Chapter 9 )
Generalized Dimensions Check for

A multifractal is a fractal that cannot be characterized by a single fractal dimension
such as the box counting dimension. The infinite number of fractal dimensions
needed in general to characterize a multifractal are known as generalized dimen-
sions. Generalized dimensions of geometric multifractals were proposed indepen-
dently in 1983 by Grassberger [20] and by Hentschel and Procaccia [25]. They have
been intensely studied (e.g., [21, 40, 61]) and widely applied (e.g., [39, 59]). Given
N points from a geometric multifractal, e.g., the strange attractor of a dynamical
system [9, 41], the generalized dimension D, defined in [20, 25] is computed from
a set of box sizes. For box size s, we cover the N points with a grid of boxes of linear
size s, compute the fraction p; (s) of the N points in box B; of the grid, discard any
box for which p; (s) = 0, and compute the partition function value

Zy(B©) = Y pON, ©.1)

Bie%(s)

where Z(s) is the set of non-empty grid boxes, of linear size s, used to cover the N
points. For ¢ > 0 and ¢ # 1, the generalized dimension D, defined in [20, 25] of
the geometric multifractal is

1 log Z,(#
lim 08 Z(F©)
qg—1s-0 log s

D, = 9.2)

When g = 0, this computation yields the box counting dimension dy, so Do = dj.
When g = 1, after applying L’Hopital’s rule we obtain the information dimension
d | [13],s0 D; =d |- When ¢ = 2, we obtain the correlation dimension dC [23], so
Dy = dC'

Generalized dimensions of a complex network were studied in [15, 34, 48, 49,
58, 67, 68]. Several of these studies employ the sandbox method, which we discuss
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62 9 Generalized Dimensions

at the end of this chapter. The method of [67] for computing D, for G is the
following. For a range of s, compute a minimal s-covering %(s). For B; € Z%(s),
define pj(s) = N;(s)/N, where N;(s) is the number of nodes in B;. For g € R,
use (9.1) to compute Z, (%’(s)). (In [67], which uses a randomized box counting
heuristic, Z, (%(s)) is the average partition function value, averaged over 200
random orderings of the nodes.) Typically, D, is computed only for a small set
of g values, e.g., integer ¢ in [0, 10] or integer ¢ in [—10, 10]. Then G has the
generalized dimension D, (for g # 1) if for some constant ¢ and for some range of
s we have

log Z, (%’(s)) ~ (q — 1)Dy log(s/A) +c. (9.3)

However, as shown in [48], this definition is ambiguous, since different minimal
s-coverings can yield different values of D,.

Example 9.1 Consider again the chair network of Fig.8.2, which shows two
minimal 3-coverings and a minimal 2-covering. Choosing g = 2, for the covering
2(3) from (9.1) we have Z»(4(3)) = (2)? + (3)? = £, while for Z(3) we have
Z2(%03) = ()2+(1)? = L. For #(2) we have Z,(B(2)) = 2(3)>+(1)? = .
If we use A (3) then from (9.3) and the range s € [2, 3] we obtain

13 9
D, = (log %5 log g) /(log3 —log2) ~ 0.907.

If instead we use @(3) and the same range of s we obtain

17 9
D> = | log — — log — 1 —log?2) &~ 1. .
b <og25 og25>/(og3 0g?2) 569

Thus the method of [67] can yield different values of D, depending on the minimal
covering selected. O

To devise a computationally efficient method for selecting a unique minimal
covering, first consider the maximal entropy criterion described in Chap. 8. It is
well known that entropy is maximized when all the probabilities are equal. A
partition function is minimized when the probabilities are equal. To formalize this
idea, for integer J > 2, let P(q) denote the continuous optimization problem:
minimize ij'=1 p] ? subject to Z}’:l p; = 1 and p = 0 for each j. It is proved in
[48] that for ¢ > 1, the solution of P(q) is P = 1/J for each j. Applying this result
to G, minimizing Z, (%’(s)) over all minimal s-coverings of G yields a minimal s-
covering for which all the probabilities p; (s) are, to the extent possible, equalized.
Since p; (s) = Nj (s)/ N, equal box probabilities means that all boxes in the minimal
s-covering have the same number of nodes. The following definition [48] of an (s, g)
minimal covering, for use in computing D, is analogous to the definition in [47] of
a maximal entropy minimal s-covering, for use in computing d, .
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Definition 9.1 For g € R, the covering #(s) of G is an (s, ¢) minimal covering if
(i) #(s) is a minimal s-covering and (ii) for any other minimal s-covering %(s) we
have Z,(2(s)) < Z,(%(s)). O

It is easy to modify any box counting method (in a manner analogous to
Procedure 8.1) to compute an (s, ¢) minimal covering for a given s and g. However,
this approach to eliminating ambiguity in the computation of a minimal s-covering
is not particularly attractive, since it requires computing an (s, ¢) minimal covering
for each value of ¢ for which we wish to compute D,. A better approach to
resolving this ambiguity is to compute a lexico minimal summary vector [48], which
summarizes an s-covering %(s) by the point x € R, where J = B(s), where
X = Nj(s) for1 < j < J, and where Xy =Xy = > (We use lexico instead
of the longer lexicographically.) The vector x does not specify all the information in
A(s); in particular, A(s) specifies exactly which nodes belong to each box, while
x specifies only the number of nodes in each box. The notation x = Y H(s)
signifies that x summarizes the s-covering %(s) and that X, =X, = = .
For example, if N = 37, s = 3, and B(3) = 5, we might have x = ) %(3) for
x = (18,7, 5, 3, 2). However, we cannot have x = Y Z(3) forx = (7, 18,5, 5, 2)
since the components of x are not ordered correctly. If x = ) 9B(s) then each x.
is positive, since x; is the number of nodes in box B;. The vector x = Y %(s) a

called a summary of Z(s). By “x is a summary” we mean x is a summary of Z(s)
for some A(s). For x(s) = Y HA(s) and g € R, define

x.(H\?
Z(x(s).q)= Y. (Qv) . (9.4)

BieH(s)

Thus for x(s) = Y A(s) we have Z(x(s),q) = Z,(%B(s)), where Z,(B(s)) is
defined by (9.1).

Let x € RX for some positive integer K. Let right(x) € RX~! be the point
obtained by deleting the first component of x. For example, if x = (18,7,5, 5, 2)
then right (x) = (7,5, 5, 2). Similarly, we define right*(x) = right(right(x)), so
right2(7, 7,5,2) = (5,2). Letu € R and v € R be numbers. We say that u > v
(in words, u is lexico greater than or equal to v) if ordinary inequality holds, that is,
u>vifu > v. Thus6 > 3and 3 > 3. Now let x € RX and y € RX. We define
lexico inequality recursively: we say that y > x if either (i) y, > x, or (if) y, = x;
and right(y) > right(x). For example, for x = (9,6,5,5,2), y = (9,6,4,6, 2),
andz = (8,7,5,5,2), wehave x > yandx > zand y > z.

Definition 9.2 Let x = ) %(s). Then x is lexico minimal if (i) %(s) is a minimal
s-covering and (ii) if #(s) is a minimal s-covering distinct from %(s) and y =
> PB(s)theny = x. O

The following two theorems are proved in [48].

Theorem 9.1 For each s there is a unique lexico minimal summary.
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Theorem 9.2 Let x = Y AB(s). If x is lexico minimal then HB(s) is (s, q) minimal
for all sufficiently large q.

Analogous to Procedure 8.1, Procedure 9.1 below shows how, for a given s, the
lexico minimal x(s) can be computed by a simple modification of whatever box
counting method is used to compute a minimal s-covering.

Procedure 9.1 Let %in(s) be the best s-covering obtained over all executions of
whatever box counting method is utilized. Suppose we have executed box counting
some number of times, and stored PBmin(s) and xmin(s) = Y_ Bmin(s), SO Xmin(s)
is the current best estimate of a lexico minimal summary vector. Now suppose we
execute box counting again, and generate a new s-covering A (s) using B(s) boxes.
Let x = Y A(s). If B(s) < Bnin(s), or if B(s) = Bmin(s) and xmin(s) > x, then
set PBmin(s) = A(s) and xpin(s) = x. O

Procedure 9.1 shows that the only additional steps, beyond the box counting
method itself, needed to compute x(s) are lexicographic comparisons, and no
evaluations of the partition function Z, (%’(s)) are required. By Theorems 9.1
and 9.2, the summary vector x(s) is unique and also “optimal” (i.e., (s, ¢) minimal)
for all sufficiently large g. Thus an attractive way to resolve ambiguity in the choice
of minimal s-coverings is to compute x (s) for a range of s and use the x(s) vectors
to compute Dy, using Definition 9.3 below.

Definition 9.3 For ¢ # 1, the complex network G has the generalized dimension
D, if for some constant ¢ and for some range of s we have

log Z(x(s), q) ~ (q —1)Dglog(s/A) +c, 9.5)

where x(s) = ) H(s) is lexico minimal. O

Example 9.2 (Continued) Consider again the chair network of Fig. 8.2. Choose
g = 2.Fors = 2 we have x(2) = Y A(2) = (2,2,1) and Z(x(2),2) = %.
For s = 3 we have X(3) = ) @(3) = (3,2) and 2(7(3), 2) = % Over the range
s € [2, 3], from Definition 9.3 we have D, = log(13/9)/1og(3/2) = 0.907. For this
network, not only is the value of D, dependent on the minimal s-covering selected,
but even the overall shape of the D, vs. g curve depends on the minimal s-covering
selection. For x(2) = (2, 2, 1) we have

2(x(2),q) = 2 (%)q n (%)q .

For X(3) = (3, 2) we have

Z(X(3).,q) = @)q + <§>q .
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Over the range s € [2, 3], from (9.5) we have

2)(29)+1
= (1) (22U e (B e (i)
7 \g-1 log(3/4) —log(2/4) " log(3/2)(g — 1)

. (9.6)

If for s = 3 we instead choose the covering 9?(3) then for x(3) = (4, 1) we have

Z(x(3).q) = (%)q + G)q .

Again over the range s € [2, 3], but now using X(3) instead of X(3), we obtain

49414 2)(29)+1 4941
5 _( | ) log (—;C, )—log (_( )2%) ) _ log (—(2)(2;3“) 0
q—1 log(3/A) — log(2/A) "~ log3/2)(g —1) "

g =

Figure 9.1 plots 5(1 vs. ¢, and 5q vs. g over the range 0 < g < 15. Neither curve
is monotone non-increasing: the D, curve (corresponding to the lexico minimal
summary vector X(3) = (3, 2)) is unimodal, with a local minimum at ¢ ~ 4.1, and
the 5(1 curve is monotone increasing. O

The fact that neither curve in Fig. 9.1 is monotone non-increasing is remarkable,
since it is well known that for a geometric multifractal, the D, vs. g curve is
monotone non-increasing [20]. The shape of the D, vs. g curve will be explored
further in Chap. 10. We next show that the x(s) summary vectors can be used to
compute Do = limy o0 Dy. Let x(s) = >~ 2(s) be lexico minimal, and let X, (s)
be the first element of x(s). It is proved in [48] that

log <x11$)) ~ Do log (%) . (9.8)

1.6 - —
D, for x = (4,1)
1.2
0.8 ~ =
D, for x = (3,2)
0.4

q

Fig. 9.1 Two plots of the generalized dimensions for the chair network
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We can use (9.8) to compute Do, without having to compute any partition function
values. It is well known [41] that, for geometric multifractals, Dy, corresponds to
the densest part of the fractal. Similarly, (9.8) shows that, for a complex network,
D« is the factor that relates the box size s to x| (s), the number of nodes in the box
in the lexico minimal s-covering for which p; (s) is maximal.

To conclude this chapter, we consider the sandbox method for approximating Dy, .
The sandbox method, originally designed to compute D,, for geometric multifractals
obtained by simulating diffusion-limited aggregation on a lattice [64, 65, 71],
overcomes a well-recognized [1] limitation of using box counting to compute
generalized dimensions: spurious results can be obtained for ¢ <« 0. This will
happen if some box probability p; is close to zero, for then when ¢ < O the

term p? will dominate the partition sum i p?. The sandbox method has also

been shown to be more accurate than box counting for geometric fractals with
known theoretical dimensions [62]. To describe the sandbox method, note that for a
geometric multifractal for which D, exists, by (9.1) and (9.2) we have, as s — 0,

z,(#®)= Y P& = Y pOlp©r T~

Bie#A(s) Bie#(s)

The sandbox method approximates ) BieA(s) p? (s) as follows [62]. Let N be a
j

randomly chosen subset of the N points and define N = |N|. With M (n, r) defined
by (7.1) and (7.2), define

1 M, r)\!
avg(pq_l(r))EﬁZ( (:7 ’)> , (9.9)

neN

where the notation avg( pq_l(r)) is chosen to make it clear that this average uses
equal weights of 1/N. Let L be the linear size of the lattice. The essence of the
sandbox method is the approximation, for » <« L,

avg(p?~'(r)) ~ (r/L)4~ PP | (9.10)

Note that ) Bie(s) p?(s) is a sum over the set of non-empty grid boxes, and the
J
weight applied to [pj ()12 is pj(s). In contrast, avg(pq’l(r)) is a sum over a

randomly selected set of sandpiles, and the weight applied to (M (n,r)/N )q_1 is
1/ N. Since the N sandpile centers are chosen from the N points using a uniform
distribution, the sandpiles may overlap. Because the sandpiles may overlap, and the
sandpiles do not necessarily cover all the N points, in general ), .5 M(n,r) # N,
and we cannot regard the values {M (n, r)/ N}, . as a probability distribution. Let 8
be the spacing between adjacent lattice positions (e.g., between adjacent horizontal
and vertical positions for a lattice in R?).
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Definition 9.4 For g # 1, the sandbox dimension function [62] of order ¢ is the
function of r defined for § <r <« L by

1 log avg(pq_1 (r))

Dsandbox(r/L) =
4 q—1 log(r/L)

9.11)

O

For a given ¢ # 1 and lattice size L, the sandbox dimension function does
not define a single sandbox dimension, but rather a range of sandbox dimensions,
depending on r. It is not meaningful to define lim,_, ¢y D q“mdb(’x (r/L), since r cannot
be smaller than the spacing § between lattice points. In practice, for a given g and
L, a single value qu”db"x of the sandbox dimension of order ¢ is typically obtained

by computing Dqs“”db"x(r/ L) for a range of r values, and finding the slope of the

logavg(p?='(r)) vs. log(r/L) curve. The estimate of qu”db”x is 1/(g — 1) times
this slope.

The sandbox method was applied to complex networks in [34]. The box centers
are randomly selected nodes. Thgre is no firm rule in [34] on the number of random
centers to pick: they use N = IN| = 1000 random nodes, but suggest that N can
depend on N. For a given g # 1, they compute avg( pa! (r)) for arange of r values.
Adapting (9.10) to a complex network G, for r < A we have

logavg(p?~"' (1) ~ (¢ — 1)qu"db’”‘ log(r/A) . 9.12)

In [34], linear regression is applied to (9.12) to compute D;“"‘”"’x.

The sandbox method was applied to undirected weighted networks in [58]. The
calculation of the sandbox radii in [58] is similar to the selection of box sizes
discussed in Sect. 3.2.
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