NeedNextClient) : StartingHelp(n)
started−−−−→ Helping(n)

(BC2)
Client(NeedService) : NotServed(n)

requestBaker−−−−−−−→ HavingTurn(n)

⊗
{

Baker(NeedNextClient) : Helping(n)
served−−−−→ FinishingHelp(n)

(BC3)
Client(NeedService) : HavingTurn(n)

ordered−−−−→ NotServed(n)

4 Model Checking Paradigm Models with Data

As for many modeling languages, formal analysis of Paradigm models supports
the modeling itself. In [1,2] it is discussed how to expressing Paradigm models
without data in the process language of the mCRL2 toolset [8,10]. In short, for
each component the local behavior is modeled as a state machine. For a transition
to fire, it is checked if the current phase allows so. For the global behavior of
a component a communication intent is issued for each consistency rule that
mentions the component. However, the current state and phase should match
the relevant trap. Correct interaction can subsequently be enforced by the allow
and communication operators of mCRL2, that block single-sided communication
intents and synchronize consistent ones, respectively. In this section, we describe
by example how the approach extends to deal with data.

1 proc C l i en t ( s t : Nat , c : Nat , nt ph : NeedTicketPh , ns ph : NeedServicePh ) =
2

3 ( ( s t==0) && ( nt ph in [ NotTaking ] ) && ( ns ph in [ NotServed ] ) ) −>
4 getTicket . C l i en t (1 , c , nt ph , ns ph ) +
5 ( ( s t==1) && ( nt ph in [ Taking ] ) && ( ns ph in [ NotServed ] ) ) −>
6 showTicket ( c ) . C l i en t (2 , c , nt ph , ns ph ) +
7 ( ( s t==2) && ( nt ph in [ NotTaking , Taking ] ) && ( ns ph in [ HavingTurn ] ) ) −>
8 c l a r i f y ( c ) . C l i en t (3 , c , nt ph , ns ph ) +
9 ( ( s t==3) && ( nt ph in [ NotTaking , Taking ] ) && ( ns ph in [ HavingTurn ] ) ) −>

10 thankLeave ( c ) . C l i en t (4 , c , nt ph , ns ph ) +
11

12 %% ru l e (CM1)
13 ( ( s t in [ 1 ] ) && ( nt ph==NotTaking ) ) −>
14 sum m: Nat . requestMachine (m) . C l i en t ( st ,m, Taking , ns ph ) +
15 %% ru l e (CM2)
16 ( ( s t in [ 2 , 3 , 4 ] ) && ( nt ph==Taking ) ) −>
17 useDone . C l i en t ( st , c , NotTaking , ns ph ) +
18

19 %% ru l e (BC1)
20 ( ( s t in [ 2 ] ) && ( ns ph==NotServed ) ) −>
21 requestBaker1 ( c ) . C l i en t ( st , c , nt ph , NotServed ) +
22 %% ru l e (BC2)
23 ( ( s t in [ 2 ] ) && ( ns ph==NotServed ) ) −>
24 requestBaker2 ( c ) . C l i en t ( st , c , nt ph , HavingTurn ) +
25 %% ru l e (BC3)
26 ( ( s t in [ 3 , 4 ] ) && ( ns ph==HavingTurn ) ) −>
27 ordered ( c ) . C l i en t ( st , c , nt ph , NotServed ) ;

Fig. 1. mCRL2 code for the Client process
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Figure 1 provides the mCRL2 version of the process Client of the bakery exam-
ple of the previous section (the complete code can be found in the appendix).
Here, the Client process has four parameters, viz. the natural number st to
hold the state of the underlying STD, the natural number c to hold the ticket
number of the client, and the parameters nt ph and ns ph to keep track of the
phase of the process with respect to their roles NeedTicket and NeedService,
respectively. For this, the definition of the two enumerated types

NeedTicketPh = struct NotTaking | Taking;
NeedServicePh = struct NotServed| HavingTurn;

are included at the beginning of the specification. The specification of the Client
process falls into three parts: (i) lines 3–10, specifying the local transitions
(ii) lines 12–17, describing Client’s part for the consistency rules (CM1)−(CM3),
and similarly (iii) lines 19–27 for the consistency rules (BC1)−(BC3). Each part
consists of a number of alternative branches, separated by the non-deterministic
choice operation ‘+’, of the form

<condition> -> <action> . <continuation process>

(with a variation for rule (CM1) to be discussed in a minute). For example,
lines 3–4 express that the Client process in state 0, in phase NotTaking for
its NeedTicket role, as well as in phase NotServed for its NeedService role,
can perform the action getTicket and continues as Client(1,c,nt ph,ns ph)
with control now in state 1, but leaving the parameters c, nt ph, and ns ph
unchanged. The element-of-list construction nt ph in [ NotTaking ,Taking ]

shows profitable in line 7, for example. Note, the transition 2
clarify−−−−→ 3 is

admitted both by phase NotTaking and by phase Taking.
Lines 12–14 embody the contribution of a client process to execution of the

(CM2)-rule. If the process resides in trap useDone consisting of states 2, 3,
and 4 (for all values of variable c), and in phase Taking regarding its NeedTicket
role, then the process is willing to execute the action useDone and to continue
with its NeedTicket phase changed from Taking to NotTaking as consistency
rule (CM2) prescribes. Note, no for (CM2) the client process doesn’t depend on
other processes.

Consistency rule (CM1) in which both a client process and the machine
process are involved requires their interaction. Assuming Client is in state 1,
hence in trap requestMachine as the value of c doesn’t matter for this, as well
as in phase NotTaking, then Client is willing to input the value m of the ticket
as offered by the machine. But, a priori this value is not known to the client.
Therefore, the value is abstracted away by the summation sum m:Nat over all
possible values for m. Upon synchronization with the machine process the actual
value for m will be handed over. However, this can only happen if the interacting
Machine process has reached the proper trap in the proper phase regarding the
corresponding role.

To enforce synchronization of processes, mCRL2 provides the allow-and-comm-
unicate mechanism. Once all processes have been specified (Client, Machine,
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Baker, and Display) the so-called initial process is given. We have chosen to
analyze a typical situation of three clients in combination with one machine, one
baker, and one display:

allow( {
getTicket, showTicket, clarify, thankLeave,

...
CM1, useDone, providingDone,

... },
comm( {

requestMachine | readyToProvide -> CM1 ,
... },

Client(0,0,NotTaking,NotServed) ||
Client(0,0,NotTaking,NotServed) ||
Client(0,0,NotTaking,NotServed) ||
Mach(0,1,Available) ||
Baker(0,0,NotUsing,FinishingHelp) ||
Display(0,1,Offering) ) )

The crucial point is, the synchronized execution of the actions requestMach-
ine(n) by Client and readyToProvide(n) by Machine, for the same value n,
will be represented by the execution of the action CM1(n) of the overall system.
On top of this, for all n, the action CM1 is allowed to be executed, as mentioned
in the list of allowed actions, but the action requestMachine and the action
readyToProvide on their own are not, since they are deliberately missing from
the list of allowed actions. Thus, a requestMachine or readyToProvide cannot
happen alone, but combined into the action CM1 only, provided the actions carry
the same value for their parameter. Since, by the sum construction the client
is willing to perform requestMachine(m) for each value of m, it can match the
specific value for m offered by the machine in readyToProvide(m). This way,
for this basic case, passing of parameter values from one process to another is
achieved.

In general, a Paradigm model (Ch)h∈H will be encoded in mCRL2 as the paral-
lel composition of #H processes, with #H the number of elements of the index
set H. For a process Ch we have in its encoding, on the one hand, a parame-
ter st of type Nat enumerating the set of states Sh and parameters d1, . . . , dnh

of properly chosen built-in or user-defined type to represent the extended state
of Ch, and, on the other hand, parameters ph1, . . . , phnh

for each of the roles,
each of type specifically introduced for the roles. The actions of the processes
are either local actions, from the respective action sets A, together with action
corresponding to traps of the various roles of the components. With the com-
bined use of allow and communication operators synchronization of traps can be
enforced.

A local transition 〈sh, eh, ψh〉h∈H
a−→ 〈s′

h, e′
h, ψh〉h∈H , say with eh =

(eh,j)mh
j=1, is easy to handle. We only need to verify that the transition

〈sh0 , eh0〉 a−→ 〈s′
h0

, e′
h0

〉 for the active component h0 is admitted by the phases
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in ψh0 (see Definition 3). That other processes remain unchanged is implied by
the interleaving of the processes. Thus, for each transition 〈sh0 , eh0〉 a−→ 〈s′

h0
, e′

h0
〉

in Th we incorporate for mCRL2 process C h the non-deterministic branch

( ( st == s_h ) &&

( d_1 == e_h,1 ) && ... && ( d_m_h == e_h,m(h) ) &&

( st in [ list of admitting phases role 1] ) && ... &&

( st in [ list of admitting phases role n(h) ] ) ) ->

a . C_h(s’_h,e’_h,1,...,e’_h,m_h,ph_1,...,ph_n_h)

and add the action a to the set of actions of the allow operator enclosing the
parallel composition of components.

A consistency rule γ = (Cr(Φr) : ϕr(er)
θr−−→ ϕ′

r(e
′
r) )r∈R, say with er =

(er,j)mr
j=1 and e′

r = (e′
r,j)

mr
j=1, is distributed over all components and roles involved.

For each index r in R, we include a non-deterministic branch for process Cr and
role Φr in the mCRL2 process C r.

( ( st in [ states for trap theta_r ] ) &&

( d_1 == e_h,1 ) && ... && ( d_m_h == e_h,m_h ) &&

( ph_i(r) == phase_phi_r_of_Phi_r ) ) ->

sum w_1:W_1 . ... . sum w_n:W_n .

theta_r(w_1,...,w_n,expr_1,...,expr_n) .

C_r(st,e’_r,1,...,e’_r,m_r,...,phase_phi’_r_of_Phi_r,...)

The summations sum w 1:W 1 to sum w n:W n abstract away the n-1 groups of
variables of the components other the component Cr itself (although this cannot
be read off from the notation above). Thus, of the variable groups w 1 to w n
only w r is not bound by a summation. The expressions expr 1 to expr n, built-
up from standard constructs and possibly all of the variables in the n groups
w 1 to w n, are the expressions as occurring in the #R righthand-sides of the
consistency rule. For a successful interaction it is required that all parties agree
on the values of the parameters and expressions involved. By taking the sum
over all possible (potentially infinitely many) values the process C r leaves it
totally to the other components to decide on the values of their variables, if
occurring at all. Moreover, if #R > 1 we add the communication theta 1 |
... | theta #R -> gamma to the communication operator com enclosing the
parallel composition of components, but do not include any of the trap actions
theta 1,...,theta #R. In case #R = 1, no communication is introduced, but
the trap action will be allowed instead.

Some further caution needs to be put in place though, to deal with sum-
mations over infinite data types as possibly occurring in the encoding of the
consistency rules. In the various analysis steps with the mCRL2 toolset, in par-
ticular statespace generation, the tools may hang because of infinite branching.
For Paradigm with data, in concrete situations, simplifications to the coding are
applied for variables whose actual value is not used. There are two flavors of
this: comparison of an expression involving the variable to an expression involv-
ing another (as for the ticket number of the client and the baker in lines 21,
24, and 27), or when the variable doesn’t occur at all in the expressions at the
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righthand-side of the the consistency rule. As illustration of the latter situation,
the encoding for the Machine process for the consistency rule (CM1) reads

( ( st in [ 0 ] ) && ( gt_ph == Available ) ) ->
readyToProvide(m) . Machine(st,m,Unavailable)

where no abstraction of the variable c of Client is needed. The machine just
provides a ticket number, in our modeling, independent of the actual value of c.

5 Concluding Remarks

We have shown, with the IWIM model in mind, how the coordination modeling
language Paradigm can be extended to deal with data. The present set-up is rel-
atively liberal in the use of variables, although in concrete modeling situations a
relatively small number of patterns of data flow among interacting components
seem to suffice. Further investigation needs to reveal if this allows for a simplifi-
cation of the consistency rule format and the associated closedness requirements
both for sets of consistency rules as well as for the restriction on updates of
variables within a trap.

Currently, for formal analysis using the mCRL2 toolset, the encoding needs to
be tailored to avoid infinite branching during statespace generation. The toolset
provides a number of tools, e.g. lpssumelm and lpsconstelm, that manipulate
intermediate artifacts (in so-called linear process specification or lps format) to
reduce the specification, leading to smaller and hence more amenable verification
problems. It is a topic of further research to develop sum elimination techniques
specifically targeting the encoding of consistency rules discussed in this paper.

Application areas for Paradigm with data include the modeling of services,
where both coordination and data play a prominent role, as well as the analysis of
security protocols. Dissertational work by the second author is underway dealing
with the modeling with Paradigm of anonymous networking and internet voting.
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topics in coordination, computer science, research, and life in general and are looking
forward to the undoubtedly many discussions still to come. We thank the anonymous
reviewers for their helpful comments.

A Complete mCRL2 Specification of the Bakery Example

This appendix contains the mCRL2 code of the bakery example of Sect. 3.
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sort

%% role NeedTicket of Client
NeedTicketPhase = struct NotTaking | Taking ;

%% role NeedService of Client
NeedServicePhase = struct NotServed| HavingTurn ;

%% role GiveTicket of Machine
GiveTicketPhase = struct Available | Unavailable ;

%% role ShowNumber of Display
ShowNumberPhase = struct Offering | Passive ;

%% role NeedTurnNumber of Baker
NeedTurnNumberPhase = struct NotUsing | Usage ;

%% role NeedNextClient of Baker
NeedNextClientPhase = struct FinishingHelp | StartingHelp | Helping ;

act

%% Client actions
getTicket ; showTicket, clarify, thankLeave : Nat ;

%% Client traps
requestMachine : Nat ; useDone ;
requestBaker1, requestBaker2 : Nat ; ordered : Nat ;

%% Machine actions
incr, provide ;

%% Machine traps
readyToProvide : Nat ; providingDone ;

%% Display actions
lightUp, lightDown ;

%% Display traps
nextNumber : Nat ; ready ;

%% Baker actions
incrDisplay ; welcome, help, thankGreet : Nat ;

%% Baker traps
requestNextNumber : Nat ; done ;
idle, started : Nat ; served : Nat ;

%% interactions
CM1 : Nat ;
BD1 : Nat ;
BC1, BC2, BC3 : Nat ;

proc
Client(st:Nat, c:Nat, nt_ph:NeedTicketPhase, ns_ph:NeedServicePhase) =

%% local STD

%% 0 -> 1
( ( st == 0 ) && ( nt_ph in [ NotTaking ] ) && ( ns_ph in [ NotServed ] ) ) ->

getTicket . Client(1,c,nt_ph,ns_ph) +

%% 1 -> 2
( ( st == 1 ) && ( nt_ph in [ Taking ] ) && ( ns_ph in [ NotServed ] ) ) ->

showTicket(c) . Client(2,c,nt_ph,ns_ph) +

%% 2 -> 3
( ( st == 2 ) && ( nt_ph in [ NotTaking, Taking ] ) && ( ns_ph in [ HavingTurn ] ) ) ->
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clarify(c) . Client(3,c,nt_ph,ns_ph) +

%% 3 -> 4
( ( st == 3 ) && ( nt_ph in [ NotTaking, Taking ] ) && (ns_ph in [ HavingTurn ] ) ) ->

thankLeave(c) . Client(4,c,nt_ph,ns_ph) +

%% role NeedTicket

%% rule (CM1)
( ( st in [ 1 ] ) && ( nt_ph == NotTaking ) ) ->

sum m:Nat . requestMachine(m) . Client(st,m,Taking,ns_ph) +

%% rule (CM2)
( ( st in [ 2, 3, 4 ] ) && ( nt_ph == Taking ) ) ->

useDone . Client(st,c,NotTaking,ns_ph) +

%% role NeedService

%% rule (BC1)
( ( st in [ 2 ] ) && ( ns_ph == NotServed ) ) ->

requestBaker1(c) . Client(st,c,nt_ph,NotServed) +

%% rule (BC2)
( ( st in [ 2 ] ) && ( ns_ph == NotServed ) ) ->

requestBaker2(c) . Client(st,c,nt_ph,HavingTurn) +

%% rule (BC3)
( ( st in [ 3, 4 ] ) && ( ns_ph == HavingTurn ) ) ->

ordered(c) . Client(st,c,nt_ph,NotServed) ;

proc
Machine( st:Nat, m:Nat, gt_ph:GiveTicketPhase ) =

%% local STD

%% 0 -> 1
( ( st in [ 0 ] ) && ( gt_ph in [ Unavailable ] ) ) ->

provide . Machine(1,m,gt_ph) +

%% 1 -> 0
( ( st == 1 ) && ( gt_ph in [ Available ] ) ) ->

incr . Machine(0,m+1,gt_ph) +

%% role GiveTicket

%% rule (CM1)
( ( st in [ 0 ] ) && ( gt_ph == Available ) ) ->

readyToProvide(m) . Machine(st,m,Unavailable) +

%% rule (CM3)
( ( st in [ 1 ] ) && ( gt_ph == Unavailable ) ) ->

providingDone . Machine(st,m,Available) ;

proc
Baker(st:Nat, b:Nat, ntn_ph:NeedTurnNumberPhase, nnc_ph:NeedNextClientPhase) =

%% local STD

%% 0 -> 1
( ( st == 0 ) && ( ntn_ph in [ Usage ] ) && (nnc_ph in [ FinishingHelp ] ) ) ->

incrDisplay . Baker(1,b,ntn_ph,nnc_ph) +

%% 1 -> 2
( ( st == 1 ) && ( ntn_ph in [ Usage ] ) && (nnc_ph in [ StartingHelp ] ) ) ->

welcome(b) . Baker(2,b,ntn_ph,nnc_ph) +
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%% 2 -> 3
( ( st == 2 ) && ( ntn_ph in [ Usage ] ) && (nnc_ph in [ Helping ] ) ) ->

help(b) . Baker(3,b,ntn_ph,nnc_ph) +

%% 3 -> 0
( ( st == 3 ) && ( ntn_ph in [ NotUsing ] ) && (nnc_ph in [ FinishingHelp ] ) ) ->

thankGreet(b) . Baker(0,b,ntn_ph,nnc_ph) +

%% role NeedTurnNumber

%% rule (BD1)
( ( st in [ 0 ] ) && ( ntn_ph == NotUsing ) ) ->

sum d:Nat . requestNextNumber(d) . Baker(st,d,Usage,nnc_ph) +

%% rule (BD2)
( ( st in [ 3 ] ) && ( ntn_ph == Usage ) ) ->

done . Baker(st,b,NotUsing,nnc_ph) +

%% role NeedNextClient

%% rule (BC1)
( ( st in [ 1 ] ) && ( nnc_ph == FinishingHelp ) ) ->

idle(b) . Baker(st,b,ntn_ph,StartingHelp) +

%% rule (BC2)
( ( st in [ 2 ] ) && ( nnc_ph == StartingHelp ) ) ->

started(b) . Baker(st,b,ntn_ph,Helping) +

%% rule (BC3)
( ( st in [ 3 ] ) && ( nnc_ph == Helping ) ) ->

served(b) . Baker(st,b,ntn_ph,FinishingHelp) ;

proc
Display( st:Nat, d:Nat, sh_ph:ShowNumberPhase ) =

%% local STD

%% 0 -> 1
( ( st in [ 0 ] ) && ( sh_ph in [ Passive ] ) ) ->

lightDown . Display(1,d,sh_ph) +

%% 1 -> 0
( ( st == 1 ) && ( sh_ph in [ Offering ] ) ) ->

lightUp . Display(0,d,sh_ph) +

%% role ShowingNumber

%% rule (BD1)
( ( st in [ 0 ] ) && ( sh_ph == Offering ) ) ->

nextNumber(d) . Display(st,d,Passive) +

%% rule (BD3)
( ( st in [ 1 ] ) && ( sh_ph == Passive ) ) ->

ready . Display(st,d+1,Offering) ;

init
hide( {

%% Client actions
getTicket, showTicket, clarify, thankLeave,

%% Machine actions
incr, provide,

%% Baker actions
incrDisplay, welcome, help,
%% thankGreet,
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%% Display actions
lightUp, lightDown,

%% interactions
CM1, useDone, providingDone,
BD1, done, ready,
BC1, BC2, BC3 },

allow( {
%% Client actions

getTicket, showTicket, clarify, thankLeave,

%% Machine actions
incr, provide,

%% Baker actions
incrDisplay, welcome, help, thankGreet,

%% Display actions
lightUp, lightDown,

%% interactions
CM1, useDone, providingDone,
BD1, done, ready,
BC1, BC2, BC3 },

comm( {
%% Client-Machine interaction

requestMachine | readyToProvide -> CM1 ,
%% Baker-Display interaction

requestNextNumber | nextNumber -> BD1 ,
%% Baker-Client interaction

idle | requestBaker1 -> BC1 ,
started | requestBaker2 -> BC2 ,
served | ordered -> BC3 },

Client(0,0,NotTaking,NotServed) ||
Client(0,0,NotTaking,NotServed) ||
Client(0,0,NotTaking,NotServed) ||
Machine(0,1,Available) ||
Baker(0,0,NotUsing,FinishingHelp) ||
Display(0,1,Offering)

))) ;

B Reduced LTS

Labeled transition system for the specification of AppendixA with only actions
thankGreet by the Baker process shown on the left. It validates that all three
clients are served, assuming an atomic welcome-help-thankGreet sequences of
actions, and are served in order of their tickets. On the right, the labeled tran-
sition system for the specification of AppendixA with only actions thankLeave
by the Client processes shown. It validates that all three clients are served, but
they can (and will) leave in any order.
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Labeled transition system for the specification of Appendix A with only
actions showTicket and clarify by the Client processes shown. It validates
that all three clients can raise their ticket independently, since admitted local
behavior can be executed asynchronously from other component behavior, but
are served in order of their ticket.
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