
Chapter 6
Mass Dimension for Infinite Networks

In this chapter we consider a sequence {Gt }∞t=1 of complex networks such that Δt ≡
diam(Gt ) → ∞ as t → ∞. A convenient way to study such networks is to study
how the “mass” of Gt scales with diam(Gt ), where the “mass” of Gt , which we
denote by Nt , is the number of nodes in Gt . The fractal dimension used in [73] to
characterize {Gt }∞t=1 is

d
M

≡ lim
t→∞

log Nt

log Δt

, (6.1)

and d
M

is called the mass dimension. An advantage of d
M

over the correlation
dimension d

C
is that it is sometimes much simpler to compute the network diameter

than to compute C(n, s) for each n and s, as is required to compute C(s) using (5.3).
A procedure is presented in [73] that uses a probability p to construct a network

that exhibits a transition from fractal to non-fractal behavior as p increases from
0 to 1. For p = 0, the network does not exhibit the small-world property and has
d
M

= 2, while for p = 1 the network does exhibit the small-world property and
d
M

= ∞. The construction, illustrated by Fig. 6.1, begins with G0, which is a single
arc, and p ∈ [0, 1]. Let Gt be the network after t steps. The network Gt+1 is derived
from Gt . For each arc in Gt , with probability p we replace the arc with a path of
three hops (introducing the two nodes c and d, as illustrated by the top branch of
the figure), and with probability 1 − p we replace the arc with a path of four hops
(introducing the three new nodes c, d, and e, as illustrated by the bottom branch
of the figure). For p = 1, the first three generations of this construction yield the
networks of Fig. 6.2. For p = 0, the first three generations of this construction yield
the networks of Fig. 6.3. This construction builds upon the construction in [51] of
(u, v) trees.
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Fig. 6.1 Network that transitions from fractal to non-fractal behavior

Fig. 6.2 Three generations
with p = 1

Let Nt be the expected number of nodes in Gt , let At be the expected number of
arcs in Gt , and let Δt be the expected diameter of Gt . The quantities Nt , At , and Δt

depend on p, but for notational simplicity we omit that dependence. Since each arc
is replaced by three arcs with probability p, and by four arcs with probability 1−p,
for t ≥ 1 we have

At = 3pAt−1 + 4(1 − p)At−1 = (4 − p)At−1

= (4 − p)2At−2 = . . . = (4 − p)tA0 = (4 − p)t , (6.2)

where the final equality follows as A0 = 1, since G0 consists of a single arc.
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Fig. 6.3 Three generations with p = 0

Let xt be the number of new nodes created in the generation of Gt . Since each
existing arc spawns two new nodes with probability p and spawns three new nodes
with probability 1 − p, from (6.2) we have

xt = 2pAt−1 + 3(1 − p)At−1 = (3 − p)At−1 = (3 − p)(4 − p)t−1 . (6.3)

Since G0 has two nodes, for t ≥ 1 we have

Nt = 2 +
t∑

i=1

x
i

= 2 +
t∑

i=1

(3 − p)(4 − p)i−1

= 2 + (3 − p)
(4 − p)t − 1

(3 − p)
= (4 − p)t + 1 . (6.4)

Now we compute the diameter Δt of Gt . We begin with the case p = 1. For
this case, distances between existing node pairs are not altered when new nodes are
added. At each time step, the network diameter increases by 2. Since Δ0 = 1 then
Δt = 2t+1. Since Nt ∼ (4−p)t , then the network diameter grows as the logarithm
of the number of nodes, so Gt exhibits the small-world property for p = 1. From
(6.1) we have d

M
= ∞.

Now consider the case 0 ≤ p < 1. For this case, the distances between existing
nodes are increased. Consider an arc in the network Gt−1, and the endpoints i and
j of this arc. With probability p, the distance between i and j in Gt is 1, and with
probability 1 − p, the distance between i and j in Gt is 2. The expected distance
between i and j in Gt is therefore p + 2(1 − p) = 2 − p. Since each Gt is a tree,
for t ≥ 1 we have

Δt = pΔt−1 + 2(1 − p)Δt−1 + 2 = (2 − p)Δt−1 + 2
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and Δ0 = 1. This yields [73]

Δt =
(

1 + 2

1 − p

)
(2 − p)t − 2

1 − p
. (6.5)

From (6.1), (6.4), and (6.5),

d
M

= lim
t→∞

log Nt

log Δt

= lim
t→∞

log[(4 − p)t + 1]
log

[(
1 + 2

1−p

)
(2 − p)t − 2

1−p

] = log(4 − p)

log(2 − p)
,(6.6)

so d
M

is finite, and Gt does not exhibit the small-world property. For p = 0 we have
d
M

= log 4/ log 2 = 2. Note that log(4 − p)/ log(2 − p) → ∞ as p → 1.

6.1 Transfinite Fractal Dimension

A deterministic recursive construction can be used to create a self-similar network,
called a (u, v)-flower, where u and v are positive integers [51]. By varying u and
v, both fractal and non-fractal networks can be generated. The construction starts
at time t = 1 with a cyclic graph (a ring), with w ≡ u + v arcs and w nodes. At
time t + 1, replace each arc of the time t network by two parallel paths, one with
u arcs, and one with v arcs. Without loss of generality, assume u ≤ v. Figure 6.4
illustrates three generations of a (1, 3)-flower. The t = 1 network has four arcs.
To generate the t = 2 network, arc a is replaced by the path {b} with one arc,
and also by the path {c, d, e} with three arcs; the other three arcs in Fig. 6.4a are
similarly replaced. To generate the t = 3 network, arc d is replaced by the path
{p} with one arc, and also by the path {q, r, s} with three arcs; the other fifteen arcs
in Fig. 6.4b are similarly replaced. The self-similarity of the (u, v)-flowers follows
from an equivalent method of construction: generate the time t + 1 network by
making w copies of the time t network, and joining the copies at the hubs.

Let Gt denote the (u, v)-flower at time t . The number of arcs in Gt is At = w t =
(u + v)t . The number Nt of nodes in Gt satisfies the recursion Nt = wNt−1 − w;
with the boundary condition N1 = w we obtain [51]

Nt =
(

w − 2

w − 1

)
w t +

(
w

w − 1

)
. (6.7)

Consider the case u = 1. Let Δt be the diameter of Gt . It can be shown [51] that
for (1, v)-flowers and odd v we have Δt = (v − 1)t + (3 − v)/2 while in general,
for (1, v)-flowers and any v,

Δt ∼ (v − 1)t . (6.8)



6.1 Transfinite Fractal Dimension 49

Fig. 6.4 Three generations of a (1, 3)-flower

Since Nt ∼ w t then Δt ∼ log Nt , so (1, v)-flowers enjoy the small-world property.
By (6.1), (6.7), and (6.8), for (1, v)-flowers we have

d
M

= lim
t→∞

log Nt

log Δt

= lim
t→∞

log w t

log t
= ∞ , (6.9)

so (1, v)-flowers have an infinite mass dimension.
We want to define a new type of fractal dimension that is finite for (1, v)-flowers

and for other networks whose mass dimension is infinite. For (1, v)-flowers, from
(6.7) we have

Nt ∼ w t = (1 + v)t

as t → ∞, so log Nt ∼ t log(1 + v). From (6.8) we have Δt ∼ (v − 1)t as t → ∞.
Since both log Nt and Δt behave like a linear function of t as t → ∞, but with
different slopes, let d

E
be the ratio of the slopes, so

d
E

≡ log(1 + v)

v − 1
. (6.10)

From (6.10), (6.8), and (6.7), as t → ∞ we have

d
E

= t log(1 + v)

t (v − 1)
= log(1 + v)t

t (v − 1)
= log w t

t (v − 1)
∼ log Nt

Δt

, (6.11)

from which we obtain

Nt ∼ ed
E

Δt . (6.12)
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Define αt ≡ Δt+1 − Δt . From (6.12),

Nt+1

Nt

∼ ed
E

Δt+1

ed
E

Δt
= ed

E
αt . (6.13)

Writing Nt = N(Δt) for some function N(·), we have

Nt+1 = N(Δt+1) = N(Δt + αt ) .

From this and (6.13) we have

N(Δt + αt ) ∼ N(Δt)e
d
E

αt , (6.14)

which says that, for t 	 1, when the diameter increases by αt , the number of nodes
increases by a factor which is exponential in d

E
αt . As observed in [51], in (6.14)

there is some arbitrariness in the selection of e as the base of the exponential term
ed

E
αt , since from (6.10) the numerical value of d

E
depends on the logarithm base.

If (6.14) holds as t → ∞ for a sequence of self similar graphs {Gt } then d
E

is
called the transfinite fractal dimension, since this dimension “usefully distinguishes
between different graphs of infinite dimensionality” [51]. Self-similar networks
such as (1, v)-flowers whose mass dimension d

M
is infinite, but whose transfinite

fractal dimension d
E

is finite, are called transfinite fractal networks, or simply
transfractals. Thus (1, v)-flowers are transfractals with transfinite fractal dimension
d
E

= log(1 + v)/(v − 1).
Finally, consider (u, v)-flowers with u > 1. It can be shown [51] that Δt ∼ ut .

Using (6.7) we have

lim
t→∞

log Nt

log Δt

= lim
t→∞

log w t

log ut
= log(u + v)

log u
,

so

d
M

= log(u + v)

log u
.

Since d
M

is finite, these networks are fractals, not transfractals, and these networks
do not enjoy the small-world property.
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