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Abstract. A correspondence between database tuples as causes for
query answers in databases and tuple-based repairs of inconsistent
databases with respect to denial constraints has already been established.
In this work, answer-set programs that specify repairs of databases are
used as a basis for solving computational and reasoning problems about
causes. Here, causes are also introduced at the attribute level by appeal-
ing to a both null-based and attribute-based repair semantics. The cor-
responding repair programs are presented, and they are used as a basis
for computation and reasoning about attribute-level causes.

1 Introduction

Causality appears at the foundations of many scientific disciplines. In data and
knowledge management, the need to represent and compute causes may be
related to some form of uncertainty about the information at hand. More specifi-
cally in data management, we need to understand why certain results, e.g. query
answers, are obtained or not. Or why certain natural semantic conditions are not
satisfied. These tasks become more prominent and difficult when dealing with
large volumes of data. One would expect the database to provide explanations,
to understand, explore and make sense of the data, or to reconsider queries and
integrity constraints (ICs). Causes for data phenomena can be seen as a kind of
explanations.

Seminal work on causality in databases introduced in [32], and building on
work on causality as found in artificial intelligence, appeals to the notions of
counterfactuals, interventions and structural models [28]. Actually, [32] intro-
duces the notions of: (a) a database tuple as an actual cause for a query result,
(b) a contingency set for a cause, as a set of tuples that must accompany the
cause for it to be such, and (c) the responsibility of a cause as a numerical
measure of its strength (building on [19]).
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Most of our research on causality in databases has been motivated by an
attempt to understand causality from different angles of data and knowledge
management. In [11], precise reductions between causality in databases, database
repairs, and consistency-based diagnosis were established; and the relationships
were investigated and exploited. In [12], causality in databases was related to
view-based database updates and abductive diagnosis. These are all interesting
and fruitful connections among several forms of non-monotonic reasoning; each
of them reflecting some form of uncertainty about the information at hand. In the
case of database repairs [8], it is about the uncertainty due the non-satisfaction of
given ICs, which is represented by presence of possibly multiple intended repairs
of the inconsistent database.

Database repairs can be specified by means of answer-set programs (or dis-
junctive logic programs with stable model semantics) [15,26,27], the so-called
repair-programs. Cf. [8,18] for details on repair-programs and additional refer-
ences. In this work we exploit the reduction of database causality to database
repairs established in [11], by taking advantage of repair programs for specifying
and computing causes, their contingency sets, and their responsibility degrees.
We show that the resulting causality-programs have the necessary and sufficient
expressive power to capture and compute not only causes, which can be done
with less expressive programs [32], but especially minimal contingency sets and
responsibilities (which provably require higher expressive power). Causality pro-
grams can also be used for reasoning about causes.

As a finer-granularity alternative to tuple-based causes, we introduce a par-
ticular form of attribute-based causes, namely null-based causes, capturing the
intuition that an attribute value may be the cause for a query to become true
in the database. This is done by profiting from an abstract reformulation of
the above mentioned relationship between tuple-based causes and tuple-based
repairs. More specifically, we appeal to null-based repairs that are a particu-
lar kind of attribute-based repairs, according to which the inconsistencies of a
database are solved by minimally replacing attribute values in tuples by NULL,
the null-value of SQL databases with its SQL semantics. We also define the cor-
responding notions of contingency set and responsibility. We introduce repair
(answer-set) programs for null-based repairs, so that the newly defined causes
can be computed and reasoned about.

Finally, we briefly show how causality-programs can be adapted to give an
account of other forms of causality in databases that are connected to other
possible repair-semantics for databases.

This paper is structured as follows. Section 2 provides background material
on relational databases, database causality, database repairs, and answer-set
programming (ASP). Section 3 establishes correspondences between causes and
repairs, and introduces in particular, null-based causes and repairs. Section 4
presents repair-programs to be used for tuple-based causality computation
and reasoning.1 Section 5 presents answer-set programs for null-based repairs
and null-based causes. Finally, Sect. 6, in more speculative terms, contains a

1 This section is a revised version of the extended abstract [13].
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discussion about research subjects that would naturally extend this work. In
order to better convey our main ideas and constructs, we present things by means
of representative examples. The general formulation is left for the extended ver-
sion of this paper.

2 Background

2.1 Relational Databases

A relational schema R contains a domain, C, of constants and a set, P, of predi-
cates of finite arities. R gives rise to a language L(R) of first-order (FO) predicate
logic with built-in equality, =. Variables are usually denoted by x, y, z, ..., and
sequences thereof by x̄, ...; and constants with a, b, c, ..., and sequences thereof
by ā, c̄, . . .. An atom is of the form P (t1, . . . , tn), with n-ary P ∈ P and t1, . . . , tn
terms, i.e. constants, or variables. An atom is ground, aka. a tuple, if it contains
no variables. Tuples are denoted with τ, τ1, . . .. A database instance, D, for R is a
finite set of ground atoms; and it serves as a (Herbrand) interpretation structure
for language L(R) [30] (cf. also Sect. 2.4).

A conjunctive query (CQ) is a FO formula of the form Q(x̄) : ∃ȳ (P1(x̄1) ∧
· · ·∧Pm(x̄m)), with Pi ∈ P, and (distinct) free variables x̄ := (

⋃
x̄i)� ȳ. If Q has

n (free) variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄] is true in
D when the variables in x̄ are componentwise replaced by the values in c̄. Q(D)
denotes the set of answers to Q from D. Q is a boolean conjunctive query (BCQ)
when x̄ is empty; and when it is true in D, Q(D) := {true}. Otherwise, if it is
false, Q(D) := ∅. A view is predicate defined by means of a query, whose contents
can be computed, if desired, by computing all the answers to the defining query.

In this work we consider integrity constraints (ICs), i.e. sentences of L(R),
that are: (a) denial constraints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧
Pm(x̄m)) (sometimes denoted ← P1(x̄1), . . . , Pm(x̄m)), where Pi ∈ P, and x̄ =⋃

x̄i; and (b) functional dependencies (FDs), i.e. of the form ϕ : ¬∃x̄(P (v̄, ȳ1, z1)∧
P (v̄, ȳ2, z2) ∧ z1 �= z2). Here, x̄ = ȳ1 ∪ ȳ2 ∪ v̄ ∪ {z1, z2}, and z1 �= z2 is an
abbreviation for ¬z1 = z2.2 A key constraint (KC) is a conjunction of FDs:
∧k

j=1 ¬∃x̄(P (v̄, ȳ1) ∧ P (v̄, ȳ2) ∧ yj
1 �= yj

2), with k = |ȳ1| = |ȳ2|. A given schema
may come with its set of ICs, and its instances are expected to satisfy them.
If an instance does not satisfy them, we say it is inconsistent. In this work
we concentrate on DCs, excluding, for example, inclusion or tuple-generating
dependencies of the form ∀x̄(ϕ(x̄) → ∃ȳψ(x̄′, ȳ)), with x̄′ ⊆ x̄. See [1] for more
details and background material on relational databases.

2.2 Causality in Databases

A notion of cause as an explanation for a query result was introduced in [32], as
follows. For a relational instance D = Dn ∪ Dx, where Dn and Dx denote the
2 The variables in the atoms do not have to occur in the indicated order, but their

positions should be in correspondence in the two atoms.
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mutually exclusive sets of endogenous and exogenous tuples, a tuple τ ∈ Dn is
called a counterfactual cause for a BCQ Q, if D |= Q and D � {τ} �|= Q. Now,
τ ∈ Dn is an actual cause for Q if there exists Γ ⊆ Dn, called a contingency set
for τ , such that τ is a counterfactual cause for Q in D � Γ . This definition is
based on [28].

The notion of responsibility reflects the relative degree of causality of a tuple
for a query result [32] (based on [19]). The responsibility of an actual cause τ for
Q, is ρ(τ) := 1

|Γ |+1 , where |Γ | is the size of a smallest contingency set for τ . If
τ is not an actual cause, ρ(τ) := 0. Intuitively, tuples with higher responsibility
provide stronger explanations.

The partition of the database into endogenous and exogenous tuples is
because the latter are somehow unquestioned, e.g. we trust them, or we may
have very little control on them, e.g. when obtained from an external, trustable
and indisputable data source, etc.; whereas the former are subject to experi-
mentation and questioning, in particular, about their role in query answering or
violation of ICs. The partition is application dependent, and we may not even
have exogenous tuples, i.e. Dn = D. Actually, in the following we will assume all
the tuples in a database instance are endogenous. (Cf. [11] for the general case,
and Sect. 6 for additional discussions.) The notion of cause as defined above
can be applied to monotonic queries, i.e. whose sets of answers may only grow
when the database grows [11].3 In this work we concentrate only on conjunctive
queries, possibly with built-in comparisons, such as �=.

Example 1. Consider the relational database D = {R(a4, a3), R(a2, a1), R(a3,
a3), S(a4), S(a2), S(a3)}, and the query Q: ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)). D sat-
isfies the query, i.e. D |= Q.

S(a3) is a counterfactual cause for Q: if S(a3) is removed from D, Q is no
longer true. So, it is an actual cause with empty contingency set; and its respon-
sibility is 1. R(a4, a3) is an actual cause for Q with contingency set {R(a3, a3)}: if
R(a4, a3) is removed from D, Q is still true, but further removing the contingent
tuple R(a3, a3) makes Q false. The responsibility of R(a3, a3) is 1

2 . R(a3, a3) and
S(a4) are actual causes, with responsibility 1

2 . �

2.3 Database Repairs

We introduce the main ideas by means of an example. If only deletions and
insertions of tuples are admissible updates, the ICs we consider in this work can
be enforced only by deleting tuples from the database, not by inserting tuples
(we consider updates of attribute-values in Sect. 3.3). Cf. [8] for a survey on
database repairs and consistent query answering in databases.

Example 2. The database D = {P (a), P (e), Q(a, b), R(a, c)} is inconsistent with
respect to (w.r.t.) the (set of) denial constraints (DCs) κ1: ¬∃x∃y(P (x) ∧
Q(x, y)), and κ2: ¬∃x∃y(P (x) ∧ R(x, y)); that is, D �|= {κ1, κ2}.

3 E.g. CQs, unions of CQs (UCQs), Datalog queries are monotonic [11,12].
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A subset-repair, in short an S-repair, of D w.r.t. the set of DCs is a ⊆-
maximal subset of D that is consistent, i.e. no proper superset is consistent. The
following are S-repairs: D1 = {P (e), Q(a, b), R(a, b)} and D2 = {P (e), P (a)}. A
cardinality-repair, in short a C-repair, of D w.r.t. the set of DCs is a maximum-
cardinality, consistent subset of D, i.e. no subset of D with larger cardinality is
consistent. D1 is the only C-repair. �

For an instance D and a set Σ of DCs, the sets of S-repairs and C-repairs
are denoted with Srep(D,Σ) and Crep(D,Σ), resp.

2.4 Disjunctive Answer-Set Programs

We consider disjunctive Datalog programs Π with stable model semantics [23],
a particular class of answer-set programs (ASPs) [15]. They consist of a set E
of ground atoms, called the extensional database, and a finite number of rules of
the form

A1 ∨ . . . An ← P1, . . . , Pm, not N1, . . . , not Nk, (1)

with 0 ≤ n,m, k, and the Ai, Pj , Ns are positive atoms. The terms in these atoms
are constants or variables. The variables in the Ai, Ns appear all among those
in the Pj .

The constants in program Π form the (finite) Herbrand universe U of the
program. The ground version of program Π, gr(Π), is obtained by instantiat-
ing the variables in Π with all possible combinations of values from U . The
Herbrand base, HB , of Π consists of all the possible atomic sentences obtained
by instantiating the predicates in Π on U . A subset M of HB is a (Herbrand)
model of Π if it contains E and satisfies gr(Π), that is: For every ground rule
A1 ∨ . . . An ← P1, . . . , Pm, not N1, . . . , not Nk of gr(Π), if {P1, . . . , Pm} ⊆ M
and {N1, . . . , Nk} ∩ M = ∅, then {A1, . . . , An} ∩ M �= ∅. M is a minimal model
of Π if it is a model of Π, and no proper subset of M is a model of Π. MM (Π)
denotes the class of minimal models of Π.

Now, take S ⊆ HB(Π), and transform gr(Π) into a new, positive program
gr(Π) ↓ S (i.e. without not), as follows: Delete every ground instantiation of a
rule (1) for which {N1, . . . , Nk}∩S �= ∅. Next, transform each remaining ground
instantiation of a rule (1) into A1 ∨ . . . An ← P1, . . . , Pm. By definition, S is a
stable model of Π iff S ∈ MM (gr(Π) ↓ S). A program Π may have none, one
or several stable models; and each stable model is a minimal model (but not
necessarily the other way around) [27].

3 Causes and Database Repairs

In this section we concentrate first on tuple-based causes as introduced in
Sect. 2.2, and establish a reduction to tuple-based database repairs. Next we pro-
vide an abstract definition of cause on the basis of an abstract repair-semantics.
Finally, we instantiate the abstract semantics to define null-based causes from a
particular, but natural and practical notion of attribute-based repair.
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3.1 Tuple-Based Causes from Repairs

In [11] it was shown that causes (as represented by database tuples)
for queries can be obtained from database repairs. Consider the BCQ
Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) that is (possibly unexpectedly) true in D: D |= Q.
Actual causes for Q, their contingency sets, and responsibilities can be obtained
from database repairs. First, ¬Q is logically equivalent to the DC:

κ(Q): ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)). (2)

So, if Q is true in D, D is inconsistent w.r.t. κ(Q), giving rise to repairs of D
w.r.t. κ(Q).

Next, we build differences, containing a tuple τ , between D and S- or C-
repairs:

(a) Diff s(D,κ(Q), τ) = {D � D′ | D′ ∈ Srep(D,κ(Q)), τ ∈ (D � D′)}, (3)
(b) Diff c(D,κ(Q), τ) = {D � D′ | D′ ∈ Crep(D,κ(Q)), τ ∈ (D � D′)}. (4)

Proposition 1 [11]. For an instance D, a BCQ Q, and its associated DC κ(Q),
it holds:

(a) τ ∈ D is an actual cause for Q iff Diff s(D,κ(Q), τ) �= ∅.
(b) For each S-repair D′ with (D � D′) ∈ Diff s(D,κ(Q), τ), (D � (D′ ∪ {τ}))

is a subset-minimal contingency set for τ .
(c) If Diff s(Dκ(Q), τ) = ∅, then ρ(τ) = 0. Otherwise, ρ(τ) = 1

|s| , where s ∈
Diff s(D,κ(Q), τ) and there is no s′ ∈ Diff s(D,κ(Q), τ) with |s′| < |s|.

(d) τ ∈ D is a most responsible actual cause for Q iff Diff c(D,κ(Q), τ) �= ∅. �
Example 3 (Example 1 cont.). With the same instance D and query Q, we con-
sider the DC κ(Q): ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)), which is not satisfied by
D. Here, Srep(D,κ(Q)) = {D1,D2,D3} and Crep(D,κ(Q)) = {D1}, with D1 =
{R(a4, a3), R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2),
S(a3)}, D3 = {R(a4, a3), R(a2, a1), S(a2), S(a3)}.

For tuple R(a4, a3), Diff s(D,κ(Q), R(a4, a3)) = {D � D2} = {{R(a4, a3),
R(a3, a3)}}. So, R(a4, a3) is an actual cause, with responsibility 1

2 . Simi-
larly, R(a3, a3) is an actual cause, with responsibility 1

2 . For tuple S(a3),
Diff c(D,κ(Q), S(a3)) = {D � D1} = {S(a3)}. So, S(a3) is an actual cause,
with responsibility 1, i.e. a most responsible cause. �

It is also possible, the other way around, to characterize repairs in terms of
causes and their contingency sets [11]. Actually this connection can be used to
obtain complexity results for causality problems from repair-related computa-
tional problems [11]. Most computational problems related to repairs, especially
C-repairs, which are related to most responsible causes, are provably hard. This
is reflected in a high complexity for responsibility [11] (cf. Sect. 6 for some more
details).
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3.2 Abstract Causes from Abstract Repairs

We can extrapolate and abstract out from the characterization of causes of
Sect. 3.1 by starting from an abstract repair-semantics, RepS(D,κ(Q)), which
identifies a class of intended repairs of instance D w.r.t. the DC κ(Q). By def-
inition, RepS(D,κ(Q)) contains instances of D’s schema that satisfy κ(Q). It is
commonly the case that those instances depart from D in some pre-specified
minimal way, and, in the case of DCs, the repairs in RepS(D,κ(Q)) are all sub-
instances of D [8] (In Sect. 3.3, we will depart from this latter assumption.).

More concretely, given a possibly inconsistent instance D, a general class
of repair semantics can be characterized through an abstract partial-order rela-
tion, �D,4 on instances of D’s schema that is parameterized by D.5 If we want
to emphasize this dependence on the priority relation �D, we define the corre-
sponding class of repairs of D w.r.t. a set on ICs Σ as:

RepS�
(D,Σ) := {D′ | D′ |= Σ, and D′ is �D -minimal}. (5)

This definition is general enough to capture different classes of repairs and in
relation to different kinds of ICs, e.g. those that delete old tuples and intro-
duce new tuples to satisfy inclusion dependencies, and also repairs that change
attribute values. In particular, it is easy to verify that the classes of S- and
C-repairs for DCs of Sect. 2.3 are particular cases of this definition.

Returning to a general class of repairs RepS(D,κ(Q)), assuming that repairs
are sub-instances of D, and inspired by (3), we introduce:

Diff S(D,κ(Q), τ) := {D � D′ | D′ ∈ RepS(D,κ(Q)), τ ∈ (D � D′)}. (6)

Definition 1. For an instance D, a BCQ Q, and a class of repairs
RepS(D,κ(Q)):

(a) τ ∈ D is an actual S-cause for Q iff Diff S(D,κ(Q), τ) �= ∅.
(b) For each D′ ∈ RepS(D,κ(Q)) with (D �D′) ∈ Diff s(D,κ(Q), τ), (D � (D′ ∪

{τ})) is an S-contingency set for τ .
(c) The S-responsibility of an actual S-cause is as in Sect. 2.2, but considering

only the cardinalities of S-contingency sets Γ . �
It should be clear that actual causes as defined in Sect. 3.1 are obtained from
this definition by using S-repairs. Furthermore, it is also easy to see that each
actual S-cause accompanied by one of its S-contingency sets falsifies query Q
in D.

4 That is, satisfying reflexivity, transitivity and anti-symmetry, namely D1 �D

D2 and D2 �D D1 ⇒ D1 = D2.
5 These general prioritized repairs based on this kind of priority relations were intro-

duced in [34], where also different priority relations and the corresponding repairs
were investigated.
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This abstract definition can be instantiated with different repair-semantics,
which leads to different notions of cause. In the following subsection we will
do this by appealing to attribute-based repairs that change attribute values in
tuples by null , a null value that is assumed to be a special constant in C, the
set of constants for the database schema. This will allow us, in particular, to
define causes at the attribute level (as opposed to tuple level) in a very natural
manner.6

3.3 Attribute-Based Causes

Database repairs that are based on changes of attribute values in tuples have
been considered in [7,8,10], and implicitly in [9] to hide sensitive information in
a database D via minimal virtual modifications of D. In the rest of this section
we make explicit this latter approach and exploit it to define and investigate
attribute-based causality (cf. also [11]). First we provide a motivating example.

Example 4. Consider the database instance D = {S(a2), S(a3), R(a3, a1),
R(a3, a4), R(a3, a5)}, and the query Q: ∃x∃y(S(x) ∧ R(x, y)). D satisfies Q, i.e.
D |= Q.

The three R-tuples in D are actual causes, but clearly the value a3 for the
first attribute of R is what matters in them, because it enables the join, e.g.
D |= S(a3) ∧ R(a3, a1). This is only indirectly captured through the occurrence
of different values accompanying a3 in the second attribute of R-tuples as causes
for Q.

Now consider the database instance D1 = {S(a2), S(a3), R(null , a1), R(null ,
a4), R(null , a5)}, where null stands for the null value as used in SQL databases,
which cannot be used to satisfy a join. Now, D′ �|= Q. The same occurs
with the instances D2 = {S(a2), S(null), R(a3, a1), R(a3, a4), R(a3, a5)}, and
D3 = {S(a2), S(null), R(null , a1), R(null , a4), R(null , a5)}, among others that
are obtained from D only through changes of attribute values by null . �

In the following we assume the special constant null may appear in database
instances and can be used to verify queries and constraints. We assume that all
atoms with built-in comparisons, say null θ null , and null θ c, with c a non-null
constant, are all false for θ ∈ {=, �=, <,>, . . .}. In particular, since a join, say
R(. . . , x)∧S(x, . . .), can be written as R(. . . , x)∧S(x′, . . .)∧x = x′, it can never
be satisfied through null . This assumption is compatible with the use of NULL
in SQL databases (cf. [10, Sect. 4] for a detailed discussion, also [9, Sect. 2]).

Consider an instance D = {. . . , R(c1, . . . , cn), . . .} that may be inconsistent
with respect to a set of DCs. The allowed repair updates are changes of attribute
values by null, which is a natural choice, because this is a deterministic solu-
tion that appeals to the generic data value used in SQL databases to reflect

6 Cf. also [10, Sects. 4, 5] for an alternative repair-semantics based on both null- and
tuple-based repairs w.r.t. general sets of ICs and their repair programs. They could
also be used to define a corresponding notion of cause.
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the uncertainty and incompleteness in/of the database that inconsistency pro-
duces.7 In order to keep track of changes, we may introduce numbers as first
arguments in tuples, as global, unique tuple identifiers (tids). So, D becomes
D = {. . . , R(i; c1, . . . , cn), . . .}, with i ∈ N. The tid is a value for what we call
the 0-th attribute of R. With id(t) we denote the id of the tuple t ∈ D, i.e.
id(R(i; c1, . . . , cn)) = i.

If D is updated to D′ by replacement of (non-tid) attribute values by null ,
and the value of the j-th attribute in R, j > 0, is changed to null , then the
change is captured as the string R[i; j], which identifies that the change was
made in the tuple with id i in the j-th position (or attribute) of predicate R.
These strings are collected forming the set:8

Δnull(D,D′) := {R[i; j] | R(i; c1, . . . , cj , . . . , cn) ∈ D, cj �= null , becomes
R(i; c′

1, . . . ,null , . . . , c′
n) ∈ D′}.

For example, if D = {R(1; a, b), S(2; c, d), S(3; e, f)} is changed into D′ =
{R(1; a,null), S(2;null , d), S(3;null ,null)}, then Δnull(D,D′) = {R[1; 2],
S[2; 1], S[3; 1], S[3; 2]}.

For database instances with the constant null , IC satisfaction is defined by
treating null as in SQL databases, in particular, joins and comparisons in them
cannot be satisfied through null (cf. [10, Sect. 4] for a precise formal treatment).
This is particularly useful to restore consistency w.r.t. DCs, which involve com-
binations of (unwanted) joins.

Example 5 (Example 1 cont.). Still with instance D = {S(a2), S(a3), R(a3,
a1), R(a3, a4), R(a3, a5)}, consider the DC (the negation of Q) κ : ¬∃x∃y(S(x)∧
R(x, z)). Since D �|= κ, D is inconsistent.

The updated instance D1 = {S(a2), S(null), R(a3, a1), R(a3, a4), R(a3, a5)}
(among others updated with null) is consistent: D1 |= κ. �
Definition 2. A null-based repair of D with respect to a set of DCs Σ is a
consistent instance D′, such that Δnull(D,D′) is minimal under set inclusion.9

Repnull(D,Σ) denotes the class of null-based repairs of D with respect to Σ.10

A cardinality-null-based repair D′ minimizes |Δnull(D,D′)|. �

7 Repairs based on updates of attribute values using other constants of the domain
have been considered in [35]. We think the developments in this section could be
applied to them.

8 The condition ci �= null in its definition is needed in case the initially given instance
already contain nulls.

9 An alternative, but equivalent formulation can be found in [9].
10 Our setting allows for a uniform treatment of general and combined DCs, including

those with (in)equality and other built-ins, FDs, and KCs. However, for the latter
and in SQL databases, it is common that NULL is disallowed as a value for a key-
attribute, among other issues. This prohibition, that we will ignore in this work, can
be accommodated in our definition. For a detailed treatment of repairs w.r.t. sets of
ICs that include FDs, see [10, Sects. 4, 5].
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We can see that the null-based repairs are the minimal elements of the par-
tial order between instances defined by: D1 ≤null

D D2 iff Δnull(D,D1) ⊆
Δnull(D,D2).

Example 6. Consider D =
{
R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5;

a3), S(6; a4)
}

that is inconsistent w.r.t. the DC

κ : ¬∃xy(S(x) ∧ R(x, y) ∧ S(y)).

Here, the class of null-based repairs, Repnull(D,κ), consists of:

D1 = {R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5;null), S(6; a4)},

D2 = {R(1; a2, a1), R(2;null , a3), R(3; a4,null), S(4; a2), S(5; a3), S(6; a4)},

D3 = {R(1; a2, a1), R(2;null , a3), R(3; a4, a3), S(4; a2), S(5; a3), S(6;null)},

D4 = {R(1; a2, a1), R(2; a3,null), R(3; a4,null), S(4; a2), S(5; a3), S(6; a4)},

D5 = {R(1; a2, a1), R(2; a3,null), R(3;null , a3), S(4; a2), S(5; a3), S(6; a4)},

D6 = {R(1; a2, a1), R(2; a3,null), R(3; a4, a3), S(4; a2), S(5; a3), S(6;null)}.

Here, Δnull(D,D2) = {R[2; 1], R[3; 2]}, Δnull(D,D3) = {R[2; 1], S[6; 1]} and
Δnull(D,D1) = {S[5; 1]}. The latter is a cardinality-null-based repair. �

According to the motivation provided at the beginning of this section, we
can now define causes appealing to the generic construction in (6), and using
in it the class of null-based repairs of D. Since repair actions in this case are
attribute-value changes, causes can be defined at both the tuple and attribute
levels. The same applies to the definition of responsibility. First, inspired by (6),
for a tuple τ : R(i; c1, . . . , cn) ∈ D, we introduce:11

Diff null(D,κ(Q), R[i; cj ]) := {Δnull(D,D′) | D′ ∈ Repnull(D,κ(Q)), (7)
R[i; j] ∈ Δnull(D,D′)}.

Definition 3. For D an instance and Q a BCQ, and τ ∈ D be a tuple of the
form R(i; c1, . . . , cn).

(a) R[i; cj ] is a null-attribute-based (actual) cause for Q iff Diff null(D,
κ(Q, R[i; cj ]) �= ∅, i.e. the value cj in τ is a cause if it is changed into a
null in some repair.

(b) τ is a null-tuple-based (actual) cause for Q if some R[i; cj ] is a null-attribute-
based cause for Q, i.e. the whole tuple τ is a cause if at least one of its
attribute values is changed into a null in some repair.

(c) The responsibility, ρa-null(R[i; cj ]), of a null-attribute-based cause R[i; cj ] for
Q, is the inverse of min{|Δnull(D,D′)| : R[i; j] ∈ Δnull(D,D′), and D′ ∈
Repnull(D,κ(Q))}. Otherwise, it is 0.

11 This is not a particular case of (6), because it does not contain full tuples.
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(d) The responsibility, ρt-null(τ), of a null-tuple-based cause τ for Q, is the
inverse of min{|Δnull(D,D′)| : R[i; j] ∈ Δnull(D,D′), for some j, and
D′ ∈ Repnull(D,κ(Q))}. Otherwise, it is 0. �

In cases (c) and (d) we minimize over the number of changes in a repair.
However, in case (d), of a tuple-cause, any change made in one of its attributes
is considered in the minimization. For this reason, the minimum may be smaller
than the one for a fixed attribute value change; and so the responsibility at
the tuple level may be greater than that at the attribute level. More precisely,
if τ = R(i; c1, . . . , cn) ∈ D, and R[i; cj ] is a null-attribute-based cause, then:
ρa-null(R[i; cj ]) ≤ ρt-null(τ).

Example 7 (Example 6 cont.). Consider R(2; a3, a3) ∈ D. Its projection on
its first (non-id) attribute, R[2; a3], is a null-attribute-based cause since
R[2; 1] ∈ Δnull(D,D2). Also R[2; 1] ∈ Δnull(D,D3). Since |Δnull(D,D2)| =
|Δnull(D,D3)| = 2, we obtain ρa-null(R[2; 1]) = 1

2 . Clearly R(2; a3, a3) is a null-
tuple-based cause for Q, with ρt-null(R(2; a3, a3)) = 1

2 . �
Example 8 (Example 4 cont.). The instance with tids is D = {S(1; a2), S(2; a3),
R(3; a3, a1), R(4; a3, a4), R(5; a3, a5)}. The only null-based repairs are D1 and
D2, with Δnull(D,D1) = {R[3; 1], R[4; 1], R[5; 1]} and Δnull(D,D2) = {S[2; 1]}.

The values R[3; a3], R[4; a3], R[5; a3], S[2; a3] are all null-attribute-based
causes for Q. Notice that ρa-null(R[3; a3]) = ρa-null(R[4; a3]) = ρa-null(R[5;
a3]) = 1

3 , while ρa-null(R[3; a1]) = ρa-null(R[4; a4]) = ρa-null(R[5; a5]) = 0, that
the value (a3) in the first arguments of the R-tuples has a non-zero responsibility,
while the values in the second attribute have responsibility 0. �

Notice that the definition of tuple-level responsibility, i.e. case (d) in Defini-
tion 3, does not take into account that a same id, i, may appear several times
in a Δnull(D,D′). In order to do so, we could redefine the size of the latter by
taking into account those multiplicities. For example, if we decrease the size of
the Δ by one with every repetition of the id, the responsibility for a cause may
(only) increase, which makes sense.

In Sect. 5 we will provide repair programs for null-based repairs, which can
be used as a basis for specifying and computing null-attribute-based causes.

4 Specifying Tuple-Based Causes

Given a database D and a set of ICs, Σ, it is possible to specify the S-repairs
of D w.r.t. a set Σ of DCs, introduced in Sect. 2.3, by means of an answer-
set program Π(D,Σ), in the sense that the set, Mod(Π(D,Σ)), of its stable
models is in one-to-one correspondence with Srep(D,Σ) [5,18] (cf. [8] for more
references). In the following, to ease the presentation, we consider a single denial
constraint12

κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)).
12 It is possible to consider combinations of DCs and FDs, corresponding to UCQs,

possibly with �=, [11].
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Although not necessary for S-repairs, it is useful on the causality side having
global unique tuple identifiers (tids), i.e. every tuple R(c̄) in D is represented
as R(t; c̄) for some integer t that is not used by any other tuple in D. For the
repair program we introduce a nickname predicate R′ for every predicate R ∈ R
that has an extra, final attribute to hold an annotation from the set {d, s},
for “delete” and “stays”, resp. Nickname predicates are used to represent and
compute repairs.

The repair-ASP, Π(D,κ), for D and κ contains all the tuples in D as facts
(with tids), plus the following rules:

P ′
1(t1; x̄1, d) ∨ · · · ∨ P ′

m(tn; x̄m, d) ← P1(t1; x̄1), . . . , Pm(tm; x̄m).
P ′

i (ti; x̄i, s) ← Pi(ti; x̄i), not P ′
i (ti; x̄i, d), i = 1, · · · ,m.

A stable model M of the program determines a repair D′ of D: D′ :=
{P (c̄) |P ′(t; c̄, s) ∈ M}, and every repair can be obtained in this way [18]. For
an FD, say ϕ : ¬∃xyz1z2vw(R(x, y, z1, v)∧R(x, y, z2, w)∧ z1 �= z2), which makes
the third attribute functionally depend upon the first two, the repair program
contains the rules:

R′(t1;x, y, z1, v, d) ∨ R′(t2;x, y, z2, w, d) ← R(t1;x, y, z1, v), R(t2;x, y, z2, w),
z1 �= z2.

R′(t;x, y, z, v, s) ← R(t;x, y, z, v), not R′(t;x, y, z, v, d).

For DCs and FDs, the repair program can be made non-disjunctive by moving all
the disjuncts but one, in turns, in negated form to the body of the rule [5,18].
For example, the rule P (a) ∨ R(b) ← Body , can be written as the two rules
P (a) ← Body ,notR(b) and R(b) ← Body ,notP (a). Still the resulting program
can be non-stratified if there is recursion via negation [27], as in the case of FDs,
and DCs with self-joins.

Example 9 (Example 3 cont.). For the DC κ(Q) : ¬∃x∃y(S(x) ∧ R(x, y) ∧
S(y)), the repair-ASP contains the facts (with tids) R(1; a4, a3), R(2; a2, a1),
R(3; a3, a3), S(4; a4), S(5; a2), S(6; a3), and the rules:

S′(t1;x, d) ∨ R′(t2;x, y, d) ∨ S′(t3; y, d) ← S(t1;x), R(t2;x, y), S(t3; y). (8)
S′(t;x, s) ← S(t;x), not S′(t;x, d). etc.

Repair D1 is represented by the stable model M1 con-
taining R′(1; a4, a3, s), R′(2; a2, a1, s), R′(3; a3, a3, s), S′(4; a4, s), S′(5; a2, s), and
S′(6; a3, d). �

Now, in order to specify causes by means of repair-ASPs, we concentrate,
according to (3), on the differences between D and its repairs, now represented
by {P (c̄) | P (t; c̄, d) ∈ M}, the deleted tuples, with M a stable model of the
repair-program. They are used to compute actual causes and their ⊆-minimal
contingency sets, both expressed in terms of tids.
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The actual causes for the query can be represented by their tids, and can be
obtained by posing simple queries to the program under the uncertain or brave
semantics that makes true what is true in some model of the repair-ASP.13 In this
case, Π(D,κ(Q)) |=brave Cause(t), where the Cause predicate is defined on top
of Π(D,κ(Q)) by the rules: Cause(t) ← R′(t;x, y, d) and Cause(t) ← S′(t;x, d).

For contingency sets for a cause, given the repair-ASP for a DC κ(Q), a new
binary predicate CauCont(·, ·) will contain a tid for cause in its first argument,
and a tid for a tuple belonging to its contingency set. Intuitively, CauCont(t, t′)
says that t is an actual cause, and t′ accompanies t as a member of the former’s
contingency set (as captured by the repair at hand or, equivalently, by the corre-
sponding stable model). More precisely, for each pair of not necessarily different
predicates Pi, Pj in κ(Q) (they could be the same if it has self-joins or there are
several DCs), introduce the rule CauCont(t, t′) ← P ′

i (t; x̄i, d), P ′
j(t

′; x̄j , d), t �= t′,
with the inequality condition only when Pi and Pj are the same predicate (it is
superfluous otherwise).

Example 10 (Examples 3 and 9 cont.). The repair-ASP can be extended with
the following rules to compute causes with contingency sets:

CauCont(t, t′) ← S′(t;x, d), R′(t′;u, v, d).
CauCont(t, t′) ← S′(t;x, d), S′(t′;u, d), t �= t′.
CauCont(t, t′) ← R′(t;x, y, d), S′(t′;u, d).
CauCont(t, t′) ← R′(t;x, y, d), R′(t′;u, v, d), t �= t′.

For the stable model M2 corresponding to repair D2, we obtain CauCont(1, 3)
and CauCont(3, 1), from the repair difference D � D2 = {R(a4, a3), R(a3, a3)}.

�
We can use extensions of ASP with set- and numerical aggregation to build

the contingency set associated to a cause, e.g. the DLV system [29] by means
of its DLV-Complex extension [17] that supports set membership and union as
built-ins. We introduce a binary predicate preCont to hold a cause (id) and a
possibly non-maximal set of elements from its contingency set, and the following
rules:

preCont(t, {t′}) ← CauCont(t, t′).
preCont(t,#union(C, {t′′})) ← CauCont(t, t′′), preCont(t, C),

not #member(t′′, C).
Cont(t, C) ← preCont(t, C), not HoleIn(t, C).

HoleIn(t, C) ← preCont(t, C),CauCont(t, t′),
not #member(t′, C).

The first two rules build the contingency set for an actual cause (within a repair
or stable model) by starting from a singleton and adding additional elements
13 As opposed to the skeptical or cautious semantics that sanctions as true what is true

in all models. Both semantics as supported by the DLV system [29].
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from the contingency set. The third rule, that uses the auxiliary predicate HoleIn
makes sure that a set-maximal contingency set is built from a pre-contingency
set to which nothing can be added.

The responsibility for an actual cause τ , with tid t, as associated to a repair
D′ (with τ /∈ D′) associated to a model M of the extended repair-ASP, can
be computed by counting the number of t′s for which CauCont(t, t′) ∈ M .
This responsibility will be maximum within a repair (or model): ρ(t,M) :=
1/(1 + |d(t,M)|), where d(t,M) := {CauCont(t, t′) ∈ M}. This value can be
computed by means of the count function, supported by DLV [24], as follows:

pre-rho(t, n) ← #count{t′ : CauCont(t, t′)} = n,

followed by the rule computing the responsibility:

rho(t,m) ← m ∗ (pre-rho(t, n) + 1) = 1.

Or, equivalently, via 1/|d(M)|, with d(M) := {P (t′; c̄, d) | P (t′; c̄, d) ∈ M}.
Each model M of the program so far will return, for a given tid that is

an actual cause, a maximal-responsibility contingency set within that model: no
proper subset is a contingency set for the given cause. However, its cardinal-
ity may not correspond to the (global) maximum responsibility for that tuple.
Actually, what we need is ρ(t) := max{ρ(t,M) | M is a model}, which would
be an off-line computation, i.e. not within the program. Fortunately, this is not
needed since each C-repair gives such a global maximum. So, we need to specify
and compute only maximum-cardinality repairs, i.e. C-repairs.

C-repairs can be specified by means of repair-ASPs as above [3], but adding
weak-program constraints [16,29]. In this case, since we want repairs that mini-
mize the number of deleted tuples, for each database predicate P , we introduce
the weak-constraint:

:∼ P (t; x̄), P ′(t; x̄, d).

In a model M the body can be satisfied, and then the program constraint vio-
lated, but the number of violations is kept to a minimum (among the mod-
els of the program without the weak-constraints).14 A repair-ASP with these
weak constraints specifies repairs that minimize the number of deleted tuples;
and minimum-cardinality contingency sets and maximum responsibilities can be
computed, as above.

The approach to specification of causes can be straightforwardly extended
via repair programs for several DCs to deal with unions of BCQs (UBCQs),
which are also monotonic.

Example 11. Consider D = {P (a), P (e), Q(a, b), R(a, c)} and the query Q :=
Q1∨Q2, with Q1 : ∃xy(P (x)∧Q(x, y)) and Q2 : ∃xy(P (x)∧R(x, y)). It generates

14 In contrast, hard program-constraints, of the form ← Body , eliminate the models
where they are violated, i.e. where Body is satisfied. Weak constraints as those above
are sometimes denoted with ⇐ P (t; x̄), P ′(t; x̄, d).
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the set of DCs: Σ = {κ1, κ2}, with κ1 :← P (x), Q(x, y) and κ2 :← P (x), R(x, y).
Here, D |= Q and, accordingly, D is inconsistent w.r.t. Σ.

The actual causes for Q in D are: P (a), Q(a, b), R(a, c), and P (a) is the most
responsible cause. D1 = {P (a), P (e)} and D2 = {P (e), Q(a, b), R(a, c)} are the
only S-repairs; D2 is also the only C-repair for D. The repair program for D
w.r.t. Σ contains one rule like (8) for each DC in Σ. The rest is as above in this
section. �
Remark 1. When dealing with a set of DCs, each repair rule of the form (8)
is meant to solve the corresponding, local inconsistency, even if there is inter-
action between the DCs, i.e. atoms in common, and other inconsistencies are
solved at the same time. However, the minimal-model property of stable models
makes sure that in the end a minimal set of atoms is deleted to solve all the
inconsistencies [18]. �

5 Specifying Attribute-Based Repairs and Causes

Example 12. Consider the instance D = {P (1, 2), R(2, 1)} for schema
R = {P (A,B), R(B,C)}. With tuple identifiers it takes the form D =
{P (1; 1, 2), R(2; 2, 1)}. Consider also the DC:15

κ : ¬∃x∃y∃z(P (x, y) ∧ R(y, z)), (9)

which is violated by D.
Now, consider the following alternative, updated instances Di, each them

obtained by replacing attribute values by null :

D1 {P (1; 1,null), R(2; 2, 1)}
D2 {P (1; 1, 2), R(2;null , 1)}
D3 {P (1; 1,null), R(2;null , 1)}

The sets of changes can be identified with the set of changed positions, as in
Sect. 3.3, e.g. Δnull(D,D1) = {P [1; 2]} and Δnull(D,D2) = {R[2; 2]} (remember
that the tuple id goes always in position 0). These Di are all consistent, but D1

and D2 are the only null-based repairs of D; in particular they are ≤null
D -minimal:

The sets of changes Δnull(D,D1) and Δnull(D,D2) are incomparable under set
inclusion. D3 is not ≤null

D -minimal, because Δnull(D,D3) = {P [1; 2], R[2; 2]} �

Δnull(D,D2). �
As in Sect. 4, null-based repairs can be specified as the stable models of a dis-

junctive ASP, the so-called repair program. We show next these repair programs
by means of Example 12.

The repair-programs for null-based repairs are inspired by ASP-programs
that are used to specify virtually and minimally updated versions of a database
15 It would be easy to consider tids in queries and view definitions, but they do not

contribute to the final result and will only complicate the notation. So, we skip tuple
ids whenever possible.
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D that is protected from revealing certain view contents [9]. This is achieved by
replacing direct query answering on D by simultaneously querying (under the
certain semantics) the virtual versions of D.

When we have more than one DC, notice that, in contrast to the tuple-based
semantics, where we can locally solve each inconsistency without considering
inconsistencies w.r.t. other DCs (cf. Remark 1), a tuple that is subject to a local
attribute-value update (into null) to solve one inconsistency, may need further
updates to solve other inconsistencies. For example, if we add in Example 12
the DC κ′ : ¬∃x∃y(P (x, y) ∧ R(y, x)), the updates in repair D1 have to be fur-
ther continued, producing: P (1;null ,null), R(2;null ,null). In other words, every
locally updated tuple is considered to: “be in transition” or “being updated” only
(not necessarily in a definitive manner) until all inconsistencies are solved.

The above remark motivates the annotation constants that repair programs
will use now, for null-based repairs. The intended, informal semantics of annota-
tion constants is shown in the following table. (The precise semantics is captured
through the program that uses them.)

Annotation Atom The tuple R(ā) ...

u R(t; ā,u) Tuple result of an update

fu R(t; ā, fu) Final update of a tuple

t R(t; ā, t) An initial or updated tuple

s R(t; ā, s) Definitive, stays in the repair

More precisely, for each database predicate R ∈ R, we introduce a copy
of it with an extra, final attribute (or argument) that contains an annotation
constant. So, a tuple of the form R(t; c̄) would become an annotated atom of
the form R′(t; c̄,a). The annotation constants are used to keep track of virtual
updates, i.e. of old and new tuples: An original tuple R(t; c̄) may be successively
updated, each time replacing an attribute value by null , creating tuples of the
form R(t; c̄′,u). Eventually the tuple will suffer no more updates, at which point
it will become of the form R′(t; c̄′′, fu). In the transition, to check the satisfaction
of the DCs, it will be combined with other tuples, which can be updated versions
of other tuples or tuples in the database that have never been updated. Both
kinds of tuples are uniformly annotated with R′(t′, d̄, t). In this way, several,
possibly interacting DCs can be handled. The tuples that eventually form a
repaired version of the original database are those of the form R′(t; ē, s), and are
the final versions of the updated original tuples or the original tuples that were
never updated.

In R′(t; ā, fu), annotation fu means that the atom with tid t has reached its
final update (during the program evaluation). In particular, R(t; ā) has already
been updated, and u should appear in the new, updated atom, say R′(t; ā′,u),
and this tuple cannot be updated any further (because relevant updateable
attribute values have already been replaced by null if necessary). For example,
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consider a tuple R(t; a, b) ∈ D. A new tuple R(t; a,null) is obtained by updating
b into null . Therefore, R′(t; a,null ,u) denotes the updated tuple. If this tuple
is not updated any further, it will also eventually appear as R′(t; a,null , fu),
indicating it is a final update.16 (Cf. rules 3. in Example 13.)

The repair program uses these annotations to go through different steps, until
its stable models are computed. Finally, the atoms needed to build a repair are
read off by restricting a model of the program to atoms with the annotation s.
The following example illustrates the main ideas and issues.

Example 13 (Example 12 cont.). Consider D = {P (1, 2), R(2, 1)} and the DC:
κ : ¬∃x∃y∃z(P (x, y) ∧ R(y, z)). The repair program Π(D, {κ}) is as follows: (it
uses several auxiliary predicates to make rules safe, i.e. with all their variables
appearing in positive atoms in their bodies)

1. P (1; 1, 2). R(2; 2, 1). (initial database)
2. P ′(t1;x,null ,u) ∨ R′(t2;null , z,u) ← P ′(t1;x, y, t), R′(t2; y, z, t), y �= null .
3. P ′(t;x, y, fu)← P ′(t;x, y,u),not auxP.1(t;x, y), not auxP.2(t;x, y).

auxP.1(t;x, y) ← P ′(t;null , y,u), P (t;x, z), x �= null .
auxP.2(t;x, y) ← P ′(t;x,null ,u), P (t; z, y), y �= null . (idem for R)

4. P ′(t;x, y, t) ←P (t;x, y).
P ′(t;x, y, t) ← P ′(t;x, y,u). (idem for R)

5. P ′(t;x, y, s) ←P ′(t;x, y, fu). (idem for R)
P ′(t;x, y, s) ←P (t;x, y), not auxP (t).

auxP (t) ← P ′(t;u, v,u).

In this program tids in rules are handled as variables. Constant null in the
program is treated as any other constant. This is the reason for the condition
y �= null in the body of 2, to avoid considering the join through null a violation
of the DC.17 A quick look at the program shows that the original tids are never
destroyed and no new tids are created, which simplifies keeping track of tuples
under repair updates. It also worth mentioning that for this particular example,
with a single DC, a much simpler program could be used, but we keep the general
form that can be applied to multiple, possibly interacting DCs.

Facts in 1. belong to the initial instance D, and become annotated right
away with t by rules 4. The most important rules of the program are those in
2. They enforce one step of the update-based repair-semantics in the presence
of null and using null (yes, already having nulls in the initial database is not a
problem). Rules in 2. capture in the body the violation of DC; and in the head,
the intended way of restoring consistency, namely making one of the attributes
participating in a join take value null .
16 Under null-based repairs no tuples are deleted or inserted, so the original tids stay

all in the repairs and none is created.
17 If instead of (9) we had κ : ¬∃x∃y∃z(P (x, y) ∧ R(y, z) ∧ y < 3), the new rule body

could be P ′(t1; x, y, t), R′(t2; y, z, t), y < 3, because null < 3 would be evaluated as
false.
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Rules in 3. collect the final updated versions of the tuples in the database,
as those whose values are never replaced by a null in another updated version.

Rules in 4. annotate the original atoms and also new versions of updated
atoms. They all can be subject to additional updates and have to be checked for
DC satisfaction, with rule 2. Rules in 5. collect the tuples that stay in the final
state of the updated database, namely the original and never updated tuples
plus the final, updated versions of tuples. In this program null is treated as any
other constant. �
Proposition 2. There is a one-to-one correspondence between the null -based
repairs of D w.r.t. a set of DCs Σ and the stable models of the repair program
Π(D,Σ). More specifically, a repair D′ can be obtained by collecting the s-
annotated atoms in a stable model M , i.e. D′ = {P (c̄) | P ′(t; c̄, s) ∈ M}; and
every repair can be obtained in this way.18 �
Example 14 (Example 13 cont.). The program has two stable models: (the facts
in 1. and the aux-atoms are omitted)

M1 = {P ′(1; 1, 2, t), R′(2; 2, 1, t), R′(2; 2, 1, s), P ′(1; 1,null ,u), P ′(1; 1,null , t),

P ′(1; 1,null , fu), P ′(1; 1,null , s)}.

M2 = {P ′(1; 1, 2, t), R′(2; 2, 1, t), P ′(1; 1, 2, s), R′(2;null , 1,u), R′(2;null , 1, t),

R′(2;null , 1, fu), R′(2;null , 1, s)}.

The repairs are built by selecting the underlined atoms: D1 = {P (1,null),
R(2, 1)} and D2 = {P (1, 2), R(null , 1)}. They coincide with those in Exam-
ple 12. �

Finally, and similarly to the use of repair programs for cause computation
in Sect. 4, we can use the new repair programs to compute null-attribute-based
causes (we do not consider here null-tuple-based causes, nor the computation of
responsibilities, all of which can be done along the lines of Sect. 4). All we need
to do is add to the repair program the definition of a cause predicate, through
rules of the form:

Cause(t; i; v) ← R′(t; x̄,null , z̄, s), R(t; x̄′, v, z̄′), v �= null ,

(with v and null the body in the same position i), saying that value v in the
i-th position in original tuple with tid t is a null-attribute-based cause. The rule
collects the original values (with their tids and positions) that have been changed
into null . To the program in Example 13 we would add the rules (with similar
rules for predicate R)

Cause(t; 1;x) ← P ′(t;null , y, s), P (t;x, y′).
Cause(t; 2; y) ← P ′(t;x,null , s), P (t;x′, y).

18 The proof of this claim is rather long, and is similar in spirit to the proof that tuple-
based database repairs w.r.t. integrity constraints [6,8] can be specified by means of
disjunctive logic programs with stable model semantics (cf. [4,14]).
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6 Discussion

Complexity. Computing causes for CQs can be done in polynomial time in data
[32], which also holds for UBCQs [11]. In [12] it was established that cause com-
putation for Datalog queries falls in the second level of the polynomial hierarchy
(PH). As has been established in [11,32], the computational problems associ-
ated to contingency sets and responsibility are at the second level of PH, in data
complexity.

On the other side, our repairs programs, and so our causality-ASPs, can be
transformed into non-disjunctive, unstratified programs [5,18], whose reasoning
tasks are also at the second level of PH (in data) [22]. It is worth mentioning
that the ASP approach to causality via repairs programs could be extended to
deal with queries that are more complex than CQs or UCQs, e.g. Datalog queries
and queries that are conjunctions of literals (that were investigated in [33]).

Causality Programs and ICs. The original causality setting in [32] does not
consider ICs. An extension of causality under ICs was proposed in [12]. Under
it, the ICs have to be satisfied by the databases involved, i.e. the initial one and
those obtained by cause and contingency-set deletions. When the query at hand
is monotonic,19 monotonic ICs, i.e. for which growing with the database may
only produce more violations (e.g. denial constraints and FDs), are not much
of an issue since they stay satisfied under deletions associated to causes. So,
the most relevant ICs are non-monotonic, such as inclusion dependencies, e.g.
∀xy(R(x, y) → S(x)). These ICs can be represented in a causality-program by
means of (strong) program constraints. In the running example, we would have,
for tuple-based causes, the constraint: ← R′(t, x, y, s),not S′(t′, x, s).20

Negative CQs and Inclusion Dependencies. In this work we investigated CQs,
and what we did can be extended to UCQs. However, it is possible to consider
queries that are conjunctions of literals, i.e. atoms or negations thereof, e.g.
Q : ∃x∃y(P (x, y)∧¬S(x)).21 (Causes for these queries were investigated in [33].)
If causes are defined in terms of counterfactual deletions (as opposed to insertions
that can also be considered for these queries), then the repair counterpart can be
constructed by transforming the query into the unsatisfied inclusion dependency
(ID): ∀x∀y(P (x, y) → S(x)). Repairs w.r.t. this kind of IDs that allow only tuple
deletions were considered in [20], and repairs programs for them in [18]. Causes
for CQs in the presence of IDs were considered in [12].

Endogenous and Prioritized Causes and Repairs. As indicated in Sect. 3.2, differ-
ent kinds of causes can be introduced by considering different repair-semantics.
Apart from those investigated in this work, we could consider endogenous repairs,
19 I.e. the set of answers may only grow when the instance grows.
20 Or better, to make it safe, by a rule and a constraint: aux(x) ← S′(t′, x, s) and

← R′(t, x, y, s),not aux(x).
21 They should be safe in the sense that a variable in a negative literals has to appear

in some positive literal too.
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which are obtained by removing only (pre-specified) endogenous tuples [11]. In
this way we could give an account of causes as in Sect. 2.2, but considering the
partition of the database between endogenous and exogenous tuples.

Again, considering the abstract setting of Section 3.2, with the generic class of
repairs RepS�

(D,Σ), it is possible to consider different kinds of prioritized repairs
[34], and through them introduce prioritized actual causes. Repair programs for
the kinds of priority relations � investigated in [34] could be constructed from
the ASPs introduced and investigated in [25] for capturing different optimality
criteria. The repair programs could be used, as done in this work, to specify and
compute the corresponding prioritized actual causes and responsibilities.

Optimization of Causality Programs. Different queries, but of a fixed form, about
causality could be posed to causality programs or directly to the underlying
repair programs. Query answering could benefit from query-dependent, magic-
set-based optimizations of causality and repair programs as reported in [18].
Implementation and experimentation in general are left for future work.

Connections to Belief Revision/Update. As discussed in [2] (cf. also [8]), there
are some connections between database repairs and belief updates as found in
knowledge representation, most prominently with [21]. In [3], some connections
were established between repair programs and revision programs [31]. The appli-
cability of the latter in a causality scenario like ours becomes a matter of possible
investigation.
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