
Chapter 5
A Survey on the Scalability
of Recommender Systems for Social
Networks
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Abstract It is typical among online social networks’ users to share their status,
activity and other information with fellow users, to interact on the information shared
by others and to express their trust or interest for each other. The result is a rich
information repositorywhich can be used to improve the user experience and increase
their engagement if handledproperly. In order to create a personalizeduser experience
in social networks, we need data management solutions that scale well on the huge
amounts of information generated on adaily basis. The social information of anonline
social network can be useful both for improving content personalization but also for
allowing existing algorithms to scale to huge datasets. All current real-world large-
scale recommender systems have invested on scalable distributed database systems
for data storage and parallel and distributed algorithms for finding recommendations.
This chapter, focuses on collaborative filtering algorithms for recommender systems,
briefly explains how they work and what their limitations are.
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5.1 Introduction

A social network is a platform that facilitates individuals, connected through social
relations, such as family, friends, and colleagues [1, 2] to communicate with each
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Fig. 5.1 Components of the
Recommender Systems

other. When social networks expand at world-scale, as it is the case with the most
popular social networking sites and applications (e.g. Facebook, YouTube, Insta-
gram, Twitter etc.), the supporting software and hardware must scale too, in order to
support the millions of users. According to [3], scalable computing systems main-
tain consistent performance under an expanded workload. Referring to scalability in
social networks, we expect no compromise on performance from a social network
and also expect a standard level of latency, without significant changes, no matter
how its provision changes as new users are connecting or new content is being added.

Undoubtedly, the continued and differentiated expansion of social networks has
changed the way in which users communicate and interact with each other. There are
now more ways to exchange ideas, share opinions and learn in collaboration. In the
same time, the need for new features in social networking applications, which will
allow user to follow this expansion and delve with the increasing information, has
emerged. Trying to meet this need, Recommender Systems have come to provide a
solution and there are many techniques that have been used for different approaches
to this problem. Such systems become integral parts of most social networking appli-
cations, takes advantage of the stated or implicit preferences of users, the additional
information concerning their interaction with other users and the content they access
or share, and makes suggestions for new content, contacts or actions. They usually
act as systems trying to predict the user’s score for any potential item [4] or the user’s
opinion based on some item aspects.

As depicted in Fig. 5.1, the main components of a recommender system are:

• Data Collection and Processing: This is the task for the collection of data which
most of the times are large.

• FeatureGeneration andSelection: In this task algorithms are responsible for feature
generation and selection that can be performed either pre-calculate these features
or dynamically generates them.

• UserFeedback and Input: In this task the user is invited through the system interface
to provide ratings for items in order to construct and improve his model.

• Recommender Model: This is the main part of any recommender that orchestrates
the recommendation algorithm with all the previous data that it gets.
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• Data post-processing: Data post-processing is used in many systems in order to
optimize any measure generated by the model.

• User Interface: This is the final step of any system and is the component where
the user interacts with the system.

Lately, the field of application of recommender systems has expanded in a wide
area of domains such as creating movie or music recommendations, suggesting
related news, finding useful scientific research papers, recommending possible social
connections or potential products users could be interested in buying. But the type
of domains recommender systems are used for are not limited to the above. There
have been developed many domain-specific RSs such as for finding experts based
on a query string and the domain characteristics [5], or potential researcher for col-
laborating with [6], even for supporting suggestions on loans etc. [7], or just simply
suggesting pages of interest in Twitter [8]. In general, RSs aim to solve the infor-
mation overload problem for the users of a social network by recommending items,
which can either be content, products, services or even other users. In general, the
input of the process for creating recommendations is a set of users U and a set of
items I, whilst the function f that represents their relation is:

f : U × I → R (5.1)

This means that the recommendation algorithm “rates” each user-to-item relation
with a predicted score that represents the interest of user u for item i, which in terms
is the rating that the system predicts the user would give to this item and is created in
one of the followingways: (i) by defining a similarity between the user profile and the
item, using their content information (e.g. description, stated preferences etc.), (ii)
by defining a similarity between user profiles and then using only users with similar
profiles to the target user to predict item ratings, (iii) by filtering out items of low
interest to the target user [9]. In the latter case, information filteringmethods are based
on user demographic information (demographic), the content of previously rated
items (content-based filtering [10]) or simply the ratings and the ratings provided
by other users, also referred as collaborative filtering [11] and are able to predict
unknown item-ratings for a user. Several combinations of more than one technique
from the aforementioned categories have also been proposed in the literature resulting
to hybrid recommender systems [12]. Based on the predicted ratings for the unseen
items, recommender systems create a set of items to be recommended to user.

The success of Recommender Systems is undoubtedly over the last ten years or
more, but any current real-world large-scale recommender has to consider two of
the main points of concern: The quality of the produced recommendations, which
is defined by the actual recommendation accuracy, and the scalability, which is lim-
ited by the computational cost to provide these recommendations [13]. Scalability is
a problem associated with recommendation algorithms (more often in collaborative
filtering techniques) because computation normally grows at a linear rate to users and
items [14]. A recommendation technique that can be efficient for a limited number of
users and items may fail to produce satisfactory recommendations when the volume
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of the data increases. In general, some of the most important characteristics of col-
laborative filtering are the ability to generate personalized recommendations based
on the user’s prior activity in the system, or the activity data of other users that seem
to have similar tastes to the given user and the ease of incorporation depending on the
selected approach. Collaborative filtering algorithms can be categorized into three
major types based on its functionality (Memory-based, Model-based and Hybrid),
that are fully analyzed in Sect. 5.2. While many recommender system algorithms
have been developed, unless the system can reach unusually high diversity, each
algorithm can face different types of problems. One of the main issues collaborative
filtering algorithms face these days is scalability and data management due to the
exponential growth of user data all over the web.

While product ratings can be found in many product review sites, another useful
information provided by social media is the social network information, user-level
interactions (likes/dislikes, comments etc.), that is a useful type of information for
improving RS predictions. This is based on the idea that a user’s circle of friends
directly affects the user’s ratings. When using this social information, we can use
friendship information alone, combine it with user provided ratings, or even filter
recommendations using social information. In the process of dealing with scalability
and time performance issues that recommender systems usually face, using user
profile information for computing user similarity and applying user clustering can be
a useful approach. Other approaches build on dimensionality reduction techniques in
order to reduce the problem complexity (e.g. Singular Value Decomposition-SVD).
When social and other information is added to item ratings the complexity of the
recommendation problem increases and scalability solutions have to be reconsidered.

This chapter focuses on collaborative filtering algorithms for recommender sys-
tems and surveys the various alternatives for processing huge and sparse rating
graphs, with or without external knowledge. The section that follows briefly illus-
trates the steps of the recommendation process and briefly describes the most widely
adopted techniques. Section 5.3 lists the open challenges for recommender systems.
Section 5.4 targets on the solutions that have been proposed in the literature for
handling recommendations over large data and more specifically in algorithms and
implementations that scale up to millions of users and items and billions of ratings.
The solutions fall into three main categories: i) those that focus on Factorization of
the user-to-item ratings’Matrix and propose parallel and distributed implementation,
ii) those that partition the huge set of ratings into clusters taking advantage of external
knowledge from the social network (e.g. user or item content similarity, social net-
work bonds etc.) and thus split the recommendation problem into smaller parts, iii)
hybrid methods that build mainly on external knowledge trying to boost the results
of the distributed Matrix Factorization methods. Finally, Sect. 5.5 summarizes the
chapter and highlights the future challenges in the field of recommender systems for
social networks.
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Fig. 5.2 Phases of
recommendation process

5.2 Recommendation Techniques

From a system-oriented perspective, the recommendation process takes as input a
collection of users and their ratings for a collection of items and produces a per-user
personalized set of recommended items. In order to achieve this, a recommender
system operates in three stages, which is depicted in Fig. 5.2 and detailed in the
following.
Information collection phase: In the first phase, the system collects any relevant
information about the users in order to create their profile. Depending on the type of
the system, this information must have a minimum size and detail so as the desired
model that will be used in the recommendation phase could be prepare. There are
systems with specific information collection protocols under which they use this
information in order to determine the current state of knowledge and support any
decision making for learning any available user profile information for all users
taking part in the recommendation process. The information used as input by Rec-
ommender Systems in order to prepare a full picture of their users. Such types are
either high quality explicit feedback, which includes explicit input by users regarding
their interest in items or implicit feedback by inferring user preferences indirectly
through observing user’s behavior [15].
Learning phase: In the second phase, the system feed the collected information to
a learning algorithm that filters and exploits users’ features/attributes that will better
serve in the recommendation phase. In other words, the system builds the model
which is actually an abstraction of the relationship between the items and users.
Prediction and Recommendation phase: This last phase predicts and/or recom-
mends what kind of items the user may prefer. This can be performed either directly,
based on the dataset collected in the first phase of information collection, which
results to the memory-based or model-based approaches or combined with data that
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refers to other user activities and preferences, which results to hybrid approaches
[12], which are all explained in the following section. The user reaction to the rec-
ommended items is continuously recorded and used as a feedback that improves the
recommender system performance over time.

In the case of Recommender Systems for Social Networks, the information pro-
vided within the social network serves for three main objectives: (a) improving the
quality of predictions and recommendations [16, 17], (b) proposing or generating
novel Recommender Systems [18, 19], and (c) elucidating the most significant rela-
tionships between social information and collaborative processes [20, 21].

There are three main kinds of recommendation techniques based on the infor-
mation employed for filtering out items of low interest to the target user, predict-
ing item ratings and producing recommendations [9, 22]: (i) Collaborative Filtering
techniques that mainly focus on the user-item ratings, (ii) Content-based Filtering
techniques that employ additional content for users and items and define several sim-
ilarity measures and matching models to produce recommendations and (iii) Hybrid
techniques that combine the merits of both worlds.

5.2.1 Content-Based Filtering

Content-based filtering is also referred to as cognitive filtering. In content-based
filtering techniques, an item is recommended to a user when similarity between
this item and the items user had already expressed his preference in the past is
high. More specifically, the recommendation is being made by comparing the items’
content description. The content of each item is represented as a set of descriptors or
keywords and the user profile is represented with the same keywords and is created
by examining the content of items which have been seen by the user in the past. In
order to use content-based filtering, the similarities for all items are being computed,
the items get ranked based on these similarities and the top-N ranked items are finally
get recommended to the target user.

5.2.2 Collaborative Filtering

Collaborative filtering (CF) is considered as one of the leading approaches for cre-
ating recommendations and that is why it is used by some of the largest commercial
platforms. The recognition of its usability is shown by the fact that many varia-
tions and techniques have been developed for this purpose. The basic idea behind
this technique is that a user provides his preferences in the form of ratings for the
available items, either implicitly or explicitly and a customer, who seemed to have
similar preferences in the past, would probably still have the same preferences. A
basic advantage of this kind of techniques is that there is a limited or no need for
semantic information in order to produce recommendations. This is the reason behind
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their popularity among major social network-based applications including Amazon,
Netflix, iTunes, IMDB etc.

Collaborative Filtering (CF) is based on user (or item) similarity [23] measured
over the users’ (or items’) rating information. The aim of CF systems [22] is to
predict users’ interest for items they have not yet reviewed, based on the ratings they
have provided for other items and the ratings of other users for all items. The items
with the highest predicted ratings are recommended to the user.

Collaborative Filtering systems can be categorized in two major categories: the
memory-based that search for the top-k similar users (i.e. users with similar ratings
on the commonly evaluated items) or items (i.e. items that have been rated similar
to the items preferred by the user) and use only this information to create their
recommendations and the model-based, which use all ratings to train a model for
predicting user’s preferences for an unseen item.

5.2.3 Hybrid Techniques

Hybrid techniques combinemore thanonefiltering strategies,which are implemented
as sub-components of the recommender system. This kind of techniques try to inte-
grate characteristics from collaborative filtering and content based techniques with
an ultimate goal of enhancing recommendation quality and overcome the disadvan-
tages of the single filtering techniques. Hybrid filtering is classified in six categories
(i) mixed hybrid (ii) weighted hybrid (iii) switching hybrid (iv) cascaded hybrid
(v) feature-combination hybrid and (vi) meta-level hybrid. One simple approach,
proposed by [24] is to create two sets of ranked recommendations (one with each
technique) and then combine them to produce one final list.

The success of deep learning networks in several application domains, also opened
a new research field for hybrid recommender systems, which feed the deep learning
networks bothwith rating and content information about users and items and improve
the quality of recommendations [25]. Although they better solve many several know
issues recommender systems face, such as the cold-start problem [26, 27] or the
ratings matrix sparsity [28], they still do not handle scalability issues [29].

5.3 The Challenges of Recommender Systems

Some of the most challenging issues Recommender systems face are scalability,
diversity and the long tail, sparsity and of course the cold-start problem. In addition,
content-based filtering faces the problem of content analysis in the cases where the
sets of items lack of a respectively sufficient set of features. This is justified by
the fact that the accuracy of the content-based filtering predictions depends on the
amount of information used for classifying the items. Finally, the combination of
collaborative filtering and content-based filtering approaches in an efficient way still



96 C. Sardianos et al.

remains an open issue in many hybrid filtering cases. Some major of the already
mentioned challenges are described in more details in the next subsections.

5.3.1 Cold-Start Problem

Cold-start problem is one of themajor issues for techniques like collaborative filtering
and content-based filtering [30]. During the learning stage of these methods, the
analysis of information derived by the user’s profile at the system, so in scenarios
where this information is provided directly by the user, the existence of users with
little to none info available is very common. Specifically in collaborative filtering,
the problem occurs when the system tries to predict the score of an item while this
item may not have been rated at all by any user. Of course the same issue occurs
when new items (and thus never rated before) are being added into the system, which
is also known as first-rater problem.

When a new user comes into the system, is very difficult for the recommender
system to produce prediction, since the user preferences is yet unknown and there are
no items in his history, so both collaborative and content-based filtering can hardly
compute any user similarity or create any content profile information respectively.
This kind of problems can be eliminated by using hybrid approaches, which are
presented in the techniques section, since each technique can be more tolerant to this
issue.

5.3.2 Data Sparsity

According to [11], some of the largest commercial sites use recommender systems in
order to provide recommendations over very large sets of products. When input data
(i.e. user-to-item ratings) are not sufficient for calculating user (or item) similarities
then we face the data sparsity issue. This constitutes a critical point in the process of
creating high accuracy recommendations which may consequently limit the overall
applicability of such systems especially in applications with large and sparse data
sources. In other words, the items that have not yet received any ratings from a
sufficient number of users, in the case of newly added items for example, can not
contribute to the recommendation process as they can not be recommended to any
user.

This issue occurs as a result of lack of enough information. Representing the
entities that participate in the recommendation process (users and items) as a matrix,
it is clear that when the data face the sparsity issue, any user vector that contains the
user’s ratings for all of the items, will contain more zeros. That means that looking
for the positions only of the rated items will produce a more compact format. This
in terms leads to reduced demand for memory processing resources.
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5.3.3 Synonymy

Word synonymy and polysemy are twomajor issues for many text mining algorithms
that depend on text similarity [31]. Consequently it affects content-based recom-
mender systems that rely on textual descriptions of items or user profiles in order
to find similarities. For example, a content-based recommender system is unable to
understand that the terms “scary movie” and “horror film” in the description of two
items have similar meaning, and fails to associate the two items.

The ambiguity introduced by synonymous and polysemous terms in descriptions
decreases the recommendation performance and must be considered. Latent seman-
tic analysis techniques [11] and knowledge-based methods are used to overcome the
synonymy problem and improve the content-based recommender systems’ perfor-
mance.

5.3.4 Attacks

The recommender system may be vulnerable to attacks that make it to recommend
items that otherwise wouldn’t be recommended. There are cases where users have the
ability to give recommendations on their own. This means that they can give positive
recommendations for their items or friends and also negative for competitor’s items
or friends. This normally shouldn’t be allowed. These are called shilling attacks [32].

There are some other attacks, where users exploit the recommendation mecha-
nism by creating fake profiles and providing false ratings to items in order to promote
items of their interest. These are called push attacks. Finally, there are attacks that are
called nuke attacks which try to make the recommendation algorithm nonfunctional
and thus, stop the recommendation process. Due to these kinds of threats, any pro-
duction level recommender system should be accompanied by some kind of security
mechanism against these attacks [33].

5.3.5 Privacy

Privacy plays an important role regardless of the system type. The concern on keep-
ing data private is to identify the limits between privacy and data access for creating
personalized modern applications. Of course, defining these limits is a difficult task,
as more data is needed for creating a more personalized profile. This is why these
limits are easily violated or ignored in recommendation techniques [34], while pro-
file data are gathered and processed. So privacy protection is a crucial point at the
process of the data by every recommender system for personalized systems. In order
to provide accurate and valuable recommendations, most techniques require using
as much information as possible about the user. Of course there are approaches
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that try to solve this problem. Randomized transformations of the user-item rating
matrix, preserve users’ differential privacy [35] without significantly degrading the
performance of collaborative filtering algorithms.

5.3.6 Explanation

Explanation, or interpretability of recommendations, is also a characteristic of rec-
ommender systems. An instinctive argumentation like “since you already like these
movies, you will also like this one as well” gets easily understood by the users, no
matter the precision of this statement [36]. Unfortunately, there are systems don’t
provide good explanations and sometimes are not inspiring users to trust the rec-
ommendations and increase their satisfaction. Explanations need to be considered
as a must in recommendation systems in order to help the user understand how the
systemworks and take part in the recommendations that aremade by giving feedback
where is needed. An easy way to provide good explanations is through A/B testing.
Satisfaction can also be measured indirectly, measuring user loyalty [37].

5.3.7 Stability

The stability problem occurs when the extent of changes in the recommendation
algorithm predictions grows. A stable recommender can make users trust more the
system as they will get consistent predictions, whereas a recommender that provides
predictions that change over time can confuse users. Stability can be measured if we
compare the predictions between two periods during which new ratings have added.
Several attempts discount the weight of older ratings by time, in order to reduce their
influence to the final recommendation [38] but again they do so at the risk of losing
information about permanent, long-term interests that are sporadically expressed.

5.3.8 Scalability

Scalability issues starts to existwhen the total number of users and items in the system
grows excessively, above the level that traditional Collaborative Filtering algorithms
reach their limits of performance. This is the point where the computational resources
needed for processing become extremely high to be practically used [11]. The prob-
lem can be solved with dimensionality reduction techniques, like SVD, that apply
several matrix factorization steps in order to produce good quality recommendations
with fewer resources, achieving high quality results with better scalability.

When additional information exists, such as user profile, social network infor-
mation etc., data partitioning can be applied to the original user-item rating matrix
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and parallel and distributed algorithms can be used to allow maximum scalability.
Nayebzadeh et al. proposed an improved version of Collaborative Filtering [39] to
deal with the disadvantage of cold-start problem. Their approach proposes the cre-
ation of a model that combines the user preferences as expressed for example in the
user profiles, the item acceptance which describes the estimation for a given item i
that will be rated with value k by the users, and the friend inference which describes
the relation of any given target user with his neighbors/friends based though on the
commonly rated items, and based on this probabilistic model try to predict the user’s’
ratings for the given items. Although the results of the experiments suggest that this
model can perform better or equal to the traditional CF, since the evaluation was
performed over a heuristic dataset, this needs to be tested to actual datasets of real
large-scale networks to verify the level of solution to the scalability problem.

More details about scalability and possible solutions are presented in the next
section.

5.4 Scalability of Recommender Systems for Social
Networks

The scalability of an information system is subject to the available resources, the
architecture it implements and the algorithms it employs. Similarly, the scalabil-
ity of a recommender system for social networks relies both on the resources that
are available and the system architecture that may allow for distributed or parallel
data management and processing, but also on the algorithms that are employed and
whether they can adapt to the scalable architecture or to large data sizes. In the former
case, parallel and distributed algorithms that must be designed, whereas in the latter
case, new algorithms that can achieve comparable performance without using all the
available data must be created.

Multimedia content is the second dimension input of recommendation engines
over the web after the user dimension. Especially after the prevalence of smartphones
that provide multiple ways of accessibility to different content, social media have
taken advantage of it and are continually try to provide recommendation based on
this different type of data. The challenges though are many. Multimedia data often
contains a lot of high-level semantic meanings. Moreover, the scale of data is big
with high growth rate, and this requires huge amount of computing resources. Finally,
when we referring to multimedia then we are talking about different kinds of content
like image, video, audio, text or combinations of them. The majority of techniques
in this area exploit high level metadata which is extracted from low level features
either in an automatic or a semi-automatic way. This data is compared with user
preferences at the end.
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5.4.1 Scalability and Data Management

Database Management Systems (DBMS) have a crucial role in social networking
applications, where a huge amount of data, produced and consumed at multiple,
geographically distinct locations, must be stored, retrieved and delivered efficiently.
Centralized Relational DBMSs are designed to provide guaranteed consistency but
can hardly scale-up to the requirements of worldwide social networks. These lim-
itations are the reason that popular social networks such as Facebook, and Twitter
have explored alternative Distributed and NoSQL data storage systems [40] such as
Cassandra [41], Megastore, PNUTS, Dynamo, MongoDB, COPS and SCADS [42].

Although RDBMSs are “not cloud friendly” due to the relationships and depen-
dencies among stored data, NoSQL databases can scale better even when running
on commodity hardware with increased fault-tolerance when using cloud infrastruc-
ture. However, they also face several challenges that relate to data partitioning and
replication [43, 44] and middleware solutions have been developed for this purpose.
For example, SPAR [45], a social partitioning and replication middle-ware, which
has been designed for supporting social networking applications. SPAR supports dif-
ferent data partition methods (both random and social graph based) and data-stores
(both Key-Value store - Cassandra and a relational database -MySQL) and allows
scalability, without restricting to a specific database implementation.

5.4.1.1 Data Partitioning

As addressed in [13], the problem of applying Collaborative Filtering to large
product-rating graphs is still an open and challenging issue. Collaborative Filter-
ing methods generate recommendations based on product-review information and
ratings history for users and products. In the core of their functionality, they need to
process a matrix, also represented as bipartite graph, which stores the user ratings for
the products. In practice, however these methods strangle to scale to large bipartite
graphs. In the following, we assume that both representations -matrix and bipartite
graph- are equivalent.

Over the past years, there has been a bulk of research interest regarding several
Collaborative Filtering techniques and data partitioning methods that allow existing
algorithms to scale up to a larger scale. The technique proposed in [13] predicts
the performance of Collaborative Filtering algorithms using the structural features
of the bipartite graphs and a machine learning approach in order to find the best
partitioning of the original graph. To this end, the authors employ graph partitioning
in order to split the original bipartite product-rating graph to smaller sub-graphs
and apply the Collaborative Filtering techniques in a parallel setup. With the use
of Lenskit Recommender library and Apache Spark [46], they are able to scale the
CF-based recommender to large-scale bipartite ratings graphs. In the partitioning
step, they take advantage of the undirected social graph, which contains friendship
relations between users in the social network. This graph is partitioned first and user
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partitions are created. Then the bipartite graph is split into sub-graphs by keeping in
each bipartite partition only the ratings provided by the users of the respective user
partition. In order to deliver good recommendations, the authors generate different
numbers of user partitions (and rating sub-graphs respectively) and then predict CF
performance in order to determine the best partitioning scheme. For CF performance
prediction, they consider additional (bipartite) graph structure metrics compared to
previous studies.

Many alternatives for partitioning the rating data and splitting the large CF task
to smaller tasks have been proposed in the literature. The proposed methods either
group users together based on their social connections [47], or cluster the items
together based on the ratings they share in common [48]. Finally, several methods
first merge the rating information with the user social network information and then
apply factorization techniques [49] or multi-way spectral clustering, using only the
top few eigenvectors and eigenvalues to partition the data [50].

5.4.1.2 Parallel and Distributed Algorithms

Since the volume of data from social networks keeps growing to huge levels andmany
state-of-the-art collaborative filtering algorithms struggle to keep upwith, it was clear
to the research community that parallel and distributed system techniques could be
utilized to deal with the data processing and solve scalability issues. Based on this
idea, a large number of researches have been published that describe implementations
of traditional collaborative filtering algorithms on parallel and distributed setups. In
this context, frameworks such as OpenMP, Pthreads and Java Threads for parallel
programming have been used for collaborative filtering [51]. Two of themost popular
distributed frameworks, Mahout [52] and Apache Spark [46] have been widely used
for high-volume data processing.

Based on the idea of distributed processing, authors in [53] proposed a Distributed
Partitioned Merge (DPM) model, which is a hybrid model for large social network
graphs processing. For the creation of their model they leverage the simplicity pro-
vided by Fork-Join programing and the scalability provided by Pregel framework.
As reported by the evaluation findings, DPM seems to outperform both Pregel and
Fork-Join in terms of recommendation time, but with aminor penalization in network
usage.

Another group of research has been focused on recommender systems in decen-
tralized, P2P environments. The peers of such networks can share profile and history
information only with peers having similar interests, thus reducing the load for the
recommender system and allowing a decentralized and scalable implementation [54].

The PipeCF algorithm [55, 56], has also been designed for P2P networks. The
algorithm first divides the original user database into buckets which are stored in
different peers and each is assigned an identifier in order to use this as a key when
needed. Then PipeCF uses the information from all users in the same bucket with the
active user to compute the predictions. The algorithm increases the weights for the
contributions of the most similar users (unanimous amplification) and decreases the
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weights for users that have rated many items (significance refinement) in a process
which is similar to TF/IDF weighting of terms in a text collection.

Authors in [57] created a model for predicting user to item relevance scores
proposing the use of buddy-tables, which are actually tables for storing the relevance
among items in ranked order (the information about the top-N relevant items). The
information of these tables “follows” each item and is available among the peers of a
P2P network. The buddy tables are implicitly used to create a kind of semantic layer
of information in order to cluster together similar multimedia files. Every time a user
starts a transaction (e.g. downloads a file), the buddy tables are updated keeping the
system up-to-date. With regard to the recommendation process, given a user profile
that we would like the system to create recommendation for, the buddy tables for this
user have to be downloaded and the relevance scores for every item in these tables
are calculated. Based on these calculations, the items that were “classified” in the
top-N suggestions return to the user in the form of recommended items. Simulation
experiments conducted on user logs from the Audioscrobbler community showed
promising results for this P2P recommendation technique.

Another approach on dealing with the sparsity and scalability problem of the
model-based Collaborative Filtering methods is the scalable clustering-based Col-
laborative Filtering (ACFSC), which focuses on reducing time complexity for the
neighborhood creation for dealing with scalability [58]. The minimized usage of
external data such as user profile and item metadata can maximize the adaptable
domain. In addition, the combination of rating and external data can help on solving
at some point the cold-start problem and the formation of better clusters by relocat-
ing users and items using the newly arrived ratings can increase the model coverage.
Based on these policies, their architecture consists of four steps. Initially, the cluster
model is created based on the user or item feature vectors. Based on this model,
the top-N selected items are recommended, depending on the user’s preferences. As
a third step, the users’ missing preferences caused by ratings matrix sparsity have
to be predicted using other users and items clusters. Finally, at the learning phase,
user and item feature vectors are learned to quantify the users’ and items’ qualitative
characteristic.

There are also some clustering based methods proposed that use similarities
between users and items to create clusters of users or items. Taking this further,
multi-dimensional clustering can be used to cluster metadata information like user
and item profile data and as a second step, the pruning of the created clusters is used
to calculate the weighted average of the neighbor scores as a prediction for the user
preference [59]. Another clustering based method proposed by Bellogin and Parapar
[60] who used N-cut graph clustering to produce clusters with high user similarity,
improving Collaborative Filtering performance but their approach lacks of coverage.
The main limitation of the clustering based approaches is the higher computational
cost for the cluster creation step than that for the Collaborative Filtering itself.
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5.4.2 Scalable and Incremental CF Algorithms

In a common real-life scenario, a recommender is given a i × j ratings matrix where
i and j is the number of Users and Items/Users/Products etc. respectively. and the
system has to predict the unknown elements of the matrix. However, when the rating
matrices are sparse, collaborativefiltering suffers fromnoise in similarity calculations
and results in poor recommendation quality. Latent factor analysismethods have been
proposed in this case, in order to discover underlying user and item correlation and
tackle the critical issue of similarity computational cost. In model-based approaches,
several techniques that use the rating matrix in order to train a prediction model
have been proposed, such as Principal Component Analysis (PCA), Latent Dirichlet
Analysis (LDA) and Singular Value Decomposition (SVD). As stated by [4], these
matrix factorization techniques are often preferred because they offer high accuracy
and scalability. Factorization of the user-item ratings matrix [61] has become a quite
popular solution for recommender systems after the Netflix prize competition, which
indicated the ability ofmatrix factorization technique to achieve higher accuracy than
the neighborhood-based techniques for creating item recommendations. In addition,
using matrix factorization techniques allowed the use not only of explicit but implicit
information as well.

The idea behind matrix factorization is the expression of both nodes of the system
(i.e. users and items) into feature vectors based on patterns (latent factors) recognized
in the edge list (i.e. user-to-item ratings). For the same reason, matrix factorization
has been employed in many latent factor models, where recommendations are based
on similarities computed over the generated item and user factors. Their ability to
model different real life data and to provide good predictionsmade themvery popular.

In order to achieve scalability in matrix factorization and keep the quality of
recommendations high, the proposed methods, use overlapping partitions or decom-
positions of the original matrix and external knowledge (e.g. from content or from
social networks) that decreases the sparsity of the original matrix. In a different
direction, incremental methods use only new ratings to (re-)train an existing model.

In [62] describe how Amazon uses topic diversification algorithms to improve
its recommendation. In more detail, the system that they present, uses collaborative
filtering method to overcome scalability issue by generating a table of similar items
offline through the use of item-to-item matrix. The system then recommends other
products which are similar online according to the users’ purchase history.

The idea of combining ratings and social network information has been revisited
in SoRec algorithm [63] resulting in a huge sparse matrix. This time probabilistic
matrix factorization has been applied in order to reduce the sparsity of the matrix.
A common shared latent factor that captures both user-item rating and users’ social
trust led to improved predictions.

An incremental learning approach has been introduced in [64], in order to rec-
ommend high-quality videos in real-time. The factorized matrix was updated using
implicit feedback from different user actions and item similarity considered addi-
tional factors, such as video type and duration. Finally, they propose the scalable
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implementation of their algorithm together with some optimizations to make the
recommendations more efficient and accurate, including the demographic filtering
and demographic training.

The use of incremental algorithms, can also improve the scalability of model-
based recommender systems, since only the newer information is used to train the
model. Luo et al. [65] used Regularized Matrix Factorization to create an incremen-
tal Recommender System. The Recommender System that they proposed creates an
initial model with the given parameters and allows their model to be incrementally
trained, meaning that their model is incrementally updated as new ratings arrive.
These kind of approaches provide real improvement of the quality of recommen-
dations solving partially the problem of sparsity of the rating matrices but actually
deteriorate the scalability issue.

In the compact latent factor model proposed in [66], the item-scoring function
was trained periodically, to reduce the training overhead. Authors introduced a buffer
mechanism to retrieve the data incrementally and compared to traditional learning,
achieved better scalability, since their model updated only when the number of data
instances in the current buffer is sufficient rather than each time a rating was added.

Finally, in [67] authors exploit the parallel computing platform and application
programming interface (API), known as CUDA, which improved the performance,
exploiting the graphics processing unit (GPU) capabilities in high processing and
propose aCUDAbasedmatrix factorization library calledCuMF that uses themethod
of alternate least squares (ALS) to implement matrix factorization in large-scale
datasets. This proposed method aims on increasing performance in both single and
multiple GPUs. Some key features are the leverage of the GPU memory structure
and hierarchy in order to provide easy access to sparse data and the minimization of
the communication costs by using data and model parallelism.

5.4.3 Scalability of Deep Learning Solutions
in Recommender Systems

Another way to confront, sparsity, cold-start, scalability and other issues is the use
of hybrid filtering. This approach involves the combination of different techniques
for creating recommendations, trying to improve the accuracy of the predictions [68,
69], while leveling out individual method weaknesses [70]. They can be classified
based on their operations into weighted hybrid, mixed hybrid, switching hybrid,
feature-combination hybrid, cascade hybrid, feature-augmented hybrid and meta-
level hybrid [71].

The rise of deep learning techniques also affected the recommender systems.
Towards this direction, Peska and Trojanova [72] used the visual descriptors of the
deep neural networks for creating item-based recommendations as an evaluation
scenario for creating a photo lineup assembling task. This is a great example of how
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broad is the utility of deep learning and recommendation processes in wide areas of
research.

Many current researches on deep learning for recommendation systems address a
variety of potentials open for discussion. In this context, Smirnova and Vasile [73],
address the limitation of not using implicit information from the user profile, such
as the timestamp of a user-item transaction or the user’s inactivity time interval,
by the Recurrent Neural Networks. Based on this, authors propose a class of RNN,
called Contextual Recurrent Neural Networks (CRNNs), that uses the contextual
information of the network both in the input and output of the CRNN and rectifies
the behavior of the neural network in order to produce item predictions. Based on the
experimental results, using YooChoose dataset and a proprietary dataset consisted
by user browsing and purchasing activity on various e-commerces, this approach
can achieve noteworthy results against sequential and nonsequential state of the art
models.

Tackling the problem of boosting a recommender system’s performance, Chatzis
et al. [74] proposed the creation of amachine learningmodel that can derive hidden or
implicit information from the sparse user session data. This idea is typically based on
traditional RNNapproacheswhich define the state-of-the-art in this domain. Towards
the same direction, Zanotti et al. [75] collect and combine data frommultiple sources
such as user-item ratings, user-item reviews and item descriptive data in the effort of
forming rich distributed representations and enhancing this information in the classic
RNN systems. The further goal of this method is to try to boost the prediction of the
user to item actual score.

Basedon the experimental findings of the approachesmentioned above, all of these
enhancements can help recommender systems achieve better results with the use of
deep learning methods such as neural networks. Based on the survey of research on
deep learning and recommender systems, the pinpoint that need attention is that even
though there is plenty of research in deep learning for these kind of purposes andmany
approaches seem to outperform traditional techniques for providing higher results of
recommendations inmany cases, all these approachesmainly target on improving the
actual recommendation algorithm scores rather than solving the scalability issues.
In that sense, we consider that there is plenty of research interest towards this area
and the need for that seems necessary.

5.5 Conclusions

Dealing with the problem of creating real-life recommendations in large-scale and
sparse networks can be a challenging task both regarding scalability, data sparsity
and recommendation quality of course.

The major challenges in RS are the scalability, diversity and the long tail, sparsity
and the cold-start problem. In addition, content-based filtering faces the problem of
content analysis in the cases where the sets of items lack of a respectively sufficient
set of features. Finally another challenge is the combination of collaborative filtering



106 C. Sardianos et al.

and content-based filtering approaches in hybrid filtering cases. A solution about the
scalability and data management problem in CF-recommenders, can be the idea of
splitting the (social) graph into sub-graphs as long as the use of parallel anddistributed
algorithms. Matrix factorization is another solution for scalable and incremental CF-
algorithms. Finally away to confront, sparsity, cold-start, scalability and other related
problems is the use of hybrid filtering techniques especially based on deep learning.

Since many state-of-the-art collaborative filtering algorithms struggle to keep up
with the three main characteristics of big data, that could describe the current state
in many large scale social networks, Volume, Velocity, Variety -the also known as
three Vs- it was clear that parallel and distributed technologies could and would offer
potential solutions to some of these issues. In this context, many research works have
proposed the implementation of existing recommendations algorithmsonparallel and
distributed systems. Many modern recommender systems are based in partitioning
or clustering methods trying to deal with the scalability, but a trend in using parallel
and distributed systems is observed. Most of these approaches try to distribute the
data over a cluster or parallelize the classic collaborative filtering algorithms used in
traditional techniques to deal with the scalability problem.

The last fewyears the field of deep learning seems to gain a lot of research focusing
in the use of techniques like Recurrent Neural Networks for processing data and
creating very accurate recommendations. However, the main point of concern is that
although these methods outperform traditional approaches in many cases, still they
try to encounter the issues of sparsity and cold-start recommendations and not the
problem of scalability. Based on this, there seems to be plenty of open space for
research towards this direction.
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