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Farhad Arbab



Preface

Having Iranian, American, and Dutch nationality, Farhad Arbab is a citizen of the
world, a fact that is reflected not only by his personality and views of life, but also by
his scientific career.

Farhad was born in Iran and got his bachelor’s degree in chemical engineering at
Sharif University in Tehran, in July 1976. One year later, he obtained his master’s
degree in computer science, again at Sharif, in August 1977. Before and during his
university studies, Farhad found the time for various other activities. He worked as a
computer systems analyst and as a system engineer at various companies in Tehran,
including IBM, and married Hamideh Afsarmanesh, in March 1977.

Newly wed and freshly graduated, Farhad moved to the United States, in the Fall
of the same year, to start his PhD studies at the University of California, Los Angeles
(UCLA). He obtained his PhD degree in 1982, by defending a thesis with the some-
what mysterious (at least, to some of us) title “Requirements and Architecture of a
CAM-Oriented CAD System for Design and Manufacture of Mechanical Parts.” In the
period 1980–1989, i.e., both during and after his PhD studies, Farhad held various
positions at UCLA, and at the University of Southern California (USC). And again, life
was more than only science: Hamideh and Farhad became the proud parents of two
beautiful daughters, Taraneh in 1985 and Mandana in 1987.

On his way to a third nationality, then, Farhad moved to Amsterdam, in January
1990, to start the Dutch branch of his career at CWI, a position he combined later, in
2014, with an appointment as professor at the University of Leiden.

All in all, Farhad worked in different countries, in various fields, on many diverse
subjects, a border-crossing experience which led to scientific explorations in various
directions.

In the United States, Farhad worked in the fields of computer graphics, solid mod-
eling, and computer-aided design and manufacturing of mechanical parts. At CWI, in
the 1990s, Farhad worked on the design, implementation, and applications of Manifold:
a coordination language for managing the interactions among cooperating autonomous
concurrent processes in heterogeneous distributed computing environments. Over the
years, the scope of Farhad’s research at CWI became wider still, including software
composition, service-oriented computing, component-based software, concurrency
theory, coordination models and languages, parallel and distributed computing, visual
programming environments, constraints, logic and object-oriented programming.

Here we would like to highlight the foundational contributions of Farhad to the field
of coordination models and languages. His insight that it is all about exogenous
coordination gave rise to the IWIM (idealized workers and idealized managers) model
for coordination of concurrent activities, which emphasized the basic separation of
concerns between computation and coordination. This line of research culminated in
the striking elegance and beauty of Reo: an exogenous coordination model whose
formal semantics is based on a calculus of channel composition. This powerful



declarative model of coordination offers a visual glue-code language for the con-
struction of coordinating connectors in distributed, mobile, and dynamically recon-
figurable component-based systems. Reo has been extremely successful and is having a
great impact in many of the areas mentioned here, as is illustrated by the high number
of citations of Farhad’s scientific publications.

We believe that it took someone as talented as Farhad, capable of crossing
boundaries, to be able to observe and distill the essence of interaction, communication,
and coordination, and to come up with the definition of Reo.

On the occasion of Farhad’s retirement, the present volume collects a number of
papers by several of Farhad’s close collaborators over the years. On behalf of all your
friends in science, we wish you all the best, Farhad!

March 2018 Frank de Boer
Marcello Bonsangue

Jan Rutten

VIII Preface
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Discovering the “Glue” Connecting
Activities

Exploiting Monotonicity to Learn Places Faster

Wil M. P. van der Aalst(B)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. Process discovery, one of the key areas within process mining,
aims to derive behavioral models from event data. Since event logs are
inherently incomplete (containing merely example behaviors) and unbal-
anced, this is often challenging. Different target languages can be used
to capture sequential, conditional, concurrent, and iterative behaviors.
In this paper, we assume that a process model is merely a set of places
(like in Petri nets). Given a particular behavior, a place can be “fitting”,
“underfed” (tokens are missing), or “overfed” (tokens are remaining).
We define a partial order on places based on their connections. Then
we will show various monotonicity properties that can be exploited dur-
ing process discovery. If a candidate place is underfed, then all “lighter”
places are also underfed. If a candidate place is overfed, then all “heavier”
places are also overfed. This allows us to prune the search space dramat-
ically. Moreover, we can further reduce the search space by not allowing
conflicting or redundant places. These more foundational insights can be
used to develop fast process mining algorithms producing places with a
guaranteed quality level.

Keywords: Process mining · Process discovery · Petri nets · BPM

1 Introduction

It is a pleasure to contribute to this Festschrift honoring Farhad Arbab’s contri-
butions to computer science. Farhad worked on different topics in the broader
field of formal methods and software engineering. However, he is best known for
his work in coordination models and languages. Often concurrency and composi-
tion played an important role in his work. The Reo coordination language is the
piece de resistance of Farhad’s work. Reo is a channel-based coordination model
wherein complex coordinators, called connectors, are composed from simpler
ones [10]. The language has been mapped to many other languages [16], includ-
ing zero-safe nets (a variant for Petri nets) and constraint automata. There
is also work on the synthesis of Reo circuits from scenario specifications [21].
Unfortunately, mining techniques to learn Reo models from event data are still
missing.
c© Springer International Publishing AG, part of Springer Nature 2018
F. de Boer et al. (Eds.): Arbab Festschrift, LNCS 10865, pp. 1–20, 2018.
https://doi.org/10.1007/978-3-319-90089-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90089-6_1&domain=pdf


2 W. M. P. van der Aalst

In process mining, typically representations such as Petri nets, workflow nets,
causal nets, process trees, transition systems, statecharts, and BPMN models are
used [3]. Rather than coordinating complex components, these models merely
coordinate activities derived from event data.

The goal of Reo is to provide the “glue” between different software com-
ponents. In the same way, one could view places in a Petri net as the “glue”
between transitions representing activities. In this sense, places in a Petri net
can be viewed as a simple coordination layer. The goal of this paper is to dis-
cover sets of places modeling the underlying process such that (1) this can be
done quickly (handling event logs with millions of events) and (2) that places
have a well-defined minimal quality level.

Event data are collected in logistics, manufacturing, finance, healthcare,
customer relationship management, e-learning, e-government, and many other
domains. The events found in these domains typically refer to activities exe-
cuted by resources at particular times and for a particular case (i.e., process
instances). Process mining techniques are able to exploit such data. Here, we
focus on process discovery, but process mining also includes conformance check-
ing, performance analysis, decision mining, organizational mining, predictions,
recommendations, etc.

Over the last two decades, hundreds of process discovery techniques have
been proposed [3]. Many of the initial techniques could not cope with infre-
quent behavior and made very strong assumptions about the completeness of
the event log. For example, traditional region-based techniques assume that
all possible behavior has been observed (i.e., the log is complete) and that
all observed traces are equally important. State-based regions were introduced
by Ehrenfeucht and Rozenberg in 1989 and generalized by Cortadella et al.
[12,14]. Various authors used state-based regions for process discovery [7,22].
Also, language-based regions have been used for this purpose [11,25]. Over time
attention shifted to approaches able to deal with noise and infrequent behavior.
Early approaches include heuristic mining, fuzzy mining, and various genetic
process mining approaches [15,24]. Since 2010 the speed at which new process
discovery techniques are proposed is accelerating. As an example consider the
family of inductive mining techniques [17–19].

p1

a c

b d
p2

p3

p4

p5

Fig. 1. Process model P1 = {({�}, {a}), ({�}, {b}), ({a}, {c, d}), ({b}, {c, d}),
({c, d}, {�})} composed of five places discovered from event log L1 = [〈�, a, b, c, �〉31,
〈�, b, a, c, �〉27, 〈�, a, b, d, �〉23, 〈�, b, a, d, �〉19].
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This paper provides a fresh look at places in a Petri net seen from the view-
point of process discovery. Each place can be viewed as a constraint, limiting
the behavior of the Petri net. We use a so-called open-world assumption: Any
behavior is possible unless explicitly forbidden by one of the places in the model.
Consider the process model shown in Fig. 1 which is composed of five places.
Transition � models the start of the process and transition � marks the end.
Place p1 specifies that activity a can only happen after �. Moreover, at the end,
the number of occurrences of a should match the number of occurrences of �.
Since � happens once, also a should also happen precisely once. Place p3 speci-
fies that activity c and activity d can only happen after a occurred. At the end,
the number of occurrences of c and d should match the number of occurrences
of a. The goal is to discover models merely composed of places from event data.
Each event refers to a case (process instance), activity, and a timestamp. We
can group events based on cases and sort events within a case based on the
timestamps. This way each case can be presented by a trace 〈�, a, b, c, �〉, i.e., a
sequence of activities. An event log is a multiset of such traces. The caption of
Fig. 1 shows event log L1 consisting of 100 cases and 500 events referring to six
unique activities.

+0-

++?

?--

p22p12 p32

p21p11 p31

p23p13 p33

Fig. 2. During replay each of the places p32, p21, and p31 will always have at least the
number of tokens in p22. Similarly, places p13, p23, and p12 will always have at most
the number of tokens in p22. Places p11 and p33 may have more or fewer tokens.

It is far from trivial to discover places from larger event logs referring to many
activities. The number of possible places grows exponentially in the number of
activities and to evaluate a place one needs to traverse the whole event log. A
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naive algorithm would need to replay the event log for every possible candidate
place. This can be very time-consuming. Moreover, places may be redundant
or conflicting. Therefore, we explore relationships among (sets of) places and
present several monotonicity results. To do this, we define new notions such as
“underfed” and “overfed” places and partial orders on (sets of) places based on
their input and output transitions.

Figure 2 shows the basic idea. If we replay a trace on a particular place, there
could be two problems:

– At some stage, a transition needs to remove a token from the place, but the
place is already empty (the place is “underfed”).

– At the end of the trace, tokens remain in the place (the place is “overfed”).

Note that a place can be “overfed” and “underfed” at the same time. Assume now
that we have a place p22 with two input transitions and two output transitions
(Fig. 2 only shows the corresponding arcs). If this place is perfectly fitting some
trace σ (the place is not “underfed” and not “overfed”), then we know that
adding an input arc and/or removing an output arc can only make the place
“heavier” (indicated by the + sign in Fig. 2). Moreover, removing an input arc
and/or adding an output arc can only make the place “lighter” (indicated by
the − sign in Fig. 2). We can exploit this simple observation. If place p22 is
already overfed, then we know that the places p32, p21, and p31 also need to
be overfed. If place p22 is already underfed, then we know that the places p13,
p23, and p12 also need to be underfed. These monotonicity properties allow us to
prune the search space of candidate places. In fact, the monotonicity results can
be exploited by discovery algorithms to speed-up discovery while still producing
all places that meet predefined quality criteria. This paper focuses on the formal
foundation of such approaches without providing a specific process discovery
technique. Nevertheless, it is quite straightforward to see how the results can be
used to speed-up process discovery.

The remainder is organized as follows. Section 2 provides the formal setting
by defining behaviors, event logs, process models, and their semantics. In Sect. 3
we relate places using partial orders and prove the first monotonicity results. This
is then lifted to quality scores for places (Sects. 4 and 5). We briefly discuss how
these monotonicity results can be used for process discovery (Sect. 6). To further
prune the set of candidate places we define redundancy and conflict (Sect. 7).
Section 8 discusses implications for conformance checking. Section 9 concludes
the paper.

2 Behaviors, Event Logs, and Models

To be able to discuss the monotonicity results that can be exploited by process
discovery approaches we define key notions such as behaviors, event logs, and
places. We also define the semantics of process models based on places using an
open-world assumption.
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2.1 Behaviors

First, we introduce some basic mathematical notations.
P(X) = {Y | Y ⊆ X} is the powerset of set X. B(X) = X → IN is the set of

all multisets over some set X. For any B ∈ B(X): B(x) denotes the number of
times element x ∈ X appears in B. B1 = [ ], B2 = [a, a, b], and B3 = [a3, b2, c]
are multisets over X = {a, b, c}. B1 is the empty multiset, B2 has three elements,
and B3 has six elements. Note that the ordering of elements is irrelevant. Union
(B1∪B2), intersection (B1∩B2), and difference (B1\B2) are defined as usual. All
operators for sets are generalized to multisets, e.g.,

∑
x∈[a,b,b,a,c] x = 2a+2b+ c.

σ = 〈x1, x2, . . . , xn〉 ∈ X∗ denotes a sequence over X. σ(i) = ai denotes the
i-th element of the sequence. |σ| = n is the length of σ and dom(σ) = {1, . . . , |σ|}
is the domain of σ. 〈 〉 is the empty sequence, i.e., |〈 〉| = 0 and dom(〈 〉) = ∅.
σ1 · σ2 is the concatenation of two sequences.

Based on the preliminaries we can define the notion of behavior. 〈�, a, b, c, �〉
is an example behavior, i.e., a sequence of activities starting with � and ending
with �.

Definition 1 (Activities and Behaviors). A is the universe of activities
(actions, tasks, operations, transaction types, etc.). There are two special activi-
ties: {�, �} ⊆ A. � is the unique start activity and � is the unique end activity.
A behavior σ = 〈a1, a2, . . . , an〉 ∈ A

∗ is a sequence of activity names such that
n ≥ 2, a1 =�, an = �, and for all 1 < i < n: ai ∈ A \ {�, �}. B is the set of
all possible behaviors.

In this paper, A = {�, �, a, b, c, d, . . .} and B = {〈�, �〉, 〈�, a, �〉, 〈�, b, �〉, . . .
〈�, a, b, c, c, a, d, �〉, . . .}.

2.2 Event Logs

An event log can be defined as a multiset of behaviors. Elements of such a
multiset are called traces and refer to cases (i.e., process instance).

Definition 2 (Event Log). An event log L is a multiset of behaviors, i.e.,
L ∈ B(B). σ ∈ L is called a trace.

L1 = [〈�, a, b, c, �〉31, 〈�, b, a, c, �〉27, 〈�, a, b, d, �〉23, 〈�, b, a, d, �〉19] is an
example of an event log with 100 traces. For example, 31 cases exhibit the
behavior 〈�, a, b, c, �〉. Typically, an event log has more information. For exam-
ple, events may have a timestamp, refer to resources, locations, customers, costs,
etc. Since we focus on the discovery of the “control-flow backbone” of a process,
we can abstract from these optional attributes.

2.3 Using Places to Constrain Behavior

In the context of process mining, a wide variety of modeling languages are used
ranging from Petri nets, workflow nets, causal nets, process trees and transition
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systems to statecharts and BPMN models. In this paper, we use a very “lean”
modeling language based on places and an open-world assumption. First, we
define P and P

! as the set of all possible (through) places.

Definition 3 (Places). P = P(A) × P(A) is the set of all possible places. For
any p = (I,O) ∈ P, •p = I is the set of input activities and p• = O is the set of
output activities. P! = (P(A) \ {∅}) × (P(A) \ {∅}) is the set of through places,
i.e., places having non-empty sets of input and output activities.

Note that places do not have names, they are fully identified by the input
and output activities. Therefore, for any p1 and p2, if •p1 = •p2 and p1• = p2• ,
then p1 = p2. A process model is simply a set of places.

Definition 4 (Process Model). A set of places P ⊆ P defines a process
model.

Figure 1 shows the process model P1 = {({�}, {a}), ({�}, {b}), ({a}, {c, d}),
({b}, {c, d}), ({c, d}, {�})}.

Unlike conventional Petri nets, there is (1) no initial marking and (2) not an
explicit set of transitions. We do not need an initial marking because behaviors
start with the unique start activity �. T =

⋃
p∈P •p ∪ p• is the implicit set of

transitions (corresponding to the inputs and output of places). However, because
we use an open-world assumption, we allow for activities not mentioned in the
process model. Places only constrain the behavior of the activities explicitly
mentioned. For example, 〈�, a, d, d, d, b, e, e, c, �〉 is a behavior allowed by process
model P1 (simply ignore activities d and e). In the remainder, we will use the
terms transition and activity interchangeably. Whereas the term transition is
common in the context of Petri nets, event logs refer to occurrences of activities
rather than model elements.

2.4 Behavior Defined by Places

To formalize the semantics of a process model P ⊆ P we define “underfed”,
“overfed”, and “fitting” places. Given a behavior σ ∈ B, place p is underfed if
during the replay of the trace place p “goes negative”, i.e., a token needs to be
consumed while it has not been produced (yet). Place p is overfed if at the end
of replaying a trace, tokens remain in p. Place p is fitting if it is not underfed
and not overfed, i.e., place p does not “go negative” and at the end no tokens
remain.

Definition 5 (Underfed, Overfed, and Fitting Places). Let p ∈ P be a
place and σ = 〈a1, a2, . . . , an〉 ∈ B a behavior.

– �σ(p) if and only if |{1 ≤ i < k | ai ∈ •p}| < |{1 ≤ i ≤ k | ai ∈ p• }| for some
k ∈ {1, 2, . . . , n} (place p is “underfed”),

– σ(p) if and only if |{1 ≤ i ≤ n | ai ∈ •p}| > |{1 ≤ i ≤ n | ai ∈ p• }| (place
p is “overfed”), and
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– �σ(p) if and only if ��σ(p) and �σ(p) (place p is “fitting”, i.e., not “underfed”
and not “overfed”).

Consider trace σ = 〈�, a, b, c, d, �〉 and the five places in Fig. 1. Places p1
and p2 are fitting, p3 and p4 are underfed (because d occurs when these places
empty), and p5 is overfed (because two tokens are produced and only one is
consumed).

As mentioned before, activities not in •p∪ p• have no effect on the evalua-
tion. If σ = 〈�, a, e, e, b, f, c, f, d, e, �〉, then p1 and p2 are still fitting, p3 and p4
are still underfed, and p5 is still overfed.

A place can be both underfed and overfed. Consider trace σ = 〈�, c, a, a, b, b,
�〉 and the five places in Fig. 1. Places p1 and p2 are underfed, p3 and p4 are
both underfed and overfed (tokens are missing when c occurs and at the end
tokens remain), and p5 is fitting.

The above notions can be generalized to sets of places. Therefore, it is possible
to say that a model P ⊆ P is fitting (�σ(P )), underfed (�σ(P )), or overfed
(σ(P )).

Definition 6. Let P ⊆ P be a set of places and σ ∈ B a behavior.

– �σ(P ) if and only if there exists a place p ∈ P such that �σ(p),
– σ(P ) if and only if there exists a place p ∈ P such that σ(p), and
– �σ(P ) if and only if �σ(p) for all p ∈ P .

Using �σ(P ), σ(P ), and �σ(P ) we can compute all fitting, underfed, and
overfed behaviors. The set of fitting behaviors fit(P ) precisely defines the seman-
tics of a process model P ⊆ P.

Definition 7 (Model Behavior). Let P ⊆ P be a set of places.

– fit(P ) = {σ ∈ B | �σ(P )} is the set of fitting behaviors,
– neg(P ) = {σ ∈ B | �σ(P )} is the set of underfed behaviors, and
– pos(P ) = {σ ∈ B | σ(P )} is the set of overfed behaviors.

We use the following shorthands: fit(p) = fit({p}), neg(p) = neg({p}),
pos(p) = pos({p}) for any place p. Note that fit(P ) = B \ (neg(P ) ∪ pos(P )).

Figure 3 shows another example illustrating the declarative nature of places.
P2 = {({�, a}, {a, b}), ({a}, {c}), ({b, c}, {c, �})} has three places allowing for
any behavior satisfying the following constraints: (1) b occurs precisely once, (2)
a occurs any number of times, but only before b, (3) c occurs any number of
times, but only after b, and (4) a and c occur the same number of times. Note
that the model in Fig. 3 only constrains activities a, b, and c and therefore also
allows for behaviors like 〈�, d, b, e, f, �〉 and 〈�, a, d, a, d, b, e, c, c, e, �〉.

2.5 Mapping to Petri Nets

Traditional Petri nets are described by tuple N = (S, T, F ) where S is the
set of places, T is the set of transitions, and F ⊆ (S × T ) ∪ (T × S) the set
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p1

a c

b

p2

p3

Fig. 3. Process model P2 = {({�, a}, {a, b}), ({a}, {c}), ({b, c}, {c, �})}
composed of three places discovered from event log L1 = [〈�, b, �〉49,
〈�, a, b, c, �〉31, 〈�, a, a, b, c, c, �〉12, 〈�, a, a, a, b, c, c, c, �〉5, 〈�, a, a, a, a, b, c, c, c, c, �〉1,
〈�, a, a, a, a, a, b, c, c, c, c, c, �〉2].

of arcs [13]. A system net SN = (S, T, F,Minit ,Mfinal) has an initial and a
final marking [1]. The behavior of a system net corresponds to the set of traces
starting in the initial marking Minit and ending in the final marking Mfinal

[1]. The models used in this paper can be converted to a system net using the
following conversion. Given a set of places P ⊆ P (in the sense of Definition 4),
we construct the system net SN = (S, T, F,Minit ,Mfinal) with: S = P ∪{i, q, f},
T = A, F = {(i,�), (�, f)} ∪ {(t, p) ∈ T × P | t ∈ •p} ∪ {(p, t) ∈ P × T | t ∈
p• } ∪ {(t, q) | t ∈ T \ {�}} ∪ {(q, t) | t ∈ T \ {�}}, Minit = [i], and Mfinal = [f ].
The set of traces starting in Minit and ending in Mfinal is precisely the set fit(P )
(see Definition 7). Moreover, note that SN is a so-called workflow net [5]. The
workflow net does not need to be sound, but we only consider firing sequences
starting in marking [i] and ending in marking [f ].

It is also possible to translate any system net (including workflow nets) with
initial and final markings into an equivalent model P ⊆ P.

We use the simple representation using merely places and no initial and final
markings to be able to succinctly express a range of properties and monotonicity
results without considering markings.

3 Relating Places and Monotonicity

The ultimate goal is to discover places from event logs. However, the goal of this
paper is not to propose a concrete discovery approach. Instead, we reason about
properties of (sets of) places that can be exploited by discovery techniques.

Definition 8 (Place Notations). Let p1 = (I1, O1) ∈ P and p2 = (I2, O2) ∈ P

be two places. These places can be combined to form new places:

– p1 � p2 = (I1 ∩ I2, O1 ∩ O2) ∈ P,
– p1 � p2 = (I1 ∪ I2, O1 ∪ O2) ∈ P,
– p1 ⊗ p2 = ((I1 ∪ I2) \ (I1 ∩ I2), (O1 ∪ O2) \ (O1 ∩ O2)) ∈ P.

Places p1 and p2 can be related in different ways:
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– p1 = p2 if and only if I1 = I2 and O1 = O2 (equality),
– p1 ‖ p2 if and only if p1 � p2 = (∅, ∅) (non-overlapping),
– p1 � p2 if and only if I1 ⊆ I2, O1 ⊆ O2, and p1 �= p2 (proper subset), and
– p1 ÷ p2 if and only if p1 �= p2, p1 �‖ p2, p1 �� p2 and p1 �� p2 (incomparable).

We would like to avoid discovering places that are a combination of places
already in the model. Consider for example adding place pr = ({�, c, d}, {a, �})
to the five places in Fig. 1. This place would be redundant, because pr = p1 �
p5. Indeed, adding pr would not change the set of fitting behaviors and only
complicate the model. A set of places is non-redundant if none of its places can
be derived from the rest.

Definition 9 (Redundant). Place p ∈ P is redundant with respect to a set of
places P ⊆ P (notation P ⇒ p) if there is a non-empty subset P ′ = {p1, p2, . . . ,
pn} ⊆ P such that pi ‖ pj for any 1 ≤ i < j ≤ n and p = (p1 � p2 � . . . � pn).

For two sets of places P1 ⊆ P and P2 ⊆ P: P1 ⇒ P2 if and only if ∀p2∈P2 P1 ⇒
p2 (i.e., P2 is “implied” by P1).

A set of places P ⊆ P is non-redundant if and only if it is impossible to split
P in two disjoint non-empty subsets P1 and P2 such that P1 ⇒ P2.

Adding input transitions to a place can only lead to more tokens in the
place. Therefore, a place that is overfed by many traces in the event log will also
be overfed by these traces after adding the input transitions. Adding output
transitions to a place can only lead to fewer tokens in the place. Therefore, a
place that is underfed by many traces in the event log will also be underfed by
these traces after adding the output transitions. This information can be used
to prune the search space of discovery algorithms. Therefore, we define a partial
order on places and use this to prove monotonicity results that can be exploited
during process discovery.

Definition 10 (Weighing Places). Let p1 = (I1, O1) ∈ P and p2 = (I2, O2) ∈
P be two places.

– p1 � p2 if and only if I1 ⊆ I2 and O2 ⊆ O1 (i.e., p1 is at least as “light” as
p2) and

– p1 � p2 if and only if I2 ⊆ I1 and O1 ⊆ O2 (i.e., p1 is at least as “heavy” as
p2).

Note that p1 � p2 if and only if p2 � p1. It is easy to see that � defines
a partial order. The relation is reflexive (p � p), antisymmetric (p1 � p2 and
p2 � p1 implies p1 = p2), and transitive (p1 � p2 and p2 � p3 implies p1 � p3).

Definition 11 (Weighing Sets of Places). Let P1 ⊆ P and P2 ⊆ P be two
sets of places.

– P1 � P2 if and only if ∀p1∈P1 ∃p2∈P2 p1 � p2 (i.e., P1 is at least as “light” as
P2) and

– P1 � P2 if and only if ∀p1∈P1 ∃p2∈P2 p1 � p2 (i.e., P1 is at least as “heavy”
as P2).
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Note that P1 � P2 is not equivalent to P2 � P1. Let P1 = {({a}, {b, c})}
and P2 = {({a}, {b}), ({a}, {d})}. P1 � P2 because ({a}, {b, c}) � ({a}, {b}).
However, P2 �� P1, because ({a}, {d}) �� ({a}, {b, c}). Both � and � (for sets
of places) are reflexive and transitive, but not antisymmetric. Consider P3 =
{({a, c}, {b}), ({a}, {b}), ({a}, {b, d})} and P4 = {({a, c}, {b}), ({a}, {b, d})}.
P3 � P4 and P4 � P3, but P3 �= P4. Also, P3 � P4 and P4 � P3, but P3 �= P4.
Hence, � and � are not antisymmetric.

The above notations and insights allow us to provide very general monotonic-
ity results.

Theorem 1 (Monotonicity Results). Let P1 ⊆ P and P2 ⊆ P be two sets of
places.

– P1 � P2 implies pos(P1) ⊆ pos(P2),
– P1 � P2 implies neg(P1) ⊆ neg(P2),
– P1 ⇒ P2 implies fit(P1) ⊆ fit(P2).

Proof. If p1 � p2, then while replaying a trace σ, p1 cannot have more tokens
than p2, but p2 can have more tokens than p1 if the right transitions are activated.
Therefore, if σ(p1), then σ(p2), and if �σ(p2), then �σ(p1).

Using this insight we prove that P1 � P2 implies pos(P1) ⊆ pos(P2). Assume
P1 � P2, i.e., ∀p1∈P1 ∃p2∈P2 p1 � p2. We need to prove that for any σ ∈ B:
∃p1∈P1 σ(p1) implies ∃p2∈P2 σ(p2). Take a p1 such that σ(p1). There exists
a p2 ∈ P2 such that p1 � p2. Place p2 can only have more tokens than p1 (and
not fewer). Hence, σ(p2).

Similarly, we can prove that P1 � P2 implies neg(P1) ⊆ neg(P2).
P1 ⇒ P2 means that all places in P2 correspond to combinations of places in

P1. Therefore, adding these places does not change the behavior, i.e., fit(P1) =
fit(P1 ∪P2). Removing places from P1 ∪P2 can only result in more fitting traces.
Hence, fit(P1) = fit(P1 ∪ P2) ⊆ fit(P2). ��

4 Scoring Places

Theorem 1 can be exploited by process discovery algorithms. If a place is under-
fed (overfed), it does not make sense to consider lighter (heavier) places. There-
fore, monotonicity results allow for quickly pruning the search space. To illustrate
this, we define concrete quality characteristics for individual places.

One could simply count the fraction of cases having problems. However, some
activities may occur infrequently. Places that are only connected to these low-
frequency activities have many fitting traces by definition (the place is rarely
involved in the execution of a case). In other words, “random places” only con-
nected to low-frequency activities will always have a good score. Therefore, we
also consider the “relative” scores of places by only considering traces that actu-
ally consume/produce tokens from/for the place under investigation. A trace
“activates” place p if it contains an activity in •p ∪ p• .

Definition 12 (Activation). Let p ∈ P be a place.
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– actσ(p) = ∃a∈σ a ∈ ( •p∪ p• ) denotes whether the place has been activated in
a trace σ ∈ B, i.e., a token was consumed or produced for p in σ.

– actL(p) = ∃σ∈L actσ(p) denotes whether place p has been activated in an
event log L ∈ B(B).

Definition 13 (Place Scores). Let L ∈ B(B) be an event log and τ ∈ [0, 1] a
threshold. For any place p ∈ P such that actL(p), we define the following scores:

– #�
freq,L(p) = | [σ∈L|�σ(p)] |

|L| is the fraction of traces for which p is underfed,

– #�
freq,L(p) = | [σ∈L|�σ(p)] |

|L| is the fraction of traces for which p is overfed,

– #�
freq,L(p) = | [σ∈L|�σ(p)] |

|L| is the fraction of fitting traces,

– #�
rel,L(p) = | [σ∈L|�σ(p) ∧ actσ(p)] |

| [σ∈L|actσ(p)] | = | [σ∈L|�σ(p)] |
| [σ∈L|actσ(p)] | is the fraction of activat-

ing traces for which p is underfed,
– #�

rel,L(p) = | [σ∈L|�σ(p) ∧ actσ(p)] |
| [σ∈L|actσ(p)] | = | [σ∈L|�σ(p)] |

| [σ∈L|actσ(p)] | is the fraction of activat-
ing traces for which p is overfed,

– #�
rel,L(p) = | [σ∈L|�σ(p) ∧ actσ(p)] |

| [σ∈L|actσ(p)] | is the fraction of activated traces that are
also fitting,

– �τ
freq,L(p) if and only if #�

freq,L(p) > τ ,
– τ

freq,L(p) if and only if #�
freq,L(p) > τ ,

– �τ
freq,L(p) if and only if #�

freq,L(p) ≥ τ ,
– �τ

rel,L(p) if and only if #�
rel,L(p) > τ ,

– τ
rel,L(p) if and only if #�

rel,L(p) > τ ,
– �τ

rel,L(p) if and only if #�
rel,L(p) ≥ τ .

For a discovered place we would like #�
freq,L(p) and #�

rel,L(p) to be as high
as possible. A place p is perfectly fitting log L if #�

freq,L(p) = #�
rel,L(p) = 1. If

�0.95
rel,L(p), then at least 95% of all traces that activate place p are fitting. If a

discovery algorithm only adds places for which �0.95
rel,L(p), then all places have a

minimal quality level interpretable by end users (unlike existing approaches that
do not provide such a guarantee or “only in the limit”).

5 Monotonicity of Place Scores

Since we are interested in places of a certain quality level, e.g., places for which
�0.95

rel,L(p) holds, we would like to avoid spending time on the evaluation of places
that do not meet the desired quality level. We would like to use Theorem 1 to
quickly prune the set of candidate places. We start by listing several observations
that directly follow from earlier definitions.

Lemma 1. Let L ∈ B(B) be an event log, σ ∈ B a trace, and τ ∈ [0, 1] a
threshold. For any place p ∈ P such that actL(p):

– �σ(p) implies actσ(p),
– σ(p) implies actσ(p),
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X’X

Y Y’

def ga

Fig. 4. Visualization of the sets used in Lemma 2. In Theorem 2: X = [σ ∈ L | �σ(p1)],
Y = [σ ∈ L | actσ(p1)], X ′ = [σ ∈ L | �σ(p2)], and Y ′ = [σ ∈ L | actσ(p2)].

– #�
freq,L(p) ≤ 1 − #�

freq,L(p),
– #�

freq,L(p) ≤ 1 − #�
freq,L(p),

– #�
freq,L(p) ≥ 1 − (#�

freq,L(p) + #�
freq,L(p)),

– #�
rel,L(p) ≤ 1 − #�

rel,L(p),
– #�

rel,L(p) ≤ 1 − #�
rel,L(p),

– #�
rel,L(p) ≥ 1 − (#�

rel,L(p) + #�
rel,L(p)),

– �τ
freq,L(p) implies �1−τ

freq,L(p),
– �τ

freq,L(p) implies ��1−τ
freq,L(p),

– �τ
rel,L(p) implies �1−τ

rel,L(p),
– �τ

rel,L(p) implies ��1−τ
rel,L(p),

– ��τ
freq,L(p) and �τ

freq,L(p) implies �1−2×τ
freq,L (p), and

– ��τ
rel,L(p) and �τ

rel,L(p) implies �1−2×τ
rel,L (p).

Proof. Note that �σ(p) implies � �σ(p), σ(p) implies � �σ(p), and �σ(p) implies
��σ(p) and �σ(p). These insights can be used to verify the properties listed.

Consider for example the last property. Assume ��τ
rel,L(p) and �τ

rel,L(p).
Since #�

rel,L(p) ≤ τ and #�
rel,L(p) ≤ τ , we know #�

rel,L(p) ≥ 1 − (#�
rel,L(p) +

#�
rel,L(p)) ≥ 1 − (τ + τ). Hence, �1−2×τ

rel,L (p). ��
Before we show monotonicity with respect to the place scores, we first prove

the following lemma.

Lemma 2. Let X, Y , X ′, and Y ′ be sets such that Y �= ∅, Y ′ �= ∅, X ⊆ Y ,
X ′ ⊆ Y ′, X ⊆ X ′, and Y ′ \ Y ⊆ X ′.

|X|
|Y | ≤ |X ′|

|Y ′|
Proof. Let A = Y ∪ Y ′, a = |X ∩ X ′|, b = |X ∩ (Y ′ \ X ′)|, c = |X ∩ (A \ Y ′)|,
d = |(Y \ X) ∩ X ′|, e = |(Y \ X) ∩ (Y ′ \ X ′)|, f = |(Y \ X) ∩ (A \ Y ′)|, g =
|(A \ Y ) ∩ X ′|, h= |(A \ Y ) ∩ (Y ′ \ X ′)|, and i = |(A \ Y ) ∩ (A \ Y ′)| (see Fig. 4).
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Because X ⊆ X ′, b = c = 0. Because Y ′ \ Y ⊆ X ′, h = 0. Also i = 0. Hence,
|X| = a, |Y | = a + d + e + f , |X ′| = a + d + g, |Y ′| = a + d + e + g.

|X|
|Y | =

a

a + d + e + f
≤ a

a + d + e
≤ a + g

a + d + e + g
≤ a + d + g

a + d + e + g
=

|X ′|
|Y ′|

Note that a
a+d+e ≤ a+g

a+d+e+g because a(a + d + e + g) = a2 + ad + ae + ag ≤
a2 + ad + ae + ag + dg + eg = (a + g)(a + d + e). ��

Recall that our goal is to dismiss candidate places that are overfed or underfed
as soon as possible. Given a threshold τ we would like to avoid checking the
quality of places for which τ

freq,L(p), �τ
freq,L(p), τ

rel,L(p), or �τ
rel,L(p). Using

the partial order on places, we can exploit the following monotonicity result.

Theorem 2 (Monotonicity). Let L ∈ B(B) be a non-empty event log and let
τ ∈ [0, 1] be some threshold. For any two places p1, p2 ∈ P such that p1 � p2:

– If τ
freq,L(p1), then τ

freq,L(p2).
– If �τ

freq,L(p2), then �τ
freq,L(p1).

Moreover, if actL(p1) and actL(p2), then these findings also apply to the relative
notion.

– If τ
rel,L(p1), then τ

rel,L(p2).
– If �τ

rel,L(p2), then �τ
rel,L(p1).

Proof. Assume τ
freq,L(p1). Hence, #�

freq,L(p1) = | [σ∈L|�σ(p1)] |
|L| ≥ τ . Since

σ(p1) implies σ(p2) for any σ ∈ L, | [σ∈L|�σ(p2)] |
|L| ≥ | [σ∈L|�σ(p1)] |

|L| . Hence,
τ

freq,L(p2). Similarly, we can show that �τ
freq,L(p2) implies �τ

freq,L(p1).

Assume τ
rel,L(p1). Hence, #�

rel,L(p1) = | [σ∈L|�σ(p1)] |
| [σ∈L|actσ(p1)] | ≥ τ . Using Lemma 2

we show that #�
rel,L(p2) = | [σ∈L|�σ(p2)] |

| [σ∈L|actσ(p2)] | ≥ τ . Let X = [σ ∈ L | σ(p1)],
Y = [σ ∈ L | actσ(p1)], X ′ = [σ ∈ L | σ(p2)], and Y ′ = [σ ∈ L | actσ(p2)].
X, X ′, Y , and Y ′ are multisets. However, for simplicity assume that each case
is uniquely identifiable so that we can treat these as sets. One can use case
identifiers to identify traces even when they are identical. To apply Lemma 2,
we first check the conditions: Y �= ∅ because actL(p1), Y ′ �= ∅ because actL(p2),
X ⊆ Y because σ(p1) implies actσ(p1), X ′ ⊆ Y ′ because σ(p2) implies
actσ(p2), X ⊆ X ′ because σ(p1) implies σ(p2), and Y ′ \ Y ⊆ X ′, because
if actσ(p2) and not actσ(p1), then σ(p2). The last observation holds because
p1 � p2, actσ(p2) and not actσ(p1) implies that a token was put in p2 and it was
not removed. Note that all output arcs of p2 are also output arcs of p1. Hence,
the token put in p2 cannot be removed. Therefore, σ(p2). Applying Lemma 2
shows that #�

rel,L(p1) ≤ #�
rel,L(p2), proving that τ

rel,L(p2). Similarly, we can
show that �τ

rel,L(p2) implies �τ
rel,L(p1). ��
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6 Exploiting Monotonicity During Discovery

The goal of this paper is not to provide a particular discovery algorithm.
However, Theorem 2 provides the basis for Apriori-style algorithms [8,9,20].
Such algorithms are used in frequent item-set mining, association rule learning,
sequence mining, and episode mining. The basic idea of such algorithms is to
avoid spending time on “hopeless candidate patterns” by dramatically prun-
ing the search space. For example, in a supermarket, the number of customers
buying products A, B, and C is smaller than (1) the number of the customers
buying products A and B, (2) the number of the customers buying products A
and C, and (3) the number of the customers buying products B and C. Hence,
if one of the latter three groups ({A,B}, {A,C}, or {B,C}) is infrequent, then
by definition also the former group ({A,B,C}) is infrequent. Obviously, we can
use the monotonicity results presented in this paper in a similar fashion.

++

++

p22p12 p32

p21p11 p31

p23p13 p33

overfed overfed

overfed overfed

Fig. 5. If place p22 is already overfed, then we know that the places p32, p21, and p31

also need to be overfed.

Figure 5 sketches the situation where we have evaluated a place p22 and the
place turned out to be overfed, i.e., at the end of a trace tokens remain. Obvi-
ously, the place remains overfed when we remove an output arc or add an input
arc. Therefore, by definition, p32, p21, and p31 also need to be overfed. Figure 6
describes to opposite situation. If place p22 “goes negative” when replaying a
trace (i.e., the place is underfed), then the place remains underfed when we
remove an input arc or add an output arc. Hence, p13, p23, and p12 also need to
be underfed.

We can use these insights to prune the search space of candidate places.
Assume we have 80 candidate places as shown in Fig. 7(a). We can pick a random
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--

--

p22p12 p32

p21p11 p31

p23p13 p33

underfed underfed

underfed underfed

Fig. 6. If place p22 is already underfed, then we know that the places p13, p23, and p12

also need to be underfed.

candidate place, say Place 1. If this place is underfed according to some criterion
(e.g., in more than 10% of the traces the place does not have enough tokens at
some stage), then we can identify lighter places that must have the same problem.
Assume that Place 1 is indeed underfed and has the lighter neighboring places
highlighted in Fig. 7(b). As a result, we can remove 16 candidate places by just
evaluating Place 1. Then we pick the next random candidate place, say Place 2. If
this place is overfed (e.g., in more than 10% of the traces Place 2 was not empty
at the end), then we can identify all heavier places that must have the same
problem. These are removed. Figure 7(c) shows that we can remove 15 candidate
places by just evaluating Place 2. The next randomly selected candidate place
turns out to be fitting (e.g., in 90% of the traces Place 3 was empty at the end and
in 90% of the traces there were sufficient tokens), i.e., Place 3 is not underfed and
not overfed. In the next step, we remove another 16 candidate places because
Place 4 is overfed (Fig. 7(d)). Then we remove another set of places because
Place 5 is underfed (Fig. 7(e)). We can repeat the process until there no candidate
places left. Figure 7(f) shows the remaining three places. Note that an evaluated
place can be both underfitting and overfitting. When encountering such places,
the search space can be pruned in two directions (remove all lighter and heavier
places). As sketched in Fig. 7, it will often be the case that only a fraction of the
candidate places needs to be evaluated using replay techniques.

Figure 7 only sketches the idea and places are selected randomly. One can
also think of smarter strategies. For example, one can start with places having
just a few connections. Let pc be a candidate place having n input and output
activities, i.e., n = | •pc| + |pc• | is the number of arcs. Let A� = {p ∈ P |
| •p| + |p• | < n ∧ p � pc} and A� = {p ∈ P | | •p| + |p• | < n ∧ p � pc} be the
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1 1

2

(a) All 80 candidate places. Select a randomly chosen 
place (Place 1) and evaluate it using replay.

(b) Since Place 1 is underfed, we can remove its “lighter” 
neighbors. Next, select a randomly chosen Place 2.

3

2

4

3

(c) Test Place 2. Since it is overfed, we can remove its 
“heavier” neighbors. Next, select Place 3.

(d) Place 3 is fitting and is kept. Place 4 is overfed and 
we can remove its “heavier” neighbors.

3

5

7

9

3

(e) Place 5 is underfed and we can remove its “lighter” 
neighbors.

(f) The process is repeated until there are no unexplored 
candidate places left. At the end three fitting places remain.

Fig. 7. A process discovery algorithm could simply evaluate all places and only keep
those that are fitting (i.e., meet certain quality criteria). However, the monotonicity
results in Theorem 2 show that there are many candidate places that we do not need
to check. This is the key to discovering places efficiently.
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heavier and lighter ancestors of pc. If for any p ∈ A�, �τ
freq,L(p) or �τ

rel,L(p),
then we know that �τ

freq,L(pc) or �τ
rel,L(pc). If for any p ∈ A�, τ

freq,L(p) or
τ

rel,L(p), then we know that τ
freq,L(pc) or τ

rel,L(pc). These properties can be
used to avoid certain checks.

There are many more ways to speedup the search process further:

– Suppose that we consider a place to be overfed when at least 10% of the traces
have remaining tokens. This means that we can abort the place evaluation
when we have found 10% of traces having problems (for poorly fitting places
this may be reached quickly).

– A similar strategy can be used for underfed places. Moreover, the replay of a
trace can be aborted when the first problem is encountered.

– If we know the frequencies of all activities in the log, we can do an initial check
to see whether the sum of the frequencies of the input activities approximately
matches the sum of the frequencies of the input activities (this is also used
in [6]). Such aggregate information can be used to guide the pruning process.
There can even be guarantees, provided that we can make assumptions about
the distribution of activities over traces or bound the trace length.

In short, there are many ways to exploit the monotonicity results provided in
this paper.

7 Further Pruning of the Search Space

Next to avoiding checks for places that are obviously “too light” or “too heavy”,
we would also like to avoid adding redundant and conflicting places.

In Theorem 1, we showed that P1 ⇒ P2 implies fit(P1) ⊆ fit(P2). Hence,
adding redundant places does not limit the set of fitting traces and therefore
only complicates the process model. This can be exploited while constructing a
process model. If two non-overlapping places p1 and p2 have been added, one
should not consider adding place p = p1 � p2.

Moreover, we would also like to avoid adding conflicting places. If two places
are in conflict (notation p1#p2), then there are traces that could never fit both
places.

Definition 14 (Conflict). Let p1, p2 ∈ P be two places. p1 ≺ p2 if and only if
p1 � p2 and p1 �= p2. p1 � p2 if and only if p1 � p2 and p1 �= p2. p1#p2 if and
only if p1 ≺ p2 and p1 � p2.

Theorem 3. Let p1, p2 ∈ P be two places and σ ∈ B a trace. If �σ(p1), p1#p2,
and actσ(p1 ⊗ p2), then � �σ(p2).

Proof. Assume �σ(p1), p1#p2, and actσ(p1 ⊗ p2). Hence, p1 ≺ p2 or p1 � p2. If
p1 ≺ p2, then the number of tokens in p2 is always at least the number of tokens
in p1 for any sequence, including σ. In fact, in σ there is at least one additional
token produced or a token was not consumed (because actσ(p1 ⊗ p2)). Because
p1 ends empty, p2 must have a remaining token at the end. Hence, σ cannot
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be fitting (� �σ(p2)). If p1 � p2, then the number of tokens in p2 is always at
most the number of tokens in p1. In fact, there is at least one additional token
consumed or a token was not produced (because actσ(p1 ⊗p2)). Because p1 ends
empty, p2 must have a missing token at the end. Hence, σ cannot be fitting. ��

Consider places p1 = ({a}, {b, c}) and p2 = ({a, d}, {b}). Obviously, p1 ≺ p2.
For a trace involving c and/or d activities, it can never be the case that both
places are fitting. Since p1 and p2 disagree on the allowed behavior, one would not
like to add both to the same process model. Also this property can be exploited
during discovery.

8 How About Conformance Checking?

Process mining is not limited to process discovery and includes conformance
checking, model repair, performance analysis, decision mining, and organiza-
tional mining. Moreover, also predictive and prescriptive analytics are supported
by process mining tools and techniques [3]. Viewing a process model as merely
a collection of independent places may also help to expedite these other analysis
tasks. Consider for example conformance checking which involves detecting and
diagnosing both differences and commonalities between an event log and a pro-
cess model [4]. Typically, four dimensions are distinguished: fitness, precision,
generalization, and simplicity. State-of-the-art techniques use so-called align-
ments or token-based replay [3]. However, these techniques often do not have
the monotonicity properties one expects [23]. For example, removing a place
should never result in a better precision or lower fitness. In [2] a probabilis-
tic angle is added to these questions, also revealing obvious problems related
to existing conformance measures. The monotonicity results presented in this
paper may provide a fresh look on conformance problems. First of all, it could
be good to check places individually. Second, there are ways to quickly analyze
whether a place is overfed and/or underfed.

9 Conclusion

For this Festschrift celebrating Farhad Arbab’s achievements in coordination
models and languages, I decided to focus on the discovery of a very simple
coordination model: “places”. We like to learn such coordination structures from
observed behaviors.

The process models in this paper are fully described by places. For the seman-
tics, we employ an open-world assumption and special start and end activities.
This yields a representation very suitable for process mining. Given a particular
behavior, a place can be “fitting”, “underfed” (tokens are missing), or “overfed”
(tokens are remaining). We would like to discover fitting places from event data
satisfying predefined quality criteria. This is not a trivial task and for large
event logs this easily becomes intractable. Therefore, we studied monotonicity
properties in the context of event logs. For example, if place p1 is “lighter” than
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place p2 (i.e., p1 � p2) and 5% of the activated traces produce too few tokens
for p2 (�0.05

rel,L(p2)), then the same traces also produce too few tokens for p1
(i.e., �0.05

rel,L(p1)). This helps to prune the set of candidate places. Moreover, also
notions like redundancy and conflict can be used to reduce the search space fur-
ther. These properties allow for new Apriori-style algorithms. The insights could
also be used to speed-up the discovery of hybrid process models [6].

This contribution did not show how to synthesize Reo circuits from event
data. However, this remains an interesting question and I encourage the Reo
community to look into this. Finally, I would like to wish Farhad all the best
and hope that he will remain working on the “science of coordination” after his
“coordination of science” activities at CWI have ended.
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Abstract. In 1974 Dijkstra introduced the seminal concept of self-
stabilization that turned out to be one of the main approaches to
fault-tolerant computing. We show here how his three solutions can
be formalized and reasoned about using the concepts of game theory.
We also determine the precise number of steps needed to reach self-
stabilization in his first solution.

1 Introduction

In 1974 Dijkstra introduced in a two-page article [10] the notion of self-
stabilization. The paper was completely ignored until 1983, when Leslie Lamport
stressed its importance in his invited talk at the ACM Symposium on Principles
of Distributed Computing (PODC), published a year later as [21]. Things have
changed since then. According to Google Scholar Dijkstra’s paper has been by
now cited more than 2300 times. It became one of the main approaches to fault
tolerant computing. An early survey was published in 1993 as [26], while the
research on the subject until 2000 was summarized in the book [13]. In 2002
Dijkstra’s paper won the PODC influential paper award (renamed in 2003 to
Dijkstra Prize). The literature on the subject initiated by it continues to grow.
There are annual Self-Stabilizing Systems Workshops, the 18th edition of which
took part in 2016.

The idea proposed by Dijkstra is very simple. Consider a distributed system
viewed as a network of machines. Each machine has a local state and can change
it autonomously by inspecting its local state and the local states of its neigh-
bours. Some global states are identified as legitimate. A distributed system is
called self-stabilizing if it satisfies the following three properties (the terminol-
ogy is from [5]):

closure: starting from an arbitrary global state, the system is guaranteed to
reach a legitimate state,

stability: once a legitimate state is reached, the system remains in it forever,
fairness: in every infinite sequence of moves every machine is selected infinitely

often.
c© Springer International Publishing AG, part of Springer Nature 2018
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Dijkstra proposed in [10] three solutions to self-stabilization in which, respec-
tively, n, four and three state machines were used, where n is the number of
machines. The proofs were provided respectively in [7] (republished as [11]),
[8,9] (republished with small modifications as [12]). In his solutions a legitimate
state is identified with the one in which exactly one machine can change its state.

In this paper we show how Dijkstra’s solutions to self-stabilization can be
naturally formulated using the standard concepts of strategic games, notably
the concept of an improvement path. Also we show how one can reason about
them using game-theoretic terms. We focus on Dijkstra’s first solution but the
same approach can be adopted to other solutions.

The connections between self-stabilization and game theory were noticed
before. We discuss the relevant references in the final section. The analysis of
the original Dijkstra’s solutions using game theory is to our knowledge new.

This paper connects two unrelated areas, each of which has developed its
own well-established notation and terminology. To avoid possible confusion, let
us clarify that in what follows Si denotes a set of strategies of a player in a
strategic game, while the letter S denotes a variable in a solution to the self-
stabilization problem. Further, the notion of a state in the self-stabilization refers
to the range of a variable and not to an assignment of values to all variables, as
is customary in the area of program semantics.

2 Preliminaries

A strategic game G = (S1, . . . , Sn, p1, . . . , pn) for n > 1 players consists of a
non-empty set Si of strategies and a payoff function pi : S1 × · · · × Sn → R,
for each player i. We denote S1 × · · · × Sn by S, call each element s ∈ S a
joint strategy and abbreviate the sequence (sj)j �=i to s−i. Occasionally we
write (si, s−i) instead of s. We call a strategy si of player i a best response to
a joint strategy s−i of his opponents if for all s′

i ∈ Si, pi(si, s−i) ≥ pi(s′
i, s−i).

A joint strategy s is called a Nash equilibrium if each si is a best response
to s−i. (In the literature these equilibria are often called pure Nash equilibria to
distinguish them from Nash equilibria in mixed strategies. The latter ones have
no use in this paper.)

Further, we call a strategy s′
i of player i a better response given a joint

strategy s if pi(s′
i, s−i) > pi(si, s−i). We call s → s′ an improvement step

(abbreviated to a step) if s′ = (s′
i, s−i) for some better response s′

i of player i
given s. So pi(s′) > pi(s).

An improvement path is a maximal sequence

s1 → s2 → . . . → sk → . . .

such that each si → si+1 is an improvement step.
In the next section we consider specific strategic games on directed graphs.

Fix a finite directed graph G. We say that a node j is a neighbour of the node
i in G if there is an edge j → i in G. Let Ni denote the set of all neighbours of
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node i in the graph G. We now consider a strategic game in which each player
is a node in G. Fix a non-empty set of strategies C that we call colours.

We divide the players in two categories: those who play a coordination game
and those who play an anti-coordination game. More specifically,

– the players are the nodes of G,
– the set of strategies of player (node) i is a set of colours A(i) such that

A(i) ⊆ C,
– if the player plays the coordination game, then his payoff function is defined

by
pi(s) = |{j ∈ Ni | si = sj}|,

– if the player plays the anti-coordination game, then his payoff function is
defined by

pi(s) = |{j ∈ Ni | si �= sj}|.
So each node simultaneously chooses a colour and the payoff to the player

who plays the coordination game is the number of its neighbours that chose its
colour, while the payoff to the player who plays the anti-coordination game is
the number of its neighbours that chose a different colour.

The games on directed graphs in which all players were playing the coordina-
tion game were studied in [4]. Corresponding games on undirected graphs were
considered in [2] and on weighted undirected graphs in [25]. In turn, the games
in which some players played the coordination game while other players played
the anti-coordination game were studied (in a more general context of weighted
hypergraphs) in [28]. If the underlying (weighted) graph is undirected the game
always has a Nash equilibrium, which is not the case if the graph is directed.
The absence of Nash equilibria is crucial in the context of this paper.

We now move on to the subject of this paper and introduce the following
concepts concerning improvement paths.

Definition 1. Fix a strategic game.

– A joint strategy is legitimate if exactly one player does not play a best
response in it.

– An improvement path ensures
• closure if some joint strategy in it is legitimate,
• stability if the successors of the legitimate joint strategies in it are legit-
imate,

• fairness if every player is selected in it infinitely often,
• self-stabilization (in k steps) if every player is selected in it infinitely
often and from a certain point (after k steps) each joint strategy in it
is legitimate.

– A game admits closure/stability/fairness if it is ensured by every
improvement path in it.

– A game admits self-stabilization (in k steps) if it is ensured by every
improvement path in it (in k steps).
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For a more refined analysis we shall need the concept of a scheduler.

Definition 2.

– A scheduler is a function f that given a joint strategy s that is not a Nash
equilibrium and a player i who does not hold in s a best response selects a
strategy f(s, i) for i that is a better response given s.

– Consider a scheduler f . An improvement path

s1 → s2 → . . . → sk → . . .,

is generated by f if for each k ≥ 1, if sk is not a Nash equilibrium, then
for some i ∈ {1, . . ., n}, sk+1 = (f(sk, i), sk−i).

– A scheduler f ensures self-stabilization (in k steps) if every improvement
path generated by it ensures self-stabilization (in k steps).

So a game admits self-stabilization (in k steps) if every scheduler ensures
self-stabilization (in k steps). Schedulers in the context of strategic games were
extensively considered in [3], though they selected a player and not his strat-
egy. The ones used here correspond in the terminology of [3] to the state-based
schedulers.

3 Dijkstra’s First Solution

We start by recalling the first solution to the self-stabilization problem given in
[10]. We assume a directed ring of n machines, each having a local variable and
a program. The variables assume the values from the set {0, . . ., k − 1}, where
k ≥ n and ⊕ stands for addition modulo k. Each program consists of a single
rule of the form

P → A

where P is a condition, called a priviledge, on the local variables of the machine
and its predecessor in the ring, and A is an assignment to the local variable.
The variable of a considered machine is denoted by S and the variable of its
predecessor by L.

The program for machine 1 is given by the rule

L = S → S := S ⊕ 1

and for the other machines by the rule

L �= S → S := L.

One assumes that each time a machine is selected, its priviledge is true.
Dijkstra proved in [11] (that originally appeared as [7]) that starting from an
arbitrary initial situation any sequence of machine selections leads to a situation
in which

– exactly one priviledge is true,
– this property remains true forever.
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Moreover, every machine is selected in this sequence infinitely often.
In the terminology introduced in the Introduction the above system of

machines is self-stabilizing.
We can model the above solution by means of the following strategic game

G on a directed ring involving n players:

– each player has the same set C of strategies (called colours), where |C| ≥ 2,
– exactly one player plays the anti-coordination game on the ring,
– all other players play the coordination game on the ring.

To fix notation we assume that it is player 1 who plays the anti-coordination
game. So the payoff functions are simply:

p1(s) :=

{
0 if s1 = sn

1 otherwise

and for i �= 1

pi(s) :=

{
0 if si �= si−1

1 otherwise

We arrange the colours in C in a cyclic order and given a colour c we denote
its successor in this order by c′. The following result provides a game-theoretic
account of the above solution to the self-stabilization problem.

Theorem 1. Consider the game G. Suppose that n ≥ 3 and |C| ≥ n. Let f be
a scheduler such that

f(s, 1) = s′
1.

Then f ensures self-stabilization in G.
Thus the only restriction on the scheduler f is that for player 1 it selects the

next colour in the cyclic order on C (as s′
1 denotes the successor of s1).

Proof. There is a 1–1 correspondence between the maximal sequences of moves
of the machines in Dijkstra’s solution and the improvement paths generated by
the schedulers satisfying the stated condition. �	

We shall return to the above result in Sect. 6. It is useful to point out why we
did not incorporate the specific choice of the strategies into the payoff functions
and used a scheduler instead. This alternative would call for selecting {0, . . ., k−1}
as the set of strategies for each player and using the following payoff function for
player 1, where ⊕ stands for addition modulo k:

p1(s) :=

{
0 if s1 �= sn ⊕ 1
1 otherwise

However, the resulting game would then correspond to a setup in which the
program for machine 1 is

S �= L ⊕ 1 → S := L ⊕ 1.
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Moreover, the resulting game does not admit self-stabilization (and a for-
tiori the resulting programs for the machines do not form a solution for self-
stabilization). Indeed, assume three players and k = 3, so that the strategies of
the players are 0, 1, 2. Then the following infinite improvement path does not
ensure closure:

(200 → 220 → 120 → 122 → 112 → 012 → 011 → 001 → 201 →)∗,

where each joint strategy is displayed as a string of three numbers from {0, 1, 2}
and ∗ stands for the infinite repetition of the exhibited prefix of an improvement
path.

4 Dijkstra’s Three-State Solution

Next we discuss Dijkstra’s three-state solution to the self-stabilization problem.
We follow here the presentation he gave in [12], where he provided a particularly
elegant correctness proof.

There are n machines arranged in an undirected ring, the first one called the
bottom machine, the last one called the top machine, and the other machines
called normal.

The condition of each rule is now on the local variables of the machine and
its two neighbours. The variable of a considered machine is denoted by S, of its
left neighbour by L and of its right neighbour by R. All variables range over the
set {0, 1, 2} and ⊕ stands for addition modulo 3.

The program for the bottom machine is given by the rule

S ⊕ 1 = R → S := S ⊕ 2,

for each normal machine by the rule

L = S ⊕ 1 ∨ S ⊕ 1 = R → S := S ⊕ 1,

and for the top machine by the rule

L = R ∧ S �= R ⊕ 1 → S := R ⊕ 1.

Dijkstra proved that the above system of machines is self-stabilizing.
This solution can be represented and reasoned about using strategic games,

though these games are not anymore coordination or anti-coordination games.
First note that, in contrast to the case of Dijkstra’s first solution, this solution
cannot be modeled using strategic games with 0/1 payoffs. To see it assume
n = 3 and consider the global state of the system described by (2, 1, 0). Then
the priviledge of machine 2 is true, since L = S ⊕ 1, as 2 = 1 ⊕ 1. After machine
2 is selected the global state changes to (2, 2, 0). In this state the priviledge of
machine 2 is again true, since S ⊕ 1 = R, as 2 ⊕ 1 = 0. So in the improve-
ment path of the corresponding strategic game player 2 can be selected twice in
succession. This can be modelled only using at least three payoff values.
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To capture such a possibility we need to analyze when a machine can be
selected twice in succession. This can happen when successively L = S ⊕ 1 and
S ⊕ 1 = R are true or successively S ⊕ 1 = R and L = S ⊕ 1 are true. Taking
into account the action of the assignment S := S ⊕ 1 the first possibility means
that initially L = S ⊕ 1 ∧ S ⊕ 2 = R is true and the second possibility that
initially S ⊕ 1 = R ∧ L = S ⊕ 2 is true. These two options can be rewritten as
S ⊕ 1 ∈ {L,R} ∧ S ⊕ 2 ∈ {L,R}.

To complete this analysis note that a machine can be selected only once in
succession, when initially L = S ⊕1∧S ⊕2 �= R is true or S ⊕1 = R∧L �= S ⊕2
is true, which can be rewritten as S ⊕ 1 ∈ {L,R} ∧ S ⊕ 2 �∈ {L,R}.

Translating it into a game-theoretic notation that uses indices we are brought
into the following strategic game G for n players. Each player has {0, 1, 2} as
the set of strategies. The payoff functions are defined as follows, where we
assume that player 1 corresponds to the bottom machine and player n to the
top machine:

p1(s) :=

{
0 if s1 ⊕ 1 = s2

1 otherwise

for 1 < i < n

pi(s) :=

⎧⎪⎨
⎪⎩

0 if si ⊕ 1 ∈ {si−1, si+1} ∧ si ⊕ 2 ∈ {si−1, si+1}
1 if si ⊕ 1 ∈ {si−1, si+1} ∧ si ⊕ 2 �∈ {si−1, si+1}
2 otherwise

pn(s) :=

{
0 if s1 = sn−1 ∧ sn �= s1 ⊕ 1
1 otherwise

Dijkstra’s result concerning the above system of three-state machines is cap-
tured by the following theorem.

Theorem 2. Consider the above game G. Suppose that n ≥ 3. Let f be a sched-
uler such that

f(s, 1) = s1 ⊕ 2,
f(s, i) = si ⊕ 1, where 1 < i < n,
f(s, n) = s1 ⊕ 1.

Then f ensures self-stabilization in G.
Proof. Every maximal sequence of moves of the machines in Dijkstra’s three-
state solution corresponds to an improvement path generated by a scheduler sat-
isfying the stated conditions. Conversely, every improvement path generated by
a scheduler satisfying the stated conditions corresponds to a maximal sequence
of moves of the machines in Dijkstra’s three-state solution with each improve-
ment step that results for a player i in the payoff increase by 2 mapped to two
consecutive moves of machine i. �	
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5 A Four-State Solution

Finally, we consider a four-state solution. Instead of Dijkstra’s solution that uses
two Boolean variables per machine we consider a modified solution due to [16]
that uses per machine a single variable that can take four values. We assume the
set up and terminology of the previous section, with the following differences.

The variable of machine 1 now ranges over {1, 3}, of machine n over {0, 2}.
and all other variables range over {0, 1, 2, 3}. Further, ⊕ stands now for addition
modulo 4.

The program for the bottom machine is given by the rule

S ⊕ 1 = R → S := S ⊕ 2,

for each normal machine by the rule

L = S ⊕ 1 ∨ S ⊕ 1 = R → S := S ⊕ 1,

and for the top machine by the rule

L = S ⊕ 1 → S := S ⊕ 2.

Following the considerations of the previous section this solution can be mod-
eled by the following strategic game G for n players. The sets of strategies are
as follows: for player 1: {1, 3}, for player n: {0, 2}, and for all other players:
{0, 1, 2, 3}.

The payoff functions are defined as follows, where we assume that player 1
corresponds to the bottom machine and player n to the top machine:

p1(s) :=

{
0 if s1 ⊕ 1 = s2

1 otherwise

for 1 < i < n

pi(s) :=

⎧⎪⎨
⎪⎩

0 if si ⊕ 1 ∈ {si−1, si+1} ∧ si ⊕ 2 ∈ {si−1, si+1}
1 if si ⊕ 1 ∈ {si−1, si+1}) ∧ si ⊕ 2 �∈ {si−1, si+1}
2 otherwise

pn(s) :=

{
0 if sn ⊕ 1 = sn−1

1 otherwise

The reason for using three values in the payoff functions pi, where 1 <
i < n, is as in the previous section. The corresponding result concerning self-
stabilization of the above system of four-state machines is now captured by the
following game-theoretic theorem.

Theorem 3. Consider the above game G. Suppose that n ≥ 3. Let f be a sched-
uler such that

f(s, 1) = s1 ⊕ 2,
f(s, i) = si ⊕ 1, where 1 < i < n,
f(s, n) = sn ⊕ 2.
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Then f ensures self-stabilization in G.
Proof. The same as the proof of Theorem 2. �	

6 A Game-Theoretic Analysis of the First Solution

We now analyze in detail the strategic game G introduced in Sect. 3 with the
aim of proving a stronger result about the first solution to self-stabilization. We
begin with the following observation.

Note 1. The game G admits no Nash equilibria.

Proof. Suppose otherwise. Let s be a Nash equilibrium of G. Then every player
i �= 1 holds in s the colour of its predecessor. Hence all players hold in s the
same colour, in particular players 1 and n. But then player 1 does not hold in s
a best response, which yields a contradiction. �	
Corollary 1. The game G admits stability.

Proof. Suppose s → s′ is an improvement step in the game G and that s is
legitimate. Then by the definition of the game either s′ is legitimate or is a Nash
equilibrium. So the claim follows by Note 1. �	

We shall use below the following observation.

Note 2. Consider a coordination game on a chain of n players in which each
player has the same set of strategies. Then all improvement paths in this game
are of length ≤ n(n− 1)

2 . Further, improvement paths of length n(n− 1)
2 exist.

Proof. Suppose the chain is 1 → 2 → . . . → n. Consider an improvement path ξ.
Each player i can adopt in ξ at most i−1 colours, namely the strategies held by
his predecessors in the chain. So each player i can be involved in at most i − 1
improvement steps. Consequently the length of ξ is bound by

∑n
i=1(i − 1) =

n(n− 1)
2 .
To establish the second claim take an initial joint strategy s in which all

colours differ. Then the required number of steps is achieved by scheduling the
players in the ‘rightmost first’ order, so

(n), (n − 1, n), (n − 2, n − 1, n), . . ., (2, 3, . . ., n),

where to increase readability we separated the consecutive phases using brackets.
�	

Theorem 4. The game G admits fairness.



30 K. R. Apt and E. Shoja

Proof. Consider an improvement path ξ. We first prove that player 1 is infinitely
often selected in ξ. Suppose otherwise. By Note 1 ξ is infinite, so from some
moment on player 1 is never selected in the infinite suffix φ of ξ. Break the ring
by removing the link between players n and 1 and consider the resulting coordi-
nation game on the chain 1 → 2 → . . . → n. Then φ is an infinite improvement
path in this game, which contradicts Note 2.

Note now that if some player i is finitely often selected in ξ, then so is
its successor. Together with the above conclusion this implies successively that
players n, n − 1, . . ., 2 are infinitely often selected in ξ. �	

So to prove that G admits self-stabilization we only need to check that it
admits closure. However, this holds only for games with two or three players. In
fact, we have the following result.

Theorem 5. Consider the game G.
(i) If n = 2 then G admits self-stabilization in 0 steps.
(ii) If n = 3 then G admits self-stabilization in 2 steps.
(iii) If n > 3 then G does not admit self-stabilization.

Proof. For simplicity we view each joint strategy as a string over the set of
colours that we denote by the initial letters of the alphabet. Different letters
stand for different colours.

(i) In this case every joint strategy is legitimate.
(ii) For brevity we say that a joint strategy s is an i-strategy, where 0 ≤ i ≤ 2,

if exactly i players hold in s a best response. The only 0-strategy is of the
form aba. We reach from it in one step a 1-strategy cba (assuming |C| > 2)
or a 2-strategy bba, aaa or abb.

So consider now an arbitrary 1-strategy. If it is player 1 who plays the best
response, then s is of the form acb (so in this case |C| > 2). Then the only
possible improvement steps are acb → aab or acb → acc. In both cases we reach
a 2-strategy in one step.

If it is player 2 who plays the best response, then s is of the form aaa or aab,
which contradicts the fact that s is a 1-strategy. Finally, if it is player 3 who
plays the best response, then s is of the form baa or aaa, which also contradicts
the fact that s is a 1-strategy.

We conclude that a legitimate joint strategy is always reached in at most 2
steps.

(iii) Assume that n > 3. Then the following infinite improvement path does not
ensure closure:

(bban−4ab → aban−4ab → aban−4aa →∗ abbn−4ba →
aabn−4ba → babn−4ba → babn−4bb →∗ baan−4ab →)∗,

where each inner ∗ stands for an appropriate sequence of n − 4 improvement
steps, while the outer ∗ stands for the infinite repetition of the exhibited prefix
of an improvement path. �	
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The above result explains the need for a scheduler. As before we assume a
cyclic order on the set of colours and denote the successor of colour c by c′. The
following result improves upon Theorem1. The differences are discussed after
the proof.

Theorem 6. Consider the game G. Suppose that n ≥ 3 and |C| ≥ n − 1. Let f
be a scheduler such that

f(s, 1) = s′
1.

Then f ensures self-stabilization in G in 1
2 (3n + 1)(n − 2) steps.

Proof. We split the proof in two parts. The slightly unusual naming of joint
strategies in Part 1 will become clear in Part 2.

Part 1: self-stabilization.
Consider an improvement path ξ generated by the scheduler f that starts in

a joint strategy s. Call a joint strategy lean if the players 2, . . ., n hold in it at
most n − 2 different colours. We now establish a number of claims about ξ.

Claim 1. A lean joint strategy appears in ξ.

Proof. By Theorem 4 eventually some player i ∈ {3, . . ., n} is selected in ξ. The
resulting joint strategy becomes then lean. �	

Let s′′ be the first lean joint strategy in ξ. Call a colour fresh in ξ if it is not
held in s′′ by any player i �= 1. Fresh colours exist since |C| ≥ n − 1. Let c be
the first fresh colour that follows, in the cyclic order on C, the colours that are
held in s′′ by players i �= 1.

Claim 2. Player 1 eventually introduces in ξ the colour c.

Proof. By the definition of the scheduler and Theorem 4. �	
Claim 3. Player 1 eventually introduces in ξ the successor c′ of the colour c.

Proof. By the definition of the scheduler and Theorem 4. �	
Consider now the joint strategies s1 and s5 resulting from the steps described

in Claims 2 and 3. Let
s4 → s5

be the last step of the segment s1 →∗ s5 of ξ. So s11 = s41 = s4n = c and s51 = c′.
Take now a joint strategy s6 from the segment s1 →∗ s5, different from s1

and s5. In s6 player 1 is not selected. Moreover, by the definition of the game,
each better response of a player different than 1 is the colour of his predecessor.
So only player 1 can introduce in ξ colour c.

This implies by induction that each time some player i switches in s6 to the
colour c, all players 1, . . . , i − 1 hold in s6 the colour c. So the only possibility
that player n holds the colour c in s4 is that all players hold in s4 the colour
c. Informally, the colour c ‘travelled the whole ring’. So s4 is a legitimate joint
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strategy. Hence by Corollary 1 and Theorem 4 the scheduler f ensures self-
stabilization.

Part 2: computing the bound.
Recall that s′′ is the first lean joint strategy in ξ. Let s′ be the first joint

strategy in the segment s →∗ s′′ of ξ such that in the segment s′ →∗ s′′ player
1 is not selected. We first determine the maximum number of steps in the prefix
s →∗ s′ of ξ. Since s′′ is the first lean joint strategy in ξ, in the prefix s →∗ s′

only players 1 and 2 are selected. Moreover, by the choice of s′ the last step
in this prefix involves player 1. Further, player 1 can be selected the second
time only after player n has been selected and no player can be selected twice
in succession. These constraints leave only two possible schedulings that yield
s →∗ s′, namely 1 and 2, 1.

However, the prefix s →∗ s′ cannot have 2 steps. Indeed, otherwise it would
have the form

(c1, c2, . . ., cn) → (c1, c1, c3, . . ., cn) → (c′
n, c1, c3, . . ., cn),

where c1 = cn. So (c1, c1, c3, . . ., cn) is lean, which contradicts the choice of s′′

as the first lean joint strategy in ξ. Consequently the prefix s →∗ s′ can have at
most 1 step.

Let now ξ′ be the suffix of ξ that starts in s′. We now determine the number
of steps in ξ′ that yield self-stabilization. We can assume that it takes in ξ at
least three steps to reach s5, as otherwise the bound holds. Consider the last
three steps in ξ that lead to s5:

s2 → s3 → s4 → s5.

We noticed already that in s4 all players hold the colour c. Also, the last n steps
in ξ that lead to s4 consist of switching to the colour c. Hence s2 is of the form
(c, . . ., c, a, b), where a �= c and b �= c.

Case 1 a = b.
Then s2 is legitimate. We first compute the number of steps in the prefix χ

of ξ′ leading from s′ to s4. Consider some player i. In χ he can be involved in
two types of steps:

– in which he switches to a colour held in s′ by one his predecessors 1, . . ., i−1,
– in which he switches to a colour introduced in χ by player 1 (to identify such

steps in χ we can ‘mark’ such colours in some way).

The first possibility leads to at most i − 1 steps, while the second one to at
most n − 2 steps since starting from the lean joint strategy s′′ (and hence from
s′) player 1 can change his colour in χ at most n− 2 times. This means that the
total number of steps in χ is at most

n∑
i=1

(i − 1 + n − 2) =
n(n − 1)

2
+ n(n − 2).
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Deducting 2 for the steps s2 → s3 → s4 we get the bound n(n−1)
2 + n(n − 2) − 2

on the number of steps in ξ′ that yield self-stabilization.

Case 2 a �= b.
Then s2 is not legitimate but s3 is, so we need to compute the number of steps

in ξ′ leading from s′ to s3. To this end we modify ξ′ to another improvement
path ψ by replacing the step s2 → s3 by

s2 → (c, . . ., c, a, a) → s3

and apply the reasoning from Case 1 to ψ. This yields the above bound on the
number of steps in ψ needed to reach (c, . . ., c, a, a) and hence the same bound
on the number of steps in ξ′ leading from s′ to s3.

We noticed already that the prefix s →∗ s′ can have at most 1 step, so
we conclude that ξ ensures self-stabilization in n(n− 1)

2 + n(n − 2) − 2 + 1 =
1
2 (3n + 1)(n − 2) steps. �	

The original bound of [10] on the number of colours was |C| ≥ n. The authors
of [15] noticed that it can be lowered to |C| ≥ n− 1 and that it is optimal in the
sense that for |C| = n − 2 the claim of the theorem does not hold. The latter
observation was established by noting that starting from the joint strategy

c2c1cn−2. . .c2c1

the counterclockwise scheduling of the players combined with the selecting of the
colours in the assumed cyclic order by player 1 generates an infinite improvement
path which does not yield self-stabilization. The fact that self-stabilization can be
reached in O(n2) steps when |C| ≥ n was established in [22]. Finally, Theorem5
shows that the use of a scheduler in Theorem 6 is necessary.

Next, we show that 1
2 (3n + 1)(n − 2) is also a lower bound.

Example 1. Consider the game G for n players with |C| ≥ n − 1. Assume the
cyclic order c1 → c2 → · · · → cn−1 → . . . on C. So if |C| = n−1, then c′

n−1 = c1
and otherwise c′

n−1 = cn.
Then the following prefix of an improvement path is generated by every

scheduler mentioned in Theorem 6 and ends in a legitimate joint strategy:

c1cn−1cn−2 . . . c1 →
c2cn−1cn−2 . . . c1

n− 1 steps−−−−−−−→ c2c2cn−1cn−2 . . . c2 →
c3c2cn−1cn−2 . . . c2

n− 1 steps−−−−−−−→ c3c3c2cn−1 . . . c3 →
c4c3c2cn−1 . . . c3

n− 1 steps−−−−−−−→ c4c4c3c2cn−1 . . . c4 →
c5 . . . c2cn−1 . . . c4

n− 1 steps−−−−−−−→ c5c5 . . . c2cn−1 . . . c5 →
...

cn−1 . . . c2cn−1cn−2
n− 1 steps−−−−−−−→ cn−1cn−1 . . . c2cn−1 →

c′
n−1cn−1 . . . c2cn−1

n(n− 1)
2 −2 steps−−−−−−−−−−→ c′

n−1c
′
n−1 . . . c′

n−1cn−1cn−1.

The number of steps in the last line needs to be clarified since the scheduling
used in the proof of Note 2 yields already after n(n− 1)

2 − (n − 1) steps the
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legitimate joint strategy c′
n−1cn−1 . . . cn−1cn−1cn−1, so ‘too early’. Therefore we

modify this scheduling to

(n), (n − 1, n), (n − 2, n − 1, n), . . ., (3, 4, . . ., n − 1), (2, 3, . . .n − 2, n, n − 1, n).

This way we ensure that the legitimate joint strategy is reached only after
n(n− 1)

2 − 2 steps. Alternatively, we could use the scheduling

(n, n − 1, . . ., 2), (n, n − 1, . . ., 3), . . ., (n, n − 1, n − 2), (n, n − 1), (n),
(n, n − 1, . . ., 2), (n, n − 1, . . ., 3), . . ., (n, n − 1, n − 2), (n).

The first and the last two lines consist in total of 1+ n(n−1)
2 −2, so (n+1)(n−2)

2
steps, while each of the remaining n − 2 lines consists of n steps. Therefore the
total number of steps to reach c′

n−1c
′
n−1 . . . c′

n−1cn−1cn−1 equals (n+1)(n−2)
2 +

n(n−2) = 1
2 (3n+1)(n−2). Note that no other listed joint strategy is legitimate. �	

7 Related Work and Discussion

Starting from [19], a paper that relates secret sharing and multiparty communi-
cation protocols to game theory, a growing literature keeps revealing rich con-
nections between game theory and distributed computing. For a short overview
of the early connections see Sect. 4 of [18].

Let us mention a couple of more recent examples. The authors of [1] provide a
game-theoretic analysis of the leader election algorithms on a number of networks
for both the synchronous case and the asynchronous case. In turn, [14] provides
a framework in which the processes and the environment of a distributed system
are viewed as players in an extensive game, in which implementations are inter-
preted as strategies with an implementation being correct if the corresponding
strategy is winning.

To discuss the papers about connections between game theory and self-
stabilization note first that we followed here the original Dijkstra’s definition
of a legitimate global state as the one in which exactly one machine can change
its state. If we view a legitimate global state as the one in which no machine
can change its state and drop the fairness assumption then we enter the area
of self-stabilizing algorithms. An early example of such an algorithm is the one
introduced in [27] that computes a maximal independent set (MIS).

Probably the first paper that noted the connection between the self-
stabilizing algorithms and game theory is [6], where the notion of a selfish sta-
bilization is introduced. The authors attached to each node of a graph a cost
function (a customary alternative to the payoff functions in the definition of
strategic games) to derive a simple self-stabilizing algorithm that constructs a
spanning tree in a final state corresponding to a Nash equilibrium of the under-
lying strategic game. In turn, the authors of [20] related self-stabilization to
uncoupled dynamics, a procedure used in game theory to reach a Nash equilib-
rium in situations when players do not know each others’ payoff functions.
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Recently, the authors of [29] observed that self-stabilizing algorithms that
compute a maximal weighted independent set (MWIS) and MIS can be analyzed
using game-theoretic tools. To relate this work to ours recall that in our setup we
defined a legitimate joint strategy as the one in which exactly one player does
not play a best response. Consider now an alternative definition that equates
the legitimate joint strategy with a Nash equilibrium. We need now to recall
the following definition due to [24]. We say that a strategic game has the finite
improvement property (FIP) if every improvement path is finite.

The authors of [29] found that the self-stabilizing algorithms that compute a
MWIS and a MIS correspond to natural strategic games on graphs that have the
FIP. The computations of such an algorithm then correspond to the (necessarily
finite) improvement paths in the corresponding game. They also noticed that if
a game on a graph has the FIP then after an appropriate translation to a dis-
tributed system a self-stabilizing algorithm is obtained. Indeed, the FIP ensures
the closure property, while the stability is immediate. These observations also
clarify the set up of the just discussed papers [6,20].

We conclude this discussion of relations between self-stabilization and game
theory by the following remark. The author of [17] introduced the concept of a
weak self-stabilization which guarantees that a distributed system reaches a
legitimate state only by some (and thus not necessarily all) sequence of moves.
This concept can be easily incorporated into our framework by stipulating that
a game admits weak self-stabilization if from every initial joint strategy
some improvement path ensures self-stabilization. Schedulers that ensure self-
stabilization obviously establish weak self-stabilization. This property naturally
corresponds to the class of weakly acyclic games introduced in [23,30]. They are
defined by the following weakening of the FIP: a game is weakly acyclic if for
every initial joint strategy there exists a finite improvement path that starts in
it. For a thorough analysis of weakly acyclic games see [3] from which we adopted
the concept of a scheduler.
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Abstract. We present an extension of the popular probabilistic model
checker Prism with multi-actions that enables the modeling of complex
coordination between stochastic components in an exogenous manner.
This is supported by tooling that allows the use of the exogenous coordi-
nation language Reo for specifying the coordination glue code. The tool
provides an automatic compilation feature for translating a Reo network
of channels into Prism’s guarded command language. Additionally, the
tool supports the translation of reward monitoring components that can
be attached to the Reo network to assign rewards or cost to activity
within the coordination network. The semantics of the translated model
is then based on weighted Markov decision processes that yield the basis,
e.g., for a quantitative analysis using Prism. Feasibility of the approach
is shown by a quantitative analysis of an energy-aware network system
example modeled with a role-based modeling approach in Reo.

1 Introduction

In recent decades, many algorithms, logics and tools have been developed for
the formal modeling and analysis of probabilistic systems, combining techniques
introduced by the model-checking community with methods for the analysis of
stochastic models (see, e.g., [12,16,22]). A widely used model is provided by
Markov decision processes (MDPs), which represent probabilistic systems with
non-determinism, suitable to model, e.g., concurrency, adversarial behavior or
control. To allow for quantitative information attached to the states or transi-
tions, MDPs are often augmented with rewards (sometimes also interpreted as
costs). Rewards are useful, e.g., to reason about energy, waiting times or other
costs, as well as utility, such as the number of successful completions of a task.
Popular model checkers such as Prism [33,42] or Storm [18] can then be used to

The authors have been supported by the DFG through the Collaborative Research
Center SFB 912 – HAEC, the Excellence Initiative by the German Federal and
State Governments (cluster of excellence cfAED), the Research Training Group RoSI
(GRK 1907), the DFG-projects BA-1679/11-1 and BA-1679/12-1, and the 5G Lab
Germany.

c© Springer International Publishing AG, part of Springer Nature 2018
F. de Boer et al. (Eds.): Arbab Festschrift, LNCS 10865, pp. 38–56, 2018.
https://doi.org/10.1007/978-3-319-90089-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90089-6_3&domain=pdf
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0002-8785-0272
http://orcid.org/0000-0001-5718-8276
http://orcid.org/0000-0003-4681-6964
http://orcid.org/0000-0003-1724-2586


Energy-Utility Analysis of Probabilistic Systems 39

Fig. 1. Using the extended ReoCompiler to generate Prism language models

establish formal guarantees on the expected extremal (maximal/minimal) accu-
mulated rewards and for the analysis of the trade-off between multiple accumu-
lated rewards, e.g., comparing the required energy and the utility gained until
reaching a goal for the various ways the non-determinism in the MDP can be
resolved (see, e.g., [10,11,20,21]).

For modeling of stochastic systems, a common formalism is the Prism input
language, a guarded-command language with probabilistic language features
inspired by reactive modules [1]. It allows modeling a system by parallel compo-
sition of independent modules that can synchronize over shared actions and is
particularly suitable for a symbolic encoding using, e.g., multi-terminal binary
decision diagrams (MTBDDs) [42]. However, in practice, modeling complex coor-
dination between the modules can be cumbersome and may require hard-coding
the various synchronization possibilities in each module manually. It would there-
fore be desirable to model the coordination exogenously, i.e., the individual
components of the system expose their willingness for synchronization via a
well-defined interface to the outside, but do not need to be aware of the concrete
connections to the other parts of the system. This facilitates a separation of
concerns between computation and coordination, providing modeling flexibility
and the ability to easily switch between coordination variants.

A preeminent advocate and example for this exogenous approach is the Reo
language [2], a modeling formalism that allows for coordination patterns to be
modeled compositionally as a network of channels. There are a wide variety
of semantics for Reo [27] and, due to its generality, it can be useful in a wide
range of contexts [3,5,8,28,30,31,45]. In the context of (non-probabilistic) model
checking of systems described or coordinated by a Reo network, the operational
semantics provided by constraint automata [14] proved to be versatile [8,30,31].

Contributions. We present an extension of the Prism input language and pro-
vide tool support that permits the use of multi-actions and suitable parallel
composition operators that facilitate the exogenous modeling of coordination
(Sect. 3). With an underlying MDP-based semantics, the parallel composition
operators are derived from a data-abstract variant of simple probabilistic con-
straint automata (spCA) [7]. Here, probabilistic choice can influence the choice
of successor state, but does not directly apply to the selection of enabled actions
and is thus compatible with the MDP formalism.

Having provided the technical base for exogenous coordination, we are then
interested to leverage Reo for the coordination of Prism modules. To achieve
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this, we have extended the ReoCompiler [47] with support for Prism as a
new target language (Sect. 4). This enables the automatic generation of a Prism
language model description from a textual description of a Reo network that
coordinates Prism modules exogenously (see Fig. 1). To attach rewards to activ-
ity of the components and the network, we introduce the concept of reward
monitors and provide tool support. This allows the quantitative analysis of the
performance and of trade-offs for different scheduling and coordination strategies
using Prism’s variety of analysis backends (probabilistic model checking using
explicit and symbolic engines as well as statistical model checking).

Our main focus is on the use of non-probabilistic Reo networks (with a
constraint-automata-based operational semantics) for the coordination of prob-
abilistic Prism modules. However, due to the compatibility with the spCA and
MDP semantics, it is also possible to describe and use probabilistic channels by
providing their operational behavior in the spCA semantics as Prism modules
and incorporate those into a Reo network.

To demonstrate the feasibility of this exogenous modeling approach for the
analysis of non-trivial stochastic systems, we consider a case study of a peer-
to-peer network with compute nodes that can either play the role of a server, a
client, or a relay in the computer network (Sect. 5). For this, we apply the role-
based modeling approach using Reo as suggested in [17]. Role binding and role
playing, as well as the communication protocol for the file transfer is constructed
and coordinated via a network of Reo channels and connectors. We consider
variants where the network topology is replaced and where a particular strategy
is employed by switching to a different role-playing coordinator. We demonstrate
the analysis of several queries that can be used to illuminate the trade-offs in the
strategies. Our extensions of Prism and the ReoCompiler, as well as additional
material is available at https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18.

Related Work. Apart from Reo, there is a variety of coordination languages,
surveyed, e.g., in [41]. For our case study (Sect. 5), we rely on the models incor-
porating the concept of roles. Although roles are intuitive and commonly under-
stood, there is no generally accepted definition of roles [48]. We follow the Dres-
den approach towards roles [32] and rely on our modeling framework for role-
based systems using Reo presented in [17].

Several approaches extending Reo with stochastic component connectors
have been presented in the literature, providing semantics in terms of simple
probabilistic constraint automata [7], continuous-time constraint automata [15]
quantitative intensional automata [4], stochastic Reo automata [38], stochas-
tic timed automata for Reo [36], and probabilistic timed constraint automata
[23], to mention a few. All these approaches above have in common that no
direct tool support exists for these models and practical use is mainly justi-
fied by providing translations to continuous-time Markov chains (CTMCs) or
interactive Markov chains (IMCs) [25]. For instance, case studies have been car-
ried out in [4,38,39], based on IMC and CTMC representations of stochastic
Reo automata and computing steady-state probabilities using Prism. In this

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18
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line, Reo2MC, a tool chain to automatically generate CTMC semantics from
quantitative intensional automata was presented in [6]. Avoiding intermediate
semantics, [40] presented a direct IMC semantics for stochastic Reo and pro-
vides tool support using the model checkers CADP and IMCA. Using Prism,
they also performed quantitative analysis on CTMCs generated from the IMC
semantics, including reward-based properties in the case study of [39].

Concerning modeling formalisms for stochastic systems, there is a variety of
other approaches departing from the state-based models such as Markov chains
or Markov decision processes we employ in this paper, e.g., stochastic Petri
nets [37] or the stochastic process algebra PEPA [26].

2 Preliminaries

In this section we provide a brief overview to the Prism input language, Markov
decision processes (MDPs) as underlying semantics and the quantitative mea-
sures that can be addressed using probabilistic model checking. For details on
Prism we refer, e.g., to [42,43]. Details on MDPs and probabilistic model check-
ing can, e.g., be found in [13,29,46] and the tutorial [19]. In the later sections of
the paper we assume the reader to be familiar with the core concepts of Reo.
For further details we refer, e.g., to [2,14].

Markov Decision Processes. A Markov decision process (MDP) is a tuple
M = (S,Act, P,Rew) where S is a finite set of states, Act a finite set of
actions, P : S × Act × S → [0, 1] ∩ Q is the transition probability function
and Rew is a set of reward functions rew i : S × Act → N. We require that∑

s′∈S P (s, α, s′) ∈ {0, 1} for all (s, α) ∈ S × Act. We denote by Act(s) the set
of actions that are enabled in s, i.e., α ∈ Act(s) iff P (s, α, s′) > 0 for some
s′ ∈ S. The paths of M are finite or infinite sequences s0 α0 s1 α1 s2 α2 . . .
where states and actions alternate such that P (si, αi, si+1) > 0 for all i �
0. Intuitively, in each step first the non-determinism between the enabled
actions is resolved and then the successor state is chosen according to the
probability distribution. If π=s0 α0 s1 α1 s2 α2 . . . αk−1 sk is a finite path, then
rew(π)=rew(s0, α0) + rew(s1, α1) + . . . + rew(sk−1, αk−1) denotes the accumu-
lated reward along π. A (randomized) scheduler for M, often also called policy
or adversary, is a function σ that assigns to each finite path π a probability
distribution over Act(last(π)) resolving the non-determinism in the MDP, where
last(π) is the last state of π.

The PRISM Input Language. We provide a brief, informal overview of the
Prism modeling language (which is also used by other tools and alternative
model checkers such as Storm) and its MDP-based semantics. In particular, we
concentrate on the features that are used for the synchronization of the individual
modules, as our work presented in this paper extends them with features for
multi-action synchronization.

A Prism language model description generally consists of a set of modules
M1, . . . ,Mn. Each module can be seen as an independent process with local state
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Fig. 2. A simple Prism module

variables, which can be either Boolean or can take values from a fixed integer
range. The values of these state variables can only be updated from within the
module, but can be read from other modules. Therefore, state variable names
have to be unique across all the modules in the system. In addition to the local
variables inside the modules, one can also declare global variables, which can
be updated from any module with certain restrictions that ensure the absence
of conflicting updates. In addition to modules, Prism allows defining reward
structures that assign costs to either states or transitions.

The global state space of the composed MDP then consists of the Carte-
sian product of the local variables of all the modules, as well as of the global
variables. Thus, each state in the MDP corresponds to a particular variable val-
uation. The step-wise behavior of a module Mi is specified by a set of guarded
commands Ci, where each command cj consists of an action aj , a state guard gj
and an update specification uj . The state guard, a Boolean expression over the
variable valuations of all variables (global and local in any module), determines
whether a command is locally enabled in a module. The update specification
describes a probability distribution over the updates to the variable valuations.
The action of a command allows for the synchronization between modules. A
command becomes globally enabled only if all synchronization partners provide
corresponding locally enabled commands. In standard Prism, the action consists
of an action name or it can be left empty. The latter corresponds to an inter-
nal action that can happen at any time the state guard evaluates to true. Such
actions never synchronize with other actions. Consider the example in Fig. 2.
Here, the Prism module has a single variable s with possible values 0, . . . , 4 and
two guarded commands. The first, with action act1, is enabled if variable s = 0
and, upon execution, will set the value of variable s to either 0 or 1, each with
probability 1/2. The second guarded command specifies an internal action, which
is enabled as long as s < 4 and, upon execution, will reset the value of s to 0
with probability 1/4 or increment the value of s by 1 with probability 3/4. Each
module Mi has an action alphabet Act i, which consists of all the actions that
are mentioned in the commands of module Mi.

The composed MDP arises from the parallel composition of the modules
M1, . . . ,Mn. Prism supports several process-algebra operators that allow fine-
grained control over the order and synchronization type used in the parallel
composition [43,44]. The parallel composition operator M1 ‖ M2, which is used
by default, synchronizes commands in M1 and M2 that have actions which occur
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in both action alphabets Act1 and Act2. Thus, a command in M1 with action
a ∈ Act1 ∩ Act2 is only enabled in some state in M1 ‖ M2 if there exists at
least one command in M2 with action a that is enabled as well. In this case,
each enabled a-command in M1 can be executed with each enabled a-command
in M2. On the other hand, if there is no enabled a-command in M2, then none
of the a-commands in M1 are enabled. Those commands with actions outside
of Act1 ∩ Act2, as well as those without an action, can be executed only by
themselves, i.e., in an interleaved manner. In addition to this default parallel
composition operator, Prism supports an operator M1 |||M2, which does not
allow any synchronization and instead composes the commands of M1 and M2

in an interleaved manner, as well as a composition operator M1 |Act |M2 that
allows for specifying the set of actions Act over which synchronization happens
directly. Thus, M1 ‖ M2 is equivalent to M1 |Act1 ∩Act2|M2 and M1 |||M2 is
equivalent to M1 |∅|M2, i.e., using the empty set as the synchronizing alphabet.
The action alphabet of the composition of M1 and M2 is obtained as the union of
Act1 and Act2. Additionally, there is an operator that supports hiding of actions,
i.e., turning some named actions into internal, empty actions and removing the
actions from the action alphabet, as well as an operator for renaming actions.

Quantitative Analysis. Probabilistic model checkers such as Prism and
Storm can be used for the automated analysis of MDPs, for example answering
questions such as “What is the maximal (minimal) probability for reaching some
goal state, ranging over all schedulers?”. Observing the rewards in the MDP,
which can for example be used to model costs, energy, utility, etc., such tools
also support a reward-based analysis, e.g., computing the maximal (minimal)
expected accumulated reward until some goal is reached. Here, a trade-off anal-
ysis between multiple reward functions is of particular interest, for example using
multi-objective analysis [20,21] or analysis of an energy-utility trade-off [10,11].

3 Exogenous Coordination with PRISM

We have extended Prism’s guarded command language with features that facili-
tate the modeling of more complex coordination schemes, in particular exogenous
coordination. Most importantly, we have conservatively extended the Prism lan-
guage to support multi-actions. Although multi-actions arise rather naturally in
Reo connectors coordinating the activity and communication of components,
till now there has been no support for in Prism.

Extending the PRISM Language with Multi-actions. A command in our
extension comprises a (possibly empty) set of actions α, a state guard, and an
update specification. The actions α can either occur in a closed form, denoted by
[α] or an open form, denoted by ]α[. Intuitively, a closed multi-action indicates
that no further action can be added during composition and yield a multi-action
α′ ⊆ α, while an open multi-action allows the composition with other actions
to form a multi-action α′ ⊇ α. Note that this extension is conservative in the
sense that if α occurs only in closed form and contains at most one action, every
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Fig. 3. SOS rules for the parallel composition of the commands of two modules, syn-
chronizing over the action alphabet Act .

command is as in standard Prism. As before, the action alphabet Act i of module
Mi is obtained from the set of actions that occur in any of Mi’s commands.

Using the well-known SOS notation, we now provide the rules for the
M1|Act |M2 parallel composition operator (see Fig. 3) that supports multi-
actions. As noted above, M1 ‖ M2 can be obtained by using Act = Act1 ∩ Act2
as the synchronization alphabet. In Fig. 3, we denote by [α] : g → u ∈ Ci that
there is a command in module Mi with closed multi-action α, state guard g and
update specification u. Similarly, ]α[ : g → u ∈ Ci denotes the same command
albeit with open multi-action α. In the bottom part of the rules, C1||2 stands for
the commands in the composed module M1 ‖ M2. Furthermore, u1 · u2 stands
for the combined update specification obtained from u1 and u2 by using their
product distribution, just as in the standard Prism semantics. For instance, the
combined update specification u1 · u2 for u1 = 1/2 : (s′=0) + 1/2 : (s′=1) and
u2 = 1/3 : (t′=0) + 2/3 : (t′=1) would be

1/6 : (s′=0, t′=0) + 2/6 : (s′=1, t′=0) + 1/6 : (s′=0, t′=1) + 2/6 : (s′=1, t′=1).

We now provide some intuitive explanations for the composition rules. Rule (1)
concerns the synchronization of two commands with closed multi-actions. As
both are closed, it is not possible to add additional actions, which implies that
α1 = α2 = α1 ∪ α2. The condition α1 ∩ Act 	= ∅ ensures that there is at least
one action available for synchronization. All commands with closed actions that
do not have any synchronizing action are handled by the symmetrical rules (2a)
and (2b). This includes the handling of the closed empty multi-action, clearly
excluded from the scope of rule (1). Altogether, rules (1), (2a) and (2b) collapse
to the standard composition operator of Prism whenever the multi-actions are
singletons or empty, thus preserving the standard Prism semantics whenever
neither multi-actions nor open actions are used.
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Rules (3), (4a) and (4b) deal with the composition of commands with open
multi-actions. Rule (3) allows the parallel execution of two commands whenever
their actions agree on the synchronized action alphabet. Note that there is no
restriction on the non-emptiness of α1 ∩ Act and α2 ∩ Act . Thus, two open
commands that do not have actions in the synchronization alphabet and are
therefore “unrelated” can be executed in parallel. Likewise, by rules (4a) and
(4b), those actions can also be executed without synchronization.

Rules (5a) and (5b) deal with the parallel composition of open and closed
commands. For (5a), the condition α2 	= ∅ ensures that closed, empty actions
never synchronize, while α1 = α2 ∩Act ensures that α1 ⊆ α2, i.e., α1 introduces
no new actions, and that α1 agrees with α2 on the synchronizing actions. Rule
(5b) is the symmetric rule to rule (5a).

The three rules (3), (4a) and (4b) correspond to the product rules for a data-
abstract simple probabilistic constraint automaton as presented in [7]. The other
rules in Fig. 3 can be similarly seen as variants of those product rules, adapted
for closed commands and the mixture of closed and open commands in a natural,
backward compatible fashion. Note that our parallel composition is commutative
and associative, i.e., for modules M1, M2, and M3 we have that the semantics of
M1 ‖ M2 is isomorphic to the semantics of M2 ‖ M1 and likewise, the semantics
of M1 ‖ (M2 ‖ M3) is isomorphic to the semantics of (M1 ‖ M2) ‖ M3. The proof
of this statement is straightforward but tedious and is provided in the extended
version of this paper [9].

In the translation from the Prism language model description to the under-
lying MDP, the set of actions in the MDP then corresponds to the powerset
of action names that appear in the model description. That is, for an action
alphabet Act of the composed system, the set of actions in the MDP is then
Act = 2Act , i.e., each action in the MDP is a subset of Act .

Reward structures in PRISM can be used to assign rewards to state-action
pairs in the MDP, by declaring reward values for states satisfying a state guard
and a specific, single action name. We have extended the declarations of reward
structures with support for multi-action specifications, i.e., of the form [α] and
]α[ in the definitions of reward structures, where α is a set of actions from the
action alphabet Act of the composed system. The reward value is then assigned
to state-action pairs in the MDP with matching actions. A specification [α]
matches exactly the action β ∈ Act in the MDP iff α = β. For ]α[, all actions
β ∈ Act that satisfy α ⊆ β match and are assigned the reward value. This can
be used, e.g., to assign a reward whenever a particular action name is active,
irregardless of which other actions in the system are active simultaneously.

Further Extensions of the PRISM Language. We have extended the Prism
language with additional features that simplify exogenous and compositional
model design. Prism supports a mechanism to take one module and obtain an
additional instance. As the variable names and action names of a module live in
the same namespace (even local variables of a module can be read from other
modules), this requires renaming all module variables and possibly the action
names in case synchronization between instances should be avoided. For example,
the Prism statement
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module M2 = M1 [s1 = t1, s1 = t2, a1 = a2] endmodule

constructs module M2 as a copy of M1, renaming the state variables s1 and s2
to t1 and t2, respectively, as well as renaming action a1 to a2. As this kind
of statement requires detailed knowledge of the variable names for the module,
we have extended the syntax to allow for rule-based renaming. For example, the
statement

module M2 = M1 (varprefix = M1 )[a1 = a2] endmodule

would automatically rename a variable s in M1 to M1 s, which makes it easy
to ensure global uniqueness of variable names. Additionally, we support rules
with varsuffix (adding a given suffix to the variable names), actionprefix
and actionsuffix (similarly renaming the individual action names occurring
in a module). Rule-based renaming is being performed first, then the addi-
tional, explicitly given, renamings are performed. Note that, however, every state
variable and action can only be renamed once. With this automatic renaming,
Prism’s module renaming statement can be seen as the instantiation of a mod-
ule. However, in standard Prism, every module definition that appears in the
input file is automatically instantiated. This makes it impossible to provide a
library of module templates, of which only a subset is actually instantiated. To
remedy this issue, we allow a module definition to be marked as template. Such
a template module will not be instantiated automatically, but is available for
instantiation via module renaming.

A Simple Example of Exogenous Coordination. As an example for exoge-
nous coordination, consider a simple setting with three producer modules and
three consumer modules. Each of them has a certain probability in each step to
become broken. In each step, exactly one of the non-broken producers shall syn-
chronize with one of the non-broken consumers, until eventually almost surely
all have failed. In the standard Prism language, we have to hard-code one com-
mand for each synchronization choice in each module, e.g., by using actions picj
to synchronize producer i with consumer j. With our extension of Prism, we can
model exogenous coordination: Each producer and consumer module has a single
action, which is suitably synchronized by some glue code modules, e.g., a merger
module that nondeterministically selects one of the producers and is chained
to a router module that nondeterministically selects one of the consumers. In
the extended version of this paper [9], we provide a detailed description of both
approaches. It is readily apparent that the second, exogenous approach provides
far greater flexibility and separation of concerns, making it easy to replace the
coordination glue code by alternative variants, specializations, etc.

PRISM Implementation. We have extended Prism with support for handling
multi-actions and for dealing with the other proposed language extensions, both
in Prism’s explicit engine (where an explicit, graph-based model representation
is built) and in the (semi-)symbolic engines (where a symbolic model represen-
tation [42] is used). For the explicit engine, this mostly consists of the handling
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of the parallel composition according to the rules of Fig. 3 during model con-
struction. For a given variable valuation, we can easily determine the commands
that are locally enabled in each module of the system. Then, we have to deter-
mine the possibilities for synchronized and independent execution of commands
from different modules, maintaining data structures to speed-up the lookup of
potential synchronizing commands.

For the symbolic engine of Prism, which is based on a symbolic representa-
tion of the model via multi-terminal binary decision diagrams (MTBDDs) [42],
the transition structure of an MDP is encoded using MTBDD variables for the
nondeterministic choices, as well as variables for encoding the states and suc-
cessor states, mapping to the probability for a given transition in the MDP. As
Prism already encodes each action name in the model description by one vari-
able, adapting the encoding to multi-actions is rather straightforward. Likewise,
the various composition rules in Fig. 3 can be elegantly formulated as symbolic
operations on the MTBDD representation for each module. One complication
however is the encoding of local nondeterminism within a module, i.e., to distin-
guish which of multiple commands with the same multi-action that are enabled
simultaneously are actually executed. The encoding used by standard Prism (a
binary encoding of an integer for the various local nondeterministic choices) is
not convenient for a fully symbolic composition, therefore we changed this encod-
ing. In our extension, each command in the model corresponds to an MTBDD
variable that denotes whether this command is actually active or inactive in a
given step.

4 REO for Exogenous Coordination within PRISM

Having extended Prism by the infrastructure for the exogenous coordination of
probabilistic components, we are now interested in a framework for the conve-
nient modeling of the coordination glue code. For this, the channel-based coor-
dination language Reo [2] provides an elegant and compositional modeling app-
roach, where the coordination glue code for components is specified using a Reo
network of channels that can be used to model a plethora of coordination pat-
terns. For this, both stateless channels such as synchronous channels (ensuring
that activity at their channel ends happens simultaneously), asynchronous chan-
nels (ensuring the non-synchronicity/mutual exclusion at their channel ends),
lossy channels or transformer channels, as well as stateful ones such as FIFO
channels (which can accept a token or data and pass it on later) are used, medi-
ated by network nodes that coordinate the activity of the connected channels.
Additionally, ready-made or user-defined circuits can be used as building blocks
to model common coordination patterns, such as a sequencer that ensures that
certain activity happens one after the other. With constraint-automata-based
operational semantics [7,14] for Reo, the behavior of the whole network can be
obtained from the automata-based descriptions of the individual parts (channels
and nodes) in a compositional manner by a series of product operations.

To allow the use of Reo as the coordination glue code of Prism components,
we make use of the ReoCompiler tool developed at the Centrum Wiskunde



48 C. Baier et al.

& Informatica, Amsterdam [47]. Among others, the ReoCompiler supports
the convenient textual specification of Reo networks, providing the glue code
for components. Then, it allows the compilation of the glue code to a target
language (such as Java). When combined with definitions of the components in
the target language (e.g., a Java class implementing the component’s behavior),
the coordinated system can then be executed. The external components interface
with the Reo network via input and output ports.

PRISM as a Target Language of the REOCOMPILER. We have extended
the existing ReoCompiler with support for the Prism language. In particular,
we provide a translation from the constraint-automata-like intermediate compi-
lation result for the glue code to the Prism language. This relies on the exten-
sion for multi-actions and the product operator for modules presented in Sect. 3,
which allows the encoding of the operational semantics via (data-abstract) simple
probabilistic constraint automata [7]. Together with the flexible module instan-
tiation from module templates, the generated Prism language model description
properly instantiates the various (Prism-based) components and connects with
the generated coordination glue code. Here, Prism’s components actions are
exported to the network as input/output ports.

The constraint-automata semantics for the Reo channels supports the trans-
fer of data, i.e., ports or nodes in the network are not only active or not, but
may have some observable data value. As we are mainly interested in the data-
abstract coordination of Prism components, i.e., an action either fires or not
but carries no data, we treat the Reo network as using a singleton data domain.
As sometimes attaching data to actions is natural for certain modeling tasks,
we however provide basic tooling as well to emulate actions carrying data by
encoding the different data values as variants of the actions, i.e., for an action a
there are variants a1, a2, . . . corresponding to the data values 1, 2, . . ..

We support two orthogonal approaches to the compilation. In the first, mono-
lithic approach, the whole Reo network comprising the glue code, i.e., all parts
of the network except for the “native” Prism components are compiled into a
single protocol module. This compilation relies on the composition of all the
channels and nodes within the ReoCompiler. In a second, compositional app-
roach, the ReoCompiler is used to generate a Prism language file where all the
individual channels and nodes of the Reo network are translated to individual
Prism modules and where the composition of the behavior is performed dur-
ing Prism’s translation from the model description to the concrete MDP. Here,
we crucially rely on the fact that we can readily translate the ReoCompiler’s
internal representation of Reo networks into a Prism module. It should be
noted that both approaches have a minor difference in the underlying semantics:
The composition inside the ReoCompiler relies on classical interleaving for
independent (unsynchronized) parts of the Reo network. Then, the generated
code realizes a sequential implementation that simulates the parallel execution
of these independent parts. In the compositional approach, unrelated actions
can synchronize (cf. rule (3) in Fig. 3, with Act = ∅) and thus are executed in
parallel. This can, e.g., be observed for chains of FIFO channels. The monolithic
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approach can be useful to hide the internal complexity of a Reo network from
Prism, while the compositional approach provides more insight into the parts
and the structure of the Reo network at the level of the model checker.

Further Extensions to the REOCOMPILER. We have extended the Reo-
Compiler with some other features that are useful in the context of the quanti-
tative analysis of the generated models. First, towards model checking it is often
required to refer to the content of a state variable, e.g., for one of the Prism
components or the state of a FIFO channel in the Reo network. As the focus
of the ReoCompiler is more on generating executable code where the compo-
nent names are largely irrelevant, it only generates unique, but not necessarily
stable names. We have added syntax and support for providing a name during
component instantiation, which results in a predictable name for the state vari-
ables of the component instances (and memory cells for stateful channels) in the
generated Prism language file.

Another common requirement in probabilistic model checking is the ability
to assign rewards or costs to the model, for example to model the energy con-
sumption or to track the achieved utility on completion of a task. In Prism,
such rewards can be attached to states (e.g., for every step spent in a state, a
certain reward is accumulated) as well to transitions (e.g., for a step with certain
actions, a given reward is accumulated). As the names of the actions (i.e., ports
and nodes) generated during the network composition process are not necessar-
ily stable or predictable, e.g., due to the application of the Reo hiding operator,
we have extended ReoCompiler with support for reward monitors. Here, a
reward monitor is a special component with a given set of input ports which can
be attached to the network using the standard Reo channels and operations. The
reward-monitor definition then specifies the rewards that are assigned whenever
certain of the input ports of the monitor are active. We support two variants,
local and global monitors. A local monitor tracks a reward on its own, resulting
in a single reward structure in the generated Prism file. In contrast, a global
monitor carries a label that ensures that, if there are multiple monitors with
the same label, the reward from all of those monitors is collected in a single
Prism reward structure. This allows, e.g., attaching a dedicated reward moni-
tor to each component that records the energy consumption when there is port
activity, with all those rewards being added together to yield the overall energy
consumption of the system in each step.

Additionally, we have added the ability to include Prism language snippets
from external files into the generated Prism language file, allowing the conve-
nient inclusion of the module templates for the Prism components that may
be instantiated in the generated model description, as well as auxiliary defini-
tions that commonly arise during the modeling with Prism, such as constant
definitions, the definition of state labels as well as additional reward structures.

Example. In the extended version of this paper [9], we provide a detailed
description how the coordination glue code in the producer/consumer exam-
ple can be elegantly modeled using a Reo network, with automatic generation
of the corresponding Prism language model description via our extended version
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of the ReoCompiler. Here, we can model the coordination using Reo channels
and an exclusive router, which provides the desired coordination in a composi-
tional manner.

Other Model Semantics. In addition to the MDP semantics, it is also possible
to generate a model description for a discrete-time Markov chain (DTMC). Here,
Prism resolves all nondeterminism in the MDP model uniformly. Moreover, it
is possible as well to select probabilistic timed automata (PTA) semantics [35],
where the Prism modules may additionally contain special clock variables, clock
invariants and the commands can contain clock guards and clock resets. For
these PTA models, our extension for multi-actions and the related composition
operators supports the analysis via Prism’s digital clock engine, which internally
transforms the PTA into an MDP [34]. The adaption of Prism’s other PTA
analysis engines remains part of future work.

5 Application: Energy-Aware Network System

In this section, we present a peer-to-peer file transfer case study that leverages
the extensions to Prism and the Reo tool support to model the complex coor-
dination between the components of the system. The model is inspired by a case
study presented in [24]. The network system consists of several stations or nodes
interconnected via a network with some fixed topology, e.g. a ring or star topol-
ogy. Each of the stations can store files. We do not consider the actual contents
of these files in our model and rather represent them using an abstract index. A
station may request a file from another station connected to the network. Then,
the file is transfered between the stations using a peer-to-peer approach, i.e.,
without a central entity handling the transfer.

In a file transfer, each participating station may act in one of three different
roles. The station that initiated the request and will receive the file plays the role
of the client. Conversely, a station that has a local copy of the requested file can
act as a server. Since a file transfer can also happen between stations that are not
directly connected, but via one or more hops, the stations in between client and
server play the role of a relay. A relay station retransmits incoming requests and
file data to its neighboring stations. As a file transfer may be initiated between
any two stations on the network, each station may dynamically play one of the
three roles: server, client or relay.

To model such a system, we employed the role-based modeling approach
proposed in [17]. Within this approach, the dynamically changing behaviors,
i.e., the roles, are separated from the static core functionality. The main idea is
to encapsulate the role behaviors into role components. These role components
are then bound to their player using a Reo connector. This binding connector
enables the player component to dynamically enact the role behavior.

Figure 4 depicts the binding connector between a station and its roles in
detail. Here, • denotes standard Reo nodes with nondeterministic merging on
the input side and replication (simultaneous activity) on the output side, while
⊗ denotes an x-router node, where there is a nondeterministic choice on the
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Fig. 4. A station component and its bound role components

output side. The station component as well as the role components are modeled
as Prism modules. Each of the role components is wrapped in a role adapter
(shown in detail for the client role). This adapter adds one port that allows
enabling or disabling the role. Internally, this port is synchronized with the in
and out ports of the role component, thus blocking the act port will effectively
disable the role. The connector between the station component and the role
components ensures that each role can retrieve the file stored on the local station
or replace it with another one. The other part of the connector attaches the roles
to the network, allowing each of them to send or receive requests or file data. We
use the same binding connector for all stations within the network. The network
itself is also realized as a Reo network which connects the in and out ports of
the stations according to the network topology.

The act ports of a station’s roles allow the role-playing coordinator to enable
and disable role behaviors dynamically. The role-playing coordinator enforces
that all stations act according to the peer-to-peer file-transfer protocol. The
core component of a station can generate a request for a certain file accord-
ing to a probabilistic distribution. This request is buffered by the coordinator.
Eventually, the coordinator allows the station to play the client role to send
the request into the network. Another station will then receive this request. In
case this station has the requested file, the server role will be enabled, which
in turn fetches the file and sends it back. If the station does not have the file,
the relay role will be played and the request is sent to the neighboring stations.
For simplicity, the global coordination will also ensure that only one file transfer
happens simultaneously.

Our approach allows us to vary the coordination without modifying the
Prism modules “implementing” the station core component and the role compo-
nents. The connector modeling the network can be changed to different topolo-
gies. The remaining nondeterminism in the system stands for the different
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strategies that may be employed to achieve certain objectives. This concerns,
e.g., the role-playing assignments for the different stations and the choice which
of the pending requests will be processed next. By attaching different coordina-
tion, we can thus explore the effect of a particular strategy, for example replacing
the nondeterministic choice of the next request by a uniform random choice. The
coordinator could also be augmented to ensure that no file is “forgotten” by the
network by blocking requests that would overwrite the last copy of a file.

We have analyzed the file-transfer model with three stations. In particular,
we have considered four variants of the model by using a ring or chain topol-
ogy of the network connector and by either using a nondeterministic choice or
a probabilistic choice of the next request to be processed.1 For the analysis, we
have added reward monitors and state rewards to the model. Energy is con-
sumed on network activity, i.e., whenever one or more of the in and out ports
of the network connector are active. Furthermore, a penalty (negative utility)
is associated with pending requests that have not yet been processed. We have
used Prism to analyse the model variants, among others asking for

(a) the minimal/maximal probability that eventually station 1 receives its
requested file,

(b) the minimal/maximal probability that eventually all stations have a file,
(c) the minimal expected time until the file requested by station 1 is delivered,
(d) the minimal expected time until all stations have received a file,
(e) the maximal probability to deliver a file to station 1 with less than x penalty,
(f) the maximal probability for delivering a file using a given energy budget

without overstepping the penalty threshold, and
(g) the minimal energy required such that a file is delivered to station 1 with a

probability greater than 0.9 without a penalty violation.

The analysis results for the queries (c) to (g) are presented in Table 1. The
results for (c) show that in a ring topology, the requested file is delivered faster
than in the chain topology. This is as expected, since in the chain topology, we
always need one hop to transfer a file between the two outer stations of the
network, while in the ring topology a direct transfer without hops is always
possible. The same argument also applies to (d). The results for (e) show the
difference between the random scheduling and the optimal scheduling of the
next file transfer. Generally, the random scheduling collects a higher penalty,
which means that pending transfers are kept waiting longer. The reward-bounded
reachability probability (f) and the quantile [10] query (g) illuminate the trade-off
between early processing of a request and thus consuming less energy, or waiting
for another request to arrive thereby collecting a penalty for pending requests.
Comparing the minimal energy consumption in (g) for the nondeterministic and
random selection of the requests, we see that the nondeterministic choice uses less
energy. This is as expected, because the nondeterministic selection corresponds
to the optimal strategy for choosing the next request.

1 For further details on the models and experiments, see https://wwwtcs.inf.tu-
dresden.de/ALGI/PUB/FA18.

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18
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Table 1. Analysis results for the file-transfer model with 3 stations

Variant (c) (d) (e) (f) (g)

chain, nondet 4.0 16.15 0.95 0.98 10.0

ring, nondet 2.0 15.94 1.0 0.96 12.0

chain, random 5.87 18.73 0.64 0.65 15.0

ring, random 4.0 18.34 0.78 0.72 12.0

Table 2. Model sizes and analysis times for the file-transfer model with 3 stations

Variant States Components Actions Time (s)

Build Analysis (f) Analysis (g)

chain, nondet 4204 108 150 10.7 81.1 58.4

ring, nondet 34164 112 150 90.7 197.8 91.3

chain, random 12612 103 154 10.6 92.0 24.4

ring, random 102492 107 154 62.6 224.5 101.0

Model sizes and the time required for model construction and analysis of
instances of queries (f) as well as (g) are presented in Table 2. The number
of components consists of the number of channels, Prism modules and Reo
nodes in the network. The actions column refers to the number of unique action
names within the generated model. Here, the analysis has been carried out using
the symbolic engine of Prism and the monolithic approach. The considerable
number of components and states is caused by the detailed modeling of the
role-playing coordinator. The coordinator divides a file transfer into multiple
steps which requires storing request messages in its internal state. The number
of states within the random variants is greater than in the nondeterministic vari-
ants because the random selection of requests requires additional internal state
compared to a nondeterministic selection. The ring topology further increases
the number of states since more routes within the network are possible.

6 Conclusions

We have extended the Prism language and the Prism model checker by fea-
tures that allow an exogenous modeling of the coordination of Prism modules.
We believe that, already on its own, these modeling capabilities will be very
useful for the modeling of complex case studies. By using our extension of the
ReoCompiler, this exogenous approach can additionally leverage the elegant
specification of complex coordination patterns by Reo networks and allow the
creation of model variants, as seen in our case study.

As future work, we are interested in exploring the full integration of actions
with attached data values into Prism. Previous experience with the symbolic
encoding of models with data [8] suggest that this would require some effort to
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ensure a compact symbolic encoding, which is compounded by the fact that good
heuristics for the variable ordering from the non-probabilistic setting, such as
interleaving the data on the actions with related state variables, may conflict with
variable-ordering restrictions designed for efficient probabilistic model checking.

We are also interested in ways to provide the user more feedback during
modeling, e.g., by integrating a visualization of the Reo network with animated
control flow into Prism’s simulation view, which can also be used to explore
counter-examples from Prism’s non-probabilistic CTL and LTL checkers.
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Abstract. The structure of a reactive transition system can to be mod-
ified on the fly by e.g. removing, reversing or adding new transitions. The
topic has been studied by D. Gabbay and his collaborators in different
contexts. In this paper we take their work a step further, introducing
a suitable notion of bisimulation and obtaining a Hennessy-Milner the-
orem with respect to a hybrid logic in which transition properties can
be expressed. Our motivation is to provide a characterisation of equiva-
lence for such systems in order to exploit their possible roles in the for-
mal description of software connectors in Reo, either from a behavioural
(semantic) or spatial (syntactic) point of view.

1 Introduction

Complex, distributed systems require reliable and yet flexible architectures. A
clear separation between typical loci of computation (e.g. services or compo-
nents) and the protocols that manage their interaction is at the heart of the
so-called exogenous coordination models and, in particular, of Farhad Arbab’s
outstanding contributions to Software Engineering [1,2]. Actually, Reo connec-
tors mediate interaction, offering a powerful “glue-code” to express such pro-
tocols, while maintaining the envisaged separation of concerns. Moreover, Reo
connectors are compositional, providing a very flexible approach to software
composition. Among languages with a similar purpose, Reo is the only one that
allows for propagation of mutual exclusion and synchrony requirements along
the connector structure.

Different forms of transition systems have been used as semantic domains
for connector behaviour [14], either directly (as in, e.g. constraint [5] or Reo
automata [8]), or indirectly through mappings to process algebra formalisms
[6,15]. Typically, such systems are then regarded as (variants of) Kripke frames
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upon which (variants of) modal logics are interpreted providing a framework to
reason about coordination semantics. This is well-known and will not be further
detailed here.

From a different point of view, Reo connectors are syntactically represented
as graphs of communication primitives (e.g. channels) whose nodes stand for
interaction points. Edges are labelled with channel identifiers and types which
classify their behaviour. Again such graphs can be regarded as Kripke frames
expressing the spatial structure of coordination patterns. This perspective was
introduced by Oliveira and Barbosa [17] when proposing an elementary frame-
work for expressing reconfigurations of the interaction protocols, i.e. of the con-
nector’s structure, as discussed, for instance, by Krause [16]. Reconfigurations
in that sense may substitute, add or remove communication channels, or move
communication interfaces between components, in order to restructure a com-
plex interaction policy. The corresponding modal logic expresses properties of
(spatial) connector structure.

From this perspective, the focus is placed on the interconnection structure,
with no reference to the connector’s emerging behaviour. Examples of structural,
or ‘syntactic’ properties are:

(i) every fifoe channel from a node n is connected to at least a lossy channel,
(ii) node i is an output node of the connector.

In [17] it is required that a reconfiguration preserves such properties.
Often structural properties are to be formulated relatively to a particular

node in the pattern. An example is given by property (ii) above. In general, one
may require, for instance, that all the channels incident to a specific node and
their interconnections remain unchanged under a reconfiguration. This justifies
the choice of hybrid logic [7,9] to express such properties. In general, hybrid logic
adds to a modal language the ability to name, or to explicitly refer to specific
states of the underlying Kripke structure. This is done through the introduction
of propositional symbols of a new sort, called nominals, each of which is true
at exactly one possible state. The sentences are then enriched in two directions.
On the one hand, nominals are used as simple sentences holding exclusively in
the state they name. On the other hand, explicit reference to states is provided
by a satisfaction operator @ such that @iφ asserts the validity of φ at the state
named i. In the logic described in next section, properties (i) and (ii) above are
written1 as

@n[fifoe]〈lossy〉�
and

@i[−]⊥
respectively, where [−]⊥ states the absence of outgoing channels from the node
referred by nominal i.

1 As used in modal logics coming from process algebras, modalities are indexed by
sets of labels, with symbol “-” standing for the whole set of those.
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The starting point for this paper is that the description of coordination
elements at any level (behavioural or spatial, semantic or syntactic) may be
enriched, and become more expressive if the underlying transition system
exhibits a reactive structure. The qualifier reactive classifies a frame, or a tran-
sition system, in which some transitions may inhibit others to occur. The study
of this sort of structures, and of their corresponding logics, goes back to the
seminal paper of van Benthem [18] which introduces what was then called sabo-
tage logic. In this language crossing a specifically annotated edge would erase an
edge from the underlying Kripke frame. Other variants of reactivity encompass
different effects, for example creating new edges [3], or reversing their direction
[4]. The topic has received some attention along the last 10 years—see e.g. [12]
for a detailed account.

This paper illustrates the use of reactive transition systems to specify Reo
connectors in both perspectives, behavioural and spatial, mentioned above. How-
ever, to make this a useful feature in practice, one needs to have at hand the
tools typically used to reason about transitions, in particular a notion of bisim-
ulation, a logic and a Hennessy-Milner-like theorem relating model bisimilarity
and logical equivalence. Such is actually the paper’s contribution, adding to the
theory of reactive frames developed within the modal logic community.

The remaining of the paper is organised as follows. The next section intro-
duces a hybrid logic for reactive transition systems and illustrates the applica-
tion of such systems to connector modelling. Section 3 contains the core results
of the paper, introducing a suitable notion of bisimulation and proving the cor-
responding Hennessy-Milner theorem for the logic. Finally, Sect. 4 concludes and
suggests a few topics for future work.

2 A Hybrid Logic for Reactive Transitions

Figure 1 illustrates how reactive transition systems may be used in the context of
connector specification, leading to short and crisp descriptions. On the left hand
side is depicted the structure of a merger-broadcaster connector intermediated
by a lossy channel; edges in the graph are labelled with the type and identifier
of constituent channels. The arrow connecting channel syncb to syncd inhibits a
transmission on the latter whenever a data token has entered the circuit through
the former.

The system on the right, on the other hand, expresses the semantics of a
synchronous channel � whose both ends can either receive or deliver data.
Ignoring all the double arrows the behaviour of such a connector would simply
be to accept a token at end a (represented by label ina) and deliver it at b (outb),
or the other way round. As designed, however, a strict alternating discipline is
enforced. Actually, crossing transition ina has two side effects: inhibits itself and,
at the same time, removes the inhibition affecting transition inb which will be
selected in the next acceptance round.

A (hybrid) logic to talk about this kind of systems is specified as follows.
Note the presence of two kinds of modalities (〈a〉 and �P ) as well as a hybrid
satisfaction operator (@i).
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• •
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synca
lossyi

syncc

syncdsyncb
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outa

(a) Conditional connector structure (b) The semantics of �

Fig. 1. Reactive transition in Reo connectors.

Definition 1. Given sets Π, NOM, and A, of atomic propositions, nominals,
and labels respectively, the set of HLr-formulas is defined inductively as follows:

ϕ ::= i | p | ¬ϕ |ϕ ∨ ϕ |@iϕ | 〈a〉ϕ |♦P ϕ

for any i ∈ NOM, p ∈ Π and a ∈ A. As usual, connectives ⊥, �, ∧, → and ↔
for a ∈ A and �P , [a] are introduced as abbreviations.

As discussed below, formulas are interpreted over paths. Modality ♦P ϕ and
its dual, �P , are blind for the path taken to arrive to the current state. They
are necessary because in a reactive system the accessibility relation may change
on the fly. Actually, differently from what happens in classical modal logic, the
evaluation of a proposition p at a world w depends on the path taken to reach w.
In general, (W,R), w � 〈a〉p ⇔ (W,R′), w′ � p for some edge w,w′ labelled by a,
where R′ is the accessibility relation obtained after crossing the edge (w,w′) ∈ R.

Example 1. Formula [synca][lossyi]〈syncd〉� characterises a property valid for
the system depicted in Fig. 1(a): the connector allows data to flow through chan-
nels synca, lossyi, and syncd in sequence. If channel syncb was taken instead,
it would no longer be possible to use syncd after lossyi. The fact is captured by
the formula [syncb][lossyi][syncd]⊥. Finally both properties can be combined in
one formula resorting to modality ♦P : The formula

[synca][lossyi]
(〈syncd〉� ∧ ♦P [syncd]⊥

)

records the possibility of data flowing through channel syncd for data items
coming from synca, as well as the fact that there exists another possible edge
leading to the same state, but which makes impossible to cross syncd.

Formally, let W be a nonempty set of vertices (or states), A a set of labels,
and denote by (A×W )∗ the set of all nonempty finite sequences (i.e. paths) over
A × W . Then,
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Definition 2. A reactive frame with labels is a set of finite paths Δ ⊆ W ×(A×
W )∗ such that (w) ∈ Δ for any w ∈ W , and

(
w1, ((a2, w2), ..., (an, wn))

) ∈ Δ

whenever
(
w1, ((a2, w2), ..., (an, wn), (an+1, wn+1))

) ∈ Δ, for every n ≥ 1.

Path composition is denoted by juxtaposition; if no ambiguity arises, w and
(a,w) will denote the corresponding singleton paths. Given a set W and a non-
empty set of paths Δ ⊆ W × (A × W )∗, function t : Δ → W returns t(w) = w
and t

(
w1, ..., (an, wn)

)
= wn. In practice, t returns the last state in the path.

Definition 3. Let Π be a set of atomic propositions. A reactive model with
labels is a triple (W,Δ, V ), where (W,Δ) is a reactive frame with labels, and
V : Π ∪ NOM → 2Δ is a function such that λ ∈ V (p) iff t(λ) ∈ V (p) for any
p ∈ Π,λ ∈ Δ and |V (i)| = 1 for any i ∈ NOM.

We may now define how to evaluate HLr-formulas with respect to a reactive
model with labels M = (W,Δ, V ), at a path λ ∈ Δ:

Definition 4. The validity of a HLr-formula is established recursively:

– M,λ � p iff λ ∈ V (p), for any p ∈ Π
– M,λ � i iff λ ∈ V (i), for any i ∈ NOM
– M,λ � ¬ϕ iff M,λ � ϕ
– M,λ � ϕ ∨ ψ iff M,λ � ϕ or M,λ � ψ
– M,λ � @iϕ iff M,γ � ϕ, where V (i) = {γ}
– M,λ � 〈a〉ϕ iff ∃w ∈ W , λ(a,w) ∈ Δ and M,λ(a,w) � ϕ
– M,λ � ♦P ϕ iff ∃γ ∈ Δ, M,γ � ϕ and t(λ) = t(γ).

Both modalities and the hybrid satisfaction operator are interpreted over
paths rather than individual states. For modality ♦P note that a path γ ∈ Δ
is considered accessible from another one λ ∈ Δ if and only if their final state
coincides.

Example 2. Consider the reactive model M = (W,Δ, V ) with labels depicted
in Fig. 2. The set of paths Δ is built as follows. From w4 no move is possible,
therefore, w4 ∈ Δ. From w3, one may move to w4 through an edge labeled
by a, thus w3 and

(
w3, (a,w4)

) ∈ Δ. Similarly, starting from w2 leads to w4,(
w2, (a,w3)

)
,
(
w2, (a,w3), (a,w4)

) ∈ Δ. Finally, from w1 one may move to w3,
through an edge labeled by a. However, afterwards, it is not possible to go to
w4 because the edge (w3, a, w4) was inhibited when edge (w1, a, w3) was crossed.
This is the effect represented by the double arrow. Therefore, w1,

(
w1, (a,w3)

) ∈
Δ. Δ contains no other paths. Clearly, M,w2 � 〈a〉〈a〉� but M,w1 � 〈a〉〈a〉�.

w1

w3 w4

w2

a

a

a

Fig. 2. A reactive frame (W, Δ).
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3 Bisimulation for Reactive Models with Labels

This section characterises a notion of bisimulation to compare reactive models
with labels. Its relationship with the modal equivalence induced by the logic
above is discussed.

Definition 5. Let (W,Δ, V ) and (W ′,Δ′, V ′) be reactive models over a set of
labels A. A relation S ⊆ Δ × Δ′ is an H-bisimulation if and only if

(nom) for any i ∈ NOM, w ∈ V (i) and v ∈ V ′(i) implies (w, v) ∈ S
and, for all λ ∈ Δ,λ′ ∈ Δ′, such that (λ, λ′) ∈ S,

(atom) V (p)(λ) = V ′(p)(λ′), for all p ∈ Π ∪ NOM
(A-zig) ∀a ∈ A

(
∀w ∈ W (λ(a,w) ∈ Δ ⇒ ∃w′ ∈ W ′, λ′(a,w′) ∈ Δ′ such that

(λ(a,w), λ′(a,w′)) ∈ S)
)

(A-zag) ∀a ∈ A
(
∀w′ ∈ W ′(λ′(a,w′) ∈ Δ′ ⇒ ∃w ∈ W,λ(a,w) ∈ Δ such that

(λ(a,w), λ′(a,w′)) ∈ S)
)

(P -zig) ∀γ ∈ Δ(t(λ) = t(γ) ⇒ ∃γ′ ∈ Δ′(t(λ′) = t(γ′) and (γ, γ′) ∈ S)
)

(P -zag) ∀γ′ ∈ Δ′(t(λ′) = t(γ′) ⇒ ∃γ ∈ Δ
(
t(λ) = t(γ) and (γ, γ′) ∈ S)

)

Example 3. Consider the two systems depicted in Fig. 3. Propositions holding at
each particular state are listed between square brackets; no nominals are consid-
ered. It is easy to verify that relation {((w1), (v1)

)
,
(
(w1, (a,w2)), (v1, (a, v2))

)
,(

(w2), (v2)
)
,
(
(w2, (b, w3)), (v2, (b, v2))

)
,
(
(w4), (v1)

)
,
(
(w4, (a,w3)), (v1, (a, v2))

)
,(

(w3), (v2)
)
,
(
(w3, (b, w2)), (v2, (b, v2))

)} is an H-bisimulation.

w2[q] w4[p]

w1[p] w3[q]

b
aa b v1[p] v2[q]a

b

Fig. 3. Two bisimilar models.

As expected, bisimilarity entails modal equivalence.

Theorem 1. Let (W,Δ, V ) and (W ′,Δ′, V ′) be two reactive models, let λ ∈
Δ,λ′ ∈ Δ′ and let S ⊆ Δ × Δ′ be an H-bisimulation. Then (λ, λ′) ∈ S implies
M,λ � ϕ ⇔ M ′, λ′ � ϕ for every formula HLr-formula ϕ.

Proof. The proof proceeds by induction over the structure of formulas. If ϕ ∈
Π ∪ NOM, then M,λ � ϕ ⇔ M ′, λ′ � ϕ by definition of H-bisimulation. The
non-basic cases are presented below, under the hypothesis that (λ, λ′) ∈ S.
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– M,λ � ¬ϕ ⇔ M,λ � ϕ ⇔ M ′, λ′
� ϕ ⇔ M ′, λ′ � ¬ϕ.

– M,λ � ϕ ∧ ψ ⇔ M,λ � ϕ and M,λ � ψ
⇔ M ′, λ′ � ϕ and M ′, λ′ � ψ ⇔ M ′, λ′ � ϕ ∧ ψ.

– M,λ � 〈a〉ϕ ⇒ ∃w ∈ W, λ(a,w) ∈ Δ and M,λ(a,w) � ϕ. By definition of
bisimulation we conclude that ∃w′ ∈ W ′, λ′(a,w′) ∈ Δ′ such that λ(a,w) and
λ′(a,w′) are bisimilar. The induction hypothesis entails ∃w′ ∈ W ′, λ′(a,w′) ∈
Δ′ and M ′, λ′(a,w′) � ϕ. Finally, M ′, λ′ � 〈a〉ϕ. The reciprocal condition is
proved analogously.

– M,λ � ♦P ϕ ⇒ ∃γ ∈ Δ, t(γ) = t(λ) and M,γ � ϕ. Again, by definition of
bisimulation, we conclude that ∃γ′ ∈ Δ′ with t(γ′) = t(λ′) such that γ′ and γ
are bisimilar. Thus, by induction, ∃γ′ ∈ Δ′ with t(γ′) = t(λ′) and M ′, γ′ � ϕ,
from which we conclude that M ′, λ′ � ♦P ϕ. The reciprocal condition is proved
analogously.

– M,λ � @iϕ ⇔ M,γ � ϕ such that V (i) = {γ}. From the definition of bisimu-
lation we have M ′, γ′ � ϕ such that V ′(i) = {γ′}, and therefore M ′, λ′ � @iϕ.
The reciprocal condition is proved analogously.

��
The reciprocal of Theorem 1 is only valid for a restricted class of models. In

classical modal logic a condition stating image-finiteness is usually imposed. We
resort here to a slightly more relaxed notion, that of a saturated model [4]. With
this restriction, Theorem 2 below explains how an H-bisimulation relating paths
indistinguishable by HLr-formulas can be built. In the sequel, for a relation
Z ⊆ Δ × Δ on paths, notation Z[λ] abbreviates the set {γ ∈ Δ : λZγ}.

Definition 6. Let Σ be a set of formulas and M = (W,Δ, V ) a reactive model
with labels.

– Σ is satisfiable over a set of paths Λ ⊆ Δ if there is a path λ ∈ Λ such that
M,λ � ϕ for every ϕ ∈ Σ.

– Σ is finitely satisfiable over a set of paths Λ ⊆ Δ if, for every finite subset
Σ̄ ⊆ Σ, there is a path λ ∈ Λ such that λ � ϕ for every ϕ ∈ Σ̄.

– A model is Z-saturated over a relation Z ⊆ Δ × Δ, if, for all λ, every set Σ
is satisfiable over Z[λ] whenever Σ is finitely satisfiable over Z[λ].

Definition 7. Given a reactive frame (W,Δ) and a set of labels A, relation
Ra ⊆ Δ × Δ, for each a ∈ A is defined by (λ, γ) ∈ Ra iff ∃w ∈ W,γ = λ(a,w).
Similarly, define relation P ⊆ Δ × Δ by (λ, γ) ∈ P iff t(γ) = t(λ).

In order to complete the Hennessy-Milner theorem for the presented logic,
we state and prove the next theorem. It is not proved for all reactive models but
comprise an embracing class of reactive models.

Theorem 2. Let M and M ′ be two P -saturated and (Ra)a∈A-saturated reactive-
models with labels. A non-empty relation S ⊆ Δ × Δ′ such that (λ, λ′) ∈ S iff
for any formula ϕ, M,λ � ϕ ⇔ M ′, λ′ � ϕ, is an H-bisimulation.
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Proof. Consider an arbitrary a ∈ A, suppose that (λ, γ) ∈ Ra, for some γ ∈ Δ
and let Sat(γ) = {ϕ : M,γ � ϕ}. Then, for each finite subset Σ′ ⊆ Sat(γ),
M,λ � 〈a〉

∧

ϕ∈Σ′
ϕ holds and, therefore, M ′, λ′ � 〈a〉

∧

ϕ∈Σ′
ϕ. This means that

Sat(γ) is finitely satisfiable over Ra(λ′), and since M ′ is Ra-saturated, Sat(γ)
is satisfied over Ra(λ′). Thus, there exists a state γ′ such that (λ′, γ′) ∈ Ra and
(γ, γ′) ∈ S. Analogously, if (λ, λ′) ∈ S and (λ′, γ′) ∈ Ra, then there exists some
w ∈ W such that (λw, λ′w′) ∈ S.

Suppose now that (λ, γ) ∈ P , for some γ ∈ Δ and consider Sat(γ) = {ϕ :
M,γ � ϕ}. Then, for each finite subset Σ′ ⊆ Sat(γ), M,λ � ♦P

∧

ϕ∈Σ′
ϕ and,

therefore, M ′, λ′ � ♦P

∧

ϕ∈Σ′
ϕ. This means that Sat(γ) is finitely satisfiable over

Pλ′ , and since M ′ is P -saturated, Sat(γ) is satisfied over Pλ′ . Again, there exists
a state γ′ such that (λ′, γ′) ∈ P and (γ, γ′) ∈ S. Analogously, if (λ, λ′) ∈ S and
(λ′, γ′) ∈ P , then there exists some γ ∈ Δ such that (λ, γ) ∈ P and (γ, γ′) ∈ S.

Now, let i ∈ NOM such that V (i) = {λ} and V ′(i) = {λ′} for some λ ∈
Δ,λ′ ∈ Δ′. Let (γ, γ′) ∈ S �= ∅, then, for any HLr-formula ϕ, M,γ � @iϕ ⇔
M ′, γ′ � @iϕ that semantically implies, M,λ � ϕ ⇔ M ′, λ′ � ϕ. Since ϕ is
arbitrary, (λ, λ′) ∈ S. Finally, if (λ, λ′) ∈ S, then we can trivially verify that,
∀p ∈ Π ∪ NOM, M,λ � p ⇔ M ′, λ′ � p by definition.

��
Clearly the theorem would fail for non Ra-saturated models. The following

proposition gives a sufficient condition for a model to be Ra-saturated.

Proposition 1. Let M = (W,Δ, V ) be a reactive model with labels and consider
Ra(λ) as defined above. If |Ra(λ)| < ∞, for any λ ∈ Δ, then M is Ra-saturated.

Proof. Suppose |Ra(λ)| < ∞, for any λ ∈ Δ, holds for M , but the model is not
Ra-saturated. This means that there exists λ ∈ Δ and a set Σ of formulas such
that Σ is finitely satisfiable over Ra(λ) but not satisfiable over Ra(λ).

Clearly, any formula ϕ ∈ Σ, {ϕ} is satisfiable over Ra(λ) which means that
〈a〉Σ = {〈a〉ϕ : ϕ ∈ Σ} is satisfied in λ. Since |Ra(λ)| < ∞, every path in
Ra(λ) can be enumerated as γ1, . . . , γn. Since Σ is not satisfiable over Ra(λ),
there is a formula ϕi ∈ Σ for each γi, i ∈ {1, ..., n}, such that ϕi is not satisfied
in γi. However, for any i ∈ {1, ..., n}, 〈a〉ϕi is satisfied in λ. Thus, the set Φ =
{ϕ1, . . . , ϕn} ⊆ Σ is finite and, therefore, satisfiable over Ra(λ). This leads to a
contradiction since each path γi ∈ Ra(λ) does not verify ϕi ∈ Φ.

��
An analogous result for relation P is obtained along similar lines, but additionally
requiring the absence of cycles in the reactive model.

Our last results establish a connection between reactive models, as discussed
in this paper, and the usual Kripke models. We start by making explicit how a
reactive model arises from a classical one. Note that in the sequel NOM = ∅
because nominals, in the logic introduced here, bind paths, rather than states as
in standard hybrid logic.
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Definition 8. A Kripke model K = (WK , R, VW ) induces a reactive model M =
(W,Δ, V ) as follows:

• W = WK

• Δ is the set of all possible paths generated by the accessibility relation R, i.e.:
– (w) ∈ Δ for any w ∈ W
– For any n ≥ 2, (w0, ..., wn) ∈ Δ whenever ∀i ∈ {1, n − 1}, (wi, wi+1) ∈ R

• V is defined in order to be coherent with the notion of valuation for models
with no reactivity:
– ∀p ∈ Π, λ ∈ V (p) iff t(λ) ∈ VK(p)

Theorem 3. Let (WK , R, VK), (W ′
K , R′, V ′

K) be Kripke models and B ⊆ W×W ′

a bisimulation. Let (W,Δ, V ) (respectively, (W ′,Δ′, V ′)) be the induced reactive
model with respect to (W,R, V ) (respectively, (W ′, R′, V ′)). Let the relation S ⊆
Δ × Δ′ be such that (λ, λ′) ∈ S iff t(λ)Bt(λ′). Then S is an H−bisimulation of
reactive models (with NOM= ∅).
Proof. (nom) Trivial since NOM = ∅.

(A − zig) Let us consider λ ∈ Δ, λ′ ∈ Δ′ and w ∈ W such that (λ, λ′) ∈ S
and λw ∈ Δ. By definition of S, we conclude that (t(λ), t(λ′)) ∈ B and
(t(λ), w) ∈ R. Therefore, since B is a bisimulation, there exists w′ ∈ W ′ such
that (t(λ′), w′) ∈ R′ and (w,w′) ∈ B. Thus, ∃w′ ∈ W ′, (t(λw), t(λ′w′)) ∈ B
which implies ∃w′ ∈ W ′, (λw, λ′w′) ∈ S.

(A − zag) Analogous to A − zig.

(P − zig) Let us consider λ, γ ∈ Δ and λ′ ∈ Δ′ such that t(λ) = t(γ)
and (λ, λ′) ∈ S. Therefore (t(λ), t(λ′)) ∈ B implies (t(γ), t(λ′)) ∈ B and, thus,
(γ, λ′) ∈ S. The result follows because, trivially, t(λ′) = t(λ′).

(P − zag) Analogous to P − zag.

(atom) M,λ �X p ⇔ M, t(λ) � p for any p ∈ Π. Thus, if (λ, λ′) ∈ S, then
M,λ �X p ⇔ M, t(λ) � p ⇔ M ′, t(λ′) � p ⇔ M ′, λ′ �X p

��
In the opposite direction a similar result pops out:

Theorem 4. Let (WK , R, VK), (W ′
K , R′, V ′

K) be Kripke models and S ⊆ Δ ×
Δ′ a bisimulation between paths of the corresponding induced reactive models.
Define relation B ⊆ W × W ′ by (w,w′) ∈ B iff there exists (λ, λ′) ∈ S such that
t(λ) = w and t(λ′) = w′. Then B is a bisimulation between the original Kripke
models.

Proof. We prove the zig and zag conditions, as well as the semantic equivalence
between atomic propositions.
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(zig) Let us suppose (w,w′) ∈ B and that there exists v ∈ W such that
(w, v) ∈ R. Then, there exists (λ, λ′) ∈ S such that t(λ) = w and t(λ′) = w′.
Furthermore, λw ∈ Δ. Since S is a bisimulation, there exists v′ ∈ W ′ such that
λ′w′ ∈ Δ′ and (λw, λ′v′) ∈ S. Hence, t(λv) = v, t(λ′v′) = v′ and, therefore,
vBv′.

(zag) Analogous to zig.
(atom) Finally, we note that M,λ �X p ⇔ M, t(λ) � p for any p ∈ Π

because X = Π. If (w,w′) ∈ B, then there exists (λλ′) ∈ S such that t(λ) = w
and t(λ′) = w′. Because M,λ �X p ⇔ M ′, λ′ �X p, we conclude that M, t(λ) �
p ⇔ M ′, t(λ′) � p, i.e., M,v � p ⇔ M ′, v′ � p. ��

As explained above, the set of nominals was assumed to be empty in the
context in which both theorems were formulated. However, if nominals were
considered in the language of reactive models, the second theorem would remain
valid, but not the first one, as non bisimilar paths may be bound by the same
nominal.

4 Conclusions and Future Work

This paper indicates that reactive transition systems may play an interesting role
in the formal description of software connectors in Reo, either from a behavioural
(semantic) or spatial (syntactic) point of view. In the later sense, we are currently
enriching our previous work on connector reconfiguration [17] to handle such
reactive spatial descriptions of coordination patterns.

A preliminary step for those developments is a suitable characterisation of
equivalence. Such is the focus of the technical contents of the present paper. We
introduce a notion of bisimulation for reactive transition systems with labels and
establish, under reasonable conditions, a Hennessy-Milner-like result. This adds
to the quest of Gabbay and his collaborators for suitable (logic) tools to specify
the dynamics of reactivity. We are currently extending our work to switch graphs
[13], another sort of reactive frames with an interesting potential for describing
coordination patterns, namely in the context of analogues to biological systems—
a main topic in the first author’s doctoral research [10,11].

Acknowledgments. This work is a result of project “SmartEGOV/NORTE-01-0145-
FEDER-000037”, supported by Norte Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the
European Regional Development Fund (EFDR). Additional support was provided by
the European Regional Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020 and by National Funds
through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia
within project UID/MAT/04106/2013 at CIDMA. The first author is also supported
by an Individual Doctoral Grant (reference number PD/BD/114186/2016).

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)



A Note on Reactive Transitions and Reo Connectors 67

2. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. Sci. Comput. Program. 55(1–3), 3–52 (2005)

3. Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic J. IGPL 22(2), 309–332
(2014)

4. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
J. IGPL 23(4), 601–627 (2015)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

6. Barbosa, M.A., Barbosa, L.S.: A perspective on service orchestration. Sci. Comput.
Program. 74(9), 671–687 (2009)

7. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic J. IGPL 8(3), 339–365 (2000)

8. Bonsangue, M., Clarke, D., Silva, A.: Automata for context-dependent connectors.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp.
184–203. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02053-
7 10

9. Brauner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-94-007-0002-4

10. Figueiredo, D.: Relating bisimulations with attractors in Boolean network models.
In: Botón-Fernández, M., Mart́ın-Vide, C., Santander-Jiménez, S., Vega-Rodŕıguez,
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Personal Note: Working with Farhad
Arbab 1990–2005

Kees Blom(B)

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Kees.Blom@cwi.nl

From 1990 to 2005 the author had the privilege and pleasure to work as a
programmer in Farhad Arbab’s research group, initially on the development,
implementation and applications of the Manifold coordination language. Dur-
ing these years I learned to appreciate his broad scientific knowledge and tech-
nical insight, as well as his humor and warm personality.

The work on Manifold evolved in a number of moderate scale trials (a
dozen or so cooperating computers) in different application fields [1–4,7]. The
latter work on ‘Chaotic Iteration’ raised a question how to effectively imple-
ment Distributed Termination Detection (DTD) for sets of asynchronously con-
nected processes without a central supervising process. This proved to be an old
problem [5,8] for which many solutions had been proposed under various condi-
tions [11], until recently [9]. Because at that time all existing DTD algorithms
had serious drawback in terms of prerequisites and properties, a new experimen-
tal DTD algorithm was designed and implemented in Manifold. However, these
experiments showed that other programming languages such as Java were more
suitable for programming this type of algorithms.

This effort resulted in a Java implementation the BTTFWave protocol that
was used in a number of applications, see [10] where also a short description
of this protocol is given. Also, a formal correctness proof of the BTTFWave
protocol has been presented in [12]. All these experiences may have helped to
inspire Farhad in setting up a totally new paradigm for component composition:
Reo [6], which in later years proved to be quite fruitful.

It so happened that around that time Farhad was appointed as a professor at
Leiden University, and I was asked to join another research group. Although we
managed by working in weekends and evening hours to complete specification,
implementation and some applications of the BTTFWave protocol, Farhad
never found the opportunity to publish more extensively on this work.

Hopefully this may change now that Farhad has reached the state of retire-
ment, because in my opinion it is quite an elegant and effective protocol, that
deserves a wider audience. In any event, I wish him all the best in years to come.

c© Springer International Publishing AG, part of Springer Nature 2018
F. de Boer et al. (Eds.): Arbab Festschrift, LNCS 10865, pp. 68–69, 2018.
https://doi.org/10.1007/978-3-319-90089-6_5
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Abstract. In this paper, we revise the notion of Soft Constraint
Automata, where automata transitions are weighted and consequently
each action is associated with a preference value. We first relax the
underlying algebraic structure that models preferences, with the pur-
pose to use bipolar preferences (i.e., both positive and negative ones).
Then, we equip automata with memory cells, that is, with an internal
state to remember and update information from transition to transition.
Finally, we revise automata operators, as join and hiding.

Keywords: Constraint automata with memory · Soft constraints

1 Introduction

In the history of Computer Science, many coordination languages have been
proposed for the specification and implementation of interaction protocols, in
order to let software components communicate. Such formalisms include process
calculi, concurrent objects, actors, agents, shared memory, message passing, and
more. A distinctive feature of these formalisms is that they are all primarily
action-based models that provide constructs for the direct specification of things
that interact, rather than a direct specification of interaction (i.e., protocols).

This is one of the main motivations behind the long-running success of the
Reo language [2], whose distinctive feature instead is to treat interaction as an
explicit first-class concept. Reo comes with its own composition operators, and it
allows for specifying more complex interaction protocols by combining simpler,
and possibly primitive, protocols. In practice, Reo connectors impose constraints
on the order in which the components can exchange data items with each other;
even though the basic primitive channels are simple, Reo connectors can actually
describe rather complex protocols.

The literature offers tens of different semantics formalisms to express the
behaviour of Reo connectors [17]: co-algebraic, colouring, and other models
based on, for instance, constraints and Petri nets. The operational models (i.e.,
automata) are probably the most popular approaches: Constraint Automata [8]
c© Springer International Publishing AG, part of Springer Nature 2018
F. de Boer et al. (Eds.): Arbab Festschrift, LNCS 10865, pp. 70–85, 2018.
https://doi.org/10.1007/978-3-319-90089-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90089-6_6&domain=pdf


Soft Constraint Automata with Memory 71

(CA) and (several) related variants, and Context-sensitive Automata. Variants
of CA consists in Timed, Probabilistic, Continuous-time, Quantitative Resource-
sensitive timed, and Transactional extensions.

In the remainder of this paper, our aim is to both relax and extend one of
the chronologically latter variants of CA, hence not included in the survey in
[17]: Soft Constraint Automata [6], also called Soft Component Automata [19,
20] (SCA in both cases). SCA is a state-transition system where transitions
are labelled with actions and preferences. Higher-preference transitions typically
contribute more towards the goal of the component.

The aim of this paper consists of three sub-goals. First, we relax the definition
of the underlying structure that models preferences: instead of semirings as in
[6,19,20], we exploit partially ordered monoids (see Sect. 2) to naturally relax
soft constraints in order to represent bipolar preferences as labels for automata
transitions. In this way, we can express both positive and negative values, e.g.,
costs and retributions for firing a transition rule.

Second, we extend SCA with a notion of memory (SCAM), as Arbab and co-
authors have already accomplished for CA [18]. Each transition of a SCAM can
also put a condition on the current data assigned to a finite set of memory cells,
and update their respective values. Therefore, together with states, memory cells
determine the configuration of a connector, and thus can influence the observed
behaviour of the component.

The third and last intention is less scientific, but more significant from our
side: we feel the need to celebrate Farhad’s influential intuition behind Reo, and
his far-reaching contribution to many fields of Computer Science as, to name
only two of them, Concurrency Theory and Coordination Models and Languages.
Indeed, besides personal gratitude,1 our will is to continue playing with “Puff’s
gigantic tail” for a long time ahead [3].

The outline of the paper is as follows: in Sect. 2 we set the background notions
behind the algebraic structure we use for our soft constraints, that is partially
ordered monoids; then, in Sect. 3 we just define soft constraint functions. In
Sect. 4 we introduce and formally define SCAM, while Sect. 5 summarises the
related work. Finally, Sect. 6 wraps up the paper with conclusive thoughts and
hints about related future research.

2 Partially Ordered Monoids

The first step is to define an algebraic structure for modelling preferences. It
falls into the range of bipolar approaches: we refer to [14] for the missing proofs
as well as for an introduction and a comparison with other proposals.

1 Francesco would like to thank Farhad for his precious mentoring during his visit at
CWI as “Alain Bensoussan” Fellow during 2011–2012; Fabio for the many meetings
and collaborations along the years; and Kasper for his incredible supervision job and
the many interesting discussions.
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Definition 1 (Orders). A partial order (PO) is a pair 〈A,≤〉 such that A is a
set and ≤ ⊆ A × A is a reflexive, transitive, and anti-symmetric relation. A PO
is a complete lattice (CL) if any subset of A has a least upper bound (LUB).

The LUB of a subset X ⊆ A is denoted
∨

X, and it is unique. By definition
⊥ =

∨
∅ is the bottom of the PO and � =

∨
A is the top.

Definition 2 (PO monoids). A (commutative) monoid is a triple 〈A,⊕,0〉
such that ⊕ : A × A → A is a commutative and associative function satisfying

– ∀a ∈ A.a ⊕ 0 = a, where 0 ∈ A is the identity element.

A partially ordered monoid (POM) is a 4-tuple 〈A,≤ ⊕,0〉 such that 〈A,≤〉 is
a PO and 〈A,⊕,0〉 a monoid. It is monotone if

– ∀a, b, c ∈ A. a ≤ b =⇒ a ⊕ c ≤ b ⊕ c

and it is distributive if

– ∀a ∈ A.∀X ⊆ A. a ⊕
∨

X =
∨

{a ⊕ x | x ∈ X}.

whenever X is finite. A complete lattice monoid (CLM) is a POM such that the
underlying order is a CL, it is monotone if the underlying POM is so and it is
distributive if the property holds for possibly infinite subsets.

Note that in a distributive POM the ⊕ operation is monotone. In the follow-
ing, we usually use an infix notation a ⊕ b for ⊕(a, b).

Remark 1. It is now easy to show that distributive POMs are tropical semirings,
i.e., semirings with a sum operator a ⊕ b =

∨
{a, b} that is idempotent. If 0 is also

the top of the PO we end up in what are called absorptive semirings [16] in the
algebra literature, which in turn are known as c-semirings in the soft constraint
jargon [10]. Combined with monotonicity, imposing 0 to be the top means that
preferences are negative, i.e., ∀a, b ∈ A.a ⊕ b ≤ a. Indeed, most better known
structures that are used in the soft constraints literature are absorptive semirings
whose underlying, distributive POM is actually a CLM: among them we recall
the Boolean (〈{false, true},→,∧, true〉), Fuzzy (〈[0, 1],≤, min, 1〉), Probabilistic
(〈[0, 1],≤,×, 1〉), and Tropical (〈R+ ∪ {+∞},≥,+, 0〉) semirings (where, in the
latter, ≥ the inverse of the standard order, thus +∞ is the bottom and 0 the
top of the CLM, respectively).

Remark 2. Note that CLMs feature an operator that carries the intuitive mean-
ing of subtraction, which can be defined as a�−b =

∨
{c | b ⊕ c ≤ a}. It satisfies

the usual property of residuation, namely b ⊕ c ≤ a ⇐⇒ c ≤ a�−b: see e.g. [11]
for a brief survey on residuation for absorptive semirings.
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2.1 Cylindric Algebras

We now introduce two families of operators that we use for modelling suitable
operators on automata. They are generalised notions of existential quantifiers
and diagonals [22]. For this section, we fix a POM M = 〈A,≤,⊕,0〉.

Definition 3 (Cylindrification). Let V a set of variables. A cylindric oper-
ator ∃ over M and V is a family of monotone, identity preserving functions
∃x : A → A indexed by elements in V such that for all a, b ∈ A and x, y ∈ V

1. a ≤ ∃xa
2. ∃x(a ⊕ ∃xb) = ∃xa ⊕ ∃xb
3. ∃x∃ya = ∃y∃xa

The support of a ∈ A is the set of variables supp(a) = {x ∈ V | ∃xa �= a}.

Preserving identities means that ∃x0 = 0. Combined with item 2, it implies
idempotency of ∃, i.e., ∃x∃xa = ∃xa, which implies x �∈ supp(∃xa). Since ∃ is
commutative, we denote ∃x1 · · · ∃xn

a as ∃Xa, for X = {x1, . . . , xn} ⊆ V .
We now fix a set of variables V and a cylindric operator ∃ over M and V .

Definition 4 (Diagonalisation). A diagonal operator δ for ∃ is a commutative
function δ : V × V → A such that for all a ∈ A and x, y, z ∈ V

1. δx,x = 0
2. δx,y = ∃z(δx,z ⊕ δz,y) for z �∈ {x, y}
3. δx,y ⊕ ∃x(a ⊕ δx,y) ≤ a for x �= y

We use a subscript notation, as δx,y for δ(x, y). Axioms 1 and 2 above plus
idempotency imply ∃xδx,y = 0, which implies (by axiom 2 and idempotency of
∃) that supp(δx,y) = {x, y} for x �= y. We lastly fix a diagonal operator δ for ∃.

Definition 5 (Substitution). Let x, y ∈ V and a ∈ A. The substitution a[y/x]
is defined as a if x = y and as ∃x(δx,y ⊕ a) otherwise.

Substitution behaves correctly with respect to ∃.

Lemma 1. For all x, y, w ∈ V and a ∈ A, we have

– (∃xa)[y/x] = ∃xa;
– ∃xa = ∃y(a[y/x]), if y �∈ supp(a);
– (∃wa)[y/x] = ∃w(a[y/x]), if w �∈ {x, y}.

Proof. The proofs are immediate. Consider for instance the most difficult item 3.
If x = y the proof is over. Now, since w �∈ {x, y} we have that w �∈ supp(δx,y), so
that ∃w(a[y/x]) = ∃w∃x(δx,y⊕a) = ∃x∃w(δx,y⊕a) = ∃x(δx,y⊕∃wa) = (∃wa)[y/x].

Finally, we can now rephrase some additional laws that hold for the crisp
case (see e.g. [7, p. 140]).
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Lemma 2. For all x, y ∈ V and a ∈ A, we have

1. (a[y/x])[x/y] = a, if y �∈ supp(a);
2. a[y/x] ⊕ b[y/x] = (a ⊕ b)[y/x];
3. x �∈ supp(a[y/x]), if x �= y.

Proof. Consider the most difficult item 2. By definition a[y/x]⊕ b[y/x] =
∃x(δx,y ⊕ a)⊕ ∃x(δx,y ⊕ b), which in turn coincides with ∃x(δx,y ⊕ a⊕ ∃x

(δx,y ⊕ b)) by axiom 2 of ∃, and by axiom 3 of δ and its idempotency we have
that ∃x(δx,y ⊕ a⊕ ∃x(δx,y ⊕ b)) ≤ ∃x(δx,y ⊕ a⊕ b) = (a⊕ b)[y/x]. The vice versa
holds by the monotonicity of ∃, so that ∃x(δx,y ⊕ b) ≥ δx,y ⊕ b. Item 1 has a
similar proof, while 3 is immediate.

3 A Key Example: Soft Constraints

Previously, we mentioned as typical examples of distributive CLMs the Fuzzy
semiring 〈[0, 1],≤,min, 1〉 of the [0, 1] interval of real numbers with the usual
order and multiplication as the monoidal operator, and the Tropical semiring
〈R+ ∪ {+∞},≥,+, 0〉 of non-negative reals plus ∞ with the inverse order and
addition. In this section, we give a pivotal example of a CLM that is a cylindric
algebra, introducing the notion of soft constraint (following, yet generalising
[12]).

Definition 6 (Soft constraints). Let V be a set of variables, D a data domain
and M = 〈A,≤,⊕,0〉 a CLM. A (soft) constraint c : (V → D) → A is a function
associating a value in A to every variable assignment η : V → D.

We define C as the set of constraints that can be built starting from chosen
M, V , and D. The application of a constraint function c : (V → D) → A to a
variable assignment η : V → D is denoted cη.

Although a constraint involves all the variables in V , it may depend on the
assignment of a finite subset of them, called its support (cf. Definition 3). For
instance, a binary constraint c with supp(c) = {x, y} is a function c : (V →
D) → A which depends only on the assignment of variables {x, y} ⊆ V , meaning
that two assignments η1, η2 : V → D differing only for the image of variables
z �∈ {x, y} coincide (i.e., cη1 = cη2). The support generalises the classical notion
of scope of a constraint.2 We often refer to a constraint with support X as cX .

The set of constraints forms a CLM, with the structure lifted from M.

Lemma 3 (CLM of constraints). The set of constraints C (over M, V , and
D) is endowed with a relation ≤, operation ⊕, and constant 0, such that

– c1 ≤ c2 if c1η ≤ c2η for all η : V → D
– (c1 ⊕ c2)η = c1η ⊕ c2η
– 0η = 0

is a complete lattice monoid.

2 For a first-order constraint φ, the support supp(φ) is contained in the set of free
variables free(φ). For example, supp(x = x) = ∅ ⊆ {x} = free(x = x).
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We denote the CLM 〈C,≤,⊕,0〉 of constraints by C. Combining two con-
straints by the ⊕ operator means building a new constraint whose support con-
tains at most the variables of the original ones. Such constraint associates with
each tuple of domain values for such variables the value obtained by multiplying
those associated by the original constraints to the appropriate sub-tuples. The
identity is the constant function mapping all η to 0.

Example 1 (A simple CLM). Let us consider S as the CLM of non-negative
reals, and as D any subset of such reals. A linear polynomial with variables in
V and non-negative reals as coefficients such as ux + vy + z can be interpreted
as the soft constraint associating with a function η : V → D the real obtained
as (u × η(x)) + (v × η(y)) + z. Clearly, the composition of such constraints is
precisely the addition of polynomials. Instead, the ordering might not be the one
induced by the coefficients, due to the presence of constants. For example, let us
consider the polynomials 2x + 1 and x + 5 and let us assume D = {1, 2, 3}: it
holds that (2x + 1) ⊕ (x + 5) = (3x + 6) and 2x + 1 ≤ x + 5.

Similarly for residuation, which is just bounded subtraction of coefficients.
Since 2x + 1 ≤ x + 5, by construction (2x + 1)�−(x + 5) is the bottom constraint,
which can be represented by the polynomial 0. Instead, (x + 5)�−(2x + 1) could
be synthetically described as −x + 4, even if the latter falls outside of the
polynomials we considered since it has a negative coefficient. In general terms,
also such polynomials might be allowed: it would suffice to assume that if the
result of the evaluation of the polynomial is a negative real, then it is put to 0.

If D is not the singleton, then the support of a polynomial is precisely the
set of variables occurring in it.

The CLM of constraints enjoys the cylindric properties, as shown by the result
below (for cylindric operators and diagonals in the idempotent case, see [12]).

Lemma 4 (Cylindric algebra of constraints). The CLM of constraints C
endowed with cylindric operators ∃x and diagonal elements δx,y, such that

– (∃xc)η =
∨

d∈D cη[x := d], for all c ∈ C, x ∈ V

– δx,yη =
{

0 if η(x) = η(y)
⊥ otherwise , for all x, y ∈ V

is a cylindric algebra.

Differently from the tradition in soft constraint literature, we allow the data
domain D to be infinite. Hence, ∃x may need to compute the least upper bound
of an infinite set of soft constraints. However, Lemma 3 shows that C is a CLM,
which guarantees the existence of such an upper bound. These observations
motivate why we view the set of constraints as a CLM rather than just a POM.

Hiding means removing variables from supports: supp(∃xc) ⊆ supp(c)\{x}.3

Finally, the diagonal element δx,y has support {x, y} for x �= y, and ∅ for δx,x.

3 The operator is called projection in the soft framework, and ∃xc is denoted c ⇓V −{x}.
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Example 2 (Continued. . . ). Let us consider again the situation of Example 1.
Polynomials can also be equipped with a cylindric operator, so that e.g. ∃x(2x +
1) =

∨
d∈D 2d + 1 = 3, i.e., the supremum obtained for the evaluation of the

polynomial with respect to the elements in D. The diagonal operator δx,y is a
kind of matching [x = y], since [x = y]η is either 0 or ∞ depending if η(x) = η(y)
or η(x) �= η(y), respectively. A proper treatment would anyhow require to extend
the syntax of polynomials by including suitable constants.

4 Soft Constraint Automata

Constraint Automata (CA) have bee introduced in [8] as a formalism to describe
the behaviour and possible data flow in coordination models (such as Reo lan-
guage [8]); they can be considered as acceptors of Timed Data Streams [1,8]. The
proposal has been recently enriched by adding an explicit notion of memory [18].
In this section we rephrase most definitions presented in the weighted extension
of CAs, namely Soft Constraint Automata (SCA) [6], and we further extend the
framework by relying on CLMs instead of c-semirings as in [6] and by including
memory, thus obtaining Soft Constraint Automata with Memory (SCAM).

4.1 Weighted Data Streams

As a first step, we recall and rephrase the definition of Weighted Data Streams
(WDS), which is also given in [6].4

In this section we fix a data domain D as well as a CLM M = 〈A,≤,⊕,0〉.

Definition 7 (Weighted data streams). A weighted data stream (WDS) over
D and M is a partial function φ : R+ ⇀ (A \ {⊥}) × D whose domain dom(φ)
is closed and discrete. We write WDS for the set of all weighted data streams.

Intuitively, a WDS φ : R+ ⇀ (A\{⊥})×D records the time stamps dom(φ) =
{φ0, φ1, . . .}, such that i < j implies φi < φj , at which data is exchanged. Indeed,
discreteness (each element is isolated) ensures that dom(φ) is countable (hence,
it has the cardinality of a subset of natural numbers). Since it is also closed,
the domain contains no unrealistic situations like {1/n | n ∈ N}, since its limit
would not be discrete. The values φ(φi) = (ai, di), for i ≥ 0 and φi ∈ dom(φ),
consists of the observed data di and its preference ai �= ⊥.

Our current definition of WDSs slightly differs from the original definition
in [6]. The main distinction is that we allow finite WDSs, i.e., the domain dom(φ)
may be finite. In case of an empty domain dom(φ) = ∅, WDS φ admits no
observable behaviour at all. This generalisation is especially useful for the hiding
operator on SCAM, as proposed in Sect. 4.6.

The second difference with the original definition in [6] is that our WDSs are
partial functions, rather than triples of streams. However, our assumptions on
the domain imply that these representations are similar.
4 As noted in [6], these streams do not imply time constraints, and thus our (soft) CA

are not “timed” [8], so that we dropped the adjective altogether.
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The behaviour of a system is often described in terms of tuples of WDSs, each
one corresponding to a data passing through a given port; put simply, given a
finite set of port names N , the behaviour is described by a function N → WDS.

4.2 Soft Constraint Automata with Memory

In a CA, a transition label is a pair 〈N, g〉 consisting of a synchronisation con-
straint N and a data constraint g. The synchronisation constraint is a finite set
of names that consists exactly of those input/output ports through which data
is exchanged during the current transition. The data constraint is a boolean
formula that guards the data exchanged at the ports in N . In the soft frame-
work, the overall structure is similar, even if the guard is now a soft constraint
that evaluates to an element in M, instead of a boolean value. Furthermore,
we extend our data constraints with memory variables. Using these variables, a
guard can require a property about the current and next state of the data in
memory.

Besides a data domain D and a finite set of port names N , we fix a finite
set X of memory cells and a CLM M = 〈A,≤,⊕,0〉. Furthermore, we consider
the set X v = •X ∪ X • of memory variables: they are obtained by tagging the
memory cells. To avoid conflicting names, we assume that N ∩ X v = ∅.

Definition 8 (Soft constraints with memory). A soft constraint with mem-
ory over N , X , D, and M is a soft constraint c : (N ∪ X v → D) → A.

We denote by CX the CML of soft constraints with memory. Informally, a
soft constraint with memory is a function that returns a preference value a ∈ A
given an assignment for a subset N of names in N and a subset X of variables
in X v that occur in its support.

Note that, by using the Boolean semiring we model the “crisp” data-
constraints presented in the definition of CA [8]. Therefore, CA are subsumed by
Definition 9. Note also that weighted automata have already been defined in the
literature [13]; in SCA, weights are determined by a constraint function instead.

Definition 9 (Soft constraint automata with memory). A Soft Constraint
Automaton with Memory (SCAM) over D and M is a tuple 〈Q,X ,N ,−→,Q0〉
such that Q is a finite set of states, X a finite set of memory cells, N a finite set
of port names, −→ ⊆ Q × 2N × CX × Q a finite set of transitions, and Q0 ⊆ Q
a set of initial states, such that (q,N, c, p) ∈ −→ implies supp(c) ⊆ N ∪ X v.

We usually write q
N,c−−→ p instead of (q,N, c, p) ∈ −→ and we call N the

synchronisation constraint and c the guard of the transition, respectively. We
say a transition is invisible whenever N = ∅.

The intuitive meaning of a SCAM T as an operational model for service
queries is similar to the interpretation of labelled transition systems as mod-
els for reactive systems. The states represent the configurations of a service.
The transitions represent the possible one-step behaviour, where the meaning
of q

N,c−−→ p is that, in configuration q, the ports in n ∈ N have the possibility of
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performing I/O operations that satisfy the soft guard c, which now also includes
requirements on memory cells, and that leads from configuration q to p, while
the other ports in N\N perform no I/O operation. Each assignment to port
names in N represents the data exchanged by the I/O operations through these
ports, while the assignments to variables in •X and X• represent the data in
memory cells before and after the transition.

Example 3 (Buying and selling). In Fig. 1, we show a (deterministic) SCAM,
where the set of names N is {b, s}, the set of variables X v is {•a, a•, •l, l•}, and
the data domain consists of all integers. The constraints cb and cs describe the
preferences on the operation of buying and selling: if the cost b of buying an
item is below a threshold with respect to the value in the account •a (for the
sake of simplicity, the account remains positive, i.e., •a − b > 0), then the item
is bought and the account is decreased (a• = •a − b and l• = b). Likewise, if
the price s received in selling an item is above the paid price (•l < s), then it is
accepted and the account is incremented (a• = •a + s).

q0start q1

〈{b}, cb〉

〈{s}, cs〉

Fig. 1. An automaton with memory.

The formal definition of constraints cb and cs is given in Eqs. 1 and 2.

c{b}η =

{−η(b) if 0 < η(l•) = η(b) = η(•a) − η(a•) < η(•a)
⊥ otherwise

(1)

c{s}η =

{
η(s) if η(•l) < η(s) = η(a•) − η(•a)

⊥ otherwise
(2)

For example, let us assume that for the first two transitions (from q0 to q1
and from q1 to q0, respectively) we have η(b) = 2 and then η(s) = 3. Also, let us
assume that we have as initial account a = 6 (i.e., •a = 6). Now, the constraint
c{b}η associated to the first transition has value −2, since the money is spent,
and the values associated to the memory cells l and a after the transition (i.e., to
the variables l• and a•) are 2 and 4, respectively. The constraint c{s}η associated
to the second transition has value 3, since the money is earned (and it is more
than what the item was paid), and the value associated to the memory cell a
after the transition (i.e., to the variable a•) is 7, while the value associated to
the memory cell l (i.e., to the variable l•) is irrelevant, hence it can be any
value.
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4.3 The Language of SCAM

Let T be a SCAM and ΩX : X → D the set of assignments over its memory cells.
The configurations of T are pairs 〈q, ω〉 ∈ Q × ΩX , which are initial whenever
q ∈ Q0. In other words, we initialise each memory cell to a random datum.

The accepted language of a SCAM T at a given configuration s is a relation
L(T , s) ⊆ WDSN over weighted data streams on ports from N . An accepted
word consists of a N -tuple of weighted data streams (i.e., a map N → WDS ).
As usual, the language of an automaton is given by the union of all the languages
accepted by its initial states, i.e., L(T ) =

⋃
s∈Q0×ΩX L(T , s).

Consider the automaton T from Example 3, with ports N = {b, s} and start-
ing state q0. The accepted language of T is formed by the runs of alternate
assignments for {b} and {s}, which guarantees that a balance a is always posi-
tive.

Recall that φ0 ∈ R+ is the minimum of the domain dom(φ), for every WDS
φ : R+ ⇀ A × D with non-empty domain.

Definition 10 (Accepted runs). Let T = 〈Q,X ,N ,−→,Q0〉 be a SCAM.
The accepted language of T is the largest map L(T ,−) : Q × ΩX → 2(WDS)N

,
such that if (φx)x∈N ∈ L(T , 〈q, ω0〉) and t0 = min{φx

0 | x ∈ N ,dom(φx) �= ∅}
exist, there exist a transition q

N,c−−→ p and an assignment η : N ∪ X v → D with

– cη �= ⊥,
– N = ∅ or N = {x ∈ N | φx

0 = t0},
– φx(t0) = 〈cη, η(x)〉, for all x ∈ N ,
– η(•x) = ω0(x), for all x ∈ X ,
– (φx|R+\{t0})x∈N ∈ L(T , 〈p, ω1〉), with ω1(x) = η(x•), for all x ∈ X ,

where φx|R+\{t0} is the restriction of φx to R+ without t0. The set L(T ) of
accepted runs is the union of the acceptable runs from Q0 × ΩX .

Observe that the expression φx(t0) is well-defined, because x ∈ N implies
N �= ∅ and t0 = φx

0 ∈ dom(φx). Also note that, since supp(c) ⊆ N × X v, the
value of η(x), for x ∈ N \ N , is irrelevant.

If we never observe any data at any port (i.e., dom(φx) = ∅, for all x ∈ N ),
then the minimum t0 = min{φx

0 | x ∈ N ,dom(φx) �= ∅} does not exist, and the
condition in Definition 10 is vacuously true.

Example 4 (The language of business). Going back to Example 3, the language
recognised by state q0 with respect to the memory cell assignment [a = p, l = 0]
is the possibly infinite sequence of weights and port name assignments 〈−b1, b =
b1〉; 〈s1 − b1, s = s1〉; . . . such that 0 < bi ≤ si and additionally in any (even)
prefix of such a sequence the sum of all the costs and all the sales is always
positive. Indeed, it is given by the sum of all constraints! The timing of these
operations is instead irrelevant and it is omitted.
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4.4 Stateless SCAM

States and memory cells of SCAM essentially serve the same purpose. The fol-
lowing theorem shows that we can eliminate all states from any SCAM, at the
cost of new memory cells.

Theorem 1. Let T be a SCAM over a domain D that is not a singleton. Then,
it is language equivalent to a SCAM with only a single state.

Proof. Let T = (Q,X ,N ,−→,Q0) be a SCAM over a data domain D and a CLM
M such that D is not a singleton. We find an injective encoding e : Q → Dn, for
some integer n ≥ log|D|(|Q|). Write e(q) = (ei(q))n

i=1, for all q ∈ Q. For every
variable x ∈ X v and datum d ∈ D, define the (soft) constraint x = d by (x =
d)η = 0, if η(x) = ei(q), and (x = d)η = ⊥, otherwise. Let z1, . . . , zn /∈ N ∪ X
be fresh names. For every τ = (q,N, c, p) ∈ −→, define Nτ = N and

cτ = c ⊕
n⊕

i=1

•zi = ei(q) ⊕ z•
i = ei(p).

Consider T ′ = ({q0},X ∪ {z1, . . . , zn},N , {(q0, Nτ , cτ , q0) | τ ∈ −→}, {q0}). We
show that T ′ is language equivalent to T . Suppose that (φx)x∈N ∈ L(T ). Then,
we find some transition (q,N, c, p) ∈ −→ and assignment η : N ∪ X v → D
that satisfy the conditions in Definition 10. Since the zi’s are fresh, we find an
extension η′ of η to

⋃n
i=1{•zi, z

•
i } that satisfies cτη′ �= ⊥. Hence, transition

(q0, Nτ , cτ , q0) and assignment η′ witness that (φx)x∈N ∈ L(T ′).
On the other hand, suppose that (φx)x∈N ∈ L(T ′). Then, we find some

transition (q0, Nτ , cτ , q0), with τ ∈ −→, and an assignment η′ : N ∪(X ∪{z})v →
D that satisfy the conditions in Definition 10. Then, τ and the restriction η of
η′ to N ∪ X v witness that (φx)x∈N ∈ L(T ). We conclude that L(T ) = L(T ′). ��

The result of Theorem 1 can be used as a first step towards an equivalence
between SCAM and soft constraints with memory (over a data domain that
includes a special datum ∗ that denotes absence of data). Moreover, by using ∗,
it seems possible to encode the synchronisation constraint N of each transition
in the soft constraint by adding x �= ∗, for x ∈ N , and x = ∗, otherwise. In
combination with Theorem 1, such construction would show a correspondence
between SCAM and soft constraints with memory. Since the representation of
SCAM as soft constraints with memory is much more flexible, this alternative
representation can help us to prevent relentless state space explosions. We leave
the details of such correspondence as future work.

4.5 SCAM Composition

We now introduce the product of automata, extending [6, Definition 5].

Definition 11 (Soft join). Let Ti = (Qi,Xi,Ni,→i,Q0i), for i ∈ {0, 1}, be
two SCAM over D and M, with (N0 ∪ N1) ∩ (X v

0 ∪ X v
1 ) = ∅. Then, their soft
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product T0 	
 T1 is the tuple 〈Q0 × Q1,X0 ∪ X1,N0 ∪ N1,−→,Q00 × Q01〉 where
−→ is the smallest relation that satisfies the rule

q0
N0,c0−−−−→0 p0, q1

N1,c1−−−−→1 p1, N0 ∩ N1 = N1 ∩ N0

〈q0, q1〉 N1∪N2,c1⊕c2−−−−−−−−−−→ 〈p0, p1〉

The rule applies when there is a transition in each automaton such that they
can fire together. This happens only if the two local transitions agree on the
subset of shared ports that fire. The transition in the resulting automaton is
labelled with the union of the name sets on both transitions, and the constraint
is the conjunction of the constraints of the two transitions.

Note that the product automaton can include asynchronous executions: it
suffices that the SCAM are reflexive, i.e., for any state q there is a transition

q
∅,0−−→ q.
We can express the composition of SCAM in Definition 11 in terms of a simple

composition operator on languages. Let L0 and L1 be two languages over the
sets of ports N0 and N1, respectively. The product language L0 	
 L1 consists of
those tuples (φx)x∈N0∪N1 of WDSs, such that (φx)x∈Ni

∈ Li, for all i ∈ {0, 1}.
In particular, N0 = N1 implies L0 	
 L1 = L0 ∩ L1.

Lemma 5 (Correctness of soft join). Let T0 and T1 be two SCAM that do
not share memory cells. Then, L(T0 	
 T1) = L(T0) 	
 L(T1).

Proof. Suppose that (φx)x∈N0∪N1 ∈ L(T0 	
 T1). We show that (φx)x∈Ni
∈

L(Ti), for all i ∈ {0, 1}. Let i ∈ {0, 1} be arbitrary. By Definition 10, we find some
transition q

N,c−−→ p and an assignment η : N0 ∪N1 ∪X v
0 ∪X v

1 → A that satisfy the
conditions in Definition 10. By Definition 11, we find a local transition qi

Ni,ci−−−→ pi

in Ti, and by restriction of η, we find a local assignment ηi : Ni ∪ X v
i → A. By

construction, this transition and assignment witness the inclusion (φx)x∈Ni
∈

L(Ti) according to the conditions in Definition 10. By definition of join, we have
L(T0 	
 T1) ⊆ L(T0) 	
 L(T1).

Suppose that (φx)x∈N0∪N1 ∈ L(T0) 	
 L(T1). We show that (φx)x∈N0∪N1 ∈
L(T0 	
 T1). By definition, we have (φx)x∈Ni

∈ L(Ti), for all i ∈ {0, 1}. By
Definition 11, we find, for i ∈ {0, 1}, a transition qi

Ni,ci−−−→ pi and an assignment
ηi : Ni ∪ X v

i → A that satisfy the conditions in Definition 10. By construction,
we have N0 ∩ N1 = N1 ∩ N0, and we find with Definition 11 a global transition
q

N,c−−→ p in T0 	
 T1. Since T0 and T1 do not share memory, we have X v
0 ∩ X v

1 =
∅. Therefore, η0 ∪ η1 is a well-defined assignment that, together with q

N,c−−→ p,
witnesses that (φx)x∈N0∪N1 ∈ L(T0 	
 T1). We conclude that L(T0 	
 T1) =
L(T0) 	
 L(T1). ��

4.6 SCAM Hiding

The hiding operator [8] abstracts the details of the internal communication in
a CA. In SCA [6, Definition 6], the hiding operator ∃OT removes from the
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transitions all the information about the names in O ⊆ N , including those in
the (support of the) constraints. The definition smoothly extends over SCAM:
in fact, since we allow invisible transitions, our definition is much more compact.

Definition 12 (Soft hiding). Let T = 〈Q,X ,N ,−→,Q0〉 be a SCAM and
O ⊆ N a set of port names. Then, ∃OT is the SCAM 〈Q,X ,N \ O −→∗,Q0〉
where −→∗ is defined by q

N\O,∃Oc−−−−−−→∗ p if q
N,c−−→ p.

Similarly to the correctness of join, we express the hiding operator for SCAM
in terms of a simple operation on languages. Let L be a language over a set of
ports N , and let O ⊆ N be a set of ports. Then, ∃OL consists exactly of the
restriction (φx)x∈N\O of a given tuple (φx)x∈N ∈ L.

If we require that the domain dom(φ) of a WDS φ is infinite, then we can
only hide ports that necessarily fire infinitely often in every (infinite) run of the
SCAM. This condition is part of the correctness of hiding for SCA [6, Defini-
tion 6]. Since we allow finite WDS, correctness of SCAM amounts to the following
result.

Lemma 6 (Correctness of soft hiding). Let T be a SCAM and O a set of
its ports. Then, L(∃OT ) = ∃OL(T ).

Proof. Suppose that (φx)x∈N\O ∈ L(∃OT ). We will show by coinduction that

(φx)x∈N\O ∈ ∃OL(T ). By Definition 10, we find some transition q
N ′,c′
−−−→ p in

∃OT . By Definition 12, we find some transition q
N,c−−→ p, with N ′ = N \ O and

c′ = ∃Oc. We construct a WDS φx, for x ∈ O, such that (φx)x∈N satisfies the
conditions of Definition 10, for T . If x ∈ N ∩O, we define φx = [t0 �→ 〈cη, η(d)〉],
with t0 := min{φp

0 | p ∈ N \ O,dom(φp) �= ∅} and η : N ∪ X v → D is any
assignment that satisfies c. If x ∈ (N \ N) ∩ O and we define φx = [ ] as the
empty map. By the coinduction hypothesis, (φx)x∈N ∈ L(T ), and (φx)x∈N\O ∈
∃OL(T ).

On the other hand, suppose that (φx)x∈N\O ∈ ∃OL(T ). By definition, we find
some extension (φx)x∈N ∈ L(T ). By coinduction hypothesis and Definition 10
we find (φx)x∈N\O ∈ L(∃OT ). We conclude that L(∃OT ) = ∃OL(T ). ��

5 Related Works on Constraint Automata

The closest related work to what discussed in this paper concerns other exten-
sions of CA, previously advanced in the ample and mature literature about Reo.

In [5,21], Arbab et al. introduce Quantitative CA (QCA) with the aim of
describing the behaviour of connectors tied to their Quality of Service (QoS),
e.g., a reliability measure or the shortest transmission time. Similarly to CA, the
states of a QCA correspond to the internal states of the connector it models.
The label on a transition consists instead of a firing set, a data constraint,
and a cost that represents a QoS metric. Hence, QCA differ from Timed [4]
and Probabilistic [9] CA, because these latter two classes of models describe
functional aspects of connectors, while QoS represents non-functional properties.
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As applications, SCA have been already used in [6,23] and [19,20,24]. Differ-
ently from previous related work, the main motivation behind SCA is to associate
an action with a preference. In [6,23] the authors present a formal framework
that is able to discover stateful Web Services, and to rank the results according
to a similarity score expressing the affinities between the query, asked by a user,
and the services in a database. Preference for the similarity between the query
and each service is modelled through SCA. In the second bunch of works instead,
the authors advance a framework that facilitates the construction of autonomous
agents in a compositional fashion; these agents are “soft”, in that their actions
are associated with a preference value, and agents may or may not execute an
action depending on a threshold preference. Hence, at design-time SCA can be
used to reason about the behaviour of the components in an uncertain physical
world, i.e., to model and verify the behaviour of cyber-physical systems.

6 Conclusions

We have reworked Soft Constraint Automata as originally proposed in [6,19],
with the dual purpose of (i) extending the underlying algebraic structure in order
to model both positive and negative preferences, and (ii) adding memory cells
as originally provided for “standard” CA [18]. Therefore, the main objective has
been to further generalise the notion of SCA, which could already accommodate
different preference systems parametrically.

As future work, we have many interesting directions in mind. As a start,
we would like to exploit the properties of soft constraints to give additional
operators on SCAM, first of all an operator for port renaming, or for considering
deterministic accepted runs, i.e., where memory cells that are not in the support
of a constraint labelling a transition are not modified by that transition. We will
consider a more flexible notion of accepted run by taking into account weak

transitions, i.e., by considering the relation q
∅,c
=⇒ p obtained as the sequence

q
∅,c1−−→ q1 . . . qn−1

∅,cn−−−→ p such that c = c1 ⊕ . . . ⊕ cn and the relation q
N,c
=⇒ p

obtained as q
∅,c1=⇒ q1

N,c2−−−→ p1
∅,c3=⇒ p such that c = c1 ⊕ c2 ⊕ c3. This would be

pivotal in defining a proper notion of weak bisimulation for automata.
Finally, thinking about our result on single state automata, we would like

to encode the behaviour of SCA into a concurrent constraint programming lan-
guage [15]. Such languages provide agents with actions to tell (i.e., add) and
ask (i.e., query) constraints to a centralised store of information; this store
represents a Constraint Satisfaction Problem, and standard heuristics-based
technique might be applied to find a solution to complex conditions on filter
channels [3].
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Abstract. Coordination languages have classically been divided into
control-based coordination languages, on the one hand, and data-based
coordination languages, on the other hand. The great majority of work on
coordination addresses the one family or the another but rarely connects
the two. In the honor of the retirement of a leading expert of control-
based coordination languages, the authors, who devoted many research
efforts on data-based coordination languages, aim at addressing the con-
nection between the two families of coordination languages. To that end,
a Reo-like dialect, named ReoD, is first presented. Variants of a Linda-
like language, named BachT, VBachT and MRT, are then described and
subsequently used to translate and simulate the ReoD language.

Keywords: Coordination languages · Control · Data · Reo · Linda
Bach

1 Introduction

Since its very beginning Computer Science has improved in many fields, such
as the reduction of the size of the hardware components, the increase in their
speed of execution, but also the degree of complexity of applications. This is,
among others, due to the development of the internet which has lead to conceive
applications in a distributed and heterogeneous way.

Gelernter and Carriero already recognized that fact in 1992 and postulate
in [23] that programming would gain by separating two main concerns: real
computations and communication between components. That has lead to their
seminal equation Programming = Coordination + Computation. Slightly before,
they had proposed a novel paradigm, named Linda [22], based on the deposit
and retrieval of pieces of information on a shared space. Since then many lan-
guages extending this idea have been proposed. The authors have themselves
contributed to that trend of research, as exemplified for instance in [8,11,16–
18,24,26,32–34]. Research in the domain is yearly reported in the International
c© Springer International Publishing AG, part of Springer Nature 2018
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Conference on Coordination Languages and Models as well as in several work-
shops.

Farhad Arbab had a similar diagnostic since the early 90’s but proposed
another manner of organising coordination. Taking inspiration from Unix shell
scripts, he developed a language named Manifold to “describe and manage com-
plex interactions among independent and concurrent processes” [41]. Similarly
to pipes in Unix, this model is based on linking the input and output ports of
processes. The model evolved along the years in what we now know as Reo [1].
It created a new trend of coordination models, not relying on the availability
of data but more on the control or coordination patterns to which concurrent
processes should agree. Farhad introduced this classification in his paper [35],
but also made the point clear at his talk in the first International Conference
on Coordination Languages and Models. There, by similarity with the classical
disclaimer of films, according to which any resemblance to real persons, living or
dead, is to be considered as purely coincidental, he declared that any resemblance
to the work on Linda in his talk was also to be considered as coincidental.

This paper aims at linking the two worlds of coordination languages just
introduced. More specifically, after having identified in Sect. 2 a Reo-like lan-
guage, named ReoD, and after having described in Sect. 3 different variants of
Bach, a Linda-like language developed at the University of Namur, we shall
explore the translation of ReoD in these variants in Sect. 4. To that end, we shall
first show that the external behavior of ReoD connectors can be described in a
BachT variant based on multiset rewriting, inspired by the chemical metaphore.
Moreover, we shall establish that the internal behavior of the ReoD connectors
can be described by a vector-based variant of BachT. The relations of these two
descriptions will also be addressed. These two forms of translation suggest a
methodology of development of coordination programs by a high-level specifica-
tion inspired from ReoD and translated into Bach-like languages. Finally, Sect. 5
compares our work with related work, draws our conclusions and presents expec-
tations for future work.

2 The Reo Language

2.1 Linguistic Description

Reo [1] is a channel-based coordination language wherein complex coordinators
are composed from primitive connectors, called channels, by means of nodes.

A channel is a medium of communication that consists of two ends and a
protocol that describes how data flows at those ends. There are two types of
ends: source and sink. A source end accepts data into the channel and a sink
end outputs data out of the channel. For instance, the Sync channel depicted as
a −→ b has a source end at a and a sink end at b. It specifies that data can be
accepted at point a if and only if it can be output at point b. More specifically,
this means that, for the communication to proceed, a process connected at a
must be ready to output the data at a while another process connected at b
must be ready to input the data.
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Sync LossySync FIFO1 SyncDrain AsyncDrain Filter(P)

Fig. 1. Channels in Reo

Other channels are depicted in Fig. 1. Their specification is as follows:

– A LossySync channel has a similar protocol to that of a Sync channel, except
that it always accepts all data items through its source end. It transfers a
data item if it can be accepted by the sink end. Otherwise, the data item is
consumed at the source end but lost by the channel.

– A FIFO1 channel acts as a one-place buffer. It thus has two states: empty or
full. When empty, the buffer receives a data item from its source end and
changes its state to full. In that state, no more data can be received from its
source end but the channel can transfer the previously received data item to
its sink end, resetting thereby its state to empty.

– A SyncDrain channel is composed of two source ends. It synchronizes them:
data flows if and only if the ends are ready to input it. As a result, since there
is no sink end, the data is lost.

– An AsyncDrain channel is an asynchronous version that accepts data items
through its source ends and loses them exclusively one at a time but never
simultaneously.

– A Filter channel Filter(P) acts as a Sync channel for data items belonging to
P but as the lossy part of a LossySync channel for data items not belonging
to P . In other terms, it accepts a data item of P through its source end iff it
can simultaneously be output at its sink end. Moreover, it always accepts all
data items not in P through its source end but loses them immediately.

Complex connectors are built from the elementary channels by plugging their
ends into nodes. Reo specifies three kinds of nodes, according to the channel ends
that coincide on the nodes. A node is either a source node if all the channel ends
are source ends, a sink node if all the channel ends are sink ends or a mixed node
if the channel ends are a combination of source and sink ends. The three kinds
of nodes are depicted in Fig. 2.

Source node Sink node Mixed node

Fig. 2. Reo nodes

The semantics attached to the nodes is as follows. A source node acts as
a synchronous replicator. Hence a data item put in it is duplicated to all the
source ends of the channels. A sink node acts as a non-deterministic merger: a
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data item is output when one of the channel ends offers it. A mixed node non-
deterministically selects and takes a data item offered by one of its coincident
sink channel ends and replicates it into all of its coincident source channel ends.

Mixed nodes play the role of hidden nodes necessary to make the complex
connector work. In constrast, source nodes and sink nodes are interfaces with
the environment of a complex connector. They are also called boundary nodes.
Processes (or components, actors, agents) connect to them. In Reo philosophy,
this amounts to attach ports of processes to them, one port being only able to
connect to one node at a time. At ports linked to source nodes, processes perform
blocking write operations, writing a data item to the port when the source node
is ready to accept it. At ports linked to sink nodes, processes perform blocking
read operations, taking a data item when the node is ready to output it.

a
d

e

g

f

b

c

Fig. 3. An exclusive router in Reo

Following [2], Fig. 3 describes a complex connector representing an exclusive
router, which transfers data items from a to either b or c but not to both. There a
is a source node and b and c are sink nodes. They constitute the boundary nodes
of the router. Nodes d, e, f and g are mixed nodes used to compose different
primitive channels.

The semantics of the connector can in principle be deduced from the seman-
tics attached to the primitive channels and to the nodes. Several semantics have
actually been proposed to that end (see [12–14,27,28,39]). The first one and
perhaps the most intuitive one is based on a coinductive calculus developed by
Arbab and Rutten [4]. It is briefly described subsequently.

2.2 Timed Data Stream Semantics

The timed data stream semantics for Reo relies on the idea of describing scenarios
of data being input or output over time at each connector end. Concretely,
for a data end, this amounts to considering pairs of the form <α, a> where α
is a sequence of data items and a is a sequence of positive real numbers. As
observed by Arbab and Rutten in [4], a slightly less general model can be built
by preserving most of the results by using natural numbers (or equivalently
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discrete time) instead of real numbers (typically corresponding to continuous
time). For the purposes of this paper, we shall use this slightly more restricted
version of using integers, which allows to perceive computations in the two-
phase approach used by languages such as Esterel [7]. According to this view,
computations proceed through steps of time units in which all possible actions
are first computed before time passes one unit.

As a result, timed data streams are defined as elements of TDS = Dω × TS
where D is the set of data items to be communicated and TS is the set of
sequences s of positive integers which are strictly increasing (ie s(i) < s(i + 1),
for all i) and progressive in the sense that, for all N > 0 there exists n > 0 such
that a(n) > N . A timed data stream <α, a> for a channel end specifies that the
data item α(i) is input or output, according to the nature of the end, at time a(i).
Elementary channels then appear as binary relations between TDS. To explain
them, we shall use the following notation: for any sequence s, the construct s′

denotes that sequence without its first element. Moreover, s < t denotes the
pointwise extension of the order between the elements of the sequences s and t,
namely s < t iff s(n) < t(n) for any n.

– The Sync channel is defined, for all timed data streams <α, a> and <β, b>
by <α, a>Sync<β, b> ≡ α = β and a = b

– The LossySync channel is defined, for all timed data streams <α, a> and
<β, b> by

<α, a> LossySync<β, b>

≡
{

α(0) = β(0) and <α′, a′> LossySync<β′, b′> if a(0) = b(0)
<α′, a′> LossySync<β, b> if a(0) < b(0)

– The FIFO1 channel is defined, for all timed data streams <α, a> and <β, b>
by <α, a>FIFO1 <β, b> ≡ α = β and a < b < a′

– The SyncDrain channel is defined, for all timed data streams <α, a> and
<β, b> by <α, a>SyncDrain<β, b> ≡ a = b

– The ASyncDrain channel is defined, for all timed data streams <α, a> and
<β, b> by <α, a>ASyncDrain<β, b> ≡ a �� b where a �� b is defined as

a �� b ≡ a(0) �= b(0) and
{

a′ �� b if a(0) < b(0)
a �� b′ if b(0) < a(0)

– The Filter(P) channel is defined, for all timed data streams <α, a> and <β, b>
by

<α, a>Filter(P) <β, b>

≡
{

α(0) = β(0) and a(0) = b(0) and <α′, a′>Filter(P) <β′, b′> if α(0) ∈ P
a(0) < b(0) and <α′, a′> LossySync<β, b> otherwise

Complex connectors are built from more elementary ones by means of mixed
nodes, which thus appear as the composition of relations. For instance, the com-
position of two copies of the synchronous channels
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<α, a> <β, b>

yields the following binary relation R:

<α, a>R<β, b> ≡ ∃<γ, c> : <α, a>R<γ, c> ∧ <γ, c>R<β, b>

More complex mixed nodes involve m “input” channels and n “output” chan-
nels, the data items of the first one being merged and the data items of the last
ones being replicated. As one may expect, the semantics of the merge of m data
flows amounts to m − 1 compositions of the merge of two data flows, while the
semantics of the replication of n data streams amounts to the composition of
n−1 replications of two data flows. These binary merge and replication operators
are themselves defined as follows:

– The (binary) Merge of two input ends into one output end is defined for all
timed data streams <α, a>, <β, b> and <γ, c> by

Merge(<α, a>,<β, b>,<γ, c>)

≡ a(0) �= b(0) ∧

⎧⎪⎪⎨
⎪⎪⎩

γ(0) = α(0) ∧ a(0) = c(0)
∧ Merge(<α′, a′>,<β, b>,<γ′, c′>) if a(0) < b(0)

γ(0) = β(0) ∧ b(0) = c(0)
∧ Merge(<α, a>,<β′, b(>,<γ′, c′>) if b(0) < a(0)

– The (binary) Replicate of one input end into two output ends is defined for
all timed data streams <α, a>, <β, b> and <γ, c> by

Replicate(<α, a>,<β, b>,<γ, c>) ≡ β = α ∧ γ = α ∧ b = a ∧ c = a

As an example of the composition of the elementary channels with respect
to the mixed nodes, the semantics of the exclusive router presented in Fig. 3 is
defined by the following relation:

XRout(<α, a>, <β, b>, <γ, c>)

≡
{

β(0) = α(0) ∧ b(0) = a(0) ∧ XRout(<α′, a′>, <β′, b′>, <γ, c>) if b(0) < c(0)

γ(0) = α(0) ∧ c(0) = a(0) ∧ XRout(<α′, a′>, <β, b>, <γ′, c′>) if c(0) < b(0)

2.3 The ReoD Language

It will be helpful later to describe Reo connectors by means of a language. Taking
inspiration from the Latex package reotex and other textual representation of
Reo such as RSL, we define the ReoD calculus as follows.

Definition 1. Let Data, SN and SBP be three denumerable disjoint sets, the
elements of which are respectively called data items, node names and channel
names.

– Define the node instructions as the statements ionode(n) and mixednode(n),
where n denotes a node name.
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– Define the channel instructions as the statements of the form Sync(c,n1,n2),
LossySync(c,n1,n2), Fifo1(c,n1,n2), SyncDrain(c,n1,n2), AsyncDrain
(c,n1,n2), Filter(c,n1,n2,P), where c is a channel name, n1, n2 are node
names and P is a list of data elements.

– Define ReoD as the set of agents formed from a list of node instructions, each
one describing a different node name, followed by a list of channel instruc-
tions, the node names of which being all described in the list of node instruc-
tions.

As an example, the exclusive router discussed above is described by the
following ReoD agent:

ionode(a), mixednode(d), mixednode(e), mixednode(g), mixednode(f),
ionode(b), ionode(c), sync(ad,a,d), lossysync(dg,d,g),
lossysync(de,d,e), syncdrain(df,d,f), sync(gf,g,f), sync(ef,e,f),
sync(gc,g,c), sync(eb,e,b)

3 A Family of Data-Based Coordination Languages

The authors have developed extensions of the data-driven language Linda. Some
of them are reviewed in this section to provide the background needed to trans-
late ReoD. Guided by this purpose, we shall use tokens instead of more general
structured tuples.

3.1 The Language BachT

We first consider a simplified version of a dialect of Linda, developed at the
University of Namur, named Bach (see [25]), and more precisely its restriction
to tokens, which we shall name BachT. This restricted language is based on four
primitives for accessing a shared space, called the store, here seen as a multiset
of tokens. Formally, the language is defined as follows.

Definition 2. Let Stoken be an enumerable set, the elements of which are sub-
sequently called tokens and are typically represented by the letters t and u. Define
the set of stores Sstore as the set of finite multisets with elements from Stoken.

Definition 3. Define the set T of the token-based primitives as the set of prim-
itives Tb generated by the following grammar:

Tb ::= tell(t) | ask(t) | get(t) | nask(t)

where t represents a token.

Definition 4. Let Spvar be a denumerable set disjoint from the set of tokens
and let us name their elements procedure variables. Define the BachT language
as the set of agents A generated by the following grammar:

A ::= Tb |X| A ; A | A || A | A + A
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where Tb represents a token-based primitive, where X is a procedure variable
and where “ ; ”, “ || ” and “ + ” denote the sequential, parallel and choice
compositional operators. Define the set of guarded agents of BachT as the agents
generated by the following grammar:

G ::= Tb | G ; A | G || G | G + G

where A denotes a BachT agent. As usual in concurrency theory, we shall assume
that each procedure variable X is associated with a guarded agent by a set of
declarations of the form X = G.

3.2 The Language MRT

The second language we shall consider is a Gamma-like language (see [5,6]),
based on the chemical reaction metaphor. It considers communication primi-
tives as the rewriting of pre-condition multi-sets into post-condition multi-sets.
Intuitively, the operational effect of a multi-set rewriting (pre, post) consists
in inserting all the positive post-conditions, and in deleting all the negative
post-conditions from the current store σ, provided that σ contains all positive
pre-conditions and does not meet any of the negative pre-conditions. Formally,
these rewritings are specified as follows.

Definition 5. Define the set of multi-set rewriting primitives TMR as the set of
primitives TMR generated by the following grammar:

TMR ::= ({M}, {M})
M ::= λ | + t | − t | M,M

where λ indicates an empty multi-set and where t denotes a token.

It is worth observing that not all pairs of preconditions and postconditions
correspond to reasonable computations. Indeed, as stated above, it is possible
to require in a precondition that the same token is present and absent or to
require in the postcondition the removal of a token which has not been tested
for presence in the precondition. We subsequently define such reasonable pairs
of pre- and post-conditions as those being respectively consistent and valid. To
that end, we first introduce some notations.

Definition 6. Given a multi-set rewriting pair (Pre, Post), denote by Pre+ the
multi-set {t | + t ∈ Pre} of tokens positively appearing in the precondition and
by Pre− the multi-set {t| − t ∈ Pre} negatively appearing in it. Similarly, we
shall denote by Post+ and Post− the multiset of tokens appearing positively and
negatively in the postcondition.

A multi-set rewriting pair (Pre, Post) is said to be consistent if Pre+ ∩
Pre− = ∅. It is said to be valid if Post− ⊆ Pre+.

Definition 7. In this context, the language MRT is defined as BachT in Defi-
nition 4 by taking multi-set primitives instead of token-based primitives.
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3.3 The Language VBachT

In an attempt to provide BachT with the same property of MRT of handling
many tokens at once, a natural extension consists in replacing in the primitives
of BachT a token by a list of tokens. For instance, the primitive ask(t, u, v) would
succeed on a store containing one occurrence of t, one of u and one of v. Dually,
the computation of tell(t, u, v) would result in adding on the store one occurrence
of t, one of u and one of v. This is formalized by the following definitions.

Definition 8. Define a vector of tokens as a list t1, · · · , tn of tokens. Such a
vector is subsequently denoted as

−→
t . Define SVtoken as the set of vectors of

tokens.

With this definition in mind, a natural extension of BachT consists in lifting
the arguments of the primitives to vectors of tokens.

Definition 9. Define the set of vectorized token-based primitives Tv as the set
of primitives Tv generated by the following grammar:

Tv ::= tell(
−→
t ) | ask(

−→
t ) | get(

−→
t ) | nask(

−→
t )

where
−→
t represents a vector of tokens.

Definition 10. Define the Vectorized Bach language VBachT similarly to Def-
inition 4 of the BachT language but by taking vector of token-based primitives
Tv.

3.4 Transition System

To study possible links between ReoD and the three languages we just intro-
duced, their semantics needs to be defined. To that end, we shall use an opera-
tional one in the style of Plotkin [36], based on a transition system. The config-
urations to be considered consist of an agent, summarizing the current state of
the agents running on the store, and a multi-set of tokens, denoting the current
state of the store. In order to express the termination of the computation of an
agent, we extend the set of agents by adding a special terminating symbol E that
can be seen as a completely computed agent. For uniformity purpose, we abuse
language by qualifying E as an agent. To meet the intuition of this terminating
agent E, we shall always rewrite agents of the form (E;A), (E || A) and (A || E)
as A.

Figure 4 specifies the transition rules for the primitives of the BachT lan-
guage. The first rule (T) expresses that an atomic agent tell(t) can be executed
in any store σ, and that its action has the effect of adding the token t to the same
store. The second rule (A) states that an atomic agent ask(t) can be executed in
any store σ containing the token t, however leaving the store σ unaltered after
its execution. The third rule (G) works similarly to the previous rule (A), but
with the difference of retrieving the token t initially present on the store σ after
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the execution of the agent get(t). Finally, the fourth rule (N) establishes that an
atomic agent nask(t) can be executed in any store σ not containing the token
t, leaving the store σ unaltered after its execution. Note that, as no rules are
provided in these cases, the ask(t), get(t) and nask(t) primitives are assumed to
suspend as long as the corresponding presence/absence of token is not met.

(T) tell(t) | σ E | σ t

(A) ask(t) | σ t E | σ t

(G) get(t) | σ t E | σ

(N)
t σ

nask(t) | σ E | σ

Fig. 4. Transition rules for token-based primitives (BachT)

(CM )
pre+ ⊆ σ, pre −⊥ σ,

σ =( σ \ post−) ∪ post+

(pre, post) | σ E | σ

Fig. 5. Transition rules for multi-set rewriting-based primitives (MR)

For MRT, it turns that it is possible to define it by one rule. To express it,
an auxiliary notion is however needed. It extends the notation of Definition 6
to capture the fact that, for each token, the tokens mentioned negatively in the
definition are not with their multiplicity on the current store σ.

Definition 11. For any token t, define Pre−[t] as the multiset of negatively
marked tokens t in the precondition Pre: [Pre−[t] = {t : −t ∈ Pre−}. Given a
precondition Pre and a store σ, we then define the non element-wise inclusion
operator ⊥ as follows: Pre−⊥ σ iff Pre−[t] �⊆ σ, for any token t.

With this notation, rule (CM) of Fig. 5 states that a multi-set rewriting
(Pre, Post) can be executed in a store σ if the multi-set Pre+ is included in
σ and if no negative pre-condition occurs with the required multiplicity in σ.
Under these conditions, the effect of the rewriting is to delete from σ all the
negative post-conditions and to add to σ all the positive post-conditions.
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(Tv) tell(t1 n) | σ E | σ t1 n

(Av) ask(t1 n) | σ t1 n E | σ t1 n

(Gv) get(t1 n) | σ t1 n E | σ

(Nv)
t1 n σσ

nask(t1 n) | σ E | σ

Fig. 6. Transition rules for vectorized token-based primitives (VBachT)

Figure 6 provides the transitions for the vectorized token-based primitives.
Rule (Tv), (Av) and (Gv) generalize the corresponding rules (T ), (A) and (G)
from tokens to vectors of tokens. As a result, rule (Tv) asserts that telling a
vector of tokens amounts to adding each of them. Similarly, rule (Av) requires
for an ask primitive to succeed the presence of each token ti. According to rule
(Gv) the behavior of a get primitive performs such a test for presence but also
removes one occurrence of each ti on the store. Finally, rule (Nv) requires, for
each token ti, its absence on the store.

(S)
A | σ A | σ

A ; B | σ A ; B | σ

(P)
A | σ A | σ

A || B | σ A || B | σ
B || A | σ B || A | σ

(C)
A | σ A | σ

A + B | σ A | σ
B + A | σ A | σ

(X)
X = G, G | σ G | σ

X | σ G | σ

Fig. 7. Transition rules for the operators

Figure 7 details the usual rules for sequential composition, parallel composi-
tion, interpreted in an interleaved fashion, non-deterministic choice, and proce-
dure variables.
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3.5 Expressiveness

Following previous work by the authors (see [9–11,32–34]) and based on the mod-
ular embedding introduced by de Boer and Palamidessi in [19], Darquennes’ PhD
thesis [15] has studied the expressiveness of the languages BachT, MRT and a
slightly more general version of VBachT. In a snapshot, BachT has been proved
stricly less expressive than VBachT which is itself strictly less expressive than
MRT. However, the increase of expressiveness comes with a price of implementa-
tion: BachT allows for more efficient implementations than VBachT, which itself
is more efficiently implementable than MRT.

4 Translating ReoD in Bach

4.1 First Observations

The BachT, VBachT and MRT languages provide means to describe ReoD chan-
nels at two levels. Before going to them, it is first worth observing that, apart
from the filter channel, the behavior of all the other channels does not depend
upon the data item which is exchanged. In other terms, if the data streams
<α, a> and <β, b> are in the relation R associated with a connector and if
γ and δ are the same renaming of data items in α and β, then <γ, a> and
<δ, b> are also in R. Coming back to the intuition behind Reo, this is not very
surprising. Indeed, in constrast to BachT, VBachT and MRT which rely on the
availability of information, Reo is essentially concerned with the control of the
synchronization of channels.

As our purpose is to relate ReoD and the BachT family of languages, this
remark allows us to restrict subsequently the set of data items Data to one
element, say t.

4.2 Specification

It turns out that the MRT language allows for a process algebra specification
of ReoD from an external point of view, namely from the point of view of the
environment which does not care for the internal details of the connectors.

To expose it, let us introduce an auxiliary notation. Consider a timed data
stream <γ, c> at node n. Then for any i ∈ N , we denote by MSi(<γ, c>, n) the
following set:

MSi(<γ, c>, n) =
{

{γ(k)@n} if there is k such that c(k) = i
∅ otherwise

where γ(k)@n is to be considered as a token (named after the data γ(k) and the
node n). Note that by the definition of data streams, if it exists, for any positive
integer, there is only one k such that c(k) = i.

Let us now consider a (possibly complex) connector composed of in1, . . . , inm

as input nodes and on1, . . . , onn as output nodes. Assume that <α1, a1>, . . . ,
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<αm, am>, <β1, b1>, . . . , <βm, am> are data streams of R associated respec-
tively with in1, . . . , inm and on1, . . . , onn. Then let us define for any i ∈ N ,

Prei = MSi(<α1, a1>, in1) ∪ · · · ∪ MSi(<αm, am>, inm)
Posti = MSi(<β1, b1>, on1) ∪ · · · ∪ MSi(<βn, bn>, onn)

It is easy to observe that the MRT agent (Pret, Postt) computes what can
be observed from the data stream at time t. Namely, assuming the presence of
tokens in the input nodes, as specified by Pret (these tokens being provided by
the environment), the computation produces the tokens in the output nodes, as
specified by Postt (these tokens being consumed by the environment).

As a result, the MRT sequential composition

(Pre0, Post0); (Pre1, Post1); · · · ; (Prei, Posti); · · ·

computes what can be observed by the data streams. As an alternative opera-
tional characterization of the connector, using the reactive semantics proposed
by [20], one may claim that

(Pre0, Post0).(Pre1, Post1). · · · .(Prei, Posti). · · ·

is a history computed by the connector, the hole between each step (Prei, Posti)
being made by the environment.

It is also worth observing that as any connector in ReoD is formed from a
finite number of elementary channels and as we reduce Data to one data item,
the above construction can only produce a finite number of Pre and Post sets.
As a result, following well-known results in process algebra (see for instance
[21]), connectors can be described by linear recursive equations involving MRT
primitives as actions. For instance, the exclusive router of Fig. 3 can be described
by the following recursive equation:

XRout = ({t@a}, {t@b});XRout + ({t@a}, {t@c});XRout

4.3 Implementation

The specification is useful to describe the behaviour of a connector from the
point of view of the environment but does not give much insight into the internal
computations. To that end, we shall employ BachT and VBachT.

Two notations are required to that end. First, following the definition of the
ReoD-calculus (see Sect. 2.3), each elementary channel end may be associated
with the name of the channel and the name of the node to which the end is
connected. In view of that, we shall associate with the data item t a token
named as t@c:n where c is the name of the channel and n the name of the node.
Intuitively, the presence of the token in the store represents the presence of the
data item at the end referenced by the node n and the channel name c. Second,
in a similar way and as in the previous subsection, we shall employ t@n to denote
the presence of the data item t at node n.
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As suggested in Sect. 2, looking internally into the computation of the con-
nector is achieved in the two-phase functioning approach, according to which
data flow is first performed inside the connector in the first phase and then
time progresses in the second phase. To grasp this in the BachT and VBachT
languages, we enrich them with a new primitive named next. Its operational
semantics is provided by adding a new transition relation � specified in Fig. 8.

(N1) next | σ E | σ

(N2)

A | σ A | σ
A ; B | σ A ; B | σ

A + B | σ A + B | σ
B + A | σ B + A | σ
A || B | σ A || B | σ
B || A | σ B || A | σ

Fig. 8. Transition rules for the next operator

The operational semantics of an agent of BachT and VBachT is then obtained
by alternating the → transitions, performed as much as possible and representing
the first phase, and the �-transitions, also performed as much as possible and
representing the second phase.

We are now in a position to translate the connectors described in ReoD. This
is done by associating an agent with each (elementary) channel as well as with
each node. We start with the translation of the channels. Consider a channel of
name c associated with the nodes named n1 and n2. Depending upon its form,
it is associated with the following agent:

– the Sync(c,n1,n2) channel is associated with the procedure variable sync c
defined by sync c = get(t@c:n1); tell(t@c:n2); next; sync c

– the LossySync(c,n1,n2) channel is associated with the procedure variable
lossy sync c defined by

lossy_sync_c = (get(t@c:n1); tell(t@c:n2); next; lossy_sync_c
+ (get(t@c:n1); next; lossy_sync_c)

– the Fifo1(c,n1,n2) channel is associated with the procedure variable
Fifo1 c e defined by

Fifo1_c_e = get(t@c:n1); next; Fifo1_c_f
Fifo1_c_f = tell(t@c:n2); next; Fifo1_c_e

– the SyncDrain(c,n1,n2) channel is associated with the procedure variable
sync drain c defined by sync drain c = get(t@c:n1, t@c:n2); next;
sync drain c
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– the AsyncDrain(c,n1,n2) channel is associated with the procedure variable
async drain c defined by

async_drain_c = (get(t@c:n1); next; async_drain_c)
+ (get(t@c:n2); next; async_drain_c)

– the Filter(c,n1,n2,P) channel is associated with the procedure variable
filter c defined by one of the following equations, according to the fact
that t ∈ P or not

filter_c = get(t@c:n1); tell(t@c:n2); next; filter_c
filter_c = get(t@c:n1); next; filter_c

The behavior of nodes is defined similarly. We shall assume that the envi-
ronment is in charge of providing the tokens in the sink nodes and that the
computation of the connector is in charge of producing the tokens in the source
nodes. This given, the behavior of a mixed node n is to take one token from a
coincident sink channel end and to duplicate it to all its coincident source chan-
nel ends. Assume that the coincident sink channel ends of node n are i1, . . . , ip
for channel named c1, . . . cp, respectively, and that the coincident source channel
ends of node n are o1, . . . , oq for channel named d1, . . . dq, respectively, then the
mixed node can be coded by the procedure variable mixed node n defined as

mixed_node_n = ( get(t@c1:i1) + ... + get(t@cp:ip) );
tell(t@d1:o1,...,t@dq:oq); next; mixed_node_n

The behavior of a sink node is similar, except that it takes the token placed by
the environment: assuming the coincident source channel ends of the sink node
n are o1, . . . , oq for channel named d1, . . . dq, respectively, then its behavior is
coded by the procedure variable sink node n defined as

sink_node_n = get(t@n); tell(t@d1:o1,...,t@dq); next; sink_node_n

Finally, source nodes act dually by taking one of the token present at the
end of a coincident sink channel end: assuming the coincident sink channel ends
of source node n are i1, . . . , ip for channel named c1, . . . cp, then its behavior is
coded by the procedure variable sink node n defined as

source_node_n = ( get(t@c1:i1) + ... + get(t@cp:ip) );
tell(t@n); next; source_node_n

Summing up, the VBachT agent associated with a complex connector is the
agent formed by the parallel composition of the agent associated (as described
above) to the channels and nodes. If the connector is named C, we shall denote
by vbacht(C ) the VBachT agent associated by the reasoning of this section.
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4.4 Correctness

A natural question to ask is the correctness of vbacht(C ) with respect to the
specification of C. To discuss this point, we introduce the following definition.

Definition 12. 1. For any connector C whose sink nodes are i1, . . . , ip, we
define the set of initial configurations of C as the set of subsets formed from
{t@i1, · · · , t@ip}.

2. For any connector C, the store σ is said to be node-free if contains no tokens
t@n corresponding to a source node and no token t@c : n corresponding to
the end of a channel.

3. For any connector C and any VBachT agent A, a history

h = (Pre0, Post0).(Pre1, Post1). · · · .(Prei, Posti). · · ·

of C is said to be computable by A if there is a series of transitions such that

〈A | Pre0〉 →∗ 〈B0 | Post0〉 �∗ 〈A1 | Post0〉
· · ·
〈Ai | Prei〉 →∗ 〈Bi | Posti〉 �∗ 〈Ai+1 | Posti〉
· · ·

with 〈Bi | Posti〉 �→ for any i and 〈Ai+1 | Posti〉 �� for any i.
4. For any connector C and any VBachT agent A, A is said to be coherent with

C if any history of C is computable by A.

It is easy to observe that, for any connector C, the agent vbacht(C ) is coherent
with C. Restated in other terms, for any history observed as an external behavior
of C, there is a computation of vbacht(C ) which computes it. However, vbacht(C )
exhibits non-desirable computations. This is in particular due to the coding of
the LossySync channel which is not context-dependent. Indeed, in our coding,
LossySync channel is allowed to deliver data items at a channel end even if this
end is not ready to accept it and thereby to create a store which is not node-free.

This is actually a well-known problem in the Reo community. Fortunately,
Proença et al. have shown in [14,37] that, by using constraint satisfaction tech-
niques, it is possible to pre-compute the paths of suitable executions of any Reo
connector. For instance, for the exclusive router, provided a data item is present
in node a, two paths may be executed: ad-de-df-eb with dg acting lossy or ad-
df-dg-gf-gc with de acting lossy. This given, real-life executions may be obtained
by, in view of the data items put in source nodes, telling tokens for the execution
of the channels corresponding to the corresponding path and guarding the exe-
cution of the channels by the suitable tokens. Along these lines, let us code these
tokens from the names of the channels suffixed with act, for an active channel,
nact for a non active channel, lost, for an active LossySync channel loosing the
data item and, nlost for an active LossySync channel not loosing the data item.
Then to get an execution of the first path of the exclusive router, the following
tokens should be put on the store by a multiple tell at the beginning of the first
phase:
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tell(ad_act, de_nlost, df_act, eb_act, dg_lost, gf_nact, gc_nact)

This given, the behavior of the LossySync channel de, for instance, can be coded
as

lossy_sync_de =
get(de_nlost); get(t@de:n1); tell(t@de:n2); next; lossy_sync_de

+ get(de_lost); get(t@de:n1); next; lossy_sync_de
+ get(de_nact); next; lossy_sync_de

while the behavior of the Sync channel gc can be coded as

sync_gc =
get(gc_act); get(t@gc:n1); tell(t@gc:n2); next; sync_gc

+ get(gc_nact); next; sync_gc

It is also worth observing that the next statement can be coded through
the store by having each process first telling a token indicating its intention to
proceed to the next step and then getting a token provided by a coordinator
to allow it to actually do so. Dually, the coordinator first collects the process
intentions to go to the next step by a multiple get and then tells them to do so
by a multiple tell putting the permissions to do so on the store.

4.5 Restriction on Data

The observation that the behavior of channels does not depend upon the actual
data items being exchanged has been made in Sect. 4.1 and has resulted in con-
sidering Data to be composed of just one data item t. In the presence of various
Filter(P) channels, it is interesting to lift this hypothesis to tackle a finite num-
ber of tokens, for instance to provide, for each predicate, a token that satisfies it
and another one that does not. This is actually quite easy to achieve by dupli-
cating through choices what we have produced for the token t. For instance, for
Data = {t1, · · · , tm}, the translation of the Sync(c,n1,n2) becomes

sync_c = get(c_act);
( get(t1@c:n1); tell(t1@c:n2); next; sync_c

+ ... +
get(tm@c:n1); tell(tm@c:n2); next; sync_c )

+ get(c_nact); next; sync_c

5 Conclusion

The paper has aimed at providing links between two coordination worlds, which
are generally considered in isolation: the control-driven and data-driven families
of languages. To that end, we have proposed a translation of the key features of
the Reo model in two data-driven languages MRT and VBachT studied by the
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authors. This has been done at two levels. First, from the point of view of the
specification of ReoD descriptions, we have shown how MRT constructs can be
used to define the timed data stream semantics of connectors. Second, from a
more computational point of view, we have shown how connectors and nodes of
ReoD can be encoded in VBachT.

The correctness of the translation has also been addressed. We have shown
that the translation of a connector in VBachT is coherent with the external per-
ception given by the MRT description of the considered connector. However, we
have also shown that the translation in VBachT produces non desirable compu-
tations. In order to avoid them, we have then shown how the results of [14,37]
can be used to adapt our translation.

To the best of our knowledge, although many pieces of work have addressed
tool support for Reo (see for instance [3,29,31,37]) and [38] has presented an
automaton model that capture the semantics of Reo and Linda, our work is
the first to address the translation of Reo in a data-driven language. It shares
similarities with [30,31] where a translation of Reo in mCRL2 is provided. For
instance, in [30,31], processes running in parallel are also associated with chan-
nels and nodes. However, mCRL2 being synchronous, the synchronization of data
is addressed differently through actions sharing arguments, hiding and block-
ing operators. This allows the authors to capture a correct semantics of the
LossySync channel by reusing the colouring framework of [12]. In contrast, our
work relies on asynchronous communication through information being shared
by the deposit of tokens. Moreover a correct behavior of the LossySync channel
is obtained through the constraint satisfaction framework of [14,37]. Finally, the
external behavior of connectors is not addressed [30,31].

Our work suggests directions for future work such as an extension to tackle
other connectors, involving time and quantitative models. Moreover it would be
interesting to characterize how so-called synchronous regions [40] can be detected
in our translation scheme. Finally the translation has been provided from Reo
to BachT-like languages. Exploring the converse translation would be interesting
as well.
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Abstract. It is well-known that the difference between theory and prac-
tice seems smaller in theory than in practice. From the perspective
of the coordinator, the coordinated components play the role of wild
beasts, fortunately imprisoned in boxes. From the perspective of the
care-free semanticist, the development of tools is merely a minor step
away (possibly hidden in promises of future work). This paper draws
parallels between beasts and tool building by describing challenges we
have encountered and sharing experiences and lesson learned when going
from a compositional semantics to a well-functioning tool interacting
with industrial use cases. Concretely, we discuss the development of the
simulation backend for Real-Time ABS.

In addition to his scientific contributions, Farhad Arbab has
always been an outstanding speaker with a flair for inspiring talks
and memorable punchlines. This paper is written for a highly
appreciated colleague.

1 Introduction

Inside every box, there is a beast1 just waiting to be discovered. Look closely and
you will find it, lurking in the shadow of some interface. Even if you decide not
to look, the beasts will still be there; their behavior an unsolvable mystery to the
exogenous spectator. Each beast has its own particularities, its own irregularities,
and its own side effects. Every beast is potentially a new friend, some of them
can be worth knowing.

Many researchers rely on abstraction for their formalizations and reasoning
systems. It is our secret weapon; apply it and a lot of problems simply vanish in
a “puff” [1]. Programming languages are also getting increasingly more abstract,
allowing us to express programs in more generic ways, relying on some low-level
machinery to ensure that they are well-behaved. High-level languages should
make it easier to express and prove the correctness of the behavior we want in
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1 The metaphor of the ‘beast in the box’ was invented by Farhad Arbab around 2005.
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our systems. We continue to strive for more abstraction [2], for more semantics
[3], for more compositionality [4]. As we climb the ladder of abstraction, we leave
the operational behind in favor of the denotational, we ignore the “how” in favor
of the “what”. Let us consider Reo [5] as a case in point; happily unconcerned
with the behavior it coordinates, it is pure compositionality with an endless
flow of semantics [6]. Reo’s different semantics describe the flow of data through
connectors coinductively [6], using constraint automata [7] abstracting from the
distinction between input and output, or as an artist’s palette of colors [8]. Each
semantics highlights a particular aspect of Reo’s exogenously coordinated flow.
The different semantics also enable the implementation of tools (e.g., [8–10]). The
construction of tools reveals another kind of beasts: the implementation details
and the interface to the real world. In fact, it is on the path from semantics to
tools that we encounter the beasts that are the focus of this paper, where the
ideal compositional world of semantics comes with many afterthoughts.

In the rest of this paper, we discuss these afterthoughts and open the boxes
to get a closer look inside. Section 2 gives a brief overview of ABS and its seman-
tics, the language that we are using to illustrate our findings when looking into
the boxes. Section 3 proposes a starting point when venturing towards imple-
mentation and tools. Section 4 discusses implementation issues, Sect. 5 describes
interfacing with models, and Sect. 6 describes issues of community and develop-
ment. Sections 7 and 8 describe two case studies which illustrate the interest of
venturing down this road.

2 A Short Overview of Real-Time ABS

Real-Time ABS is a formally defined, actor-based, object-oriented modeling lan-
guage targeting distributed systems with early deployment decisions and timing
requirements. Real-Time ABS extends ABS, a language with a formal syntax and
semantics defined in operational semantics (SOS) [13] as well as trace seman-
tics [12]. Compared to other actor or active object languages [26], two distin-
guishing features of Real-Time ABS are its support for cooperative concurrency
and the explicit modeling of deployment decisions in a real-time setting.

The language is layered and combines a simple, functional language to express
local computation; an object-oriented, imperative language for asynchronous
communication and synchronization; and real-time and deployment layers which
allows object requiring resources for their computations to be placed at locations
with restricted resource capacity, and to model the time-sensitive behavior of
these objects. The combination of functional and imperative layers makes it
easy to model an object-oriented design, yet retain a high level of abstraction
for internal computations and data modeling. The real-time and deployment
layers make it possible to express timing properties and compare deployment
decisions early in the software development process.

Real-Time ABS includes a Cloud API, used to model how software appli-
cations interact with a cloud provider [27]. The model offer services to client
applications to dynamically acquire and release virtual machines on demand.
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Fig. 1. Some rules from the operational semantics of Real-Time ABS.

The model of the cloud provider is based on deployment components, which are
computation locations with limited resource capacities and which are used to
represent created virtual machines of given processing capacities. The commu-
nication interface of the cloud provider allows a model of a client application
to create machines with a desired execution capacity, acquire machines to start
task executions, release machines, and finally get the accumulated usage cost.
This API extension has been used in several case studies. In particular, Sect. 7
reports on experiences with Real-Time ABS using this Cloud API.

Figure 1 illustrates the SOS semantics of Real-Time ABS (for details of the
full semantics, see [15,19]). In these rules, a configuration cn is a multiset of
terms, including objects, concurrent object groups (cogs), which share a thread
of execution, and execution locations with restricted amount of resources. The
timed configuration includes a global clock cl(t). The use of brackets encapsu-
lating timed configurations allows the left hand sides of rules to match the whole
configuration and not just some of its terms. An object is a term o(σ, p, q) where
o is the object’s identifier, σ is a substitution representing the binding of the
object’s fields, p is an (active) process, and q a pool of processes. For the process
pools q, concatenation is denoted by q1 ◦ q2. A process {σ|s} consists of a substi-
tution σ of local variable bindings (including the variable deadline which denotes
the remaining execution time of the process until a soft deadline is passed) and
a list s of statements, or it is idle. A cog c(act) contains an identifier c and the
currently active object act or ε if no object of the cog is currently active.

Rule Suspend enables cooperative scheduling and suspends the active process
to the process pool, leaving the active process idle, and Release-Cog makes the
cog idle if the object holding its lock is idle. Given an idle object with an idle
cog, rule Activate schedules a process from the process queue and grabs the lock
of the cog. Here, the function select chooses a process which is ready to execute
from the process queue. If there is no such process, the premise is false.

Time advance in the semantics is specified by a transition relation →t and
the rules Run-Inside-Interval and Run-To-New-Interval. The model of time is
based on maximal progress, so time will only advance when execution is otherwise
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blocked (i.e., !→ denotes the reduction to normal form in the premises of the
rules). The rule Run-Inside-Interval captures time advance which does not influ-
ence the resource availability in the execution locations of the system, and the
rule Run-To-New-Interval captures the case when the resources in the execu-
tion locations should be “refilled” for the next time interval. The function mte
calculates the maximal time advance, which is the largest amount by which time
can advance such that no “interesting” occurrence will be missed in any object
or execution location. The function timeAdv updates the active and suspended
processes of all objects, decrementing the values of all deadlines and duration
statements. The function rscRefill captures the effect of time advance on the
execution locations, causing the refilling of resources in each of them.

3 Leaving the World of Semantics and Compositionality

Compositionality is often regarded as the key to address real systems using
formal methods. In semantics, compositionality gives us maintainability by min-
imizing the interference between different mathematical objects such that new
objects will not violate existing semantic rules and such that different objects
can be composed or coordinated via their interfaces. In reasoning, composi-
tionality allows us to reason about each of these objects separately, and later
put together the derived local behaviors by means of composition rules. In an
ideal, mathematical setting, composition rules such as logical conjunction come
naturally [11]. In practice, they are often complex and need to, e.g., resolve inter-
ference between processes [4] or match shared events in local traces [12]. Remark
that compositionality also often leads to incompleteness in analysis by introduc-
ing abstractions in local reasoning in terms of interfaces, communication traces,
scheduling traces, and other assumptions which generalize the environment.

A major challenge in formal methods is what we may call “leaking abstrac-
tions”. Leaking abstractions typically occur when our reasoning about a high-
level model or a program requires more low-level information than we have avail-
able at the surface level: We have lost too much information in our abstractions.
For example, the abstractions are leaking when knowledge about the runtime
system’s locks, its partitioning of data into blocks, or its (often unspecified or
non-deterministic) scheduling decisions are required to reason about the behav-
ior of programs which do not mention any locks, memory blocks, or schedulers
in the surface language.

An interesting example of leaking abstractions is deployment. In high-level
languages we want to abstract from knowledge of, e.g., memory layout, which
processor gets to run a task, or how tasks distribute over nodes in a grid. With
virtualization, hardware becomes data in our software programs. In our work
on virtualized services for the cloud in the ABS modeling language, described
in Sect. 2, we were confronted with how to give a high-level representation of
low-level deployment details; we needed to explicitly represent time as well as
dynamic deployment decisions allowing the program to change its own deploy-
ment. Our solutions were also confronted with real industrial case studies [14].
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To capture uniform time advance and their effect on computing resources
operationally, we suddenly needed global rules, as the one shown in Fig. 1. To
apply the modeling language to industrial case studies, we needed efficient tools
which integrated our models with real world operational data. To be useful to
practitioners, these tools should not derive theorems from our models, but rather
produce easily accessible information; exit Greek variables, enter the world of
visual analytics. As all things flow [5], we have focussed on timed data streams
depicting the runtime behavior of models.

4 From Operational Semantics to Simulation

If denotational semantics captures the “what” and operational semantics the
“how”, a simulator captures the “really how”. This section discusses some details
from the experiences gained in moving the perspective from the operational
semantics of Real-Time ABS to the realm of execution (see Sect. 2 for a brief
introduction to the language). The process of implementing a language’s opera-
tional semantics into the tool domain includes many conventional software devel-
opment tasks: fixing a concrete syntax that is expressible in ASCII, choosing an
implementation platform, implementing a parser and type-checker, code gener-
ation, etc. In the case of Real-Time ABS, the tool chain runs on top of the Java
Virtual Machine, translating ABS models into runnable code using one of sev-
eral “backends”. The first backend, initially developed for a precursor language
called Creol [16], was implemented on top of the rewriting logic system Maude
[17]. Later this backend was joined by a language implementation in Java and
one in Erlang [18].

In addition to standard software engineering issues, translating a formal
semantics such as Real-Time ABS into code presents some unique challenges.
In this particular case even though the starting point of this translation was
an operational semantics [15,19] detailing the “how”, some of its rules have
a denotational flavour hiding the “really how”. Rules that are straightforward
to understand in terms of “what” they are doing, devolve into convoluted code;
e.g., the humble negation operator morphs into a global actor resulting in perfor-
mance bottlenecks, etc. In the remainder of this section, we present a selection of
interesting implementation challenges, encountered during the implementation
of the Real-Time ABS simulator. The chosen challenges relate to the rules of the
operational semantics shown in Fig. 1.

4.1 Clock Advance

A straightforward expression of a logical clock rule is: If no process can execute,
advance the clock by the maximum amount that makes no process miss a dead-
line. This can be expressed in a rule such as Run-Inside-Interval of Sect. 2,
Fig. 1, where the symbol !→ denotes the maximum application of other rules. In
the more concrete world of Maude’s rewriting logic, expressing that no process
can execute entails checking the status of each process, slowing down simulation.
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Lesson 1. Semantic rules which contain global (whole-program) state are expen-
sive and easily lead to problems of scaling during implementation.

Rules with global state are not compositional by nature. This makes a direct
implementation of semantic rules with global state badly suited for simulating
systems with large state. This problem can be circumvented by introducing a
centralized coordinator or a distributed protocol.

Note that the property “cannot execute” is non-monotonous since a process
waiting for a computation result can become runnable again as a consequence
of a process in another cog terminating. On the even less abstract distributed
Erlang platform using explicit actors, this can easily lead to temporary “glitches”
as a completion message travels from source cog to target cog. As a consequence,
it was necessary to implement a dedicated singleton actor tracking the status of
each cog. Entertaining months were spent chasing ever more improbable protocol
errors that resulted in spurious clock advances.

Lesson 2. Negations (“it is not the case that. . . ”) translate into universal quan-
tifiers whose implementation requires knowledge of global state.

4.2 Scheduling Processes

In contrast to the semantics of a logical clock representing dense time, which
is specific to ABS, the semantics of scheduling of cooperative processes is well-
understood and standard. In ABS, scheduling entails an idle cog picking an
enabled process and executing it, thereby becoming busy. The semantics of
scheduling is shown in Suspend, Release-Cog and Activate of Sect. 2, Fig. 1;
the select function here returns a runnable process p from the process pool q.

This behavior was implemented in Erlang by choosing one element out of a
set of ready process identifiers, sending it an activation signal and removing it
from the ready process set. We were satisfied that this simple implementation
was trivially correct and according to the desired semantics, until we received a
bug report about a deadlock in the simulation engine.

The user, as it turns out, was running two processes communicating via
a shared object field: process A was spinning on a field (while(!field)
suspend;), while process B’s task was to set the field (field = True;). Note
that both of these processes are enabled and ready to run. Due to the imple-
mentation of Erlang’s standard set datatype gb sets, process A happened to be
chosen every time, thereby starving process B that would, in turn, have enabled
process A to make progress. The solution was to (i) gently mock the offend-
ing user’s program, which should have used the ABS construct await field;
instead of busy-looping, and (ii) implement a randomizing scheduler to cater for
a potentially infinite sequence of näıve models in the future.

Lesson 3. The simplest possible, obviously correct implementation of a semantic
rule might not be suitable in practice.
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5 Getting the Real World into the Models

An implementation of a language semantics gives us a “compute kernel” of
sorts that can be used to execute programs written in the language. However,
pure computation, even when correctly implemented, is not always useful by
itself. End users tend to expect facilities for input and output, which are often
abstracted away in language semantics.

This section describes some useful patterns and extensions of Real-Time ABS
in the areas of input, output, and visualization. Most of these are implemented
in terms of a “Model API”. The very first implementations of ABS (and Creol,
its precursor) consisted of equations and rewrite rules over terms representing
objects, processes and other runtime semantics entities that executed on the
rewriting logic system Maude [17]. The result of a computation was represented
as a dump2 of the final state of the global configuration, rendered as ASCII. The
results of simulation (both computation results and model state) were accessed
by one-off scripts, often using regular expressions to extract relevant parts of
this dumped output.

While working on various case studies with industrial partners, the need
to both access model state and influence the model from the outside became
apparent. The creation of other backends (and later versions of Maude) enabled
the addition of printed character output to the language, but accessing richer,
structured data remained elusive.

Lesson 4. Simulation engines need visualization and text output as a minimum,
ideally also a way to access structured state.

In response to these end user needs, a Model API was established for the
Erlang backend. The API is based on web technologies: communication via the
HTTP protocol, with data returned in JSON format. This choice was made
to maximize the ease of implementation of tools to interoperate with a running
model; most programming languages come with standard libraries to emit HTTP
requests and to parse JSON.

Figure 2 illustrates interaction with a running model from the command line:
the user first obtains a list of entry points (entry points are added to the model by
the modeler), then a list of callable methods and finally the result of a method
call. A representation of an ABS object’s internal state can be obtained in a
similar way. This API was used in an industrial case study [20] to drive an ABS
model according to traces obtained from the system logs of a real system.

Lesson 5. Any aspect of a tool that is not core to its functionality (e.g., commu-
nication protocols, structured data storage) should be implemented using estab-
lished industrial standards and existing libraries. This makes it easier for both
implementor and end user.
2 The reviewers of the EU project Credo (https://projects.cwi.nl/credo/), tasked with

implementing Creol [16], correctly pointed out that screenfuls of text (or, for larger
model states, hundreds of kilobytes) were not an effective way of communicating and
understanding model behavior.

https://projects.cwi.nl/credo/
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Fig. 2. Interacting with the Model API.

One consequence of adding a Model API, i.e., a way of communicating with
a model from outside, is that we move from a closed to an open world where
the full behavior of the model can no longer be analyzed statically. This can
impact proof theories and other analysis approaches, especially when relying on
the whole-program analysis. Modular, compositional analysis methods are less
affected as only a few selected modules are opened to the outside world.

Lesson 6. Tools have different, sometimes conflicting requirements. Making a
language implementation more useful for simulation (“programming”) can result
in proofs of correctness becoming more difficult, and vice versa.

6 Getting the Models into the Real World

In the early days of ABS and its extensions, knowledge about the language was
transmitted orally. All users were part of the same institution, or at least of the
same project, so education and discovery of best practices happened face-to-face.
Similarly, bugs and problems were discovered, reported, discussed, and fixed via
personal interaction. However, this does not scale for a language with users that
are not personally known to the language implementors and designers.

The aim for a widely-used tool must be to make it “self-supporting”; i.e., the
users should be able to find the answers to common problems by themselves.
Updating the documentation in response to user questions must be an ongoing
process.

Lesson 7. When a user asks a question that is covered by the documentation,
ask where they looked for the answer, then update the documentation to put it
there.

Additionally, a lot of programs are developed in a process of “coding-by-
imitation”. Good examples and tutorials help in the process of picking up an
unfamiliar language.

Lesson 8. Provide both small and large examples that show best practices and
“proper” ways to use a language to its fullest potential.
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Another aspect of language uptake is visibility of ongoing development. For
users, access to the source code provides a measure of safety—but maybe more
important is a visible and accessible development process. Multi-year commit
activity and prompt responses to bug reports assure prospective customers that
any problems they might uncover will likely be solved as well.

Lesson 9. Make development activity visible to interested end users.

On the other hand, development can lead to “churn” in that introducing and
adapting features can break old code. Once a language is used more broadly, care
must be taken not to invalidate the users’ work. This can be done in multiple
ways: by keeping deprecated features around if they do not conflict with new
features; by documenting changes and update paths for outdated code; and by
providing means of identifying the tool version used for a specific model and
obtaining that version later, should the need arise.

Lesson 10. Do not break user code unnecessarily, and provide ways forward
(adapting code for new tool versions) and backward (obtaining previous tool ver-
sions) in case of necessary changes.

7 Use Case: Scaling with Traffic Data

This section describes a use case modeling a microservice architecture for dis-
patching car software updates [21]. The use case describes an innovative business
model which combines cloud computing and microservices to allow on-demand
delivery of scalable and modular applications with pay-as-you-go pricing.

The starting point for the model creation was the existing microservice archi-
tecture. Part of the challenge was to create an appropriate abstraction, i.e., a
simple executable model which exposes scaling decisions as configurable param-
eters. ABS helped to cope with this challenge because (i) it natively supports
CPU, memory resources and the notion of deployment components [15], (ii) being
a full-fledged language it is more flexible than ad-hoc cloud simulators, (iii) it
has parallel run-time support in Erlang, (iv) tools for worst-case performance
analysis [22] and visualization are available.

Figure 3 shows the chosen methodology. First, we used worst case analysis
(e.g., queuing theory) and profiling techniques to understand which parts of the
system could be simplified and abstracted. This allowed in a second step to
create a simple model with fewer parameters to tune. Finally, to reduce the cost
of the cloud resources used by the microservice system and find good scaling
parameters, we used automatic parameter configurators [23,24], i.e., tools that
rely on machine learning techniques to explore the possible configurations in a
smarter and more systematic way and come up with good parameter settings.

The creation of the model3 was quite straightforward. A microservice instance
and the load balancer for the redirection of requests was represented with objects.

3 https://github.com/HyVar/abs optimizer.

https://github.com/HyVar/abs_optimizer
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Fig. 3. The scaling optimization methodology.

The internal computation performed by a microservice was abstracted to a skip
statement taking a given computation cost c as follows.

[Cost: c] skip;

The objects were instantiated on deployment components, a native construct
of ABS used to represent the virtual machines on which the real microservice
instances are deployed. In this way, the acquisition/dismissal of a virtual machine
for scaling up/down was modeled by the creation/removal of a deployment com-
ponent exploiting the ABS native Cloud API (for details, see Sect. 2).

Based on this model, we can now search for good scaling settings using
the Sequential Model-Based Optimization for General Algorithm Configura-
tion (SMAC) tool [24], an automatic parameter configurator, to explore possible
configurations. This computationally heavy task was done using 64 nodes in a
Numascale cluster, a scalable cluster with shared memory4. We run 64 instances
of SMAC in parallel for 12 h. Every execution of SMAC was performing in
sequence the simulations running the generated Erlang processes on 6 dedicated
cores. The input request pattern used 24-h of car traffic based on the number of
cars registered on the A414 highway, UK, on Monday, March 2, 2015.

Calibrating the microservice system with good scaling settings was in this
case vital. In theory a microservice system is a simple thing, in practice it was
not. In the beginning, our abstraction was completely disconnected from the
actual performances of the system. For instance, instead of having a uniform
latency distribution (predicted by our model), we obtained a distribution of
latencies like the one presented in Fig. 4. We could not understand why this
was happening since, based on our simulations, this was not explainable by
considering network problems or the variability of the performance of the cloud.
At the end, we discovered that the Amazon default “round-robin” load balancers
used in the real system implementation were not adopting a strictly round robin
policy. This official response on the AWS blog5 highlights the issue:
4 https://www.numascale.com/.
5 https://forums.aws.amazon.com/message.jspa?messageID=316829.

https://www.numascale.com/
https://forums.aws.amazon.com/message.jspa?messageID=316829
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Fig. 4. Uneven request processing times.

“Round-robin does come into play but the client sessions do not always
honour TTL’s or DNS caches so you can get skewed results and uneven
distributions of requests. The ELB does not take into effect what traf-
fic/requests instances have received to-date in there traffic routing deci-
sions.”

When using Amazon’s load balancers, this problem rendered our abstraction
useless. We tried multiple approaches to mitigate this while still running the
default Amazon load balancers without achieving a satisfactory level of precision,
due to the unknown real policy of Amazon load balancers.

To improve predictability, the original microservice system was changed
by replacing the Amazon load balancers with HAProxy6, an open source and
more controllable solution. This way, the original system was improved and the
abstraction was able to predict its behavior, thus allowing good scaling strategies
to be found [21]. Figure 5 shows that the simulation was robust enough to mimic
the real system and offer a performance estimation usable to set good scaling
parameters, even considering the random performance fluctuation of the cloud
instances. We used the Model API described in Sect. 5 to visualize the simu-
lations. This visualization greatly simplified the discovery of discrepancies and,
later, the gain of confidence in the robustness of the model. In this particular
case, it was possible to change the original application to make the model accu-
rate. However, this is not always the case. Developing accurate models which
faithfully represent commercial black box components still remains a challenge.

Lesson 11. Without having a faithful representation of the behavior of the sys-
tem, an optimization step in the model is useless.

6 https://www.haproxy.org.

https://www.haproxy.org
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Fig. 5. Comparison latency as predicted by ABS to the latency of the real system.

8 Use Case: Vessel Planning

Whereas Sect. 7 showcased a case study of a distributed software system with
virtualized deployment, ABS has been increasingly used to model other kinds
of systems (e.g., railways [25]). In this section, we consider an industrial case
study from the domain of operational planning. This case study addresses vessel
movements and cargo transport in the North Sea. The stakeholders want to
improve their workflow to have a better overview of the (potential) bottlenecks
delaying overall progress, the general load on different vessels, and the quality
of their logistics operation both in terms of the exploitation of vessel capacity
and on the timely delivery of material. We use Real-Time ABS as a modeling
language to simulate and visualize the actual logistics operations. Compared to
the tools currently used, Real-Time ABS simulations provide a different level of
overview which helps to gain precision in the decision making phase.

The case study illustrates the usefulness of ABS modeling beyond the realm
of computing systems, and makes use of both the input and output-facilities
of the Model API to drive the simulation of the model and for visualization of
output. Currently Real-Time ABS is here used for simulations. In a longer term
perspective, we intend to combine these simulations with stronger analyses to
generate solutions and verify their correctness with respect to requirements such
as resource restrictions, safety regulations, and space limitations.

We are working with industrial data from different parts of a complex supply
chain, and integrate these into a uniform ABS model. The data covers transport
plans for a large number of vessels moving between processing plants, with logs
for bulk and cargo delivery covering a twelve month period. In this use case,
ABS is used to define a general framework for modeling transport plans by
means of abstractions for, e.g., vessels, containers, bulk cargo, route segments,
and delivery deadlines in a generic way.
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Fig. 6. Visualization of time series data depicting vessel movements.

The model is populated by specific data representing a concrete plan. This
is currently done by moving the data from Excel into a SQL database, then
generating ABS data structures corresponding to the industrial data set. Thus,
the industrial data set acts as the driver for the ABS model. The modeler spec-
ifies a time window, and data for this time interval is converted from the SQL
database and turned into the model of a concrete plan. This allows the ABS
model of the concrete plan for the given time window to be simulated. The plan-
ner is presented with a graphical view of the simulated plan, see Fig. 6. This
graphical view is dynamically generated in-browser from JSON data fetched via
the Model API (described in Sect. 5) and can be easily adapted by a frontend
developer; no knowledge of ABS is needed to create different views over the
simulation data.

A practical challenge with this case study, in addition to the data cleaning
required to convert operational data to fit with the modeling framework in Real-
Time ABS and the interaction of the simulation backend and the SQL database,
was the conversion of calendar data to model time. Real-Time ABS represents
time using rational numbers. We calibrated the model with time 0 representing
midnight on the first day simulated. Subsequent dates were numbered 1, 2 . . . ,
with the fractional part representing time of day. This approach gave us sufficient
resolution to model real time using abstract time units.

9 Conclusion

This paper has discussed challenges in moving from formal, compositional lan-
guage semantics to industrially applicable tools. These challenges span from
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pattern matching in reduction rules necessitating protocols in a distributed
implementation to documentation and input/output interfaces for real world
data. We have compared these challenges to the beasts hidden in the boxes of
the exogenous coordinator.
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Abstract. Reo is a language for programming of coordination proto-
cols among concurrent processes. Central to Reo are connectors: pro-
grammable synchronization/communication mediums used by processes
to exchange data. Every connector runs at a clock; at every tick, it enacts
an enabled synchronization/communication among processes.

Connectors may prioritize certain synchronizations/communications
over others. “Passive” connectors use their priorities only at clock
ticks, to decide which enabled synchronization/communication to enact.
“Active” connectors, in contrast, use their priorities also between
clock ticks, to influence which synchronizations/communications become
enabled; they are said to “propagate their priorities”.

This paper addresses the problem of formalizing propagation of pri-
orities in Reo. Specifically, this paper presents a new instantiation of
the connector coloring framework, using eight colors. The resulting for-
malization of propagation of priorities is evaluated by proving several
desirable behavioral equalities.

Foreword

This paper addresses, perhaps, the oldest open problem in the Reo community.
The problem came to my attention for the first time in May 2011, six months

into my PhD project. Perhaps—nay, surely!—I should have walked away from
it; oh, the time that would have saved me... But, the problem was too tempting
to resist. Farhad, Kasper, and I worked on solutions intermittently over the past
years. Many times, I thought we had solved it; equally many times, we had not.

I promised Farhad more than once to end our suffering (my choice of words),
by formalizing propagation of priorities in the connector coloring framework,
using k > 3 colors. I never quite succeeded. This seems the perfect occasion to
finally, half a decade down the road, fulfill that promise. Well, to some extent.

1 Introduction

Context. Reo is a language for programming of coordination protocols among
concurrent processes. Central to Reo are connectors: programmable synchroniza-
tion/communication mediums used by processes to exchange data, by invoking
c© Springer International Publishing AG, part of Springer Nature 2018
F. de Boer et al. (Eds.): Arbab Festschrift, LNCS 10865, pp. 122–138, 2018.
https://doi.org/10.1007/978-3-319-90089-6_9
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write and take operations. Every connector runs at a clock; at every tick, it
enacts an enabled synchronization/communication among processes, based on
the operations those processes have performed.

To send data, a process can invoke a write operation on the interface of a
connector; to receive, it can invoke a take operation. Both writes and takes are
blocking : after a process has invoked write or take, it immediately suspends,
its operation becomes pending, and it resumes only after its operation has been
resolved by the connector. To resolve a pending write, a connector performs a
reciprocal take; to resolve a pending take, it performs a reciprocal write.

As connectors fully control resolution of pending operations, only connectors
decide when (synchronization) and whereto/wherefrom (communication) data
flow. In this way, connectors coordinate the synchronization/communication
among processes.

Problem. Connectors may prioritize certain synchronizations/communications
over others. “Passive” connectors use their priorities only at clock ticks, to decide
which enabled synchronization/communication to enact. “Active” connectors, in
contrast, use their priorities also between clock ticks, to influence which synchro-
nizations/communications become enabled; they are said to “propagate their
priorities”.

Imagine, for instance, a connector C among processes P1, P2, and P3. Imag-
ine, moreover, that at every clock tick, C can enact either a data-flow from P1

to P3 with high priority (enabled only if P1 and P3 invoked write and take), or
a data-flow from P2 to P3 with low priority (enabled only if P2 and P3 invoked
write and take). If C is passive, it quietly awaits the next clock tick, checks
which operations are pending to determine which data-flows are enabled (if any),
chooses and enacts the one with the highest priority, and quietly awaits the next
clock tick. If C is active, in contrast, it requests P1 to invoke write (and P3 to
invoke take) before the next clock tick, thereby enabling C to choose and enact
the high priority data-flow from P1 to P3 at the next clock tick.

Contribution. Existing formalizations of Reo do not support modeling of con-
nectors that propagate priorities. This paper presents such a formalization.

Section 2 establishes terminology and definitions. The section is terse; more
gentle introductions to Reo [Arb04,Arb11] and the connector coloring frame-
work [CCA07,Cos10] appear elsewhere. Section 3 details the problem of for-
malizing propagation of priorities. Section 4 presents a solution in the connec-
tor coloring framework, using eight colors. Section 5 contains an evaluation of
this solution, in terms of behavioral equalities. Section 6 concludes this paper
with a discussion. AppendixA contains definitions. Proofs appear in a technical
report [Jon18].
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v1
v2

v3

(a)

v1

v2

v3

v4×

(b)

v1

v2

v3

v4

v5

v6

v3
+

!>

(c)

Fig. 1. Examples of connector syntax

2 Preliminaries

Syntax. Structurally, a connector in Reo is a (directed hyper)graph of vertices
and (nonempty, directed hyper)edges.1 Every edge is labeled with a type, shortly
used to define the semantics of a connector. Figure 1 shows examples.

A vertex of a connector is external if it is the source of exactly one edge, or
the target of exactly one edge; otherwise, it is internal. Processes perform write
and take operations on external vertices, which thus consistute the interface.

A connector is primitive, if it has exactly one edge; otherwise, it is compound.
Figure 2, first column, shows the name and syntax of common primitives.

A connector is well-formed, if (i) it has at least one edge, and (ii) if each of
its vertices is the source of at most one edge, the target of at most one edge, and
the source or target of at least one edge.

The structural composition of two connectors, denoted by operator ��, is the
graph consisting of the union of the sets of vertices, and the union of the sets of
edges; it is a partial operation, to preserve well-formedness. Moreover, structural
composition is associative and commutative.

A vertex is shared between two connectors, if it is an external vertex of both.

Informal Semantics. Behaviorally (informal), a connector in Reo is a set of data-
flows between vertices, along edges, endowed with a partial order of priorities.2

A vertex is active in a data-flow, if data passes through it; otherwise, it
is passive. Every vertex participates either actively or passively in each of its
connector’s data-flows. Idling is the degenerate data-flow in which every vertex
participates passively. A data-flow of a connector is enabled, if every external
vertex that actively participates in the data-flow has a pending write or take;
idling is always enabled, vacuously.

A connector runs on a clock; at every tick, it enacts one of its enabled
data-flows. If multiple data-flows are enabled, it nondeterministically selects an
order-theoretically maximal one among them. Figure 2, second column, shows
the informal semantics of common primitives; “prioritizes (n) over (m)” means
“(n) is greater than (m)”.

1 Binary edges are usually called channels; maximal sets of adjacent ternary edges are
usually called nodes [Arb04,Arb11].

2 For simplicity, and because it is a concern orthogonal to formalizing priorities, I
consider only stateless connectors in this paper.
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Name & Syntax Informal semantics

Drain

v1

1. It takes data through v1, and loses it.
2. Or, it idles.

It prioritizes (1) over (2).

Sync

v1 v2

1. It takes data through v1, and writes it through v2.
2. Or, it idles.

It prioritizes (1) over (2).

SyncDrain

v1 v2

1. It takes data through v1 and v2, and loses them.
2. Or, it idles.

It prioritizes (1) over (2).

ExclDrain

v1 v2

1. It takes data through v1, and loses it.
2. Or, it takes data through v2, and loses it.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3).

LossySync?

v1 v2

?

1. It takes data through v1, and writes it through v2.
2. Or, it takes data through v1, and loses it.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3).

LossySync

v1 v2

1. It takes data through v1, and writes it through v2.
2. Or, it takes data through v1, and loses it.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3), and (1) over (2).

Merger

v1

v2

v3

1. It takes data through v1, and writes it through v3.
2. Or, it takes data through v2, and writes it through v3.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3).

Join

v1

v2

v3
×

1. It takes data through v1 and v2, and writes the set containing
them through v3.

2. Or, it idles.
It prioritizes (1) over (2).

Replicator

v1

v2

v3

1. It takes data through v1, and writes it through v2 and v3.
2. Or, it idles.

It prioritizes (1) over (2).

ExclRouter

v1

v2

v3

+

1. It takes data through v1, and writes it through v2.
2. Or, it takes data through v1, and writes it through v3.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3).

Fig. 2. Name, syntax, and informal semantics of common primitives
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(1, 1) It takes data through v1, writes/takes it through v2, and loses it.
(2, 2) Or, it takes data through v1 and v3, and loses it.
(2, 3) Or, it takes data through v1 and loses it.
(3, 2) Or, it takes data through v3 and loses it.
(3, 3) Or, it idles.
It prioritizes (1, 1) over (3, 3), and (1, 1) over (2, 3), and (2, 2) over (3, 3), and (2, 3)
over (3, 3), and (3, 2) over (3, 3).

Fig. 3. Informal semantics of Fig. 1a.

A data-flow through one connector is consistent with a data-flow through
another connector, if each of their shared vertices is either active or passive in
both data-flows. This ensures data can flow between connectors, through their
shared vertices. The behavioral composition of two connectors is the set consist-
ing of the pairs of consistent data-flows, endowed with their product order. Every
global data-flow through a compound connector, thus, is the concatenation of
local data-flows.

For instance, the connector in Fig. 1a is composed of LossySync and ExclDrain
in Fig. 2. As these connectors both have three local data-flows, the compound
has at most nine global data-flows. Figure 3 shows which of those data-flows are
consistent; (n,m) means “the pair consisting of (n) of LossySync and (m) of
ExclDrain”. As the compound prioritizes (1, 1) over (2, 3), and because (1, 1) and
(2, 3) are always enabled together, it never enacts (2, 3).

Formal Semantics. Behaviorally (formal), in the connector coloring framework,
a connector is a set of total functions, called colorings, from vertices to natural
numbers, called colors [CCA07,Cos10,JKA11,CP12]. Every coloring models a
data-flow; every color models the activeness/passiveness of a vertex in a data-
flow. Depending on the number of colors the framework is instantiated with, dif-
ferent levels of activeness/passiveness can be distinguished, to lesser or greater
expressiveness. In particular, colors can be used to model priorities, as an alter-
native to endowing sets of colorings with partial orders (exemplified shortly).

Two colorings are consistent if they map the vertices in the intersection
of their domains to the same colors. The behavioral composition of two con-
nectors, denoted by operator ��, is the set consisting of the unions of their
consistent colorings. As such, behavioral composition in the connector color-
ing framework straightforwardly models concatenation of consistent data-flows.3

Behavioral composition is associative and commutative.
The structure and behavior of a connector are related through a denotation

function
�
·
�
: it consumes as input a connector structure (graph) and produces

as output a connector behavior (set of colorings), by decomposing the connector
into primitives, looking up the local behavior of every primitive in a predefined
type-indexed table, and composing the local behaviors into a global one.

3 The composition operator can be extended with the flip-rule [CCA07,Cos10], to
reduce sets of colorings. I do not pursue this in this paper.
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Fig. 4. Colors

Fig. 5. Examples of two-color semantics

To exemplify the connector coloring framework, Fig. 4 shows nine colors.
Colors 0, 1, 2, 3 already exist in the literature; colors 4, 5, 6, 7, 8 are new. The
following lists summarizes three existing instantiations of the framework:

– With two colors [CCA07,Cos10], {0, 1}, one can model data-flows, but not
priorities. Figure 5 shows examples. As the figure shows, colorings can be
represented both textually and graphically (using the notation in Fig. 4).
Figure 5a shows the behavior of LossySync. Coloring γ1 models a data-flow
from v1 to v2 (both vertices are active); coloring γ2 models the loss of data
taken through v1 (only v1 is active); coloring γ3 models idling. Figure 5b and c
can be explained similarly. The colorings in Fig. 5 model exactly, one-to-one,
the data-flows in Figs. 2 and 3. However, priorities are not modeled.

– With three colors [CCA07,Cos10], {1, 2, 3}, one can model both data-flows
and priorities. Specifically, color 0 is refined into colors 2, 3, to model not only
that a vertex is passive, but also why. Figure 6 shows examples. I write “the
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Fig. 6. Examples of three-color semantics

environment can write/take through v” to mean that either a write/take
is pending on v (if the environment at v is a process) or a data-flow can be
concatenated at v (if the environment at v is another connector).
The expressive power of the three-color semantics is best exemplified with
LossySync, as follows. Coloring γ2 in Fig. 5a and coloring γ2 in Fig. 6a both
model the loss of data taken through v1. However, γ2 in Fig. 6a addition-
ally models that this data-flow can be chosen/enacted only if no take can
be resolved at v2. As v2 is a target vertex of LossySync (i.e., LossySync can
only write through v2), this happens only if the environment cannot take
through v2. Thus, if the environment can write through v1, but not take
through v2, LossySync can lose (γ2). But, if the environment can both write
and take, LossySync must choose to not-lose (γ1) instead of to lose (γ2), just
as its informal semantics demands (Fig. 2).
The three-color semantics of LossySync? is the same as the three-color seman-
tics of LossySync, plus coloring γ′

2 = {v1 �→ 1, v2 �→ 2}. This extra coloring
models the loss of data taken through v1, just as γ2 in Fig. 6a. However,
γ′
2 additionally models that this data-flow can be chosen/enacted only if no

write can be resolved at v2. As v2 is a target vertex of LossySync? (i.e., the
environment can only take through v2), this happens only if LossySync? can-
not write through v2. This is a condition that LossySync? always can satisfy
(independent of the environment). Thus, if the environment can both write
and take, LossySync? nondeterministically chooses between not-losing (γ1)
and losing (γ′

2); in the former case, it writes through v2, while in the latter
case, it does not. Thus, γ′

2 is the three-color equivalent of γ2 in Fig. 5a.
LossySync and LossySync? illustrate that by carefully modeling why vertices
are passive, using colors 2, 3, priorities may emerge. Graphically, the triangle
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markings always point away from the root cause for passiveness. For instance,
in coloring γ3��γ7, vertex v2 is passive, because there is no write on v2 (cause),
because the environment cannot write through v1 (root cause).

– With four colors [CP12], {0, 1, 2, 3}, one can model data-flows, priorities, and
partiality. The latter is useful to allow parts of a connector to skip clock
ticks; this is subtly different from idling, and particularly useful in distributed
connector implementations. The details do not matter in this paper.

3 Problem

Informally, propagation of priorities entails the following:

If a connector propagates the priority of a “superior” data-flow over
an “inferior” one into the environment, it enacts the inferior data-flow
only if: (i) another connector simultaneously propagates a priority into
the environment, and (ii) the environment can facilitate only one of the
two priorities—they are conflicting—and (iii) the environment chooses the
other one. In all other cases, facilitated by the environment, the connector
enacts the superior data-flow.

A connector can propagate priorities downstream (i.e., in the direction of data-
flow), upstream, or in both directions.

The problem of formalizing propagation of priorities is perhaps best studied
in terms of concrete connectors. To this end, the presentation of Reo so far is
extended, as follows. First, Fig. 7 shows four new foundational primitives that
start (Sync!> and Sync<!) and end (Sync) and Sync() propagation of priorities.
Second, the informal semantics of every primitive in Fig. 2 is extended with:

“It always propagates others’ priorities downstream and upstream, but
never its own.”

Name & Syntax Informal semantics

Sync!>

v1 v2

!>

Same data-flows and priorities as Sync (Fig. 2). It always
propagates others’ priorities downstream and upstream; it always
propagates its own priority downstream.

Sync<!

v1 v2

<!

Same data-flows and priorities as Sync (Fig. 2). It always
propagates others’ priorities downstream and upstream; it always
propagates its own priority upstream.

Sync)

v1 v2

)

Same data-flows and priorities as Sync (Fig. 2). It always
propagates others’ priorities upstream; it never propagates
priorities downstream

Sync(

v1 v2

(

Same data-flows and priorities as Sync (Fig. 2). It always
propagates others’ priorities downstream; it never propagates
priorities upstream.

Fig. 7. Name, syntax, and informal semantics of priority primitives
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4 Solution

Idea. The idea is to decompose the abstract concept of propagation of priori-
ties into two more concrete auxiliary metadata-flows: one from a connector to
the environment and one from the environment to the connector. Through the
former, called propagation metadata-flow, a connector informs its environment
on which shared vertices the environment must perform reciprocal writes and
takes to facilitate the propagated priority of the connector; through the latter,
called conflict metadata-flow, the environment informs the connector on which
shared vertices it cannot perform reciprocal writes and takes, due to conflicting
propagated priorities. The direction of metadata-flows is completely independent
of the direction of data-flows: metadata can flow both upstream and downstream,
whereas data can flow only downstream.

Now, the plan is to model metadata-flows using colors. The problem is
that metadata-flows conceptually precede normal data-flows (i.e., they happen
between clock ticks), which cannot be directly modeled in the connector coloring
framework (i.e., the framework only models what happens at clock ticks). The
solution is to conflate metadata-flows and normal data-flows.

To model propagation metadata-flows from a connector to the environment,
I introduce three new activeness colors: 4, 5, 6 (Fig. 4). In a coloring, entry v �→ 4
(v �→ 5) models that vertex v is active in the current data-flow, and was active
in the preceding propagation metadata-flow downstream (upstream). To model
metadata-flows from the environment to the connector, I introduce two new
passiveness colors: 7, 8 (Fig. 4). In a coloring, entry v �→ 7 (v �→ 8) models that
vertex v is passive in the current data flow, but was active in the preceding con-
flict metadata-flow downstream (upstream); this means the environment cannot
write (take) through v, because of conflicting priorities upstream (downstream).
Thus, the new instantiation of the connector coloring framework has eight colors:
{1, 2, 3, 4, 5, 6, 7, 8}.

Priority Primitives. Figure 8 shows the eight-color semantics of the new, pri-
ority primitives. Coloring γ1 of Sync!> models a data-flow from v1 to v2, pre-
ceded by a propagation metadata-flow downstream from v2 (into the environ-
ment). Through this metadata-flow, Sync!> informs the environment that it must
perform a reciprocal take on v2. Coloring γ2 is similar to γ1, except that the
metadata-flow does not start at v2, but further upstream; the metadata simply
flows from v1 to v2. Coloring γ3 is similar to γ1, but beside modeling a propaga-
tion metadata-flow downstream from v2 (into the environment), it also models
a propagation metadata-flow upstream from v2 to v1. Coloring γ4 combines γ2
and γ3. Colorings γ5–γ8 all model idling. Specifically, γ5 and γ7 permit idling if
the environment cannot write through v1, while γ6 and γ8 permit idling if the
environment cannot take through v2 because of conflicting propagated priori-
ties. Note that there is no coloring that permits idling if the environment cannot
take through v2, not because of conflicting propagated priorities. The colorings
of Sync<! are symmetric.
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Fig. 8. Eight-color semantics of priority primitives

The key colorings of Sync) are γ2, γ3, and γ6. Coloring γ2 models a data-flow
from v1 to v2, preceded by a propagation metadata-flow downstream to v1, but no
further. In this way, Sync) blocks propagation of priorities downstream. Coloring
γ3 models a data-flow from v1 to v2, preceded by a propagation metadata-flow
upstream from v2 to v1. This shows that the blockade works only in one direc-
tion. Coloring γ6 models idling, supposedly caused by conflicting propagated
priorities. However, such a conflict does not really exist: Sync) only pretends
it has a conflict, to enable anyone further downstream to truly ignore priori-
ties propagated through v1, as part of its blockade. The colorings of Sync( are
symmetric.

Common Primitives. Figure 9 shows the eight-color semantics of the existing,
common primitives (unary and binary); a “+M” annotation below a coloring
means that the “horizontally mirrored” version of that coloring is part of the
semantics as well. I highlight two salient aspects. First, the three-color semantics
of every primitive [CCA07,Cos10] is strictly contained in its eight-color seman-
tics (cf. the three-color semantics of ExclDrain and LossySync in Fig. 6). Second,
coloring γ4 of ExclDrain is a premier example of a propagation metadata-flow
(from connector to environment) that induces a conflict metadata-flow (from
environment to connector).

Figure 9 shows the eight-color semantics of the existing, common primitives
(ternary). Again, the eight-color semantics strictly contain the three-color seman-
tics. The interesting colorings are γ6, γ16, and γ12–γ14 of Merger. Coloring γ6
and γ16 are similar to coloring γ4 of ExclDrain. Colorings γ12–γ14 are notable,
because they model propagation metadata-flows, but no conflict metadata-flows,
in contrast to colorings γ6 and γ16. This is because propagation metadata-flows
upstream have no bearing on the choices made by Merger: regardless of whether
Merger chooses one of γ12–γ14, or one of their “vertically mirrored” versions,
shared vertex v3 is always active; this is all the propagated priority needs.

Next, to evaluate whether the eight-color semantics of the primitives compose
as expected, I state and prove a number of eight-color semantics equalities.
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Fig. 9. Eight-color semantics of common unary and binary primitives

5 Evaluation

Basic Properties of Common Primitives. The following four propositions state
that the common binary primitives in Fig. 2 (except LossySync) can be con-
structed out of unary and ternary primitives.4

Proposition 1.
�

v1 v2

�
=

�

v1

v2

�

Proposition 2.
�

v1 v2

�
=

�

	
v1

v2

×



�

Proposition 3.
�

v1 v2

�
=

�

	
v1

v2




�

Proposition 4.
�

v1 v2

? �
=

�

v1

v2+

�

4 All propositions in this paper should be interpreted modulo application of an hide
operator, to remove internal vertices from the domains of colorings. This is straight-
forward to explicitly formalize.
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Fig. 10. Eight-color semantics of common ternary primitives
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The following proposition states that LossySync? and LossySync behave dif-
ferently when composed with Drain. Specifically, according to its eight-color
semantics, LossySync? can (nondeterministically choose to) lose data before it
reaches Drain, which LossySync cannot. This difference in semantics is intended:
LossySync prioritizes not-losing over losing, whereas LossySync? does not.

Proposition 5.

�

v1

? �
\

{ }
=

�

v1

�

Basic Properties of Priority Primitives. The following two propositions state
that Sync!> and Sync<!, and Sync) and Sync(, commute. Both compounds have
the same data-flows and priorities as Sync in Fig. 2. But, the former com-
pound always propagates priorities downstream and upstream, whereas the lat-
ter compound connector, in contrast, never propagates priorities downstream or
upstream.

Proposition 6.
�

v1 v2

!> <! �
=

�

v1 v2

<! !> �

Proposition 7.
�

v1 v2

) ( �
=

�

v1 v2

( ) �

The following proposition states that Sync) is not the “inverse” of Sync!>:
starting and ending propagation of priorities is not “neutral”. The reason is that
Sync) ends the downstream propagation of all priorities; not just those of Sync!>.

Proposition 8.
�

v1 v2

�
�=

�

v1 v2

!> ) �

Imagine a variant of ExclDrain that, informally, has the same data-flows and
priorities as ExclDrain in Fig. 2, but additionally prioritizes (1) over (2). The
following proposition states that this connector, called ExclDrain! in Fig. 11, can
be constructed out of Sync!> and ExclDrain.

Proposition 9.
�

v1 v2

! �
=

�

v1 v2

!> �

The following proposition states that conflicting propagated priorities “cancel
out”: the composition of ExclDrain! and Sync<! is almost the same as ExclDrain.
The only difference is that the compound is saturated : the extra coloring (cf.
ExclDrain) means that the compound can always ignore propagated priorities, by
pretending there is a conflict. As a result, it is actually impossible to (re)construct
ExclDrain! from the compound.

Proposition 10.
�

v1 v2

�
∪

{
+M

}
=

�

v1 v2

! <! �



Formalizing Propagation of Priorities in Reo, Using Eight Colors 135

Fig. 11. Eight-color semantics of additional priority primitives

Advanced Properties: Context-Sensitivity. Perhaps the litmus test for any for-
malization of propagation of priority is the construction of the context-sensitive
LossySync out of the nondeterministic LossySync? and the priority primitives.

The construction proceeds in three steps. First, compose LossySync? and
Sync<!. The idea is that, through propagation of its own priorities, the latter
forces the former to prioritize not-losing over losing. This works, but there is an
undesirable side effect: the compound connector, called LossySync<! in Fig. 11,
propagates its own priorities upstream, which LossySync? does not. To solve this,
second, compose Sync( and LossySync<!. The idea is that the former blocks the
upstream propagation of LossySync<!’s priorities. This works, but there is again
an undesirable side effect: the compound connector, called LossySync(! in Fig. 11,
blocks the upstream propagation of all priorities (cf. Proposition 15). To solve
this, finally, compose LossySync(! with ExclRouter and Merger. The idea is that
the upstream propagation of others’ priorities is not blocked, essentially because
the propagation can proceed via a different upstream path through the graph.

The following propositions state that using the eight-color semantics, this
construction roughly works: the only discrepancy is the presence of two color-
ings in the eight-color semantics of the final compound—absent in the eight-
color semantics of LossySync—that model partial metadata-flows. This is an
interesting phenomenon: relative to the informal semantics, the colorings are
not wrong. They essentially mean that it is not really necessary to propagate
priorities upstream, if a data-flow from vertex v1 to vertex v2 is already possible
without such propagation. Through the construction of LossySync, this property
“incidentally” emerges. I conjecture that if this property is consistently included
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in the eight-color semantics of all primitives, including LossySync, the resulting
formalization of propagation of priority fully passes this litmus test.

Proposition 11.
�

v1 v2

<! �
=

�

v1 v2

? <! �

Proposition 12.
�

v1 v2

(! �
=

�

v1 v2

( <! �

Proposition 13.

�

v1 v2

�
∪

{ }
=

�

v1 v2(!
+

�

Advanced Properties: Ranks. Imagine a variant of Merger that, informally, has
the same data-flows and priorities as Merger in Fig. 2, but additionally prioritizes
(1) over (2). The following proposition states that this primitive, called Merger!>,
can be composed out of Sync!> and Merger (cf. Proposition 8).

Proposition 14.

�

	
v1

v2

v3

!>



� =

�

�
	
v1

v2

v3

!>




�

Imagine a variant of Merger with three sources instead of two. Informally, it
has a data-flow from each of its sources to its targets, one of which it prioritizes
over the other two. The following proposition states that this primitive, called
Merger3!>, can be composed out of Merger!> and Merger.

Proposition 15.

�

�
�
	

v1

v2
v3

v4

!>





� =

�

�
�
	

v1

v2 v4
v3

!>





�

Imagine a variant of Merger3!> with three sources instead of two. Informally,
it has a data-flow from each of its sources to its targets, one of which it prioritizes
over the other two (rank #1), and one of those two (rank #2) of which it pri-
oritizes over the other one (rank #3). The following proposition states that this
primitive, called Merger3!!>,!>, can be composed out of Merger!> and Merger!>.

Proposition 16.

�

�
�
	

v1

v2
v3

v4

!!>

!>






� =

�
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v2 v4
v3
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!>






�



Formalizing Propagation of Priorities in Reo, Using Eight Colors 137

6 Discussion

I conclude this paper with some open issues and future work. Section 5 revealed
already one open issue, namely the minor discrepancy between LossySync the
primitive and LossySync the compound.

A second issue with the current formalization is exemplified by the connector
in Fig. 1b: the eight-color semantics of this compound contains only one coloring
that models idling, and moreover, this coloring has a causality loop (i.e., it is
non-constructive, in Costa’s sense [Cos10]). This problem is surprisingly difficult
to solve in a proper way; the obvious solution (adding coloring {v1 �→ 3, v2 �→
3, v3 �→ 3}) has quite adverse side effects. Perhaps the problem can be solved by
adding one or more colors.

The eight-color semantics of the connector in Fig. 1c allows for a nondeter-
ministic choice between an “upper” data-flow (from v1 to v3) and a “lower”
data-flow (from v1 to v4 and v3), because Sync!>’s priorities are propagated only
downstream, not affecting the nondeterministic choice of ExclRouter, upstream.
This is a reasonable interpretation of the informal semantics. An alternative
interpretation, and arguably equally reasonable, is that Merger should propa-
gate priorities from v5 not only to v3 but also to v6, reversing the direction of
propagation from downstream to upstream. Under this interpretation, the non-
deterministic choice of ExclRouter is affected by Sync!>’s priorities, and the lower
data-flow should never be chosen. It would be interesting to investigate how to
model this alternative interpretation in the connector coloring framework.

Finally, the eight-color semantics of primitives and compounds quickly
become prohibitively large. This makes manually reasoning about these seman-
tics quite challenging. The development of software tooling to automate the
composition of sets of colorings is imperative to continue this line of research.

A Definitions

Definition 1 (Structure). V is the set of all vertices. T is the set of all types.
The structure of a connector is a tuple g = (V,E), where V ⊆ V and E ⊆
(2V × T × 2V ) \ {(∅, t, ∅) | t ∈ T}. G is the set of all structures.

Definition 2 (Structural composition). S,T : 2(2
V×T×2V) → 2V are the func-

tions defined by the following equations:

S(E) =
⋃

{V | (V, t, V ′) ∈ E} \
⋃

{V ′ | (V, t, V ′) ∈ E}
T(E) =

⋃
{V ′ | (V, t, V ′) ∈ E} \

⋃
{V | (V, t, V ′) ∈ E}

�� : G × G → G is the partial operation defined by the following equation:

(V1, E1) �� (V2, E2) =

{
(V1 ∪ V2, E1 ∪ E2) if: S(E1) ∩ T(E2) = S(E2) ∩ T(E1)
⊥ otherwise
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Definition 3 (Behavior). C is the set of all colors. A coloring γ over V is a
function from V to C. Col(V ) = V → C is the set of all colorings over V . The
behavior of a connector (V,E) is a set Γ ⊆ Col(V ) of colorings.

Definition 4 (Behavioral composition).
�� : (Col(V1) × Col(V2) ⇀ Col(V1 ∪ V2)) ∪ (2Col(V1) × 2Col(V2) ⇀ 2Col(V1∪V2))
is the partial function defined by the following equations:

γ1 �� γ2 =

{
γ1 ∪ γ2 if: γ1(p) = γ2(p) for-all p ∈ dom(γ1) ∩ dom(γ2)
⊥ otherwise

Γ1 �� Γ2 = {γ1 �� γ2 | γ1 ∈ Γ1 and γ2 ∈ Γ2 and γ1 �� γ2 ∈ dom(��)}

Definition 5 (Denotation). With T : T → (2V × 2V) →
⋃

{2Col(V ) | V ⊆ V},�
·
�

: G →
⋃

{Col(V ) | V ⊆ V} is the function defined by the following equation:
�
(V,E)

�
= ��{T (t)(V, V ′) | (V, t, V ′) ∈ E}

Theorem 1.
�
g1 �� g2

�
=

�
g1

�
��

�
g2

�
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Abstract. Reo is a visual language of connectors that originated in
component-based software engineering. It is a flexible and intuitive lan-
guage, yet powerful and capable of expressing complex patterns of com-
position. The intricacies of the language resulted in many semantic mod-
els proposed for Reo, including several automata-based ones.

In this paper, we show how to generalize a known active automata
learning algorithm—Angluin’s L*—to Reo automata. We use recent cat-
egorical insights on Angluin’s original algorithm to devise this general-
ization, which turns out to require a change of base category.

1 Introduction

In the last two decades, with the widespread use and development of software,
there has been a focus on promoting reusability of software code. Component-
based software engineering and service-oriented computing are two examples of
paradigms that were developed around this idea. Many languages appeared to
enable flexible and expressive ways to compose software components. One of
those languages is Reo—a language offering a visual approach, where connec-
tors are used to compose components into a system. The language is modular,
offering ways to compositionally build more complex connectors from basic ones,
which makes it possible to capture intricate patterns of interaction such as input
synchronization, mutual-exclusion, or state-dependent behavior.

Reo serves as a prime example of a language in which interaction is treated
as a first-class concept that allows direct specification and manipulation of pro-
tocols. The treatment of interaction as a central concept and the development
of rigorous mathematical tools and techniques for its study has occupied most
of Farhad’s career. In this paper we make a modest contribution to Farhad’s
toolkit—a generalization of Angluin’s algorithm to Reo automata, one of many
semantic models developed for Reo.

Automata are used in modeling and verification of systems and protocols in
Computer Science. Typically, the behavior of the system is modeled by a finite
c© Springer International Publishing AG, part of Springer Nature 2018
F. de Boer et al. (Eds.): Arbab Festschrift, LNCS 10865, pp. 139–159, 2018.
https://doi.org/10.1007/978-3-319-90089-6_10
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state machine and then desired properties, encoded in an appropriate logic, are
checked against the model. Unfortunately, models are not always available and
rapid changes in the system require frequent adaptations. This has lead to the
development of automata learning algorithms, which enable inferring or learning
a model from a given system just by observing its behavior or response to certain
queries. One of the first algorithms was proposed by Angluin [2] and though it
only worked for deterministic finite automata it had an interesting range of
applications, such as in verification of software systems and security protocols
(a recent survey can be found here [11]).

Category theory provides an abstract framework to study structures in math-
ematics and computer science. In this paper, we explore the power of abstraction
and recast the main ingredients of Angluin’s algorithm using basic categorical
concepts, from algebra and coalgebra, which open the door to instantiations to
other types of automata and in other categories.

Section 2 is a refinement of a section we included in a previous paper [7]. Com-
pared to [7], we added fully categorical characterizations of the data structures
and hypothesis automata involved in Angluin’s algorithm. Using these ingredi-
ents, we made our proof of minimality of these automata completely abstract,
which also fixes a gap present in the old proof. The application to Reo automata
is entirely new and illustrates an important feature of the framework—the abil-
ity to have a learning algorithm in a different category. Angluin’s algorithm for
Reo automata operates in the category Posets. This might not be surprising for
Farhad and those familiar with the semantics of Reo and the idiosyncrasies of
the semantics of interaction and concurrency—the order of actions (and signal
flows) is an important part of correctly capturing the behavior of a Reo connec-
tor. However, this pleasantly surprised the authors, as it provided a simple yet
non-trivial, outside the category Sets, application of the categorical understand-
ing and generalization of Angluin’s algorithm. In order to obtain the algorithm
we had to understand Reo automata as coalgebras for a functor. In this process,
we show that they are essentially automata in the category Posets. We will
define a poset of interactions to be used as the alphabet for the (categorical)
Reo automaton—this highlights the algebraic structure of the actions (signal
flows) in Reo and exposes the fact that interaction is a first-class concept.

Organization of the Paper. The rest of the paper is organized as follows. In
Sect. 2, we recall the basic ingredients of Angluin’s algorithm for deterministic
automata and show how we can recast them in a categorical language. In Sect. 3,
we change the base category in which the automata are considered from Sets
to Posets, obtaining in this manner an algorithm for Reo automata [6].

2 Automata Learning: The Basic Algorithm

In this section we explain the ingredients of Angluin’s original algorithm for
learning deterministic finite automata and rephrase them using basic categorical
constructs.
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Let us first introduce some notation and basic definitions. Let A be a finite
set of symbols, often called an alphabet, and A∗ the set of finite words over A.
We use λ to denote the empty word and, given two words u, v ∈ A∗, uv denotes
their concatenation.

A language over A is a subset of words in A∗, that is L ∈ 2A∗
. We often

switch between the representation of a language as a set and as its characteristic
function. Given a language L and a word u ∈ A∗, we write L(u) to denote 1 if
u ∈ L and 0 otherwise.

Given two languages U and V , we will denote by U · V (or simply UV ) the
concatenation of the two languages U · V = {uv | u ∈ U, v ∈ V }. Given a
language L and a ∈ A we can define its left and right derivative by setting

a−1L = {u | au ∈ L} and La−1 = {u | ua ∈ L}.

A language L is prefix-closed (resp. suffix-closed) if La−1 ⊆ L (resp. La−1 ⊆ L)
for all a ∈ A. We use ↓u (resp. ↑u) to denote the set of prefixes (resp. suffixes)
of a word u ∈ A∗.

↓u = {w ∈ A∗ | w is a prefix of u} ↑u = {w ∈ A∗ | w is a suffix of u}
For the rest of this paper we fix a language L ∈ 2A∗

to be learned: the master
language. This learning means that we seek a finite deterministic automaton that
accepts L. Many definitions and results are parametric in L but we do not always
make this explicit.

2.1 Observation Tables

Angluin’s algorithm incrementally constructs an observation table with Boolean
entries. Rows are labeled by words in S ∪ S · A, where S is a finite prefix-closed
language, and columns by a finite suffix-closed language E. Both S and E contain
the empty word λ.

For arbitrary U, V ⊆ A∗, define row : U → 2V by row(u)(v) = L(uv). Since
row is fully determined by L, we will from now on refer to an observation table
as a pair (S,E), leaving L implicit. Formally, an observation table is a triple
(S,E, row), where row : (S ∪ S · A) → 2E . Note that ∪ here is used for language
union and not coproduct, but it will be convenient for us to split the function
into row : S → 2E and rowA : S · A → 2E ; handling the overlap between those
efficiently is merely a practical consideration.

We can capture this structure more abstractly by observing that L induces
a unique coalgebra homomorphism l : A∗ → 2A∗

, as shown in the following
diagram.

A∗ c ��

L

����
��
��
��
�

l

��

(A∗)A

lA

��

2 2A∗λ?�� ∂ �� (2A∗
)A
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Let us define the unknown ingredients in this diagram. On top we have A∗ with
a transition structure given by appending a letter to the end of the word:

c(u)(a) = ua.

On the bottom we have 2A∗
, the set of languages over A, with a transition

structure given by the Brzozowski/left derivative of a language:

∂(L)(a) = a−1L = {u | au ∈ L}.

The map λ? determines the inclusion of the empty word in the language: λ?(L) =
L(λ). The set 2A∗

, together with these two functions, is the final coalgebra of
the functor 2 × (−)A on Sets. The map of coalgebras l : A∗ → 2A∗

thus exists
and is unique by finality. More concretely, it is given for all u, v ∈ A∗ by

l(u)(v) = L(uv). (1)

Note that we used the functional view on L here. The set A∗, together with
the map c and the empty word λ : 1 → A∗, is the initial algebra of the functor
1+A×−; we could equivalently define l through initiality by regarding L as an
element of 2A∗

.
In the following lemma we use the inclusion map n : S ↪→ A∗ and the func-

tion k : 2A∗ → 2E defined by k(L)(e) = L(e) for every L ∈ 2A∗
and e ∈ E.

These can be seen as representations of the subsets S and E. Furthermore, it
is convenient to use the curried version Λ(rowA) : S → (2E)A of rowA given by
Λ(rowA)(s)(a) = rowA(sa).

Lemma 1. Given S and E, the observation table is defined by row = k ◦ l ◦
n : S → 2E and Λ(rowA) = kA ◦ ∂ ◦ l ◦ n : S → (2E)A.

Proof. For all s ∈ S and e ∈ E, we have

(k ◦ l ◦ n)(s)(e) = (k ◦ l)(s)(e) definition of n
= l(s)(e) definition of k
(1)
= L(se)

and for each a ∈ A,

(kA ◦ ∂ ◦ l ◦ n)(s)(a)(e) = k((∂ ◦ l ◦ n)(s)(a))(e)
= (∂ ◦ l ◦ n)(s)(a)(e) definition of k
= (l ◦ n)(s)(ae) definition of ∂
= l(s)(ae) definition of n
(1)
= L(sae).

Thus, this yields row(s)(e) = L(se) and rowA(sa)(e) = Λ(rowA)(s)(a)(e) =
L(sae), which is precisely the original definition. 	


There are two crucial properties of the observation table that play a key role
in the algorithm of [2], allowing for the construction of a deterministic automaton
from an observation table: closedness and consistency.
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Definition 1 (Closed and Consistent Table [2]). An observation table
(S,E) is closed if for all t ∈ S · A there exists an s ∈ S such that rowA(t) =
row(s). An observation table (S,E) is consistent if whenever s1 and s2 are ele-
ments of S such that row(s1) = row(s2), for all a ∈ A, rowA(s1a) = rowA(s2a).

In many categories each map f : A → B can be factored as f = (A �
• � B), describing f as an epimorphism followed by a monomorphism. In the
category Sets of sets and functions epimorphisms (resp. monomorphisms) are
surjections (resp. injections). Using these factorizations we come to the following
categorical reformulations.

Lemma 2. An observation table (S,E) is closed (resp. consistent) if and only
if there exists a necessarily unique map i (resp. j) such that the diagram on the
left (resp. right) commutes.

S · A
i

��

rowA

��

• �� m �� 2E

S
e

�� �����������
row

		

2E

S

row




e �� ��

Λ(rowA)
��

• ��

m
�����������

j ��
(2E)A

closed consistent

Proof. Suppose the table is closed according to Definition 1. Then, for every
t ∈ S · A there exists an s ∈ S such that row(s) = rowA(t). We define i by
i(t) = e(s). It remains to show that m ◦ i = rowA.

(m ◦ i)(t) = (m ◦ e)(s) definition of i
= row(s) factorization of row
= rowA(t) closedness assumption.

The uniqueness of i is immediate using that m is monic.
Conversely, suppose that there exists i such that m ◦ i = rowA and let

t ∈ S · A. Take s such that e(s) = i(t) (which exists since e is epi). We need to
show row(s) = rowA(t).

row(s) = (m ◦ e)(s) factorization of row
= (m ◦ i)(t) assumption e(s) = i(t)
= rowA(t) assumption m ◦ i = rowA.

Suppose the table is consistent according to Definition 1. That is, if s1, s2 ∈ S
are such that row(s1) = row(s2) then, for all a ∈ A, it holds that rowA(s1a) =
rowA(s2a). We define j by j(e(s)) = Λ(rowA)(s), using that e is epi. By defi-
nition, j ◦ e = Λ(rowA). It remains to show that j is well-defined. Let s1, s2 be
such that e(s1) = e(s2). We need to show Λ(rowA)(s1) = Λ(rowA)(s2).

e(s1) = e(s2) ⇒ row(s1) = row(s2) definition of row
⇒ ∀a ∈ A. rowA(s1a) = rowA(s2a) consistency assumption
⇒ Λ(rowA)(s1) = Λ(rowA)(s2) definition of Λ.
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The uniqueness of j follows directly from the fact that e is epi.
Conversely, suppose that there exists j such that j ◦ e = Λ(rowA), and let

s1, s2 ∈ S be such that row(s1) = row(s2). Note that this is equivalent to
e(s1) = e(s2) because m is monic. We need to show rowA(s1a) = rowA(s2a) for
all a ∈ A, or, equivalently, Λ(rowA)(s1) = Λ(rowA)(s2).

Λ(rowA)(s1) = (j ◦ e)(s1) assumption Λ(rowA) = j ◦ e
= (j ◦ e)(s2) assumption e(s1) = e(s2)
= Λ(rowA)(s2) assumption Λ(rowA) = j ◦ e.

	

Closed and consistent observation tables are important in the algorithm of [2]

because they can be translated into a deterministic automaton. We first describe
the construction concretely and subsequently more abstractly using our categor-
ical reformulation.

Definition 2 (Automaton associated with an observation table [2]).
Given a closed and consistent observation table (S,E) one can construct a deter-
ministic automaton M(S,E) = (Q, q0, δ, F ) where Q is a finite set of states,
F ⊆ Q is a set of final states, q0 ∈ Q is the initial state, and δ : Q × A → Q is
the transition function. These are given by:

Q = {row(s) | s ∈ S} q0 = row(λ)
F = {row(s) | s ∈ S, row(s)(λ) = 1} δ(row(s), a) = rowA(sa).

To see that this is a well-defined automaton we need to check two facts: that
F is a well-defined subset and that δ is a well-defined function.

Suppose s1 and s2 are elements of S such that (�) row(s1) = row(s2). We
must show

row(s1) ∈ F ⇐⇒ row(s2) ∈ F and (2)
δ(row(s1), a) =δ(row(s2), a) ∈ Q, for all a ∈ A. (3)

We have:

row(s1) ∈ F ⇐⇒ row(s1)(λ) = 1
(�)⇐⇒ row(s2)(λ) = 1 ⇐⇒ row(s2) ∈ F.

This concludes the proof of (2) above. Since the observation table is consistent,
we have for each a ∈ A that (�) implies rowA(s1a) = rowA(s2a), and hence we
can calculate

δ(row(s1), a) = rowA(s1a) = rowA(s2a) = δ(row(s2), a).

It remains to show that rowA(s1a) ∈ Q. Since the table is closed, there exists
an s ∈ S such that row(s) = rowA(s1a). Hence, rowA(s1a) ∈ Q and (3) above
holds.

In our categorical reformulation of the construction of the automaton Q
we use that epis/surjections and monos/injections in the category Sets form
a factorization system (see e.g. [5]). This allows us to use the diagonal-fill-in
property in the next result.
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Lemma 3. The transition function δ of the automaton associated with a closed
and consistent observation table can be obtained as the unique diagonal in the
following diagram,

S
e �� ��

Λ(i)

��

Q

j

��

δ

���
�
�
�
�

QA �� mA
�� (2E)A

Proof. The function δ obtained by diagonalization above satisfies:

δ(e(s))(a) = Λ(i)(s)(a) = i(sa).

This is the same as the above definition of δ, since e(s) and i(sa) represent,
respectively, row(s) and rowA(sa). 	


Finally, the definitions of the initial and final states can be recovered from
properties reminiscent of our reformulations of closedness and consistency.

Lemma 4. The initial and final states can be obtained as the necessarily unique
maps init and final making the diagrams below commute.

1
init



k ◦ l ◦ λ

��

Q �� m �� 2E

S
e

�� ����������
row

		

2E

S

row




e �� ��

λ? ◦ l ◦ n

��

Q
��

m
����������

final �� 2

Proof. We define init(∗) = e(λ) and final(e(s)) = row(s)(λ) for all s ∈ S. These
are equivalent to q0 and F given in Definition 2 and satisfy

(m ◦ init)(∗) = (m ◦ e)(λ) definition of init
= row(λ) factorization of row
= (k ◦ l ◦ n)(λ) Lemma 1
= (k ◦ l ◦ λ)(∗) n(λ) = λ = λ(∗)

and for all s ∈ S,

(final ◦ e)(s) = row(s)(λ) definition of final
= (k ◦ l ◦ n)(s)(λ) Lemma 1
= (l ◦ n)(s)(λ) definition of k
= (λ? ◦ l ◦ n)(s) definition of λ?.

Uniqueness is again necessary because m is monic and e is epic. 	
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2.2 Minimal Conjectures

So far we have ignored the prefix-closedness of S and the suffix-closedness of E
as they were not relevant for the construction of the automaton. The minimality
result of [2], however, does depend on them. We encode these properties in two
maps:

ρ : S → 1 + S × A σ : 2 × (2E)A → 2E

ρ(λ) = ∗ σ(v, f)(λ) = v
ρ(sa) = (s, a) σ(v, f)(ae) = f(a)(e).

The main point of these maps is that they come equipped with inductive princi-
ples corresponding to induction on the length of prefix- and suffix-closed words.

Lemma 5. For each algebra [χ1, χA] : 1 + X × A → X there exists a unique
function f : S → X making the diagram below on the left commute, and for
every coalgebra <υ2, υA> : Y → 2 × Y A there is a unique function g : Y → 2E

making the diagram below on the right commute.

1 + S × A
id1 + f × idA������ 1 + X × A

[χ1, χA]

��

S

ρ

��

f
���������� X

Y
g

���������

<υ2, υA>

��

2E

2 × Y A id2 × gA

������ 2 × (2E)A

σ

��

Proof. The requirement f = [χ1, χA]◦ (id1 +f × idA)◦ρ = [χ1, χA ◦ (f × idA)]◦ρ
corresponds to a definition of f by induction on the length of words in S, thus
providing existence and uniqueness:

f(λ) = ([χ1, χA ◦ (f × idA)] ◦ ρ)(λ) = [χ1, χA ◦ (f × idA)](∗) = χ1(∗)
f(sa) = ([χ1, χA ◦ (f × idA)] ◦ ρ)(sa) = [χ1, χA ◦ (f × idA)](s, a) = χA(f(s), a).

The condition g = σ ◦ (id2 × gA) ◦ <υ2, υA> = σ ◦ <υ2, g
A ◦ υA> gives a

definition of g by induction on the length of words in E:

g(y)(λ) = (σ ◦ <υ2, g
A ◦ υA>)(y)(λ) = υ2(y)

g(y)(ae) = (σ ◦ <υ2, g
A ◦ υA>)(y)(ae) = (gA ◦ υA)(y)(a)(e) = g(υA(y)(a))(e).

	

One might wonder what the unique such maps into the initial algebra and

out of the final coalgebra are. Our next result will be that these are precisely n
and k, respectively, but first we need to be more explicit about what the initial
algebra is. The reason that we can identify it with the maps λ and c is that the
currying operation extends from concatenated languages to arbitrary products
and has an inverse Ψ (uncurrying). Moreover, given f : W → X, g : X ×A → Y ,
and h : Y → Z, we have

hA ◦ Λ(g) ◦ f = Λ(h ◦ g ◦ (f × idA)). (4)

Explicitly, the initial algebra is the set A∗ together with [λ, Ψ(c)] : 1+A∗ ×A →
A∗, where Ψ(c)(u, a) = c(u)(a) for all u ∈ A∗ and a ∈ A.
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Lemma 6. The following diagrams commute.

1 + S × A
id1 +n × idA�� 1 + A∗ × A

[λ, Ψ(c)]

��

S

ρ

��

n �� A∗

2A∗ k ��

<λ?, ∂>

��

2E

2 × (2A∗
)A id2 × kA

�� 2 × (2E)A

σ

��

Proof. Suppose f is the unique coalgebra-to-algebra morphism S → A∗ provided
by Lemma 5. Using the calculations in that lemma (�) we prove by induction on
the length of words in S that f = n:

f(λ)
(�)
= λ(∗) = λ = n(λ)

f(sa)
(�)
= Ψ(c)(f(s), a)

(IH)
= Ψ(c)(n(s), a) = n(s)a = n(sa).

Similarly, let g be the unique coalgebra-to-algebra morphism 2A∗ → 2E . Using
induction on the length of words in E, we find that g = k:

g(L)(λ)
(�)
= λ?(L) = L(λ) = k(L)(λ)

g(L)(ae)
(�)
= g(∂(L)(a))(e)

(IH)
= k(∂(L)(a))(e) = ∂(L)(a)(e) = L(ae) = k(L)(ae).

	

An automaton is minimal if all states are reachable from the initial state and

if no two different states recognize the same language (this property is referred
to as observability).

Following this characterization that goes back to Kalman and was subse-
quently generalized by Arbib and Manes [3,9], these two properties can be nicely
captured in the following diagram, where in the middle we have our automaton
constructed from the observation table.

1
λ ��

init

��		
			

			
		 2

A∗ r ������

c

��

Q

final
��









 o ������

δ

��

2A∗
λ?

��

∂

��

(A∗)A rA
����� QA oA

����� (2A∗)A

(5)

Recall that the structure on the left is the initial algebra. The map r thus exists
and is unique by initiality; it sends every word to the state it reaches. The map o
exists and is unique by finality; it assigns to every state the language it accepts.

Reachability and observability can now be rephrased in terms of properties
of the functions r and o in (5): the automaton Q is reachable if r : A∗ → Q is
epic/surjective and it is observable if o : Q → 2A∗

is monic/injective.

Theorem 1. The automaton associated with a closed and consistent observation
table is minimal.
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Proof. We prove observability first because it is relatively straightforward. Note
first that

mA ◦ δ ◦ e = j ◦ e = Λ(rowA) = kA ◦ ∂ ◦ l ◦ n, (6)

using, from left to right, Lemmas 3, 2 and 1. Now observe that the diagram below
on the left commutes by Lemma 6 and the definition of o,

Q
o ��

<final, δ>

��

2A∗ k ��

<λ?, ∂>

��

2E

2×QA id2 × oA

�� 2× (2A∗
)A

id2 × kA

�� 2× (2E)A

σ

�� Q
m ��

<final, δ>

��

2E

2×QA id2 × mA

�� 2× (2E)A

σ

��

and that the diagram on the right commutes because

σ ◦ (id2 × mA) ◦ <final , δ> ◦ e
= σ ◦ <final ◦ e,mA ◦ δ ◦ e>
= σ ◦ <λ? ◦ l ◦ n,mA ◦ δ ◦ e> Lemma 4
(6)
= σ ◦ <λ? ◦ l ◦ n, kA ◦ ∂ ◦ l ◦ n>
= σ ◦ (id2 × kA) ◦ <λ?, ∂> ◦ l ◦ n
= k ◦ l ◦ n Lemma 6
= row Lemma 1
= m ◦ e factorization of row

and e is epic. From Lemma 5 it then follows that k ◦ o = m, and hence o is
monic.

For reachability we would like to do a similar proof, but as a result of a
coalgebraic bias in some of our definitions the proof of

m ◦ Ψ(δ) ◦ (e × idA) = k ◦ l ◦ c ◦ (n × idA) (7)

needs a little more work. In particular, it follows by using several times that Ψ
and Λ are inverse to each other:

m ◦ Ψ(δ) ◦ (e × idA) = Ψ(Λ(m ◦ Ψ(δ) ◦ (e × idA)))
(4)
= Ψ(mA ◦ Λ(Ψ(δ)) ◦ e)
= Ψ(mA ◦ δ ◦ e)
(6)
= Ψ(kA ◦ ∂ ◦ l ◦ n)
= Ψ(kA ◦ lA ◦ Λ(c) ◦ n) definition of l
(4)
= Ψ(Λ(k ◦ l ◦ c ◦ (n × idA)))
= k ◦ l ◦ c ◦ (n × idA).

The diagram below on the left commutes by Lemma 6 and the definition of r,

1 + S ×A
id1 + n × idA�� 1 +A∗ ×A

id1 + r × idA��

[λ, Ψ(c)]

��

1 +Q×A

[λ, Ψ(δ)]

��

S

ρ

��

n �� A∗ r �� Q

1 + S ×A
id1 + e × idA�� 1 +Q×A

[init, Ψ(δ)]

��

S

ρ

��

e �� Q
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and for the diagram on the right we simply note that

m ◦ [init , Ψ(δ)] ◦ (id1 + e × idA) ◦ ρ
= [m ◦ init ,m ◦ Ψ(δ) ◦ (e × idA)] ◦ ρ
(7)
= [m ◦ init , k ◦ l ◦ c ◦ (n × idA)] ◦ ρ
= [k ◦ l ◦ λ, k ◦ l ◦ c ◦ (n × idA)] ◦ ρ Lemma 4
= k ◦ l ◦ [λ, c] ◦ (id1 + n × idA) ◦ ρ
= k ◦ l ◦ n Lemma 6
= row Lemma 1
= m ◦ e factorization of row

and m is monic. From Lemma 5 it follows that r ◦ n = e, so r must be epic. 	


2.3 The Learning Algorithm

We present the algorithm of [2] in Fig. 1. In the algorithm, there is a teacher
which has the capacity of answering two types of questions: yes/no to the query
on whether a word belongs to the master language and yes/no to the question
whether a certain guess of the automaton accepting the master language is cor-
rect. In the case of a negative answer of the latter question, the teacher also
provides a counter-example. The learner builds an observation table by asking
the teacher queries of membership of words of increasing length. Once the table is
closed and consistent, the learner tries to guess the master language. We explain
every step by means of an example, over the alphabet A = {a, b}.

Imagine the Learner receives as input a Teacher for the master language

L = {u ∈ {a, b}∗ | the number of a’s in u is divisible by 3}.

In the first step of the while loop it builds a table for S = {λ} and E = {λ}.

Step 1

λ
λ 1
a 0
b 1

(S,E) consistent? � (S,E) closed?
No, rowA(a) = (λ �→ 0) �= (λ �→ 1) = row(λ)
Then, S ← S ∪ {a} and we go to Step 2.

We extend row index set S and we again check for closedness and consistency.

Step 2

λ
λ 1
a 0
b 1
aa 0
ab 0

(S, E) consistent? � (S, E) closed? �
Then, we guess the automaton:

q0 q1
a

b a, b

Teacher replies with counter-example aaa.
S ← S ∪ {λ, a, aa, aaa} and we go to Step 3.

where q0 = row(λ) = (λ �→ 0)
q1 = row(a) = (λ �→ 1)

In the second step we managed to build a closed and consistent table which
enabled us to make a first guess on the automaton. The guess was wrong so the
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Fig. 1. Angluin’s algorithm for deterministic finite automata [2]

Teacher provided a counter-example, which we use to extend the row index set,
generating a larger table.

Step 3

λ
λ 1
a 0
aa 0
aaa 1
b 1
ab 0
aab 0
aaaa 0
aaab 1

(S,E) consistent?
No, row(a) = row(aa) but rowA(aa) �= rowA(aaa).
Then E ← E ∪ {a} and we go to (Step 4).

In the third step the test of consistency failed for the first time and hence
we extend the column index set E from {λ} to {λ, a}. This extension allows
to distinguish states (that is, rows of the table) that were indistinguishable
in the previous step though they could be differentiated after an a step.
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Step 4

λ a
λ 1 0
a 0 0
aa 0 1
aaa 1 0
b 1 0
ab 0 0
aab 0 1
aaaa 0 0
aaab 1 0

(S,E) consistent? � (S,E) closed? �
We make another guess:

q0 q1

q2

b b

b

a

aa

The Teacher replies yes.

In the last step, we again constructed a closed and consistent table, which allowed
us to make another guess of the automaton accepting the master language. This
second guess yielded the expected automaton.

3 Application to Reo Automata

We now apply the categorical generalization of Angluin’s algorithm derived in
the previous sections to learn coordination protocols. Specifically, the type of
automata that we learn will be Reo automata [6], one of the many semantics
for the Reo coordination language. This presents a different generalization made
possible by our formulation of Angluin’s algorithm, namely by varying the base
category for the coalgebra.

We need to find a suitable encoding of Reo automata; let us first recall their
definition.

Definition 3. Let Σ be a finite set of ports. A Reo automaton is a tuple
(Q,→, q0) where

– Q is a finite set of states, with q0 ∈ Q the initial state
– → ⊆ Q × 2Σ × 2Σ × Q is a relation

When (q, U, V, q′) ∈ →, we write q U |V−−−→ q′. Furthermore,

– if q U |V−−−→ q′, then U ⊆ V ( reactivity)
– if q U |V−−−→ q′ and U ⊆ V ′ ⊆ V , then q U |V ′

−−−→ q′ (uniformity)

For the sake of simplicity, we work with normalized Reo automata; every Reo
automaton can be transformed into an equivalent normalized Reo automaton [6].

Each transition of a Reo automaton represents an interaction allowed by the
Reo circuit, as well as the necessary change in (internal) state. In a transition
q U |V−−−→ q′, the set U represents the ports fired in the interaction, while V repre-
sents the ports available at that point in time. Reactivity guarantees that only
available ports are fired, while uniformity ensures that unfired but available ports
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becoming unavailable will not change the availability of the interaction, or the
resulting state change [6].

A Reo automaton M = (Q,→, q0) defines a language LM (q) for every state
q ∈ Q as follows: for all q ∈ Q, it holds that λ ∈ LM (q); furthermore, (U, V )w ∈
LM (q) if and only if there exists a q′ ∈ Q such that q U |V−−−→ q′ and w ∈ LM (q′).
We write LM for LM (q0).

To encode Reo automata coalgebraically, we switch the base category of the
discussion in this section to Posets, the category of partially ordered sets and
monotone functions. If X is a poset, we write ≤X for the accompanying partial
order. We use 2 to denote the two-element poset {0, 1}, in which 0 ≤2 1. It is
not hard to see that this category is Cartesian closed, that is, it comes with a
terminal object (the singleton poset 1), products (the product poset X ×Y ) and
exponentials (the poset of monotone functions XY , ordered pointwise). We also
have an analogue of the powerset functor: 2X is the set of all monotone functions
from X to 2, or, equivalently, the poset of all ≤X -upclosed subsets of X, ordered
by inclusion. We can verify that for a fixed poset A, the mappings FX = A×X
and FX = XA are functorial, as is FX = 2X ; the actions of the former two on
monotone functions can be lifted from Sets, while the latter sends f : X → Y
to the function 2f , mapping ≤X -upclosed subsets of X to ≤Y -upclosed subsets
of Y :

2f (U) = {y ∈ Y : ∃x ∈ U. f(x) ≤ y}
We now have the ingredients to define a coalgebraic version of Reo automata,

which takes the form of a deterministic automaton in Posets over a special
alphabet, as follows.

Definition 4. The poset of interactions, denoted A, is {(U, V ) : ∅ �= U ⊆ V ⊆
Σ}, ordered by the partial order ≤A, in which (U, V ) ≤A (U ′, V ′) if and only if
U = U ′ and V ′ ⊆ V .

A Reo coalgebra is a coalgebra for the functor FX = 2 × XA.

In what follows, we denote the elements (U, V ) of A by writing U |V . We
further abbreviate by denoting U and V as strings, i.e., when U = {A,B}
and V = {A,B,C}, we write AB|ABC for (U, V ). Words over A are writ-
ten as letters separated by semicolons, e.g., we write A|A;B|B for the word
({A}, {A})({B}, {B}) ∈ A

∗.
Let us fix a Reo automaton M = (Q,→, q0). We can represent → as a

function δ : Q → (2Q)A, by setting δ(q)(a) = {q′ ∈ Q : q a−→ q′}. If we equip Q
with the discrete order, δ is monotone. Furthermore, for q ∈ Q, δ(q) : A → 2Q is
monotone as a consequence of uniformity. Now, δ gives rise to δ : 2Q → (2Q)A,
given by

δ(U)(a) = {q′ ∈ Q : ∃q ∈ U. q a−→ q′}

We note that δ is again monotone. In general, a monotone δ : 2Q → (2Q)A can
be constructed from any monotone δ : Q → (2Q)A, by recognizing that 2(−) is a
monad on Posets, and choosing for δ the Kleisli extension of δ.
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Our Reo automaton M now gives rise to a Reo coalgebra (2Q, <ε, δ>),
where 2Q and δ are as above, and ε : 2Q → 2 is given by ε(U) = 1 if and only
if U �= ∅.

We proceed to recover the language semantics of Reo automata from a Reo
coalgebra, by finality. For this, we equip A

∗ with the pointwise extension of
≤A, i.e., a0a1 · · · an−1 ≤A∗ a′

0a
′
1 · · · a′

m−1 if and only if n = m, and for i ∈
{0, 1, . . . , n − 1} it holds that ai ≤A a′

i. This is equivalent to defining A
∗ =∐

i∈N
A

i, using the coproducts and products of Posets. We know from the work
of Arbib and Manes [3, Sect. 2.2] that A

∗ (resp. 2A
∗
) defined as such provides

the desired notion of reachability (resp. observability). Specifically, we have the
exact same situation as in (5), but with A instead of A and with Q being a Reo
coalgebra with an initial state in Posets. Reachability and observability maps
are defined in complete analogy to their definition for a DFA.

The relation between the language semantics of a Reo automaton and its
encoding into a Reo coalgebra can now be formulated as follows.

Lemma 7. Let M = (Q,→, q0) be a Reo automaton, and let (2Q, < ε, δ >) be
the Reo coalgebra obtained from it. Furthermore, let h be the unique homomor-
phism into the final Reo coalgebra (2A

∗
, < λ?, ∂ >). If U ∈ 2Q, then

h(U) =
⋃

q∈U

LM (q)

Proof. Let w ∈ A
∗; we proceed by induction on |w|. In the base, where w = λ,

we have that λ ∈ h(U) if and only if U �= ∅, which holds precisely when λ ∈⋃
q∈U LM (q).

For the inductive step, let w = av for a ∈ A and v ∈ A
∗. In that case,

av ∈ h(U) if and only if v ∈ h(d(U)(a)); by induction, the latter holds if and
only if v ∈ LM (q′) for some q′ ∈ d(U)(a), i.e., v ∈ LM (q′) for some q ∈ U
with q a−→ q′, which is equivalent to av ∈ LM (q), which in turn is equivalent to
av ∈ ⋃

q∈U LM (q).

To learn Reo coalgebras using the framework outlined earlier, we define
an observation table in this setting. Consider finite subsets S and E of A

∗,
with all ordering inherited from A

∗,1 S prefix-closed, and E suffix-closed. Note
that if s, s′ ∈ S and e, e′ ∈ E are such that s ≤S s′ and e ≤E e′, then
row(s)(e) ≤2 row(s′)(e′) by monotonicity. Thus, if row(s)(e) = 1, we can imme-
diately conclude row(s′)(e′) = 1 without having to query the latter; similarly,
row(s)(e) = 0 whenever row(s′)(e′) = 0. A similar optimization applies to com-
puting the function rowA. Note that the assumption of a prefix-closed language
enables another optimization for the computation of these functions: if s, s′ ∈ S
and e, e′ ∈ E are such that s′e′ is a prefix of se, then row(s′)(e′) = 1 whenever
row(s)(e) = 1, and row(s)(e) = 0 whenever row(s′)(e′) = 0.

1 What follows works also for discrete orders on S and E. Acknowledging the additional
structure, however, allows us to explicitly save queries by exploiting the monotonicity
of the row function.
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Since Posets is locally finitely presentable, it admits strong epi-mono fac-
torizations [1,10]. There is no difference between closedness and consistency for
learning a regular language over the alphabet A and closedness and consistency
in the present setting. Furthermore, like the notions of reachability and observ-
ability, the encodings of prefix-closedness and suffix-closedness as performed in
Sect. 2.2 translate directly, as do Lemmas 5 and 6. Theorem 1 is therefore valid
also in this setting.

It remains to show how we can obtain a Reo automaton from an observation
table.

Definition 5. For (S,E) closed and consistent, we define M = (Q+,→, q0) as
follows

Q+ = {row(s) : s ∈ S, row(s)(λ) = 1} q0 = row(λ)

row(s) a−→ row(t) ⇐⇒ row(t) ≤2E rowA(sa)

The fact that M is well-defined is a consequence of closedness and consistency
as before. Additionally, we remark that reactivity follows from the definition of
A, and uniformity is a consequence of the monotonicity of row . It remains to
show that the translation above is faithful, i.e., that the languages of the states
of this Reo automaton correspond to the interpretation of (Q,<final , δ>) in the
final Reo-coalgebra.

Lemma 8. Let (S,E) be a closed and consistent observation table, obtained by
learning the language of a Reo automaton, and let M = (Q+,→, q0) be the
Reo automaton obtained from this table. Let h be the unique homomorphism
from (Q,<final , δ>) into the final Reo coalgebra. For q ∈ Q+, we have that
LM (q) = h(q).

Proof. We start by proving that if w ∈ h(q), then final(q) = 1; the proof proceeds
by induction on |w|. In the base, where w = λ, we know that 1 = h(q)(λ) =
final(q). For the inductive step, write w = av and assume the claim holds for v.
Since v ∈ h(δ(q)(a)), we find that final(δ(q)(a)) = 1 by induction. But then

1 = final(δ(q)(a)) = rowA(sa)(λ) = L(sa) ≤2 L(s) = row(s)(λ) = final(q)

in which L(sa) ≤2 L(s) follows from prefix-closure of L. Consequently, final(q) =
1.

For the main claim, we should verify that for w ∈ A
∗ and q ∈ Q+ it holds

that LM (q)(w) = h(q)(w). Note that there exists an s ∈ S such that q = row(s).
The proof again proceeds by induction on |w|. In the base, where w = λ, we
have that λ ∈ LM (q), as well as λ ∈ h(q), since q ∈ Q+ and therefore final(q) =
row(s)(λ) = 1.

For the inductive step, let w = av for a ∈ A and v ∈ A
∗. On the one hand,

if w ∈ LM (q), then there exists a q′ ∈ Q such that q a−→d q′ and v ∈ LM (q′). By
definition of →d, we find that q′ ∈ Q+ and q′ ≤2E rowA(sa). By induction and
monotonicity:

v ∈ h(q′) ⊆ h(rowA(sa)) = h(δ(row(s))(a)) = ∂(h(row(s)))(a)
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allowing us to conclude that w = av ∈ h(row(s)) = h(q).
On the other hand, if w ∈ h(q), then v ∈ ∂(h(q))(a) = h(δ(q)(a)). By

the first part of this proof, final(δ(q)(a)) = 1, and so δ(q)(a) ∈ Q+. We then
find by induction that v ∈ LM (d(q)(a)). Since q a−→d δ(q)(a), we conclude that
w = av ∈ LM (q).

3.1 Learning a Reo Circuit

We now review how the algorithm in Fig. 1 would work as applied to Reo
automata. Imagine that the Learner receives as input a Teacher for the Reo
circuit in Fig. 2, which represents what is called a “lossy FIFO” in Reo liter-
ature. The intended behavior of this circuit is as follows. When the buffer is
empty, A can fire, and fill the buffer. If the buffer is full, three possibilities exist:

(i) the buffer is emptied by firing B, or
(ii) the buffer is emptied and immediately filled by firing A and B concurrently,

or
(iii) A fires, but the input is discarded (and the first token remains in the buffer).

Important to note is that the last option should not be available when B is
enabled; that is, data is only discarded when the buffer is full and the token in
the buffer cannot be handed off through B. This distinction makes the circuit
in Fig. 2 a prime example for learning a Reo automaton, since transitions carry
information about ports fired and ports available [6]; if we compute the semantics
of this circuit using Constraint Automata [4], this behavior cannot be modeled.

Fig. 2. The Reo circuit being learned

Before we dive into learning the circuit, let us first take a brief look at the
poset of interactions we will be working with. Given that Σ = {A,B}, we can
compute

A = {A|A,A|AB,B|B,B|AB,AB|AB}
As for ≤A, there are only two (non-trivially) related pairs of letters; they are:

A|AB ≤A A|A B|AB ≤A B|B

The algorithm starts off by building a table for S = {λ} and E = {λ}. Here,
a membership query of U1|V1;U2|V2; · · · ;Un|Vn should be interpreted as “can I
fire these ports, while these ports are available, in this order?”. In this case, the
entry for rowA(A|A)(λ) is 1 because, in the initial configuration, we can fire A if
it is available, while the entry for rowA(B|B)(λ) is 0 because B cannot be fired
in the initial configuration even if it is available.
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Step 1

λ
λ 1

A|A 1
A|AB 1
B|B 0
B|AB 0
AB|AB 0

(S,E) consistent? � (S,E) closed?
No, rowA(B|B) �= row(λ)

Then, S ← S ∪ {B|B}.
We continue with Step 2.

At this point, we note that we have made a membership query that could in
principle have been skipped: the fact that rowA(A|A)(λ) = 1 follows from the
fact that rowA(A|AB)(λ) = 1, since A|AB ≤A A|A, and rowA is monotone.

To make the table closed, we add B|B to S, and end up with the following
table. Here, the row label “B|B;−” represents all rows labeled B|B;a for a ∈ A;
the value for entries in these rows is always 0, by prefix closure of the target
language.

Step 2

λ
λ 1

B|B 0
A|A 1
A|AB 1
B|AB 0
AB|AB 0
B|B;− 0

(S,E) consistent? � (S,E) closed? �
Then, we guess the automaton

q0 q1
A|A
A|AB

AB|AB
B|AB
B|B

−|−

Teacher replies with counter-example: A|A;A|AB
Then, S ← S ∪ {λ,A|A,A|A;A|AB}.
We continue with Step 3.

The counterexample given by the Teacher here tells us that, after firing A|A,
our circuit ends up in a different state, since firing A|AB should not be possible
(i.e., we should not be able to fire A but not B while both are available). Our
current automaton does not account for this possibility: A|AB can be fired after
A|A, and this brings us to an accepting state; the counterexample is therefore
justified.

Extending the table with the new contents of S, we find the following
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Step 3

λ
λ 1

A|A 1
B|B 0

A|A;A|AB 0
A|AB 1
B|AB 0
AB|AB 0
B|B;− 0
A|A;A|A 1
A|A;B|B 1
A|A;B|AB 1
A|A;AB|AB 1
A|A;A|AB;− 0

(S,E) consistent?
No, because row(λ) = row(A|A),
while rowA(A|AB) �= rowA(A|A;A|AB).

Then, E ← {A|AB}.
We continue with Step 4.

Filling in the table with the updated E, we arrive at the following.

Step 4

λ A|AB
λ 1 1

A|A 1 0
B|B 0 0

A|A;A|AB 0 0
A|AB 1 0
B|AB 0 0
AB|AB 0 0
B|B;− 0 0
A|A;A|A 1 0
A|A;B|B 1 1
A|A;B|AB 1 1
A|A;AB|AB 1 0
A|A;A|AB;− 0 0

(S,E) consistent? � (S,E) closed? �
Then, we guess the automaton

q0 q1

q2

AB|AB
B|AB
B|B

A|A
A|AB

B|B
B|AB

A|A
AB|AB

A|AB

−|−

The Teacher replies yes.

In the last step, the algorithm stops, as the conjectured automaton faithfully
represents the description of the lossy FIFO given at the start of this example. In
particular, q1 models a circuit with a full buffer: the edge towards q0 represents
firing B (emptying the buffer), while the loop back to q1 represents the possibility
of firing A (discarding an incoming token) or firing both A and B (shifting the
incoming token into the emptied buffer); lastly, the edge towards q2 encodes that
A cannot be fired when B is also available.

4 Discussion

We have presented a categorical reformulation of Angluin’s learning algo-
rithm, originally defined for deterministic finite automata. The categorical
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reformulation enables us to explore two avenues of generalization: varying the
functor (giving for instance different input/output for the automaton) and vary-
ing the category under study (changing for instance the type of computations
involved). In a previous paper [7] we explored the former avenue and derived
algorithms for Moore and Mealy machines, which generalize the output set of
DFAs. The application we concretely considered in the present paper explored
the latter avenue, yielding an algorithm for Reo automata—essentially, finite
automata in the category Posets. What makes the change in category inter-
esting is that it precisely captures the algebraic structure of the actions (signal
flows) in Reo and highlights the fact that interaction is a first-class concept by
defining a poset of interactions to be used as the alphabet for the Reo automaton.

We would like to explore linking this algorithm to other work of Farhad on
compilation [8] to learn Reo patterns. The work in this paper enables us to
learn a Reo automaton of the global connector. However, in order to learn the
components of the connector we would have to compile the global automaton
into the composition of smaller Reo automata that would in turn correspond to
basic Reo connectors. For scalability, it would be ideal to integrate part of the
splitting into the learning algorithm.
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Abstract. Tagged Signal Model (TSM) is a denotational framework
and a meta-model to study certain properties of models of computation.
To study the behavior of Reo connectors in a closed system, we propose
two denotational semantics for Reo using TSM. TSM is very similar to
the coalgebraic model of Timed Data Streams (TDS), the first formal
semantics and the basis for most of the other formal semantics of Reo.
There is a direct mapping between the time – data pairs of TDS, and
tag – value of TSM. This work shows how treating tags to be either
totally or partially ordered has a direct consequence on the results. We
looked into five primitive connectors of Reo in both these settings and
discuss the determinacy of systems.
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and sink processes. Moreover, we could not find any theorem on determinacy of
models for the Rendezvous model of computation.
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1 Introduction

Development of concurrent systems has many challenges due to the well-known
problems such as race conditions, synchronization of events, etc. Component-
based development paradigm brings up a revolution in the software development.
A system is made by composing off-the-self previously developed components.
The glue code, by composing the components together, plays the important role
of orchestration and defines how the components are coordinated to remedy
the concurrency problems. Coordination languages have emerged for building
the interaction protocols among the components in a system independent of
the behavior of components. Reo was introduced as an exogenous coordination
language to specify the glue code in a compositional way [1]. By composing ready-
to-use components and Reo connectors, a system can be constructed. One of the
challenges in the composition of Reo connectors is the interpretation of feedback
loops. Feedback is a useful control mechanism, present in many coordination
patterns, which may lead to non-deterministic behavior that it is not appealing.

Several behavioral semantics based on different formal classes have been
appeared for Reo, namely, based on coalgebraic models, operational models [3],
and graph-coloring [4]. The coalgebraic model of timed data streams (TDS) was
the first model used to give semantics to Reo connectors [2]. It defines which
and when data items flow through each node of a connector. To provide tools to
support implementations or analysis of Reo connectors with formal techniques
other semantics were developed. The TDS semantics define the behavior of con-
nectors independent of interacting components (processes). In an ideal environ-
ment, there is an assumption that all the source and sink components (processes)
are always willing to generate and consume data (and willing to Rendezvous).
However such an assumption is not valid for all off-the-shelf components and
hence, their composition may lead to unexpected behaviors. Here, we study the
behavior of connectors and processes together as a composition.

The intuitive way of thinking about flows through a Reo connector resem-
bles the way the behavior of processes is defined by tagged signal models (TSM)
[6]. The denotational formalism of tagged signal model is a meta-model to study
certain properties of models of computation in a unified framework. In this frame-
work, a system is modeled by the composition of a set of processes. Each process
is defined as a relation/function between signals which can be partitioned into
input/output signals. Composition is treated as combining the output signals
of one process to the inputs of some processes. Each signal is a set of tag-value
pairs. By restricting processes to functions in TSM, feedback makes such systems
self-referential. Mathematically, the notion of self-reference is tackled as a fixed
point problem, as illustrated by the simple system in Fig. 1 in which the input
and output signals are the same due to the feedback connection. Such a system
has a well-defined behavior if F has a fixed point. This imposes constraints on
the functions that are used to model systems. There are a set of well-defined the-
orems in the TSM framework to show when a model with feedback has behavior.

TSM defines precisely processes, signals, and events, and gives a frame-
work for identifying the essential properties of discrete-event systems, dataflow,
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F
s F (s)

Fig. 1. A functional process in a feedback

rendezvous-based systems, Petri nets, and process networks. TSM is a meta-
model, and TDS can be defined as a specific model, based on TSM, where TDS
timestamps are a totally ordered set of tags in TSM. Furthermore, TSM provides
sufficient means to describe connectors and interacting processes in a unified way
as intended by Reo. In our approach, the effects of nodes are explicitly modeled
by constraints in TSM. We use TSM framework to reason about the determinacy
of a system composed of Reo connectors (and components). We will show that
in the TSM for Reo, we can use the same totally ordered tag system as in the
TDS, but most Reo circuits will be nondeterministic. We will also show the first
steps towards a TSM for Reo with partially ordered set of tags, and how this
model may be closer to the Rendezvous model of Reo.

In Sect. 2, we explain Reo and its Timed Data Stream semantics. We also
explain the Tagged Signal Model, the possible structures of tag systems, and
the determinacy of a system in this framework. In Sect. 3, we briefly point out
to different semantics of Reo, and also to different places that TSM is used
as the semantic framework for different models of computations. In Sect. 4, we
show how to model Reo in the TSM framework with two different tag systems.
Section 5 includes discussions and conclusions.

2 Preliminary Concepts

We first provide an overview of the syntax and semantics of the coordination
language Reo, and then the meta-model of tagged signal framework.

2.1 Reo

Reo is a model for building component connectors in a compositional manner [1].
Each connector in Reo is, in turn, constructed compositionally out of simpler
connectors, which are ultimately composed out of primitive channels.

A channel is a primitive communication medium with exactly two ends, each
with its own unique identity. There are two types of channel ends: source end
through which data enter and sink end through which data leave a channel. A
channel must support a certain set of primitive operations, such as I/O, on its
ends; beyond that, Reo places no restriction on the behavior of a channel.

A set of primitive Reo channels (together with their Timed Data Stream
semantics) are shown in Table 1. Channels are connected to make a circuit.
Connecting (or joining) channels is putting channel ends together in nodes. Thus,
a set of channel ends is associated with a node. The semantics of a node depends
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on its type. Based on the types of its coincident channel ends, a node can have one
of three types. If all channel ends coincident on a node are exclusively source
(or sink) channel ends, the node is called a source (respectively, sink) node.
Otherwise, it is called a mixed node.

A component can write data items to a source node that it is connected
to. The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts as
a replicator. A component can obtain data items, by an input operation, from a
sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item; if
more than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondeterministic merger. A
mixed node nondeterministically selects and takes a suitable data item offered
by one of its coincident sink channel ends and replicates it into all of its coincident
source channel ends.

Reo offers an open ended set of channels, but a set of primitive channels,
shown in Fig. 1, are commonly used in Reo circuits. The behavior of every con-
nector in Reo imposes a specific coordination pattern on the entities that perform
normal (blocking) I/O operations through that connector, which itself is oblivi-
ous of those entities. This makes Reo a powerful glue language for compositional
construction of connectors to combine component instances and Web services
into a software system and exogenously orchestrate their mutual interactions.

2.2 Timed Data Stream

In [2], Arbab and Rutten introduce Timed Data Stream (TDS) models as the
first formalization of the semantics of Reo connectors. Informally, a TDS model
of a connector describes for each of its nodes which and when–in dense time–data
items flow through this node. It does so by associating each node with a timed
data stream. A timed data stream (α, a) consists of a data stream α ∈ Dataω

and a monotonically increasing time stream a ∈ Rω
≥ consisting of increasing

positive real numbers including zero. The time stream a indicates for each data
item αn the moment an at which it is being input or output. By associating
each node of a connector with its own TDS in a TDS tuple, a single execution
of the connector is defined. To describe all possible executions of a connector, it
has to be associated with a set of TDS tuples; we call such a set the TDS model
of the connector. Usually, such a TDS model is defined as a predicate on TDSs
that induces the set of admissible TDS tuples of a connector. (Enumerating
all admissible TDS tuples of a connector becomes impossible because, not only
each stream in a TDS itself is infinite, the set of admissible TDS tuples usually
contains infinitely many elements.)

The Sync channel inputs the data elements in the stream α at time a, and
outputs the date stream β at time b. All data elements that come in, come
out in the same order, i.e., α = β, and at the exact same time a = b. For a
FIFO1 channel what comes in, comes out (α = β), but at a later time (a < b).
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Moreover, at any moment the next data item can only be input after the present
data item has been output (b < a′) which means b(n) < a(n + 1), for all n ≥ 0.
The connector Merger is a ternary relation with two input ends and one output
end. This connector merges the two input data streams into a data stream on its
end. Merger handles the data element on one of its input ends first which comes
out on its output end. The LossySync channel passes a data element on its input
end instantaneously on as an output element, and continues with the remainder
of the streams as before. If the output end is not ready for the rendezvous then
the input element is discarded. The SyncDrain channel has two input ends, and
the data elements in the stream α and β enter the two input ends of this channel
simultaneously, i.e., a = b. There is no constraint on the data streams, the data
elements enter and disappear.

Constraint automata can be viewed as acceptors for tuples of timed data
streams that are observed at certain input/output ports A1, . . . , An of compo-
nents. The rough idea is that such an automaton observes the data occurring at
A1, . . . , An and either changes its state according to the observed data or rejects
it if there is no corresponding transition in the automaton.

Table 1. Primitive connectors and their corresponding semantics as Timed Data
Stream
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2.3 Tagged Signal Model

Let T and V denote the set of tags and values, ranged over by t and v respectively.
An event e is a pair of a tag and a value, where its tag may denote the time
that the event has occurred while its value may represent the operand/result of
a computation. A signal s is a set of events, and the set of all signals S is defined
by the powerset ℘(T × V ). A tuple s of N signals written by s = (s1, . . . , sN ),
is used to model the behavior of a process; and a process which is a unit of
computation is a set of behaviors. We use the position i in the tuple to denote
the signal si. The set of all such tuples is denoted by SN . The empty signal is
denoted by λ ∈ S while the tuple of empty signals by Λ ∈ SN .

In this framework, a system is modeled by a composition of a set of processes.
A process P is described in its general term as a subset of SN , called its sort. A
particular s ∈ SN is called a behavior of P if s ∈ P . For N ≥ 2, a process can
also be interpreted as a relation/function between the N signals in s which can
be partitioned into input/output signals.

A composition of processes is simply defined by the intersection of the behav-
iors of the processes. In order to be able to compose processes, all processes have
to be modeled using the same sort. This is one of the more subtle aspects of
TSM. This means that the set of behaviors of a process includes signals that are
neither inputs nor outputs to the process, that the process has nothing to do
with. Every possible valuation of such signals can be found in the behaviors of
the process. When composing processes by intersection, a process has no effect
on signals that are irrelevant to it because all possible valuations of those sig-
nals are legitimate behaviors of the process, and when we form set intersection,
these irrelevant signals are not constrained by the process in any way. So, for
composition, processes are defined as a subset of the same sort by augmenting
their tuples using cross product.

Interaction is defined by the particularly simple process C ⊂ SN , called
connection, where two (or more) of the signals in the N -tuple are constrained to
be identical. Connections are useful to couple the behaviors of other processes.
For example, the connection Ci,j = {s ∈ SN | si = sj}, intuitively models
that the signals si and sj are connected together. To hide some signals, the
projection operator πI(s) is used which maps s = (s1, . . . , sN ) to (si1 , . . . , sim)
where I = {i1, . . . , im} is an ordered set of indexes in the range 1 ≤ i ≤ N . For
instance the composite process in the right-side of Fig. 3 is defined by π1,4((P1 ×
S2) ∩ (S2 × P2) ∩ C2,3) which can be simply denoted by π1,4((P1 × P2) ∩ C2,3).

A process P is functional with respect to the index sets I and O for m
and n input and output signals respectively, if for every s ∈ P and s′ ∈ P ,
πI(s) = πI(s′) implies πO(s) = πO(s′). Therefore, for the functional process P
with respect to (I,O), a single-valued mapping F : Sm → Sn can be defined such
that for all s ∈ P , πO(s) = F (πI(s)). Note that a process may be functional with
respect to more than one pair of index set (I,O). This property is preserved by
the composition of functional processes as long as no feedback loop is involved.
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Tag Systems. Intuitively tags are used to model time, precedence relations,
synchronizations points, etc. The central role of a tag system is to establish
ordering among events. The structure of a tag system distinguishes various con-
current models of computation, classified into timed and untimed. The former
characterizes systems in which the order of events is deterministically defined
relative to some physical or logical clock. Therefore, timed models of computa-
tion are characterized by a totally ordered set of tags while untimed ones by a
partially ordered set of tags. In a timed model, the order of all events is clear
and all tags are comparable, while in an untimed model, a subset of events can
be ordered.

Determinacy. Many processes (not necessarily functional) have the notion of
inputs which characterize events or signals that are defined outside the process.
Formally, an input to the process P ⊆ SN is an externally imposed constraint
A ⊆ SN such that A ∩ P is the total set of acceptable behaviors. The behavior
of a process for a set of possible inputs, denoted by B ⊆ ℘(SN ), can be defined
by (P,B).

A process (P,B) is called closed if B = {SN}, a set with only one element,
A = SN . Since A∩P = P , no input constraints are imposed on a closed process.
A process and its possible inputs is open if it is not closed.

A process is called deterministic “if for any input A ∈ B it has exactly one
behavior or exactly no behavior; i.e. |A ∩ P | = 1 or |A ∩ P | = 0, where |X| is
the size of the set X.” Otherwise, it is called nondeterministic. Consequently, a
closed process P is deterministic if |P | = 1 or |P | = 0 (because B = {SN} and
|SN ∩ P | = 1 or |SN ∩ P | = 0).

A functional process with respect to (I,O) is obviously deterministic if I and
O together contain all the indexes in 1 ≤ i ≤ N .

3 Related Work

In recent years, many formalisms for describing the behavior of Reo connectors
have emerged. Jongmans and Arbab provided an overview of thirty different
semantic formalisms for Reo in [4]. These models include coalgebraic models,
operational models, and models based on graph-coloring. In [4], the authors also
investigate in more detail the expressiveness of constraint automata and coloring
models. We encourage the interested reader to [4] for more detailed information.

The first formal semantics proposed for Reo is Timed Data Streams proposed
in [2]. In [2], like in most other semantics proposed for Reo, the focus is on the
set of connectors and their composition, and the behavior of components is
abstracted away and substituted by (sometimes implicit) assumptions. Tagged
Signal Model is introduced in [6] as a denotational framework for comparing
models of computation. It is a generalization of the Signals and Systems approach
to system modeling and specification [7]. Using Tagged Signal Model, one can
give structure to the sets of signals, give structure to the functional processes, and
develop static analysis techniques. Moreover, we can compare certain properties
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of the models of computation, such as their notion of synchrony, and define
formal relations among signals and process behaviors.

The similarities between tagged signals and timed data streams motivated
us to look into Reo semantics using TSM framework. The goal is to use the
established theory around Tagged Signal Model for reasoning about different
properties of Reo circuits. This paper is the first attempt in moving towards
this goal. Although TSM and TDS are very similar in their structure, our work
in this paper shows subtle problems that need to be solved to be able to use
the fixed point theorems established for TSM in the context of Reo connectors.
TSM is mainly used to reason about Kahn Process Networks and Discrete Event
model of computation. Reo is using a Rendezvous model of computation, and
there is no TSM proposed for such models. Comparing to the TDS model, the
TSM framework will add the ability to also model processes rather than just
connectors. We will show that in the TSM for Reo, we can use the same totally
ordered tag system as in the TDS, but most Reo circuits will be nondeterministic.
We will also show the first steps towards a TSM for Reo with partially ordered
set of tags, and how this model may be closer to the Rendezvous model of Reo.

4 Reo Connectors as Tagged Signal Models

To study the notions of concurrency, determinacy and synchronization of Reo
connectors, we define how these properties can be captured within the tagged
signal model. We provide a denotational semantics for Reo depending on how
the tag system is structured.

In the first setting, the tag system is considered to be totally ordered and is
the set of non-negative real numbers. This structure is inspired from the seman-
tics of Reo as Timed Data Streams in [2]. As there is a global view of time
among the components, it can be considered that all components and connec-
tors are local. This setting can be extended to provide a suitable model for a
discrete-event simulator of Reo connectors.

In the second setting, the tag system is considered to be partially ordered.
In this setting, the components interacting with connectors and the nodes of the
connectors are considered to be distributed, and hence such a tag system reflects
the inherent problem in having a consistent time view in the implementation of
distributed systems. In this setting, we may receive signals with incomparable
tags at each channel end of a primitive connector (primitive channels or the
merger). So, keeping the Reo node behavior similar to the first setting, our
proposed TSM in the second setting comes short in defining semantics for all
the primitive connectors.

The model of computation in Reo nodes is rendezvous, and Reo nodes take
care of signals received from different (sink) channel ends with (possibly) incom-
parable partially ordered tags and dispatch them accordingly to the (source)
channel ends. This way, we assume comparable tags for input and output signals
of each primitive connector (similar to [2]). To be able to capture the semantics
of Reo properly, in our future work we intend to adopt a partially ordered tag
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system, keep the semantics of each primitive connector aligned with their TDS
definitions in [2], and add a more elaborated semantics for Reo nodes as spe-
cial TSM connectors which compose channel ends and enforce the rendezvous
model. Such an adoption may make it possible to use the well-established the-
orems around Network Process [5] to reason about the determinacy systems
composed of Reo connector with feedback loops. Establishing all the details of
this third model is left as our future work, and in this paper we show how we
moved towards this semantics.

In all the models, each Reo channel can be viewed as a process, and its
input/output streams of data in to and out of channel ends are viewed as signals.

4.1 A Totally Ordered Tag Model

When the tag set is totally ordered, for any two distinct tags t, t′ ∈ T , either
t < t′ or t′ < t. We consider T to be the set of non-negative real numbers. We
say e1 < e2 when e1 = (t1, v) and e2 = (t2, v) for some v ∈ V where t1 < t2. Let
T (e) denote the tag of the event e, and let T (s) denotes the set of tags of all
events of the signal s.

We express the semantics of the five basic connectors as shown in Table 2.
We assume that signals s1 and s2 are totally ordered:

s1 = {ei, i ∈ N}, ∀ i, j · i < j ⇒ T (ei) < T (ej)
s2 = {e′

i, i ∈ N}, ∀ i, j · i < j ⇒ T (e′
i) < T (e′

j)

In this setting, the process of Sync is functional which can be defined by the
identity function. However, the FIFO1 connector is not a functional process. The
asynchronous behavior of FIFO1 makes it non-deterministic as for any (t, v) ∈ s1,
it can be delivered to s2 at any time t′ > t.

Here, Merger can be seen as a partial function process. The constraint T (s1)∩
T (s2) = ∅ expresses that its behavior is not defined when the tags of two events
at its input signals are equal. The semantics of LossySync is defined by a relation
due to its non-deterministic behavior in loosing events. The process of SyncDrain
is defined as a partial function.

Two connectors can be composed through a node which contains the channel
ends of the both connectors. Such a node imposes constraints on the signals
representing the channel ends being contained by the node. For instance, the
behavior of the mixed node in Fig. 2 is defined by the constraint C ′

1,{2,...,n}
which faithfully models the effect of nodes in Reo:

C′
1,{2,...,n} = {(s1, . . . , sn) | ∀2 < j ≤ n · (s2 = sj) ∧ ∀ei ∈ s1, e

′
i ∈ s2 · (T (ei) ≤ T (e′

i))}.

The semantics of a system is derived by the intersection of the behaviors of
it’s constituent processes.

Example 1. Consider a connector composed of two Sync channels connected in
sequence, as shown in Fig. 3. The behavior of the composite connector is defined
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Table 2. The primitive connectors Sync, FIFO1, Merger, LossySync, and SyncDrain and
their corresponding semantics with a totally ordered tag model. Note that s1 = {ei, i ∈
N} where ∀ i, j · i < j ⇒ T (ei) < T (ej), and s2 = {e′

i, i ∈ N} where ∀ i, j · i < j ⇒
T (e′

i) < T (e′
j), and we say e1 < e2 when e1 = (t1, v) and e2 = (t2, v) for some v ∈ V

where t1 < t2.

...
s1

s2 s3

sn−1sn

Fig. 2. A mixed node in Reo, including one source channel end (related to s1), and
multiple sink channel ends (related to s2 to sn)

s1

s2 s3
s4

P1 P2

s2 s3
s4s1 C2,3

Fig. 3. Two Sync channel in sequence and its corresponding composite process
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by the intersection of two functional processes P1 and P2 and the connection C2,3.
Therefore, Their composition is functional, and hence, since their composition
is acyclic, it is deterministic. This can be validated by computing the behavior
of the connector:

π1,4((P1 × P2) ∩ C2,3) = {(s1, s4) | s1 = s4}.

Example 2. Consider a system composed of a Merger connector and three com-
ponents C1, C2, and C3, as shown in Fig. 4. Assume that C1 and C2 are always
willing to generate data while C3 is always willing to consume data, defined by
processes P1, P2, and P3, respectively:

Pi = {(s1, s2, s3, s4, s5, s6) | T (si) = Rω
≥}, i ∈ {1, 2, 3}.

The behavior of the composite closed system is defined by the intersection of
all processes, the corresponding process of Merger, modeled by M and the con-
straints C ′

1,{4}, C ′
2,{5}, and C ′

6,{3}. The behavior of the composite system is:

P1 ∩ P2 ∩ P3 ∩ M ∩ C ′
1,{4} ∩ C ′

2,{5} ∩ C ′
6,{3}

where M is the augmented behavior of Merger:

M = {(s1, s2, s3, s4, s5, s6) | s6 = s4 ∪ s5 ∧ T (s4) ∩ T (s5) = ∅}.

The composition yields an uncountably infinite set and hence, defines a non-
deterministic system regarding the definition of determinacy in Sect. 2.3. Replac-
ing C1 and C2 by components with only one behavior will make the system
deterministic.

C1

C2

C3

s1 s4

s2 s5

s3s6
P1

P2

P3

s1 s4

s2 s5

s6 s3C'1,{4}

C'2,{5}

C'6,{3}
M

Fig. 4. A closed system composed of a Merger

Example 3. We change the system of Example 2 by connecting the inputs of
the merger to a SyncDrain channel, as shown in Fig. 5. We assume again that
C1(similarly C2) and C3 are always willing to generate and consume data respec-
tively. The behavior of the composite system is:

P1 ∩ P2 ∩ P3 ∩ D ∩ M ∩ C ′
1,{4,7} ∩ C ′

2,{5,8} ∩ C ′
6,{3}
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where M and D are the augmented behaviors of the Merger and SyncDrain
channels, respectively:

M = {(s1, s2, s3, s4, s5, s6, s7, s8) | s6 = s4 ∪ s5 ∧ T (s4) ∩ T (s5) = ∅}
D = {(s1, s2, s3, s4, s5, s6, s7, s8) | T (s7) = T (s8)}.

The composition yields an empty set and hence, results in a deterministic system.

C1

C2

C3

s1 s4

s2 s5

s3s6
P1

P2

P3

s1 s4

s2 s5

s6 s3

C'1,{4,7}

C'2,{5,8}

C'6,{3}
M

s7

s8
D

s7

s8

Fig. 5. A closed system composed of a Merger and a SyncDrain

4.2 A Partially Ordered Tag Model

As explained before, a partially ordered tag model seems more suitable in a
distributed setting for Reo connectors. Since different components have no con-
sistent view of time, only events generated by the same primitive connector
(component) at its sink channel ends (output ports of the component), and
events coming into the primitive connector from the same source channel end
(each input port of the component) are totally-ordered. When two sequences of
events (generated by different channels/components) arrive at the channel ends
of a Merger or SyncDrain, their tags cannot be compared. Therefore, the behav-
ior of Merger and SyncDrain cannot be defined in this setting without further
elaborations.

The semantics of Sync, FIFO1, and LossySync channels, provided in Table 3,
are similar to the ones given in the timed model of computation (totally ordered
tags). The Sync channel passes the events without manipulating their tags and
values. The behavior of FIFO1 ensures that the tag of each outgoing event is
greater then its corresponding incoming event but less then the next incoming
event. The behavior of LossySync channel shows that if an event passes through
the channel, its tag and value will not be changed, but passing an event is not
guaranteed. In contrast to the Sync channel, due to its nondeterministic behavior
in losing an event its process is not functional.

The behavior of a node is exactly modeled as in the totally ordered tags
setting. It should be noted that we assumed that a node and its constituent
ends are located at the same place, and hence their tags are comparable.

Providing a model for Merger, and SyncDrain channel needs more elaboration,
and we leave it to our future work.
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Table 3. The primitive connectors Sync, FIFO1, and LossySync channels and their
corresponding semantics with a partially ordered tag model. Note that s1 = {ei, i ∈ N}
where ∀ i, j · i < j ⇒ T (ei) < T (ej), and s2 = {e′

i, i ∈ N} where ∀ i, j · i < j ⇒ T (e′
i) <

T (e′
j), and we say e1 < e2 when e1 = (t1, v) and e2 = (t2, v) for some v ∈ V where

t1 < t2.

5 Discussion, Conclusion and Future Work

We observed the similarity between Tagged Signal Model presented in [6] and
Timed Data Stream presented in [2]. Different techniques are established based
on Tagged Signal Model to understand the behavior of a model of computation
better, and to reason about the determinacy of the composition of processes
at the syntactic level using fixed point theory. Our main motivation was to
discuss the possible nondeterministic behaviors of different Reo connectors spe-
cially when a feedback loop is formed in the composition, by exploiting TSM
framework and its results on systems with feedback loops. We provided two
denotational semantics for Reo connectors in the two timed and untimed models
of computation, based on totally and partially ordered sets of tags respectively.

Moving towards a partially ordered set of tags, we may stick to the way the
primitive connectors are modeled in [2], but we need to show how we compare
different tags coming from different sources where necessary, or show how and
where we can resolve this comparison. We need to consider the rendezvous that
is happening within Reo nodes to model the change of tags and propagation
of change of tags on the upstream signals coming in from other processes, and
downstream signals going to other processes. The details for this model is left
as the future work.

Acknowledgment. We would like to thank Professor Edward Lee for his very useful
comments and discussions.
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Abstract. Manual encoding is exceedingly time consuming and error
prone, and has become a huge obstacle between reliable software models
and trustworthy computer programs. To deal with this problem, dozens
of code generators are developed to automatically convert different mod-
els into executable codes. In this paper we present a new code generator
for the component-based modeling language Mediator . It aims to gen-
erate platform-dependent (Arduino in this case) programs that can be
directly downloaded to the hardware without any manual adaption. We
also present a case study where we use Mediator to develop a wheeled-
robot controller, generate the corresponding program through our code
generator, which has been successfully executed on an Arduino-based
robot platform.

Keywords: Code generation · Mediator · Arduino
Component-based modeling

1 Introduction

With IoT techniques sweeping around the world, software systems are becom-
ing more complicated, distributed and safety-critical, and thus the development
of such systems is becoming notoriously difficult. Small failures in daily-used
software, such as smart house controllers, payment applications, etc., may lead
to severe butterfly effect. Under such circumstances, various approaches have
been proposed in the past decades to help software development, such as object-
oriented programming [20], aspect-oriented programming [15], component-based
modeling and development [21], and so on. Among these approaches, component-
based modeling is extremely popular and helpful in the development of embedded
systems [12] and service-oriented applications [3].

Mediator [16] is a new component-based modeling language that provides an
automata-based formal semantics and supports hierarchical modeling. With the
help of a full-featured type system and powerful coordination mechanisms, this
language can be used by both domain-specific experts and software engineers to
guarantee the reliability of software system models.
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However, such powerful modeling languages can only help with the correct-
ness of high-level models. In practice, lots of software errors are caused by the
inconsistency between implementations and models. And it turns out that man-
ual implementations do not always precisely follow abstract models and designs,
especially for systems with high complexity. To address this problem, automatic
code generation has been proposed to avoid errors caused by human activities
in the implementation process [10]. In this paper, we present an algorithm that
generates C code from Mediator models, which can be directly compiled and
executed on Arduino [17], a popular open-source embedded platform.

Importance of code generation has been uncovered for a long time. As a
result, a large number of formal and industrial code generation tools have been
built for different target platforms. For example, Event-B [13] and SCADE [9]
are very popular formal tools that can generate executable codes from abstract
models. The code generator in SCADE is especially famous for its reliability, but
its scalability is restricted by the Esterel language it accepts. As a synchronous
language, Esterel only formalizes a single embedded control loop, which makes
it hard to model concurrent and timed behavior. Furthermore, both Event-B
and SCADE code generators only aim at x86 platform, i.e. they cannot generate
code that directly works on embedded systems.

On the other hand, Ptolemy [19], MATLAB Simulink Toolbox [14] and Lab-
VIEW [18] are the most famous industrial modeling tools that support platform-
dependent code generation. These tools have large number of libraries and plug-
ins that almost cover all commonly-used embedded platforms and programming
languages. Nevertheless, power of these tools also becomes limitation when we
try to perform testing or verification techniques on their models. For exam-
ple, Ptolemy uses standard JAVA as its semantics, and Simulink enables users
to write components directly through MATLAB language. As far as we know,
models directly written in such full-featured programming languages, with loop
and dynamic memory allocation, are very hard to be verified.

The rest of this paper is structured as follows: Sect. 2 briefly introduces the
Mediator language and the Arduino platform. Then in Sect. 3 we illustrate how
the Mediator -Arduino code generator works. Section 4 presents the wheeled-
robot controller as a case study. Finally, Sect. 5 concludes the paper.

2 Background

This section gives a brief introduction on the background, including the gram-
mar of Mediator and basic programming on Arduino [17] platforms. To avoid
ambiguity, in the following texts we use monospaced to indicate any literals or
source code fragments and italic to indicate non-terminal symbols.

2.1 Mediator

Mediator is a component-based modeling language proposed in [16]. As a hier-
archical modeling language, Mediator provides formalisms for both high-level
system layouts and low-level automata-based behavior units.
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As implied by the name, the language tries to provide a mediator through
different language elements. For example, systems are designed for software engi-
neers who may have no background about formal methods, which makes it easier
to construct software models with reliable components and connectors. On the
other hand, these reliable components and connectors are supposed to be built
using automata by researchers who know formal methods well.

Syntax tree of a typical Mediator program is defined as follows.

program ::=( typedef | function | automaton | system )∗

Typedef s are aliases for types. Functions are definitions of custom (or native,
which will be interpreted later) functions. Automatons and systems are the core
modeling elements in Mediator . They are also called entities since they share
the same declaration form.

Type System. Mediator provides various data types that are widely used in
different formal modeling languages and programming languages. These data
types are categorized as primitive types and composite types, which are presented
in Tables 1 and 2, respectively.1

Table 1. Primitive data types

Name Declaration Term example

Integer int -1,0,1

Bounded Integer int lowerBound .. upperBound -1,0,1

Double double 0.1, 1E-3

Boolean bool true, false

Character char ’a’, ’b’

Enumeration enum item1 , ..., itemn enumname.item

Table 1 shows the primitive types supported by Mediator : integers and
bounded integers, double values, boolean values, single characters and finite enu-
merations.

Parameter Types. In some situations we may hope to reuse an automaton or a
system with the help of generalization. For example, an encrypted communica-
tion system supports different encryption algorithms encapsulated as parameter
functions or components. Parameter types make it possible to take functions
and entity interfaces as template parameters. Mediator supports two parameter
types:

1 Some notations in Tables 1 and 2 are slightly different from the original language
proposal in [16] since both the tool and language are still being frequently updated.
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Table 2. Composite data types (T denotes an arbitrary data type)

Name Declaration

Tuple (T1,...,Tn)

Union T1|...|Tn

Array T [length]

List T []

Map map [Tkey] Tvalue

Struct struct { field1:T1,..., fieldn:Tn }
Initialized Tbase init term

1. Interface, denoted by interface (port1:T1,· · · ,portn:Tn), defines a param-
eter that could be any automaton or system with exactly the same interface
(i.e. number, types and directions of the ports perfectly match the declara-
tion). Interfaces are only used in templates of systems.

2. Function Type, denoted by func (arg1:T1, · · · , argn:Tn):T , defines a func-
tion that has the argument types T1, · · · , Tn and result type T . Functions are
permitted to appear in templates of other functions, automata and systems.

Parameter types can only be used in template parameters. It is impossible
to declare a function or an interface as a local variable.

Functions. Mediator supports two types of functions, common functions and
native functions. The syntax of functions is shown as follows.

funcDecl ::= native
?
function template ? identifier funcInterface {

( variables { varDecl ∗ } )?

statements { ( assignStmt | iteStmt )∗ returnStmt }
funcInterface :: = ( ( identifier : type )∗

) : type

assignStmt ::= term ( , term )∗
:= term ( , term )∗

iteStmt ::= if ( term ) stmt +( else stmt +)?

returnStmt ::= return term

varDecl ::= identifier : type ( init term )?

Common functions are composed of function interfaces and function bodies.
Function interfaces describe the input variables and return type of functions.
Function bodies, including local variables and statements, specify the behavior
of the functions. All user-defined functions are common functions.

Native functions, on the other hand, have no function bodies but only func-
tion interfaces. Similar to the function declarations in other programming lan-
guages like C headers, native functions are part of the Mediator plugins where
the behavior of the functions cannot be described through Mediator statements
directly. More discussions and examples of native functions will be presented in
Sect. 3.
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Entities. Both automata and systems are called entities in Mediator . All Media-
tor entities have their own templates and interfaces. However, ways to formalize
their behavior are complete different.

Automata. Syntax tree of automata is shown as follows.

automaton ::= automaton template ? identifier ( port ∗
) {

( variables { varDecl ∗ } )?

transitions { transition ∗ } }
port ::= identifier : ( in | out ) type

transition ::= guardedStmt | group { guardedStmt ∗ }
guardedStmt ::= term -> ( stmt | { stmt ∗ } )

stmt ::= assignStmt | iteStmt | sync identifier +

As the basic behavior unit in Mediator , automaton consists of four parts: tem-
plates, interfaces, local variables and transitions, which are interpreted respec-
tively as follows.

1. Templates. Templates of an automaton include a set of parameter declara-
tions. A parameter can be either a type (common type or parameter type)
or a value. Concrete values or types are supposed to be provided when the
automaton is instantiated (i.e. declared in systems).

2. Interfaces. Interfaces consist of directed ports and describe how automata
interact with their contexts. Ports can be regarded as structures with three
fields: value, reqRead and reqWrite, which correspondingly denote the val-
ues of parts, status of reading requests and status of writing requests.

3. Local Variables. Each automaton contains a set of local variables. Types of
these variables are supposed to be initialized. We use the evaluations of local
variables to represent states of an automaton.

4. Transitions. Behavior of an automaton is defined by guarded transitions. Each
transition consists of a boolean term guard and a sequence of statements.
Transitions are ordered by their priority. For example, if multiple transitions
are activated at the same time, the one that has highest priority will be fired.
On the other hand, non-deterministic firing is also supported by encapsulating
part of the transitions through group.

Currently, Mediator supports three types of statements:

1. Assignment statements, each including an expression and an optional assign-
ment target, evaluate the expression and assign the result to its target if
possible.

2. Ite (if-then-else) statements act as conditional choice statements in other
languages.

3. Synchronizing statements, labelled with sync, are the flags requiring synchro-
nized communication with other entities.
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According to the existence of synchronizing statement (i.e. external communi-
cation through ports), transitions are classified as either internal transitions or
external ones.

Compared with automata models being widely-used in other formal tools
(e.g. UPPAAL [4], Simulink/Stateflow [14]), an automata in Mediator has no
explicitly declared locations. Instead, it uses the evaluation of local variables
to represent its states. An example of Mediator automaton can be found in
Example 2, Sect. 4, where automata are used to model drivers of motors.

system ::= system template ? identifier ( port ∗
) {

( internals identifier +)?

( components { componentDecl ∗ } )?

connections { connectionDecl ∗ } }
componentDecl ::= identifier +

: systemType

connectionDecl ::= systemType params ( portName +
)

Systems. As the textual representation of hierarchical entities to organize sub-
entities (automata and simpler systems), systems with the above syntax tree are
composed of:

1. Components. Entities can be placed and instantiated in systems as compo-
nents. Each component is considered as a unique instance and executed in
parallel with other components and connections. Ports of a component can be
referenced through comp.port once the component is declared, where comp is
the name of the component and port is the name of the referenced port.

2. Connections. Connections are used to connect (a) the ports of the system
itself, (b) the ports of its components, and (c) the internal nodes. Inspired by
the Reo project [6–8], complex connection behavior can also be determined
by other entities.

3. Internals. Sometimes we need to combine multiple connections to perform
more complex coordination behavior. Internal nodes, declared in internals
segments, are untyped identifiers which are capable to weld two ports with
consistent data-flow direction.

Systems also have templates and interfaces which have exactly the same
forms as in automata. An example of a Mediator system is presented later in
Sect. 4.

2.2 Arduino

Arduino [17] is an open-source electronics project that aims to build easy-to-use
hardware and software. Arduino boards support various models of single-board
micro-controllers, properly encapsulate them and expose a set of simple APIs to
users. Here we give a brief introduction on program structure of Arduino C and
some relevant hardware resources on a typical Arduino motherboard.
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Program Structure. The Arduino community has developed a simple IDE that
uses a dialect of C as its programming language. A typical Arduino C program
describes its behavior through a setup function and a loop function.

– setup(): This function is called once when a sketch starts after power-up or
reset. It is used to initialize variables, input and output pin modes, and other
libraries needed in the sketch.

– loop(): After setup has been called, function loop is executed repeatedly in
the main program. It controls the board until the board is powered off or is
reset.

Hardware Resources. Pins are the most important hardware resources of Arduino
boards. Through them the motherboard communicates with its accessories, e.g.
sensors, motors and other devices. Numbers and types of pins vary a lot between
different Arduino motherboards. Here we take Arduino Uno, one of the most
popular Arduino motherboards, as an example to introduce types of pins. This
motherboard is also used for the case study in Sect. 4.

1. Analog Pins: 6 analog pins named A0 .. A5 are provided on Arduino Uno
to perform analog signal transmission. Resolution of analog pins is 10 bits,
in other words, value of an analog pin varies from 0 to 1023. Reading and
writing operations on analogs pins are performed through builtin functions
analogRead(pin) and analogWrite(pin, value).

2. Digital Pins: Digital pins have only two possible values 0 and 1, or LOW and
HIGH. Builtin functions digialRead and digitalWrite are used to read val-
ues from and write values to digital pins. Moreover, part of the digital pins
provide Pulse-Width Modulation (PWM, [2]) feature to transfer analog value
through binary encoding. In this case we are supposed to use analogRead
and analogWrite instead.

An Arduino pin can be in either INPUT mode or OUTPUT mode. Modes of
pins, no matter whether they are analog or digital, are configured through the
builtin function pinMode(pin, mode).

3 Code Generation

In this section we introduce the Arduino code generator for Mediator . The code
generator mainly consists of a native function library and a set of generators for
different Mediator language elements, e.g. types, functions and entities.

The Arduino code generator is implemented as a plugin of the Mediator
project [1], which is written in Java and based on Maven framework [5]. Exe-
cutable Jar packages and help documents can be found in this repository.
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3.1 Native Functions

Native functions are the bridges between software controllers and hardware
resources in the Mediator framework. In other words, they are the exposed inter-
faces of hardware through which Mediator models may change the hardware
behavior. Similar to C/C++ header files, these native functions are declared in
a Mediator source file as a library. But their corresponding hardware behavior
is defined by the code generator plugin.

The Arduino code generator supports the following native functions:

1 native function digitalRead (pin: int) : int 0..1;

2 native function digitalWrite (pin: int, val:int 0..1);

3 native function analogWrite (pin: int) : int 0..1023;

4 native function analogWrite (pin: int, val:int 0..1023);

5 native function delay (milliseconds: int);

– DigitalRead reads binary signals from a digital pin.
– DigitalWrite writes binary signals to either a digital or an analog pin. When

it is performed on an analog pin, it configures the analog electronic level to
either 1023 (HIGH) or 0 (LOW).

– AnalogRead reads analog signals from an analog pin.
– AnalogWrite writes analog signals to either an analog pin or a digital pin that

supports PWM encoding.
– Delay forces the Arduino processor to suspend for a certain time delay.

3.2 Type Generator

Arduino C naturally supports most of the primitive types in Table 1 and part
of the composite types in Table 2: unbounded integers int, float point numbers
double, characters char, boolean values bool (as zero and non-zero integers),
enumeration enum, union union, structure struct and finite arrays.

For the other types that are not directly supported by Arduino C, we use an
attached runtime library to simulate their behavior. Such types include:

– Bounded Integer. In Mediator , bounded integers are mainly used to avoid
overflow and unexpected values. For example, an Arduino analog signal varies
between 0 and 1023, writing any other integers to an analog pin may lead
to unknown behavior. Bounded integers are not supported by C. Moreover,
according to its widely use we may suffer from performance degradation if we
use complex structures to represent them. So we choose to generate assertions
every time when a variable of bounded integer type is assigned. Assertions
are mainly used for static model checking or reasoning tools, e.g. cbmc [11].
For example,

1 int a = 0; // type of a is int 0 .. 1 init 0

2 void loop() {

3 // ...

4 a = 1 - a;
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5 assert (a >= 0 && a <= 1);

6 // ...

7 }

– List. C supports unbounded lists by pointers. However, C does not care about
the capacity and consumption of them, which frequently lead to memory over-
flow and invalid dereference. In the Mediator runtime library, we encapsulate
a void pointer to represent an unbounded list, and two integer fields to denote
its capacity and the number of items existing in this list.

1 struct __MR_List {

2 void * list;

3 int capacity;

4 int num_items;

5 int item_size;

6 };

7 typedef struct __MR_List MR_List;

8

9 void init_empty_list (MR_List list, int item_size);

10 void list_add (MR_List list, void * item);

11 void * list_get (MR_List list, int index);

12 void list_del (MR_List list, int index);

The definition of unbounded list, as shown here, is type-independent. In other
words, when storing items to or obtaining items from an unbounded list, type
casting is unavoidable. In this case the Mediator syntax checker is responsible
to guarantee the type consistency.

– Map. Similar to the list, Mediator map in Arduino C is also type-independent.
A map uses two unbounded lists to store keys and values, respectively.

1 struct __MR_Map {

2 MR_List keys;

3 MR_List values;

4 };

5 typedef struct __MR_Map MR_Map;

6

7 void init_empty_map (MR_Map map, int key_size, int value_size);

8 void map_put (MR_Map map, void * key, void * value);

9 void * map_get (MR_Map map, void * key);

10 void map_del (MR_Map map, void * key);

– Initialized. In an Arduino program, default value of a type is only used in the
setup function to initialize the corresponding variable. As a result, we do not
have to use initialized type in Arduino C explicitly. For example, int init
0 will be simply replaced by int when the Arduino C code is generated.

3.3 Function Generator

As mentioned before, there are two types of functions to be considered here:
common functions and native functions.
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Common Functions. When designing Mediator , we deliberately restrict the
expressiveness of common functions (transitions as well) so that they are easier
to be verified formally. As a result, common functions in Mediator are very easy
to be encoded in C.

Native Functions. When a native function is called in a transition, the code gen-
erator needs to replace the function with corresponding native API in Arduino
C. According to Sect. 2.2, all native functions supported in this plugin can be
mapped to an Arduino API with the same name.

3.4 Entity Generator

All Arduino motherboards are equipped with only one processor and there is no
time-sharing operating system support. They do not support parallel execution.
Consequently, typical Mediator systems including a set of parallel components
and connections can not be directly encoded in Arduino C.

Fortunately, a scheduling algorithm that flats a hierarchical system into a
single automaton has been introduced in [16]. The algorithm guarantees that
its resulting automaton is always canonical, i.e., the automaton contains exactly
one transition group, in which all transitions are also canonical. With help of
this algorithm, all we need to do is to encode a single Mediator automata in
Arduino C.

The following steps illustrate the sketch of the encoding process.

1. Template and Interface. When generating Arduino codes, we always assume
that the source automaton has NO template parameters and NO ports. Ports
are special elements in Mediator that are used to react with a Mediator con-
text. Behavior of ports are undeclared in the Arduino C context.

2. Local variables are declared as global variables in Arduino C. According to
[16], all local variables should be initialized, i.e., they are declared with default
values. And these default values will be assigned to the global variables in
the setup function.

3. Statements. Transitions are composed of sequences of statements. After being
scheduled and canonicalized, an automaton contains only assignment state-
ments and ite statements (which are inherently supported in C). Since we
assume that no port exists in the automaton’s interface, synchronizing state-
ments can be simply omitted.

4. Transitions. Transitions are activated if their guards are satisfied by the cur-
rent evaluation of the local variables. Since in a canonical automaton all
transitions are encapsulated by a group, the transition selection process is
fully non-deterministic, i.e. the transition to fire is randomly selected from
all activated transitions. In our approach, we use the following three steps to
perform transition selection and firing:

– Step 1. Activation checking. At the beginning of each loop, we use a set of
if statements to check which transitions are activated under the current
evaluation of local variables. We use an array cmd activated to store
indexes of all transitions being activated.
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– Step 2. Random selection. With the help of the random function
in Arduino, it is easy to pick up a random index number from
cmd activated.

– Step 3. Transition firing. Another set of if blocks are used to encode the
statements in transitions. Conditions of these blocks are used to check
whether index of this transition is equal to the selected index.

Example 1. Consider a Mediator automaton test with one local variable x (ini-
tialized by 0) and two transitions: increasing x by 1 if x is less than zero, or
decreasing x by 1 otherwise. Source model of this automaton in Mediator is
shown as follows.

1 automaton test() {

2 variables { x: int init 0; }

3 transitions {

4 x < 0 -> { x = x + 1; }

5 true -> { x = x - 1; }

6 }

7 }

Since the transitions are ordered by their priority in Mediator , the second
transition can be fired iff. the first one is not activated. The generated Arduino
C code is also presented:

1 int test_x;

2 int cmd; // stores the index of selected transition

3 int cmd_activated[1]; // the capacity depends on number of

transitions that belongs to the automaton

4

5 void setup() { test_x = 0; }

6

7 void loop() {

8 // STEP 1 collect activated transitions

9 cmd_activated_counter = 0; // the stack pointer of cmd_activated

10 if (test_x < 0) {

11 cmd_activated[cmd_activated_counter] = 0;

12 cmd_activated_counter ++;

13 }

14 if (test_x >= 0) {

15 cmd_activated[cmd_activated_counter] = 1;

16 cmd_activated_counter ++;

17 }

18

19 // STEP 2 pick up a transition randomly

20 cmd = cmd_activated[random(cmd_activated_counter)];

21

22 // STEP 3 fire the selected transition

23 if (cmd == 0) test_x = test_x + 1;

24 if (cmd == 1) test_x = test_x - 1;

25 }
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The code generating process is summarized in Algorithm 1.

Algorithm 1. Generate Codes for a Specified Entity E in a Program P

Require: A program P = 〈Typedefs, Functions,Automata, Systems〉, an entity E
Ensure: Arduino C codes
1: global, setup, loop ← “ ”
2: if E ∈ Automata then
3: A ← Canonicalize(E)
4: else
5: A ← Schedule(E)
6: end if
7: if A.Ports �= ∅ then
8: return NULL
9: end if

10: for var ∈ {local variables of A} do
11: add variable declaration of var to global with the generated type
12: add variable initialization of var to setup
13: end for
14: for t = guard → statements ∈ {transitions of A} do
15: add activation checking of guard to loop
16: end for
17: add random index selection to loop
18: for t = guard → statements ∈ {transitions of A} do
19: add the generated statements to loop
20: if pin pin is involved in statements then
21: add pinMode to setup to configure pin correctly
22: end if
23: end for
24: setup ← “void setup(){” + setup + “}”
25: loop ← “void loop() {” + loop + “}”
26: return global + setup + loop

4 Experiment

In this section, we show how to model a wheeled-robot controller in Mediator and
generate Arduino C code through our code generator. The generated platform-
dependent code has been directly compiled and flashed to the motherboard,
without any manual modification.

The hardware platform being used is based on an Arduino Uno motherboard,
which consists of 4 motors (divided into two group left and right) and an ultra-
sonic distance sensor.

The Mediator model of the wheeled-robot controller as shown in Fig. 1 con-
tains the following parts:

– UltraSonic. This sensor detects the distance from nearest obstacles and sends
the distance information to the controller.
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– Controller. The core algorithm of this robot is encapsulated in the controller.
It reads distance information from the ultrasonic sensor, and gives an abstract
command (e.g. forward, backward, turn, stop) to the speeder according to the
distance information.

– Speeder. This automaton updates the speed of two motor groups according
to the abstract command it receives from the controller.

– Motors. 4 motors, divided into two groups, are equipped in this small robot.
Each motor has two control pins, one for direction and the other for speed. The
Mediator automaton shown in Example 2 is the driver for motors. It receives
a single control signal speed and updates the electronic level of control pins
correspondingly.

Fig. 1. Mediator model of the robot controller

The controller shown in Fig. 1 is captured by the following Mediator code,
where the motors and the controller are defined as components, and the speeder
and ultrasonic distance sensor are defined as connections.

1 system robot () {

2 components {

3 left_motor : motor<8, 9>;

4 right_motor : motor<11, 10>;

5 c : controller;

6 }

7 connections {

8 speeder(c.act, left_motor.speed, right_motor.speed);

9 ultraSonicDist<6,7>(c.dist);

10 }

11 }

Four Mediator automata are specified in this controller model: motor, con-
troller, speeder and ultraSonicDist. Here we only show the definition of motor,
further details can be found at [1].

Example 2 (Motor Driver). A typical driver of motors with two control signals
is defined as an automaton in Mediator . The simple automaton contains no
local variable, one internal transition and one external transition. The internal
transition updates the status of port speed, which is supposed to be ready to
accept control commands at any time. And the external transition receives target
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speed from the speed port and gives orders to the hardware correspondingly. The
two template parameters describe where Arduino pins the motor is connected.

1 automaton <pinDirection,pinSpeed:int> motor (speed:in signedPWM) {

2 variables {}

3 transitions {

4 !speed.reqRead -> speed.reqRead = true; // internal

5 speed.reqRead && speed.reqWrite -> {

6 sync speed; // external communication flag

7 if (speed.value > 0) {

8 digitalWrite(pinDirection, 1);

9 analogWrite(pinSpeed, speed.value);

10 } else {

11 digitalWrite(pinDirection, 0);

12 analogWrite(pinSpeed, -speed.value);

13 }

14 }

15 }

16 }

Due to the length limitation, the generated program is omitted here and can
be found at https://github.com/mediator-team/codegen-proposal/experiment.

5 Conclusion and Future Work

In this paper, we presented a fully-automatic code generator that converts Medi-
ator models to executable Arduino C programs. Compared with plain Arduino
C code, component-based Mediator models can be defined in a more intuitive,
easier way. With the help of this code generator, engineers are able to build and
review their models in Mediator , and generate Arduino C code automatically to
avoid errors caused by manual encoding.

In the future we plan to use program verification tools to guarantee the reli-
ability of generate codes. Due to the complexity, it is hard to formally prove the
correctness of the code generator itself. So we plan to generate assertions auto-
matically and insert them into the target code for formal verification. Hopefully
they can be verified through program verification tools, e.g. CBMC [11]. Pro-
viding support for more hardware platforms and languages, e.g. Verilog/VHDL,
System C, etc., are in our scope as well.
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Abstract. Rewriting Logic and Automata are complimentary appro-
aches for developing executable models of concurrent/distributed sys-
tems that can be analyzed by prototyping, and multiple methods of
model-checking. A joint project between my group at SRI and Farhad’s
group at CWI is developing formal methods to diagnose the cause
of undesired behavior of autonomous (cyber physical) systems operat-
ing in unpredictable environments. CWI is working on theory develop-
ment based on automata, exploring composition mechanisms in multiple
dimensions, and developing logic that supports reasoning about com-
positionality. The SRI work is based on rewriting logic and is focused
on methods for system specification and model-checking in the context
of faults and environmental threats. The two approaches share a com-
mon feature, namely the assignment of preferences to possible actions to
model locally robust adaptive behavior. Preferences are elements of con-
straint semirings (soft constraints), structures that provide operations
for comparison and composition.

In this paper we explore the similarities, differences and syner-
gies highlighting the insights that arise by pursuing complimentary
approaches.

1 Introduction

We are interested in systems of (semi) autonomous cyber-physical agents that
operate in unpredictable, possibly hostile, environments using locally obtain-
able information. How can we specify robust agents that are able to operate
alone and/or in cooperation with other agents? What properties or invariants
are important? How can they be verified? How can we determine the cause of
undesired behavior?

Already there are impressive point solutions coming from both research and
industrial settings. Capabilities for flying quadrotor robots for navigation in
3-dimensional space, sensing other entities, and forming ad hoc teams have
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been developed [12,27,28]. Case studies show that heterogeneous networks with
smart phone, ground and flying robots can be controlled by a distributed logic
and partially-ordered knowledge sharing [10,25,39]. Industrial applications for
shipping, security, search and rescue, environmental monitoring, rail monitoring
[8], oceanic data gathering [29], precision agriculture [12], automating inventory
checking in large warehouses [36], and even air taxis [14] are being developed. Of
course, there are Google’s driverless cars and Amazon’s drone delivery system.

Despite successful applications, little attention has been given to how to
devise and validate strategies for cyber-physical agents that are going to
(autonomously) carry out tasks. Such strategies must balance agent and envi-
ronment safety with achievement of goals. Furthermore the strategies must be
robust to faulty sensors and actuators and interference from external factors,
such as winds or adversaries.

Formal executable models provide valuable tools for exploring system designs
and verifying aspects of a systems expected behavior. Executable models are
often cheaper and faster to build and experiment with than physical models,
especially in early stages when ideas are developing. Such models can be built at
different levels of detail and attention to faults and threats allowing the designer
to focus on aspects of interest.

This Paper. We describe two complementary approaches to specification and
analysis of robust cyber-physical agent systems: (i) abstract theoretical concepts
based on automata and temporal logics, called Soft Component Automata; (ii) a
concrete experimental approach, called Soft Agents, based on executable rewrit-
ing logic specifications, simulation, search, and model checking using the Maude
system. Both approaches use soft constraints to model robust adaptive behavior.

– Soft Component Automata focuses on abstract characterization, composition-
ality of actions and systems and new logical concepts capturing composition-
ality properties;

– Soft Agents focuses on methods for specifying agents behavior, separation of
environment model and agents knowledge, developing fault/threat models,
and case studies including replacing environment by device simulators.

The question we address in this paper is how the two approaches complement
each other.

Plan. In Sect. 2 we describe the soft component automata (SCA) and soft agents
(SA) approaches. In Sect. 3 we show how the two approaches complement each
other. In Sect. 4 we discuss related work in a number of dimensions. In Sect. 5
we summarize and suggest future directions.

2 Background

In this section we provide introductions to Soft Component Automata (SCA) and
Soft Agents (SA), attempting to be sufficiently self-contained that comparing
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and contrasting makes sense. More details about SCA can be found in [23] and
more information about SA can be found in [40,41].

A shared feature of the SCA and SA modeling formalisms is the use of a
notion of preference to rank possible actions an agent may take. Preference may
reflect importance of progress towards a goal, willingness to take risks, concern
about maintaining safety and other invariants, to mention a few examples. The
point is to be able to specify agent behavior that is robust to changes in situ-
ation by providing a means for evaluating and reasoning about options at each
decision point. Thus we begin with a description of constraint semirings (aka
c-semirings) [4,6]. A c-semiring provides an algebraic structure on preference
values that allows us to both compare and to compose preferences.

2.1 Constraint Semirings

Definition 1. A c-semiring is a tuple 〈E,
⊕

,⊗,0,1〉 such that (1) E is the
carrier set, with 0,1 ∈ E; (2)

⊕
: 2E → E satisfies

⊕ ∅ = 0,
⊕

E = 1,⊕{e} = e, and
⊕ {⊕

(E) : E ∈ E} =
⊕⋃ E for e ∈ E and E ⊆ 2E; and (3)

⊗ : E × E → E is a commutative and associative operator, such that e ⊗ 0 = 0,
e ⊗ 1 = e, and e ⊗ ⊕

E =
⊕{e ⊗ e′ : e′ ∈ E} for e ∈ E and E ⊆ E.

The induced comparison relation ≤E ⊆ E × E is defined by e ≤E e′ if and
only if e ⊕ e′ = e′. ≤E is a partial order on E, with 0 and 1 the minimal and
maximal elements [4].

Our c-semirings are complete lattices, with
⊕

the least upper bound oper-
ator. ⊗ has the property that e ⊗ e′ ≤ e for any e, e′ ∈ E. If ⊗ is idempotent,
then ⊗ coincides with the greatest lower bound [4].

One example of c-semiring is the unit interval c-semiring U = 〈I,max,×, 0, 1〉
where I denotes the closed real interval between 0 and 1 ([0, 1]). (Also
called the probabilistic c-semiring [15]) A useful family of c-semirings are the
multi-level c-semirings Ln = 〈{0, . . . , n},max,min, 0, n〉. These provide sim-
ple ways of ranking and refine the basic boolean c-semiring which is iso-
morphic to L1. A final example is the upside down or weighted c-semiring
W =

〈
R≥0 ∪ {∞}, inf, +̂,∞, 0

〉
(the weighted semiring), where inf is the infi-

mum and +̂ is arithmetic addition generalized to R≥0 ∪ {∞}, and ≤W coincides
with the obvious definition of the order ≥ on R≥0 ∪ {∞}. One can think of
elements of this semiring as measuring cost with preference for lower cost.

Composition operators for c-semirings include product composition [7] and
(partial) lexicographic composition [15]. We refer to [22] for more details.

2.2 Soft Component Automata Formalism

Soft Component Automata (SCA) are based on Soft Constraint Automata [2,22],
An SCA is a state-transition system where transitions are labeled with actions
and preferences. Actions have a compositional structure given by a Component
Action System, and preferences are taken from a c-semiring. The following draws
on the presentation in [23].
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Component Action Systems. A Component Action System (CAS) models how
different components of a system contribute to actions that make up system
level behavior. As an example, consider the battery and motion components
of a simple robot. A mover action of the robot is composed of a move action
of the motion component and a discharge action of the battery component.
Some component actions are independent and can happen alone or concurrently,
some are inherently synchronous, and some are incompatible (for example move
and charge). All of these possibilities are captured in the following definition
(from [23]).

Definition 2. A Component Action System (CAS) is a tuple 〈Σ,�,�〉, such
that Σ is a finite set of actions; � ⊆ Σ × Σ, the composability relation, is a
reflexive and symmetric relation; and � : � → Σ, the composition operator, is
an idempotent, commutative and associative operator on Σ up to � (i.e., � is
an operator defined only on elements of Σ related by �). The capture preorder
� on Σ is the induced relation such that for a, b ∈ Σ, a � b if and only if there
exists c ∈ Σ such that a� c and a� c = b.

Soft Component Automata. Now we have the basis for defining SCA. From here
on, we abuse notation by naming a c-semiring or a CAS by its set of elements
E or Σ respectively. An SCA specifies the sequences of actions that are allowed,
along with the preferences attached to such actions.

Definition 3. A Soft Component Automaton (SCA) is a tuple 〈Q,Σ,E,→,
q0, t〉 where Q is a finite set of states, with q0 ∈ Q the initial state, Σ is a CAS
and E is a c-semiring with t ∈ E, the threshold, and → ⊆ Q×Σ×E×Q is a finite
relation called the transition relation. We write q a, e−−→ q′ when 〈q, a, e, q′〉 ∈ →.

An SCA models the actions available in each state of the component, how much
these actions contribute towards the goal and the way actions transform the
state. The threshold, t, restricts the available actions to those with a preference
bounded from below by t, either at run-time, or when the designer wants to
reason about behaviors satisfying some minimum preference.

q0 q1 q2 q3 q4

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

discharge2, 5 discharge2, 5 discharge2, 5

Fig. 1. A component modeling energy management, Ae.

Figure 1 shows Ae, an SCA modeling energy concerns. Its CAS contains the
(incomposable) actions charge, discharge1 and discharge2. Its c-semiring is the
weighted semiring W. The threshold value te is left undefined for now. The
states represent energy remaining, for example the initial state is named q4, as
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the 4 indicates that 4 units of energy remain. Energy can be discharged one or
two units at a time. Charging restores energy. The combined weight of spending
two units of energy (i.e., executing the action discharge1 twice) is lower than the
weight of spending a two units in one step (i.e., performing discharge2), indicates
that the energy component prefers to spend its energy in small increments.1

Composition. Composition of SCAs is defined for pairs of automata with the
same underlying c-semiring and CAS as follows.

Definition 4. Let Ai =
〈
Qi, Σ,E,→i, q

0
i , ti

〉
be an SCA for i ∈ {0, 1}.

The composition of A0 and A1, denoted A0 �� A1, is the SCA〈
Q,Σ,E,→, q0, t0 ⊗ t1

〉
, where Q = Q0 × Q1, q0 =

〈
q00 , q

0
1

〉
, ⊗ is the compo-

sition operator of E, and → is the smallest relation satisfying

q0 a0, e0−−−−→0
q′
0 q1 a1, e1−−−−→1

q′
1 a0 � a1

〈q0, q1〉 a0 � a1, e0⊗e1−−−−−−−−−→ 〈q′
0, q

′
1〉

Note that in contrast to typical Reo inspired automata, where one of the
components of a composition can choose to do nothing, in SCA there must
be a composable action. This allows one component to prevent another from
executing a given action. The designer can always choose to add pass actions,
compatible with all actions, as in the snapshot automata, As, shown in Fig. 2.

To illustrate SCA composition, we introduce the Snapshot SCA As in Fig. 2,
which models the concern of a crop surveillance drone that it should take a
snapshot of every location before moving to the next. The CAS of As includes
the pairwise incomposable actions pass, move and snapshot, and its c-semiring is
the weighted c-semiring W.

qY qN

move, 0

snapshot, 0

move, 2
pass, 1

pass, 1

Fig. 2. A component modeling the desire to take a snapshot at every location, As.

We augment the CAS of As and Ae with composite actions αi defined as
action α composed with dischargei. charge is composable with pass and we define
charge� pass = charge in the combined CAS. The composition, Ae,s, of As and
Ae is depicted in Fig. 3.

The states of Ae,s reflect the states of its components; for instance, in state
q2,Y there are two units of energy left, and a snapshot of the current position
has been taken. The action snapshot1 is not available in states of the form qi,Y ,
because the only action available in qY is pass, which does not compose into
snapshot1.
1 Recall that, in W, higher values reflect a lower preference (a higher weight); thus,
charge is preferred over discharge1.
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q0,N q1,N q2,N q3,N q4,N

q0,Y q1,Y q2,Y q3,Y q4,Y

charge, 1 charge, 1 charge, 1 charge, 1

charge, 1 charge, 1 charge, 1 charge, 1

move2 , 5
move2 , 5

move2 , 5
sn
ap
sh
ot 1

, 2

sn
ap
sh
ot 1

, 2

sn
ap
sh
ot 1

, 2

sn
ap
sh
ot 1

, 2

move2, 7 move2, 7 move2, 7

Fig. 3. The composition of the SCAs Ae and As, dubbed Ae,s: a component modeling
energy and snapshot management. We abbreviate pairs of states 〈qi, qj〉 by writing qi,j .

Semantics. The (operational) semantics of an SCA is the set of traces it admits.

Definition 5. Let A =
〈
Q,Σ,E,→, q0, t

〉
. A trace of A is a triple (μ : Qω, σ :

Σω, ν : Eω) such that μ(0) = q0, for all n ∈ N, μ(n) σ(n), ν(n)−−−−−−−→ μ(n + 1), and
t ≤ ν(n). The sequence of actions σ is called a behavior of A.

Logic. In [23] a dialect of linear temporal logic to specify properties of SCA
behaviors is proposed. The language includes two new operators that can be used
to express properties concerning compositionality. Specifically the new operators
are:

– The captures operator � φ describes every behavior that captures a behavior
satisfying φ, i.e. σ |= � φ just if there are component action sequences σ0, σ1

such that σ0 �σ1, σ = σ0 �σ1, and σ1 |= φ.2

– The composable operator, �φ, holds for every behavior composable with a
behavior satisfying φ, i.e. σ |= �φ just if there is a component action sequence
σ1 such that σ � σ1, and σ1 |= φ.

As an example, the property that the agent never misses an opportunity to take
a snapshot of a new location can be expressed by

φw = � �(move→ X(¬moveU snapshot))

This formula says “every behavior captures that, at any point, if the current
action is a move, then it is followed by a sequence where we do not move until
we take a snapshot”. If te ⊗ ts = 5, the energy-snapshot automata Ae,s satisfies
φw.

Diagnostics. Now that we can specify behaviors and their properties, an impor-
tant question is how to deal with undesired behaviors. Suppose we have identi-
fied an undesired behavior σ of automata A. One design decision is the threshold
each action preference must cross. How can we rationally adjust the threshold
to eliminate σ (and still keep desired behaviors). The diagnostic preference of a

2 �, � are lifted pointwise to action sequences.
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behavior σ of A is the largest preference t such that σ is a behavior of A(t) (A
with the threshold replaced by t). Thus setting t above the diagnostic preference
of σ will eliminate σ. An algorithm for computing the diagnostic preference is
given in [23].

If A is composite, we can change the threshold of A by changing the thresh-
olds of one or more components. The question is which components to adjust.
Notions of innocent and suspect components are introduced in [23] along with
an algorithm for computing them. Roughly, raising the threshold of an innocent
component will not change the composite threshold sufficiently. The suspect
components are those that are not innocent. They can be viewed as possible
causes of undesired behavior.

Continuing the example above for property φw, suppose we choose te = 10
and ts = 1; then te ⊗ ts = 11, thus σ = 〈move2, charge, charge〉ω is a behavior of
the snapshot automata, As, and hence Ae,s does not satisfy φw. The diagnostic
preference of σ (in Ae,s) is 7 so to eliminate σ as a behavior we must raise
the threshold above 7 (i.e. make it less than 7 in the normal ordering). The
threshold of As is already above the diagnostic preference (7 ≤W 1) so even
raising the threshold of As to its maximum, 0, the combined threshold te ⊗ ts
will be 10 which is not good enough. Thus we raise the threshold of Ae, that is,
we can consider te to be suspect. Indeed, making te equal 5 we have te ⊗ ts = 6,
then σ will be eliminated as a behavior of Ae,s. In the case of more than two
components, the idea is to find subsets of components such that the composition
of thresholds (product) is below the diagnostic preference. These are the suspect
groups, and diagnosis looks for one or more thresholds is such groups to raise.
Of course, eliminating one counter example by this method may leave other
counter-examples to deal with.

2.3 Soft Agents

Soft Agents (SA) is formalized in the rewriting logic language Maude [11]. SA
is a class of rewrite theories that extend the basic Soft Agents rewrite theory.
Soft agents are introduced in [40] and described in some detail in [41]. In the
following we give a brief overview.

Rewriting Logic and Maude. Rewriting logic [33] is based on two simple ideas:
states of a system are represented as elements of an algebraic data type, specified
in an equational theory, and the behavior of a system is given by local transitions
between states described by rewrite rules. A rewrite rule has the form t ⇒ t′ if c
where t and t′ are terms possibly containing variables and c is a condition (a
boolean term). Such a rule applies to a system in state s if t can be matched to
a part of s by supplying the right values for the variables, and if the condition
c holds when supplied with those values. In this case the rule can be applied by
replacing the part of s matching t by t′ using the matching values for the place
holders in t′. The process of application of rewrite rules generates computations.
The semantics of a system specified in rewriting logic is the set of computations
generated by the rules, starting with the initial state.
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Maude is a language and tool set based on rewriting logic [11,32]. Maude
provides a high performance rewriting engine featuring matching modulo asso-
ciativity, commutativity, and identity axioms; and search and model-checking
capabilities. Thus, given a specification S of a concurrent system, one can exe-
cute S to find one possible behavior; use search to see if a state meeting a
given condition can be reached; or model-check S to see if a temporal property
is satisfied, and if not to see a computation that is a counter example. The
IOP-IMaude framework [31] supports integration of Maude with other tools, for
example statistical model-checkers.

Soft Agent Features. Key features of soft agents include

– separate representation of cyber (decision) and physical (action) aspects
– uniform representation of agent and environment state using partially ordered

knowledge items
– locality–there is no central planner with perfect global knowledge
– distributed–agents act and interact asynchronously
– resource constrained–limited communication range, actions take time and

energy, finite load capacity, . . .
– agent sensor readings, actuator effects, and communications can suffer per-

turbations due to faults or environment conditions such as a gust of wind, or
rough terrain

– robustness to unexpected situations using soft constraint problem solving.

The Soft Agent Framework. System state is a multiset of agent and environment
components. The state of an agent component is an attribute set including

– a local knowledge base attribute, lkb, specifying the agents knowledge–model
of the world, goals, policies, . . .

– an eventset attribute, evs, that includes pending actions, tasks, and incoming
shared knowledge

– a cached knowledge base attribute, ckb, specifying knowledge to be shared
– a sensor attribute, sensors, specifying the available sensors.

The environment component encapsulates a knowledge base, ekb, specifying each
agent’s physical state and agent independent aspects of the environment. System
behavior is specified by two rewrite rules doTask and timeStep.3

crl[doTask]:

[id : cl | lkb : lkb, evs : ((task @ 0) evs), ckb : ckb,

sensors : sset, ats]

[eid | ekb ]

=>

[id : cl | lkb : lkb’, evs : evs’, ckb : ckb’, sensors : sset, ats]

[eid | ekb’ ]

3 We chose this minimal rule set to reduce the search space by minimizing interleaving
that is not important for the properties of interest.
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if t := getTime(lkb)

/\ {ievs,devs} := splitEvents(evs,none)

/\ {skb,ekb’} := readSensors(id,sset,ekb)

/\ {lkb’, evs’, kb} kekset := doTask(cl, id, task,ievs, devs, skb, lkb)

/\ ckb’ := addK(ckb,kb).

The doTask rule specifies an agent’s process for selecting possible next
actions. The rule premiss (above the =>) specifies the state of an agent ready to
carry out this process. In particular the event set attribute, evs:, must contain
task @ 0, indicating zero delay for this event. The rule conclusion (below the
=>) specifies the agent’s and environment’s state after the transition using the
values determined by the bindings in the condition (following if). The selection
process is encapsulated by the doTask function, which is a composition of several
auxiliary functions. These functions process incoming shared knowledge (ievs)
and sensor information (skb) to update the agent’s knowledge base (lkb).

Finally, the soft constraint problem (SCP) of finding and ranking available
actions is solved to produce tuples {lkb’,evs’,kb } containing the updated
local knowledge base, lkb’, the updated event set, evs’, that includes an action
and a task event task @ d to schedule another doTask in d time units, and
knowledge to be shared with other agents, kb. The SCP problem for SA ranks
actions by assigning each action a value in a c-semiring. The assignment mapping
depends on the current state as represented in the local knowledge base. Actions
with maximal rank according to the c-semiring partial order are used to gen-
erate the tuples returned by doTask. The pattern {lkb’, evs’, kb} kekset
specifies a non-deterministic choice among action tuples made by the rewriting
engine. Using search, all choices will be explored. Constraint solving problems
are illustrated in the case study at the end of this section.

crl[timeStep]:

{ aconf }

=>

{ aconf2 }

if nzt := mte(aconf)

/\ t := getTime(envKB(aconf))

/\ ekb0 := doEnvAct(t, nzt, envKB(aconf), effActs(aconf))

/\ ekb’ := resolveKB(getEnvId(aconf), ekb0, envKB(aconf))

/\ aconf0 := updateEnv(ekb’,timeEffect(aconf,nzt))

/\ aconf1 := shareKnowledge(aconf0)

/\ aconf2 := updateConf(aconf1).

The timeStep rule coordinates the execution of actions posted by agents and
manages the passage of time. mte(aconf) determines how much time can pass
before a task event is enabled (the minimum d on any task @ d). The variable
nzt has sort NonZeroTime. Thus, if there is a task with zero delay the condi-
tional will fail and the rule will not be enabled. In particular, all agents with
task @ 0 in their event set will get a chance to schedule actions before time
passes. doEnvAct is a concurrent composition of doUnitEnvAct(t,ekb,act)
over actions, act, posted by each agent. doUnitEnvAct(t,ekb,act) computes
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the effects of action act executing for unit time on the environment local to the
agent executing act, as well as any effects external to the agent, for example
occupying a location or moving an object. The expected effects (according to the
physical model) may be modified by faults, threats, and natural conditions such
as wind, rain, obstacles, etc., all of which are represented as knowledge items in
the environment knowledge base, ekb.

The function resolveKB resolves conflicts, for example two agents attempt-
ing to move to the same location or to pick up the same object. The resolution
possibilities include voiding the conflicting actions and giving one action pref-
erence. This is a modeling decision. timeEffect(aconf,nzt) advances time in
aconf by nzt (incrementing the clock and decrementing delays).

The default shareKnowledge function takes each agent’s posted knowledge
and transmits it to all other agents that are within communication range, a model
parameter. This could be refined by policies constraining the types of informa-
tion delivered based on agent’s interest or access control rules (represented as
knowledge items).

The default updateConf function is the identity. It can be used to instrument
the configuration to track properties of interest, for example logging visits to
specific locations (the time or order), or monitoring minimum energy levels.

What Can We Do with an Executable Specification? Once a model is specified,
we can define specific agent system configurations and explore the behavior by
rewriting, search and statistical model-checking. We can watch the system run by
rewriting according to different builtin or user defined strategies to choose next
steps. In this way, specific executions and their event traces can be examined.
Search allows exploration of all possible executions of a given configuration (up to
some depth), to look for desired or undesirable conditions. Using statistical model
checking one can obtain quantitative measures of effect of faults and threats and
the expected degree of satisfaction of requirements and goals.

Patrol Bot Case Study. Patrol bots are an abstraction of surveillance or
monitoring scenarios. A patrol bot moves on a 2-D grid (the grid dimensions
are a scenario parameter). It has a preferred Y coordinate and the goal is to
repeatedly go from one edge to the other and back. There is a charging station
in the middle of the grid, and the bot should avoid running out of energy by
recharging when energy is low.4

The c-semiring for a patrol bot is the lexicographic composition of L2, a 3
level energy c-semiring (with levels 0, 1, 2) and U, a unit interval c-semiring.
L2 has 3 elements named bot, mid, and top. Elements of the composition are
represented by pairs modulo the equivalence of any two pairs where the first
element is bot, the 0 element. This gives the energy concern priority and ensures
that a move that violates energy constraints with be given 0 preference.

4 The patrol bot case study is based on an unpublished case study consisting of a
Maude specification of the SA framework and modules specifying patrol bots that
are used by the project to test ideas.
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The energy preference of a move action is top if, according to the Bot’s
model, after the move the energy reserve (beyond what is needed to get to the
charging station) is more than the caution level. It is the mid value if the energy
reserve is greater than 0 and the move is in the direction of the charging station.
It is bot otherwise.

The patrol concern of a move prefers moves that get the Patrol Bot back
on its designated track, myY, if it is off track, otherwise it prefers moves in the
current direction myDir. If the world works according to the Patrol Bot’s model
the energy preference will keep the Bot from running out of energy, even with
very low caution by directing it to the charging station when energy is low.

Consider a Bot on a 7 × 5 grid (0 ≤ x ≤ 6, 0 ≤ y ≤ 4) with a charging
station at (3, 2). Suppose the Bot’s designated track is y = 1, the energy is
measured as the fraction of capacity, so 1 means fully charged, the cost of a
unit move (E,W,N,S) is .1 (using 10% of the battery capacity), and the caution
level is .1. In the current state the direction is E, the location is (4, 1) and the
energy is .5. After any move the new energy will be .4. If the move direction is
E, the new location is (5, 1) and the reserve energy is .1 so the energy preference
is bot since E moves away from the station. By similar reasoning, the energy
preference is top for directions W and N as they move closer to the station. The
patrol preference for directions W and N is 0. (top, 0) is not the 0 element of the
composed c-semiring, so this is a possible action.

This simple setup already provides a basis for exploring effects of grid size,
energy fraction per move, as well as the effects of two or more bots competing for
use of the charging station and how much caution can do to ensure safe robust
behavior.

3 Soft Component Automata vs Soft Agents

Now we have the background needed to discuss relations between the Soft Agent
and Soft Component Automata formalisms: how the different approaches can
inform each other, which ideas from each one can be leveraged in the other.

For concreteness we will discuss synergies in the context of the Patrol Bot
example. Although Patrol Bots are simplistic, they exhibit many subtle issues
that specifications must consider for achieving robust adaptive agents that oper-
ate in unpredictable environments.

3.1 Preferences and Thresholds

A soft agent currently picks maximally ranked/preferred actions as candidates
for execution. The SCA architecture and diagnostics results suggests a refactor-
ing where the doTask function returns a set of actions paired with their prefer-
ences. The set could be restricted to preferences that pass a specified threshold
or the threshold restriction could be implemented by a condition in the rewrite
rule. This refactoring would facilitate automated exploration of design choices
and implementation of preference guided diagnostics. Admitting actions that are
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not of maximal rank would allow exploring an agents behavior in environment
where these actions are no longer available using Maude’s search capability.

As seen in Sect. 2.3, the Patrol Bot constraint solving problems are formulated
with a caution parameter that is used to determine preference for the energy
concern. Actions that reduce energy reserve below the caution level are ruled
out. Some undesired behaviors can be eliminated by raising the caution level.
To make better use of thresholding, preference evaluation can be transformed
to measure the energy reserve in the U c-semiring and use the threshold to play
the role of caution to eliminate the same undesired behaviors.

For example, recalling the Patrol Bot scenario from the end of Sect. 2.3, the
energy preference for move in direction E is .1, while for direction W it is .3 An
energy threshold of .11 will eliminate moving E but admit moving W.

Note that replacing caution by thresholds provides additional flexibility, since
each concern can have its own threshold, the threshold for the Bot’s behavior
will be a composition of those for the individual concerns. We could of course
add caution levels for each concern to the constraint solving problem. This would
be more expressive, but thresholds provide a simple uniform mechanism, that is
explicit in the semantics and simple to control and reason about.

3.2 Composition

SCA composition happens at several levels: the c-semiring, the action alge-
bra level, and the automata level. Automata composition is uniform and the
same mechanism works for composing an agent automata from multiple action
automata, and for composing a system from multiple agents.

SA composition also happens at several levels: the c-semiring, the knowl-
edge base level, and the system configuration level. The environment knowledge
base is a composition (by multiset union) of knowledge items specific to each
agent and global/agent independent knowledge. For example, in the case of two
agents the environment knowledge base, ekb, has the form ekb0 ekb1 ekbg
where ekb0 is the environment local to agent 0 and ekbg is the global environ-
ment. Agent specific knowledge includes the agents physical state as well as fault
models for sensors and actions. Agent independent knowledge includes location
of geographic, infrastructure, or building features, weather conditions, and pos-
sibly threat/attack models. System configuration composition is simply multiset
union of agents and environment. These are essentially structural/static compo-
sitions. The dynamic aspects of composition require coordination: between an
agent and its local environment in the doTask rule; and between the global envi-
ronment and all the local environments in the timeStep rule. The conditions in
rewrite rules play a coordination role that is played by languages like Reo [1] in
automata inspired systems. The coordination in doTask is essentially informa-
tion/data flow between the agent component and its local environment, which
is accomplished by a combination of sensor reading (synchronization between
the agent and sensor) and function level composition that dictates the flow
of information to and from the participating components. The rule matching
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condition that requires task @ 0 to be a pending event is analogous to a con-
straint automata condition that a port be active.

Coordination in the timeStep rule is more complex. It is achieved by the
rule conditions that specify when the rule can fire (that requires looking at all
the agent event sets), and the functions that carryout concurrent processing of
actions, accumulate results, resolve conflicts, and propagate changes. Function
composition provides a compact representation of the information flow coordina-
tion, but it requires some analysis to derive a flow graph or visual representation.

In the process of comparing SA and SCA, we realized that the system state
could be refactored to simplify communication and coordination. As described
in Sect. 2.3, in a SA system each agent’s state includes evs, ckb, and sensors
attributes. We chose to put the information in the agent as it is information
about/local to the agent and is used by the agent, along with information from
the environment (reading sensors) to execute the doTask rule. This information
is also needed to decide when a rule is enabled. Since the environment knowl-
edge base can be factored into knowledge items local to each agent plus global
knowledge, it makes sense to put the evs, ckb, and sensors attributes in the
agent specific environment component. Thus information needed for coordina-
tion decisions about enabledness and the information needed for and updated
by executing actions in the timeStep rule are contained in the (composed) envi-
ronment.

3.3 Diagnostics

To complete the connection with SCA we need to define the labeled transition
system associated with an SA system specification. A transition is an instance,
lσp : q → q′ of a rewrite rule. Here the rule label is l, the premiss (left-hand
side) matches a subterm of ground term q at position p using substitution σ,
the rules condition, if any, instantiated with σ must rewrite to true and q′ is
the result of replacing the subterm of q at p by the rule’s conclusion (right-hand
side) instantiated by σ. In [3], Meseguer proposes atomic proof terms as labels.
These terms have the form q(l(v1, . . . , vn) ↓ p), where l is the rule label, and an
order on variables xi of the rule has been chosen such that and σ(xi) = vi. He
then abstracts from these terms for atomic formulae of the Temporal Logic of
Rewriting. We propose to abstract from the specific state and start with terms of
the form l(v1, . . . , vn). Since we are interested in actions and preferences and not
in the decision process, we abstract label terms for the doTask rule to a silent
label. We abstract the label terms for the timeStep rule to the set of action
events, effActs(aconf), executed by the rule instance. Each action event can
be considered as a triple (id, a, e) where id is the agent identity, a is the action
description, and e is the preference. We give the system level action the preference
assigned by the agent (cyber component) via doTask soft constraint solving,
viewing the environment as having no preference, or equivalently preference 1
for every action attempt.

Following the mechanism for composing automata, the preference for the con-
current actions in a timeStep transition is the product (in the agent c-semiring)
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of the individual action preferences, and the threshold for the system will be the
product of individual agent thresholds.

This seems natural if the composition is viewed as synchronous execution of
the actions. However, the intended interpretation is independent, concurrent exe-
cution. Thus they could be executed asynchronously in different orders. Perhaps
there is an interesting parallel composition other than product to investigate.

In any event, we can now apply the logic and diagnostic methods developed
in [23]. For example, consider a two Patrol bot system where one of the Bots
has a faulty actuator that only moves the Bot every other try, but still uses
energy. Then using thresholds that would ensure that non-faulty Bots don’t run
out of energy we find behaviors in which one Bot runs out of energy. The diag-
nostic preference will tell how much the system threshold must be raised, and
the algorithm for finding suspects can help identify the faulty Bot. With the
automata inspired structuring of preferences and thresholds, we can raise the
energy reserve threshold for just the faulty Bot. In the current SA framework we
would need to raise the caution for both Bots. More subtly, consider a two Patrol
bot system with equivalent Bots where the Bots can only tell if the charging sta-
tion is occupied by trying to enter. Thus there are behaviors in which one Bot is
recharging and the second Bot is trying to enter and will run out of energy trying
if the energy reserve is low. In this case we can identify the diagnostic preference,
but now both Bots will be considered suspect since they are equivalent.

Limitations of Thresholds. Raising the threshold in the case of competition for
the charging station will allow a bot to ‘bang its head against the wall’ longer
and perhaps get access to the charging station. But this may not be the best
solution. Perhaps thresholds can be used to identify the point at which things
go wrong, and other methods developed to transform agent specifications.

In the Patrol Bot scenario we discovered, using Maude’s reachability model
checking, that if an obstacle is placed on the preferred y of a Bot, using the SCP
described in Sect. 2.3 the Bot will go N or S when it reaches the obstacle, but then
S or N back to where it started until it runs out of energy. Raising the caution
level/threshold does not help. The problem seems to be conflating the concerns
of achieving a goal (reaching the opposite side of the grid) with the concern of
staying on track. Thus we propose investigating decomposing concerns, that is
finding sub-concerns that can be composed to replace the single concern.

To address the cycling Patrol Bot problem we define the val-patrol c-
semiring to be the join of two unit c-semirings and define the patrol preference
for actions to be the semiring product of the preference for staying on track
and the goal preference for reaching the other side. Define the ‘staying on track’
preference of a move to be .8 if the move goes closer to on track, stays on track
or stays off track by at most 1 unit for at most 2 times; and .5 if the move
goes off track by 2 or more units, or stays off for more than 2 times. Define the
goal preference for a move to be .8 if the move goes closer to the goal, .5 if the
move stays the same distance from the goal, and .3 if the move goes away from
the goal. Now if the Bot, going W, has moved one unit N to avoid an obstacle,
then its on track preferences for moves will be .8 for directions W or S, and its
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goal preferences will be .8 for direction W and .5 for direction S. Thus the patrol
preferences will be .8 × .8 = .64 for direction W and .8 × .5 = .40 for direction S.
Thus the Bot will prefer to move W and avoid cycling. With the new SCP search
finds executions that succeed.

3.4 Fault Models

Recently, we have added basic generic fault models to the SA framework. Faults
for each sensor and action have two parameters representing the probability
of happening and the magnitude of the effect. Maude has a built in (pseudo)
random number generator that the framework uses to sample probability distri-
butions at execution time. This allows exploring the effects of faults by simply
executing (with sufficiently high probability of fault). In addition we can use
statistical model-checking to make semi-quantitative assessments of the effects
of sensor or action faults.

One possibility for modeling faults in SCA would be to identify a small num-
ber of discrete effects that cover the range of possibilities (with high probabil-
ity). The environment controls faults, so the relevant environment component(s)
could assign lower preference to less likely fault levels. Then the SCA diagnostic
methods could be used to explore effects of fault thresholds on the ability of a
system to satisfy given properties. It is also interesting to consider SCA with
probabilistic transitions.

4 Related Work

The Constraint Semiring algebraic structure for preferences was proposed
in [4,6,7]. Further exploration of the compositionality of such structures appears
in [15,20,22]. In [18] a generalization called Monoidal Soft Constraints is pro-
posed to support more complex preference relations.

The paper [5] proposes a quantitative modal logic using elements of semirings
as truth values; and the notion of threshold is used to limit the behavior of agents.
A protocol for agents to adapt and cooperate by decomposing a goal specified
in the logic leading to subgoals for agents to achieve.

The use of partially ordered knowledge to represent state and communication
in the soft agent framework builds on partially ordered knowledge sharing for
communication in disrupted environments [9,26,38,39], and the modeling of time
draws from the Real-time Maude approach to modeling timed systems [35].

In [19] a mathematical system model for ensembles is presented. Similar to
soft agents, the mathematical model treats both cyber and physical aspects of a
system. A notion of fitness is defined that supports reasoning about level of sat-
isfaction. In contrast to the soft-agent framework which provides an executable
model, the system model for ensembles is denotational.

A closely related area is work on Collective Adaptive Systems (CAS) [24].
CAS consist of a large number of spatially distributed heterogeneous entities with
decentralized control and varying degrees of complex autonomous behavior that
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may be competing for shared resources, even when collaborating to reach com-
mon goals. CARMA (Collective Adaptive Resource-sharing Markovian Agents)
[30] is a language and tool set for modeling CAS.

Work on Fault Diagnosis is presented in [13,34,37]. In Fault Diagnosis, one
tries to find out whether or not an error took place, and which error occurred.
The focus of SA and SCA is to identify the cause of the error. A general frame-
work for fault ascription in concurrent systems based on counterfactuals is pre-
sented in [16,17].

5 Conclusion and Future Directions

Rewriting logic provides a compact representation of transitions over complex
states, and a common language for representing c-semirings, structure of agent
and environment states and semantics of actions. The knowledge based app-
roach to state representation makes it easy to introduce and reason about fault
and threat models. Maude provides built in support for execution, search and
model checking; and for modeling probabilistic transitions and associated tools
for statistical model checking.

SCA provide a uniform notion of composition and a level of abstraction that
focuses on the big picture and simplifies developing analysis algorithms. The
extension to LTL is a promising step toward lifting the model compositional
structure to compositional reasoning. SCA can naturally be extended to support
more detailed descriptions by adding memory cells [21] that can store structured
information about aspects of agent state, for example energy level or location.

Looking for the compositional structure underlying soft agent system speci-
fications guided by Soft Component Automata has lead to a number of insights
and ideas for improving the SA framework. In particular, turning the caution
parameter into a preference threshold and making preferences explicit in the
transitions allows us to take advantage of the diagnostics tools and extended
LTL for formally specifying properties. Another insight is the role of condi-
tions in rewrite rules in coordinating the composition of agent and environment
models.

Work is ongoing to map SCA (more generally, Soft Constraint Automata with
memory, and hence Reo models) to Maude to be able to execute system spec-
ifications, and analyse them using Maude’s builtin search and model-checking.
This will also provide a mechanism to experiment with extensions such as data
structure definitions and probabilistic transitions and to help understand when
environment preferences can be used as abstractions of probability distributions.

Future Directions. The comparison of the SA framework and SCA has lead to
some new problems to study.

One problem is determining when actions/concerns and their preferences
need to be decomposed further to determine the guilty party or parties and
eliminate undesired behavior. This includes deciding which concern to decom-
pose and how, so that in the resulting preference system, raising the threshold
becomes a useful way of tuning the behavior.
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Another issue to explore is synchronous vs asynchronous composition of pref-
erences. Is there a composition operation that better reflects the nature of the
asynchronous composition of agents in the SA framework that does not require
making all the interleavings explicit?

Beyond using thresholds for diagnosis, it is also interesting to investigate
methods to decompose system level properties or project them onto agents to
identify faulty components or component interactions.

Finally, an intriguing possibility is to see how the coordination of agent sys-
tems imposed by the conditions in a rewrite rule can be represented, visualized,
and reasoned about using concepts from Reo. This might be especially useful to
a system designer to reason about security concerns, but also in cases where the
interactions have more complex coordination constraints.
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Abstract. Formal argumentation is one of the most popular approaches
in modern logic and reasoning. The theory of abstract argumentation
introduced by Dung in 1995 has shifted the focus from the internal struc-
ture of arguments to relations among arguments, and temporal dynam-
ics for abstract argumentation was proposed by Barringer, Gabbay and
Woods in 2005. In this tradition, we see arguments as reasoning pro-
cesses, and the interaction among them as a coordination process. We
argue that abstract argumentation can adopt ideas and techniques from
formal theories of coordination, and as an example we propose a model
of sequential abstract argumentation loosely inspired by Reo’s model of
exogenous coordination. We show how the argumentation model can rep-
resent the temporal dynamics of the liar paradox and predator-prey like
behaviour.

1 Introduction

The theory of abstract argumentation introduced by Dung in 1995 [14] started
a new stage in the development of formal argumentation theory. In his model,
the acceptance or rejection of an argument depends on the relation between the
argument with other arguments, and the acceptance status of these other argu-
ments. In contrast, traditionally argumentation was based on a formal analysis
of the logical structure of arguments, and whether an argument is accepted or
rejected depended only on the argument itself, not on the other arguments. In
other words, in Dung’s model it is no longer sufficient to point at deficiencies in
an argument to reject it, but one is required to phrase the criticism itself as an
argument, such that these critical arguments themselves are open for criticism as
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well. In abstract argumentation, we say that when an argument attacks another
argument, the attacking argument itself can be attacked by a third argument. In
such a case, the argument originally attacked is defended by the third argument,
and consequently the first argument may be reinstated.

Formally, abstract argumentation is a graph based reasoning formalism gen-
eralising the notion of stable sets in directed graphs. As discussed in the hand-
book series on formal argumentation, of which the first volume appears in 2018
[8], Dung’s theory constitutes a turning point for the modern stage of formal
argumentation theory, much similar to the introduction of possible worlds seman-
tics for the theory of modality. This means that nothing could remain the same
as before 1995—it should be a focal point of reference for any study of argu-
mentation, especially if the study is critical about Dung’s theory. However, in
modal logic, the introduction of the possible worlds semantics has led to a com-
plete paradigm shift, both in tools and new subjects of studies, whereas this
is still not fully true for what is going on in formal argumentation theory. In
this paper our aim is to inspire new tools and studies for formal argumentation
based on models of formal coordination, in particular the exogenous coordination
language Reo [2–4].

It is not very difficult to relate abstract argumentation to the data-flow coor-
dination language Reo, because there are various superficial similarities and dif-
ferences between the two approaches. Concerning similarities, as we explain in
more detail later, both are based on a graph based representation, both use
graph colouring to give compositional semantics to the graphs, and consequently
both can be seen as instances of causal or explanatory non-monotonic reasoning
(see [10] for a modern introduction). In particular, graph colouring is used in
argumentation for the key properties of admissibility and directionality, and in
Reo to deal with the context sensitive behaviour of lossy channels. Moreover,
argumentation graphs have been given temporal dynamics [9], and they have
been extended to input/output graphs [7,15] that reflect the flow or direction-
ality of reasoning in logic and argumentation [20,21]. Concerning the superficial
differences, Reo has many aspects without a directly corresponding counterpart
in abstract argumentation, such as stream semantics, or buffers representing
memory. Likewise, abstract argumentation has aspects which do not seem to
have a direct correspondence in coordination, such as complementary theories
of structured argumentation.

Besides the superficial similarities and differences between the two
approaches, we believe that we can define a deeper similarity between them,
based on the concept of exogenous coordination. Arbab [4] defines exogenous
coordination as follows.

“Locus of coordination refers to where coordination activity takes place,
classifying coordination models as endogenous or exogenous. Endogenous
models, such as Linda, provide primitives that must be incorporated within
a computation for its coordination. In contrast, exogenous models, such as
Manifold and Reo, provide primitives that support coordination of entities
from without. In applications that use exogenous models, primitives that
affect the coordination of each module are outside the module itself.
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Endogenous models are sometimes more natural for a given application.
However, they generally lead to an intermixing of coordination primitives
with computation code, which entangles the semantics of computation with
coordination protocols. This intermixing tends to scatter communication/
coordination primitives throughout the source code, making the coopera-
tion model and the coordination protocol of an application nebulous and
implicit: generally, there is no piece of source code identifiable as the coop-
eration model or the coordination protocol of an application, that can be
designed, developed, debugged, maintained, and reused, in isolation from
the rest of the application code. . . .
On the other hand, exogenous models encourage development of coordi-
nation modules separately and independently of the computation modules
they are supposed to coordinate. Consequently, the result of the substantial
effort invested in the design and development of the coordination compo-
nent of an application can manifest itself as tangible “pure coordinator
modules” which are easier to understand, and can also be reused in other
applications.” [4]

In this paper we see arguments as reasoning processes, and we characterise the
interaction among such abstract argument processes as a way of coordinating
arguments. In other words, we rephrase the core idea of interaction among argu-
ments reflected by the graph based framework and language introduced by Dung
in 1995 as the introduction of exogenous coordination in logic and reasoning. This
reflects a separation of concerns between the logical structure of an argument
and its acceptability, and facilitates the reuse of arguments as well as the reuse
of argumentation frameworks.

The deeper relation between the two approaches suggests that abstract argu-
mentation can learn from more general models of coordination, and in particular
of exogenous models of coordination. Indeed, we believe it is straightforward to
incorporate ideas from Reo into formal argumentation, and to find correspond-
ing notions in informal argumentation. For example, argumentation memory is
clearly present in the argumentation of people, companies, organisations, polit-
ical parties, and other kinds of socially constructed entities, for example due
to bounded rationality. Also in scientific argumentation only a paradigm shift
leads to the rejection of conventional wisdom. In the media, daily news articles
change the opinions and the arguments of the people, and reveals a dark side
of spreading alternative facts and fake news. We do not claim any authority
on organisational theory, philosophy of science or media sciences, but it seems
clear to us that a formal study of more temporal abstract argumentation model
incorporating streams of data and arguments is both natural and useful.

As an example, and a first step to bring the two approaches closer together,
this paper proposes a model of sequential abstract argumentation inspired by
Reo’s model of exogenous coordination. This model builds on our earlier work.
Multi-sorted argumentation [26] partitions the set of arguments, for example in
epistemic and goal arguments, and applies different kinds of semantics to each
block in the partitioning. Input/output argumentation [7] is a model of compo-
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sitionality for abstract argumentation, that makes explicit how the semantics of
the individual blocks can be composed into the semantics of the whole graph.
In multi-agent argumentation [5], the composition of the acceptance semantics
reflects a game theoretic equilibrium between the individual acceptance func-
tions. Traditional game theoretic semantics assumes that the agents accept their
arguments at the same time, just like agents in a prisonner’s dilemma choose
their decisions independently of each other.

Our model of temporal dynamics [9] in this paper mimics the steps of a
dialogue. Like in extensive game models, we proceed step by step. The agents
in a dialogue listen to the arguments the other agents accept, and decide which
arguments to accept based on this information.

Given the nature of this special volume, we assume that the readers are famil-
iar with the challenges of coordination, the concept of exogeneous coordination,
the Reo coordination language, and its semantics. Moreover, we assume that
not all readers are familiar with abstract argumentation, so we repeat the basic
concepts and ideas.

The layout of this paper is as follows. In Sect. 2 give an overview of abstract
argumentation, including graph colouring and input/output argumentation, in
Sect. 3 we introduce our variant of sequential argumentation and we discuss the
liar paradox, and in Sect. 4 we consider temporal dynamics and predator-prey
like behavior [9].

2 Abstract Argumentation Semantics

In this section we consider abstract argumentation semantics, and in the next
section we introduce sequence semantics. We first recall Dung’s abstract argu-
mentation semantics, the commonly adopted generalisation to three valued label-
ings, and the generalisation to input/output argumentation.

2.1 Abstract Semantics

For completeness and reference below we briefly summarise Dung’s abstract
argumentation semantics. An argumentation framework is a directed graph
whose nodes A are called arguments and whose edges R represent attack among
the arguments, a kind of asymmetric inconsistency. A set B ⊆ A is conflict-free
if and only if there exist no arguments a1 and a2 in B such that (a1, a2) ∈ R.
Argument a ∈ A is defended by a set B ⊆ A (also called a1 is acceptable with
respect to B) if and only if for all a2 ∈ A , if (a2, a1) ∈ R, then there exists
a3 ∈ B such that (a3, a2) ∈ R. We say that a set B ⊆ A is admissible, if and
only if it is conflict-free and defends all of its members. Based on the notion
of admissible sets, Dung defines various kinds of sets of acceptable arguments
called extensions. Formally, we have the following definition.

Definition 1 (Dung semantics). Let F = (A ,R) be a graph called an argu-
mentation framework, and B ⊆ A a set of arguments.
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– B is conflict-free if and only if � ∃a1, a2 ∈ B, s.t. (a1, a2) ∈ R.
– An argument a1 ∈ A is defended by B (equivalently a1 is acceptable w.r.t.

B), if and only if ∀(a2, a1) ∈ R, ∃γ ∈ B, s.t. (a3, a2) ∈ R.
– B is admissible if and only if B is conflict-free, and each argument in B is

defended by B.
– B is a complete extension if and only if B is admissible and each argument

in A that is defended by B is in B.
– B is a preferred extension if and only if B is a maximal (w.r.t. set-inclusion)

complete extension.
– B is a grounded extension if and only if B is the minimal (w.r.t. set-

inclusion) complete extension.
– B is a stable extension if and only if B is conflict-free, and ∀a1 ∈ A \ B,

∃a2 ∈ B s.t. (a2, a1) ∈ R.

We use sem ∈ {cmp, prf , grd , stb} to denote complete, preferred, grounded,
or stable semantics, respectively. A set of argument extensions of F = (A ,R)
is denoted as sem(F ).

Example 1. Consider the argumentation framework visualized below. The com-
plete extensions are E1 = ∅, E2 = {a}, and E3 = {b, d}. The former is the
unique grounded extension and the latter two are the preferred extensions, and
only E3 is a stable extension.

a b c

d

e

Dung’s graph based theory has been further refined using abstract rules and
assumptions, and extensions of the graph based representation have been stud-
ied as abstract dialectical frameworks. Argumentation as inference developed
by Dung has been complemented by argumentation as dialogue, based on argu-
mentation semantics as formal discussion, and argumentation schemes. In addi-
tion, computational problems have been studied, including their complexity, and
implementations have been built. Formal analysis is based on a principle based
approach to formal argumentation, including the use of rationality postulates
to evaluate argumentation semantics. The relations between formal argumenta-
tion and other areas of formal reasoning, in particular logic, has been studied.
We refer to the first volume of the Handbook of Formal Argumentation [8] for
further details.

2.2 Labelling Semantics

Input/output argumentation uses the labelling-based approach to the definition
of argumentation semantics. A labelling assigns to each argument of an argumen-
tation framework a label taken from a predefined set Λ. For technical reasons,
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we define labellings both for argumentation frameworks and for arbitrary sets of
arguments.

Definition 2 (Labeling). Let Λ = {in, out, undec} be a set of labels. Given
a set of arguments B, a labelling of B is a total function Lab : B −→ Λ. The
set of all labellings of B is denoted as LB . Given an argumentation framework
F = (A ,R), a labelling of F is a labelling of A . The set of all labellings of
F is denoted as L(F ). For a labelling Lab of B, the restriction of Lab to a set
of arguments B ′ ⊆ B, denoted as Lab↓B ′ , is defined as Lab ∩ (B ′ × Λ).

The label in means that the argument is accepted, the label out means
that the argument is rejected, and the label undec means that the status of the
argument is undecided. Given a labelling Lab, we write in(Lab) for {a | Lab(a) =
in}, out(Lab) for {a | Lab(a) = out} and undec(Lab) for {a | Lab(a) = undec}.

A labelling-based semantics prescribes a set of labellings for each argumen-
tation framework.

Definition 3 (Labeling semantics). Given an argumentation framework
F = (A ,R), a labelling-based semantics S associates with F a subset of L(F ),
denoted as LS(F ).

Though labelings are more general than Dung semantics, we now apply a
common trick in formal argumentation: we reduce the more general notion
to Dung semantics. (Just like semantics of extensions of Turing machines are
reduced to Turing machines) In particular, for every Dung semantics there is a
labeling based version defined by the following translation from extensions to
labelings:

Definition 4 (Dung2labeling). Given an argumentation framework F =
(A ,R) an extension B ⊆ A translates to a labelling Lab ∈ LA iff

– Lab(a) = in, if a ∈ B,
– Lab(a) = out, if a �∈ B and there is a b ∈ B such that (b, a) ∈ R,
– Lab(a) = undec, otherwise.

In particular, we use sem ∈ {cmp, prf , grd , stb} to denote complete, preferred,
grounded, or stable labeling semantics, defined in this way in terms of the cor-
responding Dung semantics.

Example 2 (Continued from Example 1). Reconsider the argumentation frame-
work visualized below. The complete labelings are

L1 = {(a, undec), (b, undec), (c, undec), (d, undec), (e, undec)},
L2 = {(a, in), (b, out), (c, undec), (d, undec), (e, undec)}, and
L3 = {(a, out), (b, in), (c, out), (d, in), (e, out)}.

The former is the unique grounded labeling and the latter two are the preferred
labelings, and only L3 is a stable labeling.
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e

2.3 Baroni et al.’s Notion of Local Function

Local functions define semantics for a part of the argumentation framework,
called a sub-framework. In this section we repeat some basic concepts regard-
ing local functions from Baroni et al.. We refer to their paper [7] for further
explanations and examples. Similar notions are also defined by Liao [18,19].
Local functions are more general than Dung semantics in the sense that they
give extensions to a graph together with an input. If the input is empty, a local
function coincides with a Dung semantics.

We start with the input of a subframework. Intuitively, given an argumen-
tation framework F = (A ,R) and a subset B of its arguments, the elements
affecting F↓B , which is ({a ∈ A | a ∈ B}, {(a1, a2) ∈ R | a1, a2 ∈ B}), include
the arguments attacking B from the outside, called input arguments, and the
attack relation from the input arguments to B , called conditioning relation.

Definition 5 (Input). Given F = (A ,R) and a set B ⊆ A , the input of
B, denoted as Binp, is the set {a2 ∈ A \ B | ∃a1 ∈ B , (a2, a1) ∈ R}, the
conditioning relation of B, denoted as BR, is defined as R ∩ (Binp × B).

An argumentation framework with input consists of an argumentation frame-
work F = (A ,R) (playing the role of a partial argumentation framework), a set
of external input arguments I , a labelling LI assigned to them and an attack
relation RI from I to A . A local function which, given an argumentation
framework with input, returns a corresponding set of labellings of F .

Definition 6 (Framework with input). An argumentation framework with
input is a tuple (F ,I , LI , RI ), including an argumentation framework F =
(A ,R), a set of arguments I such that I ∩A = ∅, a labelling LI ∈ LI and a
relation RI ⊆ I ×A . A local function assigns to any argumentation framework
with input a (possibly empty) set of labellings of F , i.e. f(F,I , LI , RI ) ∈
2L(F ).

Example 3 (Continued from Example 2). Reconsider the argumentation frame-
work in Example 1 and 2, together with the partitioning visualised below. The
block P1 = {a, b} has an empty input, and block P2 = {c, d, e} has input{b}
with conditioning relation {(b, c)}.
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a b c

d

e

For any semantics, a “sensible” local function, called canonical local function,
is the one that describes the labellings of the so-called standard argumentation
frameworks.

Definition 7 (Standard argumentation framework). Given an argu-
mentation framework with input (F ,I , LI , RI ), the standard argumentation
framework w.r.t. (F ,I , LI , RI ) is defined as F ′ = (A ∪I ′,R ∪R′

I ), where
I ′ = I ∪{a′ | a ∈ out(LI )} and R′

I = RI ∪{(a′, a) | a ∈ out(LI )}∪{(a, a) |
a ∈ undec(LI )}.
Roughly speaking, the standard argumentation framework puts F under the
influence of (I , LI , RI ), by adding I to A and RI to R, and by enforcing
the label LI for the arguments of I in this way:

– for each argument a ∈ I such that LI (a) = out, an unattacked argument
a′ is included which attacks a, in order to get A labelled out by all labellings
of F ′;

– for each argument a ∈ I such that LI (a) = undec, a self-attack is added to
a in order to get it labelled undec by all labellings of F ′;

– each argument a ∈ I such that LI (a) = in is left unattacked, so that it is
labelled in by all labellings of F ′.

Definition 8 (Labeling2localfunction).
Given a semantics S, the canonical local function of S (also called local func-
tion of S) is defined as fS(F ,I , LI , RI ) = {Lab↓A | Lab ∈ LS(F ′)},
where F = (A ,R) and F ′ is the standard argumentation framework w.r.t.
(F ,I , LI , RI ).

Moreover, we use sem ∈ {cmp, prf , grd , stb} to denote complete, preferred,
grounded, or stable local functions, defined in this way in terms of the cor-
responding labeling semantics.

Example 4 (Continued from Example 3). Reconsider the argumentation frame-
work in Examples 1–3, together with the block P2 = {c, d, e} with input {b}
and conditioning relation {(b, c)}. The argumentation framework with input can
make argument b either in, out or undec, which leads to the following three stan-
dard argumentation frameworks with respect to the argumentation frameworks
with input.
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We refer to the paper of Baroni et al. [7,26] for further discussion.

3 Sequential Abstract Argumentation

One requirement for a dynamic semantics is to be able to represent the liar
paradox: If “this sentence is false” is true, then the sentence is false, but if the
sentence states that it is false, and it is false, then it must be true. It is related
to Epimenides paradox, Epimenides, a Cretan, said that “All Cretans are liars,”
and other paradoxes such as Russell’s paradox. In a dynamic semantics, the truth
value of the sentences toggles between true and false, and there is consequently
no fixed point. In this section we show how our sequential semantics can mimic
this behaviour.

Multi-agent argumentation considers a generic argumentation framework
AF = (A ,R) together with an arbitrary partition of A , i.e. a set {P1, . . . , Pn}
such that ∀i ∈ {1, . . . , n} Pi ⊆ A and Pi �= ∅,

⋃
i=1...n Pi = A and Pi ∩ Pj = ∅

for i �= j. Such a partition identifies the restricted argumentation frameworks
AF↓P1 , . . . , AF↓Pn

, that affect each other with the relevant input arguments
and conditioning relations as stated in Definition 5.

A multi-agent argumentation framework extends an argumentation frame-
work with a partitioning.

Definition 9 (Multi-agent argumentation framework). A multi-agent
argumentation framework is a tuple F = (A ,R,P) extending an argumen-
tation framework (A ,R) with a partition P = {P1, . . . , Pn} of A .

The semantics of a multi-agent argumentation framework in Examples 1–4
can be based on first computing the extension of block P1, and thereafter the
extension of block P2 using the extension of block P1 as input. This is the basis of
a well known recursive algorithm. Multi-agent argumentation raises the question
what to do when the blocks attack each other? In that case, a simple recursive
algorithm does not suffice. Game theory suggests two approaches:
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Nash equilibrium. In case of cycles among agents, the semantics can be based
on a game-theoretic equilibrium, such as for example Nash equilibria. This
approach is followed by Arisaka et al. [5]. At one moment in time, the output
of the agents must be identical to the input of the other agents. For example,
in a prisonner’s dilemma, each agent has to make a decision at the same
moment without any coordination, and game theory defines states where the
strategies of the agents are in a stable equilibrium.

Dialogue. Extensive games such as dialogues are based on the idea that agent
act one after the other, basing their actions on the observed actions of other
agents. Sequential argumentation as we consider in this paper is based on
local functions, together with the idea that the output of each framework is
used as input for the next step in the sequence.

A sequence semantics prescribes a set of sequences of labellings for each
argumentation framework. The sequence of extensions reflects a kind of dialogue
between the blocks of the partitioning.

Definition 10 (Sequence semantics). Given an argumentation framework
F = (A ,R), a labelling-based sequence semantics S associates with F a set of
sequences of L(F ), denoted as LS(F ).

We use a Dung semantics to define a labeling semantics, and a labeling
semantics to define an input/output semantics. Now we use an input/output
semantics to define a sequence semantics. We assume that every labeling of the
sequence is conflict free, though also stronger conditions may be considered. For
example, one may require that every labeling of the sequence is an admissible
set of F , or even a complete labeling.

Definition 11 (localfunction2sequence). Consider a local function f . The
sequence semantics of a framework F is a sequence of conflict free labelings of F ,
such that except for the first element of the sequence, every extension is computed
using the local function f with the previous labeling of the sequence as the input.

Again, we use sem ∈ {cmp, prf , grd , stb} to denote complete, preferred,
grounded, or stable sequence semantics, defined in this way in terms of the
corresponding local functions.

Example 5. Consider a framework consisting of two arguments a and b attacking
each other, and each argument originating from a different agent.

a b

Since there are no cycles within a block of the partitioning, a labelling is com-
pletely determined by the input and the complete, preferred, grounded and sta-
ble labellings coincide. Three complete, preferred, grounded and stable sequences
are:
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〈{(a, undec), (b, undec)}, {(a, undec), (b, undec)}, . . .〉,
〈{(a, in), (b, out)}, {(a, in), (b, out)}, . . .〉,
〈{(a, out), (b, in)}, {(a, out), (b, in)}, . . .〉,

We can also have cyclic behaviour:
〈{(a, undec), (b, in)}, {(a, out), (b, undec)}, {(a, undec), (b, in)}, . . .〉,
〈{(a, out), (b, out)}, {(a, in), (b, in)}, {(a, out), (b, out)}, . . .〉,
If we represent the above sequences as sequences of extensions (an argument

is in the extension iff it is labeled in) then we obtain the characteristic sequence
of a liar paradox, which shows that

〈{b}, ∅, {b}, ∅, . . .〉
The cyclic behaviour in the previous example occurs when the initial labelling
of the sequence is itself not an admissible labelling. The following propositions
show that this is no coincidence.

Proposition 1. If a labelling in a sequence is a preferred labelling, then it is a
fixed point: all following labelings in the sequence will be the same.

Proposition 2. If a labelling in a sequence is a complete labelling, then all
following labellings will be refinements, where L1 refines L2, written as L1 � L2,
iff in(L1) ⊆ in(L2).

4 Predator-Prey Models

Barringer et al. [9] generalise argumentation frameworks in several directions.
Following various other work in formal argumentation, they allow also support
relations between arguments, they allow for varying strengths of attack and sup-
port, and such strengths of attacks or support are themselves subject to attack or
support. They also introduce two new ideas. First, they allow for the strengths
of attack or support to be time dependent, enabling them to model the phe-
nomenon of “Let’s lie low and wait for the argument to blow away”. Secondly,
they examine loop-resolution in argumentation networks, and explores similari-
ties between such loops and predator-prey models in mathematical biology.

A requirement for temporal dynamics is to mimic the predator-prey
behaviour. The predator-prey equations, also known as the Lotka-Volterra equa-
tions, are a pair of first-order, nonlinear, differential equations frequently used
to describe the dynamics of biological systems in which two species interact,
one as a predator and the other as prey. The populations change through time
according to the pair of equations. The Lotka-Volterra system of equations is an
example of a Kolmogorov model. In abstract argumentation, the requirement is
to have two arguments that are accepted, then rejected, then accepted and so
on.

The following example illustrates that such predator-prey behaviour can also
be mimicked in our sequence semantics, without introducing numbers, support
relations, attacks on attacks and so on.
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Example 6. Consider a framework consisting of four arguments a, b, c and d,
where the first two arguments belong to the first agent, and the latter two
arguments belong to the second agent. Intuitively, the first agent can choose
between accepting a or b (or none), and the second agent can choose between
accepting c or d. However, these decisions are interdependent. When the first
agent chooses a, the second agent no longer can choose c, and when the second
agent chooses d, the first agent can no longer choose b.

a c

b d

Since there are loops in the argumentation frameworks of the agents, the four
semantics no longer coincide. We consider the grounded semantics. In this case,
given a labeling of the sequence, the following label is completely defined. If we
start with a complete labeling, then all elements of the sequence are identical:

〈{(a, undec), (b, undec), (c, undec), (d, undec)}, . . .〉,
〈{(a, in), (b, out), (c, out), (d, in)}, . . .〉,
〈{(a, out), (b, in), (c, in), (d, out)}, . . .〉,

We can also have cyclic behaviour:
〈{(a, in), (b, out), (c, undec), (d, undec)}, {(a, undec), (b, undec), (c, out),

(d, in)}, . . .〉,
If we represent the latter sequence as a sequence of extensions, then we obtain

the characteristic sequence of a predator-prey model.
〈{a}, {d}, {a}, {d}, . . .〉
The same model can be used also to describe the pork cycle, hog cycle, or

cattle cycle[1] in economics, describing the phenomenon of cyclical fluctuations
of supply and prices in livestock markets.

5 Related Work

Multi-sorted argumentation [26] considers a generic argumentation framework
AF = (A ,R) together with an arbitrary partition of A . Such a partition identi-
fies the restricted argumentation frameworks AF↓P1 , . . . , AF↓Pn

, that affect each
other with the relevant input arguments and conditioning relations as stated in
Definition 5.

A multi-sorted argumentation framework extends an argumentation frame-
work with a partitioning and for each block P of the partitioning, a local function
fP .

Definition 12. A multi-sorted argumentation framework is a tuple F =
(A ,R,P, f) extending an argumentation framework (A ,R) with a partition
P = {P1, . . . , Pn} of A , and a function f associating a local function fP with
every element P of P.
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Any labelling of a restricted framework is used by f for computing the
other ones: LPi

plays a role in determining LP1 , . . . , LPi−1 , LPi+1 , . . . , LPn
and

vice versa. This means that LP1 , . . . , LPn
are “compatible” if each LPi

is pro-
duced by f for AF↓Pi

with the input arguments Pi
inp labelled according to

LP1 , . . . , LPi−1 , LPi+1 , . . . , LPn
. Definition 14 synthesizes all these considerations.

The extensions of a multi-sorted argumentation framework are defined as
follows.

Definition 13. LS(F ) = U (P, AF, f) where U (P, AF, f) = {LP1 ∪. . .∪LPn
|

LPi
∈ f(AF↓Pi

, Pi
inp, (

⋃
j=1...n,j �=i LPj

)↓
Pi

inp , Pi
R)}.

Also see the recent paper of Giacomin [15], who argues that disagreements are
in general heterogeneous and thus should be treated in different ways according
both to their nature and to the specific agents features. Moreover, he discusses a
general model of abstract argumentation based on input/output argumentation,
able to handle heterogeneous disagreements by means of multiple argumentation
semantics at a local level.

Baroni et al. [7,26] aim at introducing a formal notion of semantics decom-
posability. To this purpose, consider a generic argumentation framework AF =
(A ,R) and an arbitrary partition of A . Such a partition identifies the restricted
argumentation frameworks AF↓P1 , . . . , AF↓Pn

, that affect each other with the
relevant input arguments and conditioning relations as stated in Definition 5.
Intuitively a semantics S is decomposable if S can be put in correspondence with
a local function f such that:

– every labelling prescribed by S on AF , namely every element of LS(F ), corre-
sponds to the union of n “compatible” labellings LP1 , . . . , LPn

of the restricted
argumentation frameworks, all of them obtained applying f ;

– in turn, each union of n “compatible” labellings LP1 , . . . , LPn
obtained apply-

ing f to the restricted frameworks gives rise to a labelling of AF .

The “compatibility” constraint mentioned above reflects the fact that any
labelling of a restricted framework is used by f for computing the other
ones: LPi

plays a role in determining LP1 , . . . , LPi−1 , LPi+1 , . . . , LPn
and vice

versa. This means that LP1 , . . . , LPn
are “compatible” if each LPi

is pro-
duced by f for AF↓Pi

with the input arguments Pi
inp labelled according to

LP1 , . . . , LPi−1 , LPi+1 , . . . , LPn
. Definition 14 synthesizes all these considerations.

Definition 14. A semantics S is fully decomposable (or simply decom-
posable) iff there is a local function f such that for every argumentation
framework AF = (A ,R) and every partition P = {P1, . . . , Pn} of A ,
LS(F ) = U (P, AF, f) where U (P, AF, f) = {LP1 ∪ . . . ∪ LPn

| LPi
∈

f(AF↓Pi
, Pi

inp, (
⋃

j=1...n,j �=i LPj
)↓

Pi
inp , Pi

R)}.

Argumentation by autonomous agents have been studied mostly in the con-
text of strategic argumentation games, e.g. [1,17,22–24,27]. An agent in nego-
tiation dialogues as studied in [1] characterise changes in the set of accepted
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arguments in response to new arguments another agent introduces into his/her
local scope, which, as ours, respects agents locality. In comparison, the focus of
our work is more on analysing how derivation, as done by local agents, of their
local semantics influences arguments acceptance globally. local agent semantics.
Agents attributes are discussed in [22]. While many studies on game-theoretic
argumentation games have presupposed complete information (see [16]), realistic
legal examples often involve uncertainty of the belief state of other agents’, and
a theory that adapts to incomplete information is highly relevant.

Rahwan and Larson [25] contemplate (re)construction of an argumentation
framework from the arguments in a given argumentation framework that are
distributed across agents. In the construction process, the agents may or may
not reveal the global outcome to be obtained varies with their decisions.

Judgement aggregation [6,11,12,28] to determine acceptable arguments
based on social choice theory or aggregation of argumentation frameworks [13]
are being studied. While they are not the main focus of this paper, such studies
become important when we deal with agents perception of other agents’ local
argumentation. We aim to extend our theory for that kind of a situation in a
future work.

The contributions in the first volume of the Handbook of Formal Argumenta-
tion (HOFA) highlight the main innovations of this new stage of formal argumen-
tation theory, appealing to all disciplines, including logic, computer science, law,
philosophy, and linguistics. Maybe the most pressing question is how this theory
of formal argumentation, developed from the area of non-monotonic logic and
artificial intelligence, can be used as the foundations for informal argumentation
in areas such as linguistics and law. Future volumes of the handbook series will
consider extensions of Dung’s theory, including numerical ones, dynamics and
update, dialogue, and applications, for example in artificial intelligence, com-
puter science, linguistics or legal reasoning. Please visit the website for more
information: http://formalargumentation.org/

6 Conclusion

Dung introduced in 1995 a model of abstract argumentation focussing on the
relation among arguments, in the sense that the acceptance of arguments
depends on the acceptance of other agents. In his examples, arguments are
derivations in logic programming, default logic, or game theory.

Many people have given a more dynamic interpretation to abstract argumen-
tation, for example developing dialogue based decision procedures to determine
whether an argument is accepted or not, or developing input/output argumen-
tation frameworks.

Inspired by Reo, in this paper we go one step further and suggest that Dung
frameworks can characterise argumentation in terms of the interaction among
arguments, and that abstract argumentation can be characterised as the exoge-
nous coordination of arguments. This implies that arguments themselves should
not be seen as static derivations anymore, but as dynamic argumentation pro-
cesses.

http://formalargumentation.org/
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As an example, we showed how the argument graph can give rise not only
to sets of extensions, as in Dung’s semantics, but also to sequences of such
extensions. Moreover, we show that the ecology interpretation of Barringer et
al. can also be represented in our model without introducing numbers.

There are many issues for further study. For example, other elements of Reo
can be introduced in abstract argumentation, more realistic examples can be
modelled using the idea of dynamic arguments, and the formal methods of Reo
can be compared to the formal techniques used in abstract argumentation.
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Abstract. We discuss an extension of the coordination modeling lan-
guage Paradigm. The extension is geared towards data-dependent inter-
action among components, where the coordination is influenced by pos-
sibly distributed data. The approach is illustrated by the well-known
example of a bakery where tickets are issued to serve clients in order.
Also, it is described how to encode Paradigm models with data in the
process language of the mCRL2 toolset for further analysis of the coordi-
nation.

1 Introduction

The so-called IWIM model for the coordination of concurrent components as
proposed by Farhad Arbab and co-workers [3,6] distinguishes ideal workers and
ideal managers. Among others, IWIM forms the conceptual framework for the
coordination language Manifold [4,7]. The central ideas of IWIM evolved into the
theory of Reo connectors [5], which exploits constraint automata for its semantics
and whose distributed implementation approach separates coordination from
parallelism [11].

Rather than considering hierarchies of components with atomic workers at
the bottom layer and one overall manager at the top as for IWIM, the coordina-
tion modeling language Paradigm [9] takes networks of components as starting
point, where each component exhibits both worker and manager activity. The
worker activity is the internal behavior of the component that executes as local
transitions asynchronously from other components; the manager activity con-
sists of the synchronous interaction with other (groups of) components governed
by so-called consistency rules. In terms of constraint automata, consistency rules
comprise the atomic dataflow among synchronizing components. However, via
a mechanism of phases and traps it is guaranteed that the local behavior, the
worker level of a component, remains aligned with the global behavior, the man-
ager level of the component.

In this paper an extension to Paradigm including data is proposed. In this
extension, consistency rules incorporate the local variables of the components
and expressions thereof, in particular to compare or communicate their value. So,
c© Springer International Publishing AG, part of Springer Nature 2018
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our data extension will be geared towards interaction and coordination thereof.
Cast in terms of Reo, the data constraints are enriched with data and values.
For Paradigm with data, the local memory of components can be accessed (via
their ports) at the coordination level. Consequently, the communicated data
itself can be stored too. However, this requires that the phases-and-trap mech-
anism of Paradigm needs to be adapted, somewhat complicating the semantics.
An encoding scheme for Paradigm, without data, into the model checking tool-
suit mCRL21, as proposed in [1], brings the advantage of formal analysis of the
coordination among components. For a concrete coordination problem, we will
describe a Paradigm model with data of a bakery, describe its encoding in mCRL2’s
specification language.

Outline Sect. 2 provides a formal definition of Paradigm with data and pro-
vides its operational semantics. Section 3 illustrates and further explains the
underlying concepts for the case of a bakery where clients need to be served in
order of arrival. Section 4 discusses how formal analysis of Paradigm using the
mCRL2 toolset can be obtained. Section 5 wraps up the paper.

2 Formal Definitions

We subsequently introduce components with variables, Paradigm models and
consistency rules with data, and configurations with local transitions and global
transfers among them. An example illustrating the above notions is presented
in the next section.

Definition 1. Let, for some index set I, a number of local variables vi of
type Di, respectively, be given. Put E =

∏
i∈I Di. Furthermore, fix a set of

actions A. For E and A, a Paradigm component C is a tuple C = (Σ,T, Ψ)
where

(i) for some set S, the elements of which are called states, Σ = S × E is the
set of extended states of C

(ii) T ⊆ Σ × A × Σ is the transition relation of C
(iii) Ψ = (Φ1, . . . , Φn), for some n � 0, is a tuple of partial functions, called the

roles of C, where each Φ : P(T ) ↪→ P(P(Σ)) is such that if σ ∈ θ, θ ∈ Φ(ϕ),
and 〈σ, a, σ′〉 ∈ ϕ then also σ′ ∈ θ.

By definition, an extended state σ ∈ Σ is a pair σ = (s, e) of a state s ∈ S and
a tuple of ‘current’ values of the variables. We write σ

a−→ σ′ for a transition
in T , rather than 〈σ, a, σ′〉 ∈ T . For a role Φ, i.e. a coordinate of Ψ , an element ϕ
of dom(Φ) is called a phase of Φ. An element θ of Φ(ϕ) is called a trap of ϕ. The
idea is, a transition, σ

a−→ σ′ starting from an extended state σ in a trap θ of a
phase ϕ say, does not move outside of the trap. Hence, it is required for such a
transition σ

a−→ σ′ that the extended state σ′ lies in θ too. So, in phase ϕ, once
having entered θ, control is trapped in θ. The phases constituting dom(Φ) of a

1 See www.mcrl2.org.

www.mcrl2.org
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role Φ will typically partially overlap, their overlaps being traps. One may think
of a trap as a final stage within a phase. Reaching a trap of a phase indicates
that a transfer to another phase is about to happen.

Suppose ϕi ∈ Φi, for i = 1, . . . , n, for the roles Φ1, . . . , Φn of component C,
and suppose σ

a−→ σ′ is a transition of C, i.e. an element of T , such that the
transition σ

a−→ σ′ is an element of each ϕi too. Then the transition σ
a−→ σ′ is

called an admitted transition with respect to the phases ϕ1, . . . , ϕn.

Definition 2.

(a) A Paradigm model with data consists, for some index set H, of a tuple
(Ch)h∈H of Paradigm components

Ch = (Σh, Th, Ψh )

with their own local variables and actions, as well as extended states in Σh,
transition relations Th, and roles Ψh = (Φh,1, . . . , Φh,nh

), for h ∈ H.
(b) A consistency rule γ for (Ch)h∈H consists, for an index set R, of a tuple

(Cr(Φr) : ϕr(er)
θr−−→ ϕ′

r(e
′
r) )r∈R where Φr is a role of component Cr, ϕr

and ϕ′
r are phases of Φr, er and e′

r are values for the variables of Cr, and
θr is a trap of ϕr.

(c) A set of consistency rules Γ is called closed if for each rule (Cr(Φr) :
ϕr(er)

θr−−→ ϕ′
r(e

′
r) )r∈R of Γ , if there exists, for some r ∈ R, a state sr

of Cr for which both (sr, er), (sr, ēr) ∈ θr, then Γ contains, for some ē′
r, a

rule γ̄ of the form (Cr(Φr) : ϕr(ēr)
θr−−→ ϕ′

r(ē
′
r) )r∈R as well.

For clarity we assume that different components have distinct names for states,
variables, and actions, and hence distinct roles, phases, and traps. However, in
a consistency rule, a component may have multiple occurrences, viz. in different
roles. Also, a component may not be involved in a consistency rule at all. The
rules are called consistency rules in Paradigm because the requirement of each θr

to be a trap of phase ϕr guarantees that the ‘coarse-grained’ rule can only be
applied if consistent with the current ‘fine-grained’ local state of each component
involved. The closedness condition on sets of rules will guarantee that global
behavior, to be defined in a minute, cannot be essentially influenced by local
behavior respecting the traps mentioned in a rule.
Next, we define the behavior of a Paradigm model, with intra-component behav-
ior (a so-called local transition) affecting the extended state of a single com-
ponent vs. inter-component behavior (a global transfer) exchanging values and
changing phases based on a trap in some of the roles of a number of components.

Definition 3. Let Π = (Ch)h∈H be a Paradigm model and let Γ be a closed set
of consistency rules for Π.

(a) A configuration of Π is a tuple 〈sh, eh, ψh〉h∈H , where for each index h ∈ H,
(sh, eh) is an extended state of component Ch, and ψh = (ϕh,1, . . . , ϕh,nh

)
is a tuple of phases such that ϕh,i ∈ Φh,i, for i = 1, . . . , nh.
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(b) A local transition 〈sh, eh, ψh〉h∈H
a−→ 〈s′

h, e′
h, ψh〉h∈H of Π is an admitted

transition of one of the components of Π, i.e. for some h0 ∈ H it holds that
(i) 〈sh0 , eh0〉 a−→ 〈s′

h0
, e′

h0
〉 is an admitted transition for component Cho

with
respect to the phases ψh0 = (ϕh0,1, . . . , ϕh0,nh0

), and (ii) sh = s′
h and eh =

e′
h for each index h �= h0 in H.

(c) A global transfer 〈sh, eh, ψh〉h∈H
γ−→ 〈sh, e′

h, ψ′
h〉h∈H of Π based on a con-

sistency rule γ = ( Ĉr(Φr) : ϕr(êr)
θr−−→ ϕ′

r(êh) )r∈R updates phases and
values as prescribed by γ, i.e. (i) if, for h ∈ H, i = 1, . . . , nh, it holds that
Ch = Ĉr and Φh,i = Φr, for some index r ∈ R, then (sh, eh) ∈ θr, eh = êr

and e′
h = êr, ϕh,i = ϕr and ϕ′

h,i = ϕ′
r, and (ii) if, for h ∈ H, Ch �= Ĉr for

each r ∈ R then eh = e′
h, and, for h ∈ H, i = 1, . . . , nh, Φh,i �= Φr for each

r ∈ R then ϕh,i = ϕ′
h,i.

A configuration 〈sh, eh, ψh〉h∈H of a Paradigm model Π = (Ch)h∈H holds for
each component Ch the current extended state (sh, eh) as well as the current
phase ϕh,i for each role Φh,i of Ch.

Note, in a local transition 〈sh, eh, ψh〉h∈H
a−→ 〈s′

h, e′
h, ψh〉h∈H , say for com-

ponent Ch0 , component Ch0 nor any of the other components changes phase; the
tuple of phases ψh is for each component the same in the source configuration
〈sh, eh, ψh〉h∈H and the target configuration 〈s′

h, e′
h, ψh〉h∈H of the transition.

However, the transition must be admitted for Ch0 , i.e. it must be present in all
of the phases ϕh0,i of ψh0 for component Ch0 .

For a global transfer based on a consistency rule γ to apply, the current
phases ϕh,i of role Φh,i must match the phases of Φr, if Ch = Ĉr and Φh,i = Φr.
Also, the extended states of the components Ĉr involved must lie in the traps θr,
for all r ∈ R. States remain unaffected, but values of variables may change for the
components mentioned in the rule, presumably because of the interaction. Phases
may change too for the components mentioned, from ϕh,i = ϕr to ϕh,i = ϕ′

r,
which are both phases within the role Φh,i = Φr. Components Ch and phases ϕh,i

not mentioned by consistency rule γ remain the same.
We have the following result.

Theorem 1. Let Π = (Ch)h∈H be a Paradigm model, and let Γ be a closed set
of consistency rules for Π. Suppose

〈sh, eh, ψh〉h∈H
γ−→ 〈sh, e′

h, ψ′
h〉h∈H and 〈sh, eh, ψh〉h∈H

a−→ 〈s′
h, e′′

h, ψh〉h∈H

for configurations 〈sh, eh, ψh〉h∈H , 〈sh, e′
h, ψ′

h〉h∈H , and 〈s′
h, e′′

h, ψh〉h∈H of Π, a
consistency rule γ in Γ , and a local transition for a. Then also

〈sh, eh, ψh〉h∈H
γ−→ 〈sh, ē′

h, ψ′
h〉h∈H

for suitable values ē′
h, for h ∈ H.

The theorem is a direct consequence of the closedness condition for the set
of consistency rules. It states that the execution of a local transition cannot
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disable the execution of a consistency rule. This is the loose coupling in Paradigm
between the interaction between components and actions of the components
of their own. The reverse obviously doesn’t hold. A local transition that was
admitted before, may be forbidden by one of the phases put in place by the
execution of a consistency rule. Care has to be taken to deal with variables
that are set by local transitions as well as by global transfer. To ensure non-
interference of the global (manager) and local (worker) level, one may want to
restrict reading or updating of variables to happen outside of the traps involved
in consistency rules that may change the value of the different variables.

3 An Example Paradigm Model

We illustrate the formal definitions of the previous section by modeling in
Paradigm with data the handling of clients in a busy bakery. Clients entering
the shop take a ticket from a ticket dispenser and wait for their turn. The client
having the ticket displayed is being served. The baker increments the display
after having handled a client and next serves the clients holding the ticket with
the new number.

3.1 STDs for the Components

We first model the basic behavior of the components by means of state-transition
diagrams (STD).

Client processes are introduced by the state-transition diagram below. Each
client carries an integer variable c to hold a ticket number. Initially c is set to 0.
A client subsequently obtains a ticket from the ticket machine, action getTicket,
shows the ticket to the baker (action showTicket), clarifies his or her wishes
(action clarify), and finally thanks the baker and leaves (action thankLeave).
Note, apart from initialization, there is no explicit assignment to variable c in
the STD. Also, we don’t bother to distinguish multiple instances of the Client
process. Incorporating another variable, id say, holding the identity of a client
would cater for this.

process Client with variable c

0[c = 0] 1 2 3 4
getTicket showTicket clarify thankLeave

The ticket machine is modeled by the process Machine which has an integer
variable m for the number of the ticket it dispenses. Starting from initial value 1
for m, the machine may provide a ticket with the current value of m while
moving to state 1 (action provide) and returns to state 0 on an increment of the
value of m (action incr). The incr-action is decorated with an assignment, viz.
the increment m := m + 1 of variable m.
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process Machine with variable m

0[m = 1] 1

provide

incr[m := m+1]

The Baker process models the workflow for the baker. Starting from the initial
state 0, with initial value 0 for the integer variable b of the process, the process
cycles through its four states. First the baker aims to increment the display
(action incrDisplay), next the baker welcomes the client holding the number
displayed (action welcome) and helps the client (action help). The baker closes
the cycle by some thanks and greetings (action thankGreet). Note, also here no
explicit assignments to the variable b are present; changes to b will come from
the interaction with the Display process described below.

process Baker with variable b

0[b = 0] 1

23

incrDisplay

welcome

help

thankGreet

The Display process is similar to the Machine process. It switches between
two states. The Display process holds an integer variable d, initially set to 1.
However, here we have chosen not to have an update of the variable in the STD
as we have for the machine. As variation, the display gets incremented in the
interaction with the baker. This is captured by the consistency rules modeling
the interplay of these two processes.

process Display with variable d

0[d = 1] 1

lightDown

lightUp

3.2 Roles of the Components

As discussed above, in Paradigm a component can have multiple roles. At the
level of the roles the interaction with other components takes place. The phase-
and-trap discipline of Paradigm ensures that STD and roles remain aligned dur-
ing execution: a local transition cannot change the current phase or move out of
a trap.
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A Client process has two roles, NeedTicket and NeedService, in which it inter-
acts with the Machine process and Baker process, respectively. The variable c
of the Client process may be read and/or written during this interaction and is
therefore displayed as parameter of the phases involved.

The role NeedTicket has two phases, NotTaking and Taking. The phase
NotTaking only allows the action getTicket modeling that a ticket needs to be
obtained first. When state 1 is reached in the STD the trap requestMachine has
been entered, signaling that in the role NeedTicket the component is prepared
to leave phase NotTaking (and ready to enter phase Taking, as we shall see).
Phase Taking models a client in possession of a ticket. When state 2 has been
reached, the trap useDone is entered. As required for a trap, the transitions for
actions clarify and thankLeave do not leave trap useDone.

role NeedTicket of process Client displaying variable c

NotTaking(c)
requestMachine

0 1 2 3 4
getTicket clarify thankLeave

Taking(c)
useDone

0 1 2 3 4
showTicket clarify thankLeave

The Machine process in its single role GiveTicket interacts with the Client
processes in their roles NeedTicket. The role GiveTicket has two phases,
Available and Unavailable, that manage the variable m, as indicated. Both
phases have a single-state trap, trap readyToProvide for phase Available, which
indicates that a new ticket is available for issue when the trap is reached, and
trap providingDone of phase Unavailable, that indicates that the current ticket
number has been issued and the variable m needs to be adapted (as it actually
will be in phase Available). Note, since variable m is updated when transition
incr[m := m + 1] is taken, the consistency rule (CM3) presented below doesn’t
have an increment of its parameter.

role GiveTicket of process Machine with variable m

Available(m) readyToProvide 0 1

incr[m := m + 1]

Unavailable(m)
providingDone0 1

provide
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The Baker process has two roles, role NeedTurnNumber for interaction with
the Display process, and role NeedNextClient for interaction with all Client
processes. Role NeedTurnNumber distinguishes the phases NotUsing and Usage,
that are connected by trap requestNextNumber from phase NotUsing to phase
Usage and by trap done the other way around. The number of the client at turn
is kept in the variable b of process Baker.

role NeedTurnNumber of process Baker with variable b

NotUsing(b) Usage(b)

requestNextNumber 0 1

23

thankGreet

done

0 1

23

incrDisplay

welcome

help

When the Baker process needs to know the next ticket number to store
it in its variable b, this is provided by the Display process, in its single role
ShowingNumber. In phase Offering the value of the variable d of process Display
is guaranteed to be updated upon reaching trap nextNumber. To enforce such
an update, phase Offering is switched to phase Passive, which will move control
of Display to state 1 from which a next increment is possible once, and which
is, via trap ready, switched back to phase Offering. Note, when changing phase
from phase Passive to phase Offering as prescribed by consistency rule (BD3),
given in the next subsection, the variable d will be incremented. Different from
the modeling of role GiveTicket of the Machine process presented above, the role
ShowingNumber of the Display process doesn’t update the variable d itself.

role ShowingNumber of process Display displaying variable d

Offering(d)
nextNumber 0 1

lightUp

Passive(d)
ready0 1

lightDown

The role NeedService of the Client process deals with the client-side in the
interaction with the Baker process. The role has two phases, NotServed and
HavingTurn, each making use of the variable c of the Client process during
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interaction, viz. to match the ticket number announced by the baker. Only in
case of a match, the Client process will change phase to HavingTurn, based
on the trap requestBaker. To highlight, be it a bit sketchy, that traps aren’t
necessarily comprised of a single state, the trap ordered of phase HavingTurn
allows a transfer back to the phase NotServed again.

role NeedService of process Client displaying variable c

NotServed(c)
requestBaker

0 1 2 3 4
getTicket showTicket thankLeave

HavingTurn(c)
ordered

0 1 2 3 4
clarify thankLeave

The role NeedNextClient of process Baker takes care of the baker’s part in the
interaction with a client. When having reached trap idle in phase FinishingHelp
(finishing helping a previous client), a transfer will take place (by consistency rule
(BC1) discussed below) to phase StartingHelp. Similarly, in phase StartingHelp
on reaching trap started a transfer will take place (now by consistency rule
(BC2)) to phase Helping, in which the client is actually served. After trap
ready has been reached in phase Helping, the Baker process will switch to phase
FinishingHelp in role NeedNextClient.

role NeedNextClient of process Baker

FinishingHelp(b) StartingHelp(b) Helping(b)

idle0 1

23

incrDisplay

thankGreet

started

0 1

23

welcome

served

0 1

23
help

3.3 Interactions Among Components

The interaction between the Client processes, in their roles NeedTicket, and the
Machine process, in its role GiveTicket, arranges that every client entering the
bakery is provided with a uniquely numbered ticket. The three consistency rules
(CM1), (CM2), and (CM3) below describe how phases change once proper traps
have been entered.
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⊗
{

Client(NeedTicket) : NotTaking(0)
requestMachine−−−−−−−−−→ Taking(n)

(CM1)
Machine(GiveTicket) : Available(n)

readyToProvide−−−−−−−−−→ Unavailable(n)

Client(NeedTicket) : Taking(n)
useDone−−−−−→ NotTaking(n) (CM2)

Machine(GiveTicket) :Unavailable(n)
providingDone−−−−−−−−→ Available(n) (CM3)

The first consistency rule, rule (CM1), is a synchronous transfer of phases, as
indicated by the ⊗-symbol and enclosing braces. Given that (i) the Client pro-
cess, in role NeedTicket, has reached trap requestMachine of phase NotTaking,
while (ii) the Machine process, in role GiveTicket resides in trap readyToProvide
of phase Available, then (i) the Client process switches to phase Taking of
role NeedTicket, while (ii) the Machine process simultaneously changes to phase
Unavailable of role GiveTicket. Moreover, (i) the Client process is assumed to
(still) hold the initial value 0, while (ii) the Machine process has with a (pre-
sumably fresh) ticket number n, then the value n is copied from the Machine
process to the Client process. For consistency rules (CM2) and (CM3) the Client
and Machine process act independently. Based on (CM2), the Client process can
change phase, from Taking to NotTaking, via trap useDone. Based on (CM3),
the Machine process can change phase, from Unavailable to Available, via trap
providingDone.

The interaction between the Baker and Display process is governed by the
three consistency rules (BD1), (BD2), and (BD3). A similar effect is achieved
as for rules (CM1) through (CM3). However, the actual update of variable m is
done for the Machine process at the STD-level by the transition from state 1 to
state 0 executing action incr[m := m+1]. Here, for process Display the update is
accomplished at the level of role ShowingNumber by rule (BD3), which passes the
parameter value m for phase Passive to phase Offering as parameter value m+1.

⊗
{

Baker(NeedTurnNumber) :NotUsing(n)
requestNextNumber−−−−−−−−−−−→ Usage(m)

(BD1)
Display(ShowingNumber) : Offering(m)

nextNumber−−−−−−−→ Passive(m)

Baker(NeedTurnNumber) : Usage(n)
done−−−→ NotUsing(n) (BD2)

Display(ShowingNumber) : Passive(m)
ready−−−→ Offering(m+1) (BD3)

The interaction of the Baker and Client processes in their respective roles
NeedNextClient and NeedService is more tied up compared to the interactions
described above. All three consistency rules (BC1), (BC2), and (BC3) prescribe
simultaneous phase transfer for the two processes. Moreover, the value of the
variable b of the Baker process must be equal to the variable c of the Client
process; they must both have the value n.
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⊗
{

Baker(NeedNextClient) :FinishingHelp(n)
idle−−→ StartingHelp(n)

(BC1)
Client(NeedService) : NotServed(n)

requestBaker−−−−−−−→ NotServed(n)

⊗
{

Baker(NeedNextClient) : StartingHelp(n)
started−−−−→ Helping(n)

(BC2)
Client(NeedService) : NotServed(n)

requestBaker−−−−−−−→ HavingTurn(n)

⊗
{

Baker(NeedNextClient) : Helping(n)
served−−−−→ FinishingHelp(n)

(BC3)
Client(NeedService) : HavingTurn(n)

ordered−−−−→ NotServed(n)

4 Model Checking Paradigm Models with Data

As for many modeling languages, formal analysis of Paradigm models supports
the modeling itself. In [1,2] it is discussed how to expressing Paradigm models
without data in the process language of the mCRL2 toolset [8,10]. In short, for
each component the local behavior is modeled as a state machine. For a transition
to fire, it is checked if the current phase allows so. For the global behavior of
a component a communication intent is issued for each consistency rule that
mentions the component. However, the current state and phase should match
the relevant trap. Correct interaction can subsequently be enforced by the allow
and communication operators of mCRL2, that block single-sided communication
intents and synchronize consistent ones, respectively. In this section, we describe
by example how the approach extends to deal with data.

1 proc C l i en t ( s t : Nat , c : Nat , nt ph : NeedTicketPh , ns ph : NeedServicePh ) =
2

3 ( ( s t==0) && ( nt ph in [ NotTaking ] ) && ( ns ph in [ NotServed ] ) ) −>
4 getTicket . C l i en t (1 , c , nt ph , ns ph ) +
5 ( ( s t==1) && ( nt ph in [ Taking ] ) && ( ns ph in [ NotServed ] ) ) −>
6 showTicket ( c ) . C l i en t (2 , c , nt ph , ns ph ) +
7 ( ( s t==2) && ( nt ph in [ NotTaking , Taking ] ) && ( ns ph in [ HavingTurn ] ) ) −>
8 c l a r i f y ( c ) . C l i en t (3 , c , nt ph , ns ph ) +
9 ( ( s t==3) && ( nt ph in [ NotTaking , Taking ] ) && ( ns ph in [ HavingTurn ] ) ) −>

10 thankLeave ( c ) . C l i en t (4 , c , nt ph , ns ph ) +
11

12 %% ru l e (CM1)
13 ( ( s t in [ 1 ] ) && ( nt ph==NotTaking ) ) −>
14 sum m: Nat . requestMachine (m) . C l i en t ( st ,m, Taking , ns ph ) +
15 %% ru l e (CM2)
16 ( ( s t in [ 2 , 3 , 4 ] ) && ( nt ph==Taking ) ) −>
17 useDone . C l i en t ( st , c , NotTaking , ns ph ) +
18

19 %% ru l e (BC1)
20 ( ( s t in [ 2 ] ) && ( ns ph==NotServed ) ) −>
21 requestBaker1 ( c ) . C l i en t ( st , c , nt ph , NotServed ) +
22 %% ru l e (BC2)
23 ( ( s t in [ 2 ] ) && ( ns ph==NotServed ) ) −>
24 requestBaker2 ( c ) . C l i en t ( st , c , nt ph , HavingTurn ) +
25 %% ru l e (BC3)
26 ( ( s t in [ 3 , 4 ] ) && ( ns ph==HavingTurn ) ) −>
27 ordered ( c ) . C l i en t ( st , c , nt ph , NotServed ) ;

Fig. 1. mCRL2 code for the Client process
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Figure 1 provides the mCRL2 version of the process Client of the bakery exam-
ple of the previous section (the complete code can be found in the appendix).
Here, the Client process has four parameters, viz. the natural number st to
hold the state of the underlying STD, the natural number c to hold the ticket
number of the client, and the parameters nt ph and ns ph to keep track of the
phase of the process with respect to their roles NeedTicket and NeedService,
respectively. For this, the definition of the two enumerated types

NeedTicketPh = struct NotTaking | Taking;
NeedServicePh = struct NotServed| HavingTurn;

are included at the beginning of the specification. The specification of the Client
process falls into three parts: (i) lines 3–10, specifying the local transitions
(ii) lines 12–17, describing Client’s part for the consistency rules (CM1)−(CM3),
and similarly (iii) lines 19–27 for the consistency rules (BC1)−(BC3). Each part
consists of a number of alternative branches, separated by the non-deterministic
choice operation ‘+’, of the form

<condition> -> <action> . <continuation process>

(with a variation for rule (CM1) to be discussed in a minute). For example,
lines 3–4 express that the Client process in state 0, in phase NotTaking for
its NeedTicket role, as well as in phase NotServed for its NeedService role,
can perform the action getTicket and continues as Client(1,c,nt ph,ns ph)
with control now in state 1, but leaving the parameters c, nt ph, and ns ph
unchanged. The element-of-list construction nt ph in [ NotTaking ,Taking ]

shows profitable in line 7, for example. Note, the transition 2
clarify−−−−→ 3 is

admitted both by phase NotTaking and by phase Taking.
Lines 12–14 embody the contribution of a client process to execution of the

(CM2)-rule. If the process resides in trap useDone consisting of states 2, 3,
and 4 (for all values of variable c), and in phase Taking regarding its NeedTicket
role, then the process is willing to execute the action useDone and to continue
with its NeedTicket phase changed from Taking to NotTaking as consistency
rule (CM2) prescribes. Note, no for (CM2) the client process doesn’t depend on
other processes.

Consistency rule (CM1) in which both a client process and the machine
process are involved requires their interaction. Assuming Client is in state 1,
hence in trap requestMachine as the value of c doesn’t matter for this, as well
as in phase NotTaking, then Client is willing to input the value m of the ticket
as offered by the machine. But, a priori this value is not known to the client.
Therefore, the value is abstracted away by the summation sum m:Nat over all
possible values for m. Upon synchronization with the machine process the actual
value for m will be handed over. However, this can only happen if the interacting
Machine process has reached the proper trap in the proper phase regarding the
corresponding role.

To enforce synchronization of processes, mCRL2 provides the allow-and-comm-
unicate mechanism. Once all processes have been specified (Client, Machine,
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Baker, and Display) the so-called initial process is given. We have chosen to
analyze a typical situation of three clients in combination with one machine, one
baker, and one display:

allow( {
getTicket, showTicket, clarify, thankLeave,

...
CM1, useDone, providingDone,

... },
comm( {

requestMachine | readyToProvide -> CM1 ,
... },

Client(0,0,NotTaking,NotServed) ||
Client(0,0,NotTaking,NotServed) ||
Client(0,0,NotTaking,NotServed) ||
Mach(0,1,Available) ||
Baker(0,0,NotUsing,FinishingHelp) ||
Display(0,1,Offering) ) )

The crucial point is, the synchronized execution of the actions requestMach-
ine(n) by Client and readyToProvide(n) by Machine, for the same value n,
will be represented by the execution of the action CM1(n) of the overall system.
On top of this, for all n, the action CM1 is allowed to be executed, as mentioned
in the list of allowed actions, but the action requestMachine and the action
readyToProvide on their own are not, since they are deliberately missing from
the list of allowed actions. Thus, a requestMachine or readyToProvide cannot
happen alone, but combined into the action CM1 only, provided the actions carry
the same value for their parameter. Since, by the sum construction the client
is willing to perform requestMachine(m) for each value of m, it can match the
specific value for m offered by the machine in readyToProvide(m). This way,
for this basic case, passing of parameter values from one process to another is
achieved.

In general, a Paradigm model (Ch)h∈H will be encoded in mCRL2 as the paral-
lel composition of #H processes, with #H the number of elements of the index
set H. For a process Ch we have in its encoding, on the one hand, a parame-
ter st of type Nat enumerating the set of states Sh and parameters d1, . . . , dnh

of properly chosen built-in or user-defined type to represent the extended state
of Ch, and, on the other hand, parameters ph1, . . . , phnh

for each of the roles,
each of type specifically introduced for the roles. The actions of the processes
are either local actions, from the respective action sets A, together with action
corresponding to traps of the various roles of the components. With the com-
bined use of allow and communication operators synchronization of traps can be
enforced.

A local transition 〈sh, eh, ψh〉h∈H
a−→ 〈s′

h, e′
h, ψh〉h∈H , say with eh =

(eh,j)mh
j=1, is easy to handle. We only need to verify that the transition

〈sh0 , eh0〉 a−→ 〈s′
h0

, e′
h0

〉 for the active component h0 is admitted by the phases
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in ψh0 (see Definition 3). That other processes remain unchanged is implied by
the interleaving of the processes. Thus, for each transition 〈sh0 , eh0〉 a−→ 〈s′

h0
, e′

h0
〉

in Th we incorporate for mCRL2 process C h the non-deterministic branch

( ( st == s_h ) &&

( d_1 == e_h,1 ) && ... && ( d_m_h == e_h,m(h) ) &&

( st in [ list of admitting phases role 1] ) && ... &&

( st in [ list of admitting phases role n(h) ] ) ) ->

a . C_h(s’_h,e’_h,1,...,e’_h,m_h,ph_1,...,ph_n_h)

and add the action a to the set of actions of the allow operator enclosing the
parallel composition of components.

A consistency rule γ = (Cr(Φr) : ϕr(er)
θr−−→ ϕ′

r(e
′
r) )r∈R, say with er =

(er,j)mr
j=1 and e′

r = (e′
r,j)

mr
j=1, is distributed over all components and roles involved.

For each index r in R, we include a non-deterministic branch for process Cr and
role Φr in the mCRL2 process C r.

( ( st in [ states for trap theta_r ] ) &&

( d_1 == e_h,1 ) && ... && ( d_m_h == e_h,m_h ) &&

( ph_i(r) == phase_phi_r_of_Phi_r ) ) ->

sum w_1:W_1 . ... . sum w_n:W_n .

theta_r(w_1,...,w_n,expr_1,...,expr_n) .

C_r(st,e’_r,1,...,e’_r,m_r,...,phase_phi’_r_of_Phi_r,...)

The summations sum w 1:W 1 to sum w n:W n abstract away the n-1 groups of
variables of the components other the component Cr itself (although this cannot
be read off from the notation above). Thus, of the variable groups w 1 to w n
only w r is not bound by a summation. The expressions expr 1 to expr n, built-
up from standard constructs and possibly all of the variables in the n groups
w 1 to w n, are the expressions as occurring in the #R righthand-sides of the
consistency rule. For a successful interaction it is required that all parties agree
on the values of the parameters and expressions involved. By taking the sum
over all possible (potentially infinitely many) values the process C r leaves it
totally to the other components to decide on the values of their variables, if
occurring at all. Moreover, if #R > 1 we add the communication theta 1 |
... | theta #R -> gamma to the communication operator com enclosing the
parallel composition of components, but do not include any of the trap actions
theta 1,...,theta #R. In case #R = 1, no communication is introduced, but
the trap action will be allowed instead.

Some further caution needs to be put in place though, to deal with sum-
mations over infinite data types as possibly occurring in the encoding of the
consistency rules. In the various analysis steps with the mCRL2 toolset, in par-
ticular statespace generation, the tools may hang because of infinite branching.
For Paradigm with data, in concrete situations, simplifications to the coding are
applied for variables whose actual value is not used. There are two flavors of
this: comparison of an expression involving the variable to an expression involv-
ing another (as for the ticket number of the client and the baker in lines 21,
24, and 27), or when the variable doesn’t occur at all in the expressions at the
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righthand-side of the the consistency rule. As illustration of the latter situation,
the encoding for the Machine process for the consistency rule (CM1) reads

( ( st in [ 0 ] ) && ( gt_ph == Available ) ) ->
readyToProvide(m) . Machine(st,m,Unavailable)

where no abstraction of the variable c of Client is needed. The machine just
provides a ticket number, in our modeling, independent of the actual value of c.

5 Concluding Remarks

We have shown, with the IWIM model in mind, how the coordination modeling
language Paradigm can be extended to deal with data. The present set-up is rel-
atively liberal in the use of variables, although in concrete modeling situations a
relatively small number of patterns of data flow among interacting components
seem to suffice. Further investigation needs to reveal if this allows for a simplifi-
cation of the consistency rule format and the associated closedness requirements
both for sets of consistency rules as well as for the restriction on updates of
variables within a trap.

Currently, for formal analysis using the mCRL2 toolset, the encoding needs to
be tailored to avoid infinite branching during statespace generation. The toolset
provides a number of tools, e.g. lpssumelm and lpsconstelm, that manipulate
intermediate artifacts (in so-called linear process specification or lps format) to
reduce the specification, leading to smaller and hence more amenable verification
problems. It is a topic of further research to develop sum elimination techniques
specifically targeting the encoding of consistency rules discussed in this paper.

Application areas for Paradigm with data include the modeling of services,
where both coordination and data play a prominent role, as well as the analysis of
security protocols. Dissertational work by the second author is underway dealing
with the modeling with Paradigm of anonymous networking and internet voting.
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A Complete mCRL2 Specification of the Bakery Example

This appendix contains the mCRL2 code of the bakery example of Sect. 3.
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sort

%% role NeedTicket of Client
NeedTicketPhase = struct NotTaking | Taking ;

%% role NeedService of Client
NeedServicePhase = struct NotServed| HavingTurn ;

%% role GiveTicket of Machine
GiveTicketPhase = struct Available | Unavailable ;

%% role ShowNumber of Display
ShowNumberPhase = struct Offering | Passive ;

%% role NeedTurnNumber of Baker
NeedTurnNumberPhase = struct NotUsing | Usage ;

%% role NeedNextClient of Baker
NeedNextClientPhase = struct FinishingHelp | StartingHelp | Helping ;

act

%% Client actions
getTicket ; showTicket, clarify, thankLeave : Nat ;

%% Client traps
requestMachine : Nat ; useDone ;
requestBaker1, requestBaker2 : Nat ; ordered : Nat ;

%% Machine actions
incr, provide ;

%% Machine traps
readyToProvide : Nat ; providingDone ;

%% Display actions
lightUp, lightDown ;

%% Display traps
nextNumber : Nat ; ready ;

%% Baker actions
incrDisplay ; welcome, help, thankGreet : Nat ;

%% Baker traps
requestNextNumber : Nat ; done ;
idle, started : Nat ; served : Nat ;

%% interactions
CM1 : Nat ;
BD1 : Nat ;
BC1, BC2, BC3 : Nat ;

proc
Client(st:Nat, c:Nat, nt_ph:NeedTicketPhase, ns_ph:NeedServicePhase) =

%% local STD

%% 0 -> 1
( ( st == 0 ) && ( nt_ph in [ NotTaking ] ) && ( ns_ph in [ NotServed ] ) ) ->

getTicket . Client(1,c,nt_ph,ns_ph) +

%% 1 -> 2
( ( st == 1 ) && ( nt_ph in [ Taking ] ) && ( ns_ph in [ NotServed ] ) ) ->

showTicket(c) . Client(2,c,nt_ph,ns_ph) +

%% 2 -> 3
( ( st == 2 ) && ( nt_ph in [ NotTaking, Taking ] ) && ( ns_ph in [ HavingTurn ] ) ) ->
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clarify(c) . Client(3,c,nt_ph,ns_ph) +

%% 3 -> 4
( ( st == 3 ) && ( nt_ph in [ NotTaking, Taking ] ) && (ns_ph in [ HavingTurn ] ) ) ->

thankLeave(c) . Client(4,c,nt_ph,ns_ph) +

%% role NeedTicket

%% rule (CM1)
( ( st in [ 1 ] ) && ( nt_ph == NotTaking ) ) ->

sum m:Nat . requestMachine(m) . Client(st,m,Taking,ns_ph) +

%% rule (CM2)
( ( st in [ 2, 3, 4 ] ) && ( nt_ph == Taking ) ) ->

useDone . Client(st,c,NotTaking,ns_ph) +

%% role NeedService

%% rule (BC1)
( ( st in [ 2 ] ) && ( ns_ph == NotServed ) ) ->

requestBaker1(c) . Client(st,c,nt_ph,NotServed) +

%% rule (BC2)
( ( st in [ 2 ] ) && ( ns_ph == NotServed ) ) ->

requestBaker2(c) . Client(st,c,nt_ph,HavingTurn) +

%% rule (BC3)
( ( st in [ 3, 4 ] ) && ( ns_ph == HavingTurn ) ) ->

ordered(c) . Client(st,c,nt_ph,NotServed) ;

proc
Machine( st:Nat, m:Nat, gt_ph:GiveTicketPhase ) =

%% local STD

%% 0 -> 1
( ( st in [ 0 ] ) && ( gt_ph in [ Unavailable ] ) ) ->

provide . Machine(1,m,gt_ph) +

%% 1 -> 0
( ( st == 1 ) && ( gt_ph in [ Available ] ) ) ->

incr . Machine(0,m+1,gt_ph) +

%% role GiveTicket

%% rule (CM1)
( ( st in [ 0 ] ) && ( gt_ph == Available ) ) ->

readyToProvide(m) . Machine(st,m,Unavailable) +

%% rule (CM3)
( ( st in [ 1 ] ) && ( gt_ph == Unavailable ) ) ->

providingDone . Machine(st,m,Available) ;

proc
Baker(st:Nat, b:Nat, ntn_ph:NeedTurnNumberPhase, nnc_ph:NeedNextClientPhase) =

%% local STD

%% 0 -> 1
( ( st == 0 ) && ( ntn_ph in [ Usage ] ) && (nnc_ph in [ FinishingHelp ] ) ) ->

incrDisplay . Baker(1,b,ntn_ph,nnc_ph) +

%% 1 -> 2
( ( st == 1 ) && ( ntn_ph in [ Usage ] ) && (nnc_ph in [ StartingHelp ] ) ) ->

welcome(b) . Baker(2,b,ntn_ph,nnc_ph) +
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%% 2 -> 3
( ( st == 2 ) && ( ntn_ph in [ Usage ] ) && (nnc_ph in [ Helping ] ) ) ->

help(b) . Baker(3,b,ntn_ph,nnc_ph) +

%% 3 -> 0
( ( st == 3 ) && ( ntn_ph in [ NotUsing ] ) && (nnc_ph in [ FinishingHelp ] ) ) ->

thankGreet(b) . Baker(0,b,ntn_ph,nnc_ph) +

%% role NeedTurnNumber

%% rule (BD1)
( ( st in [ 0 ] ) && ( ntn_ph == NotUsing ) ) ->

sum d:Nat . requestNextNumber(d) . Baker(st,d,Usage,nnc_ph) +

%% rule (BD2)
( ( st in [ 3 ] ) && ( ntn_ph == Usage ) ) ->

done . Baker(st,b,NotUsing,nnc_ph) +

%% role NeedNextClient

%% rule (BC1)
( ( st in [ 1 ] ) && ( nnc_ph == FinishingHelp ) ) ->

idle(b) . Baker(st,b,ntn_ph,StartingHelp) +

%% rule (BC2)
( ( st in [ 2 ] ) && ( nnc_ph == StartingHelp ) ) ->

started(b) . Baker(st,b,ntn_ph,Helping) +

%% rule (BC3)
( ( st in [ 3 ] ) && ( nnc_ph == Helping ) ) ->

served(b) . Baker(st,b,ntn_ph,FinishingHelp) ;

proc
Display( st:Nat, d:Nat, sh_ph:ShowNumberPhase ) =

%% local STD

%% 0 -> 1
( ( st in [ 0 ] ) && ( sh_ph in [ Passive ] ) ) ->

lightDown . Display(1,d,sh_ph) +

%% 1 -> 0
( ( st == 1 ) && ( sh_ph in [ Offering ] ) ) ->

lightUp . Display(0,d,sh_ph) +

%% role ShowingNumber

%% rule (BD1)
( ( st in [ 0 ] ) && ( sh_ph == Offering ) ) ->

nextNumber(d) . Display(st,d,Passive) +

%% rule (BD3)
( ( st in [ 1 ] ) && ( sh_ph == Passive ) ) ->

ready . Display(st,d+1,Offering) ;

init
hide( {

%% Client actions
getTicket, showTicket, clarify, thankLeave,

%% Machine actions
incr, provide,

%% Baker actions
incrDisplay, welcome, help,
%% thankGreet,
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%% Display actions
lightUp, lightDown,

%% interactions
CM1, useDone, providingDone,
BD1, done, ready,
BC1, BC2, BC3 },

allow( {
%% Client actions

getTicket, showTicket, clarify, thankLeave,

%% Machine actions
incr, provide,

%% Baker actions
incrDisplay, welcome, help, thankGreet,

%% Display actions
lightUp, lightDown,

%% interactions
CM1, useDone, providingDone,
BD1, done, ready,
BC1, BC2, BC3 },

comm( {
%% Client-Machine interaction

requestMachine | readyToProvide -> CM1 ,
%% Baker-Display interaction

requestNextNumber | nextNumber -> BD1 ,
%% Baker-Client interaction

idle | requestBaker1 -> BC1 ,
started | requestBaker2 -> BC2 ,
served | ordered -> BC3 },

Client(0,0,NotTaking,NotServed) ||
Client(0,0,NotTaking,NotServed) ||
Client(0,0,NotTaking,NotServed) ||
Machine(0,1,Available) ||
Baker(0,0,NotUsing,FinishingHelp) ||
Display(0,1,Offering)

))) ;

B Reduced LTS

Labeled transition system for the specification of AppendixA with only actions
thankGreet by the Baker process shown on the left. It validates that all three
clients are served, assuming an atomic welcome-help-thankGreet sequences of
actions, and are served in order of their tickets. On the right, the labeled tran-
sition system for the specification of AppendixA with only actions thankLeave
by the Client processes shown. It validates that all three clients are served, but
they can (and will) leave in any order.
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Labeled transition system for the specification of Appendix A with only
actions showTicket and clarify by the Client processes shown. It validates
that all three clients can raise their ticket independently, since admitted local
behavior can be executed asynchronously from other component behavior, but
are served in order of their ticket.

References

1. Andova, S., Groenewegen, L.P.J., de Vink, E.P.: Dynamic consistency in process
algebra: from Paradigm to ACP. Sci. Comput. Program. 76(8), 711–735 (2011)

2. Andova, S., Groenewegen, L.P.J., de Vink, E.P.: Dynamic adaptation with dis-
tributed control in Paradigm. Sci. Comput. Program. 94, 333–361 (2014)

3. Arbab, F.: The IWIM model for coordination of concurrent activities. In: Cian-
carini, P., Hankin, C. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 34–56.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61052-9 38

4. Arbab, F., Herman, I., Spilling, P.: An overview of Manifold and its implementa-
tion. Concurr. - Pract. Exp. 5(1), 23–70 (1993)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

https://doi.org/10.1007/3-540-61052-9_38


244 L. P. J. Groenewegen et al.

6. Banach, R., Arbab, F., Papadopoulos, G.A., Glauert, J.R.W.: A multiply hierar-
chical automaton semantics for the IWIM coordination model. J. Univers. Comput.
Sci. 9(1), 2–33 (2003)

7. Bonsangue, M.M., Arbab, F., de Bakker, J.W., Rutten, J.J.M.M., Secutella, A.,
Zavattaro, G.: A transition system semantics for the control-driven coordination
language Manifold. Theoret. Comput. Sci. 240(1), 3–47 (2000)

8. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
199–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 15

9. Groenewegen, L., de Vink, E.: Operational semantics for coordination in Paradigm.
In: Arbab, F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp.
191–206. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46000-4 20

10. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

11. Jongmans, S.-S.T.Q., Arbab, F.: Global consensus through local synchronization:
a formal basis for partially-distributed coordination. Sci. Comput. Program. 115–
116, 199–224 (2016)

https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/3-540-46000-4_20


Author Index

Apt, Krzysztof R. 21

Baier, Christel 38
Barbosa, Luís S. 57
Blom, Kees 68

Chrszon, Philipp 38

Darquennes, Denis 86
de Vink, Erik P. 224
Dokter, Kasper 70
Dubslaff, Clemens 38

Figueiredo, Daniel 57

Gabbay, Dov 208
Gadducci, Fabio 70
Ghassemi, Fatemeh 160
Groenewegen, Luuk P. J. 224

Jacobs, Bart 139
Jacquet, Jean-Marie 86
Johnsen, Einar Broch 107
Jongmans, Sung-Shik 122

Kappé, Tobias 139
Klein, Joachim 38
Klüppelholz, Sascha 38

Li, Yi 174
Linden, Isabelle 86

Martins, Manuel A. 57
Mauro, Jacopo 107

Pourvatan, Bahman 160

Rienstra, Tjitze 208

Santini, Francesco 70
Schlatte, Rudolf 107
Shoja, Ehsan 21
Silva, Alexandra 139
Sirjani, Marjan 160
Sun, Meng 174

Talcott, Carolyn 189
Tapia Tarifa, S. Lizeth 107

van der Aalst, Wil M. P. 1
van der Torre, Leendert 208
van Heerdt, Gerco 139
Verschuren, Jan H. S. 224

Yu, Ingrid Chieh 107


	Preface
	Organization
	Contents
	Discovering the ``Glue'' Connecting Activities
	1 Introduction
	2 Behaviors, Event Logs, and Models
	2.1 Behaviors
	2.2 Event Logs
	2.3 Using Places to Constrain Behavior
	2.4 Behavior Defined by Places
	2.5 Mapping to Petri Nets

	3 Relating Places and Monotonicity
	4 Scoring Places
	5 Monotonicity of Place Scores
	6 Exploiting Monotonicity During Discovery
	7 Further Pruning of the Search Space
	8 How About Conformance Checking?
	9 Conclusion
	References

	Self-stabilization Through the Lens of Game Theory
	1 Introduction
	2 Preliminaries
	3 Dijkstra's First Solution
	4 Dijkstra's Three-State Solution
	5 A Four-State Solution
	6 A Game-Theoretic Analysis of the First Solution
	7 Related Work and Discussion
	References

	Energy-Utility Analysis of Probabilistic Systems with Exogenous Coordination
	1 Introduction
	2 Preliminaries
	3 Exogenous Coordination with PRISM
	4 REO for Exogenous Coordination within PRISM
	5 Application: Energy-Aware Network System
	6 Conclusions
	References

	A Note on Reactive Transitions and Reo Connectors
	1 Introduction
	2 A Hybrid Logic for Reactive Transitions
	3 Bisimulation for Reactive Models with Labels
	4 Conclusions and Future Work
	References

	Personal Note: Working with Farhad Arbab 1990–2005
	References

	Soft Constraint Automata with Memory
	1 Introduction
	2 Partially Ordered Monoids
	2.1 Cylindric Algebras

	3 A Key Example: Soft Constraints
	4 Soft Constraint Automata
	4.1 Weighted Data Streams
	4.2 Soft Constraint Automata with Memory
	4.3 The Language of SCAM
	4.4 Stateless SCAM
	4.5 SCAM Composition
	4.6 SCAM Hiding

	5 Related Works on Constraint Automata
	6 Conclusions
	References

	On the Relation Between Control-Based and Data-Based Coordination Languages
	1 Introduction
	2 The Reo Language
	2.1 Linguistic Description
	2.2 Timed Data Stream Semantics
	2.3 The ReoD Language

	3 A Family of Data-Based Coordination Languages
	3.1 The Language BachT
	3.2 The Language MRT
	3.3 The Language VBachT
	3.4 Transition System
	3.5 Expressiveness

	4 Translating ReoD in Bach
	4.1 First Observations
	4.2 Specification
	4.3 Implementation
	4.4 Correctness
	4.5 Restriction on Data

	5 Conclusion
	References

	Release the Beasts: When Formal Methods Meet Real World Data
	1 Introduction
	2 A Short Overview of Real-Time ABS
	3 Leaving the World of Semantics and Compositionality
	4 From Operational Semantics to Simulation
	4.1 Clock Advance
	4.2 Scheduling Processes

	5 Getting the Real World into the Models
	6 Getting the Models into the Real World
	7 Use Case: Scaling with Traffic Data
	8 Use Case: Vessel Planning
	9 Conclusion
	References

	Formalizing Propagation of Priorities in Reo, Using Eight Colors
	1 Introduction
	2 Preliminaries
	3 Problem
	4 Solution
	5 Evaluation
	6 Discussion
	A  Definitions
	References

	Learning to Coordinate
	1 Introduction
	2 Automata Learning: The Basic Algorithm
	2.1 Observation Tables
	2.2 Minimal Conjectures
	2.3 The Learning Algorithm

	3 Application to Reo Automata
	3.1 Learning a Reo Circuit

	4 Discussion
	References

	Reo Connectors and Components as Tagged Signal Models
	1 Introduction
	2 Preliminary Concepts
	2.1 Reo
	2.2 Timed Data Stream
	2.3 Tagged Signal Model

	3 Related Work
	4 Reo Connectors as Tagged Signal Models
	4.1 A Totally Ordered Tag Model
	4.2 A Partially Ordered Tag Model

	5 Discussion, Conclusion and Future Work
	References

	Generating Arduino C Codes from Mediator
	1 Introduction
	2 Background
	2.1 Mediator
	2.2 Arduino

	3 Code Generation
	3.1 Native Functions
	3.2 Type Generator
	3.3 Function Generator
	3.4 Entity Generator

	4 Experiment
	5 Conclusion and Future Work
	References

	From Soft Agents to Soft Component Automata and Back
	1 Introduction
	2 Background
	2.1 Constraint Semirings
	2.2 Soft Component Automata Formalism
	2.3 Soft Agents

	3 Soft Component Automata vs Soft Agents
	3.1 Preferences and Thresholds
	3.2 Composition
	3.3 Diagnostics
	3.4 Fault Models

	4 Related Work
	5 Conclusion and Future Directions
	References

	Argumentation as Exogenous Coordination
	1 Introduction
	2 Abstract Argumentation Semantics
	2.1 Abstract Semantics
	2.2 Labelling Semantics
	2.3 Baroni et al.'s Notion of Local Function

	3 Sequential Abstract Argumentation
	4 Predator-Prey Models
	5 Related Work
	6 Conclusion
	References

	Extending Paradigm with Data
	1 Introduction
	2 Formal Definitions
	3 An Example Paradigm Model
	3.1 STDs for the Components
	3.2 Roles of the Components
	3.3 Interactions Among Components

	4 Model Checking Paradigm Models with Data
	5 Concluding Remarks
	A  Complete mCRL2 Specification of the Bakery Example
	B  Reduced LTS
	References

	Author Index



