
Chapter 9
Generalized Dimensions

A multifractal is a fractal that cannot be characterized by a single fractal dimension
such as the box counting dimension. The infinite number of fractal dimensions
needed in general to characterize a multifractal are known as generalized dimen-
sions. Generalized dimensions of geometric multifractals were proposed indepen-
dently in 1983 by Grassberger [20] and by Hentschel and Procaccia [25]. They have
been intensely studied (e.g., [21, 40, 61]) and widely applied (e.g., [39, 59]). Given
N points from a geometric multifractal, e.g., the strange attractor of a dynamical
system [9, 41], the generalized dimension Dq defined in [20, 25] is computed from
a set of box sizes. For box size s, we cover the N points with a grid of boxes of linear
size s, compute the fraction p

j
(s) of the N points in box Bj of the grid, discard any

box for which p
j
(s) = 0, and compute the partition function value

Zq

(
B(s)

) ≡
∑

Bj ∈B(s)

[p
j
(s)]q , (9.1)

where B(s) is the set of non-empty grid boxes, of linear size s, used to cover the N

points. For q ≥ 0 and q �= 1, the generalized dimension Dq defined in [20, 25] of
the geometric multifractal is

Dq ≡ 1

q − 1
lim
s→0

log Zq

(
B(s)

)

log s
. (9.2)

When q = 0, this computation yields the box counting dimension d
B

, so D0 = d
B

.
When q = 1, after applying L’Hôpital’s rule we obtain the information dimension
d
I

[13], so D1 = d
I
. When q = 2, we obtain the correlation dimension d

C
[23], so

D2 = d
C

.
Generalized dimensions of a complex network were studied in [15, 34, 48, 49,

58, 67, 68]. Several of these studies employ the sandbox method, which we discuss
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at the end of this chapter. The method of [67] for computing Dq for G is the
following. For a range of s, compute a minimal s-covering B(s). For Bj ∈ B(s),
define p

j
(s) ≡ Nj(s)/N , where Nj(s) is the number of nodes in Bj . For q ∈ R,

use (9.1) to compute Zq

(
B(s)

)
. (In [67], which uses a randomized box counting

heuristic, Zq

(
B(s)

)
is the average partition function value, averaged over 200

random orderings of the nodes.) Typically, Dq is computed only for a small set
of q values, e.g., integer q in [0, 10] or integer q in [−10, 10]. Then G has the
generalized dimension Dq (for q �= 1) if for some constant c and for some range of
s we have

log Zq

(
B(s)

) ≈ (q − 1)Dq log(s/Δ) + c . (9.3)

However, as shown in [48], this definition is ambiguous, since different minimal
s-coverings can yield different values of Dq .

Example 9.1 Consider again the chair network of Fig. 8.2, which shows two
minimal 3-coverings and a minimal 2-covering. Choosing q = 2, for the covering
B̃(3) from (9.1) we have Z2

(
B̃(3)

) = ( 3
5 )2 + ( 2

5 )2 = 13
25 , while for B̂(3) we have

Z2
(
B̂(3)

) = ( 4
5 )2+( 1

5 )2 = 17
25 . For B(2) we have Z2

(
B(2)

) = 2( 2
5 )2+( 1

5 )2 = 9
25 .

If we use B̃(3) then from (9.3) and the range s ∈ [2, 3] we obtain

D2 =
(

log
13

25
− log

9

25

)
/(log 3 − log 2) ≈ 0.907 .

If instead we use B̂(3) and the same range of s we obtain

D2 =
(

log
17

25
− log

9

25

)
/(log 3 − log 2) ≈ 1.569 .

Thus the method of [67] can yield different values of D2 depending on the minimal
covering selected. �	

To devise a computationally efficient method for selecting a unique minimal
covering, first consider the maximal entropy criterion described in Chap. 8. It is
well known that entropy is maximized when all the probabilities are equal. A
partition function is minimized when the probabilities are equal. To formalize this
idea, for integer J ≥ 2, let P(q) denote the continuous optimization problem:
minimize

∑J
j=1 p

q

j
subject to

∑J
j=1 p

j
= 1 and p

j
≥ 0 for each j . It is proved in

[48] that for q > 1, the solution of P(q) is p
j

= 1/J for each j . Applying this result

to G, minimizing Zq

(
B(s)

)
over all minimal s-coverings of G yields a minimal s-

covering for which all the probabilities p
j
(s) are, to the extent possible, equalized.

Since p
j
(s) = N

j
(s)/N , equal box probabilities means that all boxes in the minimal

s-covering have the same number of nodes. The following definition [48] of an (s, q)

minimal covering, for use in computing Dq , is analogous to the definition in [47] of
a maximal entropy minimal s-covering, for use in computing d

I
.



9 Generalized Dimensions 63

Definition 9.1 For q ∈ R, the covering B(s) of G is an (s, q) minimal covering if
(i) B(s) is a minimal s-covering and (ii) for any other minimal s-covering B̃(s) we
have Zq

(
B(s)

) ≤ Zq

(
B̃(s)

)
. �	

It is easy to modify any box counting method (in a manner analogous to
Procedure 8.1) to compute an (s, q) minimal covering for a given s and q. However,
this approach to eliminating ambiguity in the computation of a minimal s-covering
is not particularly attractive, since it requires computing an (s, q) minimal covering
for each value of q for which we wish to compute Dq . A better approach to
resolving this ambiguity is to compute a lexico minimal summary vector [48], which
summarizes an s-covering B(s) by the point x ∈ R

J , where J ≡ B(s), where
x
j

= Nj(s) for 1 ≤ j ≤ J , and where x1 ≥ x2 ≥ · · · ≥ x
J

. (We use lexico instead
of the longer lexicographically.) The vector x does not specify all the information in
B(s); in particular, B(s) specifies exactly which nodes belong to each box, while
x specifies only the number of nodes in each box. The notation x = ∑

B(s)

signifies that x summarizes the s-covering B(s) and that x1 ≥ x2 ≥ · · · ≥ x
J

.
For example, if N = 37, s = 3, and B(3) = 5, we might have x = ∑

B(3) for
x = (18, 7, 5, 5, 2). However, we cannot have x = ∑

B(3) for x = (7, 18, 5, 5, 2)

since the components of x are not ordered correctly. If x = ∑
B(s) then each x

j

is positive, since x
j

is the number of nodes in box Bj . The vector x = ∑
B(s) a

called a summary of B(s). By “x is a summary” we mean x is a summary of B(s)

for some B(s). For x(s) = ∑
B(s) and q ∈ R, define

Z
(
x(s), q

) ≡
∑

Bj ∈B(s)

(
x
j
(s)

N

)q

. (9.4)

Thus for x(s) = ∑
B(s) we have Z

(
x(s), q

) = Zq

(
B(s)

)
, where Zq

(
B(s)

)
is

defined by (9.1).
Let x ∈ R

K for some positive integer K . Let right (x) ∈ R
K−1 be the point

obtained by deleting the first component of x. For example, if x = (18, 7, 5, 5, 2)

then right (x) = (7, 5, 5, 2). Similarly, we define right2(x) ≡ right
(
right (x)

)
, so

right2(7, 7, 5, 2) = (5, 2). Let u ∈ R and v ∈ R be numbers. We say that u � v

(in words, u is lexico greater than or equal to v) if ordinary inequality holds, that is,
u � v if u ≥ v. Thus 6 � 3 and 3 � 3. Now let x ∈ R

K and y ∈ R
K . We define

lexico inequality recursively: we say that y � x if either (i) y1 > x1 or (ii) y1 = x1
and right (y) � right (x). For example, for x = (9, 6, 5, 5, 2), y = (9, 6, 4, 6, 2),
and z = (8, 7, 5, 5, 2), we have x � y and x � z and y � z.

Definition 9.2 Let x = ∑
B(s). Then x is lexico minimal if (i) B(s) is a minimal

s-covering and (ii) if B̃(s) is a minimal s-covering distinct from B(s) and y =∑
B̃(s) then y � x. �	
The following two theorems are proved in [48].

Theorem 9.1 For each s there is a unique lexico minimal summary.
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Theorem 9.2 Let x = ∑
B(s). If x is lexico minimal then B(s) is (s, q) minimal

for all sufficiently large q.

Analogous to Procedure 8.1, Procedure 9.1 below shows how, for a given s, the
lexico minimal x(s) can be computed by a simple modification of whatever box
counting method is used to compute a minimal s-covering.

Procedure 9.1 Let Bmin(s) be the best s-covering obtained over all executions of
whatever box counting method is utilized. Suppose we have executed box counting
some number of times, and stored Bmin(s) and xmin(s) = ∑

Bmin(s), so xmin(s)

is the current best estimate of a lexico minimal summary vector. Now suppose we
execute box counting again, and generate a new s-covering B(s) using B(s) boxes.
Let x = ∑

B(s). If B(s) < Bmin(s), or if B(s) = Bmin(s) and xmin(s) � x, then
set Bmin(s) = B(s) and xmin(s) = x. �	

Procedure 9.1 shows that the only additional steps, beyond the box counting
method itself, needed to compute x(s) are lexicographic comparisons, and no
evaluations of the partition function Zq

(
B(s)

)
are required. By Theorems 9.1

and 9.2, the summary vector x(s) is unique and also “optimal” (i.e., (s, q) minimal)
for all sufficiently large q. Thus an attractive way to resolve ambiguity in the choice
of minimal s-coverings is to compute x(s) for a range of s and use the x(s) vectors
to compute Dq , using Definition 9.3 below.

Definition 9.3 For q �= 1, the complex network G has the generalized dimension
Dq if for some constant c and for some range of s we have

log Z
(
x(s), q

) ≈ (q − 1)Dq log(s/Δ) + c , (9.5)

where x(s) = ∑
B(s) is lexico minimal. �	

Example 9.2 (Continued) Consider again the chair network of Fig. 8.2. Choose
q = 2. For s = 2 we have x(2) = ∑

B(2) = (2, 2, 1) and Z
(
x(2), 2

) = 9
25 .

For s = 3 we have x̃(3) = ∑
B̃(3) = (3, 2) and Z

(
x̃(3), 2

) = 13
25 . Over the range

s ∈ [2, 3], from Definition 9.3 we have D2 = log(13/9)/ log(3/2) ≈ 0.907. For this
network, not only is the value of Dq dependent on the minimal s-covering selected,
but even the overall shape of the Dq vs. q curve depends on the minimal s-covering
selection. For x(2) = (2, 2, 1) we have

Z
(
x(2), q

) = 2

(
2

5

)q

+
(

1

5

)q

.

For x̃(3) = (3, 2) we have

Z
(
x̃(3), q

) =
(

3

5

)q

+
(

2

5

)q

.
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Over the range s ∈ [2, 3], from (9.5) we have

D̃q ≡
(

1

q − 1

) ⎛

⎝
log

(
3q+2q

5q

)
− log

(
(2)(2q )+1

5q

)

log(3/Δ) − log(2/Δ)

⎞

⎠ =
log

(
3q+2q

(2)(2q )+1

)

log(3/2)(q − 1)
. (9.6)

If for s = 3 we instead choose the covering B̂(3) then for x̂(3) = (4, 1) we have

Z
(
x̂(3), q

) =
(

4

5

)q

+
(

1

5

)q

.

Again over the range s ∈ [2, 3], but now using x̂(3) instead of x̃(3), we obtain

D̂q ≡
(

1

q − 1

) ⎛

⎝
log

(
4q+1q

5q

)
− log

(
(2)(2q )+1

5q

)

log(3/Δ) − log(2/Δ)

⎞

⎠ =
log

(
4q+1

(2)(2q )+1

)

log(3/2)(q − 1)
. (9.7)

Figure 9.1 plots D̃q vs. q, and D̂q vs. q over the range 0 ≤ q ≤ 15. Neither curve
is monotone non-increasing: the D̃q curve (corresponding to the lexico minimal
summary vector x̃(3) = (3, 2)) is unimodal, with a local minimum at q ≈ 4.1, and
the D̂q curve is monotone increasing. �	

The fact that neither curve in Fig. 9.1 is monotone non-increasing is remarkable,
since it is well known that for a geometric multifractal, the Dq vs. q curve is
monotone non-increasing [20]. The shape of the Dq vs. q curve will be explored
further in Chap. 10. We next show that the x(s) summary vectors can be used to
compute D∞ ≡ limq→∞ Dq . Let x(s) = ∑

B(s) be lexico minimal, and let x1(s)

be the first element of x(s). It is proved in [48] that

log

(
x1(s)

N

)
≈ D∞ log

( s

Δ

)
. (9.8)

Fig. 9.1 Two plots of the generalized dimensions for the chair network
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We can use (9.8) to compute D∞ without having to compute any partition function
values. It is well known [41] that, for geometric multifractals, D∞ corresponds to
the densest part of the fractal. Similarly, (9.8) shows that, for a complex network,
D∞ is the factor that relates the box size s to x1(s), the number of nodes in the box
in the lexico minimal s-covering for which p

j
(s) is maximal.

To conclude this chapter, we consider the sandbox method for approximating Dq .
The sandbox method, originally designed to compute Dq for geometric multifractals
obtained by simulating diffusion-limited aggregation on a lattice [64, 65, 71],
overcomes a well-recognized [1] limitation of using box counting to compute
generalized dimensions: spurious results can be obtained for q  0. This will
happen if some box probability p

j
is close to zero, for then when q  0 the

term p
q

j
will dominate the partition sum

∑
j p

q

j
. The sandbox method has also

been shown to be more accurate than box counting for geometric fractals with
known theoretical dimensions [62]. To describe the sandbox method, note that for a
geometric multifractal for which Dq exists, by (9.1) and (9.2) we have, as s → 0,

Zq

(
B(s)

) =
∑

Bj ∈B(s)

p
q

j
(s) =

∑

Bj ∈B(s)

p
j
(s)[p

j
(s)]q−1 ∼ s(q−1)Dq .

The sandbox method approximates
∑

Bj ∈B(s) p
q

j
(s) as follows [62]. Let Ñ be a

randomly chosen subset of the N points and define Ñ ≡ |Ñ|. With M(n, r) defined
by (7.1) and (7.2), define

avg
(
pq−1(r)

) ≡ 1

Ñ

∑

n∈Ñ

(
M(n, r)

N

)q−1

, (9.9)

where the notation avg
(
pq−1(r)

)
is chosen to make it clear that this average uses

equal weights of 1/Ñ . Let L be the linear size of the lattice. The essence of the
sandbox method is the approximation, for r  L,

avg
(
pq−1(r)

) ∼ (r/L)(q−1)Dq . (9.10)

Note that
∑

Bj ∈B(s) p
q

j
(s) is a sum over the set of non-empty grid boxes, and the

weight applied to [p
j
(s)]q−1 is p

j
(s). In contrast, avg

(
pq−1(r)

)
is a sum over a

randomly selected set of sandpiles, and the weight applied to
(
M(n, r)/N

)q−1 is
1/Ñ . Since the Ñ sandpile centers are chosen from the N points using a uniform
distribution, the sandpiles may overlap. Because the sandpiles may overlap, and the
sandpiles do not necessarily cover all the N points, in general

∑
n∈Ñ M(n, r) �= N ,

and we cannot regard the values {M(n, r)/N}n∈Ñ as a probability distribution. Let β

be the spacing between adjacent lattice positions (e.g., between adjacent horizontal
and vertical positions for a lattice in R

2).
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Definition 9.4 For q �= 1, the sandbox dimension function [62] of order q is the
function of r defined for β ≤ r  L by

D sandbox
q

(r/L) ≡ 1

q − 1

log avg
(
pq−1(r)

)

log(r/L)
. (9.11)

�	
For a given q �= 1 and lattice size L, the sandbox dimension function does

not define a single sandbox dimension, but rather a range of sandbox dimensions,
depending on r . It is not meaningful to define limr→0 D sandbox

q
(r/L), since r cannot

be smaller than the spacing β between lattice points. In practice, for a given q and
L, a single value D sandbox

q
of the sandbox dimension of order q is typically obtained

by computing D sandbox
q

(r/L) for a range of r values, and finding the slope of the

log avg
(
pq−1(r)

)
vs. log(r/L) curve. The estimate of D sandbox

q
is 1/(q − 1) times

this slope.
The sandbox method was applied to complex networks in [34]. The box centers

are randomly selected nodes. There is no firm rule in [34] on the number of random
centers to pick: they use Ñ ≡ |Ñ| = 1000 random nodes, but suggest that Ñ can
depend on N . For a given q �= 1, they compute avg

(
pq−1(r)

)
for a range of r values.

Adapting (9.10) to a complex network G, for r  Δ we have

log avg
(
pq−1(r)

) ∼ (q − 1)D sandbox
q

log(r/Δ) . (9.12)

In [34], linear regression is applied to (9.12) to compute D sandbox
q

.
The sandbox method was applied to undirected weighted networks in [58]. The

calculation of the sandbox radii in [58] is similar to the selection of box sizes
discussed in Sect. 3.2.
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