Chapter 6 Mass Dimension for Infinite Networks

In this chapter we consider a sequence $\{\mathbb{G}_t\}_{t=1}^{\infty}$ of complex networks such that $\Delta_t =$ $diam(\mathbb{G}_t) \to \infty$ as $t \to \infty$. A convenient way to study such networks is to study how the "mass" of \mathbb{G}_t scales with $diam(\mathbb{G}_t)$, where the "mass" of \mathbb{G}_t , which we denote by N_t , is the number of nodes in \mathbb{G}_t . The fractal dimension used in [73] to characterize $\{\mathbb{G}_t\}_{t=1}^{\infty}$ is

$$
d_M \equiv \lim_{t \to \infty} \frac{\log N_t}{\log \Delta_t},\tag{6.1}
$$

and d_M is called the *mass dimension*. An advantage of d_M over the correlation dimension d_C is that it is sometimes much simpler to compute the network diameter than to compute $C(n, s)$ for each n and s, as is required to compute $C(s)$ using (5.3).

A procedure is presented in [73] that uses a probability p to construct a network that exhibits a transition from fractal to non-fractal behavior as p increases from 0 to 1. For $p = 0$, the network does not exhibit the small-world property and has $d_M = 2$, while for $p = 1$ the network does exhibit the small-world property and $d_M^{\prime\prime} = \infty$. The construction, illustrated by Fig. [6.1,](#page-1-0) begins with \mathbb{G}_0 , which is a single arc, and $p \in [0, 1]$. Let \mathbb{G}_t be the network after t steps. The network \mathbb{G}_{t+1} is derived from \mathbb{G}_t . For each arc in \mathbb{G}_t , with probability p we replace the arc with a path of three hops (introducing the two nodes c and d , as illustrated by the top branch of the figure), and with probability $1 - p$ we replace the arc with a path of four hops (introducing the three new nodes c, d , and e , as illustrated by the bottom branch of the figure). For $p = 1$, the first three generations of this construction yield the networks of Fig. [6.2.](#page-1-1) For $p = 0$, the first three generations of this construction yield the networks of Fig. [6.3.](#page-2-0) This construction builds upon the construction in [51] of (u, v) trees.

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

E. Rosenberg, *A Survey of Fractal Dimensions of Networks*, SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-90047-6_6

Fig. 6.1 Network that transitions from fractal to non-fractal behavior

Let N_t be the expected number of nodes in \mathbb{G}_t , let A_t be the expected number of arcs in \mathbb{G}_t , and let Δ_t be the expected diameter of \mathbb{G}_t . The quantities N_t , A_t , and Δ_t depend on p , but for notational simplicity we omit that dependence. Since each arc is replaced by three arcs with probability p, and by four arcs with probability $1-p$, for $t \geq 1$ we have

$$
A_{t} = 3pA_{t-1} + 4(1 - p)A_{t-1} = (4 - p)A_{t-1}
$$

= $(4 - p)^{2}A_{t-2} = ... = (4 - p)^{t}A_{0} = (4 - p)^{t}$, (6.2)

where the final equality follows as $A_0 = 1$, since \mathbb{G}_0 consists of a single arc.

Fig. 6.3 Three generations with $p = 0$

Let x_t be the number of new nodes created in the generation of \mathbb{G}_t . Since each existing arc spawns two new nodes with probability p and spawns three new nodes with probability $1 - p$, from [\(6.2\)](#page-1-2) we have

$$
x_t = 2pA_{t-1} + 3(1-p)A_{t-1} = (3-p)A_{t-1} = (3-p)(4-p)^{t-1}.
$$
 (6.3)

Since \mathbb{G}_0 has two nodes, for $t \geq 1$ we have

$$
N_t = 2 + \sum_{i=1}^{t} x_i = 2 + \sum_{i=1}^{t} (3 - p)(4 - p)^{i-1}
$$

= 2 + (3 - p) $\frac{(4 - p)^t - 1}{(3 - p)}$ = (4 - p)^t + 1. (6.4)

Now we compute the diameter Δ_t of \mathbb{G}_t . We begin with the case $p = 1$. For this case, distances between existing node pairs are not altered when new nodes are added. At each time step, the network diameter increases by 2. Since $\Delta_0 = 1$ then $\Delta_t = 2t + 1$. Since $N_t \sim (4 - p)^t$, then the network diameter grows as the logarithm of the number of nodes, so \mathbb{G}_t exhibits the small-world property for $p = 1$. From [\(6.1\)](#page-0-0) we have $d_M = \infty$.

Now consider the case $0 \leq p < 1$. For this case, the distances between existing nodes are increased. Consider an arc in the network \mathbb{G}_{t-1} , and the endpoints i and j of this arc. With probability p, the distance between i and j in \mathbb{G}_t is 1, and with probability $1 - p$, the distance between i and j in \mathbb{G}_t is 2. The expected distance between *i* and *j* in \mathbb{G}_t is therefore $p + 2(1 - p) = 2 - p$. Since each \mathbb{G}_t is a tree, for $t \geq 1$ we have

$$
\Delta_t = p\Delta_{t-1} + 2(1-p)\Delta_{t-1} + 2 = (2-p)\Delta_{t-1} + 2
$$

and $\Delta_0 = 1$. This yields [73]

$$
\Delta_t = \left(1 + \frac{2}{1 - p}\right)(2 - p)^t - \frac{2}{1 - p}.
$$
\n(6.5)

From (6.1) , (6.4) , and (6.5) ,

$$
d_M = \lim_{t \to \infty} \frac{\log N_t}{\log \Delta_t} = \lim_{t \to \infty} \frac{\log[(4-p)^t + 1]}{\log \left[\left(1 + \frac{2}{1-p}\right)(2-p)^t - \frac{2}{1-p}\right]} = \frac{\log(4-p)}{\log(2-p)}, (6.6)
$$

so d_M is finite, and \mathbb{G}_t does not exhibit the small-world property. For $p = 0$ we have $d_M = \log 4 / \log 2 = 2$. Note that $\log(4 - p) / \log(2 - p) \rightarrow \infty$ as $p \rightarrow 1$.

6.1 Transfinite Fractal Dimension

A deterministic recursive construction can be used to create a self-similar network, called a (u, v) -*flower*, where u and v are positive integers [51]. By varying u and v , both fractal and non-fractal networks can be generated. The construction starts at time $t = 1$ with a cyclic graph (a ring), with $w \equiv u + v$ arcs and w nodes. At time $t + 1$, replace each arc of the time t network by two parallel paths, one with u arcs, and one with v arcs. Without loss of generality, assume $u \leq v$. Figure [6.4](#page-4-0) illustrates three generations of a $(1, 3)$ -flower. The $t = 1$ network has four arcs. To generate the $t = 2$ network, arc a is replaced by the path ${b}$ with one arc, and also by the path $\{c, d, e\}$ with three arcs; the other three arcs in Fig. [6.4a](#page-4-0) are similarly replaced. To generate the $t = 3$ network, arc d is replaced by the path ${p}$ with one arc, and also by the path ${q, r, s}$ with three arcs; the other fifteen arcs in Fig. [6.4b](#page-4-0) are similarly replaced. The self-similarity of the (u, v) -flowers follows from an equivalent method of construction: generate the time $t + 1$ network by making w copies of the time t network, and joining the copies at the hubs.

Let \mathbb{G}_t denote the (u, v) -flower at time t. The number of arcs in \mathbb{G}_t is $A_t = w^t$ $(u + v)^t$. The number N_t of nodes in \mathbb{G}_t satisfies the recursion $N_t = wN_{t-1} - w$; with the boundary condition $N_1 = w$ we obtain [51]

$$
N_t = \left(\frac{w-2}{w-1}\right)w^t + \left(\frac{w}{w-1}\right). \tag{6.7}
$$

Consider the case $u = 1$. Let Δ_t be the diameter of \mathbb{G}_t . It can be shown [51] that for (1, v)-flowers and odd v we have $\Delta_t = (v - 1)t + (3 - v)/2$ while in general, for $(1, v)$ -flowers and any v ,

$$
\Delta_t \sim (v-1)t \,. \tag{6.8}
$$

Fig. 6.4 Three generations of a (1, 3)-flower

Since $N_t \sim w^t$ then $\Delta_t \sim \log N_t$, so (1, v)-flowers enjoy the small-world property. By (6.1) , (6.7) , and (6.8) , for $(1, v)$ -flowers we have

$$
d_M = \lim_{t \to \infty} \frac{\log N_t}{\log \Delta_t} = \lim_{t \to \infty} \frac{\log w^t}{\log t} = \infty, \tag{6.9}
$$

so $(1, v)$ -flowers have an infinite mass dimension.

We want to define a new type of fractal dimension that is finite for $(1, v)$ -flowers and for other networks whose mass dimension is infinite. For $(1, v)$ -flowers, from (6.7) we have

$$
N_t \sim w^t = (1 + v)^t
$$

as $t \to \infty$, so log $N_t \sim t \log(1 + v)$. From [\(6.8\)](#page-3-2) we have $\Delta_t \sim (v - 1)t$ as $t \to \infty$. Since both $\log N_t$ and Δ_t behave like a linear function of t as $t \to \infty$, but with different slopes, let d_F be the ratio of the slopes, so

$$
d_E \equiv \frac{\log(1+v)}{v-1} \,. \tag{6.10}
$$

From [\(6.10\)](#page-4-1), [\(6.8\)](#page-3-2), and [\(6.7\)](#page-3-1), as $t \rightarrow \infty$ we have

$$
d_E = \frac{t \log(1+v)}{t(v-1)} = \frac{\log(1+v)^t}{t(v-1)} = \frac{\log w^t}{t(v-1)} \sim \frac{\log N_t}{\Delta_t},
$$
(6.11)

from which we obtain

$$
N_t \sim e^{d_E \Delta_t}.\tag{6.12}
$$

50 6 Mass Dimension for Infinite Networks

Define $\alpha_t \equiv \Delta_{t+1} - \Delta_t$. From [\(6.12\)](#page-4-2),

$$
\frac{N_{t+1}}{N_t} \sim \frac{e^{d_E \Delta_{t+1}}}{e^{d_E \Delta_t}} = e^{d_E \alpha_t}.
$$
\n(6.13)

Writing $N_t = N(\Delta_t)$ for some function $N(\cdot)$, we have

$$
N_{t+1} = N(\Delta_{t+1}) = N(\Delta_t + \alpha_t).
$$

From this and (6.13) we have

$$
N(\Delta_t + \alpha_t) \sim N(\Delta_t) e^{d_E \alpha_t}, \qquad (6.14)
$$

which says that, for $t \gg 1$, when the diameter increases by α_t , the number of nodes increases by a factor which is exponential in $d_F \alpha_t$. As observed in [51], in [\(6.14\)](#page-5-1) there is some arbitrariness in the selection of e as the base of the exponential term $e^{d_E \alpha_t}$, since from [\(6.10\)](#page-4-1) the numerical value of d_E depends on the logarithm base. If [\(6.14\)](#page-5-1) holds as $t \to \infty$ for a sequence of self similar graphs { \mathbb{G}_t } then d_E is called the *transfinite fractal dimension*, since this dimension "usefully distinguishes between different graphs of infinite dimensionality" [51]. Self-similar networks such as $(1, v)$ -flowers whose mass dimension d_M is infinite, but whose transfinite fractal dimension d_E is finite, are called *transfinite fractal* networks, or simply *transfractals*. Thus (1, v)-flowers are transfractals with transfinite fractal dimension $d_F = \log(1 + v)/(v - 1).$

Finally, consider (u, v) -flowers with $u > 1$. It can be shown [51] that $\Delta_t \sim u^t$. Using (6.7) we have

$$
\lim_{t \to \infty} \frac{\log N_t}{\log \Delta_t} = \lim_{t \to \infty} \frac{\log w^t}{\log u^t} = \frac{\log (u + v)}{\log u},
$$

so

$$
d_M = \frac{\log(u + v)}{\log u}.
$$

Since d_M is finite, these networks are fractals, not transfractals, and these networks do not enjoy the small-world property.