Chapter 6 Mass Dimension for Infinite Networks

45

In this chapter we consider a sequence $\{\mathbb{G}_t\}_{t=1}^{\infty}$ of complex networks such that $\Delta_t \equiv diam(\mathbb{G}_t) \to \infty$ as $t \to \infty$. A convenient way to study such networks is to study how the "mass" of \mathbb{G}_t scales with $diam(\mathbb{G}_t)$, where the "mass" of \mathbb{G}_t , which we denote by N_t , is the number of nodes in \mathbb{G}_t . The fractal dimension used in [73] to characterize $\{\mathbb{G}_t\}_{t=1}^{\infty}$ is

$$d_M \equiv \lim_{t \to \infty} \frac{\log N_t}{\log \Delta_t}, \tag{6.1}$$

and d_M is called the *mass dimension*. An advantage of d_M over the correlation dimension d_C is that it is sometimes much simpler to compute the network diameter than to compute C(n, s) for each n and s, as is required to compute C(s) using (5.3).

A procedure is presented in [73] that uses a probability p to construct a network that exhibits a transition from fractal to non-fractal behavior as p increases from 0 to 1. For p = 0, the network does not exhibit the small-world property and has $d_M = 2$, while for p = 1 the network does exhibit the small-world property and $d_M = \infty$. The construction, illustrated by Fig. 6.1, begins with \mathbb{G}_0 , which is a single arc, and $p \in [0, 1]$. Let \mathbb{G}_t be the network after t steps. The network \mathbb{G}_{t+1} is derived from \mathbb{G}_t . For each arc in \mathbb{G}_t , with probability p we replace the arc with a path of three hops (introducing the two nodes c and d, as illustrated by the top branch of the figure), and with probability 1 - p we replace the arc with a path of four hops (introducing the three new nodes c, d, and e, as illustrated by the bottom branch of the figure). For p = 1, the first three generations of this construction yield the networks of Fig. 6.2. For p = 0, the first three generations of this construction yield the networks of Fig. 6.3. This construction builds upon the construction in [51] of (u, v) trees.

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

E. Rosenberg, A Survey of Fractal Dimensions of Networks, SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-90047-6_6

Fig. 6.1 Network that transitions from fractal to non-fractal behavior

Let N_t be the expected number of nodes in \mathbb{G}_t , let A_t be the expected number of arcs in \mathbb{G}_t , and let Δ_t be the expected diameter of \mathbb{G}_t . The quantities N_t , A_t , and Δ_t depend on p, but for notational simplicity we omit that dependence. Since each arc is replaced by three arcs with probability p, and by four arcs with probability 1 - p, for $t \ge 1$ we have

$$A_{t} = 3pA_{t-1} + 4(1-p)A_{t-1} = (4-p)A_{t-1}$$

= $(4-p)^{2}A_{t-2} = \dots = (4-p)^{t}A_{0} = (4-p)^{t}$, (6.2)

where the final equality follows as $A_0 = 1$, since \mathbb{G}_0 consists of a single arc.

Fig. 6.3 Three generations with p = 0

Let x_t be the number of new nodes created in the generation of \mathbb{G}_t . Since each existing arc spawns two new nodes with probability p and spawns three new nodes with probability 1 - p, from (6.2) we have

$$x_t = 2pA_{t-1} + 3(1-p)A_{t-1} = (3-p)A_{t-1} = (3-p)(4-p)^{t-1}.$$
 (6.3)

Since \mathbb{G}_0 has two nodes, for $t \ge 1$ we have

$$N_t = 2 + \sum_{i=1}^t x_i = 2 + \sum_{i=1}^t (3-p)(4-p)^{i-1}$$
$$= 2 + (3-p)\frac{(4-p)^t - 1}{(3-p)} = (4-p)^t + 1.$$
(6.4)

Now we compute the diameter Δ_t of \mathbb{G}_t . We begin with the case p = 1. For this case, distances between existing node pairs are not altered when new nodes are added. At each time step, the network diameter increases by 2. Since $\Delta_0 = 1$ then $\Delta_t = 2t+1$. Since $N_t \sim (4-p)^t$, then the network diameter grows as the logarithm of the number of nodes, so \mathbb{G}_t exhibits the small-world property for p = 1. From (6.1) we have $d_M = \infty$.

Now consider the case $0 \le p < 1$. For this case, the distances between existing nodes are increased. Consider an arc in the network \mathbb{G}_{t-1} , and the endpoints *i* and *j* of this arc. With probability *p*, the distance between *i* and *j* in \mathbb{G}_t is 1, and with probability 1 - p, the distance between *i* and *j* in \mathbb{G}_t is 2. The expected distance between *i* and *j* in \mathbb{G}_t is therefore p + 2(1 - p) = 2 - p. Since each \mathbb{G}_t is a tree, for $t \ge 1$ we have

$$\Delta_t = p\Delta_{t-1} + 2(1-p)\Delta_{t-1} + 2 = (2-p)\Delta_{t-1} + 2$$

and $\Delta_0 = 1$. This yields [73]

$$\Delta_t = \left(1 + \frac{2}{1-p}\right)(2-p)^t - \frac{2}{1-p}.$$
(6.5)

From (6.1), (6.4), and (6.5),

$$d_M = \lim_{t \to \infty} \frac{\log N_t}{\log \Delta_t} = \lim_{t \to \infty} \frac{\log[(4-p)^t + 1]}{\log\left[\left(1 + \frac{2}{1-p}\right)(2-p)^t - \frac{2}{1-p}\right]} = \frac{\log(4-p)}{\log(2-p)}, (6.6)$$

so d_M is finite, and \mathbb{G}_t does not exhibit the small-world property. For p = 0 we have $d_M = \log 4/\log 2 = 2$. Note that $\log(4-p)/\log(2-p) \to \infty$ as $p \to 1$.

6.1 Transfinite Fractal Dimension

A deterministic recursive construction can be used to create a self-similar network, called a (u, v)-flower, where u and v are positive integers [51]. By varying u and v, both fractal and non-fractal networks can be generated. The construction starts at time t = 1 with a cyclic graph (a ring), with $w \equiv u + v$ arcs and w nodes. At time t + 1, replace each arc of the time t network by two parallel paths, one with u arcs, and one with v arcs. Without loss of generality, assume $u \leq v$. Figure 6.4 illustrates three generations of a (1, 3)-flower. The t = 1 network has four arcs. To generate the t = 2 network, arc a is replaced by the path {b} with one arc, and also by the path {c, d, e} with three arcs; the other three arcs in Fig. 6.4a are similarly replaced. To generate the t = 3 network, arc d is replaced by the path {p} with one arc, and also by the path {q, r, s} with three arcs; the other fifteen arcs in Fig. 6.4b are similarly replaced. The self-similarity of the (u, v)-flowers follows from an equivalent method of construction: generate the time t + 1 network by making w copies of the time t network, and joining the copies at the hubs.

Let \mathbb{G}_t denote the (u, v)-flower at time t. The number of arcs in \mathbb{G}_t is $A_t = w^t = (u + v)^t$. The number N_t of nodes in \mathbb{G}_t satisfies the recursion $N_t = wN_{t-1} - w$; with the boundary condition $N_1 = w$ we obtain [51]

$$N_t = \left(\frac{w-2}{w-1}\right)w^t + \left(\frac{w}{w-1}\right). \tag{6.7}$$

Consider the case u = 1. Let Δ_t be the diameter of \mathbb{G}_t . It can be shown [51] that for (1, v)-flowers and odd v we have $\Delta_t = (v - 1)t + (3 - v)/2$ while in general, for (1, v)-flowers and any v,

$$\Delta_t \sim (v-1)t \,. \tag{6.8}$$

Fig. 6.4 Three generations of a (1, 3)-flower

Since $N_t \sim w^t$ then $\Delta_t \sim \log N_t$, so (1, v)-flowers enjoy the small-world property. By (6.1), (6.7), and (6.8), for (1, v)-flowers we have

$$d_M = \lim_{t \to \infty} \frac{\log N_t}{\log \Delta_t} = \lim_{t \to \infty} \frac{\log w^t}{\log t} = \infty,$$
(6.9)

so (1, v)-flowers have an infinite mass dimension.

We want to define a new type of fractal dimension that is finite for (1, v)-flowers and for other networks whose mass dimension is infinite. For (1, v)-flowers, from (6.7) we have

$$N_t \sim w^t = (1+v)^t$$

as $t \to \infty$, so $\log N_t \sim t \log(1 + v)$. From (6.8) we have $\Delta_t \sim (v - 1)t$ as $t \to \infty$. Since both $\log N_t$ and Δ_t behave like a linear function of t as $t \to \infty$, but with different slopes, let d_F be the ratio of the slopes, so

$$d_E \equiv \frac{\log(1+v)}{v-1} \,. \tag{6.10}$$

From (6.10), (6.8), and (6.7), as $t \to \infty$ we have

$$d_E = \frac{t \log(1+v)}{t(v-1)} = \frac{\log(1+v)^t}{t(v-1)} = \frac{\log w^t}{t(v-1)} \sim \frac{\log N_t}{\Delta_t}, \quad (6.11)$$

from which we obtain

$$N_t \sim e^{d_E \Delta_t}.\tag{6.12}$$

6 Mass Dimension for Infinite Networks

Define $\alpha_t \equiv \Delta_{t+1} - \Delta_t$. From (6.12),

$$\frac{N_{t+1}}{N_t} \sim \frac{e^{d_E \Delta_{t+1}}}{e^{d_E \Delta_t}} = e^{d_E \alpha_t}.$$
(6.13)

Writing $N_t = N(\Delta_t)$ for some function $N(\cdot)$, we have

$$N_{t+1} = N(\Delta_{t+1}) = N(\Delta_t + \alpha_t)$$

From this and (6.13) we have

$$N(\Delta_t + \alpha_t) \sim N(\Delta_t) e^{d_E \alpha_t}, \tag{6.14}$$

which says that, for $t \gg 1$, when the diameter increases by α_t , the number of nodes increases by a factor which is exponential in $d_E \alpha_t$. As observed in [51], in (6.14) there is some arbitrariness in the selection of e as the base of the exponential term $e^{d_E \alpha_t}$, since from (6.10) the numerical value of d_E depends on the logarithm base. If (6.14) holds as $t \to \infty$ for a sequence of self similar graphs { \mathbb{G}_t } then d_E is called the *transfinite fractal dimension*, since this dimension "usefully distinguishes between different graphs of infinite dimensionality" [51]. Self-similar networks such as (1, v)-flowers whose mass dimension d_M is infinite, but whose transfinite fractal dimension d_E is finite, are called *transfinite fractal* networks, or simply *transfractals*. Thus (1, v)-flowers are transfractals with transfinite fractal dimension $d_F = \log(1 + v)/(v - 1)$.

Finally, consider (u, v)-flowers with u > 1. It can be shown [51] that $\Delta_t \sim u^t$. Using (6.7) we have

$$\lim_{t \to \infty} \frac{\log N_t}{\log \Delta_t} = \lim_{t \to \infty} \frac{\log w^t}{\log u^t} = \frac{\log(u+v)}{\log u}$$

so

$$d_M = \frac{\log(u+v)}{\log u}$$

Since d_M is finite, these networks are fractals, not transfractals, and these networks do not enjoy the small-world property.