
Preference Learning and Optimization
for Partial Lexicographic Preference
Forests over Combinatorial Domains

Xudong Liu1(B) and Miroslaw Truszczynski2

1 School of Computing, University of North Florida, Jacksonville, USA
xudong.liu@unf.edu

2 Department of Computer Science, University of Kentucky, Lexington, USA
mirek@cs.uky.edu

Abstract. We study preference representation models based on partial
lexicographic preference trees (PLP-trees). We propose to represent pref-
erence relations as forests of small PLP-trees (PLP-forests), and to use
voting rules to aggregate orders represented by the individual trees into a
single order to be taken as a model of the agent’s preference relation. We
show that when learned from examples, PLP-forests have better accu-
racy than single PLP-trees. We also show that the choice of a voting rule
does not have a major effect on the aggregated order, thus rendering the
problem of selecting the “right” rule less critical. Next, for the proposed
PLP-forest preference models, we develop methods to compute optimal
and near-optimal outcomes, the tasks that appear difficult for some other
common preference models. Lastly, we compare our models with those
based on decision trees, which brings up questions for future research.

1 Introduction

Preferences are fundamental to decision making and have been researched in
areas such as knowledge representation, decision theory, social choice, and con-
straint satisfaction. Preferences amount to a total order or preorder on a set of
outcomes (alternatives). In some settings, for instance in voting theory, the num-
ber of outcomes is small enough to allow an explicit enumeration as a method
to represent preference relations. However, in other settings outcomes are spec-
ified in terms of attributes, each with its own domain, where an outcome is a
tuple of values, one for each attribute. Such outcome spaces are called combina-
torial domains. If attribute domains have at least two values, the cardinality of a
combinatorial domain is exponential in the number of attributes. Consequently,
explicit enumeration of preference orders, even for combinatorial domains over
as few as ten attributes, is infeasible.

To represent preferences over combinatorial domains, we use languages that
concisely express agent’s criteria for preferring one outcome over another, thus
determining preference orders on outcomes. Languages exploiting lexicographic
orders have been especially extensively studied. They include lexicographic
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 284–302, 2018.
https://doi.org/10.1007/978-3-319-90050-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_16&domain=pdf


Preference Learning and Optimization for PLP Forests 285

strategies [17], lexicographic preference trees [2], partial lexicographic preference
trees [13] (our focus in this paper), and preference trees [6,14]. These models
naturally support preference reasoning [18,19]. Most recently, Bräuning et al. [3]
studied learning of preference lists, a model orthogonal to the model of PLP-
trees. On the one hand, preference lists can capture preferences that cannot
be captured by PLP-trees. On the other hand, preference lists cannot capture
conditional importances that can naturally be modeled by PLP-trees.

Lexicographic preference models have structure that factors the agent’s pref-
erence order into the importance, sometimes conditional, of attributes, and
preference orders, also sometimes conditional, on values of individual attribute
domains. This structure can be exploited for preference elicitation. It also pro-
vides useful insights into what is important for an agent when choosing among
available outcomes. In particular, it makes it easy to compare outcomes (domi-
nance testing) and to identify outcomes that are most preferred.

In this paper, we focus on lexicographic models given by partial lexicographic
preference trees, or PLP-trees for short [13]. PLP-trees that impose strong
restrictions on the structure, for instance, those with unconditional importance
of attributes and unconditional preference orders on values of attribute domains,
can be elicited effectively from the agents. However, in general, PLP-trees are
difficult to elicit directly and have to be learned, that is, built from examples
of pairwise comparisons or other observed expressions of the agent’s preference
[11]. Unrestricted PLP-trees may have size of the order of the size of the under-
lying combinatorial domain. Such large trees offer no advantages over explicit
enumerations of preference orders. However, PLP-trees learned from a set E of
examples have size O(|E|). This gives us control over the size of learned trees but
the predictive power of trees learned from small sets of examples may be lim-
ited. Learning forests of small trees and using some voting aggregation method
was proposed as a way to circumvent the problem. Following ideas proposed by
Breiman [4], Liu and Truszczynski [11] studied learning forests of PLP-trees and
used the Pairwise Majority rule (PMR) to obtain a new type of a lexicographic
preference model [11].

There are two main problems with this last approach. First, the PMR does
not (in general) yield an order. Second, it does not lead to any obvious algorithms
for reasoning tasks other than dominance testing. For instance, it does not seem
to lead to natural approaches to preference optimization, that is, computing
optimal or near-optimal outcomes. In this paper, we extend the results by Liu
and Truszczynski [11] by replacing the PMR with several common voting rules.
Using voting rules to aggregate preference orders defined by lexicographic models
has drawn significant attention lately. Lang and Xia [10] studied sequential voting
protocols. Lang et al. [9] established computational properties of voting-based
methods to aggregate LP-trees, and Liu and Truszczynski [12] conducted an
experimental study of aggregating LP-trees by voting using SAT-based tools.

Using voting rules to aggregate forests of PLP-trees turns out to yield pref-
erence models where dominance testing is as direct as with the PMR. How-
ever, preference optimization becomes feasible, too. As there are many voting



286 X. Liu and M. Truszczynski

rules that could be used, and they pose different computational challenges, it
is important to study whether some rules are better than others. Earlier work
in the standard voting setting showed significant robustness of the aggregated
order to the choice of a voting rule. Comparing several common voting rules,
researchers found that, except for Plurality, these voting methods show a high
consensus on the resulting aggregated preference orderings [5,15]. Our results on
rank correlation in the setting when individual preferences are represented by
PLP-trees over possibly large combinatorial domains also show high consensus
among orders determined by the PLP-forest models, at levels consistent with
those reported for the voting setting.

As long as we are interested in dominance testing only, one can build pre-
dictive models by learning decision trees.1 We compare the quality of learned
PLP-trees and forests with those of learned decision trees. Decision trees turn
out to be more accurate for dominance testing. However, they have drawbacks.
Decision trees do not in general represent order nor partial order relations. They
do not provide any explicit information about underlying orders and so, do
not provide insights into how agents whose preferences they aim to model make
decisions. Lastly, they do not lend themselves easily to tasks involving preference
optimization.

To summarize, our contributions are as follows. (1) We propose to model
preferences by forests of PLP-trees, aggregated by voting rules. We study com-
putational complexity of key reasoning tasks for the resulting models. (2) We
demonstrate that the models we studied had higher predictive accuracy than the
models given by a single PLP-tree, and by a PLP-forest with the PMR. (3) We
show that for several voting rules the orders obtained by aggregating PLP-forests
are quite close to each other. This alleviates the issue of selecting the “right”
rule. (4) For the proposed PLP-forest preference models, we develop methods
to compute optimal and near-optimal outcomes, the reasoning task that has no
natural solutions under models based on the PMR. (5) We compare our models
with those based on decision trees. We show that the latter are more accurate
but, as noted above, have shortcomings in other aspects.

The higher accuracy of models based on decision trees on the dominance test-
ing task does not invalidate PLP-tree based approaches, as they have important
advantages noted above. Rather, they suggest an intriguing question of whether
PLP-trees (forests) could be combined with decision trees (forests) retaining the
best features of each approach. One possibility might be to use PLP-trees to
some top-level partitioning of outcomes, with decision trees used for low-level
details.

1 One can also learn random forests of decision trees. In our experiments, decision
trees show high accuracy and seem robust to overfitting. Thus, we do not discuss
here results we obtained for random forests.



Preference Learning and Optimization for PLP Forests 287

2 Partial Lexicographic Preference Trees and Forests

Let A = {X1, . . . , Xp} be a set of attributes, each attribute Xi having a finite
domain Di. The corresponding combinatorial domain over A is the Cartesian
product CD(A) = D1 × . . . × Dp. We call elements of combinatorial domains
outcomes.

A PLP-tree over CD(A) is an ordered labeled tree, where: (1) every non-leaf
node is labeled by some attribute from A, say Xi, and by a local preference
>i, a total strict order on the corresponding domain Di; (2) every non-leaf node
labeled by an attribute Xi has |Di| outgoing edges; (3) every leaf node is denoted
by �; and (4) on every path from the root to a leaf each attribute appears at
most once as a label.

Each outcome α ∈ CD(A) determines in a PLP-tree T its outcome path,
H(α, T ). It starts at the root of T and proceeds downward. When at a node d
labeled with an attribute X, the path descends to the next level based on the
value α(X) of the attribute X in the outcome α and on the local preference
order associated with d. Namely, if α(X) is the i-th most preferred value in this
order, the path descends to the i-th child of d. We denote by �T (α) the index of
the leaf in which the outcome path H(α, T ) ends (the leaves are indexed from
left to right with integers 0, 1, . . .).

We say that an outcome α is at least as good as an outcome β (α �T β) if
�T (α) ≤ �T (β). The associated equivalence and strict order relations ≈T and �T

are specified by the conditions �T (α) = �T (β) and �T (α) < �T (β), respectively.
Preference relations modeled by PLP-trees are total preorders.

The leaves of a PLP-tree can be indexed in time O(s(T )), where s(T ) is the
number of nodes in T , by adapting the inorder traversal to the task. After that,
the value �T (α) can be computed in time O(h(T )), where h(T ) is the height of
tree T . Thus, assuming the indices were precomputed, all three relations can be
decided in time O(h(T )).

To illustrate, let us consider the domain of cars described by four multi-
valued attributes. The attribute BodyType (B) has three values: minivan (v),
sedan (s), and sport (r). The attribute Make (M) can either have value Honda
(h) or Ford (f). The Price (P ) can be low (l), medium (d), or high (g). Finally,
Transmission (T ) can be automatic (a) or manual (m). An agent’s preference
order on cars from this space could be expressed by a PLP-tree T in Fig. 1.

The tree tells us that BodyType is the most important attribute to the agent
and that she prefers minivans, followed by sedans and by sport cars. Her next
most important attribute is contingent upon what type of cars the agent is
considering. For minivans, her most important attribute is Make, where she
likes Honda more than Ford. Among sedans, her most important attribute is
Price, where she prefers medium-priced cars over low-priced ones, and those
over high-priced ones. She does not differentiate between sport cars; they are
least preferred.

To compare a Ford sedan with a middle-range price and an automatic trans-
mission (〈s, f, d, a〉, in our notation) and a Honda sedan with a high-range price
and a manual transmission (that is, 〈s, h, g,m〉), we traverse the tree T . We see



288 X. Liu and M. Truszczynski

Fig. 1. A PLP-tree T over the car domain

that the cars diverge on the node labeled by attribute P , and that the Ford car
falls to leaf 2 and the Honda car leaf 4. Thus, the Ford car is preferred to the
Honda car.

A PLP-forest is a finite set of PLP-trees. When extended with a voting rule
to aggregate orders given by its constituent PLP-trees, a PLP-forest specifies a
single preference order on the space of outcomes. In this way, PLP-forests with
voting rules can be viewed as models of preference relations.

3 Voting in Partial Lexicographic Preference Forests

To aggregate PLP-forests we consider the voting rules Top-k Clusters, Plurality,
Borda, Copeland, and Maximin. In our experiments, we also consider the earlier
model of PLP-forests combined with the PMR. In general, the PMR does not
yield a sensible preference relation as it suffers from the Condorcet paradox [7].
Nevertheless, it performs well in dominance testing [4,11]. We consider it here
as the baseline for the voting rules.

The five voting rules are scoring rules in the sense that, given a PLP-forest
P , they assign to each outcome o the score Sr(o, P ) (where r refers to a voting
rule). The scores define the preference relation � as follows: for outcomes o, o′,
we have o � o′ if and only if Sr(o, P ) ≥ Sr(o′, P ). Clearly, the relation defined
in this way is a total preorder2.

The first three rules we discuss are versions of the well-known positional
scoring rules used with total preference orders. They are adjusted here to the case
of total preorders. Each tree T in a PLP-forest P determines the score Sr(o, T )
of an outcome o in the preference preorder given by T . This score depends on
the position of the preorder “cluster” containing o, its size, and on the number
of outcomes in the clusters that are more preferred than the one containing o. In
each case we consider, namely, Top-k Clusters, Plurality and Borda the specific
formula for Sr(o, T ) is a natural generalization of the corresponding formula for

2 While the preference models we consider here represent total preorders, arguably the
most important class of preference relations, we note that some studies of preference
relations allow for incomparability of outcomes, which leads to preference relations
models by arbitrary preorders (not necessarily total).



Preference Learning and Optimization for PLP Forests 289

the standard case of total orders to total preorders. In each case, the sum of
scores with respect to all trees in the forest P yields the score Sr(o, P ).

Below we introduce the five voting rules adjusted to the setting of total
preorders (they are commonly defined for strict total orders), as well as the
PMR.

Top-k Clusters (where k is a positive integer): For an outcome o, we define
Stkc(o, T ) = max{k − �T (o), 0} and set

Stkc(o, P ) =
∑

T∈P

Stkc(o, T ).

Assuming that we precomputed indices of leaves in all trees, which can be accom-
plished in time O(s(P )), where s(P ) denotes the number of nodes in all trees in
P , we can compute Stkc(o, P ), for any outcome o, in time O(t(P ) · max{h(T ) :
T ∈ P}), where t(P ) is the number of trees in P . We note that Top Cluster
(k = 1) is a rule similar to approval, where each tree approves all outcomes in
the leftmost cluster (and only those outcomes); and Top-k Cluster rules with
k > 1 are its natural generalizations.

Plurality: Let �T
0 be the set of most preferred outcomes in a PLP-tree T (the

set of all outcomes o with �T (o) = 0). Next, let ΔT (o) = 1 if outcome o is a
most preferred one in T , and ΔT (o) = 0, otherwise. We define the Plurality score
Spl(o, P ) by setting

Spl(o, P ) =
∑

T∈P

ΔT (o)
|�T
0 | .

We can compute ΔT (o) and |�T
0 | in time O(h(T )). Thus, Spl(o, P ) can be com-

puted in time O(t(P ) · max{h(T ) : T ∈ P}).

Borda: Let T be a PLP-tree. We define �T
i to be the set of all outcomes o with

�T (o) = i (the ith cluster in the order defined by T ). Let c(o) be the cluster
containing o (in our notation, c(o) = �T

�T (o)). We define

Sb(o, T ) =

∑
1≤j≤|c(o)|

(n − j − ∑
0≤i<�T (o)

|�T
i |)

|c(o)| ,

where n is the size of the combinatorial domain,3 and set Sb(o, P ) as follows:

Sb(o, P ) =
∑

T∈P

Sb(o, T ).

3 This captures the idea that the all outcomes in the top cluster in T have their score
(with respect to T ) equal to the average of n − 1, n − 2, . . . , n − i (with i being the
number of outcomes in the top cluster), the outcomes in the next to top cluster have
their scores equal to the average of n − i − 1, n − i − 2, . . . , n − i − j (with j being
the number of elements in that cluster), etc.



290 X. Liu and M. Truszczynski

Assuming that the sizes |�T
i | of clusters and the quantities

∑
0≤i<�

|�T
i |) are pre-

computed, which can be done in time O(s(P )), we can compute Sb(o, T ) in time
O(h(T )). Consequently, Sb(o, P ) can be computed in time O(t(P ) · max{h(T ) :
T ∈ P}).

Copeland: Let us define NP (o, o′) to be the number of trees T ∈ P such that
o �T o′. Informally, NP (o, o′) is the number of trees that declare o more preferred
to o′. If NP (o, o′) > NP (o′, o), then o wins with o′ in P . If NP (o, o′) < NP (o′, o),
then o loses to o′ in P . The Copeland score Scp(o, P ) is given by the difference
between the number of pairwise wins and the number of pairwise losses of o:

Scp(o, P ) =|{o′ ∈ C \ {o} : NP (o, o′) > NP (o′, o)}|
− |{o′ ∈ C \ {o} : NP (o, o′) < NP (o′, o)}|.

Maximin: This method (also known as the Simpson-Kramer method) is consid-
ered in several variants in which the definition of the Maximin scoring function
Sxn(o, P ) may include winning votes, margins, and pairwise oppositions. In this
paper, we will define it in terms of the margin for an outcome, that is, the small-
est difference between the numbers of pairwise wins and pairwise losses against
all opponents.

Sxn(o, P ) = min
o′∈C\{o}

(NP (o, o′) − NP (o′, o)).

Both the Copeland score and the Maximin score can be computed in time
O(n ·t(P ) ·max{h(T ) : T ∈ P}), where n is the size of the combinatorial domain.

Pairwise Majority Rule (PMR): The PMR is not a scoring rule. We use it
to decide preferences between outcomes. Specifically, given two outcomes o and
o′, o �pm o′ if NP (o, o′) > NP (o′, o). Thus, deciding pairwise preferences takes
time O(t(P ) · max{h(T ) : T ∈ P}).

4 Computational Complexity

In the previous sections we listed estimates of the running time of algorithms that
could be used to compute scores of the five scoring rules we consider. Here we
complete the discussion by considering the complexity of the problems SCORE,
QUALITY, and OPTIMIZATION.
SCORE (for a scoring rule r): Given a PLP-forest P , an outcome o, and a
positive rational number s, decide whether Sr(o, P ) ≥ s.
QUALITY (for a scoring rule r): Given a PLP-forest P and a positive rational
number �, decide whether there is an outcome o such that Sr(o, P ) ≥ �.
OPTIMIZATION (for a scoring rule r): Given a PLP-forest P , compute an
outcome with the highest score (an optimal outcome).

The picture for the rules Top-k Clusters, Plurality and Borda is complete.
As we noted above, the SCORE problem for Borda is in the class P, and Lang



Preference Learning and Optimization for PLP Forests 291

et al. [9] proved that the QUALITY and OPTIMIZATION problems for Borda
are NP-complete and NP-hard, respectively. The SCORE problem for Top-k
Clusters and Plurality is in P (cf. our comments in the previous section) and
the following two results show that in each case, the problems QUALITY and
OPTIMIZATION are NP-complete and NP-hard, respectively.

Theorem 1. The QUALITY problem for Top Cluster is NP-complete.

Proof (Sketch). Membership is obvious, as one can guess an outcome o in O(p)
time, and verify that Stc(o, P ) ≥ l in polynomial time in the size of P . Hardness
is proved by reduction from MIN2SAT: Given a set Φ of n 2-clauses {C1, . . . , Cn}
over a set of propositional variables {X1, . . . , Xp}, and a positive integer g (g ≤
n), decide whether there is a truth assignment that satisfies at most g clauses in
Φ.

Specifically, let Φ be a collection of n 2-clauses. For each clause in Φ, say
C = Xi∨¬Xj , we create a PLP-tree TC in Fig. 2, treating propositional variables
Xi as attributes with the domains {0i, 1i} (the form of the tree for other types
of 2-clauses is evident from the example we selected for illustration). We also set
l = n − g.

A truth assignment v falsifies a clause C in Φ if and only if, when viewed as
an outcome, it belongs to the top cluster of the corresponding tree TC . Clearly,
there is an assignment satisfying at most g clauses of Π if and only if there is an
assignment that falsifies at least l clauses in Φ. The latter is equivalent to the
existence of an outcome that belongs to the top cluster of at least l trees TC ,
C ∈ Φ, that is, an outcome v such that Stc(v, P ) ≥ l. ��

Fig. 2. PLP-tree

The case of the Top-k Cluster rule with k > 1 is dealt with in the next
theorem.

Theorem 2. The QUALITY problem for Top-k Clusters, where k > 1, is NP-
complete.

Proof (Sketch). The membership in NP is evident. To prove NP-hardness for
when k > 1, we again reduce from the MIN2SAT problem, but the construction
is different. For every clause C ∈ Φ, say C = Xi ∨ ¬Xj ∈ Φ, we construct a



292 X. Liu and M. Truszczynski

set PC of three PLP-trees shown in Fig. 3 (the construction is evident from the
example we selected here for illustration).

We note that if an assignment v satisfies a clause C ∈ Φ, then we have
Stkc(v, PC) = 3 · k − 4; otherwise, we have Stkc(v, PC) = 3 · k − 3. We now
set P =

⋃
C∈Φ PC and l = 3n(k − 1) − g. We need to show that assignment v

satisfies at most g clauses in Φ if and only if v scores at least l in P according
to the Top-k Clusters rule.

Let v be an assignment satisfying g′ clauses in Φ. Then, Stkc(v, P ) = g′(3 ·k−
4)+(n−g′)(3 ·k−3) = 3n(k − 1) − g′. Thus, as required, there is an assignment
v that satisfies at most g clauses if and only if there is an outcome with the score
at least l. ��

Fig. 3. Set PC of PLP-trees for clause C = Xi ∨ ¬Xj

Theorem 3. The QUALITY problem for Plurality is NP-complete.

Proof (Sketch). The membership in NP is clear. The NP-hardness can be proved
by reduction from MIN2SAT. For each clause in Φ, we create a PLP-tree TC as
in the proof of Theorem 1, and we set l = (n−g)/2p−2. One can show that there
is a truth assignment satisfying at most g clauses in Φ if and only if there exists
an outcome whose Plurality score is at least l. ��

Theorems 2 and 3 show that the corresponding OPTIMIZATION problems
for Top-k Cluster, k ≥ 1, and for Plurality are NP-hard.

The SCORE, QUALITY and OPTIMIZATION problems for Copeland and
Maximin were studied by Lang et al. [9]. These results are partial and not tight.
We studied the complexity of these problems for the scoring rules Top-k Clusters,
Plurality and Borda. Our results are complete and tight. We summarize all these
results in Table 1. Completing the complexity picture for Copeland and Maximin
remains a challenging open problem.

5 Experiments and Results

PLP-trees and forests are difficult to elicit from users directly. In practical set-
tings they have to be learned from examples, that is, pairs (o, o′) of outcomes,



Preference Learning and Optimization for PLP Forests 293

Table 1. Computational complexity results

SCORE QUALITY OPTIMIZATION

Top-k clusters P NPC (Theorems 1 and 2) NPH

Plurality P NPC (Theorem 3) NPH

Borda P NPC (cf. [9]) NPH

Copeland #PH (cf. [9]) ? ?

Maximin ? coNPH (cf. [9]) coNPH

where o is strictly preferred to o′ in the preference order we are trying to elicit
(model). A method to learn PLP-trees was proposed by Liu and Truszczynski
[11]. They also applied it learn PLP-forests and aggregate them with the PMR.
In this paper, we extend this work to the case when learned PLP-forests (forests
of learned PLP-trees) are aggregated by means of voting rules.

In our main results, we evaluate the ability of PLP-forests extended with vot-
ing rules to approximate preference orders arising in practical settings. Further,
we compare in this respect PLP-forest models with models based on decision
trees, develop for PLP-forests effective techniques to compute optimal or near
optimal outcomes, and study the effect of the choice of a specific voting rule on
the quality of the preference model.

5.1 Datasets and Experimental Set-up

We implemented the scoring rules discussed above as order aggregators for PLP-
forests and experimented with them on the twelve preferential datasets used
before by Liu and Truszczynski [11].4 Their key characteristics are given in
Table 2. The third column gives the number of pairs of outcomes from the cor-
responding domain with the first outcome being strictly better than the second
one. As mentioned earlier, we refer to such pairs as examples.

The PLP-forest learning procedure works as follows. For each of the datasets,
we randomly partition the set of examples E , generating a training set of 70% of
E and use the rest 30% as the testing set. In the training phase, we use the greedy
learning heuristic [11] to learn a PLP-forest of a given number of PLP-trees, each
of which is learned from M (a parameter) examples selected with replacement
and uniformly at random from the training set. In the testing phase, the trees
in the learned PLP-forest are aggregated using the seven voting methods, Top
Cluster, Top-2 Clusters, Top-3 Clusters, Plurality, Borda, Copeland and Max-
imin, to predict testing examples and to compute the social welfare rankings.
We repeat this procedure 20 times for each dataset.

We recall that the greedy heuristic algorithm to learn a PLP-tree [11] takes
as input the set E of examples, the set A of attributes, and a node n. The
algorithm labels n with an attribute X and picks the preference order of elements

4 The datasets are available at https://www.unf.edu/∼N01237497/preflearnlib.php.

https://www.unf.edu/~N01237497/preflearnlib.php


294 X. Liu and M. Truszczynski

Table 2. Preference datasets in the preference learning library

Dataset #Attributes #Outcomes #Examples

Breast Cancer Wisconsin (BCW) 9 270 9, 009

Car Evaluation (CE) 6 1, 728 682, 721

Credit Approval (CA) 10 520 66, 079

German Credit (GC) 10 914 172, 368

Ionosphere (IN) 10 118 3, 472

Mammographic Mass (MM) 5 62 792

Mushroom (MS) 10 184 8, 448

Nursery (NS) 8 1, 266 548, 064

SPECT Heart (SH) 10 115 3, 196

Tic Tac Toe (TTT) 9 958 207, 832

Vehicle (VH) 10 455 76, 713

Wine (WN) 10 177 10, 322

in the domain of X so that to maximize the number of examples in E correctly
decided by X and this domain order. For each value in the domain of X, the
algorithm generates a child node of n for which the algorithm recursively repeats
with updated inputs: E ′, A′ and n′, where E ′ is obtained from E excluding the
examples decided at node n, A′ = A\{X}, and n′ is a child node of n. The
algorithm stops and returns at a node where either E or A becomes empty.

The following three subsections present our experimental results. The first
one concerns the task of predicting new preferences. For this task, we compute
and report average accuracy results, where the accuracy is defined as the number
of examples in the testing set that are in agreement with the learned model
divided by the size of the testing set.

In the next subsection, we discuss computing optimal outcomes for PLP-
forests using the Top-k Clusters rules. We show that the problem can be reduced
to the weighted partial MAXSAT problem [1]. This allows one to use the
MAXSAT solver toulbar2 [8] to solve them.

Finally, we consider the effect of the choice of a scoring rule on the preference
order. To this end, we calculate the Spearman’s rho [15] for Top Cluster, Top-2
Clusters, Top-3 Clusters, Plurality, Borda and Maximin, all against Copeland.
This allows us to quantify the similarity between orders generated by different
rules.

5.2 Preference Prediction Results

We focus on PLP-forests of trees learned from small sets of examples. This
supports fast learning and leads to small constituent PLP-trees. In our exper-
iments we learned PLP-trees from samples of 50, 100 and 200 examples. The
results, averaged over all datasets for the Top-2 Clusters rule, are shown in



Preference Learning and Optimization for PLP Forests 295

Fig. 4. Preference learning and optimization results for PLP-forests

Fig. 4a. They show that the testing accuracy is better when smaller PLP-trees
are learned. We saw similar behavior for other scoring rules and so omitted the
results from Fig. 4a. Based on these experiments, we now restrict our discussion
to PLP-forests with trees learned from samples of size 50.

In Fig. 4b, we present the mean learning curves over all datasets for all 8 rules,
where each curve shows how testing results (accuracy percentages) change with
the PLP-forest size (the number of trees in the forest). We also show there the
results for learning a single PLP-tree and a single decision tree using the whole
training set (70% of E). Decision trees in our experiments are classification trees
trained using labeled instances, where an instance consists of two outcomes and



296 X. Liu and M. Truszczynski

has a binary label, 1 (0) indicating the first outcome is (is not, resp.) strictly
preferred to the second. Given a decision tree D and two outcomes o, o′, the
dominance testing query asks if it is true that o is strictly preferred to o′ in
D. In testing, to answer such a query for two outcomes, they are input into a
decision tree. If the tree predicts 1, we answer yes to the query; otherwise, no.

First, we observe that independently of the rule used the PLP-forest models
across all datasets outperform the single PLP-tree model. This is most notable
for the Borda rule, with a 4% improvement from 87% for single PLP-trees to
91% for PLP-forests. Pairwise Majority used by Liu and Truszczynski [11] turns
out to be the worst aggregating method overall.

Moreover, looking at the results for 1000-tree forests, we see that, these forests
have high accuracy of about 89–91%, on the testing datasets, depending on the
voting rule. This provides strong evidence for the adequacy of the PLP-forest
model to represent user preferences over practical combinatorial domains. This
also demonstrates that the differences between these voting rules in predicting
new preferences are not significant. In particular, the Top-3 Clusters rule finishes
90%, only a percentile point difference from Borda.

Our results also show that decision trees perform better on our datasets
with accuracy of about 99%. We attribute the near-perfect performance of the
decision-tree model to their large size (cf. Table 3) that enables classifying with
high-granularity whether one outcome is preferred to another. However, the
decision-tree model has drawbacks. It does not guarantee that the relation it
determines is an order or a partial order, it does not offer clear explanations
what factors affect comparisons, and it does not support computing optimal
and near-optimal outcomes. In each of these aspects PLP-forest models have an
advantage.

Table 3. Size comparison of PLP-trees and decision trees learned from the training
data (70% of E)

Dataset BCW CE CA GC IN MM MS NS SH TTT VH WN

Decision tree 188.8 683.0 897.2 2003.0 116.0 58 27.4 681.0 73.6 564.2 1549.0 36.2

PLP-tree 25.7 109.5 81.1 190.0 30.6 10.0 16.3 116.9 19.0 115.2 105.4 14.6

Ratio 7.6 6.2 11.1 10.5 3.8 5.8 1.7 5.8 3.9 4.9 14.7 2.5

5.3 Preference Optimization Results

PLP-forests with scoring rules allow for effective optimal outcome computation.
We show it here for orders obtained by using Top, Top-2 and Top-3 Clusters
rule to aggregate orders defined by individual PLP-trees in a PLP-forest.

For every dataset, we learn PLP-forests of up to 1000 PLP-trees. To compute
the optimal outcome in each forest (under Top, Top-2 or Top-3 Clusters rule), we
encode the problem as an instance of the weighted partial MAXSAT problem [1]



Preference Learning and Optimization for PLP Forests 297

and use toulbar2 [8] to solve it. A weighted partial MAXSAT instance Φ consists
of two parts Φh and Φs, where Φh, called hard constraints, is a collection of
clauses, and Φs, called soft constraints, is a collection of weighted clauses. If Φh

is over-constrained and thus unsatisfiable, there is no solution to Φ. Otherwise,
the solution to Φ is a truth assignment v that satisfies Φh and maximizes the sum
of the weights of the clauses satisfied by v. We now briefly discuss the encoding
for the case of binary attributes, which extends in a straightforward way to the
general case of multi-valued attributes.

The encoding consists of two main steps and assumes that we are using the
Top-k Clusters rule for aggregation. First, given a PLP-forest P = {T1, . . . , Tm},
we build a collection Ψ = {(B1

1 , k), . . . , (B1
k, 1), . . . , (Bm

1 , k), . . . , (Bm
k , 1)} of

term-weight pairs. Each term Bi
j is the conjunction of literals x or ¬x, where

x’s are the names of the attributes labeling the nodes on the path in the tree
Ti from its root to the leaf �j . If the path follows to the left child of the node
labeled by x, the term Bi

j includes the literal x, otherwise, it includes the literal
¬x. This collection of terms can be built in time that is linear in the size of
the input. One can show that the winning outcome for P with respect to the
Top-k Clusters rule is precisely the truth assignment with the maximum sum of
weights of those terms in Ψ that it satisfies (and conversely).

Second, we translate Ψ to an equivalent weighted partial MAXSAT instance
Φ of two parts Φs and Φh. Given Ψ = {(B1, w1), . . . , (BN , wN )}, we build in
linear time Φs = {(c1, w1), . . . , (cN , wN )} where every ci is a new atom, and
Φh = {CNF (Bi ↔ ci) : (Bi, wi) ∈ Ψ} where CNF denotes the set of clauses of a
given formula. One can show that the truth assignment with the maximum sum
of weights of satisfied terms in Ψ is precisely the truth assignment that satisfies
all clauses in Φh and for which the sum of weights of clauses in Φs that it satisfies
is maximum (and the converse holds, too).

Average computational time spent on searching for optimal outcomes for
all datasets is shown in Fig. 4c. We see that, for any dataset and for any for-
est size up to 1000, a weighted partial MAXSAT instance encoding preference
optimization can be solved within 0.2 s.

The reductions are straightforward for the Top-k Clusters rules. It is not
clear how to extend them to other scoring rules. Instead, we show that optimal
outcomes computed for the three of the Top-k Clusters rules are close to opti-
mal for orders obtained for other rules. Specifically, for every optimal outcome
computed based on Top-k Clusters rule (k = 1, 2, 3) and every dataset, we ran-
domly select 1000 outcomes and check how well the optimal outcome compares
to them, when other voting rules (Plurality, Borda, Copeland and Maximin) are
used. Average percentiles of the number of outcomes “beaten” by the optimal
one are shown in Fig. 4d. We note that, when forests are big, the optimal out-
comes based on the three Top-k Clusters rules are either very likely optimal
(when the percentiles are exactly 100%) or very likely near-optimal (when the
percentiles are not 100% but very close to), for all other voting rules. This is
desirable because it shows that computing optimal outcomes for orders deter-
mined by Top-k Clusters rules, which we demonstrated to be computationally



298 X. Liu and M. Truszczynski

feasible, are likely optimal or near-optimal for rules where methods to optimize
preferences are not straightforward. For decision trees, the results show that
outcomes optimal for Top-k Rules are further from optimal but still within the
top 20% of outcomes according to the decision-tree model.

5.4 Rank Correlation Results

In the standard voting setting, the rankings generated by different voting rules
are quite close to each other [5,15]. For the setting of combinatorial domain
setting, when preference orders are given as PLP-forests (with scoring rules as
aggregators), the results we discussed in the previous sections suggest that here,
too, the choice of a voting rule does not affect the order significantly (all rules
result in models of similar accuracy and outcomes highly preferred for one rule
are highly preferred for other).

Specifically, we empirically studied the correlation to orders determined by
the Copeland rule of orders determined by the other scoring rules we studied.
As suggested in previous work on measuring rank correlation [5,15,16], we used
the Spearman’s rho (denoted by ρ) as the rank correlation coefficient. Given two
total orders L1 and L2 of outcomes in C, we define

ρ(L1, L2) = 1 −
6 · ∑

1≤i≤n

(i − D2(L1(i)))2

n · (n2 − 1)
,

where i is the rank value between 1 and n, and D2(o) is the rank of outcome o
in L2. The value of ρ(L1, L2) is in between −1 and 1, both inclusive. When L1

and L2 order C exactly the same, we have ρ(L1, L2) = 1. If ρ(L1, L2) = −1, it
means L1 and L2 reversely order C. Furthermore, the closer the value to 0, the
weaker the correlation between L1 and L2.

Our results (cf. Table 4) suggest that Borda-generated orders have a very high
degree of consensus with those generated by Copeland, and that Plurality and
Top Cluster lead to orders with the lowest degrees of agreement. Nevertheless, in
all cases the Spearman’s rho has high values, similar to those obtained for strict
preference orders over non-combinatorial domains with few outcomes [5,15,16].

6 Conclusions and Future Work

We proposed to use PLP-forests extended with a voting rule as a model of
preference relations. We considered five voting rules, Top-k Clusters, Borda,
Plurality, Copeland and Maximin, all adjusted to the case of total preorders.
We studied the complexity of three key preference reasoning problems arising
in this setting: SCORE, QUALITY and OPTIMIZATION. For Top-k Clusters,
Borda and Plurality, our results, together with those obtained earlier in the
literature, provide a complete picture. In all cases, the SCORE problem is in P,
the QUALITY problem is NP-complete and the OPTIMIZATION problem is
NP-hard. For the Copeland and Maximin rules, investigated by Lang et al. [9],



Preference Learning and Optimization for PLP Forests 299

Table 4. Mean and standard deviation of the Spearman’s rho results for voting rules
against Copeland across all datasets in learning PLP-forests of size 1000

Dataset Borda Top-3 Top-2 Maximin Plurality Top

BCW 0.9616 0.8405 0.8456 0.8310 0.8288 0.8196

CE 0.7741 0.5532 0.5384 0.4716 0.4591 0.4665

CA 0.9847 0.9413 0.9354 0.9435 0.9260 0.9277

GC 0.9898 0.9159 0.9108 0.9165 0.9088 0.8742

IN 0.9240 0.9867 0.9786 0.9823 0.9763 0.9706

MM 0.8678 0.9331 0.9234 0.9109 0.9005 0.9054

MS 0.9712 0.9353 0.9115 0.9433 0.9025 0.8898

NS 0.9939 0.9908 0.9851 0.9766 0.9768 0.9806

SH 0.9729 0.9968 0.9810 0.9786 0.9747 0.9785

TTT 0.9900 0.9916 0.9841 0.9931 0.9847 0.9531

VH 0.9691 0.8612 0.8346 0.8588 0.8573 0.7958

WN 0.9937 0.9740 0.9266 0.9101 0.9090 0.9015

Mean 0.9494 0.9100 0.8963 0.8930 0.8837 0.8719

SD 0.0632 0.1181 0.1182 0.1358 0.1364 0.1347

only some results are known. However, they suggest the two rules may be more
demanding computationally.

We studied our PLP-forest models experimentally. Our results showed that
using these voting rules for preferential datasets generated from real-world clas-
sification datasets yields models reflecting underlying preference relations with
high accuracy, exceeding that of PLP-forest models utilizing the Pairwise Major-
ity rule.

We also studied the correlation among the orders given by different PLP-
forest models, extending to the setting of “votes” over combinatorial domains
several earlier studies in the standard voting setting with a small number of
alternatives. We found that when compared to the model given by PLP-forests
with Copeland as an aggregator, all models showed high levels of correlation,
similar to those reported in the literature for the standard voting setting. Our
results suggest that using rules such as Borda or Top-3 clusters (the two closest
to Copeland) produces orders representative for all those that can be obtained
by combining a PLP-forest with a scoring rule.

For the Top-k Clusters rule, we developed methods to compute optimal out-
comes for orders they determine given a PLP-forest. Our experiments for when
k = 1, 2, 3 showed that the methods are computationally feasible. They also show
that optimal outcomes computed for the Top-k Clusters rules are near optimal
for orders determined by all other scoring rules.

Our results suggest that PLP-forest preference models with scoring rules as
aggregators, especially Top-k Clusters and Borda, have many attractive features.



300 X. Liu and M. Truszczynski

They can be learned so that to reflect underlying true preference relation with
high accuracy. They represent well orders that result from using other scoring
rules. Lastly, they support fast methods for computing optimal outcomes and
these outcomes are likely to be near optimal for orders given by other scoring
rules.

We also compare our PLP-forest models with the decision tree approach.
The decision trees learned from examples can approximate underlying orders
with higher accuracy (as high as 99% in our experiments). However, they do
have drawbacks not present in PLP-forest models. First, unlike in the case of
the PLP-forests, the relation defined by decision trees is not guaranteed to be a
total order (not even a partial order). Second, decision trees do not provide any
clear insights into key factors determining the underlying preference relations. In
contrast, the PLP-tree and PLP-forest models yield information about attributes
most significant for determining the preference order. For the PLP-tree model,
it is the attribute that labels the root, for the PLP-forest model, the attributes
appearing most frequently as the labels of the roots of its trees. Lastly they
do not offer effective ways to solve optimization tasks (finding optimal or near
optimal outcomes) while, as we show, PLP-tree and forest models do. These
drawbacks of decision trees make PLP-forests, despite their lower accuracy, an
attractive preference model for use in applications.

Our results provide evidence of low effect of the choice of a voting rule when
aggregating preference orders determined by trees in a PLP-forest on the final
preference order. Clearly, the strength of this observation is has to be quantified
by the range of the data sets we considered. Expanding the scope of experiments
to other domains implied by practice, as well as to randomly generated ones
is a goal for future research. It will provide a more detailed understanding of
sensitivity of the model to the choice of a voting rule.

Improving the accuracy of the PLP-forest model is the main challenge for
future work. There seem to be two natural directions. First, one can explore a
possibility of combining the PLP-forest and decision-tree models, for instance,
by using decision trees at leaf nodes of PLP-trees for comparison tests of out-
comes in the corresponding clusters. Second, one can investigate other PLP-tree
learning algorithms, possibly developing methods to find trees that best fit with
given sets of examples, rather than to use heuristics, as we do now. Another
promising direction is to extend the work of Bräuning et al. [3]. First, one can
generalize the concept of a preference list to the tree of preference lists. In this
way one can expand the ability of the preference list model to handle conditional
preferences. Second, similarly as we do in this work considering PLP-forests, that
is, collections of PLP-trees, one can study collections of preference list models.

Acknowledgments. The work of the second author was supported by the NSF grant
IIS-1618783.



Preference Learning and Optimization for PLP Forests 301

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial
MaxSAT. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference
on Artificial Intelligence, AAAI 2010. AAAI Press (2010)

2. Booth, R., Chevaleyre, Y., Lang, J., Mengin, J., Sombattheera, C.: Learning con-
ditionally lexicographic preference relations. In: ECAI, pp. 269–274 (2010)

3. Bräuning, M., Hüllermeier, E., Keller, T., Glaum, M.: Lexicographic preferences
for predictive modeling of human decision making: a new machine learning method
with an application in accounting. Eur. J. Oper. Res. 258(1), 295–306 (2017)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Felsenthal, D.S., Maoz, Z., Rapoport, A.: An empirical evaluation of six voting

procedures: do they really make any difference? Br. J. Polit. Sci. 23(01), 1–27
(1993)

6. Fraser, N.M.: Ordinal preference representations. Theor. Decis. 36(1), 45–67 (1994)
7. Gehrlein, W.V.: Condorcet’s paradox and the likelihood of its occurrence: different

perspectives on balanced preferences. Theor. Decis. 52(2), 171–199 (2002)
8. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M.,

De Givry, S.: Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints 21(3), 413–434 (2016)

9. Lang, J., Mengin, J., Xia, L.: Aggregating conditionally lexicographic prefer-
ences on multi-issue domains. In: Milano, M. (ed.) CP 2012. LNCS, pp. 973–987.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 69

10. Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains.
Math. Soc. Sci. 57(3), 304–324 (2009)

11. Liu, X., Truszczynski, M.: Learning partial lexicographic preference trees and
forests over multi-valued attributes. In: Proceedings of the 2nd Global Confer-
ence on Artificial Intelligence (GCAI 2016). EPiC Series in Computing, vol. 41,
pp. 314–328. EasyChair (2016)

12. Liu, X., Truszczynski, M.: Aggregating conditionally lexicographic preferences
using answer set programming solvers. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.)
ADT 2013. LNCS (LNAI), vol. 8176, pp. 244–258. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41575-3 19

13. Liu, X., Truszczynski, M.: Learning partial lexicographic preference trees over com-
binatorial domains. In: Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI), pp. 1539–1545. AAAI Press (2015)

14. Liu, X., Truszczynski, M.: Reasoning with preference trees over combinatorial
domains. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 19–34.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23114-3 2

15. Mattei, N.: Empirical evaluation of voting rules with strictly ordered preference
data. In: Brafman, R.I., Roberts, F.S., Tsoukiàs, A. (eds.) ADT 2011. LNCS
(LNAI), vol. 6992, pp. 165–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24873-3 13

16. Myers, J.L., Well, A., Lorch, R.F.: Research Design and Statistical Analysis. Rout-
ledge, Abingdon (2010)

17. Schmitt, M., Martignon, L.: Complexity of Lexicographic Strategies on Binary
Cues. Preprint (1999)

https://doi.org/10.1007/978-3-642-33558-7_69
https://doi.org/10.1007/978-3-642-41575-3_19
https://doi.org/10.1007/978-3-319-23114-3_2
https://doi.org/10.1007/978-3-642-24873-3_13
https://doi.org/10.1007/978-3-642-24873-3_13


302 X. Liu and M. Truszczynski

18. Wilson, N.: Preference inference based on lexicographic models. In: Schaub, T.,
Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st European Conference
on Artificial Intelligence, ECAI 2014. Frontiers in Artificial Intelligence and Appli-
cations, vol. 263, pp. 921–926. IOS Press (2014)

19. Wilson, N., George, A.: Efficient inference and computation of optimal alterna-
tives for preference languages based on lexicographic models. In: Sierra, C. (ed.)
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI 2017, pp. 1311–1317 (2017)


	Preference Learning and Optimization for Partial Lexicographic Preference Forests over Combinatorial Domains
	1 Introduction
	2 Partial Lexicographic Preference Trees and Forests
	3 Voting in Partial Lexicographic Preference Forests
	4 Computational Complexity
	5 Experiments and Results
	5.1 Datasets and Experimental Set-up
	5.2 Preference Prediction Results
	5.3 Preference Optimization Results
	5.4 Rank Correlation Results

	6 Conclusions and Future Work
	References




