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Abstract. Fragments of Tarski’s relation algebra form the basis of many
versatile graph and tree query languages including the regular path
queries, XPath, and SPARQL. Surprisingly, however, a systematic study
of the relative expressive power of relation algebra fragments on trees
has not yet been undertaken. Our approach is to start from a basic frag-
ment which only allows composition and union. We then study how the
expressive power of the query language changes if we add diversity, con-
verse, projections, coprojections, intersections, and/or difference, both
for path queries and Boolean queries. For path queries, we found that
adding intersection and difference yields more expressive power for some
fragments, while adding one of the other operators always yields more
expressive power. For Boolean queries, we obtain a similar picture for
the relative expressive power, except for a few fragments where adding
converse or projection yields no more expressive power. One challenging
problem remains open, however, for both path and Boolean queries: does
adding difference yields more expressive power to fragments containing
at least diversity, coprojections, and intersection?

1 Introduction

Trees can be used to model data that has a hierarchical or nested structure
including taxonomies, organizational charts, documents, genealogies, and file
and directory structures. It is therefore not surprising that tree data models have
been continuously studied since the 1960s [5,9,25]. Modern query languages for
querying tree data have a heavy reliance on navigating the tree structure. Prime
examples of this are XPath [4,6,7,22] and the various JSON query languages [19].
At its core, this navigation can be captured by fragments of Tarski’s relation
algebra [24]. Consequently, tree querying based on fragments of the relation
algebra has already been studied in great detail (e.g. [3,16,17,26]). Unfortunately,
these studies only covered some very basic fragments of the relation algebra,
and a comprehensive study of all relation algebra fragments has not yet been
undertaken.
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In this work, we undertake such a comprehensive study by investigating the
relative expressive power of fragments of the relation algebra with respect to
both path queries and Boolean queries. Concretely, the basic relation algebra
fragment N () we start from only allows the constants empty-set and identity (∅
and id), edge labels, and the operators composition and union (◦ and ∪). This
fragment allows for basic querying based on navigating alongside the parent-child
axis and corresponds with the first-order fragment of the regular path queries
(RPQs) [8]. We study how the expressive power changes if we add the remain-
ing relation algebra constants and operators. This includes adding converse (−1)
which enables navigation alongside the child-parent axis, yielding the first-order
fragment of the 2RPQs [1]. We also add projections (π1 and π2) which enable
simultaneous navigation alongside several branches in the tree, yielding the first-
order fragment of the nested RPQs [2]. As it turns out, the first-order fragments
of the RPQs, 2RPQs, and nested RPQs are rather weak on trees. To increase
their expressive power, we consider adding diversity (di) and intersection (∩).
The diversity constant evaluates to all pairs of distinct nodes and combined
with intersection this constant can be used to, e.g., construct all pairs of distinct
siblings. This enables branching and counting queries, even on unlabeled struc-
tures. Finally, we study adding negation in the form of coprojections (π1 and π2)
and difference (−). All the above notations that are at the basis of this study
can be found in Sect. 2.

Unfortunately, the relative simplicity of the tree data model turns out to be
a curse rather than a blessing: compared to the graph data model [10–12,24],
this simplicity makes it much more difficult to establish separation results using
strong brute-force methods. Consequently, the study on trees forces us to search
for deeper methods to reach our goals. Therefore, we believe that our study
not only gives insight in the expressive power of the relation algebra and its
fragments, but also contributes to a better understanding of the fundamental
differences between graph data models and tree data models. The main contri-
bution presented in this paper is the introduction of several properties that can
be used to categorize relation algebra fragments according to their expressive
power. This in turn yields several separation results on trees:

1. Recognizing branches and siblings. The language N () can only query trees by
navigating alongside a single path from ancestor to descendant. Consequently,
no query in N () can distinguish between chains and trees. Other query lan-
guages support recognizing branching up to a certain degree, and we can
classify these languages accordingly. To do so, we introduce a notion called
k-subtree reductions in Sect. 3. Languages that are closed under k-subtree-
reduction steps allow the removal of a child of a node that is structurally
equivalent to at least k other children of that node without changing the
outcome of Boolean queries. First, the query language N (−1, π, π,∩) is 1-
subtree-reducible and, consequently, can only recognize siblings if they are
not structurally equivalent. Next, query languages N (F) with di ∈ F and
∩ /∈ F are 2-subtree-reducible and can, in very limited circumstances, dis-
tinguish up to two structurally equivalent children of a node. Finally the
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full relation algebra is 3-subtree-reducible, and query languages N (F) with
{−1,−} ⊆ F or {di,∩} ⊆ F can always distinguish between nodes that have
one, two, or at least three structurally equivalent children.

2. Local queries versus non-local queries. Queries in N (F) with F ⊆ {−1, π, π,
∩,−} yield node pairs (m,n) such that one can navigate between m and n by
traversing a number of edges, with the number depending only on the length
of the query. Hence, we call these query languages local. Diversity is intrinsi-
cally non-local . From this observation, it follows that languages with diversity
are not path-equivalent to local query languages. This can be strengthened
towards Boolean inequivalence, as diversity can, in many cases, be used to
express non-local properties on which trees and chains can be distinguished.
We do so in Sect. 4 by exploiting the fact that many properties on which trees
and chains can be distinguished are non-local and rely on a limited form of
counting. A simple example of this are chain queries of the form “are there k
edges in the chain labeled with edge-label �”.

3. Downward queries versus non-downward queries. Queries in N (F) with F ⊆
{π, π,∩,−} yield node pairs (m,n) such that one can navigate from m to
n by traversing along a sequence of parent-child axes. Hence, we call these
query languages downward [16,17]. We observe that these downward query
languages are all 1-subtree-reducible, which puts an upper bound on their
expressive power. Diversity and the converse operator are non-downward in
nature. Based on this observation, it follows that languages with diversity or
converse are not path-equivalent to downward query languages.

4. Monotonicity. A query language is monotone if, for every query q, every
graph G, and every graph G′ obtained by adding nodes and edges to G, we
have [[q]]G ⊆ [[q]]G′ . One the one hand, one can show that the query language
N (di, −1, π,∩) is monotone [16,17]. On the other hand, the query languages
N (F) with π ∈ F are non-monotone. For example, we only need coprojec-
tions to construct a Boolean query that puts an upper bound on the length
of a chain. Such queries are not monotone and consequently not expressible
in N (di, −1, π,∩).

In Fig. 1, we visualize the above categorization, which yields an initial clas-
sification of the expressive power of the query languages we study on trees. It
does not provide all details, however, which we will start to unravel in this paper,
mainly in Sects. 3 and 4. For an index on how specific results are proven, we refer
the reader to Fig. 12.

Some separation results are obtained through brute-force methods, which
we will show in Sect. 5. Besides separation results, we also establish collapse
results in this paper. In Sect. 6, we obtain these by introducing a notion called
condition tree queries for the local relation algebra fragments. They prove to be
a powerful tool to show that intersection never adds expressive power beyond
the ability to express projections. We also use this tool to establish limitations
on the expressive power of projections in Boolean queries.

What remains open is whether adding difference to the fragments containing
diversity, coprojections (and hence also projections), and intersection yields a
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Fig. 1. Initial classification of the relative expressive power of fragments of the relation
algebra with respect to path queries on labeled trees. In each box, the largest frag-
ment(s) that satisfy the classification of that particular box are included. The more to
the right and to the top a certain box is situated, the stronger the expressiveness of
the corresponding fragment(s) become.

collapse or separation, even in the presence of converse. We claim this a very
challenging open case, and we consider identifying it as the third major contribu-
tion of this paper. We discuss this open case in Sect. 8, in which we also discuss
other directions for future research.

2 Preliminaries1

A graph is a triple G = (V, Σ,E), with V a finite set of nodes, Σ a finite set
of labels, and E : Σ → 2V×V a function mapping labels to edge relations. We
denote by E the union of all edge relations. If |Σ| = 1, G is unlabeled. A tree
T = (V, Σ,E) is a connected acyclic graph in which one node, the root, has
no incoming edges, and all other nodes have one incoming edge. In an edge
(m,n) ∈ E , m is the parent of n, and n a child of m. A chain is a tree in which
all nodes have at most one child.

In this paper, we limit our study to queries on trees and chains. A query q
maps a tree to a set of node pairs. We write [[q]]T to denote the evaluation of q
on tree T . We can interpret a query q literally as a path query, or, alternatively,
as a Boolean query, in which case True stands for [[q]]T 	= ∅.

The syntax of a relation algebra expression is given by

e := ∅ | id | di | � | e−1 | πj [e] | πj [e] | e ◦ e | e ∪ e | e ∩ e | e − e,

where � ∈ Σ and j ∈ {1, 2}. Its evaluation on a tree T = (V, Σ,E) is defined by

[[∅]]T = ∅;
[[id]]T = {(m,m) | m ∈ V};

1 Our formalization of graphs, the relation algebra, and equivalence notions is adapted
from concepts used by Fletcher et al. [10,11].
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Fig. 2. A labeled tree that matches π1[�] ◦ � ◦ π1[�] ◦ � exactly.

[[di]]T = {(m,n) | m,n ∈ V ∧ m 	= n};
[[�]]T = E (�) ;

[[e−1]]T = {(n,m) | (m,n) ∈ [[e]]T };
[[π1[e]]]T = {(m,m) | ∃n (m,n) ∈ [[e]]T };
[[π2[e]]]T = {(n, n) | ∃m (m,n) ∈ [[e]]T };
[[πj [e]]]T = [[id]]T − [[πj [e]]]T ;

[[e1 ◦ e2]]T = {(m,n) | ∃z ((m, z) ∈ [[e1]]T ∧ (z, n) ∈ [[e2]]T )};
[[e1 ⊕ e2]]T = [[e1]]T ⊕ [[e2]]T (with ⊕ ∈ {∪,∩,−}).

Notice that it suffices to consider converse (−1) at the level of labels only. If an
expression always evaluates to a subset of id, as is the case for projections and
coprojections, then it is called a node expression.

Example 1. Consider the labeled tree in Fig. 2. The expression e = π1[�] ◦ � ◦
π1[�] ◦ � matches this tree structure, and will return the node pair (m,n). The
expressions (�−1 ◦ �) ∩ di and (�−1 ◦ �) − id both return pairs of siblings in the
tree.

For k > 0, we write Ek to represent k-fold composition of E and E−k for its
converse, we use E0 to denote id, [E ]+ to denote the descendant-axis defined by
[E ]+ =

⋃
k>0 Ek, and [E−1]+ to denote the ancestor-axis defined by [E−1]+ =⋃

k>0 E−k. Given F ⊆ {di, −1, π, π,∩,−}, N (F) denotes the relation algebra
fragment in which only the atoms ∅, � ∈ Σ, and id, the operators ◦ and ∪, and
all operators in F are allowed. In the above, we used π as shorthand for π1 and
π2, and π as shorthand for π1 and π2.

Let q1 and q2 be expressions. We say that q1 and q2 are path-equivalent,
denoted by q1 ≡path q2, if, for every tree T , [[q1]]T = [[q2]]T and are Boolean-
equivalent, denoted by q1 ≡bool q2, if, for every tree T , [[q1]]T 	= ∅ ⇐⇒ [[q2]]T 	= ∅.
Let z ∈ {path,bool}. We say that the class of expressions L1 is z-subsumed by
the class of expressions L2, denoted by L1 �z L2, if every expression in L1 is
z-equivalent to an expression in L2. In this connection, the following rewrite
rules can be used to express operators using other operators:
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π1[e] = π2[e−1] = πj [π1[e]] = (e ◦ e−1) ∩ id = (e ◦ (di ∪ id)) ∩ id (j ∈ {1, 2});
π2[e] = π1[e−1] = πj [π2[e]] = (e−1 ◦ e) ∩ id = ((di ∪ id) ◦ e) ∩ id (j ∈ {1, 2});
π1[e] = π2[e−1] = id − π1[e];
π2[e] = π1[e−1] = id − π2[e];

e1 ∩ e2 = e1 − (e1 − e2).

For F ⊆ {di, −1, π, π,∩,−}, F denotes the closure of F under the rules above.2

Example 2. The equivalence e1 ∩ e2 ≡path e1 − (e1 − e2) is well-known. Hence,
also e1 ∩ e2 ≡bool e1 − (e1 − e2). We also have π1[�] ≡bool � ≡bool π2[�], but
π1[�] 	≡path � and � 	≡path π2[�]. Finally, let e be the expression as in Example 1.
We have e ≡path �1 ◦ �−1

1 ◦ �2 ◦ �3 ◦ �−1
3 ◦ �4.

3 Subtree Reductions

Most relation algebra fragments are able to detect obvious labeled branching in
trees.

Example 3. Consider the expressions e1 = (�1)−1 ◦ �2 and e2 = π1[�1] ◦ π1[�2],
which are Boolean-equivalent. Clearly, for any tree T we have [[ei]]T 	= ∅, i ∈
{1, 2} only if T has a node with at least two children, one reachable via an edge
labeled �1 and another via an edge labeled �2.

Detecting branches in the situation above, where a single node has several
structurally distinct branches, is relatively simple. Next, we look at which lan-
guage fragments are able to detect branching if all branches are structurally
identical. As a first step towards this goal, we derive limitations on the expres-
sive power of relation algebra fragments, taking advantage of the simple structure
of trees. Thereto, we introduce subtree-reduction steps.

Let k > 0. A k-subtree-reduction step on tree T = (V, Σ,E) consists of
first finding different nodes m,n1, . . . , nk+1 ∈ V and an edge label � ∈ Σ such
that (m,n1), . . . , (m,nk+1) ∈ E (�) and the subtrees rooted at n1, . . . , nk+1 are
isomorphic, and then picking a node ni, 1 ≤ i ≤ k+1, and removing the subtree
rooted at ni.

Definition 4. We say that a tree is k-subtree-reducible if we can apply a k-
subtree-reduction step.3

Example 5. Consider the unlabeled trees T1, T2, and T3 in Fig. 3. The tree T1

can be obtained by a 1-subtree-reduction step on T2 and T2 can be obtained

2 The basic atoms and operators, ∅, � ∈ Σ, id, ◦, and ∪ are left implicit because they
are assumed to be present in every fragment.

3 The 1-subtree reductions bear a close relationship to the F+B-index and the F&B-
index used for indexing the structure of tree data [20].
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Fig. 3. Trees T1, T2, and tree T3 from Example 5 and the proof of Proposition 7.

by a 2-subtree-reduction step on T3. Consequently, T1 can also be obtained by
two 1-subtree-reduction steps on T3. Hence, T2 is 1-subtree-reducible and T3 is
1-subtree-reducible and 2-subtree-reducible.

We now exhibit conditions under which the result of a relation algebra expres-
sion is invariant under subtree reduction at the Boolean level.

Proposition 6. Let F ⊆ {di, −1, π, π,∩,−}, e an expression in N (F), T a tree,
and T ′ obtained from T by a k-subtree-reduction step. Each of the following
conditions separately implies [[e]]T 	= ∅ ⇐⇒ [[e]]T ′ 	= ∅:

(i) k ≥ 3;
(ii) k = 2 and ∩ /∈ F; and
(iii) k = 1 and {di,−} ∩ F = ∅.

Proof (sketch). Using k-pebble games [13,14,21], we can see that [[q]]T 	= ∅ ⇐⇒
[[q]]T ′ 	= ∅ if q is a query in FO[k], which is first-order logic restricted to k
variables. Since the relation algebra and FO[3] path-subsume each other [12,24],
(i) follows. In Statement (ii), F ⊆ {di, −1, π, π}. Hence, by a result of Hellings
et al. [18, Theorem 6.1], (ii) also follows.4 To prove (iii), let T = (V, Σ,E) and
T ′ = (V ′, Σ′,E′). Let n1, n2 ∈ V be the siblings in T such that T ′ is obtained
from T by eliminating the subtree rooted at n2. Let V1 and V2 be the nodes in
the subtrees of T rooted at n1 and n2, respectively, and let b : V1 → V2 be a
bijection establishing that these subtrees are isomorphic. Let g be the identity
on V − (V1 ∪ V2), and let f = b ∪ b−1 ∪ g. Since f is an automorphism of T , we
have, for m,n ∈ V, (m,n) ∈ [[e]]T ⇐⇒ (f(m), f(n)) ∈ [[e]]T . By induction on
the length of e, one can prove that, if (m,n) ∈ V1 ×V2 or (m,n) ∈ V2 ×V1, then
(m,n) ∈ [[e]]T =⇒ (f(m), n) ∈ [[e]]T . Since f = f−1, it then also follows that, if
(m,n) ∈ V1 × V2 or (m,n) ∈ V2 × V1, then (m,n) ∈ [[e]]T =⇒ (m, f(n)) ∈ [[e]]T .
A final induction on the length of e then yields that, for m′, n′ ∈ V ′, (m′, n′) ∈
[[e]]T ⇐⇒ (m′, n′) ∈ [[e]]T ′ . Hence, [[e]]T 	= ∅ ⇐⇒ [[e]]T ′ 	= ∅, ��

From the limitations imposed by Proposition 6 on the Boolean expressive
power of the fragments considered, we deduce the following separation results:

Proposition 7. Already on unlabeled trees, we have N (di) �bool N (−1, π, π,∩),
N (−1,−) �bool N (−1, π, π,∩), and N (di,∩) �bool N (di, −1, π, π).

Proof. Consider the unlabeled trees T1, T2, and T3 in Example 5. Since T1 can
be obtained by a 1-subtree-reduction on T2, we have, by Proposition 6(iii), that,

4 Notice that in the formalism of Hellings et al. [18], projection is considered to be a
standard operator.
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for every e in N (−1, π, π,∩), [[e]]T2 	= ∅ ⇐⇒ [[e]]T1 	= ∅. Now consider e1 =
E ◦ di ◦ di ◦ E in N (di) and e2 = (E−1 ◦ E) − id in N (−1,−). We have [[e1]]T2 	= ∅
and [[e2]]T2 	= ∅, while [[e1]]T1 = [[e2]]T1 = ∅, establishing the first and second
separations. Since T2 can be obtained by a 2-subtree-reduction on T3, we have,
by Proposition 6(ii), that, for every e in N (di, −1, π, π), [[e]]T3 	= ∅ ⇐⇒ [[e]]T2 	= ∅.
Now consider e3 = (((di ◦ E) ∩ di) ◦ ((di ◦ E) ∩ di)) ∩ di in N (di,∩). We have
[[e3]]T3 	= ∅, while [[e3]]T2 = ∅, establishing the third separation. ��

The proof of Proposition 7 relies on languages being able to distinguish at
least one, two, or three structurally equivalent children of a node. To do so, the
proof uses minimal languages that satisfy the conditions of Proposition 6. Hence,
the classification provided by k-subtree-reductions is strict.

4 The Power of Diversity

Relation algebra expressions without diversity can only inspect a local neigh-
borhood around a given node. With respect to path queries, this puts obvious
limitations on the expressive power of language fragments that do not contain
diversity. With respect to Boolean queries, the situation is more subtle. To study
this in more detail, we first define the notion of locality:

Definition 8. Given a tree, and disregarding the direction of its edges, the dis-
tance between two nodes is the number of edges on the unique shortest path
between them. A query q is local if there exists k ≥ 0 such that, for every tree
T , and for all nodes m and n, (m,n) ∈ [[q]]T ⇐⇒ (m,n) ∈ [[q]]T ′ , with T ′ the
smallest subtree of T containing all nodes at distance at most k from the nearest
common ancestor of m and n.

By an induction on their length, it can be shown that all expressions in
N (−1, π, π,∩,−) are local.

4.1 Adding Diversity to Local Fragments

As already noticed, diversity always adds power to a local relation algebra frag-
ment at the path level, as it can construct non-local relation algebra expressions.
We can also use this property to our advantage to prove that diversity often adds
expressive power at the Boolean level, too.

Proposition 9. Already on unlabeled trees, N (di,∩) �bool N (−1, π, π,∩,−).

Proof. By the rewrite rules at the end of Sect. 2, N (di, π,∩) �path N (di,∩).
Consider the expression e = P2,¬r ◦ di ◦ P2,¬r in which P2,¬r = π2[E ] ◦ P2,
P2 = π1[S2], and S2 = (E ◦ di) ∩ E . The expression e selects node pairs among
distinct non-root nodes such that each node in the pair has at least two distinct
children. Now, assume there exists an expression e′ in N (−1, π, π,∩,−) such
that e ≡bool e′. Since e′ is local, we know there exists k ≥ 0 such that e′
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r′

m′
1 m′
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Fig. 4. Trees T and T ′ in the proof of Proposition 9. The symbol represents a
chain of k edges, with k as in that proof.

C �� �′�′�′

m2m1

C′ � �′�′

Fig. 5. Chains C and C′ in the proof of Proposition 10. The symbol represents
a chain of 2k edges all labeled �′, with k as in that proof.

satisfies Definition 8. Now consider the trees T and T ′ shown in Fig. 4. Clearly,
[[e]]T ⊇ {(m1,m2)} 	= ∅ and [[e]]T ′ = ∅. By e ≡bool e′, we must have [[e′]]T 	= ∅. Let
(m,n) ∈ [[e′]]T . Since every subtree of T containing all nodes at distance at most
k from some given node is contained in a subtree of T that is isomorphic to T ′,
we may conclude that [[e′]]T ′ 	= ∅. However, [[e]]T ′ = ∅, contradicting e ≡bool e′.
Hence, no expression in N (−1, π, π,∩,−) is Boolean-equivalent to e. ��

We can use a similar locality argument for two more separations:

Proposition 10. Already on chains, we have N (di, −1) �bool N (−1, π, π,∩,−)
and N (di, π) �bool N (−1, π, π,∩,−).

Proof. Consider the path-equivalent expressions e1 = (� ◦ �−1) ◦ di ◦ (� ◦ �−1)
in N (di, −1) and e2 = π1[�] ◦ di ◦ π1[�] in N (di, π), and let e be either e1 or
e2. Now, assume there exists an expression e′ in N (−1, π, π,∩,−) such that
e ≡bool e′. Since e′ is local, we know there exists k ≥ 0 such that e′ satisfies
Definition 8. Now consider the chains C and C′ shown in Fig. 5. Clearly, [[e]]C ⊇
{(m1,m2)} 	= ∅. Hence, [[e′]]C 	= ∅. By e ≡bool e′, we must have [[e′]]T 	= ∅. Let
(m,n) ∈ [[e′]]T . Notice that every subchain of C containing all nodes at distance at
most k from some given node is a subchain of C of length at most 2k. Since each
such subchain of C is isomorphic to some subchain of C′, we may conclude that
[[e′]]C′ 	= ∅. However, [[e]]C′ = ∅, contradicting e ≡bool e′. Hence, no expression in
N (−1, π, π,∩,−) is Boolean-equivalent to e. ��

Observe that the separation N (di,∩) �bool N (−1, π, π,∩,−) also holds on
chains, because the expression e3 = (�◦di∩ id)◦di◦(�◦di∩ id) is path-equivalent
to e1 and e2 in the proof of Proposition 10.

4.2 Adding Other Operators to Non-local Fragments

The erratic behavior of diversity in the non-local relation algebra fragments on
trees (allowing one to jump from any node to any other node in a tree) makes
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studying the expressive power of these fragments inherently difficult. Luckily, we
can obtain several separation results by studying these fragments on chains.

For local expressions on chains, we have the following:

Lemma 11. Let F ⊆ {−1, π, π,∩,−}, and e be a union-free expression in
N (F).5 There exists k ≥ 0 such that, for every chain C, [[e]]C ⊆ [[Ek]]C or
[[e]]C ⊆ [[E−k]]C.

Lemma 11 simplifies the reasoning about local expressions on chains. In addi-
tion, diversity on chains can be expressed using the ancestor axis and the descen-
dant axis, as di = [E ]+ ∪ [E−1]+. While the descendant and ancestor axes are
not operators of the fragments considered in this paper, we can still use them in
intermediate steps to rewrite expressions that contain di. This in turn allows us
to simplify projection terms that contain di, as we show next.

Lemma 12. Let F ⊆ {di, −1, π} and πj [e], j ∈ {1, 2}, be an expression in N (F).
There exists a finite set S of expressions of the form π1[Ev] ◦ π2[Ew], v, w ≥ 0,
such that, on unlabeled chains, πj [e] ≡path

⋃
S.

Proof. We have di ≡path [E ]+ ∪ [E−1]+. We also have π2[e] ≡path π1[e−1]. Hence,
every projection expression πj [e], j ∈ {1, 2}, can be written as a union of expres-
sions of the form π1[e′] in which e′ is built over the atoms id, E , E−1, [E ]+, and
[E−1]+, using the operators ◦ and π1.6 We shall call such expressions e′ normal
in the remainder of this proof. So, it remains to show that Lemma12 holds for
expressions π1[e′], with e′ normal. We do this by structural induction on e′. We
have the following base cases:

π1[id] ≡path id ≡path π1[E0] ◦ π2[E0];

π1[E ] ≡path π1[[E ]+] ≡path π1[E1] ◦ π2[E0];

π1[E−1] ≡path π1[[E−1]+] ≡path π1[E0] ◦ π2[E1].

Now, assume that Lemma 12 holds for expressions π1[e′′], with e′′ a normal
expression containing at most i operators, i ≥ 0, and let e = π1[e′] with e′ a
normal expression containing i + 1 operators. Then either e′ = π1[e′

1] or e′ =
e′
1 ◦ e′

2, with e′
1 and e′

2 normal expressions containing at most i operators. In the
first case, e ≡path π1[e′

1], and Lemma 12 holds for e by the induction hypothesis.
In the second case, we have that e = π1[e′

1 ◦ e′
2] ≡path π1[e′

1 ◦ π1[e′
2]]. By the

induction hypothesis, e′
2 is path-equivalent to a finite union of expressions of the

form π1[Ev2 ] ◦ π2[Ew2 ], v2, w2 ≥ 0. For e′
1, we distinguish again two cases:

1. Expression e′
1 = π1[e′′

1 ], with e′′
1 again a normal expression containing at most

i operators. Hence, by the induction hypothesis, e′
1 is path-equivalent to a

finite union of expressions of the form π1[Ev1 ] ◦ π2[Ew1 ], v1, w1 ≥ 0. It now
suffices to observe that

5 Observe that, in relation algebra expressions, unions can always be pushed out to
the outermost level.

6 Recall from Sect. 2 that we need to consider converse only at the level of edges.
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π1[Ev1 ] ◦ π2[Ew1 ] ◦ π1[Ev1 ] ◦ π2[Ew1 ] ≡path π1[Emax(v1,v2)] ◦ π2[Emax(w1,w2)]

to conclude that Lemma 12 holds for e.
2. In the other case, we can assume without loss of generality that e′

1 is an atom.
Hence, it suffices to observe that, for v, w ≥ 0,

π1[id ◦ (π1[Ev] ◦ π2[Ew])] ≡path π1[Ev] ◦ π2[Ew];

π1[E ◦ (π1[Ev] ◦ π2[Ew])] ≡path π1[Ev+1] ◦ π2[Emax(0,w−1)];

π1[E−1◦ (π1[Ev] ◦ π2[Ew])] ≡path π1[Emax(0,v−1)] ◦ π2[Ew+1];

π1[[E ]+◦ (π1[Ev] ◦ π2[Ew])] ≡path

⋃
1≤i≤max(1,w) π1[Ev+i] ◦ π2[Emax(0,w−i)];

π1[[E−1]+◦ (π1[Ev] ◦ π2[Ew])] ≡path

⋃
1≤i≤max(1,v) π1[Emax(0,v−i)] ◦ π2[Ew+i].

to conclude that Lemma 12 holds for e in this case, too. ��

Example 13. Consider the expression e = π1[di ◦ E ◦ E ]. We have

e ≡path π1[[E ]+ ◦ π1[E2] ◦ π2[E0]] ∪ π1[[E−1]+ ◦ π1[E2] ◦ π2[E0]]

≡path π1[π1[E3] ◦ π2[E0]] ∪ π1[π1[E1] ◦ π2[E1]] ∪ π1[π1[E0] ◦ π2[E2]]

≡path π1[E3] ◦ π2[E0] ∪ π1[E1] ◦ π2[E1] ∪ π1[E0] ◦ π2[E2].

As Example 13 shows, we can use Lemma 12 to partially eliminate diversity
from non-local expressions on unlabeled chains, and then use locality-based argu-
ments on subexpressions to establish the following separations:

Proposition 14. Already on unlabeled chains, N (di,∩) �path N (di, −1, π),
N (−1) �path N (di, π), and N (π) �path N (di).

Proof. Consider the expression e = (di ◦ E) ∩ di in N (di,∩). On a chain, this
expression yields all pairs of distinct non-root nodes that are not edges. Now,
assume there exists an expression e′ in N (di, −1, π) such that, on unlabeled
chains, e ≡path e′. Since e is non-local, e′ must be non-local, too, hence, it must
contain diversity. Using Lemma 12, we can rewrite e′ into a union of terms each
of which is a composition of units of the form id, di, E , E−1, π1[Ev], or π2[Ew],
v, w ≥ 0. Let t = t1 ◦ · · · ◦ tn be such a term in which at least one unit is
diversity (di). Since on chains di ≡path [E ]+ ∪ [E−1]+, t is path-equivalent to
the infinite union

⋃
k1,...,kn �=0 t1k1 ◦ · · · ◦ tnkn

in which tiki
= ti if ti 	= di and

tiki
= Eki if ti = di, 1 ≤ i ≤ n. For a term t1k1 ◦ · · · ◦ tnkn

in this infinite
union, we define exp(t1k1 ◦ · · · ◦ tnkn

) =
∑

1≤i≤n exp(tiki
), where exp(tiki

) = 1
if tiki

= E ; exp(tiki
) = −1 if tiki

= E−1; exp(tiki
) = ki if tiki

= Eki ; and
exp(tiki

) = 0 otherwise. Since t contains at least one diversity unit, the set
{exp(t1k1 ◦ · · · ◦ tnkn

) | k1, . . . , kn 	= 0} covers all integer numbers with at most
one exception (there is exactly one exception if t contains exactly one diversity
unit). We can therefore choose a term t′ = t1k1 ◦ · · · ◦ tnkn

for which exp(t′) = 0
or exp(t′) = 1. Now, choose an unlabeled chain C which is sufficiently long
to ensure that for the local expression t′ in N (−1, π), [[t′]]C 	= ∅. Then, [[t′]]C
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Fig. 6. The unlabeled tree T in the proof of Proposition 15.

contains either an identical node pair (if exp(t′) = 0) or an edge (if exp(t′) = 1).
Hence, by construction, [[e′]]C contains either an identical node pair or an edge,
contradicting e ≡path e′. Hence, no expression in N (di, −1, π) is path-equivalent
to e.

Using similar arguments, we can prove that E−1 cannot be expressed in
N (di, π) and that π1[E ] and π2[E ] cannot be expressed in N (di) to establish the
other two statements of Proposition 14. ��

5 Brute-Force Results

Using a brute-force approach in the style of Fletcher et al. [10], we establish
several separations, both at the path and Boolean levels. At the core of these
brute-force results is the observation than one can effectively compute the set
of query results obtainable by queries in some relation algebra fragment N (F),
F ⊆ {di, −1, π, π,∩,−}, on a given graph. We refer to Fletcher et al. [10] and
Hellings [15] for further details.

For path separations between languages L1 and L2, we may conclude that
L1 �path L2 if there exists a query q in L1 and a tree T such that no query in
L2 evaluates to [[q]]T . Using this approach, we prove the following.

Proposition 15. Already on unlabeled trees, we have N (−1) �path N (di, π, π)
and N (π) �path N (−1).

Proof. Consider the expressions e1 = E−1 and e2 = π1[E ] ◦ π2[E ], and let T be
the tree in Fig. 6. An exhaustive search reveals that no expression in N (di, π, π)
evaluates to [[e1]]T and no expression in N (−1) evaluates to [[e2]]T . ��

At the Boolean level, the key notion in the brute-force approach is the ability
to distinguish a pair of trees. We say that a query q distinguishes a pair of trees
T1 and T2 if [[q]]T1 = ∅ and [[q]]T2 	= ∅, or vice versa. Given two languages L1 and
L2, we may conclude that L1 �bool L2 if we can find a query q in L1 and a pair
of trees T1 and T2, indistinguishable by any query in L2, but distinguishable by
q. Using this approach, we prove the following.

Proposition 16. Already on unlabeled trees, we have N (di, −1) �bool N (di),
N (di, π) �bool N (di), N (di, −1,∩) �bool N (di, π, π,∩,−), and N (di, π) �bool

N (di, −1).

Proof. Consider the following four expressions:

e1 = (E−2 ◦ E) ◦ di ◦ (E−1 ◦ E2);
e2 = (E ◦ π1[E ]) ◦ di ◦ (π2[E ] ◦ E);
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=

= ′ ′ ′′

Fig. 7. Pairs of unlabeled trees (Ti, T ′
i ), 1 ≤ i ≤ 4, in the proof of Proposition 16.

e3 = (((E−1 ◦ E) ∩ di) ◦ ((E−1 ◦ E) ∩ di)) ∩ di;

e4 = (E2 ◦ E−1) ◦ di ◦ π1[E−1 ◦ E2] ◦ di ◦ π1[E−1 ◦ E2] ◦ di ◦ (E ◦ E−2),

and let (Ti, T ′
i ), 1 ≤ i ≤ 4, be the trees in Fig. 7. We have [[ei]]Ti

= ∅ and
[[ei]]T ′

i
	= ∅, and [[e2]]T1 = ∅ and [[e1]]T ′

1
	= ∅. Observe that e4 is in N (di, −1, π),

but, by Proposition 34, e4 is Boolean-equivalent to an expression in N (di, π). An
exhaustive search reveals that no expression in N (di) can distinguish T1 = T2

from T ′
1 = T ′

2 ; no expression in N (di, π, π,∩,−) can distinguish T3 from T ′
3 ; and

no expression in N (di, −1) can distinguish T4 from T ′
4 . ��

6 Collapse Results

In Sects. 3, 4, and 5, we focused on separation results. Here, we focus on collapse
results. The key tool to prove these are what we call condition tree queries, a
generalization of the tree queries of Wu et al. [26], which were used to prove
Proposition 30 (see Sect. 7 on related work).

6.1 Condition Tree Queries

We first define condition tree queries syntactically and semantically:

Definition 17. A condition tree query is a tuple Q = (T , C, s, t, γ), where T =
(V, Σ,E) is a tree, C is a set of node expressions that represent node conditions,
s ∈ V is the source node, t ∈ V is the target node, and γ ⊆ V × C is the
node-condition relation. We write γ(n) to denote the set {c | (n, c) ∈ γ}.

Let T ′ = (V ′, Σ,E′) be a tree. Then, [[Q]]T ′ consists of all the node pairs
(m,n) ∈ V ′ × V ′ for which there exists a mapping f : V → V ′ satisfying the
following conditions:

(i) f(s) = m and f(t) = n;
(ii) for all v ∈ V and c ∈ γ(v), (f(v), f(v)) ∈ [[c]]T ′ ; and
(iii) for all � ∈ Σ and (v, w) ∈ E (�), (f(v), f(w)) ∈ E′ (�).

We slightly extend Definition 17 to allow the empty condition tree where
V = ∅ and s and t have some null value. On every tree, the empty condition tree
evaluates to the empty set.
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�2 �3

�1 �3

�1 �2

s t

{π2[�3]}

Fig. 8. The condition tree query of Example 18.

Example 18. The condition tree query Q in Fig. 8 selects a node pair (s, t) if
the following tree traversal steps are all successful: (1) from s, go up via two
edges labeled �1 and �2; (2) check if the node where we have arrived satisfies the
condition π2[�3]; (3) from there, go down via two edges labeled �3, after which we
arrive at t; and (4) check if t has outgoing edges labeled �1 and �2. The condition
tree query Q is path-equivalent to the expression �−1

1 ◦�−1
2 ◦π2[�3]◦�3◦�3◦π1[�1]◦

π1[�2], in N (−1, π).

In the remainder of this subsection, we formalize the relationship between
condition tree queries and relation algebra expressions exhibited in Example 18.
Thereto, let F ⊆ {−1, π, π}, and let Qtree(F) be the class of all condition tree
queries in which node conditions are restricted to union-free expressions in N (F).
We claim that, for F = {−1, π} or F = {−1, π, π}, Qtree(F) and the class of all
union-free expressions in N (F) path-subsume each other.

Using a straightforward rewriting argument, we can show the following:

Proposition 19. Let F ⊆ {−1, π, π}, and e be a union-free expression in N (F).
There exists a condition tree query Q in Qtree(F) such that e ≡path Q.

For the translation in the other direction, we introduce up-down queries:

Definition 20. An up-down query is a condition tree query Q = (T , C, s, t, γ)
in which all edges of T are on the unique path from s to t not taking into account
the direction of the edges.

Example 21. An up-down query can look like a chain if the target node is an
ancestor of the source node, or vice versa, as illustrated by Fig. 9, left. This up-
down query is path-equivalent to π2[�3] ◦ �−1

2 ◦ �−1
1 . The condition tree query in

the middle is not up-down, but is path-equivalent to the up-down tree query on
the right. Observe that the right query is obtained by pushing the parts of the
tree traversal described by the middle query that are not on the path from source
to target into node conditions. The middle and right queries are path-equivalent
to π1[�2 ◦ π2[�3]] ◦ �−1

1 ◦ π2[�3] ◦ �2 ◦ π1[�2] ◦ �1.

As illustrated in Example 21, we can rewrite a condition tree query to an
up-down query by pushing into node conditions those parts of the condition tree
query not on the path from source to target:



258 J. Hellings et al.

�1

�2

s

t

{π2[�3]}

�3

�1

�2

�2

�1�2

s

t{π2[�3]}

�1 �2

�1
s

t

{π2[�3]}

{π1[�2]}{π1[�2 ◦ π2[�3]]}

Fig. 9. The condition tree query on the left is up-down. The condition tree query in
the middle is not, but this query is path-equivalent to the up-down query on the right.

Lemma 22. Let {π} ⊆ F ⊆ {−1, π, π}, and Q be a condition tree query in
Qtree(F). There exists an up-down query Q′ in Qtree(F) such that Q ≡path Q′.

As also illustrated in Example 21, an up-down query can be translated
straightforwardly into a path-equivalent relation algebra expression, provided
we have the converse operator (−1) at our disposal:

Lemma 23. Let {−1} ⊆ F ⊆ {−1, π, π}, and Q be an up-down query in Qtree(F).
There exists a union-free expression e in N (F) such that Q ≡path e.

Finally, combining Lemmas 22 and 23 yields the following:

Proposition 24. Let {−1, π} ⊆ F ⊆ {−1, π, π}, and Q be a condition tree query
in Qtree(F). There exists a union-free expression in N (F) such that Q ≡path e.

6.2 Adding Intersection to Local Fragments

Hellings et al. [16,17] already proved that adding intersection to local relation
algebra fragments not containing the converse operator (the downward relation
algebra fragments) never increases their expressive power (Proposition 31). Here,
we show that this result actually holds for all local relation algebra fragments.
As a first step, consider the following example:

Example 25. Suppose we want to compute the intersection of the two up-down
queries in Fig. 10, left. Since the two up-down queries have different heights, a pair
of nodes of a tree can only be in the result of the intersection of the two queries
on that tree if the children of the root of the second query are mapped to the
same node. Hence, we can replace the second up-down query by the one shown
in the middle. Since both queries now have the same shape and corresponding
edges have the same label, the intersection is easily obtained by merging the
node conditions, resulting in the up-down query on the right.

We now generalize Example 25:

Proposition 26. Let {π} ⊆ F ⊆ {−1, π, π}, and Q1 and Q2 be condition tree
queries in Qtree(F). There exists a condition tree query Q in Qtree(F) such that,
for every tree T , [[Q]]T = [[Q1]]T ∩ [[Q2]]T .
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�1 �2

�3

s

t

{π1[�2]}

� �

�1 �2

�3

s

t

{π2[�]}

�1 �2

�3

s

t

{π2[π2[�] ◦ �]}

�1 �2

�3

s

t

{π2[π2[�] ◦ �]}

{π1[�2]}

Fig. 10. The step-wise computation of the intersection of the two up-down queries on
the left eventually results in the up-down query on the right.
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m1,u1
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�s2,u2

�t2,(Δ+1)
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2

m′
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Fig. 11. Up-down queries Q1, Q2, Q′
2 and Q in the proof of Proposition 26.

Proof (sketch). By Lemma 22, we may assume that Q1 = (T1, C1, s1, t1, γ1) and
Q2 = (T2, C2, s2, t2, γ2) are up-down queries as in Fig. 11. Let T ′ be an arbitrary
tree. If u2 − d2 	= u1 − d1, then, obviously [[Q1]]T ′ ∩ [[Q2]]T ′ = ∅. Thus, assume
u2 − d2 = u1 − d1, or, equivalently, u2 − u1 = d2 − d1. We distinguish two
cases:

1. u1 	= u2. By symmetry, assume u2 > u1. We write Δ = u2 − u1 = d2 − d1. To
find a pair of nodes of T ′ common to [[Q1]]T ′ and [[Q2]]T ′ , it is imperative that
for all i, 1 ≤ i ≤ Δ, m2,i and n2,i are mapped to the same node of T . Hence,
if for some i, 1 ≤ i ≤ Δ, �s2,i

	= �t2,i
, [[Q1]]T ′ ∩ [[Q2]]T ′ = ∅. Thus, assume for

all i, 1 ≤ i ≤ Δ, that �s2,i
= �t2,i

. Then, [[Q1]]T ′ ∩ [[Q2]]T ′ = [[Q1]]T ′ ∩ [[Q′
2]]T ′ ,

where Q′
2 = (T ′

2 , C ′
2, s

′
2, t

′
2, γ

′
2) is as in Fig. 11, with

γ′
2(r

′
2) = π2[γ2(r2) ◦ �s2,1 ◦ γ2(m2,1) ◦ γ2(n2,1) ◦ · · · ◦ �s2,Δ ◦ γ2(m2,Δ) ◦ γ2(n2,Δ)],
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in which γ2(v) is a shorthand for the composition of the node expressions in
γ(v).7 For all other nodes v′ of T ′

2 , γ′
2(v

′) = γ2(v), v being the node of T2

corresponding to v′. Notice that the left (an hence also the right) branches of
Q1 and Q′

2 have equal length, which allows us to apply the next case on Q1

and Q′
2.

2. u1 = u2 = u, and hence d1 = d2 = d. To find a pair of nodes of T ′ common to
[[Q1]]T ′ and [[Q2]]T ′ , it is imperative that corresponding nodes of T1 and T2 are
mapped to the same node of T ′. Hence, if for some i, 1 ≤ i ≤ u, �s1,i

	= �s2,i
,

or for some j, 1 ≤ j ≤ d, �t1,i
	= �t2,i

, [[Q1]]T ′ ∩ [[Q2]]T ′ = ∅. Thus, assume for
all i, 1 ≤ i ≤ u, that �s1,i

= �s2,i
= �si , and, for all j, 1 ≤ j ≤ d, that �t1,i

=
�t2,i

= �ti . Then, [[Q1]]T ′ ∩ [[Q2]]T ′ = [[Q]]T ′ , where Q = (T , C1 ∪ C2, s, t, γ) is
as in Fig. 11, where, for all nodes v of T , γ(v) = γ1(v1) ◦ γ2(v2), v1 and v2
being the nodes of T1 and T2 corresponding to v. ��

Propositions 19, 24, and 26 now yield the following:

Proposition 27. For {−1, π} ⊆ F ⊆ {−1, π, π,∩}, N (F) �path N (F − {∩}).

6.3 The Boolean Equivalence of Projection and Converse

From a result by Fletcher et al. [10,11] (Proposition 34 in Sect. 7 on related work),
it follows that N (−1) �bool N (π). Here, we also prove the other direction:

Proposition 28. N (π) �bool N (−1).

Proof. Let e be an expression in N (π). By a result of Wu et al. [26, Theorem
4.1], there exists a condition-free condition tree query Q = (T , C, s, t, γ) in Qtree()
such that e ≡path Q.8 Let r be the root of T , and Qr = (T , C, r, r, γ). Obviously,
Q ≡bool Qr. Because the target node is now the root of T , the translation from
Qr to a path-equivalent up-down query (Lemma 22) only requires the first pro-
jection. Hence, there exists an up-down query Q′

r = (T ′, C ′, r′, r′, γ′) in Qtree(π1)
such that Qr ≡path Q′

r. Since source and target coincide in T ′, r′ is necessarily
the only node of T ′. Hence, Q′

r is path equivalent to the composition of the node
expressions in γ(r′), which is in N (π1). Now, a projection expression in N (π1)
can always be rewritten in the form π1[e] = π1[�1 ◦ π1[e1] ◦ · · · �n ◦ π1[en]], with
e1, . . . , en in N (π1), which is equivalent to e ◦ �−1

n ◦ · · · ◦ �−1
1 . By applying this

rewriting top-down, we conclude that N (π1) �path N (−1). ��

Hence, N (π) and N (−1) are Boolean-equivalent in expressive power.

7 Observe that the composition of node expressions is associative and that this com-
position is path-equivalent to the intersection of node expressions.

8 Recall that the tree queries in Wu et al. [26] are essentially the same as the condition-
free condition tree queries in this paper.
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7 Related Work

Results on node-labeled trees are usually straightforward to translate to the edge-
labeled trees we use. Benedikt et al. [3] studied path-equivalence of N (−1, π) and
its fragments on labeled trees:

Proposition 29 ([3, Proposition 2.1]). For F1,F2 ⊆ {−1, π}, N (F1) �path

N (F2) ⇐⇒ F1⊆F2.

Where applicable, we generalize Proposition 29 to Boolean separation, in
Sect. 5. Wu et al. [26] proved a collapse result for relation algebra fragments
with intersection:9

Proposition 30 ([26, Theorem 4.1]). Both N (−1, π,∩) �path N (−1, π) and
N (−1, π,∩) �path N (−1,∩).

In Sect. 6, we generalize Proposition 30 to also include coprojections.
Finally, Hellings et al. [16,17] studied the relative expressiveness of the frag-

ments of N (π, π,∩,−),10 and obtained the following results which are used in
this study:

Proposition 31 ([16, Theorem 3]). For F ⊆ {π, π,∩,−}, N (F) �path N (F−
{∩,−}).

Proposition 32 ([17, Proposition 10]). On unlabeled chains, N (di) �path

N (π, π,∩,−) and N (−1) �path N (π, π,∩,−).

Proposition 33 ([17, Propositions 19 and 21]). We have N (π) �bool N (),
N (−1) �bool N (), and N (π) �bool N (di, −1, π,∩).

The graph query results of Fletcher et al. [10,11] include many separation
results of which the proofs do not specialize to trees. They also proved a collapse
result, that automatically does hold on trees:

Proposition 34 ([11, Proposition 4.2]). Let F ⊆ {di, −1, π, π}. On labeled
and unlabeled graphs, we have N (F ∪ {−1}) �bool N (F ∪ {π}).

Several other well-known expressiveness results are known in the context of
Conditional XPath and Navigational XPath [6,22,23], which are strongly related
to the relation algebra. Unfortunately, these results are proved with respect to
the sibling-ordered tree data model, and do not apply to our unordered tree
data model. We observe that on chains, no sibling relation exists. Hence, the
separation results we have proved on chains translate to separation results in
the sibling-ordered tree data model.

9 Strictly speaking, they deal with union-free expressions, but since unions can always
be pushed out to the outermost level, this is not a real restriction.

10 These are generally referred to as the downward fragments of the relation algebra.
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Fig. 12. Index to the separation and collapse results discussed in this paper. Let
(N (F), op) be a field in the “z semantics” part of the table, z ∈ {bool, path}. A check
mark ✓ in the field (N (F), op) means that N (F∪{op}) �z N (F). A cross ✗ in the field
(N (F), op) means that N (F ∪ {op}) �z N (F). Finally, a question mark ? indicates an
open problem.

8 Conclusion and Future Work

In this paper, we settled the relative expressive power of queries in fragments
of the relation algebra when used to query trees. A summary of our results can
be found in Fig. 12. To compensate for the limited flexibility of the tree data
model, compared to the graph data model, we needed to develop several new
techniques to make this study feasible. For the local fragments, i.e., fragments
of N (−1, π, π,∩,−), we provided a complete characterization of their relative
expressive power, and with respect to the non-local fragments, only one chal-
lenging problem remains open:

Problem 35. Let {di, π,∩} ⊆ F ⊆ {di, −1, π, π,∩} and let z ∈ {bool,path}. Do
we have N (F ∪ {−}) �z N (F) or not?

The difficulties in solving this open problem are manifold. For example, con-
sider the language N (di, −1, π, π,∩). In this fairly rich query language, there
are several instances of expressions for which one can express the complement.
For k > 0, we have, e.g., E−k ≡path (E−k ◦ di) ∪ (π1[E−k] ◦ all). Unfortunately,
we have not been able yet to express complement in every instance or been
able to prove that expressing the complement is impossible in some instances.
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Additional difficulties arise from the fact that we can prove that a possible sepa-
ration between N (di, −1, π, π,∩) and N (di, −1, π, π,∩,−) cannot be established
on a single pair of trees, ruling out the applicability of brute-force techniques and
many techniques developed in our work. Hence, we definitely face a challenging
open problem, which we hope to solve in the future.

Another interesting direction for future work is augmenting the relation alge-
bra with operators beyond the expressive power of FO[3]. Possible candidates
would be an iteration construct such as an ancestor-descendant axis, or the more
general and powerful Kleene-star transitive closure operator.
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