Chapter 9 Generalized Dimensions

61

A multifractal is a fractal that cannot be characterized by a single fractal dimension such as the box counting dimension. The infinite number of fractal dimensions needed in general to characterize a multifractal are known as generalized dimensions. Generalized dimensions of geometric multifractals were proposed independently in 1983 by Grassberger [20] and by Hentschel and Procaccia [25]. They have been intensely studied (e.g., [21, 40, 61]) and widely applied (e.g., [39, 59]). Given N points from a geometric multifractal, e.g., the strange attractor of a dynamical system [9, 41], the generalized dimension D_q defined in [20, 25] is computed from a set of box sizes. For box size s , we cover the N points with a grid of boxes of linear size s, compute the fraction $p_i(s)$ of the N points in box B_j of the grid, discard any box for which $p_i(s) = 0$, and compute the partition function value

$$
Z_q(\mathcal{B}(s)) \equiv \sum_{B_j \in \mathcal{B}(s)} [p_j(s)]^q , \qquad (9.1)
$$

where $\mathscr{B}(s)$ is the set of non-empty grid boxes, of linear size s, used to cover the N points. For $q \ge 0$ and $q \ne 1$, the generalized dimension D_q defined in [20, 25] of the geometric multifractal is

$$
D_q \equiv \frac{1}{q-1} \lim_{s \to 0} \frac{\log Z_q(\mathcal{B}(s))}{\log s} . \tag{9.2}
$$

When $q = 0$, this computation yields the box counting dimension d_B , so $D_0 = d_B$. When $q = 1$, after applying L'Hôpital's rule we obtain the information dimension d_1 [13], so $D_1 = d_1$. When $q = 2$, we obtain the correlation dimension d_C [23], so $D_2 = d_c$.

Generalized dimensions of a complex network were studied in [15, 34, 48, 49, 58, 67, 68]. Several of these studies employ the *sandbox method*, which we discuss

[©] The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

E. Rosenberg, *A Survey of Fractal Dimensions of Networks*, SpringerBriefs

in Computer Science, https://doi.org/10.1007/978-3-319-90047-6_9

at the end of this chapter. The method of [67] for computing D_a for \mathbb{G} is the following. For a range of s, compute a minimal s-covering $\mathscr{B}(s)$. For $B_i \in \mathscr{B}(s)$, define $p_j(s) \equiv N_j(s)/N$, where $N_j(s)$ is the number of nodes in B_j . For $q \in \mathbb{R}$, use [\(9.1\)](#page-0-0) to compute $Z_q(\mathcal{B}(s))$. (In [67], which uses a randomized box counting heuristic, $Z_q(\mathcal{B}(s))$ is the average partition function value, averaged over 200 random orderings of the nodes.) Typically, D_q is computed only for a small set of q values, e.g., integer q in [0, 10] or integer q in [−10, 10]. Then $\mathbb G$ has the generalized dimension D_q (for $q \neq 1$) if for some constant c and for some range of s we have

$$
\log Z_q(\mathcal{B}(s)) \approx (q-1)D_q \log(s/\Delta) + c. \tag{9.3}
$$

However, as shown in [48], this definition is ambiguous, since different minimal s-coverings can yield different values of D_a .

Example 9.1 Consider again the *chair* network of Fig. 8.2, which shows two minimal 3-coverings and a minimal 2-covering. Choosing $q = 2$, for the covering $\widetilde{\mathcal{B}}(3)$ from [\(9.1\)](#page-0-0) we have $Z_2(\widetilde{\mathcal{B}}(3)) = (\frac{3}{5})^2 + (\frac{2}{5})^2 = \frac{13}{25}$, while for $\widehat{\mathcal{B}}(3)$ we have $Z_2(\widehat{\mathcal{B}}(3)) = (\frac{4}{5})^2 + (\frac{1}{5})^2 = \frac{17}{25}$. For $\mathcal{B}(2)$ we have $Z_2(\mathcal{B}(2)) = 2(\frac{2}{5})^2 + (\frac{1}{5})^2 = \frac{9}{25}$. If we use $\widetilde{\mathcal{B}}(3)$ then from [\(9.3\)](#page-1-0) and the range $s \in [2, 3]$ we obtain

$$
D_2 = \left(\log \frac{13}{25} - \log \frac{9}{25}\right) / (\log 3 - \log 2) \approx 0.907.
$$

If instead we use $\widehat{\mathscr{B}}(3)$ and the same range of s we obtain

$$
D_2 = \left(\log \frac{17}{25} - \log \frac{9}{25}\right) / (\log 3 - \log 2) \approx 1.569.
$$

Thus the method of [67] can yield different values of D_2 depending on the minimal covering selected. \square

To devise a computationally efficient method for selecting a unique minimal covering, first consider the maximal entropy criterion described in Chap. 8. It is well known that entropy is *maximized* when all the probabilities are equal. A partition function is *minimized* when the probabilities are equal. To formalize this idea, for integer $J \geq 2$, let **P(q)** denote the continuous optimization problem: minimize $\sum_{j=1}^{J} p_j^q$ subject to $\sum_{j=1}^{J} p_j = 1$ and $p_j \ge 0$ for each j. It is proved in [48] that for $q > 1$, the solution of **P(q)** is $p_j = 1/J$ for each j. Applying this result to G, minimizing $Z_q(\mathcal{B}(s))$ over all minimal s-coverings of G yields a minimal scovering for which all the probabilities $p_j(s)$ are, to the extent possible, equalized. Since $p_i(s) = N_i(s)/N$, equal box probabilities means that all boxes in the minimal s-covering have the same number of nodes. The following definition [48] of an (s, q) minimal covering, for use in computing D_q , is analogous to the definition in [47] of a maximal entropy minimal s-covering, for use in computing d_1 .

Definition 9.1 For $q \in \mathbb{R}$, the covering $\mathcal{B}(s)$ of \mathbb{G} is an (s, q) minimal covering if (*i*) $\mathscr{B}(s)$ is a minimal s-covering and (*ii*) for any other minimal s-covering $\mathscr{B}(s)$ we have $Z_q(\mathcal{B}(s)) \leq Z_q(\mathcal{B}(s))$.

It is easy to modify any box counting method (in a manner analogous to Procedure 8.1) to compute an (s, q) minimal covering for a given s and q. However, this approach to eliminating ambiguity in the computation of a minimal s -covering is not particularly attractive, since it requires computing an (s, q) minimal covering for each value of q for which we wish to compute D_a . A better approach to resolving this ambiguity is to compute a lexico minimal summary vector [48], which summarizes an s-covering $\mathscr{B}(s)$ by the point $x \in \mathbb{R}^{J}$, where $J \equiv B(s)$, where $x_j = N_j(s)$ for $1 \le j \le J$, and where $x_1 \ge x_2 \ge \cdots \ge x_J$. (We use *lexico* instead of the longer *lexicographically*.) The vector x does not specify all the information in $\mathscr{B}(s)$; in particular, $\mathscr{B}(s)$ specifies exactly which nodes belong to each box, while x specifies only the number of nodes in each box. The notation $x = \sum \mathscr{B}(s)$ signifies that x summarizes the s-covering $\mathscr{B}(s)$ and that $x_1 \ge x_2 \ge \cdots \ge x_j$. For example, if $N = 37$, $s = 3$, and $B(3) = 5$, we might have $x = \sum \mathcal{B}(3)$ for $x = (18, 7, 5, 5, 2)$. However, we cannot have $x = \sum \mathcal{B}(3)$ for $x = (7, 18, 5, 5, 2)$ since the components of x are not ordered correctly. If $x = \sum \mathcal{B}(s)$ then each x_j is positive, since x_j is the number of nodes in box B_j . The vector $x = \sum \mathcal{B}(s)$ a called a *summary* of $\mathcal{B}(s)$. By "x is a summary" we mean x is a summary of $\mathcal{B}(s)$ for some $\mathscr{B}(s)$. For $x(s) = \sum \mathscr{B}(s)$ and $q \in \mathbb{R}$, define

$$
Z(x(s), q) \equiv \sum_{B_j \in \mathcal{B}(s)} \left(\frac{x_j(s)}{N}\right)^q.
$$
 (9.4)

Thus for $x(s) = \sum \mathcal{B}(s)$ we have $Z(x(s), q) = Z_q(\mathcal{B}(s))$, where $Z_q(\mathcal{B}(s))$ is defined by (9.1) .

Let $x \in \mathbb{R}^K$ for some positive integer K. Let $right(x) \in \mathbb{R}^{K-1}$ be the point obtained by deleting the first component of x. For example, if $x = (18, 7, 5, 5, 2)$ then $right(x) = (7, 5, 5, 2)$. Similarly, we define $right'(x) \equiv right(right(x))$, so right²(7, 7, 5, 2) = (5, 2). Let $u \in \mathbb{R}$ and $v \in \mathbb{R}$ be numbers. We say that $u \succeq v$ (in words, u is *lexico* greater than or equal to v) if ordinary inequality holds, that is, $u \ge v$ if $u \ge v$. Thus $6 \ge 3$ and $3 \ge 3$. Now let $x \in \mathbb{R}^K$ and $y \in \mathbb{R}^K$. We define lexico inequality recursively: we say that $y \ge x$ if either (*i*) $y_1 > x_1$ or (*ii*) $y_1 = x_1$ and $right(y) \geq right(x)$. For example, for $x = (9, 6, 5, 5, 2)$, $y = (9, 6, 4, 6, 2)$, and $z = (8, 7, 5, 5, 2)$, we have $x \ge y$ and $x \ge z$ and $y \ge z$.

Definition 9.2 Let $x = \sum \mathcal{B}(s)$. Then x is *lexico minimal* if (*i*) $\mathcal{B}(s)$ is a minimal s-covering and (*ii*) if $\mathcal{B}(s)$ is a minimal s-covering distinct from $\mathcal{B}(s)$ and $y = \sum_{r=0}^{\infty}$ $\sum \mathscr{B}(s)$ then $y \succeq x$. \Box

The following two theorems are proved in [48].

Theorem 9.1 *For each* s *there is a unique lexico minimal summary.*

Theorem 9.2 *Let* $x = \sum \mathcal{B}(s)$ *. If* x *is lexico minimal then* $\mathcal{B}(s)$ *is* (s, q) *minimal for all sufficiently large* q*.*

Analogous to Procedure 8.1, Procedure [9.1](#page-3-0) below shows how, for a given s, the lexico minimal $x(s)$ can be computed by a simple modification of whatever box counting method is used to compute a minimal s-covering.

Procedure 9.1 Let $\mathcal{B}_{\text{min}}(s)$ be the best s-covering obtained over all executions of whatever box counting method is utilized. Suppose we have executed box counting some number of times, and stored $\mathscr{B}_{\text{min}}(s)$ and $x_{\text{min}}(s) = \sum \mathscr{B}_{\text{min}}(s)$, so $x_{\text{min}}(s)$ is the current best estimate of a lexico minimal summary vector. Now suppose we execute box counting again, and generate a new s-covering $\mathcal{B}(s)$ using $B(s)$ boxes. Let $x = \sum \mathcal{B}(s)$. If $B(s) < B_{min}(s)$, or if $B(s) = B_{min}(s)$ and $x_{min}(s) \ge x$, then set $\mathscr{B}_{\text{min}}(s) = \mathscr{B}(s)$ and $x_{\text{min}}(s) = x$. \Box

Procedure [9.1](#page-3-0) shows that the only additional steps, beyond the box counting method itself, needed to compute $x(s)$ are lexicographic comparisons, and no evaluations of the partition function $Z_q(\mathscr{B}(s))$ are required. By Theorems [9.1](#page-2-0) and [9.2,](#page-3-1) the summary vector $x(s)$ is unique and also "optimal" (i.e., (s, q) minimal) for all sufficiently large q . Thus an attractive way to resolve ambiguity in the choice of minimal s-coverings is to compute $x(s)$ for a range of s and use the $x(s)$ vectors to compute D_q , using Definition [9.3](#page-3-2) below.

Definition 9.3 For $q \neq 1$, the complex network G has the generalized dimension D_q if for some constant c and for some range of s we have

$$
\log Z(x(s), q) \approx (q - 1)D_q \log(s/\Delta) + c, \qquad (9.5)
$$

where $x(s) = \sum \mathcal{B}(s)$ is lexico minimal. \Box

Example 9.2 (Continued) Consider again the *chair* network of Fig. 8.2. Choose $q = 2$. For $s = 2$ we have $x(2) = \sum \mathcal{B}(2) = (2, 2, 1)$ and $Z(x(2), 2) = \frac{9}{25}$. For $s = 3$ we have $\tilde{x}(3) = \sum \tilde{\mathcal{B}}(3) = (3, 2)$ and $Z(\tilde{x}(3), 2) = \frac{13}{25}$. Over the range $s \in [2, 3]$ from Definition 9.3 we have $D_2 = \log(13/9)/\log(3/2) \approx 0.907$. For this s ∈ [2, 3], from Definition [9.3](#page-3-2) we have $D_2 = \log(13/9)/\log(3/2) \approx 0.907$. For this network, not only is the value of D_q dependent on the minimal s-covering selected, but even the overall shape of the D_q vs. q curve depends on the minimal s-covering selection. For $x(2) = (2, 2, 1)$ we have

$$
Z(x(2), q) = 2\left(\frac{2}{5}\right)^q + \left(\frac{1}{5}\right)^q.
$$

For $\tilde{x}(3) = (3, 2)$ we have

$$
Z(\widetilde{x}(3), q) = \left(\frac{3}{5}\right)^q + \left(\frac{2}{5}\right)^q.
$$

Over the range $s \in [2, 3]$, from [\(9.5\)](#page-3-3) we have

$$
\widetilde{D}_q \equiv \left(\frac{1}{q-1}\right) \left(\frac{\log\left(\frac{3^q+2^q}{5^q}\right) - \log\left(\frac{(2)(2^q)+1}{5^q}\right)}{\log(3/\Delta) - \log(2/\Delta)} \right) = \frac{\log\left(\frac{3^q+2^q}{(2)(2^q)+1}\right)}{\log(3/2)(q-1)} . (9.6)
$$

If for $s = 3$ we instead choose the covering $\hat{\mathcal{B}}(3)$ then for $\hat{x}(3) = (4, 1)$ we have

$$
Z(\widehat{x}(3), q) = \left(\frac{4}{5}\right)^q + \left(\frac{1}{5}\right)^q.
$$

Again over the range $s \in [2, 3]$, but now using $\hat{x}(3)$ instead of $\tilde{x}(3)$, we obtain

$$
\widehat{D}_q \equiv \left(\frac{1}{q-1}\right) \left(\frac{\log\left(\frac{4^q+1^q}{5^q}\right) - \log\left(\frac{(2)(2^q)+1}{5^q}\right)}{\log(3/\Delta) - \log(2/\Delta)} \right) = \frac{\log\left(\frac{4^q+1}{(2)(2^q)+1}\right)}{\log(3/2)(q-1)} . \tag{9.7}
$$

Figure [9.1](#page-4-0) plots \widetilde{D}_q vs. q, and \widehat{D}_q vs. q over the range $0 \le q \le 15$. Neither curve is monotone non-increasing: the \widetilde{D}_q curve (corresponding to the lexico minimal summary vector $\tilde{x}(3) = (3, 2)$) is unimodal, with a local minimum at $q \approx 4.1$, and the \hat{D}_q curve is monotone increasing. \Box the \hat{D}_q curve is monotone increasing.

The fact that neither curve in Fig. [9.1](#page-4-0) is monotone non-increasing is remarkable, since it is well known that for a geometric multifractal, the D_q vs. q curve is monotone non-increasing [20]. The shape of the D_q vs. q curve will be explored further in Chap. 10. We next show that the $x(s)$ summary vectors can be used to compute $D_{\infty} \equiv \lim_{q \to \infty} D_q$. Let $x(s) = \sum \mathcal{B}(s)$ be lexico minimal, and let $x_1(s)$ be the first element of $x(s)$. It is proved in [48] that

$$
\log\left(\frac{x_1(s)}{N}\right) \approx D_{\infty} \log\left(\frac{s}{\Delta}\right). \tag{9.8}
$$

Fig. 9.1 Two plots of the generalized dimensions for the *chair* network

We can use [\(9.8\)](#page-4-1) to compute D_{∞} without having to compute any partition function values. It is well known [41] that, for geometric multifractals, D_{∞} corresponds to the densest part of the fractal. Similarly, [\(9.8\)](#page-4-1) shows that, for a complex network, D_{∞} is the factor that relates the box size s to $x_1(s)$, the number of nodes in the box in the lexico minimal s-covering for which $p_i(s)$ is maximal.

To conclude this chapter, we consider the *sandbox method* for approximating D_a . The sandbox method, originally designed to compute D_q for geometric multifractals obtained by simulating diffusion-limited aggregation on a lattice [64, 65, 71], overcomes a well-recognized [1] limitation of using box counting to compute generalized dimensions: spurious results can be obtained for $q \ll 0$. This will happen if some box probability p_i is close to zero, for then when $q \ll 0$ the term p_j^q will dominate the partition sum $\sum_j p_j^q$. The sandbox method has also been shown to be more accurate than box counting for geometric fractals with known theoretical dimensions [62]. To describe the sandbox method, note that for a geometric multifractal for which D_q exists, by [\(9.1\)](#page-0-0) and [\(9.2\)](#page-0-1) we have, as $s \to 0$,

$$
Z_q(\mathscr{B}(s)) = \sum_{B_j \in \mathscr{B}(s)} p_j^q(s) = \sum_{B_j \in \mathscr{B}(s)} p_j(s) [p_j(s)]^{q-1} \sim s^{(q-1)D_q}.
$$

The sandbox method approximates $\sum_{B_j \in \mathcal{B}(s)} p_j^q(s)$ as follows [62]. Let $\tilde{\mathbb{N}}$ be a randomly chosen subset of the N points and define $\widetilde{N} \equiv |\widetilde{N}|$. With $M(n, r)$ defined by (7.1) and (7.2), define

$$
avg(p^{q-1}(r)) \equiv \frac{1}{\widetilde{N}} \sum_{n \in \widetilde{N}} \left(\frac{M(n,r)}{N}\right)^{q-1}, \qquad (9.9)
$$

where the notation $avg(p^{q-1}(r))$ is chosen to make it clear that this average uses equal weights of $1/\tilde{N}$. Let L be the linear size of the lattice. The essence of the sandbox method is the approximation, for $r \ll L$,

$$
avg(p^{q-1}(r)) \sim (r/L)^{(q-1)D_q} . \tag{9.10}
$$

Note that $\sum_{B_j \in \mathcal{B}(s)} p_j^q(s)$ is a sum over the set of non-empty grid boxes, and the weight applied to $[p_j(s)]^{q-1}$ is $p_j(s)$. In contrast, $avg(p^{q-1}(r))$ is a sum over a randomly selected set of sandpiles, and the weight applied to $(M(n, r)/N)^{q-1}$ is $1/N$. Since the N sandpile centers are chosen from the N points using a uniform distribution, the sandpiles may overlap. Because the sandpiles may overlap, and the sandpiles do not necessarily cover all the N points, in general $\sum_{n \in \tilde{\mathbb{N}}} M(n, r) \neq N$,
and we cannot record the values $[M(n, n)/N]$, \approx as a probability distribution. Let θ and we cannot regard the values ${M(n, r)/N}_{n \in \tilde{N}}$ as a probability distribution. Let β be the spacing between adjacent lattice positions (e.g., between adjacent horizontal and vertical positions for a lattice in \mathbb{R}^2).

Definition 9.4 For $q \neq 1$, the *sandbox dimension function* [62] of order q is the function of r defined for $\beta < r \ll L$ by

$$
D_q^{sandbox}(r/L) \equiv \frac{1}{q-1} \frac{\log avg(p^{q-1}(r))}{\log(r/L)} . \tag{9.11}
$$

For a given $q \neq 1$ and lattice size L, the sandbox dimension function does not define a single sandbox dimension, but rather a range of sandbox dimensions, depending on *r*. It is not meaningful to define $\lim_{r\to 0} D_q^{sandbox}(r/L)$, since *r* cannot be smaller than the spacing β between lattice points. In practice, for a given q and L, a single value $D_{a}^{sandbox}$ of the sandbox dimension of order q is typically obtained by computing $D_q^{sandbox}(r/L)$ for a range of r values, and finding the slope of the $\log avg(p^{q-1}(r))$ vs. $\log(r/L)$ curve. The estimate of $D_q^{sandbox}$ is $1/(q-1)$ times this slope.

The sandbox method was applied to complex networks in [34]. The box centers are randomly selected nodes. There is no firm rule in [34] on the number of random centers to pick: they use $\widetilde{N} = |\widetilde{N}| = 1000$ random nodes, but suggest that \widetilde{N} can depend on N. For a given $q \neq 1$, they compute $avg(p^{q-1}(r))$ for a range of r values. Adapting [\(9.10\)](#page-5-0) to a complex network \mathbb{G} , for $r \ll \Delta$ we have

$$
\log avg(p^{q-1}(r)) \sim (q-1)D_q^{sandbox} \log(r/\Delta). \tag{9.12}
$$

In [34], linear regression is applied to (9.12) to compute $D_q^{sandbox}$.

The sandbox method was applied to undirected weighted networks in [58]. The calculation of the sandbox radii in [58] is similar to the selection of box sizes discussed in Sect. 3.2.

 \Box